TW200813512A - Variable focus zoom lenses - Google Patents

Variable focus zoom lenses Download PDF

Info

Publication number
TW200813512A
TW200813512A TW096128029A TW96128029A TW200813512A TW 200813512 A TW200813512 A TW 200813512A TW 096128029 A TW096128029 A TW 096128029A TW 96128029 A TW96128029 A TW 96128029A TW 200813512 A TW200813512 A TW 200813512A
Authority
TW
Taiwan
Prior art keywords
semi
lens
solid
solid lens
curvature
Prior art date
Application number
TW096128029A
Other languages
Chinese (zh)
Inventor
Saman Dharmatilleke
Original Assignee
Agency Science Tech & Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency Science Tech & Res filed Critical Agency Science Tech & Res
Publication of TW200813512A publication Critical patent/TW200813512A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lens Barrels (AREA)

Abstract

The present invention provides a variable focus semi-solid zoom lens, methods of making and using the variable focus lens and optical devices containing the variable focus semi-solid lens. The focal length is controllable by changing the shape, size, dimension, geometry, outer diameter or surface curvature of the semi-solid lens. The change of the focal length can be achieved by using a pressure control device coupled with the semisolid lens. The semi-solid lens can also be mounted in a housing.

Description

200813512 九、發明說明: 【發明戶斤屬之技術領域】 本發明係為一種可變焦距式變焦透鏡。 5 發明背景 於傳統式光學成像應用中,諸如光通信系統及照相機 裝置’透鏡之手動調諧及物理定位典型地係為用以將一影 像聚焦在一成像感測器上以及用以相對於透鏡自不同方向 接收光線所需。為消除手動調諧的無效率及費用,發展可 10調諧的微透鏡用以藉由以最理想的方式將一光源與一光學 信號接收器,諸如一光探測器,耦合而聚焦一光學信號。 於一些例子中’當一入射在微透鏡上之光束偏離其名義 上、對準的入射時’微透鏡之折射率係自動地變化用以改 變微透鏡之焦點以保持微透鏡與光探測器之間的最理想耦 15 合。 然而,可調諧的微透鏡,諸如梯度折射率透鏡(gradient index lens) ’具有内在限制,係有關於該等透鏡所用的大多 數f光材料中出現的小電光係數。如此通常造成-小光程 调變亚因而需要厚的透鏡或是高電壓。此外,多數之電光 20材料顯示強烈雙折射導致微透鏡之偏振相依性,因特定的 偏振而扭曲光線。在需要可調譜微透鏡陣列的例子中,該 等問題尤為嚴重。例如,現行的照相手機使用極小的固定 焦距透鏡,其之光聚集能力不佳、焦距範圍及解析能力 (職1Uti〇nP〇Wer)受限。因此,與傳統式相機相較影像品質 200813512 為低。 當焦距係藉由變化一流體凹凸透鏡之接觸角或曲率半 徑而加以控制時’提供—變纽體透鏡,構錢鏡之光學 鏡之曲率 讀。先㈣置典·亦包括—壓力或體積控制構件流暢 地與流體結合用於調整流體壓力並因㈣能_整凹凸透200813512 IX. Description of the Invention: [Technical Field of Invention] The present invention is a variable focal length zoom lens. 5 BACKGROUND OF THE INVENTION In conventional optical imaging applications, such as optical communication systems and camera devices, manual tuning and physical positioning of lenses are typically used to focus an image onto an imaging sensor and to self-align with the lens. Required to receive light in different directions. To eliminate the inefficiency and expense of manual tuning, a 10 tunable microlens is developed for focusing an optical signal by coupling a light source to an optical signal receiver, such as a photodetector, in an optimal manner. In some examples, 'when a beam incident on a microlens deviates from its nominal, aligned incidence', the refractive index of the microlens automatically changes to change the focus of the microlens to maintain the microlens and photodetector. The ideal coupling between the two. However, tunable microlenses, such as gradient index lenses, have inherent limitations associated with the small electro-optical coefficients found in most of the f-light materials used in such lenses. This usually results in a small optical path modulation and thus requires a thick lens or high voltage. In addition, most electro-optic materials exhibit strong birefringence resulting in polarization dependence of the microlenses, which distort light due to specific polarization. These problems are particularly acute in the case where a tunable spectral microlens array is required. For example, current camera phones use very small fixed focal length lenses that are limited in their ability to gather light, focus range, and resolution (1Uti〇nP〇Wer). Therefore, the image quality of 200813512 is lower than that of the conventional camera. When the focal length is controlled by varying the contact angle or radius of curvature of a fluid meniscus lens, the curvature of the optical lens of the mirror is read. First (4) set the code also includes - the pressure or volume control member is smoothly combined with the fluid to adjust the fluid pressure and (4) energy

10 而,該一製程無法用於液體透鏡。 然而,對於-麵體透鏡所特㈣問題仍有改良空 -首先在又到彳里擊或是粗率處理後會妨礙液體透鏡。 第二^於4力影響’大直㈣可變焦距式液體透鏡在製 備上係和難的。第二,由於液體透鏡典型地係為球狀, 所以_目前技術製備非球狀可變焦距式液體透鏡極難成 功。第四’於多數技術應用巾’相當需要利用一材料,諸 如非反射塗層,修改透鏡之表面用以改良影像品質。然 15 目此’ E要提供克服上述及其他問題的系統及方法。10 However, this process cannot be used for liquid lenses. However, there is still a problem with the special (4) problem for the -face lens - first of all, it will hinder the liquid lens after hitting the slap or roughing. The second ^ 4 force influences the 'straight straight (four) variable focus liquid lens in the process of being difficult and difficult to manufacture. Second, since the liquid lens is typically spherical, it is extremely difficult to produce a non-spherical variable focus liquid lens by the prior art. The fourth 'in most technical applications' requires considerable material, such as a non-reflective coating, to modify the surface of the lens to improve image quality. However, it is desirable to provide systems and methods that overcome these and other problems.

