TW200809999A - Substrate support with electrostatic chuck having dual temperature zones - Google Patents

Substrate support with electrostatic chuck having dual temperature zones Download PDF

Info

Publication number
TW200809999A
TW200809999A TW095143403A TW95143403A TW200809999A TW 200809999 A TW200809999 A TW 200809999A TW 095143403 A TW095143403 A TW 095143403A TW 95143403 A TW95143403 A TW 95143403A TW 200809999 A TW200809999 A TW 200809999A
Authority
TW
Taiwan
Prior art keywords
ceramic
substrate
electrostatic chuck
disk
base
Prior art date
Application number
TW095143403A
Other languages
Chinese (zh)
Other versions
TWI357629B (en
Inventor
Alexander Matyushkin
Dennis M Koosau
Theodoros Panagopoulos
John Holland
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38769279&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW200809999(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200809999A publication Critical patent/TW200809999A/en
Application granted granted Critical
Publication of TWI357629B publication Critical patent/TWI357629B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

An electrostatic chuck for receiving a substrate in a substrate processing chamber comprises a ceramic puck having a substrate receiving surface and an opposing backside surface with a plurality of spaced apart mesas. An electrode is embedded in the4 ceramic puck to generate an electrostatic force to hold a substrate. Heater coils located at peripheral and central positions of the ceramic puck allow independent control of temperatures of the central and peripheral portions of the ceramic puck. The chuck is supported by a base having a groove with retained air. The chuck and base cooperate to allow regulation of temperature profile of a substrate in the chamber.

Description

200809999 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種用於在基板處理腔室中保持基板的基 板支架。 【先前技術】 - 在諸如半導體和顯示器的基板處理中,靜電吸盤係用 以固持基板於一腔室中,以便處理該基板上的一層。典型 的靜電吸盤包括由諸如陶瓷或聚合物之類的介電質所覆蓋 的電極。當對電極充電時,靜電電荷積累在電極和基板上, 其所引起的靜電力可固持基板在吸盤上。通常,通過保持 氦氣在基板背部的方式來控制基板的溫度,以增強在基板 背部和吸盤表面之間介面處所有微間隙的熱交換速率。可 以通過底座支撐該靜電吸盤,其中該底座具有用於在其中 流過流體從而冷卻或加熱吸盤的多個通道。當將基板牢固 地保持在吸盤上後,將處理氣體引入到腔室中並且形成用 於處理基板的電漿。可以利用CVD、PVD、蝕刻、佈植、 氧化、氮化或其他製程來處理基板。 在處理期間,在整個基板表面的徑向方向上的的處理 速率通常不均勻,因而造成在整個基板表面上産生同心處 • 3帶。這類不均勻處理也可因腔室内氣體物質或者電漿; • ⑯不均勻所造成。例如,整個腔室内氣體的分佈可能隨著 腔室中進氣口和排氣口相對於基板表面的位置而改變。此 外,質傳機制也會改變氣態物質的消散速率與氣體到達在 整個基板表面不同區域的速率。在處理腔室中的非均句熱 負載也可能引起非均句處理速率。例如,由於從電漿鞘: 基板耦合的能量或者從腔室壁反射的輻射熱量都可能引起 5 200809999 不同的熱負載。由於主動和被動電子元件係在基板上 區域(例如,週邊和中心基板區域)製造,因此不希 整個基板上出現處理偏差。 因此,在基板處理期間,人們希望減少整個基板 的處理速率和其他處理特性的變化。同時人們還希望 基板整個處理表面不同區域的溫度。此外還希望在處 間控制整個基板的溫度分佈。 【發明内容】 本發明目的在於提供一種靜電吸盤以及支撐可 基板的基板支架,其基本上能夠解決由於現有技術中 的缺點所産生一個或者多個問題。 如本發明一態樣,提供了一種在處理腔室中用於 基板的靜電吸盤,該靜電吸盤包括:(a )陶瓷圓盤, 括基板容納表面及包括多個隔開的臺面的相對的背面 多個熱傳送氣體導管,穿過陶瓷主體並在該基板容納 上的埠處終止,以向該基板容納表面提供熱傳送氣體 電極,該電極嵌入在該陶瓷圓盤中以産生用於容納放 該基板容納表面上的基板的靜電力;(d )嵌入在該陶 盤中的第一和第二加熱線圈,該加熱線圈徑向隔離並 繞彼此同心設置,該第一加熱線圈位於該陶瓷圓盤的 部分,而該第二加熱線圈位於該陶瓷圓盤的中心部分 樣使得該第一和第二加熱線圈允許對該陶瓷圓盤的中 分和週邊部分進行溫度獨立控制,並與該陶瓷圓盤的 不同 望在 表面 控制 理期 固持 存在 容納 其包 ;(b) 表面 ;(c) 置在 瓷圓 且圍 週邊 ,這 心部 該背 6 200809999 面上的該臺面協同運作以允許調整放置在該陶瓷圓盤的基 板容納表面上的基板的溫度分佈。 如本發明一態樣,提供了 一種用於減少在通過基板處 理腔室中的底座支撐的靜電吸盤上製程沉積物的形成以及 保護其不受侵蝕的環組件,該靜電吸盤包括陶瓷圓盤,該 陶瓷圓盤具有包括第一和第二階的週邊壁架,以及該底座 包括頂表面,該頂表面具有吸盤容納部分和延伸超過該吸 盤的週邊部分,該環組件包括:(a )能固定到該底座頂表 面週邊部分的鎖緊環,該鎖緊環具有唇緣、頂表面和外側 表面,其中該唇緣徑向向内延伸以放置在該陶瓷圓盤週邊 壁架該第一階上從而在該陶瓷圓盤和該底座的頂表面之間 形成氣密封;以及(b )邊緣環,包括具有放置在該鎖緊環 頂表面上的基腳的帶、圍繞該鎖緊環外側的環形外牆,以 及覆蓋該陶瓷圓盤週邊壁架該第二階的凸緣,由此該鎖緊 環和該邊緣環協同運作以在基板處理腔室中處理基板期間 減少支撐在該底座上之該靜電吸盤上的製程沉積物的形 成,並保護其不受侵蝕。 如本發明另一態樣,提供了一種在基板處理腔室中用 於支撐靜電吸盤的底座,其中,該靜電吸盤包括(丨)具有 基板容納表面和相對背面的陶瓷圓盤,(ii )穿過該陶瓷圓 盤並終止在該基板容納表面上的埠處的多個熱傳送氣體導 管,以向該基板容納表面提供熱傳送氣體,(iii)嵌入在 該陶瓷圓盤中以産生靜電力的電極,以及(i v )嵌入在該 7 200809999 陶瓷圓盤中的第一和第二加熱線圈,該底座包括:(a )具 有頂表面的金屬主體,其中該頂表面包括吸盤容納部分以 容納該陶瓷圓盤的背面和徑向向外延伸超過該陶瓷圓盤的 週邊部分,該吸盤容納表面包括週邊凹槽以容納在該陶瓷 圓盤的背面周圍的空氣;(b )用於向該陶瓷圓盤中的熱傳 送氣體導管供應熱傳送氣體的熱傳送通路;(c)在該金屬 主體中用於迴圈其中的流體的多個流體通道;(d )用於傳 導電功率到該靜電吸盤的該電極的電接頭組件,該電接頭組 件包括具有在其中嵌入用於供應電功率到該電極的多個接 線柱的陶瓷絕緣套和該靜電吸盤的加熱線圈,由接觸帶環繞 的每個接線柱包括金屬並具有多個熱傳送窗。 如本發明另一態樣,提供了一種在處理腔室中用於容 納基板的基板支架,該元件包括:(a )靜電吸盤包括:(i ) 包括基板容納表面和相對的背面的陶瓷圓盤,以及具有階的 週邊壁架;(ii )穿過該陶瓷主體並且在該基板容納表面上 的埠處終止以向該基板容納表面提供熱傳送氣體的多個熱 傳送氣體導管;(iii )嵌入在該陶瓷圓盤中的電極,該電極 可充電以産生用於容納放置在該基板容納表面上的基板的 靜電力;(b)底座,包括金屬主體,該金屬主體具有包括 吸盤容納部分以容納該陶瓷圓盤的該背面的頂表面和徑向 向外延伸超過該陶瓷圓盤的週邊部分;(c )邊緣環,設置 在該陶瓷圓盤的該週邊壁架的階上以與容納在該陶瓷圓盤 的容納表面上的基板的上部邊緣形成密封;以及(d )鎖緊 環,固定到該底座上的該週邊部分,該鎖緊環具有徑向向外 8 200809999 延伸以放置在該陶瓷圓盤的該週邊壁架上從而與該陶瓷圓 盤形成氣密封的唇緣。 本發明可實現包括以下的一個或多個優點。本發明可 以減小基板表面的處理速率和其他處理特性的變化,同時可 以實現控制基板的整個處理表面的不同區域的溫度。此外還 可以在處理期間控制整個基板的溫度分佈。 以下將結合附圖詳細描述本發明的一個或多個實施方式。本 發明的其他目的、特徵、方面和優點在以下描述並結合附圖 和請求項書中將變得更加明顯可見。 【實施方式】 如第1圖所示,在靜電吸盤20的一個實施方式中,其 包括具有基板容納表面26的陶瓷圓盤24,其中基板容納表 面26是圓盤24的頂表面並係用以固持基板25。陶瓷圓盤 24還具有與基板容納表面26相對的背面28。陶瓷圓盤24 具有包括第一階3 1和第二階3 3的週邊壁架29。陶瓷圓盤至 少包括一種下列物質:氧化鋁、氮化鋁、氧化矽、碳化矽、 氮化矽、氧化鈦、氧化锆及其混合物。陶瓷圓盤24可以是 由熱壓和燒結陶瓷粉末製成的整體單一陶瓷,然後將此加工 燒結形態研磨形成圓盤24的最終形狀。 陶瓷圓盤24的背面28包括多個隔開的臺面30。在一 個方案中,該些臺面3 0是利用多個間隙3 2而彼此分開的柱 狀凸起。在使用中,由諸如空氣的氣體填充間隙3 2以調節 從背面2 8到其他下表面的熱傳速率。在一個實施方式中, 9 200809999 該些臺面30包括狀凸起(其甚至 ^ ^ u Xvb 从 瑪往子)亚從表 # ^ ’。些柱子具有矩形或圓形戴面形狀。該些 度可以是從約⑼微米到約5〇微 … 3〇的寬度(或者直徑) 、以二室面 則從、,勺5〇〇彳政未到約5〇〇〇微米。缺 而,該些臺面30也可以具有其他形狀和尺 ,: 或矩形塊,或者甚至不@ ' 員’’ . / Π尺寸的凸緣。在-個方案中,該4b 堂面30係利用具有適官丨从4 7 〇丄 珠子%墼此面28 * ^ 、(例如幾十微米)的 ++ 形成以利用侵姑方法餘刻掉背面28的材 料以形成具有介於其中之間隙32的成型臺面3〇。 陶:免圓盤24還包括嵌入在其中的電極% 固持放置在基板容納表面 生用、 表面20上的基板的靜電力。 諸如金屬的導體,並且成 ^ 成形爲早極或雙極電極。單極電極包 二 體’並具有與外部電源的單-電連接,並與在腔 至中形成的上方雷% Φ从μ200809999 IX. Description of the Invention: [Technical Field] The present invention relates to a substrate holder for holding a substrate in a substrate processing chamber. [Prior Art] - In substrate processing such as semiconductors and displays, an electrostatic chuck is used to hold a substrate in a chamber to process a layer on the substrate. A typical electrostatic chuck includes an electrode covered by a dielectric such as ceramic or polymer. When the electrode is charged, electrostatic charges accumulate on the electrode and the substrate, and the electrostatic force caused by it can hold the substrate on the chuck. Typically, the temperature of the substrate is controlled by maintaining the helium on the back of the substrate to enhance the rate of heat exchange at all micro-gap at the interface between the back of the substrate and the surface of the chuck. The electrostatic chuck can be supported by a base having a plurality of passages for flowing a fluid therein to cool or heat the chuck. After the substrate is firmly held on the chuck, a process gas is introduced into the chamber and a plasma for processing the substrate is formed. The substrate can be processed using CVD, PVD, etching, implantation, oxidation, nitridation, or other processes. During processing, the processing rate in the radial direction of the entire substrate surface is generally not uniform, thus causing concentric strips on the entire substrate surface. This type of uneven treatment can also be caused by gas or plasma in the chamber; For example, the distribution of gas throughout the chamber may vary with the position of the inlet and outlet ports in the chamber relative to the surface of the substrate. In addition, the mass transfer mechanism also changes the rate at which the gaseous material dissipates and the rate at which the gas reaches different regions of the substrate surface. The non-uniform heat load in the processing chamber may also cause a non-sequential processing rate. For example, due to the energy coupled from the plasma sheath: the substrate or the radiant heat reflected from the chamber wall may cause 5 200809999 different thermal loads. Since active and passive electronic components are fabricated on regions on the substrate (e.g., perimeter and center substrate regions), processing variations are not expected across the substrate. Therefore, during substrate processing, it is desirable to reduce variations in processing rates and other processing characteristics of the entire substrate. At the same time, it is desirable for the substrate to treat the temperature of different regions of the surface as a whole. It is also desirable to control the temperature distribution of the entire substrate at the site. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrostatic chuck and a substrate holder supporting the substrate which substantially solves one or more problems due to disadvantages of the prior art. As an aspect of the present invention, there is provided an electrostatic chuck for a substrate in a processing chamber, the electrostatic chuck comprising: (a) a ceramic disk including a substrate receiving surface and an opposite back surface including a plurality of spaced mesas a plurality of heat transfer gas conduits passing through the ceramic body and terminating at a weir on the substrate receiving surface to provide a heat transfer gas electrode to the substrate receiving surface, the electrode being embedded in the ceramic disk to create a housing for receiving An electrostatic force of the substrate on the substrate receiving surface; (d) first and second heating coils embedded in the ceramic disk, the heating coils being radially isolated and concentrically disposed about each other, the first heating coil being located in the ceramic disk And the second heating coil is located at a central portion of the ceramic disk such that the first and second heating coils allow temperature independent control of the center and peripheral portions of the ceramic disk, and the ceramic disk The different hopes are in the surface control period to hold the bag; (b) the surface; (c) placed in the porcelain circle and around the periphery, the heart of the back 6 200809999 face of the countertop synergy As to allow adjustment of the ceramic disk is placed on the substrate receiving the temperature distribution on the surface of the substrate. As one aspect of the present invention, a ring assembly for reducing the formation of process deposits on an electrostatic chuck supported by a base in a substrate processing chamber and protecting it from erosion is provided, the electrostatic chuck comprising a ceramic disk, The ceramic disk has a peripheral ledge comprising first and second steps, and the base includes a top surface having a suction cup receiving portion and a peripheral portion extending beyond the suction cup, the ring assembly comprising: (a) capable of being fixed a locking ring to a peripheral portion of the top surface of the base, the locking ring having a lip, a top surface, and an outer side surface, wherein the lip extends radially inwardly to be placed on the first step of the ceramic disc peripheral ledge Thereby forming a hermetic seal between the ceramic disc and the top surface of the base; and (b) an edge ring comprising a belt having a footing placed on a top surface of the locking ring, a ring surrounding the outside of the locking ring An outer wall, and a second step flange covering the perimeter wall of the ceramic disk, whereby the locking ring and the edge ring cooperate to reduce support during processing of the substrate in the substrate processing chamber Process deposits on the electrostatic chuck formed on the base, and to protect it from erosion. According to another aspect of the present invention, there is provided a base for supporting an electrostatic chuck in a substrate processing chamber, wherein the electrostatic chuck comprises (丨) a ceramic disk having a substrate receiving surface and an opposite back surface, (ii) Passing the ceramic disk and terminating a plurality of heat transfer gas conduits at the crucible on the substrate receiving surface to provide a heat transfer gas to the substrate receiving surface, (iii) embedded in the ceramic disk to generate an electrostatic force An electrode, and (iv) first and second heating coils embedded in the 7 200809999 ceramic disc, the base comprising: (a) a metal body having a top surface, wherein the top surface includes a chuck receiving portion to receive the ceramic a back surface of the disk and extending radially outward beyond a peripheral portion of the ceramic disk, the chuck receiving surface including a peripheral groove to accommodate air around the back surface of the ceramic disk; (b) for the ceramic disk a heat transfer gas conduit for supplying a heat transfer path for the heat transfer gas; (c) a plurality of fluid passages for circulating fluid therein in the metal body; (d) for conducting electricity An electrical connector assembly for powering the electrode of the electrostatic chuck, the electrical connector assembly including a ceramic insulating sleeve having a plurality of terminals for supplying electrical power to the electrode and a heating coil of the electrostatic chuck, surrounded by a contact strip Each of the posts includes metal and has multiple heat transfer windows. According to another aspect of the present invention, there is provided a substrate holder for accommodating a substrate in a processing chamber, the element comprising: (a) an electrostatic chuck comprising: (i) a ceramic disk including a substrate receiving surface and an opposite back surface And a peripheral ledge having a step; (ii) a plurality of heat transfer gas conduits passing through the ceramic body and terminating at the crucible on the substrate receiving surface to provide a heat transfer gas to the substrate receiving surface; (iii) embedding An electrode in the ceramic disk, the electrode being chargeable to generate an electrostatic force for accommodating a substrate placed on the substrate receiving surface; (b) a base comprising a metal body having a chuck receiving portion to accommodate a top surface of the back surface of the ceramic disc and extending radially outward beyond a peripheral portion of the ceramic disc; (c) an edge ring disposed on a step of the peripheral ledge of the ceramic disc to be received therein An upper edge of the substrate on the receiving surface of the ceramic disk forms a seal; and (d) a locking ring secured to the peripheral portion of the base, the locking ring having a radially outward direction 8 20080 9999 extends to be placed on the peripheral ledge of the ceramic disc to form a hermetically sealed lip with the ceramic disc. The present invention can achieve one or more of the following advantages. The present invention can reduce variations in the processing rate of the substrate surface and other processing characteristics while achieving temperature control of different regions of the entire processing surface of the substrate. It is also possible to control the temperature distribution of the entire substrate during processing. One or more embodiments of the present invention will be described in detail below with reference to the drawings. Other objects, features, aspects and advantages of the present invention will become more apparent from the description and appended claims [Embodiment] As shown in Fig. 1, in one embodiment of the electrostatic chuck 20, it includes a ceramic disk 24 having a substrate receiving surface 26, wherein the substrate receiving surface 26 is the top surface of the disk 24 and is used to The substrate 25 is held. The ceramic disk 24 also has a back surface 28 opposite the substrate receiving surface 26. The ceramic disk 24 has a peripheral ledge 29 comprising a first stage 3 1 and a second stage 3 3 . The ceramic disc includes at least one of the following: alumina, aluminum nitride, cerium oxide, cerium carbide, cerium nitride, titanium oxide, zirconium oxide, and mixtures thereof. The ceramic disk 24 may be a unitary single ceramic made of hot pressed and sintered ceramic powder which is then ground to form the final shape of the disk 24. The back side 28 of the ceramic disk 24 includes a plurality of spaced apart mesas 30. In one version, the mesas 30 are cylindrical protrusions separated from one another by a plurality of gaps 3 2 . In use, the gap 3 2 is filled with a gas such as air to adjust the rate of heat transfer from the back surface 28 to the other lower surface. In one embodiment, 9 200809999 the mesas 30 include protrusions (which even ^ ^ u Xvb from Ma to sub) sub-table # ^ '. These columns have a rectangular or circular wear shape. The degrees may range from about (9) micrometers to about 5 micrometers (or diameter), from two chambers to less than about 5 micrometers. In addition, the countertops 30 can have other shapes and sizes, either: or rectangular blocks, or even @'persons'. / Π-sized flanges. In a scheme, the 4b side 30 is formed by using a suitable bureaucratic 丨 from the 4 7 〇丄 beads % 墼 28 * ^, (for example, tens of micrometers) ++ to use the invading method to engrave the back The material of 28 is formed to form a forming surface 3〇 having a gap 32 therebetween. The pottery: disc-free disc 24 also includes an electrostatic force in which the electrode embedded therein holds the substrate placed on the surface 20 of the substrate receiving surface. A conductor such as a metal and formed into an early or bipolar electrode. The monopolar electrode package has a body' and has a single-electrical connection to an external power source, and an upper Ray% Φ formed from the cavity to the middle

