TW200809019A - Crystal SiC, method and device for producing the same - Google Patents

Crystal SiC, method and device for producing the same Download PDF

Info

Publication number
TW200809019A
TW200809019A TW096116628A TW96116628A TW200809019A TW 200809019 A TW200809019 A TW 200809019A TW 096116628 A TW096116628 A TW 096116628A TW 96116628 A TW96116628 A TW 96116628A TW 200809019 A TW200809019 A TW 200809019A
Authority
TW
Taiwan
Prior art keywords
sic
single crystal
raw material
crystal sic
producing
Prior art date
Application number
TW096116628A
Other languages
Chinese (zh)
Inventor
Masanori Ikari
Toru Kaneniwa
Takao Abe
Original Assignee
Shinetsu Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Chemical Co filed Critical Shinetsu Chemical Co
Publication of TW200809019A publication Critical patent/TW200809019A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This invention provides a single crystal SiC production method for epitaxially growing high-quality single crystal SiC in which mixing of polycrystalline SiC is avoided, and provides the resulting high-quality single crystal SiC. Moreover, this invention provides a single crystal SiC production device capable of avoiding mixing of polycrystalline SiC and allowing epitaxial growth of high-quality single crystal SiC. The single crystal SiC production method of this invention is characterized by including: a step of arranging, within a crucible, a susceptor mounted with SiC seed single crystals, and a raw material supply tube for supplying raw materials for producing single crystal SiC from the outside; and a step of growing single crystal SiC by supplying raw materials for producing single crystal SiC together with a careier gas, through a raw material supply tube, into the crucible set to a high temperature atmosphere; wherein, assuming the distance between the raw material supply tube and the SiC seed single crystal to be L (mm), and the linear velocity of the carrier gas to be S (mm/sec), a relationship of L/S (serc) ≤3 is satisfied.

Description

200809019 九、發明說明: 【發明所屬之技術領域】 ,_材料而 【先前技術】 (B〇nd energy) ^ 5 而且導熱係數^因此作為耐嚴苛環境用設備或功 t材料是相當有效益的。除此之外,由於 ^ g g C〇nStant)接近GaN (氮化鎵)的光栅常 數,因此作為GaN-LED用的基板材料而言也非常有用。栅吊 (傳統上,此種單結晶SiC的製造方式包括:在石墨 cmc脇〉内使Sic粉末昇華,在石墨綱的内 縣晶化的瑞里法(Rayleigh MethGd);以 ς 為^^使原料配置•溫度分布最佳化,然後於 = =西己置山SiC鮮結晶,使其再結晶成長為蟲晶(epkaxiai) ^ 文$式&里法,將耽體源(gas_SGurce) #由攜載氣體 ^),輸送到被加熱後的SiC種單結晶上,並在結晶表面上一 “產生化學反應’-邊進行|晶成長的CVD法;以及在石專 ,内.,於,sic粉末與Sic鮮結晶接近的狀態下,使sic ς 末在sc鮮結晶上’再結晶成長為a晶的昇華接近法等。 、然而’就現況而言,上述所介紹的各種單結晶sic的製造方 士 ’無論是哪-種’都仍然各自有其問題存在。首先,在瑞里法 中’雖然能多句製造結晶I生良好的單結晶Sic,但是因為這種方 ,以自然發生的成核(nudeation)為基礎而進行長晶,因此不容 易進行形狀控制以及結晶面控制,且以此種方式亦無法得 口 徑的晶圓。 ^曰而就改良式瑞里法而言,雖然可以用數百^m/h左右的高速 知·到大口徑的單結晶SiC鑄錠(ingot)。但因為此種製造法係以 200809019 ,疋狀的方式進行蟲晶成長,因此會有在結晶喊 (mlcr〇pipe)的微小孔洞的問題。 、' 吕 置紝法中,雖然能夠製造高純度且低缺陷密度的良質 但是因為此種製造法係以稀薄的氣體源進行蟲晶成 ^,口此〃長晶速度較慢,成長速度的上限僅有約左 右’因,有無法得到長形的單結晶SiC鑄錠的問題。 工 一在昇華接近法中,雖然能夠以相對比較簡單的結構,而實規 成長’但是由於結構上的限制,因此仍有無法 製造長形的早結晶Sic鑄錠的問題。 wif ’業界提出了—種_性賴氣縣二氧切超微粒盘 妷超被粒供應到被加熱固持的Sic種單結晶上,且在Sic 社 晶上以碳將二氧切還原的方法。而藉由這種方法 註曰° 沉在Sic種單結晶上以高速成長為蠢晶(請參照 1)。在此種製造方式中’可以用高速獲得高品質的單結晶sic, 且其可抑制產生微細管等的缺陷。200809019 IX. Description of the invention: [Technical field to which the invention pertains], _material and [prior art] (B〇nd energy) ^ 5 and thermal conductivity ^ is therefore quite effective as a harsh environment or equipment . In addition, since ^ g g C〇nStant) is close to the grating constant of GaN (gallium nitride), it is also very useful as a substrate material for GaN-LED. Grid crane (traditionally, the production method of such single crystal SiC includes: sublimation of Sic powder in graphite cmc flank), Rayleigh MethGd crystallization in the inner spectrum of graphite, and ς Raw material configuration • Optimized temperature distribution, then ===Xijishanshan SiC fresh crystal, recrystallize it into insect crystal (epkaxiai) ^文$式& Lifa, the source of the body (gas_SGurce) #由Carrying gas ^), transported to the heated SiC seed single crystal, and a "chemical reaction" on the crystal surface - CVD method for crystal growth; and in the stone, inside, sic In the state where the powder is close to the Sic fresh crystal, the sic ' is recrystallized into a crystal sublimation close method on the sc fresh crystal. However, in the current situation, the various single crystal sic described above is manufactured. Alchemist 'No matter which kind--everyone still has its own problems. First of all, in Ruilifa, although it can produce a single crystal Sic with good crystals, but because of this, natural nucleation occurs. (nudeation) based on long crystals, so it is not easy to shape control As well as crystallized surface control, and in this way, it is impossible to obtain a wafer with a diameter. In the case of the improved Rayleigh method, it is possible to use a high-speed single crystal of about several hundred m/h. SiC ingot (ingot). However, because this method of manufacturing is carried out in 200809019, the crystal growth of the insect crystals, there is a problem of tiny holes in the crystallized (mlcr〇pipe). Although it is possible to produce high-purity and low-defect density, because this method is based on a thin gas source, the crystal growth rate is slow, and the upper limit of the growth rate is only about There is a problem that a long-form single-crystal SiC ingot cannot be obtained. In the sublimation approach method, the first step can be grown in a relatively simple structure, but due to structural limitations, it is still impossible to manufacture a long shape. The problem of early crystalline Sic ingots. Wif 'Industry has proposed a kind of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Carbon will be reduced by dioxotomy By this method, it is deposited on a single crystal of Sic to grow into a stupid crystal at a high speed (refer to 1). In this manufacturing method, a high-quality single crystal sic can be obtained at a high speed, and it can be It suppresses the occurrence of defects such as microtubules.