4寸別地,而要-可為球狀及非球狀的低成本且大直徑的可 變焦距式透鏡。亦需提供一堅固耐用的光學聚焦系統供預 d曰又粗率處理的小型、可攜的成像應用所用。本發明之 具體實施例係針對該等及其他需求而提出。 20 【潑^明内溶L】 發明概要 本發明提供一可變焦距式半固體透鏡,製備及使用可 變焦距式透鏡以及包含該可變焦距式半固體透鏡的光學裳 置之方法。藉由改變半固體透鏡之形狀、大小、尺寸、幾 6 200813512 - 5 何形狀、體積、壓力或表面曲率,例如,改變半固體透鏡 的表面或主體上的一區域之曲率或曲率半徑而可控制焦 距。半固體之表面構成一透鏡之光學性質以及其之(可調整) 曲率半徑確定焦距。一可變焦距式半固體透鏡之實例可為 一聚合物透鏡或是一凝膠透鏡。有利地,本發明之一半固 體可變焦距式透鏡能夠簡易地製造具有一大直徑的球狀或 非球狀可變焦距式透鏡,並能夠容易地將塗層,諸如一非 反射塗層,沉積在透鏡之表面上用於改良影像品質。 根據本發明,經由調整施加至半固體物質的壓力而改 10 變該半固體物質的形狀、大小、尺寸、幾何形狀、體積或 表面曲率,達成可變焦距能力。於一觀點中,藉由改變半 固體透鏡的形狀、大小、尺寸、幾何形狀或表面曲率,同 時保持相對不變的透鏡體積而達成可變焦距能力。於一具 體實施例中,藉由改變半固體物質的直徑而達成可變焦距 15 • 能力。 根據本發明之一觀點,提供一光學裝置,其典型地包 括一透光的半固體物質,該物質之一表面區域具有一明確 定義的曲率以及一壓力控制構件與半固體物質耦合用於調 整半固體物質之表面區域的曲率。於一具體實施例中,光 20 學裝置包括一保持構件,例如,——外殼用於支撐該物質, 其中該半固體物質係配置或是固定在外殼中。於另一具體 實施例中,半固體物質係為一薄膜,其之厚度範圍係自微 米至公厘。 根據本發明之另一觀點,提供一光學裝置,其典型地 7 200813512 包括一或更多半固體透鏡,該透鏡之之一表面區域具有一 明確定義的曲率;一或更多固體透鏡;可任擇地-或更多 體透鏡,彳咸用於固定該等透鏡;至少—壓力控制構 件與至少-半固體透鏡编合;以及可任擇地至少一壓力控 5制構件與一流體透鏡耦合。 根據本發月之另_觀點,提供一用於製備一光學裝置 的方法_方去包括將一透光半固體物質製備進入一可變 焦距式透鏡中。於一具體實施例中,該方法包括一射出成 型製程。於另-具體實施例中,該方法包括一就地固化製 10 程。 根據本發明之另-觀點,提供_方法用於調整一透光 的半固體物質之表面的曲率或曲率半徑,該物質之一表面 區域具有一明確定義的曲率。該方法包括調整施加至半固 體物質的壓力用以改變半固體物質之表面區域的曲率。 15 根據本發明之一進一步觀點,提供使用具有一用於成 像應用的可變焦距式半固體透鏡的一光學裝置。 參考說明書之剩餘部分,包括圖式及申請專利範圍, 將瞭解本發明之其他特性及優點。本發明之進一歩特性及 優點,·以及本發明之不同具體實施例的結構及操作,將於 20以下相關於伴隨的圖式加以說明。於該等圖式中,相同的 代表符號表示相同的或功能上相似的元件。 圖式簡單說明 第1Α-1Β圖圖示本發明之一具體實施例的一可變焦距 式半固體透鏡,其巾藉由㈣透鏡之外㈣調整焦距。 200813512 第2圖圖示本發明之一具體實施例的一半固體透鏡之 一概略圖式的侧視圖,該透鏡具有一壓力環致動器用於藉 由改變透鏡之外徑而調整該半固體透鏡的形狀。 第3圖圖示本發明之一具體實施例的一可變焦距式半 5 固體透鏡的一俯視圖,該透鏡具有一人工肌肉環、一壓電 環或一機械環裝配用於調整透鏡之表面曲率。 第4圖圖示本發明之一具體實施例的一光學裝置的一 橫截面侧視圖,該裝置具有一固定於一外殼中的半固體透 鏡以及一流體壓力調變器用於調整半固體透鏡之表面曲 10 率。 第5圖係為具有二透鏡式總成的一光學裝置的一概略 圖式。本發明之一具體實施例的該光學裝置包括一半固體 透鏡以及一固體透鏡固定於一外殼中。 第6A-6B圖圖示本發明之一具體實施例的一光學裝 15 置,其具有一半固體透鏡以及一固體透鏡固定於具有一透 明蓋的一外殼中,以及一流體壓力調變器用於調整半固體 透鏡之表面曲率。 第7圖圖示本發明之一具體實施例的一光學裝置,其具 有一半固體及固體透鏡總成,該總成的一外殼具有粗糙表 20 面用於增加泮固體黏合至外殼的黏著性。 第8圖圖示本發明之一具體實施例的一光學裝置的一 概略圖式之一侧視圖,該裝置具有一三透鏡式總成,其中 半固體透鏡具有一凸透鏡表面。 第9圖圖示本發明之一具體實施例的一具有一三透鏡 9 200813512 式總成的光學裝置,其中流體壓力調變器與半固體透鏡或 液體透鏡結合用於調整半固體透鏡或液體透鏡之表面曲 率0 第10A-10B圖圖示本發明之一具體實施例的一具有一 5 三透鏡式總成的光學裝置之一側視圖,其中外殼具有一透 明蓋或是一形狀如透鏡般的蓋以及複數之流體壓力調變器 係與半固體透鏡結合用於調整半固體透鏡之表面曲率。 第11圖圖示本發明之一具體實施例的一具有一三透鏡 式總成的光學裝置之一側視圖,該裝置可任擇地具有一第 10 二流體壓力調變器係與第二半固體透鏡結合用於調整第二 半固體透鏡之表面曲率。 ‘ 第12A-12B圖圖示本發明之一具體實施例的一具有一 三透鏡式總成的光學裝置之一侧視圖,該裝置具有一壓電 致動器用於調整半固體透鏡或液體透鏡之表面曲率。 15 第13圖圖示本發明之一具體實施例的一具有四透鏡式 總成的光學裝置之一侧視圖。 第14圖顯示本發明之一具體實施例之具有一透鏡腔室 的一半固體透鏡或是一液體透鏡總成的一側視圖。 第15A圖顯示本發明之一具體實施例之一液體或半固 20 體透鏡及固體透鏡。 第15B圖顯示本發明之一具體實施例之一液體或一半 固體透鏡及一固體平凸透鏡。 第15C圖顯示本發明之一具體實施例之二液體透鏡或 二半固體透鏡以及二固體透鏡。 10 200813512 第15D圖顯示本發明之一具體實施例之二液體透鏡或 二半固體透鏡以及一夾合於中間的固體透鏡。 第16圖顯示本發明之一具體實施例的一液體基或一半 固體透鏡基自動對焦透鏡系統的一側視圖。 5 第17圖顯示本發明之另一具體實施例的一液體透鏡基 或一半固體透鏡基自動對焦透鏡系統的一侧視圖。 第18圖顯示系統之一具體實施例的一具有一變焦/對 焦模組的一液體透鏡或一半固體透鏡系統的一侧視圖。 第19圖顯示系統之一具體實施例的一具有一可變焦距 10 式及可變直徑式透鏡模組的一液體或一半固體透鏡系統的 一侧視圖。 第20圖顯示本發明之另一具體實施例的一具有一變焦 /對焦模組的一液體或是一半固體透鏡系統的一侧視圖。 第21A圖顯示本發明之一具體實施例的一壓電圓盤致 15 動器的一俯視圖。 第21B圖顯示本發明之一具體實施例的一用於液體抽 吸的壓電圓盤致動器的一側視圖。 第21C圖顯示本發明之一具體實施例的一使用一彎曲 壓電膜片的一壓電致動器的一俯視圖。 20 第22圖顯示本發明之一具體實施例的可變焦距式彈性 體透鏡的一影像。 第23A-23B圖圖示本發明之一具體實施例的一可變焦 距式彈性體透鏡模組,其具有一機械式致動器能夠讓透鏡 變形並控制透鏡之焦距。 11 200813512 第24A-24B圖圖示根據本發明之一具體實施例於一管 狀壓力式致動器中在約為20V的一致動電壓下體積變化的 —示範。 第25圖係為本發明之一具體實施例的一半固體薄箔透 5 鏡總成的一概略圖式的一側視圖。 第26圖係為本發明之一具體實施例之一具有一薄箔透 鏡及一固體透鏡的二透鏡式總成的一側視圖。 第27圖係為使用半固體透鏡的一固定焦距式透鏡模組 的一侧視圖。 10 第28圖圖示具有一三透鏡式總成的一光學裝置以及一 半固體透鏡的操作及功能性。 ^ 3 較佳實施例之詳細說明 本發明提供一可變焦距式半固體透鏡以及製造及使用 可變焦距式半固體透鏡的方法。焦距可藉由調繁半口體 透鏡或半固體透鏡之表面上的一區域之形狀、大小、尺寸、 幾何形狀、直徑、壓力、體積、曲率或曲率半徭加以控制。 如於此所使用,,,半固體,,一 詞係有關於具有固體及液 體二者之性質的-物質。例如,半固體可為4科,該材 20料亦過渡紫外光_或是紅外光(IR)輻射。特;^也,半固 體在感應外在刺激後,諸如壓力變化,能夠改變形狀、大 小、尺寸、幾何形狀及/或表面曲率。半固體町為/黏性液 體、一凝膠,諸如_彈性體凝膠;一半導禮塗廣;一半結 晶液體;或是-彈性體,諸如-熱塑性彈性髏或石夕氧炫。 12 200813512 特別地,一半固體可為一聚合體材料,諸如一有機聚合體、 一無機聚合體或是一不同聚合體以及添加物之混合物或是 一複合材料。如於此所使用,凝膠亦能夠包括一膠狀材料, 大部分為液體,但表現如同固體,例如,一膠狀體。 5 如於此所使用,”流體”一詞係有關於一氣體、一液體 或是氣體及液體的一混合物。氣體包括但非限定在空氣、 氧氣、氮氣、氳氣、二氧化碳、一氧化碳、鈍氣(惰性氣體)、 低沸騰有機溶劑、低沸騰有機溶劑之蒸氣或是其之結合 物。該液體可為任何透明液體。本發明中所使用的液體之 10 實例包括但非限定在水、油、有機溶劑及其之結合物。除 了半固體透鏡之外,液體可或可能無法作為一透鏡。 如於此所使用,裝置之侧視圖亦意指裝置之橫截面視 圖。 如於此所使用,”曲率”一詞係有關於一幾何體偏離平 15 坦狀況的量。就一平面曲線而言,曲率係定義為 (x,y,,-y,x,,)/(x,2+y,2)3/2,其中X,、X,,、y,及y”係為一階及 二階導數。就一個二維表面而言,位於一點P處的曲率係定 義為lim(2;r2-cW)··^,其中丫係為距點P的一短長度以及 卜ο C(y)係為具有距點Ρ—段距離γ的一圓之周長。例如,假若 20 表面係為平的,則0(γ)=2πγ。典型地,一半固體透鏡具有 一表面區域,該區域具有一明確定義的表面曲率。 第1圖係概略地顯示一可變焦距式半固體透鏡,其中可 藉由改變透鏡之表面上的一區域或是整個透鏡的形狀、大 13 2008135124 inches, but - can be a spherical and non-spherical low-cost and large-diameter variable-focus lens. A rugged optical focusing system is also required for small, portable imaging applications that require pre-drilled and rugged processing. Specific embodiments of the invention are set forth with respect to these and other needs. 20 [Injection of L-Insoluble L] SUMMARY OF THE INVENTION The present invention provides a variable-focus semi-solid lens, a method of preparing and using a variable-focus lens, and an optical dressing comprising the variable-focus semi-solid lens. Controllable by changing the shape, size, size, shape, volume, pressure or surface curvature of a semi-solid lens, for example, changing the curvature or radius of curvature of a surface or a region of a semi-solid lens focal length. The semi-solid surface constitutes the optical properties of a lens and its (adjustable) radius of curvature determines the focal length. An example of a variable focal length semi-solid lens may be a polymer lens or a gel lens. Advantageously, a semi-solid variable focal length lens of the present invention is capable of easily fabricating a spherical or non-spherical variable focal length lens having a large diameter and is capable of easily depositing a coating such as a non-reflective coating. Used to improve image quality on the surface of the lens. According to the present invention, the variable focal length capability is achieved by adjusting the shape, size, size, geometry, volume or surface curvature of the semi-solid material by adjusting the pressure applied to the semi-solid material. In one aspect, the variable focal length capability is achieved by varying the shape, size, size, geometry or surface curvature of the semi-solid lens while maintaining a relatively constant lens volume. In a specific embodiment, the variable focal length is achieved by varying the diameter of the semi-solid material. According to one aspect of the invention, an optical device is provided which typically includes a light transmissive semi-solid material having a well defined curvature on a surface region and a pressure control member coupled to the semi-solid material for adjustment half The curvature of the surface area of the solid material. In one embodiment, the optical device includes a retaining member, for example, an outer casing for supporting the substance, wherein the semi-solid material is disposed or secured within the outer casing. In another embodiment, the semi-solid material is a film having a thickness ranging from micrometers to millimeters. According to another aspect of the present invention, there is provided an optical device, typically 7 200813512 comprising one or more semi-solid lenses, one of which has a well defined curvature; one or more solid lenses; Selectively-or more body lenses are used to secure the lenses; at least - the pressure control member is coupled to the at least semi-solid lens; and optionally at least one pressure-controlled member is coupled to a fluid lens. According to another aspect of the present disclosure, a method for preparing an optical device is provided which includes preparing a light transmissive semi-solid material into a variable focal length lens. In one embodiment, the method includes an injection molding process. In another embodiment, the method includes an in situ curing process. According to another aspect of the present invention, a method is provided for adjusting the curvature or radius of curvature of a surface of a light transmissive semi-solid material having a well-defined curvature. The method includes adjusting the pressure applied to the semi-solid material to change the curvature of the surface region of the semi-solid material. According to a further aspect of the invention, there is provided an optical device having a variable focus semi-solid lens for use in imaging applications. Other features and advantages of the present invention will be apparent from the remainder of the specification, including the drawings and claims. Further features and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, will be described below with respect to the accompanying drawings. In the drawings, the same representative symbols indicate the same or functionally similar elements. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 - 1 is a view showing a variable focal length semi-solid lens according to an embodiment of the present invention, in which a towel is adjusted by a (four) lens to adjust a focal length. 200813512 FIG. 2 is a side view showing a schematic view of one of the semi-solid lenses of one embodiment of the present invention, the lens having a pressure ring actuator for adjusting the semi-solid lens by changing the outer diameter of the lens shape. 3 is a top plan view of a variable focal length semi-solid lens according to an embodiment of the present invention, the lens having an artificial muscle ring, a piezoelectric ring or a mechanical ring assembly for adjusting the surface curvature of the lens . Figure 4 is a cross-sectional side view showing an optical device according to an embodiment of the present invention, the device having a semi-solid lens fixed in a casing and a fluid pressure modulator for adjusting the surface of the semi-solid lens The rate of 10 is. Figure 5 is a schematic view of an optical device having a two-lens assembly. The optical device of one embodiment of the invention includes a semi-solid lens and a solid lens secured in a housing. 6A-6B illustrate an optical device 15 having a semi-solid lens and a solid lens fixed in a housing having a transparent cover, and a fluid pressure modulator for adjustment, in accordance with an embodiment of the present invention. The surface curvature of a semi-solid lens. Figure 7 illustrates an optical device in accordance with an embodiment of the present invention having a semi-solid and solid lens assembly having a roughened surface for increasing the adhesion of the tantalum solid to the outer casing. Figure 8 is a side elevational view of a schematic view of an optical device in accordance with an embodiment of the present invention having a three lens assembly wherein the semi-solid lens has a convex lens surface. Figure 9 is a view showing an optical device having a three-lens 9 200813512 assembly in accordance with an embodiment of the present invention, wherein a fluid pressure modulator is used in combination with a semi-solid lens or a liquid lens for adjusting a semi-solid lens or a liquid lens. Surface curvature 0 FIGS. 10A-10B illustrate a side view of an optical device having a 5 3 lens assembly in accordance with an embodiment of the present invention, wherein the housing has a transparent cover or a lens shaped like a lens The cover and the plurality of fluid pressure transducers are combined with a semi-solid lens for adjusting the surface curvature of the semi-solid lens. Figure 11 is a side elevational view of an optical device having a three lens assembly in accordance with an embodiment of the present invention, optionally having a 10th fluid pressure transducer system and a second half The solid lens combination is used to adjust the surface curvature of the second semi-solid lens. '12A-12B illustrates a side view of an optical device having a three-lens assembly of a specific embodiment of the present invention having a piezoelectric actuator for adjusting a semi-solid lens or a liquid lens Surface curvature. 15 Figure 13 illustrates a side view of an optical device having a four-lens assembly in accordance with one embodiment of the present invention. Figure 14 is a side elevational view of a semi-solid lens or a liquid lens assembly having a lens chamber in accordance with one embodiment of the present invention. Figure 15A shows a liquid or semi-solid 20 lens and solid lens of one embodiment of the present invention. Figure 15B shows a liquid or semi-solid lens and a solid plano-convex lens in one embodiment of the invention. Fig. 15C is a view showing a liquid lens or a two-half solid lens and a two-solid lens according to an embodiment of the present invention. 10 200813512 Figure 15D shows a liquid lens or a two-half solid lens in accordance with one embodiment of the present invention and a solid lens sandwiched therebetween. Figure 16 is a side elevational view of a liquid or semi-solid lens based autofocus lens system in accordance with one embodiment of the present invention. Figure 17 shows a side view of a liquid lens based or semi-solid lens based autofocus lens system in accordance with another embodiment of the present invention. Figure 18 is a side elevational view of a liquid lens or semi-solid lens system having a zoom/focus module in one embodiment of the system. Figure 19 is a side elevational view of a liquid or semi-solid lens system having a variable focal length 10 and variable diameter lens module in accordance with one embodiment of the system. Figure 20 is a side elevational view of a liquid or semi-solid lens system having a zoom/focus module in accordance with another embodiment of the present invention. Fig. 21A is a plan view showing a piezoelectric disc actuator of an embodiment of the present invention. Figure 21B is a side elevational view of a piezoelectric disk actuator for liquid pumping in accordance with one embodiment of the present invention. Figure 21C is a plan view showing a piezoelectric actuator using a curved piezoelectric diaphragm in accordance with an embodiment of the present invention. 20 Fig. 22 shows an image of a variable focal length elastomer lens in accordance with an embodiment of the present invention. 23A-23B illustrate a variable focus elastomeric lens module in accordance with an embodiment of the present invention having a mechanical actuator that deforms the lens and controls the focal length of the lens. 11 200813512 Figures 24A-24B illustrate an exemplary volume change at a constant dynamic voltage of about 20V in a tubular pressure actuator in accordance with an embodiment of the present invention. Figure 25 is a side elevational view of a schematic view of a half solid thin foil transmissive lens assembly in accordance with one embodiment of the present invention. Figure 26 is a side elevational view of a two lens assembly having a thin foil lens and a solid lens, in accordance with one embodiment of the present invention. Figure 27 is a side view of a fixed focal length lens module using a semi-solid lens. 10 Figure 28 illustrates the operation and functionality of an optical device having a three lens assembly and a semi-solid lens. ^ 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a variable focal length semi-solid lens and a method of fabricating and using the variable focal length semi-solid lens. The focal length can be controlled by modulating the shape, size, size, geometry, diameter, pressure, volume, curvature or curvature of a region on the surface of a half-mouth lens or semi-solid lens. As used herein, the term "semisolid" refers to a substance having both the properties of a solid and a liquid. For example, the semi-solid may be 4 families, and the material is also converted to ultraviolet light or infrared light (IR) radiation. Also, the semi-solids can change shape, size, size, geometry, and/or surface curvature after sensing external stimuli, such as pressure changes. Semi-solids are / viscous liquids, a gel, such as _ elastomer gel; half of the coating; half of the crystalline liquid; or - elastomers, such as - thermoplastic elastomer or diarrhea. 12 200813512 In particular, the semi-solid may be a polymeric material such as an organic polymer, an inorganic polymer or a mixture of different polymers and additives or a composite. As used herein, a gel can also comprise a gelatinous material, mostly liquid, but behaves like a solid, for example, a gel. 5 As used herein, the term "fluid" relates to a gas, a liquid or a mixture of a gas and a liquid. The gas includes, but is not limited to, air, oxygen, nitrogen, helium, carbon dioxide, carbon monoxide, an inert gas (inert gas), a low boiling organic solvent, a vapor of a low boiling organic solvent, or a combination thereof. The liquid can be any clear liquid. Examples of the liquid used in the present invention include, but are not limited to, water, oil, organic solvents, and combinations thereof. In addition to semi-solid lenses, liquid may or may not be a lens. As used herein, a side view of a device also refers to a cross-sectional view of the device. As used herein, the term "curvature" refers to the amount by which a geometry deviates from a flat state. For a plane curve, the curvature is defined as (x, y,, -y, x,,) / (x, 2+y, 2) 3/2, where X, X,, y, and y " is a first-order and second-order derivative. For a two-dimensional surface, the curvature at a point P is defined as lim(2;r2-cW)··^, where the 丫 is a short length from the point P and Bu ο C(y) is the circumference of a circle having a distance γ from the point 。— For example, if the surface of the 20 is flat, then 0(γ)=2πγ. Typically, the semi-solid lens has a surface area. The region has a well-defined surface curvature. Fig. 1 schematically shows a variable-focus semi-solid lens in which the shape of a region on the surface of the lens or the entire lens can be changed, large 13 200813512