7勺何電粒子協同作用以施加偏壓橫 越固持在吸盤2 0上的敗伽诗L 甘 的正個基板。雙極電極具有兩個或多個 ,”母一個導體相對於其他導體施加偏壓以産生 來固持基板的靜雷*。垂& 古4〆 電極36可以成形爲金屬絲網或者具 二開口區域的金屬盤。例如,包括單極電極的電極36 可乂疋如圖所不的嵌入在陶瓷圓盤 ,:直:括雙極電極的電…-個實施方式可以橫越C: 垂直腳之一對可—w r π y π、 70成形狀之彼此相對的c形板。電極36 可以由鋁、銅、鐵、鉬、 ’ 次、鎢或者其合金組成。電極3 6 的:個方案包㈣網。電極36與接線柱…加⑽㈣叫 相連’其中接線柱5 8將來 外邛電源的電功率供應到電極 10 200809999 3 6〇 陶竞圓盤24還具有多個熱傳送氣體導管38a、38b,並 通過陶竞主體並終止在基板容納表面26的蜂一… :基板谷納表面26提供熱傳送氣體。將諸如氦的熱傳送氣 體供應到基板背面34的下部以傳導熱使其遠離覆蓋基板Μ 並到達陶“盤24的容納表面26。例如, 體導管38a以向基板容納表面26的中心加熱區仏供應熱 傳达氣體,以及可以定位第二氣體導管…以向基板容納表 面26的週邊加熱區42b供廡轨值择备》 匕伢應熱得迗乳體。陶瓷圓盤24的基 板容納表δ 26的中心加熱區42a和週邊加熱區惜允許基 板處理表® 44的相應部分分別保持不同的溫度,例如,基 板25的上部中心加熱區42a和週邊加熱區4孔。 使用多個加熱線圈50、52,例如嵌入在陶堯圓盤24 中的第一加熱線圈50和第二加熱線圈52,可以進一步控制 在陶瓷圓盤24的基板容納表面26的中心加熱區42“口週邊 加熱區42b處的溫度。例如,加熱線圈5〇、52可以徑向隔 開並且關於彼此呈同心圓設置。在一個方案中,第一加熱線 圈位於陶曼圓# 24的中心部分54a,❿第二加熱線圈w 位於陶:麦圓盤24的週邊部> 54b 4。第一和第二加熱線圈 Y、52允許獨立控制陶瓷圓盤24的中心部分54a和週邊部 为54b的溫度,並且進一步與在陶瓷圓盤24的背面μ上的 該些臺面30協同運作以允許調節放置在陶莞圓盤24的容納 表面2 6上的基板2 5的溫度分佈。 每個加熱線圈5〇、52均具有獨立控制加熱區42a、42b 11 200809999 的、/JDL度的月包力以在整個甚;(:好9 ς Mj田士 你丞板25的處理表面44的徑向方向實 現不同的處理速率或者牯柯。a接a i千:¾ f特(±。同樣地,可以在兩個加熱區 4 2 a、b保持不同的溫度以影變| ^ & 〜警基板25的上部中心和週邊區 域46a b的/皿度,從而抵〉肖在基板25的處理期間發生的任 何改變的氣體物質分佈或熱負載。例如,當在基板25的處 理表面44的週邊部分46b處的氣體物質沒有在中心部分46a 的氣體物質活躍時,將週邊知刼π h u [ 了巧違加熱區42b的溫度提高到高於中 心加熱區42a的溫度以在某拓a 你&板25的整個處理表面44提供更 一致的處理速率或處理特性。 在一個方案中,第一釦筮-Λ 布第一加熱線圈50、52都包括電 阻加熱元件的圓形環,其中雷 ”甲冤阻加熱兀件並排設置,並且甚 至可以實質位在相同平而μ ,., 、 面上。例如,加熱線圈5 0、5 2都可 以是在陶瓷圓盤24的主體中的徑向向内逐漸盤旋的連續同 袠加熱線圈5 0 5 2還可以是在圍繞經過線圈中心的軸 盤旋的螺旋形的線圈1如類㈣電燈燈絲、,其言交置在陶瓷 圓盤24的整個體内的同、、m 士 U、圓中。電阻加熱元件可以由不同 的電阻材料組成’例如鋼太 彳151七本rK ., g 在一個方案中,加熱線圈5 0、5 2 都包括足夠高的電阻以维枝险$ m I。^ 、算持陶瓮圓盤24的基板容納表面26 在從約80到約250oC的p.加士也丄 二 _ 〜/皿度。在一個方案中,線圈的電阻 是從約4到約12歐姆。a . τ ^ , _ 在一個例子中,第一加熱線圈50具 有6.5歐姆的雷阻而第-41&,/>„^ 认吗日7电丨 步—加熱線圈52具有8.5歐姆的電阻。 經由通過陶瓷圓盤24延柚&概士 & a 1 ^ ^ m 、伸的獨立接線柱58a_d向加熱線圈 50、52提供能量。 結合加熱線圈5〇、52,也可以兩個區42&、b中控制熱 12 200809999 傳 勻 下 速 兩 個 過 的 於 分 邊 度 觸 面 基 盤 60 和 70 70 感 圓 迗氣體的壓力以使整個基板25上的基板處理速率更均 。例如’兩個區42a、b都可以設置爲在不同的平衡壓力 保持熱傳送氣體,以從基板2 5背部3 4提供不同的熱傳送 率。此係經由以下方式完成:分別通過導管3 8 a、3 8b在 不同壓力下供應熱傳送氣體’並從基板容納表面26的兩 不同位置處離開。 靜電吸盤20還可以包括光學溫度感測器6〇a、b,其穿 在陶瓷圓盤2 4中的孔6 2 a、b以接觸並準確測量基板2 5 上部中心和週邊部分46a、b的溫度。第一感測器6〇a位 陶瓷圓盤24的中心加熱區42a處以讀取基板25的中心部 的恤度,並且苐一感測态60b位於陶莞圓盤24的週 加熱區42b處以相對地讀取基板25的週邊部分4讣的溫 。光學溫度感測器60a、b位於吸盤20中,使得感測器的 頭64a、b和陶瓷圓盤24的基板容納表面26位於同一平 中,從而感測器觸頭64a、b可以接觸保持在吸盤2〇上的 反 的月面34。感測益60a、b的臂66a、b通過陶瓷圓 24的主體垂直延伸。 如第3圖所示,在一個方案中,每個光學溫度感測器 包括熱感測器探針68,該探針68包括成形爲具有側壁72 用作觸頭的圓頂狀頂部74的封閉圓柱體的鋼帽7〇。銅帽 可以由無氧銅材料組成。磷塞76嵌入内部,並且與銅帽 的頂°卩7 4直接接觸。肷入在銅帽7 0中的鱗塞7 6對熱傳 丨罙針68提供更快及更敏感熱回應。鋼帽76的觸頭64是 「貝狀的頂部74以允許與不同基板25的重復接觸而不會侵 13 200809999 #或破壞基板。鋼帽70具有用於容納環氧樹脂79的凹槽78 以在感測器探針68中黏貼銅帽70。 鱗塞76以紅外線形式將熱量轉化爲穿過光學纖維束 8 〇的光子。光學纖維束8 0可以由硼矽酸鹽玻璃纖維組成。 通過套官82包圍光學纖維束80,反過來通過隔溫套84部分 環繞套管82 ’隔溫套84用作將温度感測器與支撐陶瓷圓盤 的底座的熱絕緣。套管82可以是玻璃管以提供與周圍構造 的更好的熱絕緣,但是還可以由諸如銅的金屬製成。隔溫套 84叮以由peek(—種聚趟謎顚])組成,而且還可以是由The 7 scoops of the electro-plasma synergistically act to apply a bias across the positive substrate of the sinusoidal gamma held on the chuck 20. The bipolar electrodes have two or more, "the female one conductor is biased relative to the other conductors to generate a static lightning to hold the substrate. The vertical & ancient 4" electrode 36 can be formed as a wire mesh or with two open areas For example, an electrode 36 comprising a monopolar electrode can be embedded in a ceramic disc as shown in the figure: straight: a bipolar electrode ... - an embodiment can traverse C: one of the vertical legs For a c-shaped plate which can be shaped as -wr π y π, 70 into each other. The electrode 36 can be composed of aluminum, copper, iron, molybdenum, 'sub, tungsten or an alloy thereof. Electrode 3 6 : a package (4) The electrode 36 and the terminal ... plus (10) (four) is connected to the 'where the terminal 5 8 is the external power supply of the external power supply to the electrode 10 200809999 3 6 〇 Tao Jing disk 24 also has a plurality of heat transfer gas conduits 38a, 38b, and through The pottery body terminates the bee-... on the substrate receiving surface 26: the substrate valley surface 26 provides a heat transfer gas. A heat transfer gas such as helium is supplied to the lower portion of the substrate back surface 34 to conduct heat away from the cover substrate and reach Ceramic "receiving surface of the tray 24 26. For example, the body conduit 38a supplies heat transfer gas to the central heating zone 基板 of the substrate receiving surface 26, and the second gas conduit can be positioned to provide the 加热 track value to the peripheral heating zone 42b of the substrate receiving surface 26 》 The milk should be hot. The central heating zone 42a of the substrate accommodation table δ 26 of the ceramic disk 24 and the peripheral heating zone allow the respective portions of the substrate processing table 44 to maintain different temperatures, for example, the upper central heating zone 42a and the peripheral heating zone 4 of the substrate 25. hole. The central heating zone 42 of the substrate receiving surface 26 of the ceramic disk 24 can be further controlled using a plurality of heating coils 50, 52, such as the first heating coil 50 and the second heating coil 52 embedded in the ceramic disk 24. The temperature at the peripheral heating zone 42b. For example, the heating coils 5, 52 may be radially spaced apart and disposed concentrically with respect to each other. In one aspect, the first heating coil is located at a central portion 54a of the Tauman circle #24, The second heating coil w is located at the peripheral portion of the ceramic: wheat disc 24 > 54b 4. The first and second heating coils Y, 52 allow independent control of the temperature of the central portion 54a of the ceramic disk 24 and the peripheral portion 54b. And further cooperates with the mesas 30 on the back side μ of the ceramic disk 24 to allow adjustment of the temperature distribution of the substrate 25 placed on the receiving surface 26 of the ceramic disk 24. Each of the heating coils 5, 52 The monthly packing force of /JDL degrees with independently controlled heating zones 42a, 42b 11 200809999 to achieve different processing rates in the radial direction of the processing surface 44 of the 丞Mj牯柯.a accept ai thousand: f (±. Similarly, it is possible to maintain different temperatures in the two heating zones 4 2 a, b to change | ^ & ~ upper center of the warning substrate 25 and the peripheral area 46a b / the degree of the dish, thereby Any change in gas species distribution or heat load that occurs during processing of the substrate 25. For example, when the gaseous substance at the peripheral portion 46b of the processing surface 44 of the substrate 25 is not active in the gaseous substance of the central portion 46a, the periphery is Knowing that the temperature of the heated zone 42b is raised above the temperature of the central heating zone 42a to provide a more consistent processing rate or processing characteristic across the entire processing surface 44 of a & plate 25. In the solution, the first first 加热-Λ first heating coils 50, 52 each comprise a circular ring of electrical resistance heating elements, wherein the thunder" 兀 heating elements are arranged side by side, and may even be substantially flat and μ. For example, the heating coils 50, 52 may be continuous concentric heating coils that are gradually spiraled inwardly in the body of the ceramic disc 24, and may also be surrounded by coils. Central axis hovering snail The rotating coil 1 is like a (four) electric lamp filament, which is interposed in the same body, m, U, and circle throughout the body of the ceramic disc 24. The electric resistance heating element can be composed of different resistive materials 'for example, steel too彳151 七本rK., g In one solution, the heating coils 5 0, 5 2 both include a sufficiently high resistance to maintain the risk of $ m I. ^, the substrate receiving surface 26 of the holding ceramic disk 24 is in the Approximately 80 to about 250oC of p. cassin also 丄 _ ~ / dish. In one scheme, the resistance of the coil is from about 4 to about 12 ohms. a. τ ^ , _ In one example, the first heating coil 50 has a lightning resistance of 6.5 ohms and the -41&, /> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Energy is supplied to the heating coils 50, 52 via the ceramic discs 24, the granules & a gentleman & a 1 ^ ^ m, and the individual studs 58a_d which are extended. In combination with the heating coils 5, 52, two zones 42 & , b control heat 12200809999 spread the lower speed of the two sides of the edge contact base 60 and 70 70 the pressure of the round gas to make the substrate processing rate on the entire substrate 25 more uniform. For example, 'two areas 42a, b can all be set to maintain a heat transfer gas at different equilibrium pressures to provide different heat transfer rates from the back side 34 of the substrate 25. This is accomplished by different means through conduits 38a, 38b, respectively. The heat transfer gas is supplied under pressure and exits at two different locations of the substrate receiving surface 26. The electrostatic chuck 20 may also include optical temperature sensors 6A, b that are bored in the ceramic disk 24. a, b to contact and accurately measure the substrate 2 5 upper part And the temperature of the peripheral portion 46a, b. The first sensor 6A is located at the central heating zone 42a of the ceramic disk 24 to read the center of the substrate 25, and the first sensed state 60b is located at the pottery disk 24 The circumferential heating zone 42b relatively reads the temperature of the peripheral portion 4 of the substrate 25. The optical temperature sensors 60a, b are located in the chuck 20 such that the heads 64a, b of the sensor and the substrate of the ceramic disk 24 are accommodated. The surface 26 is in the same plane so that the sensor contacts 64a, b can contact the opposite lunar surface 34 held on the suction cup 2〇. The arms 66a, b of the sensing benefits 60a, b extend vertically through the body of the ceramic circle 24. As shown in FIG. 3, in one aspect, each optical temperature sensor includes a thermal sensor probe 68 that includes a dome-shaped top portion 74 that is shaped to have sidewalls 72 for use as contacts. The cylindrical cap is closed. The copper cap may be composed of an oxygen-free copper material. The phosphor plug 76 is embedded inside and is in direct contact with the top of the copper cap. The scale plug 7 is inserted into the copper cap 70. 6 provides a faster and more sensitive thermal response to the heat transfer pin 68. The contact 64 of the steel cap 76 is a "shell shaped top 74" To allow repeated contact with different substrates 25 without invading 13 200809999 # or destroying the substrate. The steel cap 70 has a recess 78 for receiving the epoxy resin 79 to adhere the copper cap 70 in the sensor probe 68. The plug 76 converts heat in the form of infrared light into photons that pass through the optical fiber bundle 8. The optical fiber bundle 80 can be composed of borosilicate glass fibers. The optical fiber bundle 80 is surrounded by the sleeve 82, which in turn passes through the thermal barrier. The 84 portion surrounds the sleeve 82' which is used to thermally insulate the temperature sensor from the base supporting the ceramic disc. The sleeve 82 can be a glass tube to provide better thermal insulation from the surrounding construction, but can also be made of a metal such as copper. The temperature jacket 84叮 is composed of peek (—聚趟趟)), and it can also be