專利文件1所減的單結晶sic之製造方法,係在高溫 下以碳使二氧化矽依據以下的化學式(1)而被還原。The method for producing a single crystal sic reduced by Patent Document 1 is to reduce cerium oxide by carbon at a high temperature in accordance with the following chemical formula (1).

Si02 + 3C—SiC + 2C〇t …化學式⑴ 化學式(1)的反應係化學反應,且因為就Si〇2而言,在藉由 加熱使其蒸發之前,都是以流動液體的型態而存在,所以當^化 學反應在SiC種單結晶上連續發生時,可使Sic種單結晶的界面 能(interface energy)減小,同時使隨時產生的sic粉末‘二Si^ 單結晶的排列資訊成長為磊晶。 然而,如果化學式(1)的化學反應並非在sic種單結晶上產 生,而是例如在以惰性攜載氣體輸送的運送途中產生,且=到達 SiC種單結晶之前就完成反應的話,供應到種單結晶的 就非二氧化矽與碳,而是sic粉末。 …4 在專利文件1所揭i各的早結晶SiC的製造方法中,因為別c 粉末並非係被置於可使其成為蒸氣的程度之高溫下使其^行反 200809019 應,因此如果供應到SiC種單結晶的原料是沉粉 % 體^粉末·在Sic種單結晶的表面上就不會進g新“α 而疋直接以多結晶塊的型態,與Sic種單結晶結合。也就是 健是多結晶Sic在Sic種單結晶上不斷地結合而已,而非^士 晶SiC的製造。而且由於實際上,因為在化學式⑴中的反應早^ 只要原,可被加熱的話’就得以迅速進行的反應,因此,^應到 Sf種单結晶的原料並非是二氧化石夕與碳,而是sic粉末。&amp;個 問題’在專利文件1所揭露的單結晶Sic之製造方 一個經常性的顯著問題。 曰烕為 【專利文件1】_日本專利第;3505597號公報 【發明内容】 璧遺遗欲解決之課韻 本發明侧贿決上蘭課顧構思喊。本發明之 單Ϊ晶Sic的製造方法,可避免多結晶SiC的混入, 丄同σσ貝的單結晶SiC成長為H以及,依據該方法而得到 2品質單結晶Sic。除此之外,本發明之另—目的係在提供」 4、,J SC的製造裝置,可避免多結晶sic的混入,且使高品 貝的早結晶Sic成長為磊晶。 上述的課題可用以下所述的&lt;1:&gt;、&lt;8&gt;、及&lt;9&gt;所記 的方式而解決。較佳的實施態樣&lt;2&gt;〜&lt;7&gt; ^ &lt;1&gt; •一種單結晶Sic的製造方法,其特徵在=戟、下 包含:將固定有SiC種單結晶的基座以及用以從外部供應單 結晶Sic製造用原料的原料供應管,設置於坩堝内的步^ ; 以及, 在充填有高溫環境氣體之該坩堝内,將該單結晶sic製造用 原料與攜載氣體一起,經由原料供應管供應,以使該單έ士曰 SiC成長的步驟, 、口日日 200809019 ^ 此广卜將該,料供應管與該SiC種單結晶之間的距離設為 L 且°亥攜載氣體的線速度設為S (mm/sec)時,滿 足L/S (sec) $3的條件。 . 士、&lt; 1 &gt;之單結晶SiC的製造方法,其中,該單結晶 ▲ SiC製造用原料係二氧化%粒子及碳粒子。 &lt;3&gt; 如&lt;1&gt;或&lt;2&gt;之單結晶SiC的製造方法,其中,該 原料供應管與該Sic種單結晶之間的距離在6〇mm以下。 &lt;4&gt; 如&lt;:1:&gt;或&lt;2&gt;之單結晶Sic的製造方法,其中,該 原料供應管與該Sic種單結晶之間的距離在10mm以下。 m &lt;5&gt; 、,〈^或、2〉之單結晶Sic的製造方法,其中,該 攜載氣體的線速度在20mm/sec以上,200mm/sec以下。 &lt;6&gt; ^α&lt;α&gt;或&lt;2&gt;之單結晶SiC的製造方法,其中,該 攜載氣體的線速度在60mm/sec以上,200mm/sec以下。 &lt;7&gt; 如&lt;1:&gt;或&lt;2&gt;之單結晶SiC的製造方法,其中,該 攜載氣體為氬氣。 &lt;7&gt;中任一者 &lt;8&gt; —種單結晶SiC,其特徵為藉由&lt;〇&gt; 之單結晶SiC的製造方法所製造而成。 &lt;9&gt; 一種單結晶SiC製造裝置,其特徵為: 具備:坩堝;設置在該坩堝内,固定有Sic種單結晶的基 座;以及從外部供應單結晶Sic製造用原料的原料供應管; 此外,更具備距離調節裝置,用以調節該原料供^與該 SiC種單結晶之間的距離,及/或線速度調節裝置,用以調 節從該原料供應管所供應的攜載氣體的線速度。 &quot; 根據本發明,可獲得一種單結晶Sic的製造方法。而根據此 種方法,可避免多結晶SiC的混入,且使高品質的單結晶sic成 長為蠢晶。除此之外,根據本發明,亦可獲得一種單結晶§ic的 製造裝置,可避免多結晶sic的混入,且使高品質的單;晶sic 成長為磊晶。 、 π曰曰 200809019 【實施方式】 形態。 包含以下兩個步驟: 供應ps造=== 卜,.在將該原料供應f與該沉種單結晶之間的距離設為 τ /ς彳\ ’且將该攜載氣體的線速度設為s (mm/sec)時,滿足 L/S (sec) ^3 的條件。 了 社曰ίΐίΐ 此種在單結日日日SiC製造用原料職SiC種單 Γ,曰可:、、=3成長範圍之前,避免該原料成為sic粉末的方 ^ ς.ΡίΛΛ早結晶的界面能減小。同時’化學式⑴的反應隨 二曰1μ,早、t晶的界面發生,而反應生成的Sic可仿效sic種 早、、、口 B曰的排列資訊成長為磊晶。 單用HL/S (sec)幻的條件限制,可避免在 半、、'口日日slC製造用原料到達Sic種單結晶之前成為Sic粉末。 义,外’所「在單結晶SiC製造用原料到達Sic種單結晶 為sf粉末」,係指藉由原料供應管而供應的該sic製造 二;斗,於藉由上述以化學式(丨)表示的反應而到達sic種單結晶 之前,即成為SiC粉末之意。而所謂的「到達Sic種單結晶 疋到達SiC種單結晶上」,係指「到達產生單結晶sic的成長 反應之範圍」之意,即意指SiC種單結晶及/或單結晶Sic成長 層。 ;在本^明中,L/S (sec)在3以下。如果L/s (_)大於3 的遣,在單結晶SiC製造用原料之一部或全部到達yc種單結晶 200809019 之前,該原料就會變成SiC粉末,製造後的單結晶SiC就會有多 結晶SiC粉末混入。 L/S (sec)較佳為設定於〇·〇5〜3的範圍内;更佳為在2以 下;最佳係在1以下。 原料供應管與SiC種單結晶之間的距離l (mm),較佳為 在60mm以下;更佳為在10mm以下。另外,原料供應管與&amp;C 種單結晶之間的距離較佳係在lmm以上。 ^藉由將原料供應管與Sic種單結晶之間的距離,設定在上述Si02 + 3C-SiC + 2C〇t (chemical formula (1) The reaction of the chemical formula (1) is a chemical reaction, and since Si〇2 is present in the form of a flowing liquid before being evaporated by heating. Therefore, when the chemical reaction occurs continuously on the SiC seed single crystal, the interface energy of the Sic single crystal can be reduced, and the information of the sic powder 'SiSi^ single crystal generated at any time can be grown to Epitaxial. However, if the chemical reaction of the chemical formula (1) is not produced on the single crystal of the sic species, but is produced, for example, during transport on an inert carrier gas transport, and the reaction is completed before reaching the single crystal of the SiC species, the feed is supplied to the species. The single crystal is not cerium oxide and carbon, but sic powder. ...4 In the method for producing early-crystallized SiC disclosed in Patent Document 1, since the other c powder is not placed at a high temperature at which it can be made into a vapor, it is required to be counter-200809019, so if supplied The raw material of the single crystal of SiC is powdered powder. The powder on the surface of the single crystal of Sic does not enter the new "α and the tantalum directly combines with the single crystal of the Sic species. Jian is a polycrystalline Sic that is continuously combined on a single crystal of Sic species, rather than the production of SiC SiC. And, in fact, because the reaction in the chemical formula (1) is as early as possible, it can be heated quickly. The reaction carried out, therefore, the raw material that should be applied to the single crystal of the Sf species is not the sulphur dioxide and the carbon, but the sic powder. & The problem of the single crystal Sic disclosed in Patent Document 1 is a recurring The problem of the invention is as follows: Patent Document 1] Japanese Patent No. 3505597 [Invention] Sic's manufacturing method can avoid multiple knots In the case of the incorporation of SiC, the single crystal SiC of the same σσ shell grows to H, and the two-quality single crystal Sic is obtained according to the method. In addition, the other object of the present invention is to provide "4," the manufacture of J SC. The device can avoid the incorporation of polycrystalline sic and grow the early crystalline Sic of high scallops into epitaxial. The above problem can be solved by the following descriptions of &lt;1:&gt;, &lt;8&gt;, and &lt;9&gt; described below. Preferred