彳尺寸、外径、曲率或曲率半徑而調整焦距。透鏡具有 一種半固體物質搬、表面⑽及112以及一邊界⑽。如第i 圖I斤丁於具體只施例中’藉由將半固體透鏡之直徑 自第A圖中的〇1改&成第1B圖中的,致使表面⑽改變 5成表面112,而有表面曲率的改變可達成可變焦距能力。於 特定例子中,透鏡之體積能夠相對地保持不變。於其他的 場合中,當對半固體透鏡施加—力量或一壓力時,所用的 半固體材料能夠經壓縮用以減小體積。藉由對透鏡施以一 外在刺激,例如,一力、一壓力或是一光束,能夠完成改 1〇變透鏡之表面料、形狀、幾何形狀或尺寸。 —本發明提供—光學裝置,其係由-表面區域具有-明 確疋我的曲率的-透光半固體物質以及_與該半固體物質. 結合用於調整半固體之表面區域之曲率的壓力控制構件所 構成。第2圖係為本發明之一光學裝置的一概略圖式之一侧 視圖。如第2圖中所示,裝置具有一種半固體物質21〇、一 表面區域230以及-與該半固體物質21〇結合的麼力控制構 件22〇。壓力控制構件22〇可直接地與半固體物質⑽輕合, 例如,藉由與物質21〇接觸,或經由_中間物,例如,_中 間物層’諸如-流體或是-固體層,間接地與物質21〇互相 2〇作用用以調整表面230之曲率。於一具體實施例中,透鏡係 由壓力控制構件220所環繞。於另—具體實施财,^控 制構件220係與透鏡之一部分接觸。—示範性屢力控制構件 220係為一環,該環能夠縮小其之周長,諸如_壓電環。一 個個別層,諸如-反射層或是一非反射層,亦能夠添加至 14 200813512 半固體透鏡,諸如沉積在半固體透鏡之表面上用於改良影 像品質。 第3圖顯示本發明之一具體實施例的一俯視圖,其包括 一透鏡340,且一壓力控制構件310環繞該透鏡。透鏡34〇可 5 為一種半固體透鏡或是一流體透鏡。 本發明中所使用的壓力控制構件之實例包括但不限定 在一人工肌肉環;一壓電裝置,諸如一壓力環、一壓力圓 筒、一壓力套筒或是一壓力塗佈金屬環或圓筒、一壓電環, 其能夠在施以一電場時改變其之直徑;一機械式致動器; 10 —電子機械式致動器;一流體壓力調變器用於使用微流體 技術進行調制;一光束;以及一電壓或是一電刺激。本發 明中所使用的壓力控制裝置具有可變化的形狀及尺寸。本 發明中所使用的部分之壓力控制裝置可具有橢圓、環形及/ 或多邊形橫截面。多邊形橫截面之侧邊數目可自3變化至約 15 16。一實例係為一四邊多邊形,諸如一正方形或矩形。 本發明能夠使用不同的半固體材料。較佳地,材料係 為透光的並且在作業狀況下為穩定的。半固體材料包括但 不限定在一黏性液體,諸如油;凝膠,諸如低分子量交聯 或非交聯聚合物以及膠體;彈性體,諸如交聯或非交聯熱 20塑性及熱固性彈性體;以及其之混合物。聚合物或低聚合 物(oligomer)之實例包括但未限定在同元聚合物 (homopolymer)、共聚物、聚摻合物以及其之混合物。聚合 物或低聚合物之貫例包括石夕氧烧、聚石夕氧燒,諸如聚(二甲 基碎氧烧)’水故酸醋;聚麟猜(polyphosphazene);以及聚 15 200813512 丙烯酸酯,諸如聚(甲基丙烯酸甲酯)。 光學裝置進一步包括一固持構件,諸如一外殼。第4 圖係為本發明之另一具體貫施例的一橫截面側視圖。如第4 圖中所示,光學裝置具有一表面區域440具有一明確定義的 5曲率的一種半固體透鏡420、一外殼430以及一壓力控制構 件414。透鏡420係固定於一外殼43〇中。透鏡420係直接地 與一壓力控制構件414搞合以改變施加至透鏡420的壓力, 用以改變表面440之曲率。可任擇地,壓力控制構件414亦 能夠間接地經由一中間物,諸如一流體或是一層,而間接 10地與透鏡420耦合。壓力控制構件可為一微流體調制裝置, 其包含流體410以及一入口及/或一出口 412。·流體可為一液 體或是一氣體。熟知此技藝之人士應認知其他壓力控制構 件,諸如一壓電裝置、一機械式或一電致動器,亦能夠用 以改變透鏡420之焦距。 15 本發明中所使用的外殼具有可變化的形狀及尺寸。於 一具體實施例中,一管狀外殼具有一對稱的橫截面,以及 於另一具體實施例中,一管狀外殼具有一非對稱的橫截 面。於另一具體實施例中,沿著管狀外殼,一管狀外殼的 橫截面之尺寸可具有一連續的或是一不連接的變化。於本 20發明所使用的部分之管狀外殼可具有橢圓、環形及/或多邊 形橫截面。多邊形橫截面之侧邊數目可自3變化至約π。一 實例係為一四邊多邊形,諸如一正方形或矩形。 於另一具體實施例,如第5圖中所示,本發明提供具有 一個二透鏡式總成的一光學裝置。光學裝置包括一具有一 16 200813512 表面540的半固體透鏡51〇以及一固體透鏡52〇固定於外殼 530中。如第5圖中所示,半固體透鏡51〇及固體透鏡52〇係 相互直接地接觸。可任擇地,二透鏡可分開一段預定距離, 例如,二透鏡能夠藉由一流體,諸如一液體或是一氣體, 5 加以分開。 於另一具體實施例中,與第5圖中的,裝置相似,第6A 圖中的光學光置包括具有一表面670的一種半固體透鏡 640,以及一固體透鏡650固定在外殼630中。裝置亦具有一 壓力控制構件610,該構件包含一流體615並具有一入口 /出 1〇 口 660。壓力控制構件係用以調整透鏡640之形狀、大小或 幾何形狀、尺寸以及表面67〇之曲率。裝置亦具有一蓋62〇, 較佳地,該蓋係為透明的。於另一具體實施例中,一半固 體材料配置一中空腔室,於該處當施加一外力或壓力時能 夠將半固體材料擠進用以改變半固體之焦距或形狀或是曲 率例如’如第6B圖中所示,光學裝置具有一中空腔室680 緊郴著半固體透鏡用以提供一些附加的空間,當藉由壓力 控制構件610對半固體透鏡64〇施加一壓力時,供半固體透 鏡擠進所用。 第7圖提供本發明之一進一步具體實施例。與第6圖相 似光學裝置包括一透鏡總成,該總成具有有一表面77〇之 一種半固體透鏡750以及一固體透鏡760固定於一外殼720 中。具有一流體及一入口/出口 740的一壓力控制構件730係 用以控制施加至透鏡750的壓力,用於調整透鏡750之形 ’、 成何形狀及/或尺寸以及表面770之曲率。特別 17 200813512 地,光學裝置提供以具有一粗糙表面的一材料構成的一外 设’ 5亥粗糙表面諸如具有微小凸塊、凹痕或腔室的微小結 構之一表面,用於增加半固體對外殼表面之牽引、摩擦及 黏著。該表面可為疏水性或親水性。該表面能夠由異有與 5外设相同或不同材料之奈米或微米結構材料所構成,諸如 ♦ a物無機物、金屬或陶兗材料或其之混合物。 第8圖係為本發明之另一具體實施例的一概略圖式,提 供具有一種三透鏡式總成的一光學裝置。光學裝置具有一 固體透鏡820夾合在具有一表面85〇的一第一半固體透鏡 10 810與具有一表面855的一第二半固體透鏡812之間。熟知此 技藝之人士應察知的是就本發明而言其他的透鏡配置亦為 可行的。透鏡810、812及820係配置在或是固定於外殼830 中’致使呈現一尖稜邊緣840 ,使能夠形成具有一凸面形狀 的一種半固體透鏡,可防止透鏡材料,例如,一凝膠,不 15 致自外殼上的腔室洩漏。 第9圖圖示本發明之另一具體實施例。與第8圖相似, 光學裝置包括一固體透鏡950夾合在具有一表面區域970的 一弟一透鏡940與具有一表面區域975的一第二透鏡960之 間,而配置或固定在一外殼920中。裝置亦能夠具有一尖稜 20邊緣901。可任擇地,該裝置亦能夠具有一平滑邊緣。透鏡 940及960可為一種半固體透鏡或是一流體透鏡。流體可為 一氣體或液體。透鏡940及960之形狀、大小、幾何形狀及/ 或尺寸,以及表面970及975之曲率能夠分別地藉由壓力控 制構件910及912加以調整。壓力控制構件91〇及912可為包 18 200813512 含一流體的裝置用以調整施加至透鏡導致表面Wo及975之 曲率變化的壓力。流體的功能在於將壓力傳達至半固體。 热知此技藝之人士應認知的是其他的透鏡之配置亦為可用 以獲得一可變焦距式總成。 5 第10A-l〇B圖顯示本發明之其他具體實施例。與第9圖 中的光學裝置相似,第10A圖中所示的光學裝置具有一固體 透鏡1040夾合在具有一表面區域1〇8〇的一第一個半固體透 鏡1030與具有一表面區域1085的一第二個半固體透鏡1032 之間。該等透鏡係配置或固定於外殼1020中。一第一壓力 10 控制構件1070係與透鏡1030耦合。一第二壓力控制構件 1072係與透鏡1032耦合。壓力控制構件可為一殼件包含流 體1010及1012,諸如一氣體或是一液體。流體1〇1〇及1〇12 可為相同或是不同的類型。較佳地,壓力控制構件1070及 1072係由可撓曲的殼件材料所構成。於一具體實施例中, 15 壓力控制構件1070及/或1072係為透明的。壓力控制構件可 經由直接接觸或是間接互相影響而與半固體透鏡1030及 1032耦合。光學裝置亦具有透明蓋1050及1060。於一具體 實施例中,該蓋可構形為一透鏡。如第10B圖中所示,一中 空腔室1090係被配置以當施以一壓力時供半固體透鏡擠 20 入。 第11圖顯示本發明之另一具體實施例。與第10圖中的 裝置相似,光學裝置具有一固體透鏡1150夾合在具有一表 面1170的一第一個半固體透鏡1140與具有一表面1175的一 第二個半固體透鏡1142之間。該等透鏡總成係配置或固定 19 200813512 於外殼1130中。一第一壓力控制構件111〇係附裝至第一個 半固體透鏡1140用以調整透鏡之形狀、大小、幾何形狀及人 或尺寸或是透鏡1140之表面曲率,以及表面117〇之曲率。 壓力控制構件mo具有一流體1112以及一流體入口 /出口 5 1160其經設計用以對透鏡1140產生壓力。光學裝置具有一 可任擇的第二壓力控制構件1114其係附裝至第二透鏡 1142。可任擇地,構件1114内部具有一流體用於調整透鏡 1142之壓力。光學裝置亦具有蓋112〇及1122 ,較佳地,至 少其中之一蓋係為透明的。 10 第12圖圖示使用透鏡之結合的本發明之一具體實施 例。如第12圖中所示,光學裝置具有一透鏡組件、一外殼 1220以及與每一個半固體透鏡耦合的一壓力控制構件組 件。透鏡組件包括具有一表面區域1260之一第一個半固體 透鏡1240、一固體或流體透鏡1250以及具有一表面區域 15 1265之一第二個半固體透鏡1242。於一具體實施例中,透 鏡1250係位在透鏡1240與透鏡1242之間。透鏡組件係配置 或固定在外殼1220中。一第一壓力控制構件1210係與透鏡 1240耦合。腔室1230及1232係用於分別地致動透鏡1240及 透鏡1242 ΰ可任擇地,一第二壓力控制構件1212係與透鏡 20 1242耦合。於一具體實施例中,壓力控制構件1210及/或 1212係為以一壓電材料塗佈的壓力環或是金屬環。金屬環 提供機械性放大作用(mechanical amplification)。 第13圖圖示本發明之另一具體實施例,提供具有一種 四透鏡式總成的一光學裝置。具有一表面區域1360的一第 20 200813512 一個半固體透鏡1320係配置位在和半固體透鏡1320具有一 界面1370的一流體透鏡1330之頂部上。流體透鏡1330係配 置位在一固體透鏡1340之頂部上構成一界面1375。固體透 鏡1340進一步地係配置位在具有一表面1365的一第二個半 5 固體透鏡1322之頂部上。熟知此技藝之人士應察知的是其 他的透鏡配置亦能夠用以獲得所需的可變焦距效果。第13 圖顯示每一透鏡係相互接觸。於其他具體實施例中,一些 透鏡可相互接觸,而其他透鏡能夠分開一段預定距離。於 其他具體實施例中,每一透鏡並未相互接觸。透鏡1320及 1〇 1330係配置或固定在一外殼1310中。流體透鏡1330具有一 入口/出口 1350用以容許流體通過。 第14圖顯示具有一透鏡腔室1404的一種半固體透鏡或 是一液體透鏡總成的一側視圖。透鏡腔室1404可向内彎 曲、向外彎曲或為平直的。於一具體實施例中,透鏡腔室 1404具有一内層,該内層係以塗層14〇6及141〇塗佈,且透 鏡總成之頂部及底部表面或是外層係以一塗層1408塗佈。 塗層1406、1410及1408可為一親水性材料或是一疏水性材 料。當透鏡腔室包含液體時,塗層14〇6及141〇較佳地係為 一親水性材料。位於疏水區域處的邊界限制液體並呈現一 弓、、液面(meniscus),該彎液面具有一曲率部分地係藉由位在 k界處流體之靜態(或動態)接觸角所界定。疏水性材料係為 諸如塑膠、聚合物、陶瓷、合金、或諸如鐵氟龍、CYT〇p 或氮氧化鍅的一含氟聚合物的一材料。親水性區域可以諸 如塑膠、聚合物、玻璃、石英、氮氧化錘或是熔矽石的一 21 200813512 材料構成。其他適合的材料包括陶莞、親水性金屬、親水 性合金或親水性聚合物諸如,例如,氫氧聚丙稀酸 (hydroxylic PoWrylate)或聚曱基丙烯酸酯 (polymethacrylate)、聚丙烯醯胺、纖維素聚合物、聚乙烯醇。 5該等材料之塗層亦能夠用以覆蓋透鏡腔室壁。 本發明之可任擇的具體實施例包括具有複數之液體透 鏡及/或固體透鏡的液體或半固體透鏡總成,以用於對焦及 變焦作業。第15A-15D圖圖示不同的合適配置。第15A圖顯 示一結合部分包括液體透鏡1504及固體透鏡15〇2。第15β 10圖顯示一結合部分包括液體透鏡1504及一固體平凸透鏡 1506。第15C圖顯示一結合部分包括二液體透鏡及二固體透 鏡1506。第15D圖顯示二液體透鏡15〇4及一固體透鏡15〇8 夾合於其中。應察知的是根據於此的講授内容包括固體及/ 或液體透鏡之不同配置的多數其他總成構形係為可能的。 15 第16圖顯示本發明之一具體實施例具有一自動對焦模 組的一液體透鏡或半固體透鏡系統的一侧視圖。外殼16〇〇 將一可變焦距式液體透鏡或是半固體透鏡1604固持於一第 一固體透鏡1606與一第二固體透鏡1608之間。外殼1600包 括經塗佈的内表面16〇2及通道1612以用於填注腔室並控制 20 液體透鏡之光學元件(例如,彎液面)。表面1602可為疏水性 或是親水性。就本具體實施例中的自動對焦系統而言,亦 可在第二固體透鏡上構成孔161〇。 第17圖顯示本發明之另一具體實施例具有一自動對焦 模組的一液體透鏡或半固體透鏡系統的一侧視圖。與第16 22 200813512 圖中所不的具體貫施例相同,外殼i彻固持一可變焦距式 液體透鏡或半固體透鏡17〇4、一第一固體透鏡^⑽以及一 第了口體透鏡17〇8,但附加地固持一第三固體透鏡i7i〇。 外成1700亦包括疏水性表面17〇2。液體透鏡口⑽經由通道 5 1712自液體財存器或是_壓力控制構件填注腔室,該 歷力控制構件係與一致動構件或泵1716耗合。 第18圖顯示本發明之一具體實施例具有一變焦/對焦 模組的液體透鏡或-種半固體透鏡系統的一側視圖。與第 17圖之具體實施例相同,具有疏水性表面的外 殼 1800 10固持-第-固體透鏡18〇8、一第二固體透鏡181〇、一第三 固體透鏡1812以及-第一可變焦距式透鏡18〇4,該第一可 變焦距式透鏡1804可為一第一液體透鏡或是一第一個半固 體透鏡。但外殼1800附加地固持一第二可變焦距式透鏡 1806,該第二可變焦距式透鏡18〇6可為一第二液體透鏡或 15是一第二個半固體透鏡。於一具體實施例中,第一可變焦 距式透鏡1804係為第一液體透鏡自與致動器或泵1816耦合 之一第一液體貯存器或是一第一壓力控制構件1814填注一 第一腔室。第二可變焦距式透鏡1806係為第二液體透鏡自 與致動器或泵1820耦合之一第二液體貯存器或是一第二壓 20力控制構件1818填注一第二腔室。於另一具體實施例中, 第一可變焦距式透鏡1804係為第一個半固體透鏡自與致動 器或泵1816耦合之一第一液體貯存器或是一第一壓力控制 構件1814填注一第一腔室。第二可變焦距式透鏡1806係為 第二個半固體透鏡自與致動器或泵1820耦合之一第二液體 23 200813512 貝丁存器或疋一弟一壓力控制構件1818填注一第二腔室。於 另一具體實施例中,半固體透鏡所用的致動器可為一壓力 環致動器,其係直接地與半固體透鏡接觸。 第19圖顯示本發明之一具體實施例具有一可變焦距及 5可變直徑模組的一液體透鏡或是一半固體透鏡系統的一側 視圖。具有疏水性表面1902的外殼1900固持一固體透鏡 1904、一第一液體透鏡或一第一個半固體透鏡19〇6以及一 第二液體透鏡或一第二個半固體透鏡1912。第一液體透鏡 或第一個半固體透鏡1906自與致動器或泵1920耦合之一第 10 一液體貯存器或是一第一壓力控制構件1918填注一第一腔 室。第二液體透鏡或第二個半固體透鏡1912自與致動器或 泵1924耦合之一第二液體貯存器或是一第二壓力控制構件 1922填注一第二腔室。於此具體實施例中,外殼19〇〇係呈 階梯狀,因此當將更多液體抽吸進入腔室中時,可增加液 15 體透鏡或半固體透鏡之直徑。例如,液體透鏡或半固體透 鏡1906可增加直徑用以擴大成如代表符號1908所標示的液 體透鏡或半固體透鏡,其可進一步增加大小用以擴大成如 代表符號1910所標示的液體透鏡或半固體透鏡。同樣地, 第二液體透鏡或半固體透鏡1912可增加直徑用以構成擴大 20 的液體透鏡或半固體透鏡1914,並可進一步增加用以構成 擴大的液體透鏡或半固體透鏡1916。於一些具體實施例 中,當對半固體透鏡施以一壓力時,半固體材料可經壓縮 用以減小其之體積。於特定的其他具體實施例中,半固體 透鏡係使用作為一具有一微距功能(marco function)的固定 24 200813512 - 5 焦距式透鏡。 第20圖顯示本發明之另一具體實施例具有一變焦/對 焦模組的一液體透鏡或是一半固體透鏡系統的一侧視圖。 具有疏水性或親水性表面2002的外殼2000固持一第一固體 透鏡2004、一第二固體透鏡2006、一第三固體透鏡2008以 及一第四固體透鏡2010。外殼2000亦固持一第一可變焦距 式液體透鏡或半固體透鏡2012以及一第二可變焦距式液體 • 透鏡或半固體透鏡2014。第一液體透鏡或半固體透鏡2012 自與致動器或泵2018耦合之一第一液體貯存器或是一第一 10 壓力控制構件2016填注一第一腔室。第二液體透鏡或半固 體透鏡2014自與致動器或泵2022耦合之一第二液體貯存器 或是一第二壓力控制構件2020填注一第二腔室。所有透鏡 係配置或固定在外殼2000中。 第21A-21B圖顯示本發明之一具體實施例使用一壓電 15 • 蜂鳴器膜片的一壓電圓盤式致動器。第21A圖係為一壓電蜂 鳴器膜片的一俯視圖,其包括一金屬膜片2100以及壓電層 2102。第21B圖係為壓電蜂鳴器膜片的一橫截面視圖,包括 膜片2100以及壓電層2102被配置或固定在一液體透鏡或是 一種半固體透鏡系統的外殼2104上。膜片2100作動用以將 20 液體2106抽吸離開通道2108用以構成一液體透鏡。第21C 圖係為第21A-21B圖之具體實施例之變化形式,並包括一壓 電層2110以及彎曲的金屬膜片2112。取代就第21A-21B圖之 圓盤具體實施例而言置於透鏡外殼之頂部上,將彎曲的壓 電膜片環繞著透鏡外殼配置或固定。 25 200813512 第22圖顯示藉由一模造製程所構成的可變焦距式彈性 體透鏡的一影像。 第23A-23B圖圖示具有一機械式致動器的一可變焦距 式彈性體透鏡模組,其能夠讓透鏡變形並控制透鏡之焦距。 5 第24A-24B圖圖示在一約為20V的致動電壓下於一管 狀壓力致動器中體積變化之示範。 第25圖係為本發明之一具體實施例的一種半固體薄箔 透鏡總成的一概略圖式之一側視圖。如第25圖中所示,光 學裝置包括一薄箔透鏡2510,其係由一種半固體物質之薄 10膜或是一層製備而成,以及一致動器環2520用於調整薄箔 透鏡之焦距。半固體薄膜透鏡之厚度可位在自約1微米至約 5公厘的一範圍内,例如,自1微米至1〇微米、1〇微米至3〇 微米、20微米至5〇微米、40微米至80微米、75微米至150微 米、100微米至300微米、180微米至400微米、200微米至600 15微米、250微米至7〇〇微米、350微米至800微米、400微米至 900微米、500微米至850微米、750微米至950微米、900微 米至1公厘、0·5公厘至1.5公厘、1.0公厘至2公厘、1.5公厘 至2·5公厘、2公厘至3公厘' 2·5公厘至3.5公厘、3公厘至4 公厘、2·5公厘至4·5公厘或4公厘至5公厘。於一些例子中, 2〇半固體薄膜透鏡之厚度可為}微米、2微米、3微米、4微米、 5微米、6微米、7微米、8微米、9微米、10微米、15微米、 2〇鉍米、30微米、4〇微米、50微米、60微米、70微米、80 微米、9〇微米、1〇〇微米、200微米、300微米、400微米、 500微米' 6GG微米、期微米、8GG微米、9GG微米、1公厘、 26 200813512 2公厘、3公厘、4公厘或5公厘。 第26圖係為本發明之一具體實施例的一種二透鏡式總 成的一侧視圖。如第26圖中所示,光學裝置包括一薄箔透 鏡2610以及一固體透鏡264〇配置或固定在外殼263〇中。一 5裱致動器係附裝至薄箔透鏡2610用以調整透鏡之焦距。致 動為可為上述說明的任一壓力調制裝置。薄箔透鏡可為一 種半固體透鏡或是一液體。熟知此技藝之人士應認知的是 其他透鏡之總成亦為可行的,例如,本發明亦提供具有二 或更多透鏡之透鏡總成,包括一或更多薄箔透鏡、一或更 10多固體透鏡以及一或更多液體透鏡之結合。 第27圖係為使用半固體透鏡的一固定焦距式透鏡模組 的一側視圖。使用半固體透鏡作為一固定焦距式透鏡的光 學裝置具有一微距功能。光學裝置包括一固體透鏡2720夾 合在一第一個半固體透鏡2710與一第二個半固體透鏡2712 15 之間。該等透鏡係配置或固定在外殼2730中。於其他具體 實施例中,一些透鏡係相互直接地接觸,而其他透鏡係分 開一段預定距離,例如,藉由一流體、一氣體或是真空分 開。於其他具體實施例中,所有透鏡係分開一段預定距離。 第28圖圖示一光學裝置,其具有一種三透鏡式總成以 20 及一半固體透鏡之功能。如第28圖中所示,光學裝置包括 一固體透鏡2860夾合在一第一個半固體透鏡2810與一第二 個半固體透鏡2850之間;一第一壓力控制構件2880具有一 流體入口 2830 ;以及一第二壓力控制構件烈82具有一流體 出口 2832。透鏡係配置或固定在外殼2870中。半固體透鏡 27 200813512 2810具有表面2822、2824及2826位在其之個別初始位置 中。半固體透鏡2850具有表面2852、2854及2856位在其之 個別初始位置中。第5圖亦示範能夠藉由改變施加至透鏡的 壓力而調整半固體透鏡之表面曲率或曲率半徑。當壓力控 5 制構件2880通過流體2840增加壓力時,半固體透鏡2810改 變其之形狀用以構成新表面2821、2823及2825,其分別地 與表面2822、2824及2826相對應。相反地,當壓力控制構 件藉由通過出口 2832而移除流體2842降低壓力時,半固體 透鏡改變其之形狀用以構成新表面2851、2853及2855,其 10 分別地與表面2852、2854及2856相對應。 本發明亦提供構成一可變焦距式半固體透鏡的一方 法。於一具體實施例中,透鏡係以透光半固體構成,諸如 一聚合物。半固體透鏡能夠藉由射出成型,分配進入透鏡 狀杈具中,澆鑄構成或是藉由任何其他用於構成諸如一聚 a物透鏡之半固體透鏡之方法來製備。'例如,半固體透鏡 能夠藉由射出或灌注一液體形式的材料進入腔室或模具 中,接著將液體材料固化成一半固體或是一凝膠來製成。 本發明亦提供-方法用於調整具有一明確定義的曲率 之-表面區域的-種半固體透鏡之曲率。該方法包括調整 施加至半固體物質的壓力用以改變半固體物質之表面區域 的曲率。 本發明亦提供針對成像應用使用半固體光學裝置。 本發明亦考里上述提及的所有液體透鏡能夠選擇性地 或完全地由半固體透鏡所取代。本發明進一步提供上述提 28 2o〇813512 及的所有透鏡能夠選擇性地或全部地由半固體荡狀薄透鏡 所取代。 儘官本發明已經由實例並就特定具體實施例而論加以 況明,但應瞭解的是本發明並不限定在所揭示的具體實施 5例。相反地’意欲涵蓋熟知此技藝之人士可察知的不同的 修改及相似的配置。例如,存在著具有可變焦距能力之半 固體透鏡的複數可能之透鏡總成之配置,並且該等具體實 施例並未限定在於此所說明者。因此,附加的申請專利範 園之範弩應符合最廣泛的解釋俾便包含所有該等修改及相 1〇 似的配置。 t圖式簡單說明】 第1A-1B圖圖示本發明之一具體實施例的一可變焦距 式半固體透鏡,其中藉由改變透鏡之外徑而調整焦距。 第2圖圖不本發明之一具體實施例的一半固體透鏡之 15 一概略圖式的侧視圖,該透鏡具有一壓力環致動器用於藉 由改變透鏡之外徑而調整該半固體透鏡的形狀。 第3圖圖示本發明之一具體實施例的一可變焦距式半 固體透鏡的一俯視圖,該透鏡具有一人工肌肉環、一壓電 環或一機械環裝配用於調整透鏡之表面曲率。 20 第4圖圖示本發明之一具體實施例的一光學裝置的一 橫截面側視圖,该裝置具有一固定於一外殼中的半固體透 鏡以及一流體壓力調變器用於調整半固體透鏡之表面曲 率0 第5圖係為具有二透鏡式總成的一光學裝置的一概略 29 200813512 圖式。本發明之一具體實施例的該光學裝置包括一半固體 透鏡以及一固體透鏡固定於一外殼中。 第6A-6B圖圖示本發明之一具體實施例的一光學裝 置,其具有一半固體透鏡以及一固體透鏡固定於具有一透 5 明蓋的一外殼中,以及一流體壓力調變器用於調整半固體 透鏡之表面曲率。 第7圖圖示本發明之一具體實施例的一光學裝置,其具 有一半固體及固體透鏡總成,該總成的一外殼具有粗糙表 面用於增加半固體黏合至外殼的黏著性。 10 第8圖圖示本發明之一具體實施例的一光學裝置的一 概略圖式之一側視圖,該裝置具有一三透鏡式總成,其中 半固體透鏡具有一凸透鏡表面。 第9圖圖示本發明之一具體實施例的一具有一三透鏡 式總成的光學裝置,其中流體壓力調變器與半固體透鏡或 15 液體透鏡結合用於調整半固體透鏡或液體透鏡之表面曲 率。 第10A-10B圖圖示本發明之一具體實施例的一具有一 三透鏡式總成的光學裝置之一側視圖,其中外殼具有一透 明蓋或是一形狀如透鏡般的蓋以及複數之流體壓力調變器 20 係與半固體透鏡結合用於調整半固體透鏡之表面曲率。 第11圖圖示本發明之一具體實施例的一具有一三透鏡 式總成的光學裝置之一侧視圖,該裝置可任擇地具有一第 二流體壓力調變器係與第二半固體透鏡結合用於調整第二 半固體透鏡之表面曲率。 30 200813512 第12A-12B圖圖示本發明之一具體實施例的一具有一 三透鏡式總成的光學裝置之一侧視圖,該裝置具有一壓電 致動器用於調整半固體透鏡或液體透鏡之表面曲率。 第13圖圖示本發明之一具體實施例的一具有四透鏡式 5 總成的光學裝置之一侧視圖。 第14圖顯示本發明之一具體實施例之具有一透鏡腔室 的一半固體透鏡或是一液體透鏡總成的一側視圖。 第15A圖顯示本發明之一具體實施例之一液體或半固 體透鏡及固體透鏡。 10 第15B圖顯示本發明之一具體實施例之一液體或一半 固體透鏡及一固體平凸透鏡。 第15C圖顯示本發明之一具體實施例之二液體透鏡或 二半固體透鏡以及二固體透鏡。 第15D圖顯示本發明之一具體實施例之二液體透鏡或 15 二半固體透鏡以及一夾合於中間的固體透鏡。 第16圖顯示本發明之一具體實施例的一液體基或一半 固體透鏡基自動對焦透鏡系統的一侧視圖。 第17圖顯示本發明之另一具體實施例的一液體透鏡基 或一半固體透鏡基自動對焦透鏡系統的一侧視圖。 20 第18圖顯示系統之一具體實施例的一具有一變焦/對 焦模組的一液體透鏡或一半固體透鏡系統的一侧視圖。 第19圖顯示系統之一具體實施例的一具有一可變焦距 式及可變直徑式透鏡模組的一液體或一半固體透鏡系統的 一側視圖。 31 200813512 第20圖顯示本發明之另一具體實施例的一具有一變焦 /對焦模組的一液體或是一半固體透鏡系統的一側視圖。 第21A圖顯示本發明之一具體實施例的一壓電圓盤致 動器的一俯視圖。 5 第21B圖顯示本發明之一具體實施例的一用於液體抽 吸的壓電圓盤致動器的一侧視圖。 第21C圖顯示本發明之一具體實施例的一使用一彎曲 壓電膜片的一壓電致動器的一俯視圖。 第2 2圖顯示本發明之一具體實施例的可變焦距式彈性 10 體透鏡的一影像。 第23A-23B圖圖示本發明之一具體實施例的一可變焦 距式彈性體透鏡模組,其具有一機械式致動器能夠讓透鏡 變形並控制透鏡之焦距。 第24A-24B圖圖示根據本發明之一具體實施例於一管 15 狀壓力式致動器中在約為20V的一致動電壓下體積變化的 一不摩& 〇 第25圖係為本發明之一具體實施例的一半固體薄箔透 鏡總成的一概略圖式的一側視圖。 第26圖係為本發明之一具體實施例之一具有一薄箔透 20 鏡及一固體透鏡的二透鏡式總成的一側視圖。 第27圖係為使用半固體透鏡的一固定焦距式透鏡模組 的一側視圖。 第28圖圖示具有一三透鏡式總成的一光學裝置以及一 半固體透鏡的操作及功能性。 32 200813512 【主要元件符號說明】 D1,D2…半固體透鏡之直徑 615…流體 102…半固體物質 620…蓋 110,112…表面 630…外殼 120…邊界 640…半固體透鏡 210…半固體物質 650…固體透鏡 220…壓力控制構件 660…入口/出口 230···表面區域 670…表面 310···壓力控制構件 680…中空腔室 340…透鏡 720…外殼 410…流體 730···壓力控制構件 412…入口及/或出口 740…入口/出口 414···壓力控制構件 750…半固體透鏡 420…半固體透鏡 760…固體透鏡 430…外殼 770…表面 440…表面區域 810…第一半固體透鏡 510…半固體透鏡 812···第二半固體透鏡 520…固體透鏡 820…固體透鏡 530…外殼 830…外殼 540…表面 840…尖稜邊緣 610···壓力控制構件 850,855···表面 33 200813512Adjust the focal length by 彳 size, outer diameter, curvature or radius of curvature. The lens has a semi-solid material transfer, surfaces (10) and 112, and a boundary (10). As shown in Fig. 1, in the specific example, by changing the diameter of the semi-solid lens from 〇1 in Fig. A to the image in Fig. 1B, the surface (10) is changed to 5 to the surface 112, and A change in surface curvature can achieve variable zoom capability. In a particular example, the volume of the lens can be relatively constant. In other applications, when a force or a pressure is applied to the semi-solid lens, the semi-solid material used can be compressed to reduce the volume. The surface material, shape, geometry or size of the modified lens can be accomplished by applying an external stimulus to the lens, such as a force, a pressure, or a beam. - The present invention provides an optical device which has a - surface region - a light transmissive semi-solid material that clarifies my curvature and - and the semi-solid material.  It is constructed in combination with a pressure control member for adjusting the curvature of the surface area of the semi-solid. Figure 2 is a side elevational view of a schematic view of one of the optical devices of the present invention. As shown in Fig. 2, the apparatus has a semi-solid substance 21A, a surface area 230, and a force control member 22A coupled to the semi-solid substance 21A. The pressure control member 22 can be directly coupled to the semi-solid material (10), for example, by contact with the substance 21, or via an intermediate, for example, an intermediate layer such as a fluid or a solid layer. It interacts with the substance 21 to adjust the curvature of the surface 230. In one embodiment, the lens is surrounded by a pressure control member 220. In another embodiment, the control member 220 is in contact with a portion of the lens. - The exemplary force control member 220 is a ring that is capable of reducing its circumference, such as a piezoelectric ring. An individual layer, such as a reflective layer or a non-reflective layer, can also be added to the 14 200813512 semi-solid lens, such as deposited on the surface of a semi-solid lens for improved image quality. Figure 3 shows a top view of an embodiment of the invention including a lens 340 with a pressure control member 310 surrounding the lens. The lens 34 can be a semi-solid lens or a fluid lens. Examples of pressure control members used in the present invention include, but are not limited to, an artificial muscle ring; a piezoelectric device such as a pressure ring, a pressure cylinder, a pressure sleeve or a pressure coated metal ring or circle. a cartridge, a piezoelectric ring capable of changing its diameter when an electric field is applied; a mechanical actuator; 10 - an electromechanical actuator; and a fluid pressure modulator for modulating using a microfluidic technique; a beam; and a voltage or an electrical stimulus. The pressure control device used in the present invention has a variable shape and size. The portion of the pressure control device used in the present invention may have an elliptical, toroidal, and/or polygonal cross section. The number of sides of the polygonal cross section can vary from 3 to about 15 16 . An example is a quadrilateral polygon such as a square or rectangle. The present invention enables the use of different semi-solid materials. Preferably, the material is light transmissive and stable under operating conditions. Semi-solid materials include, but are not limited to, a viscous liquid such as oil; gels such as low molecular weight crosslinked or non-crosslinked polymers and colloids; elastomers such as crosslinked or non-crosslinked heat 20 plastic and thermoset elastomers ; and a mixture thereof. Examples of polymers