Delaware 的 DUp〇nt de Nemours 公司製造的 Teflon® (聚四 氟乙烯)。 如第4A、4B及5圖所示,基板支架90包括固定到底 座91的靜電吸盤2〇,其中底座pi用於支撐和固定吸盤2〇。 底座91包括具有頂表面94的金屬主體92’其中頂表面94 具有吸盤容納部分96和週邊部分98。頂表面94的吸盤容納 部分96適於容納靜電吸盤2〇的陶瓷圓盤24的背面28。底 座91的週邊部分98徑向向外延伸超過陶瓷圓盤。底座 91的週邊部分98可以適於容納鎖緊環1〇〇,其可以固定到 底座週邊部分的頂表面上。底座91的金屬主體92具有從底 座的底表面104到底座91的頂表面94的多個通路1〇2,用 於例如,容納終端58a-b或者送入氣體到陶瓷圓盤24的氣體 導管3 8 a、b。 底座91的頂表面94的吸盤容納部分96包括—個戋多 個凹槽106a、106b,以保持並流動空氣於陶瓷圓盤的整 14 200809999 個背面。在一個實施方式中,吸盤容納部分96 &括週邊凹 槽l〇6a ’該週邊凹槽1〇6a與陶瓷圓盤24背面28上的多個 臺面30協同運作,以控制來自陶£圓盤24的週邊部分州 的熱傳送速率。在另-實施方式中,結合週邊凹槽ma使 用中心凹槽106b以調節來自陶瓷圓盤24的中心部分的 熱傳送。 在底座91頂表面94中的凹槽1〇6a、1〇6b與在陶瓷圓 盤24背面28上的臺面30協同運作以進一步調節整個基板 處理表面44的温度。例如’臺面3〇的形狀、尺寸和間距控 制與底座91的頂表面94接觸的臺自3〇的接觸表面總量, 從而控制交界面的總熱傳導面積。例如,可以設計臺面 的形狀和大小,使得實際上陶究圓盤24的背面“僅有總面 積的50%或更少’例如3〇%與底座91的頂表面94接觸。接 觸面積越小’整個基板處理表面44的溫度越高。同樣,在 臺面和整個背面28之間提供空氣以用作進一步的溫度調 節。 陶竟圓盤24背面28上的臺面30,可以均勻或非均勻 模式分佈在整個背面28上。在均勻模式中,臺面之間的 距離(以間隙32表示)基本上相同,但以非均勻隔開的缝隙距 離在整個表面28上變化。還可以在整個表面Μ上變化臺面 3。的形狀和尺寸。例如’可以設置非均勻的臺面的:式 以在陶:圓盤24整個背面28上在不同的區域提供不同的接 觸表面量’以分別控制來自目盤24的中心和週邊部分5物、 54b的熱傳送速率’並且因此控制在基板25的上部中心和週 15 200809999 邊部分46a、46b處的溫度。 底座9 1還包括多個通道1 1 〇,用於迴流諸如水之類的 流體的。具有迴流冷卻流體的底座9丨用作熱交換器以控制 吸盤20的溫度從而在基板25的整個處理表面々A上達到所 需溫度。可以加熱或冷卻穿過通道丨丨〇的流體以提高或者降 低吸盤20的溫度及在吸盤2〇上保持的基板25的溫度。在 一個方案中,設計通道1 10的形狀和大小以允許流體從其中 流過從而將底座91的溫度保持在從約〇到12〇〇c。 底座91還包括用於將電源傳導到靜電吸盤2〇的電極 36的電接頭組件。電接頭組件12〇包括陶瓷絕緣套124。陶 瓷絕緣套124可以是氧化鋁。多個接線柱58嵌入在陶瓷絕 緣套124内。接線柱58、58a-b向靜電吸盤2〇的電極%和 加熱線圈50、52提供電功率。例如,接線柱58可以包括銅 柱0 如第7圖所不,配置接觸帶丨4〇使其以圍繞電接頭組 件的接線58、58“。每個接觸冑14〇包括金屬,例如銅 合金。接觸帶140的結構主體包括適於圍繞接線柱58安裝 的外殼142。外殼142的形狀依賴於柱58的形狀,並且優選 地,應該模仿柱5 8的形 Γ冗又 2的部分或者條1 4 ό包 括具有多個縫1 4 8和多個熱交換窗丨5 〇的 丨44, 一 a Μ —疋圖 案設計該,縫Μ8從而與該縫交替設置窗15〇。在—個實施方 式中,多個縫148和窗150從條146的頂邊緣152延伸到條 "6的底邊緣154或者外殼142的部分。多個縫148和窗 形成減少夕卜& 142硬度並允許其符合在接線纟58或者終端 16 200809999 的外表面形狀的彈簧狀牲 狀特徵0在外殼142的條! 46卜沾夕 縫148的構造,通過他彈笼 ^ 的夕個 Μ 14? ^ ^ Η ^ ^ ”狀的特徵,使得接線柱58鱼外 冗又142的内暴露表面14 、外 $主要區域接觸。這使得在接册 140和終端之間實現最佳熱傳送。 觸可 如苐5Α、5Β圖所示’還可以設置環組件no以減少 包括由底座91支撐的靜雷 战夕在 ^ , 電吸盤20的基板支架90的週邊區 域形成製程沉積物,以及俘嗜 £ ^ 夂保濩其不受侵蝕。環組件17〇包 鎖緊環1 0 0,其通過諸如螺4 如螺釘或螺栓(未示出)的固定步署 固定到底座91的頂表面94 "置 4的週邊部分98上。鎖緊環_ ”有橫向並徑向向内延伸的卷緣172、頂表面174和 面176。唇緣172具有設置在陶瓷圓盤24的週邊壁宇29的 :一階31上的下表面173’以和陶竟圓盤24形成氣密封。 個方案巾T表面1 73包括聚合物層,例如包括聚醯亞 胺,以形成良好的氣密封。鎖緊環1〇〇由可以抵抗等離子侵 餘的材料製成,例如諸如不錄鋼、鈦或紹的金屬材料,或者 諸如氧化鋁的陶瓷材料。 環組件還包括邊緣環18〇,邊緣環18〇包括具有設置在 鎖緊環⑽的頂表面m上的基腳184的帶182。邊緣環還 具有圍繞鎖緊s ίο。的外側表自176的環形㈣186以減少 或甚至完全阻止濺射沈積物在鎖緊環100上的沈積否則該 外側表面176將暴露於工藝環境。邊緣環18〇還包括遮蓋陶 竟圓盤24的週邊壁架29的第二階33的凸緣19〇。凸緣19〇 包括在基板25的懸臂邊緣196下面終止的突出物194。凸緣 19〇限定環100的内周界,其中環1〇〇圍繞基板25的週邊以 17 200809999 在處理期間保護沒有被基板25覆蓋的陶瓷圓盤24的區域。 環組件1 7 0的鎖緊環1 〇 〇和邊緣環! 8 〇協同運作以在基板2 5 的處理期間減少支撐在底座9丨上的靜電吸盤2〇上的製程沉 積物的形成’以及保護其不受侵姓。邊緣環1 8 〇保護基板支 架90的暴路的側表面,以減少高能電漿物質的侵餘。可以 輕易卸下環組件17〇,以清洗來自環1〇〇、18〇之暴露表面上 的沈積物’使得不必拆除待被清洗的整個基板支架9 〇。邊緣 環180包括陶瓷,例如石英。 在基板處理裝置200中可以採用包括靜電吸盤20和底 座91的基板支架9 〇,其示例性方法在第8圖中示出。裝置 2〇〇包括具有圍牆202的腔室201,以及在一個方案中,腔 至201是DPS Advantage腔室。氣源204通過氣孔203向腔 室提供處理氣體,該處理氣體爲能處理基板25的氣體,諸 如餘刻軋體’例如,諸如氯或者氯化氫的含齒氣體;或者諸 如CVD或PVD氣體的沈積氣體,例如,用於沈積介電或半 導體材料的氣體。設置氣體激發器208用於分別向處理氣體 施加電容或電感耦合RF能量,或者向處理氣體(未示出) 中傳輸微波能量,從而形成高能氣體以處理基板25。例如, 鉍由電極電源230和腔室201的電接地牆202,可以通過向 靜電吸盤20的電極3 6施加RF電壓向處理氣體施加電容性 食匕星電極電源23〇還提供DC吸引電壓以充電吸盤的電 極36 ’從而靜電保持基板25。經由感應線圈2〇5,還可以通 過向處理氣體耦合電感能量對處理氣體施加能量。可選地, 、’工由逖端腔室(未不出)中的微波導管,通過向處理氣體施 18 200809999 加的麵合微波能量向處理 板2 5保持在靜電吸盤2 〇 位於底座91上。 氣體供給能量。在腔室2 〇 1中將義 的容納表面26上,而靜電吸盤2〇 通過控制器212控制腔室,其中控制器212通常包括 具有與記憶體和週邊的電腦元件連接的中央處理器(CPU 的電腦3〇8,咖諸如來自加州^€1心市英”公= 造的商用奔騰處理器。記憶體可以包括諸如cd或 、 移動記憶體、諸如硬碟的不可移動記憶體和隨機記憶體 (RAM)。控制器212還可以包括硬體介面,其包括類比或 數位輸入和輸出板和電動機控制器板。操作員可以經由顯示 器或者資料登錄器件與腔室控制器2丨2通信。爲了選擇具體 的榮幕或功能,操作員使用諸如鍵盤或光筆的資料登錄器件 輸入選擇。 控制杰212還包括存储在記憶體中的電腦可讀取程 式’包括能控制和監視在腔室2 ο 1中執行工藝的處理編碼。 可以以任何傳統的電腦可讀取程式語言編寫電腦可讀取程 式。採用傳統的文本編輯器將適當的程式編碼輸入到的單一 或多個文件,以及存儲或收錄在記憶體的電腦可使用媒體 中。如果輸入的編碼文本是高階語言,編輯編瑪,並且然後 産生的編輯裔編碼與預編輯的庫應用輕式的目標編碼連 接。爲了執行連接、編輯的目標編碼,使用者調用目標編碼’ 使得CPU讀取並執行編碼以完成在程式中識別的任務。程式 可以包括溫度控制指令集以控制基板2 5的不同區域處的溫 度,例如通過向吸盤20的陶瓷圓盤24的第一和第二加熱線 19 200809999 圈50、52獨立施加不同的電功率,調整通過導體38a、b的 熱傳送氣體的流動並控制通過底座9 1的通道丨丨〇的流體的 流速。工藝反饋控制指令集可以用作溫度監控指令集之間的 反饋控制環路以調整施加給諸如加熱線圈5 0、5 2的腔室元 件的功率、經過導管3 8a、b的熱傳輸氣體流以及經過底座 91的通道1 10的流體流動,溫度監控指令集從光學溫度感測 器60a b接收度^號。當描述爲用於製成一系列任務的 單獨指令集時,每個指令集都可以與其他指令集結合或者交 錯;因此,腔室控制器212和在此描述的電腦可讀取程式不 應該局限於在此描述的功能性程式的具體方案。 雖然參照一些優選方案描述了本發明,然而,也可以 存在其他方案。例如,除了此處描述的,基板支架可以用於 其他腔室及其他工藝。因此,所附的請求項書不應局限於在 此包括的優選方案的描述。 【圖式簡單說明】 通過以下的說明書、請求 附圖可以使本發明的所述特徵、 、睛求項以及示出本發明實施例的Teflon® (polytetrafluoroethylene) manufactured by DUp〇nt de Nemours, Delaware. As shown in Figs. 4A, 4B and 5, the substrate holder 90 includes an electrostatic chuck 2A for fixing the base 91, wherein the base pi is for supporting and fixing the suction cup 2''. The base 91 includes a metal body 92' having a top surface 94 having a suction cup receiving portion 96 and a peripheral portion 98. The chuck receiving portion 96 of the top surface 94 is adapted to receive the back side 28 of the ceramic disc 24 of the electrostatic chuck 2''. The peripheral portion 98 of the base 91 extends radially outward beyond the ceramic disk. The peripheral portion 98 of the base 91 can be adapted to receive a locking ring 1〇〇 that can be secured to the top surface of the peripheral portion of the base. The metal body 92 of the base 91 has a plurality of passages 1 2 from the bottom surface 104 of the base to the top surface 94 of the base 91 for, for example, receiving the terminals 58a-b or the gas conduit 3 that feeds the gas to the ceramic disk 24. 8 a, b. The chuck receiving portion 96 of the top surface 94 of the base 91 includes a plurality of grooves 106a, 106b for holding and flowing air over the entire 2008-09-99 back of the ceramic disk. In one embodiment, the chuck receiving portion 96 & includes a peripheral groove 16a'a that cooperates with a plurality of mesas 30 on the back surface 28 of the ceramic disk 24 to control the disk from the ceramic disk The heat transfer rate of the state of the surrounding part of 24. In another embodiment, the central groove 106b is used in conjunction with the peripheral groove ma to regulate heat transfer from the central portion of the ceramic disk 24. The grooves 1〇6a, 1〇6b in the top surface 94 of the base 91 cooperate with the land 30 on the back surface 28 of the ceramic disk 24 to further adjust the temperature of the entire substrate processing surface 44. For example, the shape, size and spacing of the table top 3 control the total amount of contact surfaces of the table from the top surface 94 of the base 91 to control the total heat transfer area of the interface. For example, the shape and size of the table top can be designed such that the back side of the ceramic disc 24 is actually "only 50% or less of the total area", for example, 3%% is in contact with the top surface 94 of the base 91. The smaller the contact area is' The higher the temperature of the entire substrate processing surface 44. Again, air is provided between the table top and the entire back surface 28 for further temperature adjustment. The mesas 30 on the back 28 of the ceramic disk 24 may be distributed in a uniform or non-uniform pattern. On the entire back surface 28. In the uniform mode, the distance between the mesas (indicated by the gap 32) is substantially the same, but the gap distances that are not evenly spaced vary over the entire surface 28. It is also possible to vary the table top over the entire surface. 3. Shape and size. For example, 'a non-uniform table top can be set: to provide different contact surface amounts in different areas on the entire back surface 28 of the pottery: disc 24' to control the center and the eye from the eyepiece 24, respectively. The heat transfer rate of the peripheral portion 5, 54b' and thus the temperature at the upper center of the substrate 25 and the side portions 46a, 46b of the circumference 15 200809999. The base 9 1 also includes a plurality of channels 1 1 For returning a fluid such as water. The base 9 having a reflux cooling fluid is used as a heat exchanger to control the temperature of the chuck 20 to reach a desired temperature on the entire treated surface 々A of the substrate 25. It may be heated or The fluid passing through the channel is cooled to increase or decrease the temperature of the chuck 20 and the temperature of the substrate 25 held on the chuck 2. In one aspect, the channel 110 is shaped and sized to allow fluid to flow therethrough. The temperature of the base 91 is thereby maintained from about 〇 to 12 〇〇 C. The base 91 also includes an electrical connector assembly for conducting power to the electrode 36 of the electrostatic chuck 2 。. The electrical connector assembly 12 includes a ceramic insulating sleeve 124. The ceramic insulating sleeve 124 may be alumina. A plurality of terminals 58 are embedded in the ceramic insulating sleeve 124. The terminals 58, 58a-b provide electrical power to the electrode % of the electrostatic chuck 2 and the heating coils 50, 52. For example, the binding posts 58 may include a copper post 0 as shown in Fig. 7, which is configured to contact the straps 〇4〇 to surround the wires 58 and 58 of the electrical connector assembly. Each