Embodiments &lt;2&gt;~&lt;7&gt; ^ &lt;1&gt; A method for producing a single crystal Sic, characterized in that: 戟 and under: a susceptor to which a single crystal of SiC is fixed and used a raw material supply pipe for supplying a raw material for single crystal Sic production from the outside, and a step of being disposed in the crucible; and, in the crucible filled with a high-temperature ambient gas, the raw material for manufacturing the single crystal sic together with the carrier gas The step of supplying the single gentleman 曰 SiC through the raw material supply pipe, and the distance between the material supply pipe and the single crystal of the SiC species is set to L and When the linear velocity of the carrier gas is S (mm/sec), the condition of L/S (sec) $3 is satisfied. The method for producing a single crystal SiC according to <1>, wherein the single crystal ▲ SiC is used as a raw material for the production of oxidized % particles and carbon particles. &lt;3&gt; The method for producing a single crystal SiC according to <1> or <2>, wherein a distance between the raw material supply pipe and the Sic single crystal is 6 mm or less. &lt;4&gt; The method for producing a single crystal Sic of &lt;:1:&gt; or &lt;2&gt;, wherein the distance between the raw material supply tube and the single crystal of the Sic species is 10 mm or less. The method for producing a single crystal Sic of m &lt;5&gt;, <^ or 2>, wherein the linear velocity of the carrier gas is 20 mm/sec or more and 200 mm/sec or less. &lt;6&gt; The method for producing a single crystal SiC of ?α&lt;α&gt; or &lt;2&gt;, wherein the linear velocity of the carrier gas is 60 mm/sec or more and 200 mm/sec or less. &lt;7&gt; The method for producing single crystal SiC according to &lt;1:&gt; or &lt;2&gt;, wherein the carrier gas is argon gas. &lt;7&gt; The &lt;8&gt; is a single crystal SiC which is produced by a method for producing single crystal SiC of &lt;〇&gt;. &lt;9&gt; A single-crystal SiC manufacturing apparatus comprising: a crucible; a susceptor provided with a single crystal of Sic in the crucible; and a raw material supply pipe for supplying a raw material for producing a single crystal Sic from the outside; In addition, a distance adjusting device is further provided for adjusting a distance between the raw material and the single crystal of the SiC species, and/or a linear velocity adjusting device for adjusting a gas carrying gas supplied from the raw material supply pipe. speed. &quot; According to the present invention, a method of producing a single crystal Sic can be obtained. According to this method, the incorporation of polycrystalline SiC can be avoided, and the high-quality single crystal sic can be made into a stupid crystal. In addition, according to the present invention, a single crystal §ic manufacturing apparatus can be obtained, which can avoid the incorporation of polycrystalline sic and grow a high-quality single crystal sic into epitaxial grains. π曰曰 200809019 [Embodiment] Form. The following two steps are included: Supply ps === Bu, the distance between the raw material supply f and the seeded single crystal is set to τ /ς彳\ ' and the linear velocity of the carrier gas is set to When s (mm/sec), the condition of L/S (sec) ^3 is satisfied.社 曰 ΐ 此种 此种 此种 SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC SiC Reduced. At the same time, the reaction of the chemical formula (1) occurs at the interface between the early and the t-crystals, and the Sic formed by the reaction can be imitated by the arrangement information of the sic species early, and the B 曰. By using the HL/S (sec) phantom condition limit alone, it is possible to avoid Sic powder before the raw material for the S1C manufacturing process reaches the Sic single crystal. In the case of "single crystal SiC manufacturing raw material, the Sic seed single crystal is sf powder", which means that the sic is supplied by the raw material supply pipe; the bucket is represented by the above chemical formula (丨) Before the reaction reaches the single crystal of the sic species, it becomes the meaning of SiC powder. The so-called "reaching Sic species single crystal 疋 reaches the SiC seed single crystal" means "reaching the range of the growth reaction that produces a single crystal sic", meaning SiC species single crystal and / or single crystal Sic growth layer . In this specification, L/S (sec) is 3 or less. If L/s (_) is greater than 3, the raw material becomes SiC powder before or after one or all of the raw materials for single crystal SiC production reaches yc single crystal 200809019, and there will be more single crystal SiC after manufacture. The crystalline SiC powder was mixed. L/S (sec) is preferably set in the range of 〇·〇 5 to 3; more preferably 2 or less; and most preferably 1 or less. The distance l (mm) between the raw material supply pipe and the SiC seed single crystal is preferably 60 mm or less; more preferably 10 mm or less. Further, the distance between the raw material supply pipe and the &amp;C single crystal is preferably 1 mm or more. ^ set by the distance between the raw material supply pipe and the single crystal of the Sic species

範,内之方式,可有效地避免在單結晶sic製造用原料到達&amp;CFan, the way inside, can effectively avoid the arrival of raw materials in single crystal sic manufacturing &amp;C