or oligomers include, but are not limited to, homopolymers, copolymers, polyblends, and mixtures thereof. Examples of polymers or low polymers include Shixi oxygen burning, polyoxic oxygen burning, such as poly(dimethyl oxalate) 'water sour vinegar; polyphosphazene; and poly 15 200813512 acrylate , such as poly(methyl methacrylate). The optical device further includes a retaining member, such as a housing. Figure 4 is a cross-sectional side view of another embodiment of the present invention. As shown in Fig. 4, the optical device has a semi-solid lens 420 having a surface area 440 having a well defined curvature of 5, a housing 430, and a pressure control member 414. The lens 420 is fixed in a casing 43. Lens 420 is directly coupled to a pressure control member 414 to vary the pressure applied to lens 420 to alter the curvature of surface 440. Optionally, the pressure control member 414 can also be indirectly coupled to the lens 420 via an intermediate, such as a fluid or a layer. The pressure control member can be a microfluidic modulation device that includes a fluid 410 and an inlet and/or an outlet 412. • The fluid can be a liquid or a gas. Those skilled in the art will recognize other pressure control components, such as a piezoelectric device, a mechanical or an electric actuator, that can also be used to vary the focal length of lens 420. The outer casing used in the present invention has a variable shape and size. In one embodiment, a tubular outer casing has a symmetrical cross section, and in another embodiment, a tubular outer casing has an asymmetrical cross section. In another embodiment, along the tubular outer casing, the cross-sectional dimension of a tubular outer casing can have a continuous or unconnected variation. The tubular outer casing of the portion used in the present invention may have an elliptical, circular and/or polygonal cross section. The number of sides of the polygonal cross section can vary from 3 to about π. An example is a quadrilateral polygon such as a square or rectangle. In another embodiment, as shown in Figure 5, the present invention provides an optical device having a two lens assembly. The optical device includes a semi-solid lens 51A having a surface 540 of a 200813512 and a solid lens 52〇 secured in the housing 530. As shown in Fig. 5, the semi-solid lens 51 and the solid lens 52 are in direct contact with each other. Optionally, the two lenses can be separated by a predetermined distance, for example, the two lenses can be separated by a fluid, such as a liquid or a gas. In another embodiment, similar to the device of Figure 5, the optical light in Figure 6A includes a semi-solid lens 640 having a surface 670, and a solid lens 650 is secured in the housing 630. The device also has a pressure control member 610 that includes a fluid 615 and has an inlet/outlet port 660. The pressure control member is used to adjust the shape, size or geometry of the lens 640, and the curvature of the surface 67. The device also has a cover 62, preferably the cover is transparent. In another embodiment, the semi-solid material is provided with a hollow chamber where the semi-solid material can be extruded to change the focal length or shape or curvature of the semi-solid when applying an external force or pressure, such as As shown in FIG. 6B, the optical device has a hollow chamber 680 next to the semi-solid lens to provide some additional space for the semi-solid lens when a pressure is applied to the semi-solid lens 64 by the pressure control member 610. Squeeze into use. Figure 7 provides a further embodiment of the invention. An optical device similar to that of Fig. 6 includes a lens assembly having a semi-solid lens 750 having a surface 77 and a solid lens 760 fixed in a housing 720. A pressure control member 730 having a fluid and an inlet/outlet 740 is used to control the pressure applied to the lens 750 for adjusting the shape, shape and/or size of the lens 750 and the curvature of the surface 770. In particular, the optical device provides a peripheral surface of a peripheral material having a rough surface, such as a surface of a minute structure having minute bumps, dimples or cavities, for adding a semi-solid pair. Traction, friction and adhesion of the outer surface of the casing. The surface can be hydrophobic or hydrophilic. The surface can be composed of a nano or micro-structural material that is the same or different material than the five peripherals, such as an inorganic, metal or ceramic material or a mixture thereof. Figure 8 is a schematic view of another embodiment of the present invention providing an optical device having a three lens assembly. The optical device has a solid lens 820 sandwiched between a first semi-solid lens 10 810 having a surface 85 与 and a second semi-solid lens 812 having a surface 855. It will be appreciated by those skilled in the art that other lens configurations are also possible with respect to the present invention. The lenses 810, 812, and 820 are disposed or fixed in the housing 830 to cause a sharp edge 840 to be formed, enabling the formation of a semi-solid lens having a convex shape that prevents lens material, for example, a gel, 15 Leakage from the chamber on the housing. Figure 9 illustrates another embodiment of the present invention. Similar to Fig. 8, the optical device includes a solid lens 950 sandwiched between a first lens 940 having a surface region 970 and a second lens 960 having a surface region 975, and is disposed or fixed to a housing 920. in. The device can also have a sharp edge 20 edge 901. Optionally, the device can also have a smooth edge. Lenses 940 and 960 can be a semi-solid lens or a fluid lens. The fluid can be a gas or a liquid. The shape, size, geometry and/or dimensions of lenses 940 and 960, as well as the curvature of surfaces 970 and 975, can be adjusted by pressure control members 910 and 912, respectively. The pressure control members 91 and 912 can be a device containing a fluid for adjusting the pressure applied to the lens to cause a change in the curvature of the surfaces Wo and 975. The function of the fluid is to communicate pressure to the semi-solid. Those skilled in the art will recognize that other lens configurations are also available to obtain a variable focal length assembly. 5 Figures 10A-BB show other specific embodiments of the invention. Similar to the optical device of FIG. 9, the optical device shown in FIG. 10A has a solid lens 1040 sandwiched between a first semi-solid lens 1030 having a surface area 1 〇 8 与 and having a surface area 1085 Between a second semi-solid lens 1032. The lenses are configured or secured in the housing 1020. A first pressure 10 control member 1070 is coupled to the lens 1030. A second pressure control member 1072 is coupled to the lens 1032. The pressure control member can be a shell comprising fluids 1010 and 1012, such as a gas or a liquid. The fluids 1〇1〇 and 1〇12 may be of the same or different types. Preferably, the pressure control members 1070 and 1072 are constructed of a flexible shell material. In one embodiment, the pressure control members 1070 and/or 1072 are transparent. The pressure control members can be coupled to the semi-solid lenses 1030 and 1032 via direct contact or indirect interaction. The optical device also has transparent covers 1050 and 1060. In a specific embodiment, the cover can be configured as a lens. As shown in Fig. 10B, a hollow chamber 1090 is configured to be squeezed into the semi-solid lens when a pressure is applied. Figure 11 shows another embodiment of the present invention. Similar to the device of Fig. 10, the optical device has a solid lens 1150 sandwiched between a first semi-solid lens 1140 having a surface 1170 and a second semi-solid lens 1142 having a surface 1175. The lens assemblies are configured or secured 19 200813512 in housing 1130. A first pressure control member 111 is attached to the first semi-solid lens 1140 for adjusting the shape, size, geometry, and human or size of the lens or the surface curvature of the lens 1140, as well as the curvature of the surface 117. The pressure control member mo has a fluid 1112 and a fluid inlet/outlet 5 1160 which are designed to generate pressure on the lens 1140. The optical device has an optional second pressure control member 1114 attached to the second lens 1142. Optionally, a member 1114 has a fluid inside for adjusting the pressure of the lens 1142. The optical device also has covers 112 and 1122, preferably at least one of which is transparent. 10 Figure 12 illustrates a specific embodiment of the invention using a combination of lenses. As shown in Fig. 12, the optical device has a lens assembly, a housing 1220, and a pressure control member assembly coupled to each of the semi-solid lenses. The lens assembly includes a first semi-solid lens 1240 having a surface area 1260, a solid or fluid lens 1250, and a second semi-solid lens 1242 having a surface area 15 1265. In one embodiment, lens 1250 is positioned between lens 1240 and lens 1242. The lens assembly is configured or secured in the housing 1220. A first pressure control member 1210 is coupled to the lens 1240. The chambers 1230 and 1232 are used to actuate the lens 1240 and the lens 1242, respectively. Optionally, a second pressure control member 1212 is coupled to the lens 20 1242. In one embodiment, the pressure control members 1210 and/or 1212 are pressure rings or metal rings coated with a piezoelectric material. The metal ring provides mechanical amplification. Figure 13 illustrates another embodiment of the present invention, providing an optical device having a four lens assembly. A 20th 200813512 having a surface area 1360 is a semi-solid lens 1320 disposed on top of a fluid lens 1330 having an interface 1370 with the semi-solid lens 1320. Fluid lens 1330 is disposed on top of a solid lens 1340 to form an interface 1375. Solid lens 1340 is further disposed on top of a second semi-solid lens 1322 having a surface 1365. Those skilled in the art will recognize that other lens configurations can also be used to achieve the desired zoom effect. Figure 13 shows that each lens system is in contact with each other. In other embodiments, some of the lenses may be in contact with one another while the other lenses are separable a predetermined distance apart. In other embodiments, each lens is not in contact with each other. Lenses 1320 and 1 1330 are configured or secured in a housing 1310. Fluid lens 1330 has an inlet/outlet 1350 for allowing fluid to pass therethrough. Figure 14 shows a side view of a semi-solid lens having a lens chamber 1404 or a liquid lens assembly. Lens chamber 1404 can be curved inwardly, outwardly curved, or straight. In one embodiment, the lens chamber 1404 has an inner layer coated with coatings 14〇6 and 141〇, and the top and bottom surfaces or outer layers of the lens assembly are coated with a coating 1408. . Coatings 1406, 1410, and 1408 can be a hydrophilic material or a hydrophobic material. When the lens chamber contains a liquid, the coatings 14〇6 and 141〇 are preferably a hydrophilic material. The boundary at the hydrophobic region confines the liquid and presents a bow, meniscus, which has a curvature partially defined by the static (or dynamic) contact angle of the fluid at the k-boundary. The hydrophobic material is a material such as plastic, polymer, ceramic, alloy, or a fluoropolymer such as Teflon, CYT〇p or bismuth oxynitride. The hydrophilic region may be composed of a material such as plastic, polymer, glass, quartz, oxynitride or fused vermiculite. Other suitable materials include pottery, hydrophilic metals, hydrophilic alloys or hydrophilic polymers such as, for example, hydroxylic PoWrylate or polymethacrylate, polyacrylamide, cellulose. Polymer, polyvinyl alcohol. 5 Coatings of such materials can also be used to cover the walls of the lens chamber. An optional embodiment of the invention includes a liquid or semi-solid lens assembly having a plurality of liquid lenses and/or solid lenses for focusing and zooming operations. Figures 15A-15D illustrate different suitable configurations. Fig. 15A shows a joint portion including a liquid lens 1504 and a solid lens 15〇2. The 15β10 diagram shows a bonding portion including a liquid lens 1504 and a solid plano-convex lens 1506. Fig. 15C shows a bonding portion including a two-liquid lens and a two-solid lens 1506. Fig. 15D shows that the two liquid lens 15〇4 and a solid lens 15〇8 are sandwiched therein. It should be appreciated that many other assembly configurations are possible in accordance with the teachings herein including different configurations of solid and/or liquid lenses. 15 Figure 16 shows a side view of a liquid lens or semi-solid lens system having an autofocus module in accordance with one embodiment of the present invention. The housing 16 固 holds a variable focal length liquid lens or semi-solid lens 1604 between a first solid lens 1606 and a second solid lens 1608. The outer casing 1600 includes a coated inner surface 162 and a channel 1612 for filling the chamber and controlling the optical elements (e.g., meniscus) of the liquid lens. Surface 1602 can be hydrophobic or hydrophilic. For the autofocus system of this embodiment, the hole 161'' can also be formed on the second solid lens. Figure 17 is a side elevational view of a liquid lens or semi-solid lens system having an autofocus module in accordance with another embodiment of the present invention. In the same manner as the specific embodiment of the 16th 22, 2008, 135, 12, the housing i completely holds a variable-focus liquid lens or semi-solid lens 17〇4, a first solid lens (10), and a first nozzle lens 17 〇 8, but additionally holding a third solid lens i7i 〇. The outer 1700 also includes a hydrophobic surface 17〇2. The liquid lens port (10) fills the chamber from the liquid reservoir or _pressure control member via passage 5 1712, which is compliant with the actuator member or pump 1716. Figure 18 is a side elevational view of a liquid lens or a semi-solid lens system having a zoom/focus module in accordance with one embodiment of the present invention. As with the specific embodiment of Fig. 17, the outer casing 1800 10 having a hydrophobic surface holds a - solid-solid lens 18〇8, a second solid lens 181A, a third solid lens 1812, and a first variable focal length. The lens 18 〇 4, the first varifocal lens 1804 can be a first liquid lens or a first semi-solid lens. However, the outer casing 1800 additionally holds a second variable focal length lens 1806, which may be a second liquid lens or a second semi-solid lens. In one embodiment, the first variable focus lens 1804 is a first liquid lens that is filled with a first liquid reservoir or a first pressure control member 1814 coupled to the actuator or pump 1816. a chamber. The second variable focus lens 1806 is a second liquid lens that is filled with a second liquid reservoir from a second liquid reservoir coupled to the actuator or pump 1820 or a second pressure 20 force control member 1818. In another embodiment, the first variable focus lens 1804 is a first semi-solid lens that is coupled from a first liquid reservoir or a first pressure control member 1814 coupled to the actuator or pump 1816. Note a first chamber. The second variable focal length lens 1806 is a second semi-solid lens coupled to the actuator or pump 1820. The second liquid 23 is filled with a second liquid 23 200813512 or a pressure control member 1818. Chamber. In another embodiment, the actuator for the semi-solid lens can be a pressure ring actuator that is in direct contact with the semi-solid lens. Figure 19 is a side elevational view of a liquid lens or a semi-solid lens system having a variable focal length and 5 variable diameter modules in accordance with one embodiment of the present invention. The outer casing 1900 having a hydrophobic surface 1902 holds a solid lens 1904, a first liquid lens or a first semi-solid lens 19〇6, and a second liquid lens or a second semi-solid lens 1912. The first liquid lens or first semi-solid lens 1906 fills a first chamber from a 10th liquid reservoir coupled to the actuator or pump 1920 or a first pressure control member 1918. The second liquid lens or second semi-solid lens 1912 fills a second chamber from a second liquid reservoir or a second pressure control member 1922 coupled to the actuator or pump 1924. In this particular embodiment, the outer casing 19 is stepped such that the diameter of the liquid or semi-solid lens can be increased as more liquid is drawn into the chamber. For example, the liquid lens or semi-solid lens 1906 can be increased in diameter to expand into a liquid lens or semi-solid lens as indicated by the representative symbol 1908, which can be further increased in size to expand into a liquid lens or half as indicated by the representative symbol 1910. Solid lens. Similarly, the second liquid lens or semi-solid lens 1912 can be increased in diameter to form the liquid lens or semi-solid lens 1914 of the enlargement 20, and can be further increased to form an enlarged liquid lens or semi-solid lens 1916. In some embodiments, when a pressure is applied to the semi-solid lens, the semi-solid material can be compressed to reduce its volume. In certain other embodiments, the semi-solid lens is used as a fixed 24 200813512 - 5 focal length lens having a marco function. Figure 20 is a side elevational view of a liquid lens or a semi-solid lens system having a zoom/focus module in accordance with another embodiment of the present invention. The outer casing 2000 having the hydrophobic or hydrophilic surface 2002 holds a first solid lens 2004, a second solid lens 2006, a third solid lens 2008, and a fourth solid lens 2010. The housing 2000 also holds a first variable focus liquid lens or semi-solid lens 2012 and a second variable focus liquid • lens or semi-solid lens 2014. The first liquid lens or semi-solid lens 2012 is filled with a first chamber from a first liquid reservoir or a first 10 pressure control member 2016 coupled to the actuator or pump 2018. The second liquid lens or semi-solid lens 2014 is filled with a second chamber from a second liquid reservoir coupled to the actuator or pump 2022 or a second pressure control member 2020. All lens systems are configured or secured in housing 2000. 