contact 胄 14 〇 includes a metal such as a copper alloy. The structural body of the contact strip 140 includes a housing 142 that is adapted to be mounted about the terminal post 58. The shape of the outer casing 142 depends on the shape of the post 58 and preferably, the portion of the post 58 that should mimic the shape of the post 58 or the strip 1 4 ό includes a plurality of slits 1 4 8 and a plurality of heat exchange windows 5 〇 The 丨44, a Μ-疋 pattern design, the shackle 8 is arranged to alternate the window 15 与 with the slit. In one embodiment, a plurality of slits 148 and windows 150 extend from the top edge 152 of the strip 146 to the bottom edge 154 of the strip "6 or a portion of the outer shell 142. The plurality of slits 148 and the window form a reduced spring & 142 hardness and allows it to conform to the spring-like feature of the outer surface shape of the terminal 58 or terminal 16 200809999 in the strip of the outer casing 142! The structure of the 46 沾 夕 缝 148, through the characteristics of his 弹 Μ 14? ^ ^ Η ^ ^ ” of the cage ^, makes the terminal 58 fish out of the 142 inner exposed surface 14 , the outer $ main area contact This enables optimal heat transfer between the receiver 140 and the terminal. The touch can be as shown in Fig. 5Α, 5Β', and the ring assembly no can be set to reduce the static lightning that is supported by the base 91. The peripheral region of the substrate holder 90 of the suction cup 20 forms a process deposit, and the tamper is protected from erosion. The ring assembly 17 is wrapped with a locking ring 100, such as by a screw 4 such as a screw or bolt (not The fixed step shown is secured to the top surface 94 of the base 91 "the peripheral portion 98 of the set 4. The locking ring has a bead 172, a top surface 174 and a face 176 that extend laterally and radially inwardly. The lip 172 has a lower surface 173' disposed on the peripheral wall 29 of the ceramic disk 24: a first step 31 to form a hermetic seal with the ceramic disk 24. The T-surfaces 173 of the solution T include a polymeric layer, for example comprising polyimide, to form a good hermetic seal. The locking ring 1 is made of a material that is resistant to plasma interference, such as a metal material such as unrecorded steel, titanium or steel, or a ceramic material such as alumina. The ring assembly also includes an edge ring 18A that includes a strap 182 having a footing 184 disposed on a top surface m of the locking ring (10). The edge ring also has a locking s ίο. The outer side is from the ring (four) 186 of 176 to reduce or even completely prevent the deposition of sputter deposits on the locking ring 100 which would otherwise be exposed to the process environment. The edge ring 18A also includes a flange 19A that covers the second step 33 of the peripheral ledge 29 of the ceramic disk 24. The flange 19A includes a protrusion 194 that terminates below the cantilevered edge 196 of the substrate 25. The flange 19A defines the inner perimeter of the ring 100, wherein the ring 1 turns around the perimeter of the substrate 25 at 17200809999 to protect the area of the ceramic disc 24 that is not covered by the substrate 25 during processing. Locking ring 1 〇 边缘 and edge ring of ring assembly 170! 8 〇 cooperate to reduce the formation of process deposits on the electrostatic chuck 2 支撑 supported on the pedestal 9 在 during processing of the substrate 25 and to protect it from invading the surname. The edge ring 18 〇 protects the side surface of the storm path of the substrate holder 90 to reduce the erosion of high energy plasma materials. The ring assembly 17A can be easily removed to clean the deposits from the exposed surfaces of the rings 1〇〇, 18〇 so that it is not necessary to remove the entire substrate holder 9 to be cleaned. Edge ring 180 includes a ceramic such as quartz. A substrate holder 9A including an electrostatic chuck 20 and a base 91 may be employed in the substrate processing apparatus 200, an exemplary method of which is shown in Fig. 8. The apparatus 2 includes a chamber 201 having a wall 202, and in one aspect, the chambers 201 to 201 are DPS Advantage chambers. The gas source 204 supplies a processing gas to the chamber through the air holes 203, which is a gas capable of processing the substrate 25, such as a residual rolling body 'for example, a tooth-containing gas such as chlorine or hydrogen chloride; or a deposition gas such as CVD or PVD gas For example, a gas for depositing a dielectric or semiconductor material. A gas energizer 208 is provided for applying capacitive or inductively coupled RF energy to the process gas, respectively, or to transfer the microwave energy to a process gas (not shown) to form a high energy gas to process the substrate 25. For example, by the electrode power source 230 and the electrical grounding wall 202 of the chamber 201, a capacitive voltage can be applied to the processing gas by applying an RF voltage to the electrode 36 of the electrostatic chuck 20 to provide a DC attraction voltage for charging. The electrode 36' of the chuck thus electrostatically holds the substrate 25. Via the induction coil 2〇5, it is also possible to apply energy to the process gas by coupling the inductive energy to the process gas. Optionally, the microwave conduit in the end chamber (not shown) is held on the base plate 91 by applying the surface microwave energy added to the processing gas 18 200809999 to the processing plate 25. . Gas supplies energy. In the chamber 2 〇1, the receiving surface 26 is defined, and the electrostatic chuck 2 is controlled by the controller 212, wherein the controller 212 typically includes a central processing unit (CPU) having computer components connected to the memory and the periphery. The computer is 3,8, such as a commercial Pentium processor from California. The memory can include non-removable memory such as cd or mobile memory, hard disk such as hard disk, and random memory. (RAM) The controller 212 may also include a hardware interface including an analog or digital input and output board and a motor controller board. The operator can communicate with the chamber controller 2丨2 via a display or data entry device. For a specific honor screen or function, the operator logs in the device input selection using a material such as a keyboard or a light pen. The control Jay 212 also includes a computer readable program stored in the memory 'includes control and monitoring in the chamber 2 ο 1 Process code processing. Computer readable programs can be written in any traditional computer readable programming language. Appropriate programs can be programmed using a traditional text editor. Encodes the input to a single or multiple files, as well as the computer-usable media stored or included in the memory. If the input encoded text is a high-level language, edits the marshalling, and then produces the edited-coded and pre-edited library application Light target encoding connection. In order to perform the connection and editing target encoding, the user invokes the target encoding 'to cause the CPU to read and execute the encoding to complete the task identified in the program. The program may include a temperature control instruction set to control the substrate 2 5 The temperature at different regions, for example by independently applying different electrical power to the first and second heating wires 19 200809999 turns 50, 52 of the ceramic disk 24 of the suction cup 20, adjusts the flow of the heat transfer gas through the conductors 38a, b and Controlling the flow rate of fluid through the channel 底座 of the base 91. The process feedback control command set can be used as a feedback control loop between the temperature monitoring command sets to adjust the chamber components applied to the heating coils 50, 52. Power, heat transfer gas flow through conduits 38a, b, and fluid flow through passages 1 10 of base 91, temperature monitoring The set of instructions receives a degree from the optical temperature sensor 60a b. When described as a separate set of instructions for making a series of tasks, each instruction set can be combined or interleaved with other sets of instructions; therefore, chamber control The computer 212 and the computer readable program described herein are not limited to the specific aspects of the functional programs described herein. Although the invention has been described with reference to some preferred aspects, other arrangements are possible. For example, except here Illustrated, the substrate holder can be used in other chambers and other processes. Therefore, the attached request should not be limited to the description of the preferred embodiments included herein. [Simplified Schematic] By the following specification, the drawings are requested. The features, the items of the invention, and the embodiments of the invention may be made