種,結晶上之前,就成為SiC粉末的情況產生。又,如果原料供 應豸與SiC種單結晶之間的距離在上述範圍内的話,因為可得到 良好的,晶成長速度,因此是一較佳的實施型態。此外,因為原 料供應官與SiC種單結晶之間的距離容易控制,因此是一較佳 實施型態。 ,此,、所謂的「原料供應管與sic種單結晶之間的距離」 f曰原料供應管在坩禍内之原料供應口(Sic製造用原料的 口)與SiC種單結晶的表面之間的距離。」又,亦可於士 f * Sic種單結晶與原料供應口之間的距離設 範圍内’然後隨著該單結晶sic的成長 與單結晶Sic成長層之間的距離,使其維持在上ΐιί 士原料供應管與SiC種單結晶之間的距離,可 無特別的限制。例如,可使原料供應管為可動: 座為可動,或使兩者均為可動。’戈使; 開始;:=供=二種==距離,錄 造單結晶sic的過程應管間二在: 11 200809019 攜載氣體的線速度S (mm/sec)較佳為設定成20mm/sec以 上,200mm/Sec以下;更佳為設定成60mm/sec以上,2〇〇mm/sec 以下。 因為如果將攜載氣體的線速度設在2〇mm/sec以上的話,單 結晶SiC製造用原料就不會在原料供應管内產生堵塞的現象,因 此是較佳的實施型態。又,因為如果攜載氣體的線速度設在 200mm/sec以下的話,可以有效的避免單結晶Sic製造用原料在 到達SiC種單結晶之前,成為siC粉末,因此亦是較佳的實施型 態。‘ 、In the case of SiC powder, it is produced before crystallization. Further, if the distance between the raw material supply enthalpy and the SiC seed single crystal is within the above range, a good crystal growth rate can be obtained, which is a preferred embodiment. Further, since the distance between the raw material supplier and the single crystal of the SiC species is easily controlled, it is a preferred embodiment. Here, the so-called "distance between the raw material supply pipe and the sic seed single crystal" f曰 between the raw material supply port of the raw material supply pipe (the port of the Sic manufacturing raw material) and the surface of the SiC single crystal the distance. In addition, it is also possible to maintain the distance between the growth of the single crystal sic and the growth layer of the single crystal Sic in the range of the distance between the single crystal of the f*Sic species and the raw material supply port. There is no particular limitation on the distance between the 原料ιί raw material supply pipe and the SiC single crystal. For example, the raw material supply pipe can be made movable: the seat is movable, or both are movable. '戈使; start;:= supply=two kinds==distance, the process of recording a single crystal sic should be between two: 11 200809019 The linear velocity S (mm/sec) of the carrier gas is preferably set to 20mm/ More than sec, 200 mm/sec or less; more preferably set to 60 mm/sec or more and 2 mm/sec or less. If the linear velocity of the carrier gas is set to 2 〇mm/sec or more, the raw material for producing single crystal SiC does not cause clogging in the raw material supply pipe, and thus it is a preferred embodiment. Further, since the linear velocity of the carrier gas is set to 200 mm/sec or less, it is possible to effectively prevent the raw material for single crystal Sic production from becoming a siC powder before reaching the SiC seed single crystal, which is also a preferred embodiment. ‘ ,

在此,攜載氣體的線速度S (mm/sec),可由所供應的攜載 氣體f流量(mm3/sec),除以原料供應管的供應口的^積 (mm2)而求得。 ' 在本發明中,單結晶Sic製造用原料係與攜載氣體一起經由 原^供應管供應。單結晶SiC製造用原料較佳為連續供應。藉由 連縯供應單結晶sic製造用原料的方式,可使單結晶sic穩定地 成長,因此是較佳的實施型態。 •本叙明所使用之單結晶SiC製造用原料,較佳為二氧化矽 粒子與雜子。__二氧化雜子及雜子供應到 1種早結晶上的供應條件,只要是可將此等單結晶Sic製造用 原料在SC種單結晶上混合的狀態下被供應即 2單,Sic製造用原料,或是分別供應之後再在、 晶上混合亦可。 一〆在本發明中所使用的單結晶Sic製造用原料,可適當地使用 立f及碳粒子的固體粒子。而此等二氧化矽粒子及碳粒 ,徑、粒子形狀等並無特別的限制,例如可適當地利 Ϊ法(flame hydrclysis)所獲得之高純度二氧化石夕與 同、、、屯度的乙炔黑(acetylene black )等。 πΐϋΠϊ子與碳粒子的供應量之_並無_的限制, 田&amp;擇所合比。此外,也可以將該二氧化梦粒子及 12 200809019 碳粒子中的任意一個混合兩種以上而使用。另外,也可以視必要 而對該二氧化矽粒子及碳粒子進行前處理,或是微量添加其他成 分皆可。 . 、關於將該二氧化矽粒子與碳粒子供應到sic種單結晶上的方 式^可以例如是採用不間斷地連續供應的方法。例如,使用市面 上銷售的送粉機(powder feeder),可連續輸送粉體者即可。然 而、,為了避免在該單結晶sic製造用原料的供應線與單結晶sic 製造裝置内部有氧的混入,因此較佳的方式是使用事先以氬 (Argon)或氦(Helium)等的惰性氣體所取代的密 (hermetic)構造。 , ^除此之外,較佳的情況係使該單結晶Sic製造用原料盥彳崔載 3二起供應;而該攜載氣體較佳為例如氬氣及氦氣等的,ϋ攜 ΐυ此等氣體之中,使用氬氣作為攜載氣體較佳,因為氬 亂谷易L传,而且也比較容易進行處理。 另外在單結晶Sic中進行摻雜(doping)時,可在該單社 ί晉2巧原料中作為固體源而混合,或是在單結晶i g 體中作為氣體源’混合該摻雜成分亦可。就推雜 成刀而吕,可使用例如氮、A1(CH3)3、Β2Ή6等。 圓。ίϋΓ月Γί使用的Sic種單結晶,較佳為sic種單結晶晶 曰sic二_ '1、|形狀並無特別的限制,可以根據所欲的單結 ϊ單f日的日種^日、、形狀而適當選擇。例如,可適當利用沉 ϋ C種單結晶晶圓係將依改良式瑞里法而 侍之fiC早結aa視必要而進行過前處理者。 姓曰的製造雜並無特別的_,可以根據所欲的單 τ7 ^的大小、形狀、種類等而適當設定。較佳的# 〜2靴__,岐鉍如從 用以獲得本翻之單結晶Sic而使 〖 、 13 200809019 法、材質、原料供應方法、環境氣體調整方法、壓力控制方法 溫度控制方法等,可以根據所欲的單結晶SiC的大小^形狀\藉 類、單結晶SiC製造用原料之種類與數量.等適當選擇而得。 於本發明所使用的坩堝之形狀,關於其外形並鉦特別的 制,可以配合所欲的單結晶SiC的大小與形狀而適當'選擇。但^ 在本發明所使用的坩堝,較佳為具備:用以供固持s 紝 基射番入的孔洞;以及用以供供應單結晶Sic製造用原^= ,應官插入的孔洞。除此之外’較佳的方式係在配置 的如 直方向頂麟置有開π部。藉著在_設置開口部的;^ j 由熱對流,使成為上升氣流而向上昇的_内之環 , ,著此環境氣體而同樣上昇’對於反應並無助益 都可以從上部排放出去。 1^寸如禾4, ,此等之環境氣體或原料粉末等從上部 ^可連ϋ而且穩定地製造單結晶Sic,因此是較佳的實二 開π部,只要是設置於_的錯直方向頂面即可 的限制。當基座或原料供應管從坩堝的錯直頂、=特別 基座或原料供應管的周圍具備開口頂=二 以如則所述的方式設置,可避免掛網内的溫度降低。日、4邻 開口部的大小並無特別的限制,只要 士 ,上升氣流而向上昇之環境氣體,以及隨著此成 二’對於反應並無助益的原料粉末等,從 ‘二亡 所欲的ί結晶別^制考=配合 溫度的範巧,該基座的材質較佳為石墨製。…、考慮到使用 供應單結晶SiC製造用原料的原料供庫萬 ^ Sic μ: 14 200809019 是,該供應官的喷嘴與固持SiC種結晶的基座之間的距離如上所 述’較佳是在60mm以下,更佳是在i〇mm以下。此外,考慮到 使用溫度的範圍,該供應管的材質較佳為石墨製。 攜載氣體並無特別的限制,較佳為惰性氣體,尤其是氬氣 * (Ar)。此外,此攜載氣體從原料供應管被喷出的線速度較佳^ 20mm/SeC 以上,200mm/Sec 以下;更佳為 6〇mm/sec 以上了 200mm/sec 以下。 【實施例】 以下說明關於本發明之實施例。 圖1係顯示用以製造本發明之單結晶Sic的裝置之一例, 此係使用高頻感應加熱爐為例說明。 在永=的密閉腔室1内,配置碳製的圓筒坩堝2 (直徑 100mm,高度150mm),而在該水冷的密閉腔室1的外侧,配^ 有高頻感應加熱線圈3。 在该圓筒掛禍2内部上方,貫穿插入有用以固持沉種單姓 晶4的基座5。此基座5延伸到圓筒糊2的外側,可 = 示的旋轉機構,以該基座的中心軸為旋轉軸而轉動。另/ = ^端’固持SiC種單結晶晶圓的表面之法線方向,可在從= ^座的热直方向略平行起到最大傾斜衫。