21A-21B shows a piezoelectric disc actuator using a piezoelectric 15 • buzzer diaphragm in one embodiment of the invention. Figure 21A is a top plan view of a piezoelectric buzzer diaphragm including a metal diaphragm 2100 and a piezoelectric layer 2102. Figure 21B is a cross-sectional view of the piezoelectric buzzer diaphragm including the diaphragm 2100 and the piezoelectric layer 2102 disposed or secured to a liquid lens or housing 2104 of a semi-solid lens system. The diaphragm 2100 is actuated to draw 20 liquid 2106 away from the channel 2108 to form a liquid lens. Figure 21C is a variation of the embodiment of Figures 21A-21B and includes a piezoelectric layer 2110 and a curved metal diaphragm 2112. Instead of being placed on top of the lens housing for the disc embodiment of Figures 21A-21B, the curved piezoelectric diaphragm is placed or secured around the lens housing. 25 200813512 Figure 22 shows an image of a variable focal length elastomer lens constructed by a molding process. Figures 23A-23B illustrate a variable focal length elastomeric lens module having a mechanical actuator that deforms the lens and controls the focal length of the lens. 5 Figures 24A-24B illustrate an example of volume change in a tubular pressure actuator at an actuation voltage of approximately 20V. Figure 25 is a side elevational view of a schematic view of a semi-solid thin foil lens assembly in accordance with one embodiment of the present invention. As shown in Fig. 25, the optical device includes a thin foil lens 2510 which is prepared from a thin film or a layer of a semi-solid material, and an actuator ring 2520 for adjusting the focal length of the thin foil lens. The thickness of the semi-solid film lens can be in the range of from about 1 micron to about 5 mm, for example, from 1 micron to 1 micron, 1 to 3 micron, 20 to 5 micron, 40 micron. Up to 80 microns, 75 microns to 150 microns, 100 microns to 300 microns, 180 microns to 400 microns, 200 microns to 600 15 microns, 250 microns to 7 microns, 350 microns to 800 microns, 400 microns to 900 microns, 500 Micron to 850 microns, 750 microns to 950 microns, 900 microns to 1 mm, 0. 5 mm to 1. 5 mm, 1. 0 mm to 2 mm, 1. 5 mm to 2. 5 mm, 2 mm to 3 mm '2.5 mm to 3. 5 mm, 3 mm to 4 mm, 2.5 mm to 4.5 mm or 4 mm to 5 mm. In some examples, the thickness of the 2" semi-solid film lens can be {micron, 2 microns, 3 microns, 4 microns, 5 microns, 6 microns, 7 microns, 8 microns, 9 microns, 10 microns, 15 microns, 2 turns Glutinous rice, 30 micron, 4 micron, 50 micron, 60 micron, 70 micron, 80 micron, 9 micron, 1 micron, 200 micron, 300 micron, 400 micron, 500 micron '6GG micron, micron, 8GG Micron, 9GG micron, 1 mm, 26 200813512 2 mm, 3 mm, 4 mm or 5 mm. Figure 26 is a side elevational view of a two lens assembly of one embodiment of the present invention. As shown in Fig. 26, the optical device includes a thin foil lens 2610 and a solid lens 264, which is disposed or fixed in the outer casing 263. A 5 裱 actuator is attached to the thin foil lens 2610 for adjusting the focal length of the lens. Actuation is any pressure modulation device that can be described above. The thin foil lens can be a semi-solid lens or a liquid. Those skilled in the art will recognize that other lens assemblies are also possible. For example, the present invention also provides lens assemblies having two or more lenses, including one or more thin foil lenses, one or more. A combination of a solid lens and one or more liquid lenses. Figure 27 is a side view of a fixed focal length lens module using a semi-solid lens. An optical device using a semi-solid lens as a fixed focal length lens has a macro function. The optical device includes a solid lens 2720 sandwiched between a first semi-solid lens 2710 and a second semi-solid lens 2712 15 . The lenses are configured or secured in a housing 2730. In other embodiments, some of the lenses are in direct contact with each other, while the other lenses are separated by a predetermined distance, for example, by a fluid, a gas, or a vacuum. In other embodiments, all of the lenses are separated by a predetermined distance. Figure 28 illustrates an optical device having the function of a three-lens assembly with 20 and a half solid lens. As shown in FIG. 28, the optical device includes a solid lens 2860 sandwiched between a first semi-solid lens 2810 and a second semi-solid lens 2850; a first pressure control member 2880 having a fluid inlet 2830 And a second pressure control member 82 having a fluid outlet 2832. The lens system is configured or fixed in the housing 2870. The semi-solid lens 27 200813512 2810 has surfaces 2822, 2824 and 2826 in its individual initial positions. The semi-solid lens 2850 has surfaces 2852, 2854, and 2856 in its individual initial positions. Figure 5 also demonstrates that the surface curvature or radius of curvature of the semi-solid lens can be adjusted by varying the pressure applied to the lens. When the pressure control member 2880 is pressurized by the fluid 2840, the semi-solid lens 2810 changes its shape to form new surfaces 2821, 2823, and 2825 that correspond to the surfaces 2822, 2824, and 2826, respectively. Conversely, when the pressure control member reduces pressure by removing fluid 2842 through outlet 2832, the semi-solid lens changes its shape to form new surfaces 2851, 2853, and 2855, 10 and surface 2852, 2854, and 2856, respectively. Corresponding. The present invention also provides a method of constructing a variable focal length semi-solid lens. In one embodiment, the lens is constructed of a light transmissive semi-solid, such as a polymer. The semi-solid lens can be prepared by injection molding, dispensed into a lens-shaped cookware, cast or by any other method for forming a semi-solid lens such as a poly-object lens. For example, a semi-solid lens can be made by injecting or infusing a liquid form of material into a chamber or mold, followed by solidifying the liquid material into a semi-solid or a gel. The present invention also provides a method for adjusting the curvature of a semi-solid lens having a well defined curvature-surface area. The method includes adjusting the pressure applied to the semi-solid material to change the curvature of the surface region of the semi-solid material. The invention also provides for the use of semi-solid optical devices for imaging applications. All liquid lenses mentioned above in the present invention can also be selectively or completely replaced by semi-solid lenses. The present invention further provides that all of the above-described lenses and all of the lenses can be selectively or completely replaced by semi-solid sinuous thin lenses. The invention has been described by way of example and with respect to specific embodiments thereof, but it is understood that the invention is not limited to the specific embodiment disclosed. On the contrary, it is intended to cover various modifications and similar configurations that are known to those skilled in the art. For example, there is a configuration of a plurality of possible lens assemblies having a semi-solid lens capable of variable focal length, and such specific embodiments are not limited to those illustrated herein. Therefore, the scope of the additional patent application scope should be consistent with the broadest interpretation and include all such modifications and similar configurations. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A-1B is a view showing a variable focal length semi-solid lens according to an embodiment of the present invention, in which the focal length is adjusted by changing the outer diameter of the lens. 2 is a side view of a schematic view of a semi-solid lens of an embodiment of the present invention, the lens having a pressure ring actuator for adjusting the semi-solid lens by changing the outer diameter of the lens shape. Figure 3 is a top plan view of a variable focus semi-solid lens of an embodiment of the present invention having an artificial muscle ring, a piezoelectric ring or a mechanical ring assembly for adjusting the surface curvature of the lens. 20 is a cross-sectional side view of an optical device in accordance with an embodiment of the present invention, the device having a semi-solid lens fixed in a housing and a fluid pressure modulator for adjusting the semi-solid lens Surface curvature 0 Figure 5 is a schematic representation of an optical device having a two-lens assembly 29 200813512. The optical device of one embodiment of the invention includes a semi-solid lens and a solid lens secured in a housing. 6A-6B illustrate an optical device having a semi-solid lens and a solid lens fixed in a housing having a transparent cover, and a fluid pressure modulator for adjustment, in accordance with an embodiment of the present invention The surface curvature of a semi-solid lens. Figure 7 illustrates an optical device in accordance with an embodiment of the present invention having a semi-solid and solid lens assembly having a roughened surface for increasing the adhesion of the semi-solid bond to the outer casing. Figure 8 is a side elevational view of a schematic view of an optical device in accordance with an embodiment of the present invention having a three lens assembly wherein the semi-solid lens has a convex lens surface. Figure 9 is a view showing an optical device having a three-lens assembly in accordance with an embodiment of the present invention, wherein a fluid pressure modulator is combined with a semi-solid lens or a 15-liquid lens for adjusting a semi-solid lens or a liquid lens. Surface curvature. 10A-10B illustrate a side view of an optical device having a three-lens assembly in accordance with an embodiment of the present invention, wherein the housing has a transparent cover or a lens-like cover and a plurality of fluids The pressure modulator 20 is coupled to a semi-solid lens for adjusting the surface curvature of the semi-solid lens. 11 is a side elevational view of an optical device having a three lens assembly in accordance with an embodiment of the present invention, optionally having a second fluid pressure transducer system and a second semi-solid The lens combination is used to adjust the surface curvature of the second semi-solid lens. 30 200813512 Figures 12A-12B illustrate a side view of an optical device having a three lens assembly in accordance with an embodiment of the present invention having a piezoelectric actuator for adjusting a semi-solid lens or liquid lens Surface curvature. Figure 13 is a side elevational view of an optical device having a four lens type 5 assembly in accordance with an embodiment of the present invention. Figure 14 is a side elevational view of a semi-solid lens or a liquid lens assembly having a lens chamber in accordance with one embodiment of the present invention. Fig. 15A shows a liquid or semi-solid lens and a solid lens of one embodiment of the present invention. 10 Figure 15B shows a liquid or semi-solid lens and a solid plano-convex lens in accordance with one embodiment of the present invention. Fig. 15C is a view showing a liquid lens or a two-half solid lens and a two-solid lens according to an embodiment of the present invention. Fig. 15D shows a two liquid lens or a fifteen semi-solid lens and a solid lens sandwiched therebetween in one embodiment of the present invention. Figure 16 is a side elevational view of a liquid or semi-solid lens based autofocus lens system in accordance with one embodiment of the present invention. Figure 17 is a side elevational view of a liquid lens based or semi-solid lens based autofocus lens system in accordance with another embodiment of the present invention. 20 Figure 18 shows a side view of a liquid lens or a semi-solid lens system having a zoom/focus module in one embodiment of the system. Figure 19 is a side elevational view of a liquid or semi-solid lens system having a variable focal length and variable diameter lens module in accordance with one embodiment of the system. 31 200813512 Figure 20 shows a side view of a liquid or semi-solid lens system having a zoom/focus module in accordance with another embodiment of the present invention. Fig. 21A is a plan view showing a piezoelectric disk actuator of an embodiment of the present invention. 5 Figure 21B shows a side view of a piezoelectric disk actuator for liquid suction in accordance with an embodiment of the present invention. Figure 21C is a plan view showing a piezoelectric actuator using a curved piezoelectric diaphragm in accordance with an embodiment of the present invention. Fig. 2 is a view showing an image of a variable focal length elastic 10 body lens according to an embodiment of the present invention. 23A-23B illustrate a variable focus elastomeric lens module in accordance with an embodiment of the present invention having a mechanical actuator that deforms the lens and controls the focal length of the lens. 24A-24B are diagrams showing a volume change of a volume change at a constant dynamic voltage of about 20 V in a tube 15-type pressure actuator according to an embodiment of the present invention. A side view of a schematic view of a semi-solid thin foil lens assembly of one embodiment of the invention. Figure 26 is a side elevational view of a two lens assembly having a thin foil through mirror and a solid lens in accordance with one embodiment of the present invention. Figure 27 is a side view of a fixed focal length lens module using a semi-solid lens. Figure 28 illustrates the operation and functionality of an optical device having a three lens assembly and a semi-solid lens. 32 200813512 [Description of main component symbols] D1, D2... Diameter of semi-solid lens 615... Fluid 102... Semi-solid material 620... Cover 110, 112... Surface 630... Shell 120... Boundary 640... Semi-solid lens 210... Semi-solid material 650... Solid Lens 220...pressure control member 660...inlet/outlet 230···surface area 670...surface 310···pressure control member 680...medium chamber 340...lens 720...housing 410...fluid 730···pressure control member 412... Inlet and/or Outlet 740...Inlet/Outlet 414·· Pressure Control Member 750...Semi-Solid Lens 420...Semi-Solid Lens 760...Solid Lens 430...Enclosure 770...Surface 440...Surface Area 810...First Semi-Solid Lens 510... Semi-solid lens 812···Second semi-solid lens 520...Solid lens 820...Solid lens 530...Enclosure 830...Enclosure 540...Surface 840... Sharp edge 610···Pressure control member 850,855···Surface 33 200813512