,一…〜二π从⑺饮恩組合,其中 第1圖爲靜電吸盤的實施方式的截面側視示意圖 弟2圖爲第1圖的吸盤的仰視示意圖; 第3圖爲光學溫度感測器的側視示意圖; 第4Α圖和第4Β圖 爲包括底座和靜電吸盤的基板支架 20 200809999 的實施方式的俯視(第3A圖)和仰視(第3B圖)的透視示 意圖; 第5A圖爲在第4A圖和第4B圖的基板支架上的環組 件的截面側視示意圖; 第5 B圖爲第5 A圖的環組件的局部放大圖; 第6圖爲底座的電連接器元件的實施方式的截面側視 不意圖; 第7圖爲接觸帶的實施方式的截面側視示意圖;以及 第8圖爲具有基板支架的基板處理腔室的實施方式的 截面側視示意圖。 【主 要元件符號說明】 20 靜電吸盤 24 陶瓷圓盤 25 基板 26 基板容納表面 28 陶瓷圓盤背面 29 週邊壁架 30 臺面 3 1 第一階 32 間隙 33 第二階 34 基板背面 36 電極 38a > 38b氣體導管 4 0 a、4 0 b 埠 42a 中心加熱區 42b 周邊加熱區 44 基板處理表面 46a 基板上部中心區 域 46b 基板上部通邊區'或 50 > 52 加熱線圈 54a 陶瓷圓盤中心部分 54b 陶瓷圓盤週邊部 21 200809999 份 58 ^ 58a、 58b 、 58c 、 58d 接線柱 60a 、60b 光學溫度感測器 62a、62b iL 64a 、64b 感測器觸頭 66a、 66b 感測器臂 68 熱感測器探針 70 銅帽 72 側壁 74 圓頂狀頂部 76 磷塞 78 凹槽 79 環氧樹脂 80 光學纖維束 82 套管 84 隔溫套 90 基板支架 91 底座 92 金屬主體 94 頂表面 96 吸盤容納部分 98 週邊部分 100 鎖緊環 102 通路 104 底表面 106a ^ 106b 凹槽 1 10 通道 120 電接頭組件 124 陶瓷絕緣套 140 接觸帶 142 外殼 143 内暴露表面 144 接觸帶 146 條 148 縫 150 熱交換窗 152 頂邊緣 154 底邊緣 170 環組件 172 唇緣 173 下表面 174 頂表面 176 外側表面 180 邊緣環 22 200809999 182 帶 186 環 形 外 壁 194 突 出 物 200 基 板 處 理 裝 置 202 圍 牆 204 氣 源 208 氣 體 激 發 器 214 傳 送 基 板 220 熱 傳 流 體 供 應 源 226 其 他 加 熱 器 電 源 230 電 極 電 源 184 基腳 190 凸緣 196 懸臂邊緣 201 腔室 203 氣孑L 205 感應線圈 212 控制器 218 廢氣幫浦 222 熱傳氣體供應源 228 内部加熱器電源 23, a ... ~ two π from (7) drink combination, wherein the first figure is a cross-sectional side view of the embodiment of the electrostatic chuck 2 shows a bottom view of the suction cup of Figure 1; Figure 3 is an optical temperature sensor 4D and 4D are perspective views of a top view (Fig. 3A) and a bottom view (Fig. 3B) of an embodiment of a substrate holder 20 200809999 including a base and an electrostatic chuck; Fig. 5A is at 4A Figure 4 and a cross-sectional side view of the ring assembly on the substrate holder of Figure 4B; Figure 5B is a partial enlarged view of the ring assembly of Figure 5A; Figure 6 is a cross section of an embodiment of the electrical connector element of the base Side view is not intended; Figure 7 is a cross-sectional side view of an embodiment of a contact strip; and Figure 8 is a cross-sectional side view of an embodiment of a substrate processing chamber having a substrate holder. [Main component symbol description] 20 Electrostatic chuck 24 Ceramic disc 25 Substrate 26 Substrate receiving surface 28 Ceramic disc back 29 Peripheral ledge 30 Countertop 3 1 First order 32 Clearance 33 Second order 34 Back surface of substrate 36 Electrode 38a > 38b Gas conduit 40 a, 4 0 b 埠 42a Center heating zone 42b Peripheral heating zone 44 Substrate processing surface 46a Substrate upper central zone 46b Substrate upper pass zone 'or 50 > 52 Heating coil 54a Ceramic disk central portion 54b Ceramic disc Peripheral portion 21 200809999 Parts 58 ^ 58a, 58b, 58c , 58d Terminals 60a , 60b Optical temperature sensors 62a, 62b iL 64a , 64b Sensor contacts 66a, 66b Sensor arm 68 Thermal sensor probe 70 Copper cap 72 Side wall 74 Domed top 76 Phosphorus plug 78 Groove 79 Epoxy 80 Optical fiber bundle 82 Sleeve 84 Isolation sleeve 90 Substrate bracket 91 Base 92 Metal body 94 Top surface 96 Suction cup accommodating portion 98 Peripheral portion 100 Locking ring 102 passage 104 bottom surface 106a ^ 106b groove 1 10 channel 120 electrical connector assembly 124 ceramic insulating sleeve 140 Contact strip 142 housing 143 inner exposed surface 144 contact strip 146 strip 148 slit 150 heat exchange window 152 top edge 154 bottom edge 170 ring assembly 172 lip 173 lower surface 174 top surface 176 outer surface 180 edge ring 22 200809999 182 belt 186 annular outer wall 194 Projection 200 Substrate processing device 202 Wall 204 Gas source 208 Gas ejector 214 Transfer substrate 220 Heat transfer fluid supply 226 Other heater power supply 230 Electrode power supply 184 Foot 190 Flange 196 Cantilever edge 201 Chamber 203 Air 孑 L 205 Induction coil 212 controller 218 exhaust gas pump 222 heat transfer gas supply source 228 internal heater power supply 23