角為止的範圍内自由設 疋0Here, the linear velocity S (mm/sec) of the carried gas can be obtained by dividing the flow rate (mm3/sec) of the supplied carrier gas by the product (mm2) of the supply port of the raw material supply pipe. In the present invention, the raw material for single crystal Sic production is supplied together with the carrier gas through the original supply pipe. The raw material for single crystal SiC production is preferably continuously supplied. It is a preferred embodiment that the single crystal sic can be stably grown by continuously supplying a raw material for the production of a single crystal sic. • The raw material for the production of single crystal SiC used in the present invention is preferably cerium oxide particles and hetero. __The supply conditions for the supply of the dioxins and the heterons to one type of early crystallization are provided as long as the raw materials for the production of the single crystal Sic are mixed in the single crystal of the SC species, which is manufactured by Sic. It is also possible to use raw materials or to mix them separately and then on the crystals. As the raw material for producing a single crystal Sic used in the present invention, solid particles of the f and carbon particles can be suitably used. Further, the cerium oxide particles and the carbon particles are not particularly limited in terms of diameter, particle shape, and the like. For example, high-purity sulphur dioxide obtained by flame hydrclysis can be suitably used in the same manner as acetylene. Black (acetylene black) and the like. There is no limit to the supply of π scorpion and carbon particles, and the combination of field &amp; Further, two or more of the oxidized dream particles and the 12 200809019 carbon particles may be used in combination of two or more. Further, the cerium oxide particles and carbon particles may be pretreated as necessary, or other components may be added in a trace amount. The method of supplying the cerium oxide particles and the carbon particles to the single crystal of the sic can be, for example, a method of continuously supplying continuously. For example, a powder feeder that is commercially available can be used to continuously transport the powder. However, in order to avoid the incorporation of oxygen into the supply line of the single crystal sic manufacturing raw material and the single crystal sic manufacturing apparatus, it is preferable to use an inert gas such as Argon or Helium. The substituted hermetic structure. In addition, it is preferable to supply the raw material for manufacturing the single crystal Sic, such as argon gas and helium gas, and the carrier gas is preferably carried. Among the gases, it is preferred to use argon as the carrier gas, because the argon is easy to pass, and it is easier to handle. In addition, when doping in a single crystal Sic, it may be mixed as a solid source in the single material, or may be mixed as a gas source in a single crystal ig body. . For example, nitrogen, A1(CH3)3, Β2Ή6, etc. can be used. circle. S ϋΓ Γ 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状 形状Shape and appropriate choice. For example, it is possible to appropriately use the S-type C single-crystal wafer system to perform the pre-treatment according to the modified Ruili method. There is no special _ in the manufacturing of the surname ,, and it can be appropriately set according to the size, shape, type, and the like of the desired single τ7 ^. The preferred #~2boot__, for example, to obtain the single crystal Sic of the turn, to make the method, the material, the raw material supply method, the ambient gas adjustment method, the pressure control method temperature control method, etc. It can be suitably selected according to the size, shape, and type of the single crystal SiC to be used, and the type and amount of the raw material for single crystal SiC production. The shape of the crucible used in the present invention can be appropriately selected depending on the size and shape of the desired single crystal SiC. However, it is preferable that the crucible used in the present invention has a hole for holding the s 纴 base, and a hole for supplying the original single crystal Sic. In addition to this, the preferred method is such that the π portion is disposed in the straight direction of the configuration. By the convection of the opening portion, the heat is convected, and the ring that rises as the ascending air current rises, and the ambient gas rises as well. It is not helpful for the reaction and can be discharged from the upper portion. 1^ inch such as Wo 4, such ambient gas or raw material powder, etc. can be connected from the upper part and stably produce a single crystal Sic, so it is a better real two open π part, as long as it is set to _ straight The limit on the top of the direction can be limited. When the susceptor or raw material supply pipe is provided with an open top = two from the wrong top of the crucible, = special pedestal or raw material supply pipe, as described above, the temperature inside the hanging net can be prevented from being lowered. There is no particular restriction on the size of the opening of the 4th and the 4th, as long as the ascending airflow rises to the ambient gas, and as the raw material powder which does not contribute to the reaction, The crystallization of the crystal does not test the test = the temperature of the skill, the material of the base is preferably made of graphite. ..., considering the use of raw materials for supplying raw materials for the production of single crystal SiC for use in Kuwan ^ Sic μ: 14 200809019, the distance between the nozzle of the supply officer and the susceptor holding the SiC seed crystal is as described above. Below 60mm, more preferably below i〇mm. Further, in consideration of the range of the use temperature, the material of the supply pipe is preferably made of graphite. The carrier gas is not particularly limited, and is preferably an inert gas, particularly argon* (Ar). Further, the