901…尖稜邊緣 910,912···壓力控制構件 920…外殼 940…第一透鏡 950…固體透鏡 ' 960…第二透鏡 970,975···表面區域 1010,1012…流體 1020…外殼 1030…第一半固體透鏡 1032···第二半固體透鏡 1040···固體透鏡 1050,1060···透明蓋 1070…第一壓力控制構件 1072…第二壓力控制構件 1080,1085…表面區域 1090···中空腔室 1110…第一壓力控制構件 1112…流體 1114···第二壓力控制構件 1120,1122 …蓋 1130…外殼 1140…半固體透鏡 1142…第二半固體透鏡 1150…固體透鏡 1160…流體入口/出口 1170,1175…表面 1210···第一壓力控制構件 1212···第二壓力控制構件 1220…外殼 1230,1232…腔室 1240…第一半固體透鏡 1242…第二半固體透鏡 1250…固體或流體透鏡 1260J265…表面區域 1310…外殼 1320…第一半固體透鏡 1322…第二半固體透鏡 1330…流體透鏡 1340…固體透鏡 1350…入口/出口 1360…表面區域 34 200813512 1365…表面 1375…界面 1404…透鏡腔室 1406,1408,1410 …塗層 1502…固體透鏡 1504…液體透鏡 1506…固體平凸透鏡 1508…固體透鏡 1600…外殼 1602…内表面 1604…液體透鏡或是半固體透鏡 1606…第一固體透鏡 1608···第二固體透鏡 1610…孔 1612…通道 1700…外殼 1702···疏水性表面 1704…可變焦距式液體透鏡或半 固體透鏡 1706···第一固體透鏡 · 1708…第二固體透鏡 1710…第三固體透鏡 Π12"·通道 1Ή4…壓力控制才冓件 Π16…致動構件或泵 1800…外殼 · 1802…疏水性表面 1804…第一可變焦距式透鏡 1806…第二可變焦距式透鏡 1808…第一固體透鏡 1810…第二固體透鏡 1812…第三固體透鏡 1814…第一壓力控制構件 1816…致動器或泵 1818…第二壓力控制構件 1820…致動器或泵 1900…外殼 1902· ··疏水性表面 觸4…固體透鏡 1906…第一—半固 1908,1910…擴大的液體透鏡或半 固體透鏡 35 200813512 1912…第二液體透鏡或第二半固2022…致動器或泵 體透鏡 1914" •衡 1916· · ·擴大的液廳德 1918…第一壓力控制構件 1920…致動器或泵 1922…第二壓力控制構件 1924…致動器或泵 2000…外殼 2002…疏水性或親水性表面 2004…第一固體透鏡 2006…第二固體透鏡 2008···第三固體透鏡 2010···第四液體透鏡 2100…金屬膜片 2102…壓電層 2104…外殼 2106…液體 2108…通道 2110…壓電層 2112…金屬膜片 2510…薄箔透鏡 2520…致動器環 2610…薄箔透鏡 2630…外殼 2640…固體透鏡 2710…第一半固體透鏡 2012…第一可變焦距式液體透鏡2712…第一半固體透鏡 或半固體透鏡 2720…固體透鏡 2014…第二可變焦距式液體透鏡2730…外殼 或半固體透鏡 2016···第一壓力控制構件 2018…致動器或泵 2810…第一半固體透韻 2822,2824,2826…表面 2821,2823,2825…表面 2830…流體入口 2020…第二壓力控制構件 36 200813512 2832…流體出口 2860…固體透鏡 2840,2842…流體 2870…外殼 2850…第二半固體透鏡 2880…第一壓力控制構件 2851,2853,2855…表面 2852,2854,2856…表面 2882"•第二壓力控制構件 37901... sharp edge 910, 912... pressure control member 920... outer casing 940... first lens 950... solid lens '960... second lens 970, 975 · surface area 1010, 1012... fluid 1020... outer casing 1030... first semi-solid Lens 1032···Second semi-solid lens 1040···Solid lens 1050, 1060···Transparent cover 1070...first pressure control member 1072...second pressure control member 1080,1085...surface area 1090···cavity Chamber 1110...first pressure control member 1112...fluid 1114···second pressure control member 1120,1122...cover 1130...housing 1140...semi-solid lens 1142...second semi-solid lens 1150...solid lens 1160...fluid inlet/outlet 1170, 1175... surface 1210... first pressure control member 1212... second pressure control member 1220... outer casing 1230, 1232... chamber 1240... first semi-solid lens 1242... second semi-solid lens 1250... solid or Fluid lens 1260J265...surface area 1310...shell 1320...first semi-solid lens 1322...second semi-solid lens 1330...fluid lens 1340...solid lens 1350...inlet/outlet 1360...table Area 34 200813512 1365...surface 1375...interface 1404...lens chamber 1406,1408,1410...coating 1502...solid lens 1504...liquid lens 1506...solid plano-convex lens 1508...solid lens 1600...housing 1602...inner surface 1604...liquid Lens or semi-solid lens 1606...first solid lens 1608···second solid lens 1610... hole 1612...channel 1700...shell 1702···hydrophobic surface 1704...zoomable liquid lens or semi-solid lens 1706· · First solid lens · 1708...Second solid lens 1710...third solid lens Π12"·channel 1Ή4...pressure control deviceΠ16...actuating member or pump 1800...housing·1802...hydrophobic surface 1804...first A variable focal length lens 1806...a second variable focal length lens 1808...a first solid lens 1810...a second solid lens 1812...a third solid lens 1814...a first pressure control member 1816...an actuator or pump 1818...second Pressure control member 1820...actuator or pump 1900...housing 1902···hydrophobic surface contact 4...solid lens 1906...first-semi-solid 1908, 1910...expanded liquid Lens or semi-solid lens 35 200813512 1912...Second liquid lens or second semi-solid 2022...actuator or pump body lens 1914" Balance 1916···Enlarged liquid chamber de 1918...first pressure control member 1920... Actuator or pump 1922...second pressure control member 1924...actuator or pump 2000...housing 2002...hydrophobic or hydrophilic surface 2004...first solid lens 2006...second solid lens 2008···third solid lens 2010 4.·4th liquid lens 2100...metal diaphragm 2102...piezoelectric layer 2104...outer casing 2106...liquid 2108...channel 2110...piezoelectric layer 2112...metal diaphragm 2510...thin foil lens 2520...actuator ring 2610...thin Foil lens 2630...shell 2640...solid lens 2710...first semi-solid lens 2012...first variable-focus liquid lens 2712...first semi-solid lens or semi-solid lens 2720...solid lens 2014...second variable-focus liquid Lens 2730... outer casing or semi-solid lens 2016···first pressure control member 2018...actuator or pump 2810...first semi-solid rhyme 2822, 2824, 2826...surface 2821, 2823, 2825...surface 2830...flow Inlet 2020...second pressure control member 36 200813512 2832...fluid outlet 2860...solid lens 2840, 2842...fluid 2870...housing 2850...second semi-solid lens 2880...first pressure control member 2851,2853,2855...surface 2852, 2854 , 2856...surface 2882"•second pressure control member 37