Claims (1)

200809999 十、申請專利範圍: 1 · 一種在一處理腔室中用於容納一基板的靜電吸 盤,該靜電吸盤包括: (a ) —陶瓷圓盤,其包括一基板容納表面及一相對的 背面(其包括多個隔開的臺面); (b)多個熱傳送氣體導管,穿過該陶瓷主體並終止在 該基板容納表面上的埠處,以提供熱傳送氣體予該基板容 納表面; (c ) 一電極,其嵌入在該陶瓷圓盤中以産生可用於固 持放置在該基板容納表面上之一基板的靜電力; (d)第一和第二加熱線圈,其嵌入在該陶竟圓盤中, 該些加熱線圈徑向間隔並且圍繞彼此同心設置,該第一加 熱線圈位於該陶瓷圓盤的週邊部分,而該第二加熱線圈位 於該陶瓷圓盤的中心部分, 藉此使得該第一和第二加熱線圈可對該陶瓷圓盤的中 心部分和週邊部分進行溫度獨立控制,並與該陶瓷圓盤背 面上的該些臺面協同運作以允許調整放置在該陶瓷圓盤之 基板容納表面上的基板的溫度分佈。 2.如請求項1所述的靜電吸盤,其中該第一和第二加 熱線圈包括至少一個下列特徵: (i )該些加熱線圈係並排排列; (ii )該些加熱線圈基本上在相同的平面上; (i i i )每一該些加熱線圈都包括含有钥的電阻加熱元 件;以及 (iv )每一該些加熱線圈都包括足夠高的電阻以保持 該陶瓷圓盤的基板容納表面處溫度在約 80°C到約 25 0°C 24 200809999 間。 3 ·如請求項1所述的靜電吸盤,其中該陶瓷圓盤包括 至少一種下列物質:氧化铭、氮化紹、氧化石夕、碳化石夕、 氮化矽、氧化鈦、氧化鍅及其混合物。 4.如請求項1所述的靜電吸盤,其中該陶兗圓盤背面 上的該些臺面包括多個柱狀凸起。 5 .如請求項1所述的靜電吸盤,其中該陶瓷圓盤包括 一週邊壁架,用以容納在該陶瓷圓盤周圍形成密封的鎖緊 環。 6. 如請求項1所述的靜電吸盤,更包括後入在該陶曼 圓盤中的第一和第二光學溫度感測器,該些光學溫度傳感 器具有至少一個下列特徵: (i )該第一感測器位於該陶瓷圓盤的中心部分,而該 第二感測器位於該陶瓷圓盤的週邊部分; (ii )該些光學溫度感測器包括嵌入在一銅唇緣中之 一光學纖維前面的磷層; (i i i )每一該些光學溫度感測器包括一隔溫套,該隔 溫套可隔絕該溫度感測器使不接觸來自可支撐該陶瓷圓盤 之底座上的熱量。 7. —種用於減少製程沉積物形成在一靜電吸盤或保 祿該靜電吸盤不受侵蝕的環組件,該靜電吸盤係由一基板 處理腔室中的一底座所支撐的,該靜電吸盤包括一陶瓷圓 25 200809999 盤其具有包括第一和第二階的一週邊壁架,且該底座包括 一頂表面其具有一吸盤容納部分和延伸超過該吸盤的一週 邊部分,該環組件包括: (a ) —鎖緊環,其可固定到該底座頂表面週邊部分, 該鎖緊環具有一唇緣、一頂表面和一外側表面,其中該唇 緣徑向向内延伸以放置在該陶瓷圓盤週邊壁架的該第一階 上,從而在該陶瓷圓盤和該底座頂表面之間形成氣密封; 以及 (b ) —邊緣環,其包括一帶(包含一放置在該鎖緊環 頂表面上的基腳)、一環形外牆其圍繞該鎖緊環的該外側表 面,以及一凸緣其覆蓋該陶瓷圓盤週邊壁架第二階, 由此該鎖緊環和該邊緣環可協同運作以在該基板處理 腔室中處理基板期間減少製程沉積物形成在由該底座支撐 的該靜電吸盤上,並保護該靜電吸盤不受侵I虫。 8 .如請求項7所述的環組件,其中該邊緣環包括陶瓷。 9.如請求項8所述的元件,其中該陶瓷包括石英。 1 0.如請求項7所述的環組件,其中該鎖緊環包括鋁 或鈦。 1 1 .如請求項7所述的環組件,其中該鎖緊環的唇緣 包括一下表面,其放置在該陶瓷圓盤週邊壁架的第一階 上,且其中該下表面包括一聚合物層。 1 2.如請求項7所述的環組件,其中該聚合物層包括 26 200809999 聚醯亞胺。 13. —種在一基板處理腔室中用於支撐一靜電吸盤的 底座,該靜電吸盤包括(i) 一陶瓷圓盤其具有一基板容納 表面和一相對背面,(ii )多個熱傳送氣體導管,其穿過該 瓷圓盤並終止在該基板容納表面上的多個埠處,以提供熱 傳送氣體予該基板容納表面,(iii ) 一電極,嵌入在該陶 瓷圓盤中以産生靜電力,以及(iv )嵌入在該陶瓷圓盤中 的第一和第二加熱線圈,該底座包括: (a) —具有一頂表面的金屬主體,該頂表面包括一吸 盤容納部分以容納該陶瓷圓盤的背面和一週邊部分其係徑 向向外延伸超過該陶瓷圓盤,該吸盤容納表面包括一週邊 凹槽,用以容納在該陶瓷圓盤背面周圍的空氣; (b ) —熱傳送通路,用以供應熱傳送氣體至該陶瓷圓 盤中的熱傳送氣體導管; (c )多個流體通道,位在該金屬主體中用於迴流其中 的流體, (d ) —電接頭組件,用於傳導電功率到該靜電吸盤的 該電極上接頭組件,該電接頭組件包括一陶瓷絕緣套,其 具有嵌入在其中的多個接線柱用以供應電功率到該電極和 該靜電吸盤的多個加熱線圈上,每個接線柱均被一接觸帶 環繞(其包括一金屬並具有多個熱傳送窗)。 1 4.如請求項1 3所述的底座,其中該陶莞圓盤的背面 包括多個臺面,且其中該底座的該吸盤容納表面上的該週 邊凹槽與該臺面可協同運作以控制來自該陶瓷圓盤的週邊 部分的熱傳輸速率。 27 200809999 1 5 ·如請求項1 3所述的底座,其中該吸盤容納表面更 包括一中心凹槽,其可與該臺面協同運作以控制來自該陶 瓷圓盤一中央部分的熱傳輸速率。 1 6. —種在處理腔室中用於容納一基板的基板支架, 包括: (a) —靜電吸盤包括: (i ) 一陶瓷圓盤其包括一基板容納表面和一相對 的背面,以及一週邊壁架(其具有一階); (ii)多個熱傳送氣體導管,其穿過該陶瓷主體 並且終止在該基板容納表面上的多個槔處,用以提供熱傳 送氣體至該基板容納表面; (i i i ) 一電極,嵌入在該陶竟圓盤中,該電極可 被充電以産生用於固持放置在該基板容納表面上的基板的 靜電力; (b) —底座,其包括一具有一頂表面的金屬主體,該 頂表面包括一吸盤容納部分(用以容納該陶瓷圓盤的該背 面)和一週邊部分(其徑向向外延伸超過該陶瓷圓盤); (c ) 一邊緣環,設置在該陶瓷圓盤的該週邊壁架的該 階上,以與保持在該陶瓷圓盤的容納表面上的基板的上部 邊緣形成密封;以及 (d ) —鎖緊環,固定到該底座上的該週邊部分,該鎖 緊環具有徑向向外延伸以放置在該陶瓷圓盤的該週邊壁架 上從而與該陶兗圓盤形成氣密封的唇緣。 1 7.如請求項1 6所述的支架,其中該邊緣環包括陶瓷。 28 200809999 1 8 ·如請求項1 7所述的支架,其中該陶瓷包括石英。 1 9.如請求項1 6所述的支架,其中該鎖緊環包括鋁或 2 0.如請求項1 6所述的支架,其中該鎖緊環的唇緣包 括一與該陶瓷圓盤接觸的下表面,並且該下表面包括一聚 合物層。 2 1 .如請求項1 6所述的支架,其中該陶瓷圓盤包括徑 向間隔並彼此繞同心設置的第一和第二加熱線圈,其中該 第一加熱線圈位於該陶瓷圓盤的週邊部分,而該第二加熱 線圈在該陶瓷圓盤的中心部分。 2 2.如請求項1 6所述的支架,其中該陶瓷圓盤的背面 包括多個臺面。 2 3 .如請求項2 2所述的支架,其中該底座的該吸盤容 納表面包括一週邊凹槽以容納在該陶瓷圓盤的該背面的該 臺面周圍的空氣。 24. 如請求項1 6所述的支架,其中該底座的頂表面包 括一中心凹槽。 25. 如請求項16所述的支架,其中該底座包括用於向 該靜電吸盤的該電極傳導電功率的電接頭組件,該電接頭 29 200809999200809999 X. Patent Application Range: 1 · An electrostatic chuck for accommodating a substrate in a processing chamber, the electrostatic chuck comprising: (a) a ceramic disc comprising a substrate receiving surface and an opposite back surface ( A plurality of spaced apart mesas; (b) a plurality of heat transfer gas conduits passing through the ceramic body and terminating at the crucible on the substrate receiving surface to provide a heat transfer gas to the substrate receiving surface; An electrode embedded in the ceramic disk to generate an electrostatic force that can be used to hold a substrate placed on the substrate receiving surface; (d) first and second heating coils embedded in the ceramic disk The heating coils are radially spaced and concentrically disposed about each other, the first heating coil is located at a peripheral portion of the ceramic disk, and the second heating coil is located at a central portion of the ceramic disk, thereby making the first And the second heating coil can independently control the temperature of the central portion and the peripheral portion of the ceramic disc, and cooperate with the countertops on the back surface of the ceramic disc to allow adjustment Receiving the temperature distribution on the surface of the substrate in the substrate of the ceramic disk. 2. The electrostatic chuck of claim 1, wherein the first and second heating coils comprise at least one of the following features: (i) the heating coils are arranged side by side; (ii) the heating coils are substantially identical (iii) each of the heating coils includes a resistive heating element containing a key; and (iv) each of the heating coils includes a sufficiently high electrical resistance to maintain a temperature at a substrate receiving surface of the ceramic disk Between 80 ° C and about 25 0 ° C 24 200809999. 3. The electrostatic chuck of claim 1, wherein the ceramic disk comprises at least one of the following: oxidized, nitriding, oxidized stone, carbonized carbide, tantalum nitride, titanium oxide, cerium oxide, and mixtures thereof . 4. The electrostatic chuck of claim 1, wherein the mesas on the back of the ceramic disc comprise a plurality of columnar projections. The electrostatic chuck of claim 1, wherein the ceramic disk comprises a peripheral ledge for receiving a sealing ring formed around the ceramic disk. 6. The electrostatic chuck of claim 1, further comprising first and second optical temperature sensors that are retrofitted into the Tauman disk, the optical temperature sensors having at least one of the following features: (i) the a first sensor is located at a central portion of the ceramic disk, and the second sensor is located at a peripheral portion of the ceramic disk; (ii) the optical temperature sensors comprise one of the copper lips embedded a phosphor layer in front of the optical fiber; (iii) each of the optical temperature sensors includes a temperature jacket that isolates the temperature sensor from contact with a base from which the ceramic disk can be supported Heat. 7. A ring assembly for reducing process deposit formation on an electrostatic chuck or a non-erosion of the electrostatic chuck, the electrostatic chuck being supported by a base in a substrate processing chamber, the electrostatic chuck comprising A ceramic circle 25 200809999 has a peripheral ledge comprising first and second steps, and the base includes a top surface having a suction cup receiving portion and a peripheral portion extending beyond the suction cup, the ring assembly comprising: a) a locking ring attachable to a peripheral portion of the top surface of the base, the locking ring having a lip, a top surface and an outer side surface, wherein the lip extends radially inwardly for placement in the ceramic circle a first step of the peripheral wall of the disk, thereby forming a hermetic seal between the ceramic disk and the top surface of the base; and (b) an edge ring including a band (including a surface placed on the top surface of the locking ring) a base footing), an annular outer wall surrounding the outer side surface of the locking ring, and a flange covering the second step of the ceramic disk peripheral wall frame, whereby the locking ring and the edge ring cooperate Operate to The processing of the substrate in the substrate processing chamber reduces process deposit formation on the electrostatic chuck supported by the base and protects the electrostatic chuck from infestation. 8. The ring assembly of claim 7, wherein the edge ring comprises a ceramic. 9. The element of claim 8 wherein the ceramic comprises quartz. The ring assembly of claim 7, wherein the locking ring comprises aluminum or titanium. The ring assembly of claim 7, wherein the lip of the locking ring includes a lower surface that is placed on a first step of the peripheral wall shelf of the ceramic disk, and wherein the lower surface comprises a polymer Floor. The ring assembly of claim 7, wherein the polymer layer comprises 26 200809999 polyimine. 13. A base for supporting an electrostatic chuck in a substrate processing chamber, the electrostatic chuck comprising (i) a ceramic disk having a substrate receiving surface and an opposite back surface, (ii) a plurality of heat transfer gases a conduit passing through the porcelain disk and terminating at a plurality of turns on the substrate receiving surface to provide a heat transfer gas to the substrate receiving surface, (iii) an electrode embedded in the ceramic disk to generate static electricity a force, and (iv) first and second heating coils embedded in the ceramic disc, the base comprising: (a) a metal body having a top surface, the top surface including a chuck receiving portion to receive the ceramic The back side of the disk and a peripheral portion extend radially outward beyond the ceramic disk, the chuck receiving surface including a peripheral groove for receiving air around the back surface of the ceramic disk; (b) - heat transfer a passage for supplying a heat transfer gas to the heat transfer gas conduit in the ceramic disc; (c) a plurality of fluid passages in the metal body for recirculating the fluid therein, (d) an electrical joint assembly, Conducting electrical power to the electrode connector assembly of the electrostatic chuck, the electrical connector assembly including a ceramic insulating sleeve having a plurality of terminals embedded therein for supplying electrical power to the electrode and the plurality of heating coils of the electrostatic chuck Each of the posts is surrounded by a contact strip (which includes a metal and has a plurality of heat transfer windows). 1. The base of claim 13 wherein the back of the pottery disc comprises a plurality of mesas, and wherein the peripheral groove on the chuck receiving surface of the base cooperates with the counter to control the ceramic The heat transfer rate of the peripheral portion of the disk. The base of claim 13 wherein the suction cup receiving surface further includes a central recess engageable with the table to control the rate of heat transfer from a central portion of the ceramic disk. 1 6. A substrate holder for accommodating a substrate in a processing chamber, comprising: (a) an electrostatic chuck comprising: (i) a ceramic disk including a substrate receiving surface and an opposite back surface, and a peripheral ledge having a first order; (ii) a plurality of heat transfer gas conduits passing through the ceramic body and terminating at a plurality of turns on the substrate receiving surface for providing a heat transfer gas to the substrate (iii) an electrode embedded in the ceramic disk, the electrode being chargeable to generate an electrostatic force for holding a substrate placed on the substrate receiving surface; (b) a base comprising a top surface metal body, the top surface including a chuck receiving portion (to accommodate the back surface of the ceramic disc) and a peripheral portion (which extends radially outward beyond the ceramic disc); (c) an edge a ring disposed on the step of the peripheral ledge of the ceramic disc to form a seal with an upper edge of the substrate held on the receiving surface of the ceramic disc; and (d) a locking ring fixed to the On the base Peripheral portion, the retaining ring having a radially outwardly extending to the ceramic disk is placed on the ledge to form a peripheral seal with the gas Yan ceramic disc lip. The stent of claim 18, wherein the edge ring comprises a ceramic. The device of claim 17, wherein the ceramic comprises quartz. The bracket of claim 18, wherein the locking ring comprises aluminum or 20. The bracket of claim 18, wherein the lip of the locking ring includes a contact with the ceramic disk The lower surface, and the lower surface includes a polymer layer. The stent of claim 18, wherein the ceramic disk comprises first and second heating coils radially spaced and concentrically disposed with each other, wherein the first heating coil is located at a peripheral portion of the ceramic disk And the second heating coil is in a central portion of the ceramic disk. 2. The stent of claim 18, wherein the back side of the ceramic disc comprises a plurality of mesas. The stent of claim 2, wherein the suction-receiving surface of the base includes a peripheral recess for receiving air around the countertop of the back surface of the ceramic disc. 24. The stent of claim 18, wherein the top surface of the base comprises a central recess. 25. The stent of claim 16, wherein the base includes an electrical connector assembly for conducting electrical power to the electrode of the electrostatic chuck, the electrical connector 29 200809999
TW095143403A 2006-04-27 2006-11-23 An electrostatic chuck for receiving a substrate i TWI357629B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79601306P 2006-04-27 2006-04-27