linear velocity at which the carrier gas is ejected from the raw material supply pipe is preferably 20 mm/Se or more and 200 mm/sec or less; more preferably 6 mm/sec or more and 200 mm/sec or less. [Embodiment] Hereinafter, an embodiment of the present invention will be described. Fig. 1 is a view showing an example of a device for producing a single crystal Sic of the present invention, which is exemplified by using a high frequency induction heating furnace. In the sealed chamber 1 of permanent =, a cylindrical cylinder 2 made of carbon (100 mm in diameter and 150 mm in height) is disposed, and a high-frequency induction heating coil 3 is disposed outside the water-cooled sealed chamber 1. A susceptor 5 for holding the seed crystal 4 is inserted through the inside of the cylinder. The base 5 extends to the outside of the cylindrical paste 2, and the rotating mechanism of the base 5 is rotated by the central axis of the base. The / / ^ terminal' holds the normal direction of the surface of the SiC single crystal wafer, which can be slightly parallel to the maximum tilting shirt from the hot straight direction of the ^^ seat. Freely set within the range of the corner 疋0

又Jirr在圓細2的錯直方向上方,基座5的 周圍,设置有開口部10。 J 應該單結晶Sic製造用原料粒子的原料供應管 自與基座5相反端的圓筒_ 2的底维: ,的外側’且^別與可獨立調節供應量的複數之原-’以及可調節較之惰性攜載氣體供細(糊示)連I 要利用事先混合好的單結晶Sic製造用原料的 -個原料贿槽;而要在供應f㈣使其混合時,職:氧= 15 200809019 - δ,1^^ 量調整,-邊進行㈣心_^_^取—邊對域㈣A進行流 _内部連續供應單=製二=適當的量,對該_ 另外,在圖1中,從原料供應管5到沿^種士曰 H間的距離L係可控_。 加熱爐,可藉由未圖示之真空排氣系統《力調節 置在;方,而將iLJJ”中,雖然是採用將原料供應管配 内’亦可變更為與此上下相反的型態配置 ^ =貫施例中’雖然基座與原料供應管的位置關係係呈丄t ^ ,、、、'而在不㈣本發明之作⑽範_,亦可分觀 可或是使供應管與基座兩者彼此呈現斜向或直角: 厚度上在長晶時’也同時形成 於該基座5,其在職内的前端部固定有s 3 iC種單結晶表面與原料供應管噴出口之間的乙4 到150mm (_之全長)的範圍内自由調整。又, =正該,節流量_概體供應_流量與供應管的内徑^ i,J 300?000mm/sec^ ^ 使用該高頻感應加熱爐,依以下的條件,赞曰 於該基座中,貫穿插入圓筒職内之―蠕Γ固^有H單 結晶。在此所使用的SiC種單結晶,係指以改良式瑞有里法^早 16 200809019 直徑為2公分的單結晶SiC晶圓。但是, 各種的條件,也就是分別準備正面、斜面’、◦條件而言,可根據 將作為單結晶SiC製造用原料的面\Si面而使用。 MA600)與二氧化矽(日本Aer〇sil公司(二曼化學製碳黑 別獨立地充填到原料儲存槽。而且,將 3^分 二氧化矽/碳=1.2〜0.2 (重量比)。 仏應里比,调整為 調整該原料供應管的嘴出口的位詈,. 晶晶圓之間的距離為imm〜150mm。 吏/、舁該Sic種單結 在抽取高誠應加織㈣的空氣使 &quot; 性氣體(高純度的氬)取代該高頻感應加 ,筒_之外侧溫度,達到16G(rc〜2彻。C的範圍内使d 度使其旋轉。 技减庄m〜2_的旋轉速 在此狀態下,調整成使該惰性攜栽氣體(高純度的氮 速度lOmm/sec〜5〇〇mm/sec的範圍内。然後,將該單結晶沉 造用原料,經由該供歸内部,供細配置於該的^ 向部之該SiC種單結晶晶圓的表面上。 丁 少在此種狀恶下,使該圓筒坩禍的外側溫度保持固定,持續進 行該單結晶SiC製造用原料的連續供應,直到該單結晶Sic成長 到所希望的大小與厚度為止,都進行該單結晶Sic的製造。此 外,所希望的溫度較佳是藉由環境氣體壓力與單結晶Sic製造用 原料的混合比,以及SiC種單結晶晶圓的種類等而適當選擇。 依上述的條件製造單結晶SiC的結果,記錄於表}。 又,為了要檢查製造出來的單結晶SiC中,有無多結晶siC 的混入,故释製作後的單結晶SiC的薄層樣本,以穿透型光學顯 微鏡在偏光(正交偏光,crossnicol)下予以觀察以進行評估。 17 200809019 〔表1〕Further, Jirr is provided with an opening 10 around the base 5 in the direction of the straightness of the circle 2. J should be a single crystal Sic manufacturing raw material supply material supply pipe from the bottom end of the cylinder _ 2 opposite to the pedestal 5: , the outer 'and the other can independently adjust the supply of the original number - ' and can be adjusted Compared with the inert carrier gas for fine (paste), I want to use the raw material of the single-crystal Sic manufacturing raw material to be mixed; and to supply f (four) to mix it, position: oxygen = 15 200809019 - δ,1^^ quantity adjustment, - side (4) heart _^_^ take - edge to domain (four) A flow _ internal continuous supply order = system two = appropriate amount, the _ in addition, in Figure 1, from the raw material The distance from the supply pipe 5 to the distance between the G and the H is controllable. The heating furnace can be changed to a configuration opposite to this by using a vacuum exhaust system (not shown), "IoJJ" can be used in the vacuum supply system (not shown). ^ = In the example, although the positional relationship between the susceptor and the raw material supply pipe is 丄t ^ , , , , ' and not (4) the invention (10) _ can also be viewed or the supply pipe The pedestals are inclined or at right angles to each other: when the crystal is thick in thickness, it is also formed on the susceptor 5 at the front end portion of the s 3 iC single crystal surface and the raw material supply tube discharge port. B is freely adjustable within the range of 4 to 150 mm (full length of _.), = is correct, throttle flow _ general supply _ flow and inner diameter of supply pipe ^ i, J 300?000mm / sec ^ ^ use this high The frequency induction heating furnace is praised in the susceptor according to the following conditions, and is inserted into the cylinder to have a single crystal of H. The single crystal of SiC used here refers to an improved type.瑞有里法^早16 200809019 Single crystal SiC wafer with a diameter of 2 cm. However, various conditions, that is, preparing for the front side separately The sloping surface and the ◦ condition can be used according to the surface of the single-crystal SiC manufacturing raw material, the surface of the surface, and the cerium oxide (MA600) and the cerium oxide (Japan Aer〇sil Co., Ltd. Go to the raw material storage tank. Also, add 3 分 二 矽 / carbon = 1.2 〜 0.2 (weight ratio) 仏 里 里 比, adjust to adjust the position of the mouth of the raw material supply pipe 詈, between the crystal wafer The distance is imm~150mm. 吏/,舁 The single type of Sic is extracted in the air of Gaocheng should be woven (4) to replace the high frequency induction with the gas of high purity (argon). 