Claims (1)

200813512 十、申請專利範圍: 1. 一種光學裝置,其包含: 一透光的半固體物質,其之一表面區域具有一明確 定義的曲率;以及 5 一壓力控制構件,其與該半固體物質耦合用於調整 該半固體物質之表面區域的曲率。 2. 如申請專利範圍第1項之裝置,其中該半固體物質包括 一分隔層。 3. 如申請專利範圍第2項之裝置,其中該分隔層係為一反 10 射層或是一非反射層。 4. 如申請專利範圍第2項之裝置,其中該分隔層係與該半 固體物質接觸。 5. 如申請專利範圍第1項之裝置,其進一步包含一固持構 件用於支撐該物質。 15 6.如申請專利範圍第5項之裝置,其中該固持構件包括一 外殼,其中該半固體物質係固定於該外殼中。 7. 如申請專利範圍第6項之裝置,其中該外殼包括一親水 性内層以及一疏水性外層。 8. 如申請專利範圍第6項之裝置,其中該外殼包括一透明 20 蓋。. 9. 如申請專利範圍第1項之裝置,其中該半固體物質係選 自於由一凝膠、一黏性液體、一膠狀體、一彈性體、一 彈性體凝膠、一半導體塗層、一有機聚合物、一無機聚 合物、一半結晶液體以及其等之組合所組成的群組。 38 200813512 10. 如申請專利範圍第9項之裝置,其中該半固體物質包括 一凝膠。 11. 如申請專利範圍第10項之裝置,其中該凝膠係選自於由 聚矽氧烷、聚丙烯酸酯、聚碳酸酯、聚(甲基丙烯酸甲 5 酯)以及其等之組合所組成的群組。 12. 如申請專利範圍第9項之裝置,其中該半固體物質包括 一彈性體。 13. 如申請專利範圍第12項之裝置,其中該彈性體係為一熱 塑性彈性體或矽氧烷。 10 14.如申請專利範圍第12項之裝置,其中該彈性體係為聚二 甲基矽氧烷。 , 15. 如申請專利範圍第1項之裝置,其中該半固體物質吸收 紅外光。 16. 如申請專利範圍第1項之裝置,其中該壓力控制構件係 15 為選自於由一壓電裝置、一機械式致動器、一電動機械 式致動器、一流體壓力調變器、一人工肌肉環及一光束 所組成的群組的一裝置。 17. 如申請專利範圍第16項之裝置,其中該壓力控制構件係 為一壓電裝置。 20 18.如申請專利範圍第17項之裝置,其中該壓電裝置係選自 於由一壓電環、一壓電層及一管狀壓力致動器所組成的 群組。 19.如申請專利範圍第16項之裝置,其中該壓力控制構件係 為一流體壓力調變器。 39 200813512 20. 如申請專利範圍第19項之裝置,其中該流體壓力調變器 包含一流體係選自於由一液體、一氣體及其等之混合物 所組成的群組。 21. —種光學裝置,其包含: 5 一透光半固體薄膜,其厚度可位在自約1微米至約5 公厘的範圍内以及具有有一明確定義的曲率的一表面 區域,以及 一壓力控制構件,其係與該半固體物質耦合用於調 整半固體物質之表面區域的曲率。 10 22.如申請專利範圍第21項之裝置,其進一步包含一外殼, 其中該半固體薄膜係配置在該外殼中。 23. 如申請專利範圍第22項之裝置,其進一步包含一固體透 鏡係配置在該外殼中。 24. —種光學裝置,其包含: · 15 一第一個半固體透鏡,其之一表面區域具有一明確 定義的曲率; 一固體透鏡; 一外殼,其中該第一個半固體透鏡及該固體透鏡係 配置在該外殼中;以及 20 —第一壓力控制構件,其係與該第一個半固體透鏡 耦合用於調整該第一個半固體透鏡之曲率。 25. 如申請專利範圍第24項之裝置,其中該第一個半固體透 鏡係為一凝膠透鏡。 26. 如申請專利範圍第24項之裝置,其進一步包含一流體透 40 200813512 鏡。 27. 如申請專利範圍第24項之裝置,其進一步包含一第二個 半固體透鏡,其之一表面區域具有一明確定義的曲率。 28. 如申請專利範圍第27項之裝置,其中該固體透鏡係配置 5 在該第一個半固體透鏡與該第二個半固體透鏡之間。 29. 如申請專利範圍第27項之裝置,其進一步包含一第二壓 力控制構件,其係與該第二個半固體透鏡耦合用於調整 該第二個半固體透鏡之曲率。 30. 如申請專利範圍第24項之裝置,其中該第一個半固體透 10 鏡係與該固體透鏡接觸。 31. 如申請專利範圍第24項之裝置,其中該外殼包括複數之 腔室與該第一個半固體透鏡接觸。 32. 如申請專利範圍第24項之裝置,其中該第一個半固體透 鏡係與該外殼之一表面接觸。 15 33.如申請專利範圍第32項之裝置,其中該外殼之表面包含 一微結構用於增加該外殼之表面上該第一個半固體透 鏡之牽引。 34.如申請專利範圍第33項之裝置,其中該微結構包括複數 之微腔室。 20 35·—種光學裝置,其包含: 一第一個半固體透鏡,其之一第一表面區域具有一 明確定義的曲率; 一流體透鏡; 一第二個半固體透鏡,其之一第二表面區域具有一 41 200813512 明確定義的曲率; 一外殼,其中該第一個半固體透鏡、該第二個半固 體透鏡及該流體透鏡係配置在該外殼中;以及 一第一壓力控制構件,其係與該第一個半固體透鏡 5 耦合用於調整該第一個半固體透鏡之曲率。 36. 如申請專利範圍第35項之裝置,其進一步包含一固體透 鏡。 37. 如申請專利範圍第35項之裝置,其進一步包含一第二壓 力控制構件,其係與該第二個半固體透鏡耦合用於調整 10 該第二個半固體透鏡之曲率。 38. —種光學裝置,其包含: 一第一個半固體透鏡,其之一第一表面區域具有一 明確定義的曲率; 一固體透鏡; 15 一第二個半固體透鏡,其之一第二表面區域具有一 明確定義的曲率; 一外殼,其中該第一個半固體透鏡、該第二個半固 體透鏡及該固體透鏡係配置在該外殼中; 一第一壓力控制構件,其係與該第一個半固體透鏡 20 耦合用於調整該第一個半固體透鏡之曲率;以及 一第二壓力控制構件,其係與該第二個半固體透鏡 耦合用於調整該第二個半固體透鏡之曲率。 39. 如申請專利範圍第38項之裝置,其中該固體透鏡係配置 位在該第一個半固體透鏡與該第二個半固體透鏡之間。 42 200813512 40. 如申請專利範圍第39項之裝置,其中該固體透鏡係與該 第一個半固體透鏡及該第二固體透鏡接觸。 41. 如申請專利範圍第38-40項中任一項之裝置,其中該壓 力控制構件包括一致動器或是一栗。 5 42.如申請專利範圍第1-41項中任一項之裝置,其中該壓力 控制構件係選自於由一流體壓力調變器及一壓電裝置 所組成的群組。 43.—種光學裝置,其包含: 一第一固體透鏡; 10 一個半固體透鏡,其之一表面區域具有一明確定義 的曲率; 一第二固體透鏡;以及 ' 一外殼,其中該第一固體透鏡、該第二固體透鏡及 該半固體透鏡係配置在該外殼中。 15 44.如申請專利範圍第43項之裝置,其進一步包含一壓力控 制構件。 45. 如申請專利範圍第43項之裝置,其中該半固體透鏡係配 置位在該第一固體透鏡與該第二固體透鏡之間。 46. 如申請專利範圍第45項之裝置,其中該外殼具有一疏水 .20 性表面。 • 47.如申請專利範圍第46項之裝置,其中該表面係與該半固 體透鏡接觸。 48.—種光學裝置,其包含: 一第一固體透鏡; 43 200813512 一第二固體透鏡; 一第三固體透鏡; 一第一個半固體透鏡,其之一表面區域具有一明確 定義的曲率; 5 一外殼,其中該第一固體透鏡、該第二固體透鏡、 該第三固體透鏡及該第一個半固體透鏡係配置在該外 殼中;以及 可任擇地,一壓力控制構件,其係與該第一個半固 體透鏡耦合。 10 49.如申請專利範圍第48項之裝置,其中該第一個半固體透 鏡係配置位在該第一固體透鏡與該第二固體透鏡之間。 50. 如申請專利範圍第49項之裝置,其中該壓力控制構件係 與一致動構件耦合。 51. 如申請專利範圍第48項之裝置,其進一步包含一第二個 15 半固體透鏡,其中該第二個半固體透鏡係配置在該外殼 中〇 52. 如申請專利範圍第51項之裝置,其中該第二個半固體透 鏡係配置位在該第二固體透鏡與該第三固體透鏡之間。 53. 如申請專利範圍第52項之裝置,其進一步包含一壓力控 20 制構件係與該第二個半固體透鏡耦合。 54. —種光學裝置,其包含: 一第一固體透鏡; 一第二固體透鏡; 一第三固體透鏡; 44 200813512 一第四固體透鏡; 一第一個半固體透鏡,其之一第一表面區域具有一 明確定義的曲率; 一第二個半固體透鏡,其之一第二表面區域具有一 5 明確定義的曲率; 一外殼',其中該第一固體透鏡、該第二固體透鏡、 該第三固體透鏡、該第四固體透鏡、該第一個半固體透 鏡以及該第二個半固體透鏡係配置在該外殼中; 可任擇地,一第一壓力控制構件,其係與該第一個 10 半固體透鏡耦合;以及 可任擇地,一第二壓力控制構件,其係與該第二個 半固體透鏡耦合。 55.如申請專利範圍第54項之裝置,其中該第二及該第三固 體透鏡係配置位在該第一與該第四固體透鏡之、間。 15 56.如申請專利範圍第55項之裝置,其中該第一個半固體透 鏡係與該第二固體透鏡或該第三固體透鏡接觸。 57. 如申請專利範圍第55項之裝置,其中該第二個半固體透 鏡係與該第二固體透鏡或該第三固體透鏡接觸。 58. 如申請專利範圍第56或57項之裝置,其中該第一及該第 20 二個半固體透鏡係配置位在該第二與該第三固體透鏡 之間。 59. —種光學裝置,其包含: 一第一個半固體透鏡,其之一第一表面區域具有一 明確定義的曲率; 45 200813512 一第二個半固體透鏡,其之一第二表面區域具有一 明確定義的曲率; 一固體透鏡,其係配置位在該第一個半固體透鏡與 該第二個半固體透鏡之間;以及 5 一外殼,其中該第一個半固體透鏡、該第二個半固 體透鏡及該固體透鏡係固定在該外殼中。 60. —種藉由一模造製程所製備的半固體透鏡。 61. —種用於製造一種半固體光學裝置的方法,該方法包 含: 10 將一種半固體物質製備進入一透鏡中。 62. —種用於製造一種半固體光學透鏡的方法,該方法包 含: 將一種半固體物質以射出成型方式成為具有一明 確定義曲率的一透鏡。 15 63.—種用於製造一種半固體光學透鏡的方法,該方法包 含: 將一流體材料澆鑄進入具有一明確定義結構的一 模具中;以及 將該流體材料固化成具有一明確定義曲率的一種 20 半固體透鏡。 64·如申請專利範圍第61、62或63項之方法,其進一步包含 將該透鏡固定在一外殼中。 65. —種用於調整一種半固體透鏡之曲率的方法,該方法包 含: 46 200813512 調整施加至一表面區域具有一明確定義曲率之一 種半固體物質的壓力,用以改變該半固體物質之表面區 域的曲率。 66.如申請專利範圍第65項之方法,其中該壓力係自一機械 5 式致動器所施加。 6 7 · —種如申請專利範圍第1 - 5 9項中任一項之裝置在成像 應用上的用途。 68. —種如於此大體上說明的光學裝置。 69. —種製備如於此大體上說明的一光學裝置的方法。 47200813512 X. Patent application scope: 1. An optical device comprising: a light transmissive semi-solid material having a surface region having a well defined curvature; and a pressure control member coupled to the semi-solid material Used to adjust the curvature of the surface area of the semi-solid material. 2. The device of claim 1, wherein the semi-solid material comprises a separator layer. 3. The device of claim 2, wherein the spacer layer is a counter-reflective layer or a non-reflective layer. 4. The device of claim 2, wherein the separator is in contact with the semi-solid material. 5. The device of claim 1, further comprising a retaining member for supporting the substance. The device of claim 5, wherein the holding member comprises an outer casing, wherein the semi-solid material is fixed in the outer casing. 7. The device of claim 6 wherein the outer casing comprises a hydrophilic inner layer and a hydrophobic outer layer. 8. The device of claim 6, wherein the outer casing comprises a transparent cover. 9. The device of claim 1, wherein the semi-solid material is selected from the group consisting of a gel, a viscous liquid, a gel, an elastomer, an elastomer gel, and a semiconductor coating. A group consisting of a layer, an organic polymer, an inorganic polymer, a semi-crystalline liquid, and combinations thereof. 38. The apparatus of claim 9, wherein the semi-solid material comprises a gel. 11. The device of claim 10, wherein the gel is selected from the group consisting of polyoxyalkylene, polyacrylate, polycarbonate, poly(methyl methacrylate), and the like. Group. 12. The device of claim 9, wherein the semi-solid material comprises an elastomer. 13. The device of claim 12, wherein the elastomeric system is a thermoplastic elastomer or a decane. 10. The device of claim 12, wherein the elastomeric system is polydimethyloxane. 15. The device of claim 1, wherein the semi-solid material absorbs infrared light. 16. The device of claim 1, wherein the pressure control member 15 is selected from the group consisting of a piezoelectric device, a mechanical actuator, an electromechanical actuator, and a fluid pressure modulator. A device of a group of artificial muscle rings and a beam of light. 17. The device of claim 16, wherein the pressure control member is a piezoelectric device. The device of claim 17, wherein the piezoelectric device is selected from the group consisting of a piezoelectric ring, a piezoelectric layer, and a tubular pressure actuator. 19. The device of claim 16 wherein the pressure control member is a fluid pressure modulator. The apparatus of claim 19, wherein the fluid pressure regulator comprises a first-class system selected from the group consisting of a liquid, a gas, and the like. 21. An optical device comprising: 5 a light transmissive semi-solid film having a thickness in the range of from about 1 micron to about 5 mm and having a surface region having a well defined curvature, and a pressure A control member coupled to the semi-solid material for adjusting the curvature of a surface region of the semi-solid material. 10. The device of claim 21, further comprising a housing, wherein the semi-solid film is disposed in the housing. 23. The device of claim 22, further comprising a solid lens system disposed in the housing. 24. An optical device comprising: - a first semi-solid lens having a surface region having a well defined curvature; a solid lens; an outer casing, wherein the first semi-solid lens and the solid A lens system is disposed in the housing; and 20 - a first pressure control member coupled to the first semi-solid lens for adjusting a curvature of the first semi-solid lens. 25. The device of claim 24, wherein the first semi-solid lens is a gel lens. 26. The device of claim 24, further comprising a fluid permeable 40 200813512 mirror. 27. The device of claim 24, further comprising a second semi-solid lens having a surface area having a well defined curvature. 28. The device of claim 27, wherein the solid lens system configuration 5 is between the first semi-solid lens and the second semi-solid lens. 29. The device of claim 27, further comprising a second pressure control member coupled to the second semi-solid lens for adjusting the curvature of the second semi-solid lens. 30. The device of claim 24, wherein the first semi-solid lens is in contact with the solid lens. 31. The device of claim 24, wherein the housing comprises a plurality of chambers in contact with the first semi-solid lens. 32. The device of claim 24, wherein the first semi-solid lens is in surface contact with one of the outer casings. The device of claim 32, wherein the surface of the outer casing comprises a microstructure for increasing traction of the first semi-solid lens on the surface of the outer casing. 34. The device of claim 33, wherein the microstructure comprises a plurality of microchambers. An optical device comprising: a first semi-solid lens, one of the first surface regions having a well-defined curvature; a fluid lens; a second semi-solid lens, one of the second The surface region has a curvature that is well defined by 41 200813512; an outer casing, wherein the first semi-solid lens, the second semi-solid lens, and the fluid lens system are disposed in the outer casing; and a first pressure control member The first semi-solid lens 5 is coupled to the first semi-solid lens for adjusting the curvature of the first semi-solid lens. 36. The device of claim 35, further comprising a solid lens. 37. The device of claim 35, further comprising a second pressure control member coupled to the second semi-solid lens for adjusting the curvature of the second semi-solid lens. 38. An optical device comprising: a first semi-solid lens having a first surface region having a well defined curvature; a solid lens; 15 a second semi-solid lens, one of the second The surface region has a well-defined curvature; an outer casing, wherein the first semi-solid lens, the second semi-solid lens, and the solid lens system are disposed in the outer casing; a first pressure control member coupled to the a first semi-solid lens 20 coupled for adjusting a curvature of the first semi-solid lens; and a second pressure control member coupled to the second semi-solid lens for adjusting the second semi-solid lens Curvature. 39. The device of claim 38, wherein the solid lens system is disposed between the first semi-solid lens and the second semi-solid lens. The apparatus of claim 39, wherein the solid lens is in contact with the first semi-solid lens and the second solid lens. The device of any one of claims 38 to 40, wherein the pressure control member comprises an actuator or a pump. The device of any one of claims 1 to 41, wherein the pressure control member is selected from the group consisting of a fluid pressure modulator and a piezoelectric device. 43. An optical device comprising: a first solid lens; 10 a semi-solid lens having a surface region having a well defined curvature; a second solid lens; and 'an outer casing, wherein the first solid A lens, the second solid lens, and the semi-solid lens system are disposed in the outer casing. The apparatus of claim 43, further comprising a pressure control member. 45. The device of claim 43, wherein the semi-solid lens system is disposed between the first solid lens and the second solid lens. 46. The device of claim 45, wherein the outer casing has a hydrophobic surface. 47. The device of claim 46, wherein the surface is in contact with the semi-solid lens. 48. An optical device comprising: a first solid lens; 43 200813512 a second solid lens; a third solid lens; a first semi-solid lens having a surface region having a well defined curvature; An outer casing, wherein the first solid lens, the second solid lens, the third solid lens, and the first semi-solid lens system are disposed in the outer casing; and optionally, a pressure control member Coupled with the first semi-solid lens. The apparatus of claim 48, wherein the first semi-solid lens is disposed between the first solid lens and the second solid lens. 50. The device of claim 49, wherein the pressure control member is coupled to the actuator member. 51. The device of claim 48, further comprising a second 15 semi-solid lens, wherein the second semi-solid lens is disposed in the housing 52. The device of claim 51 The second semi-solid lens system is disposed between the second solid lens and the third solid lens. 53. The device of claim 52, further comprising a pressure-controlled component coupled to the second semi-solid lens. 54. An optical device comprising: a first solid lens; a second solid lens; a third solid lens; 44 200813512 a fourth solid lens; a first semi-solid lens, one of the first surfaces The region has a well-defined curvature; a second semi-solid lens having a second surface region having a well-defined curvature; a housing ', wherein the first solid lens, the second solid lens, the first a third solid lens, the fourth solid lens, the first semi-solid lens, and the second semi-solid lens system are disposed in the outer casing; optionally, a first pressure control member coupled to the first 10 semi-solid lens couplings; and optionally, a second pressure control member coupled to the second semi-solid lens. 55. The device of claim 54, wherein the second and third solid lens systems are disposed between the first and fourth solid lenses. The apparatus of claim 55, wherein the first semi-solid lens is in contact with the second solid lens or the third solid lens. 57. The device of claim 55, wherein the second semi-solid lens is in contact with the second solid lens or the third solid lens. 58. The device of claim 56, wherein the first and the twenty-two semi-solid lens systems are disposed between the second and third solid lenses. 59. An optical device comprising: a first semi-solid lens having a first surface region having a well defined curvature; 45 200813512 a second semi-solid lens having a second surface area a well-defined curvature; a solid lens disposed between the first semi-solid lens and the second semi-solid lens; and 5 a housing, wherein the first semi-solid lens, the second A semi-solid lens and the solid lens are fixed in the outer casing. 60. A semi-solid lens prepared by a molding process. 61. A method for making a semi-solid optical device, the method comprising: 10 preparing a semi-solid material into a lens. 62. A method for making a semi-solid optical lens, the method comprising: forming a semi-solid material into a lens having a defined curvature by injection molding. 15 63. A method for making a semi-solid optical lens, the method comprising: casting a fluid material into a mold having a well-defined structure; and solidifying the fluid material into a type having a well-defined curvature 20 semi-solid lens. 64. The method of claim 61, 62 or 63, further comprising securing the lens in a housing. 65. A method for adjusting the curvature of a semi-solid lens, the method comprising: 46 200813512 adjusting a pressure applied to a semi-solid substance having a well-defined curvature applied to a surface region for modifying the surface of the semi-solid material The curvature of the area. 66. The method of claim 65, wherein the pressure is applied from a mechanical actuator. 6 7 · The use of a device as claimed in any one of claims 1 to 5 in imaging applications. 68. An optical device as generally described herein. 69. A method of making an optical device as generally described herein. 47
TW096128029A 2006-08-24 2007-07-31 Variable focus zoom lenses TW200813512A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2006/000243 WO2008024071A1 (en) 2006-08-24 2006-08-24 Variable focus zoom lenses