Publications (2)

Publication Number Publication Date
TW200809999A true TW200809999A (en) 2008-02-16
TWI357629B TWI357629B (en) 2012-02-01

Family

ID=38769279

Family Applications (2)

Application Number Title Priority Date Filing Date
TW095143403A TWI357629B (en) 2006-04-27 2006-11-23 An electrostatic chuck for receiving a substrate i
TW096115185A TWI463588B (en) 2006-04-27 2007-04-27 Substrate support with electrostatic chuck having dual temperature zones

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW096115185A TWI463588B (en) 2006-04-27 2007-04-27 Substrate support with electrostatic chuck having dual temperature zones

Country Status (4)

Country Link
JP (2) JP5069452B2 (en)
KR (2) KR101380879B1 (en)
CN (4) CN101887865B (en)
TW (2) TWI357629B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493639B (en) * 2008-05-23 2015-07-21 Lam Res Corp Electrical and optical system and methods for monitoring erosion of electrostatic chuck edge bead materials
TWI514469B (en) * 2012-11-12 2015-12-21
US10096494B2 (en) 2010-10-22 2018-10-09 Applied Materials, Inc. Substrate support with symmetrical feed structure

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501605B2 (en) * 2006-08-29 2009-03-10 Lam Research Corporation Method of tuning thermal conductivity of electrostatic chuck support assembly
JP5454467B2 (en) 2008-02-27 2014-03-26 東京エレクトロン株式会社 Plasma etching processing apparatus and plasma etching processing method
JP4913113B2 (en) * 2008-11-27 2012-04-11 エイ・ディ・ピー・エンジニアリング・コーポレーション・リミテッド Lower electrode assembly of flat panel display device manufacturing apparatus
TW201101414A (en) * 2009-04-24 2011-01-01 Applied Materials Inc Substrate support having side gas outlets and methods
US8270141B2 (en) * 2009-11-20 2012-09-18 Applied Materials, Inc. Electrostatic chuck with reduced arcing
US8613288B2 (en) 2009-12-18 2013-12-24 Lam Research Ag High temperature chuck and method of using same
JP5267603B2 (en) * 2010-03-24 2013-08-21 Toto株式会社 Electrostatic chuck
JP2012028539A (en) * 2010-07-23 2012-02-09 Ngk Spark Plug Co Ltd Ceramic joined body
US20130334199A1 (en) * 2011-03-01 2013-12-19 Applied Materials, Inc. Thin heated substrate support
JP5961917B2 (en) * 2011-03-24 2016-08-03 住友電気工業株式会社 Wafer holder
JP6223983B2 (en) * 2011-09-30 2017-11-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrostatic chuck with temperature control
CN103938186B (en) * 2013-01-23 2016-12-07 北京北方微电子基地设备工艺研究中心有限责任公司 Pallet, MOCVD reaction chamber and MOCVD device
JP6080571B2 (en) * 2013-01-31 2017-02-15 東京エレクトロン株式会社 Mounting table and plasma processing apparatus
US9196514B2 (en) * 2013-09-06 2015-11-24 Applied Materials, Inc. Electrostatic chuck with variable pixilated heating
US9853579B2 (en) * 2013-12-18 2017-12-26 Applied Materials, Inc. Rotatable heated electrostatic chuck
TWI734668B (en) * 2014-06-23 2021-08-01 美商應用材料股份有限公司 Substrate thermal control in an epi chamber
CN105474381B (en) * 2014-07-23 2018-06-05 应用材料公司 The substrate support of tunable controlled temperature
JP6392612B2 (en) * 2014-09-30 2018-09-19 日本特殊陶業株式会社 Electrostatic chuck
JP6463938B2 (en) * 2014-10-08 2019-02-06 日本特殊陶業株式会社 Electrostatic chuck
JP5987966B2 (en) * 2014-12-10 2016-09-07 Toto株式会社 Electrostatic chuck and wafer processing equipment
US10781518B2 (en) 2014-12-11 2020-09-22 Applied Materials, Inc. Gas cooled electrostatic chuck (ESC) having a gas channel formed therein and coupled to a gas box on both ends of the gas channel
US9888528B2 (en) * 2014-12-31 2018-02-06 Applied Materials, Inc. Substrate support with multiple heating zones
US20160230269A1 (en) * 2015-02-06 2016-08-11 Applied Materials, Inc. Radially outward pad design for electrostatic chuck surface
JP6124156B2 (en) * 2015-04-21 2017-05-10 Toto株式会社 Electrostatic chuck and wafer processing equipment
US9870934B2 (en) 2015-07-28 2018-01-16 Micron Technology, Inc. Electrostatic chuck and temperature-control method for the same
TW202224081A (en) * 2015-08-06 2022-06-16 美商應用材料股份有限公司 Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
JP6937753B2 (en) * 2015-12-07 2021-09-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Fused cover ring
US10582570B2 (en) * 2016-01-22 2020-03-03 Applied Materials, Inc. Sensor system for multi-zone electrostatic chuck
US10079168B2 (en) * 2016-11-08 2018-09-18 Lam Research Corporation Ceramic electrostatic chuck including embedded Faraday cage for RF delivery and associated methods for operation, monitoring, and control
US10246777B2 (en) * 2017-06-12 2019-04-02 Asm Ip Holding B.V. Heater block having continuous concavity
US11387134B2 (en) * 2018-01-19 2022-07-12 Applied Materials, Inc. Process kit for a substrate support
JP6522180B1 (en) * 2018-02-08 2019-05-29 Sppテクノロジーズ株式会社 Substrate mounting table, plasma processing apparatus provided with the same, and plasma processing method
WO2020054682A1 (en) * 2018-09-13 2020-03-19 日本碍子株式会社 Wafer mounting device
WO2020163060A1 (en) * 2019-02-05 2020-08-13 Applied Materials, Inc. Substrate support for chucking of mask for deposition processes
US11887878B2 (en) * 2019-06-28 2024-01-30 Applied Materials, Inc. Detachable biasable electrostatic chuck for high temperature applications
CN110331386A (en) * 2019-07-09 2019-10-15 长江存储科技有限责任公司 The method of film is formed on a semiconductor wafer
JP7390880B2 (en) * 2019-12-05 2023-12-04 東京エレクトロン株式会社 Edge ring and substrate processing equipment
US11551951B2 (en) 2020-05-05 2023-01-10 Applied Materials, Inc. Methods and systems for temperature control for a substrate
CN111607785A (en) * 2020-05-26 2020-09-01 北京北方华创微电子装备有限公司 Heating device and semiconductor processing equipment
TWI748774B (en) * 2020-12-01 2021-12-01 天虹科技股份有限公司 Wafer support and thin film deposition apparatus using the same
CN114959654B (en) * 2021-02-26 2024-01-09 鑫天虹(厦门)科技有限公司 Wafer bearing disc and thin film deposition device using same
WO2024015187A1 (en) * 2022-07-11 2024-01-18 Applied Materials, Inc. Process kit for a substrate support

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150839A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Semiconductor assembling apparatus
JPH07153822A (en) * 1993-11-30 1995-06-16 Oki Electric Ind Co Ltd Plasma process equipment
JPH0945624A (en) * 1995-07-27 1997-02-14 Tokyo Electron Ltd Leaf-type heat treating system
JPH10303286A (en) * 1997-02-25 1998-11-13 Applied Materials Inc Electrostatic chuck and semiconductor manufacturing equipment
JP3805134B2 (en) * 1999-05-25 2006-08-02 東陶機器株式会社 Electrostatic chuck for insulating substrate adsorption
US6740853B1 (en) * 1999-09-29 2004-05-25 Tokyo Electron Limited Multi-zone resistance heater
JP2002170753A (en) * 1999-11-30 2002-06-14 Ibiden Co Ltd Ceramic heater for manufacturing and inspecting semiconductor
JP4209057B2 (en) * 1999-12-01 2009-01-14 東京エレクトロン株式会社 Ceramic heater, substrate processing apparatus and substrate processing method using the same
US6223447B1 (en) * 2000-02-15 2001-05-01 Applied Materials, Inc. Fastening device for a purge ring
US6481886B1 (en) * 2000-02-24 2002-11-19 Applied Materials Inc. Apparatus for measuring pedestal and substrate temperature in a semiconductor wafer processing system
KR20010111058A (en) * 2000-06-09 2001-12-15 조셉 제이. 스위니 Full area temperature controlled electrostatic chuck and method of fabricating same
JP4697833B2 (en) * 2000-06-14 2011-06-08 キヤノンアネルバ株式会社 Electrostatic adsorption mechanism and surface treatment apparatus
US6475336B1 (en) * 2000-10-06 2002-11-05 Lam Research Corporation Electrostatically clamped edge ring for plasma processing
JP4620879B2 (en) * 2001-01-23 2011-01-26 キヤノンアネルバ株式会社 Substrate temperature control mechanism and vacuum processing apparatus
KR100397891B1 (en) 2001-07-25 2003-09-19 삼성전자주식회사 chuck assembly of etching equipment for fabricating semiconductor device
US6664738B2 (en) * 2002-02-27 2003-12-16 Hitachi, Ltd. Plasma processing apparatus
JP4355159B2 (en) 2002-04-16 2009-10-28 キヤノンアネルバ株式会社 Electrostatic chuck holder and substrate processing apparatus
US6896765B2 (en) 2002-09-18 2005-05-24 Lam Research Corporation Method and apparatus for the compensation of edge ring wear in a plasma processing chamber
CN2585414Y (en) * 2002-11-08 2003-11-05 冯自平 Heat sink having even temp. channel
US7347901B2 (en) * 2002-11-29 2008-03-25 Tokyo Electron Limited Thermally zoned substrate holder assembly
JP2004282047A (en) 2003-02-25 2004-10-07 Kyocera Corp Electrostatic chuck
EP1458019A3 (en) * 2003-03-13 2005-12-28 VenTec Gesellschaft für Venturekapital und Unternehmensberatung Mobile transportable electrostatic substrate holders
CN1310285C (en) * 2003-05-12 2007-04-11 东京毅力科创株式会社 Processing device
US7072165B2 (en) * 2003-08-18 2006-07-04 Axcelis Technologies, Inc. MEMS based multi-polar electrostatic chuck
KR100666039B1 (en) * 2003-12-05 2007-01-10 동경 엘렉트론 주식회사 Electrostatic chuck
JP4674792B2 (en) 2003-12-05 2011-04-20 東京エレクトロン株式会社 Electrostatic chuck
US7697260B2 (en) * 2004-03-31 2010-04-13 Applied Materials, Inc. Detachable electrostatic chuck
US20060023395A1 (en) * 2004-07-30 2006-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for temperature control of semiconductor wafers
CN100382275C (en) * 2004-10-29 2008-04-16 东京毅力科创株式会社 Substrate mounting table, substrate processing apparatus and substrate temperature control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493639B (en) * 2008-05-23 2015-07-21 Lam Res Corp Electrical and optical system and methods for monitoring erosion of electrostatic chuck edge bead materials
US10096494B2 (en) 2010-10-22 2018-10-09 Applied Materials, Inc. Substrate support with symmetrical feed structure
US10770328B2 (en) 2010-10-22 2020-09-08 Applied Materials, Inc. Substrate support with symmetrical feed structure
TWI514469B (en) * 2012-11-12 2015-12-21

Also Published As

Publication number Publication date
JP2007300057A (en) 2007-11-15
KR20070105828A (en) 2007-10-31
CN101887865A (en) 2010-11-17
JP5069452B2 (en) 2012-11-07
TWI463588B (en) 2014-12-01
TWI357629B (en) 2012-02-01
KR101387598B1 (en) 2014-04-23
CN101093811A (en) 2007-12-26
JP2007300119A (en) 2007-11-15
JP5183092B2 (en) 2013-04-17
CN102593031A (en) 2012-07-18
CN101093811B (en) 2012-04-25
KR101380879B1 (en) 2014-04-02
KR20070105929A (en) 2007-10-31
TW200807606A (en) 2008-02-01
CN101093812A (en) 2007-12-26
CN101887865B (en) 2013-06-19
CN102593031B (en) 2015-09-16

Similar Documents

Publication Publication Date Title
TW200809999A (en) Substrate support with electrostatic chuck having dual temperature zones
US8663391B2 (en) Electrostatic chuck having a plurality of heater coils
US10257887B2 (en) Substrate support assembly
KR101532906B1 (en) Substrate processing with rapid temperature gradient control
CN109872939B (en) Support assembly and method of assembling a support assembly
TWI353004B (en) Substrate heater assembly
CN102105253B (en) High temperature electrostatic chuck and using method
TW401591B (en) A processing chamber and method for confining plasma
JP2971847B2 (en) Method and apparatus for cleaning process in high temperature, corrosive, plasma environment
TWI251895B (en) Systems for heating wafers
US20010042594A1 (en) Process chamber having improved temperature control
JP2015536043A (en) Temperature control in substrate processing systems
CN110226222A (en) Electrostatic chuck with radio frequency isolation formula heater
CN108682635B (en) Wafer seat with heating mechanism and reaction cavity comprising wafer seat
CN209607706U (en) Substrate heater for semiconductor processing chamber
JP2023544418A (en) Pedestal heater block with asymmetric hot wire structure