16G (rc~2. In the range of C, d is rotated to make it. The rotation speed of the technique is adjusted to make the inert carrier gas (high-purity nitrogen velocity lOmm/sec). In the range of 〜5〇〇mm/sec, the raw material for the single crystal deposition is then placed on the surface of the SiC seed single crystal wafer which is finely disposed on the portion through the supply. Under such a situation, the outer temperature of the cylinder is kept constant, and the single crystal SiC is continuously used for manufacturing. The continuous supply of the raw materials is carried out until the single crystal Sic grows to a desired size and thickness, and the desired temperature is preferably a raw material for the production of a single crystal Sic by ambient gas pressure. The mixing ratio and the type of SiC single crystal wafer are appropriately selected. The results of producing single crystal SiC according to the above conditions are recorded in Table}. In order to check whether the single crystal SiC produced is polycrystalline or not The incorporation of siC, a thin layer sample of the fabricated single crystal SiC was observed and observed under a polarized light (crossnicol) by a transmission optical microscope. 17 200809019 [Table 1]

No· L (mm) S (mm/sec) L/S (sec) 有無多結晶SiC混入 ------- 有無微細管 1 實施例1 1 20 0.05 --~~-- Μ 2 實施例2 10 20 0.5 —----- 、 --~---_ 3 實施例3 30 20 1.5 益 —---- 有若千 4 實施例4 60 20 3 /、、、 — 有若千 5 比較例1 80 20 4 有 -—--. 有許吝 6 比較例2 150 20 7.5 有 β 口 1 y ^~&quot; ----— 有許多 7 實施例5 60 60 1 口 1 y ------- 益 8 實施例6 60 500 0.12 無,但成長率降低 _ 9 比較例3 60 10 6 有 — ;------~- 有許冬 10 實施例7 30 10 3 無 _ /7 y 有若干 11 實施例8 10 5 2 無,但在供應管内 —----- 發生堵塞 盤 12 實施例9 10 10 1 益 13 實施例10 10 60 0.17 ' 無 ---- 14 實施例11 5 10 0.5 ~ —-----—__ 益 m、 fef 15 實施例12 1 10 0.1 無 Ό、 -—- 16 實施例13 1 20 0.05 — 益 jfef 17 實施例14 80 60 1.33 1~----— 無 4\^\ 18 實施例15 30 60 0.5 ----~~- 益 _ W石丁 19 實施例16 80 100 0.8 ---~~~- 無 20 實施例17 80 200 0.4 益 — 無 —21 實施例18 80 500 0.16 ------ 無,但成長率降柄 — 無 —-— 從表1可確認得知,在將L/S (sec)設為3以下時,在制、告 出來的單結晶SiC中,不會產生多結晶SiC的混入,從 高品質之單結晶SiC。 $ 18 200809019 時,,可確認得知’當線速度在20 mm/sec以上 “ 晶圓與原料供應管噴出口之間的距離分 離運洲mm,在製造出來的單結晶Sic中 曰 =塊體的混人。而如果將惰性攜載氣體的線速度^進一步= 更U使種單結晶晶圓與原料供應管噴出口之間的距離 更為刀開,仍然可得到單結晶SiC。 ㈣此認得知’如果將線速度調整到500職/咖以上 Γ在=:、ίί生若干的減低。使線速度上昇到特定速度以 二並非理想_。_實施例更低 ?0 m另/方亦可確認得知:如果使惰性攜載氣體的線速度比 2=m/Sec更㈣話,則必須使Sic種單結晶晶圓與原料g應管 更為接m如果將線速度降得過低的 ΐ阻造用原料粉末會在原料供應管内產生堵』 (ί1基)。因A,較佳的情況是確保惰性攜載氣體的線速度在10 ^sec以上,如果為了更為安全起見’可確保其在2q麵/咖以 其rii ’ ί可確認得知:如果使sic種單結晶晶圓與原料供應 之間的距離[在⑼麵以下的話,則可避免多結晶 除此之外,如果使SiC種單結晶晶圓與原料供應管之間的距 ,上在10mm以下的話,則不會有微細管的現象產生,因此可 認得知:如果使SiC種單結晶晶圓與原料供應管之間的距離L 10mm以下的話,是更佳的實施型態。 又,可確認得知:如果使惰性攜載氣體的線速度s在6〇 mm/sec以上的話,可避免微細管的產生。因此,如果將惰性 $體的線速度S設定在60 mm/sec以上的話,是更佳的實 態。 貝 19 200809019 將以上的結果歸納整理如下:使sic種單結晶與原料供應管 的噴出口之間的距離較佳在60mm以下,更佳在1〇mm以下;惰 性攜載氣體的線速度在2〇 mm/sec以上,2〇〇 mm/sec以下,更佳 • 在⑽以上,200 mm/sec以下。 如上所述,藉由本發明之單結晶SiC製造方法,可穩定地製 • 造、提供一抑制多結晶SiC的混入之高品質單結晶SiC。 【圖式簡單說明】 圖1係顯示用以製造本發明之單結晶siC的裝置之〆例。 【主要元件符號說明】 _ 1〜冑_轉 2〜圓筒坩堝‘ 3〜咼頻感應加熱線圈 4〜SiC種單結晶 5〜基座 6〜原料供應管 7、 〜原料儲存槽 8、 8’〜調節閥 9〜單結晶SiC層(成長層) _ 10〜開口部 A〜攜载氣體 L〜原料供應管與SiC種單結晶之間的距離(mm) , S〜攜載氣體之線速度(mm/sec) 20No· L (mm) S (mm/sec) L/S (sec) Whether or not polycrystalline SiC is mixed in ------- With or without microtube 1 Example 1 1 20 0.05 --~~-- Μ 2 Example 2 10 20 0.5 —----- , --~---_ 3 Example 3 30 20 1.5 Benefits —---- There are thousands of 4 Examples 4 60 20 3 /,,, — 有若千5 Comparative Example 1 80 20 4 Yes----. There are Xu吝6 Comparative Example 2 150 20 7.5 There are β mouth 1 y ^~&quot; ----- There are many 7 Examples 5 60 60 1 mouth 1 y -- ----- Benefit 8 Example 6 60 500 0.12 No, but the growth rate is reduced _ 9 Comparative Example 3 60 10 6 Yes — ;------~- Have Xu Dong 10 Example 7 30 10 3 No _ /7 y There are a few 11 Examples 8 10 5 2 None, but in the supply pipe ----- Blocking disk 12 Example 9 10 10 1 Benefit 13 Example 10 10 60 0.17 'None---- 14 Implementation Example 11 5 10 0.5 ~ —------__ Benefit m, fef 15 Example 12 1 10 0.1 No flaw, - 16 - Example 13 1 20 0.05 - Yi jfef 17 Example 14 80 60 1.33 1~ ----- No 4\^\ 18 Example 15 30 60 0.5 ----~~- Benefit _ W Shiding 19 Example 16 80 100 0.8 ---~~~- No 20 Example 17 80 2000.4 益—无—21 Example 18 80 500 0.16 ------ None, but the growth rate is reduced by the handle — None — — It can be confirmed from Table 1 that L/S (sec) is set to 3 or less. In the case of the single crystal SiC produced and reported, the incorporation of polycrystalline SiC does not occur, and high quality single crystal SiC is used. At $ 18 200809019, it can be confirmed that 'when the linear velocity is above 20 mm/sec.' The distance between the wafer and the raw material supply pipe discharge port is separated from the transport continent mm. In the manufactured single crystal Sic, 曰 = block If the linear velocity of the inert carrier gas is further = more U, the distance between the single crystal wafer and the raw material supply tube discharge port is further increased, and single crystal SiC can still be obtained. Knowing that if you adjust the line speed to 500 jobs/coffees, the number of ==, ίί is reduced. It is not ideal to increase the line speed to a specific speed. _ The lower part of the example is 0 m. It is confirmed that if the linear velocity of the inert carrier gas is more than 2 = m / Sec (four), it is necessary to make the Sic single crystal wafer and the raw material g should be connected to each other if the linear velocity is lowered too low. The raw material powder for the barrier production will cause blockage in the raw material supply pipe. Because of A, it is better to ensure that the linear velocity of the inert carrier gas is above 10 ^sec, if it is more safe for the