Publications (1)

Publication Number Publication Date
TW200813512A true TW200813512A (en) 2008-03-16

Family

ID=39107068

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096128029A TW200813512A (en) 2006-08-24 2007-07-31 Variable focus zoom lenses

Country Status (5)

Country Link
EP (1) EP2054743A4 (en)
JP (1) JP2010501890A (en)
CN (1) CN101506690A (en)
TW (1) TW200813512A (en)
WO (1) WO2008024071A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464480B (en) * 2011-12-13 2014-12-11 Lin Rou Yu Variable focus lenses module
TWI600917B (en) * 2015-05-25 2017-10-01 超金光學有限公司 A method and module for optical zoom and utility thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US8922902B2 (en) 2010-03-24 2014-12-30 Mitsui Chemicals, Inc. Dynamic lens
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
WO2009120152A1 (en) * 2008-04-23 2009-10-01 Innovative Nano Systems Pte. Ltd. Variable optical systems and components
CN102282487A (en) 2009-01-15 2011-12-14 E-视觉有限公司 Electro-active focus and zoom systems
US8699141B2 (en) 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
US8659835B2 (en) 2009-03-13 2014-02-25 Optotune Ag Lens systems and method
JP2012529069A (en) * 2009-06-02 2012-11-15 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Lens and manufacturing method thereof
EP2437929B1 (en) 2009-06-02 2018-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for manufacturing a lens
CN103299240A (en) * 2010-09-16 2013-09-11 美达·达马特勒吉 Methods and camera systems for recording and creation of 3-dimension (3-D) capable videos and 3-dimension (3-D) still photos
CA2814346C (en) * 2010-10-11 2018-11-13 Adlens Beacon, Inc. Perimeter piezo reservoir in a lens
US9292973B2 (en) 2010-11-08 2016-03-22 Microsoft Technology Licensing, Llc Automatic variable virtual focus for augmented reality displays
US9304319B2 (en) * 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
US9323325B2 (en) 2011-08-30 2016-04-26 Microsoft Technology Licensing, Llc Enhancing an object of interest in a see-through, mixed reality display device
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
CN102879900A (en) * 2012-09-11 2013-01-16 电子科技大学 Zoom micro lens based on piezoelectric inverse effect
CN103231166B (en) * 2012-09-12 2016-01-27 苏州领创激光科技有限公司 Pneumatic servo focus adjusting mechanism
CN203965650U (en) * 2012-12-10 2014-11-26 东莞华明灯具有限公司 A kind of illuminating lens device of variable curvature
EP3988992A1 (en) 2013-11-15 2022-04-27 Tangible Science, Inc. Contact lens with a hydrophilic layer
AU2015360637B2 (en) 2014-12-09 2019-08-22 Tangible Science, Inc. Medical device coating with a biocompatible layer
CN104880746B (en) * 2015-06-19 2016-11-02 西安交通大学 A kind of varifocal optical lens system and preparation thereof
WO2017091921A1 (en) * 2015-12-04 2017-06-08 超金光学有限公司 Method for optical zoom and module and use thereof
US11693159B2 (en) * 2017-06-30 2023-07-04 Polight Asa Adaptive lens
CN110426840A (en) * 2019-08-09 2019-11-08 德淮半导体有限公司 Zoom lens
CN110780368B (en) * 2019-10-17 2021-07-27 天津大学 Self-adaptive liquid lens and manufacturing method thereof
CN111025627A (en) * 2020-01-10 2020-04-17 太原理工大学 PDMS film-based all-solid-state variable-focus electrostatic driving type microlens
CN111796347B (en) * 2020-07-28 2021-11-02 南京航空航天大学 Liquid variable-focus lens based on piezoelectric actuation and driving method
CN115128795B (en) * 2021-03-25 2024-03-19 深圳市万普拉斯科技有限公司 Lens assembly and electronic equipment
CN115670385A (en) * 2022-11-03 2023-02-03 上海交通大学 Intravascular fiber probe lateral three-dimensional scanning device and control method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783155A (en) * 1983-10-17 1988-11-08 Canon Kabushiki Kaisha Optical device with variably shaped optical surface and a method for varying the focal length
US4784479A (en) * 1984-05-30 1988-11-15 Canon Kabushiki Kaisha Varifocal optical system
JPS62276503A (en) * 1986-05-26 1987-12-01 Canon Inc Varifocal optical element
US5440357A (en) * 1991-09-03 1995-08-08 Lawrence D. Quaglia Vari-lens phoropter and automatic fast focusing infinitely variable focal power lens units precisely matched to varying distances by radar and electronics
US5271875A (en) * 1991-09-12 1993-12-21 Bausch & Lomb Incorporated Method for molding lenses
US5804107A (en) * 1994-06-10 1998-09-08 Johnson & Johnson Vision Products, Inc. Consolidated contact lens molding
US5684637A (en) * 1995-07-19 1997-11-04 Floyd; Johnnie E. Fluid filled and pressurized lens with flexible optical boundary having variable focal length
JP3206420B2 (en) * 1996-02-22 2001-09-10 株式会社デンソー Camera device
DE59701885D1 (en) * 1996-03-26 2000-07-20 Mannesmann Ag OPTOELECTRONIC IMAGE SYSTEM FOR INDUSTRIAL APPLICATIONS
GB9805977D0 (en) * 1998-03-19 1998-05-20 Silver Joshua D Improvements in variable focus optical devices
JP4078575B2 (en) * 1998-06-26 2008-04-23 株式会社デンソー Variable focus lens device
JP4106576B2 (en) * 1998-08-31 2008-06-25 株式会社デンソー Variable focus lens
US6859233B1 (en) * 2000-09-28 2005-02-22 Kabushiki Kaisha Toshiba Auto focus mechanism in image input apparatus
CN1189227C (en) * 2002-07-25 2005-02-16 广州市前锋水上运动器材用品有限公司 Swiming, diving and surfing mirror and its manufacture process
US6952313B2 (en) * 2003-03-17 2005-10-04 Nokia Corporation Method and device for image zooming
GB2405611B (en) * 2003-08-29 2006-03-22 Visaq Ltd A method of moulding contact lenses and moulding apparatus for use in the method
EP1709477A1 (en) * 2004-01-30 2006-10-11 Koninklijke Philips Electronics N.V. Variable focus lens package
JP2005351971A (en) * 2004-06-08 2005-12-22 Casio Comput Co Ltd Lens device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464480B (en) * 2011-12-13 2014-12-11 Lin Rou Yu Variable focus lenses module
TWI600917B (en) * 2015-05-25 2017-10-01 超金光學有限公司 A method and module for optical zoom and utility thereof

Also Published As

Publication number Publication date
WO2008024071A1 (en) 2008-02-28
EP2054743A1 (en) 2009-05-06
JP2010501890A (en) 2010-01-21
EP2054743A4 (en) 2009-09-02
CN101506690A (en) 2009-08-12

Similar Documents

Publication Publication Date Title
TW200813512A (en) Variable focus zoom lenses
Chen et al. Electrically tunable lenses: a review
Ren et al. Introduction to adaptive lenses
JP7304292B2 (en) adaptive lens
Chen et al. Variable-focusing microlens with microfluidic chip
CN107690597B (en) Optical device with variable aperture
US7142369B2 (en) Variable focus liquid lens
US9250367B2 (en) Fluidic variable focal length optical lens and method for manufacturing the same
RU2547167C2 (en) Variable focus liquid-filled lens mechanism
US20090116118A1 (en) Lens
Xu et al. Adaptive liquid lens actuated by photo-polymer
Lee et al. Variable-focus liquid lens based on a laterally-integrated thermopneumatic actuator
CN100495078C (en) Focal-distance and view-field-adjusting liquid microlens and its production
Wang et al. Compact variable-focusing microlens with integrated thermal actuator and sensor
Wei et al. A tunable liquid lens driven by a concentric annular electroactive actuator
Wang et al. Design, fabrication and testing of a micromachined integrated tunable microlens
KR20090053838A (en) Variable focus zoom lenses
Yang et al. Miniaturized variable-focus lens fabrication using liquid filling technique
CN201017048Y (en) Adjustable focal distance and visual field liquid micro-lens
Liang et al. Flexible fluidic lens with polymer membrane and multi-flow structure
Roy et al. Design of an adaptable optofluidic aspherical lens by using the elastocapillary effect
JP2008152090A (en) Variable-focus liquid lens apparatus
Yang et al. Fabrication of miniaturized variable-focus lens using liquid filling technique
Yang et al. Low voltage piezoelectricity actuating variable focus plano-convex liquid lens module fabrication
Yang et al. FABRICATION OF MINIATURIZED VARIABLE-FOCUS LENS USING LIQUID FILLING