sake of safety. Make sure that it is confirmed on the 2q side/coffee with its rii ί: if the sic species is single crystal The distance from the supply of the raw material [When the surface is below (9), the polycrystal can be avoided. If the distance between the SiC single crystal wafer and the raw material supply tube is 10 mm or less, it will not be Since a phenomenon of a microtube is generated, it is recognized that it is a better embodiment if the distance L between the SiC seed single crystal wafer and the raw material supply tube is 10 mm or less. When the linear velocity s of the inert carrier gas is 6 〇mm/sec or more, the generation of the microtubes can be avoided. Therefore, if the linear velocity S of the inert body is set to 60 mm/sec or more, it is a better state. Bay 19 200809019 The above results are summarized as follows: the distance between the single crystal of the sic species and the discharge port of the raw material supply pipe is preferably less than 60 mm, more preferably less than 1 mm; the linear velocity of the inert carrier gas is 2〇mm/sec or more, 2〇〇mm/sec or less, more preferably (10) or more, 200 mm/sec or less. As described above, the single crystal SiC manufacturing method of the present invention can be stably manufactured and provided. A high quality that inhibits the incorporation of polycrystalline SiC Single crystal SiC. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing an example of a device for producing a single crystal siC of the present invention. [Description of main components] _ 1~胄_转 2~Cylinder 坩埚' 3~咼Frequency induction heating coil 4~SiC seed single crystal 5~ pedestal 6~ raw material supply pipe 7, ~ material storage tank 8, 8'~ regulating valve 9~ single crystal SiC layer (growth layer) _ 10~ opening part A~ Distance between carrier gas L~feedstock supply tube and single crystal of SiC species (mm), S~ linear velocity of carrier gas (mm/sec) 20

Claims (1)

200809019 十、申請專利範圍: 1. U結晶Sic的製造方法,其特徵為: 包含: Sir:、^f_nSlC種單結晶的基座以及用以從外部供應單結晶 料的原料供膽,設置於掛财的步驟;及 ㈣摧;ϋ溫環境氣體之贿獅,將該單結晶SiC製造用原 SiC ’ϋί㈣—起’經由該原料供應管供應,以使該單結^ 成長的步驟;200809019 X. Patent application scope: 1. The manufacturing method of U crystal Sic, which comprises: Sir:, ^f_nSlC single crystal susceptor and raw material for supplying single crystal material from the outside to be placed on the hang And (4) destroying the bribe of the ambient gas, the step of supplying the single-crystal SiC manufacturing raw SiC 'ϋί (4) - through the raw material supply pipe to grow the single junction; 又^在將該原料供應管與該SiC種單結晶之間的距離設為1 ,mm),且该攜載氣體的線速度設為S (mm/sec)時,滿足L/S Csec) $3的條件。 ^如申請專利範圍第1項之單結晶Sic的製造方法,其中,該單 w晶SiC製造用原料係二氧化矽粒子及碳粒子。 、 ^如申請專利範圍第1或2項之單結晶SiC的製造方法,其中, ^原料供應管與该SiC種單結晶之間的距離在6〇mm以下。 j·如申請專利範圍第1或2項之單結晶sic的製造方法,其中, 乂原料供應管與该SiC種單結晶之間的距離在i〇mm以下。 ^如申請專利範圍第1或2項之單結晶SiC的製造方法,其中, &quot;亥攜载氣體的線速度在20mm/sec以上,200mm/sec以下。 ^如申請專利範圍第1或2項之單結晶SiC的製造方法,其中, z♦问载氣體的線速度在60mni/sec以上,200mni/sec以下。 7·如申請專利範圍第1或2項之單結晶SiC的製造方法,其中, 該攜载氣體為氬氣。 8·一種單結晶SiC,其特徵為藉由如申請專利範圍第1至7項中 任一項之單結晶SiC的製造方法製造而成。 9· 一種單結晶SiC製造裝置,其特徵為: 21 200809019 具備··坩堝;設置在該坩堝内,且固定有SiC種單結晶之基 座,及從外部供應單結晶SiC製造用原料之原料供應管; 此外,更具備··距離調節裝置, 々上 SiC種單結晶之間的距離; 用乂调即_料供應營 該原料供應管所供應的攜载氣2速度調節裝置“::為 人趲的線速度用以凋郎您 圖式Further, when the distance between the raw material supply pipe and the SiC seed single crystal is set to 1, mm), and the linear velocity of the carrier gas is S (mm/sec), it satisfies L/S Csec) $3 conditions of. The method for producing a single crystal Sic according to the first aspect of the invention, wherein the raw material for producing the single-wafer SiC is cerium oxide particles and carbon particles. The method for producing single crystal SiC according to claim 1 or 2, wherein the distance between the raw material supply pipe and the single crystal of the SiC species is 6 mm or less. j. The method for producing a single crystal sic according to claim 1 or 2, wherein a distance between the bismuth raw material supply tube and the single crystal of the SiC species is equal to or less than i 〇 mm. The method for producing single crystal SiC according to claim 1 or 2, wherein the linear velocity of the carrier gas is 20 mm/sec or more and 200 mm/sec or less. The method for producing single crystal SiC according to claim 1 or 2, wherein the linear velocity of the carrier gas is 60 mni/sec or more and 200 mni/sec or less. 7. The method for producing single crystal SiC according to claim 1 or 2, wherein the carrier gas is argon. A single crystal SiC produced by the method for producing single crystal SiC according to any one of claims 1 to 7. 9. A single-crystal SiC manufacturing apparatus, characterized in that: 21 200809019 includes a susceptor provided in the crucible, and a SiC seed single crystal is fixed, and a raw material supply of a raw material for producing single crystal SiC is supplied from the outside. In addition, it is equipped with a distance adjusting device, the distance between the single crystals of the SiC species on the crucible; the carrier gas supply speed control device supplied by the raw material supply pipe is supplied by the 乂 即The speed of the line is used to control your pattern.
TW096116628A 2006-08-09 2007-05-10 Crystal SiC, method and device for producing the same TW200809019A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216351A JP2008037715A (en) 2006-08-09 2006-08-09 SINGLE CRYSTAL SiC, METHOD FOR MANUFACTURING THE SAME, AND MANUFACTURING DEVICE FOR SINGLE CRYSTAL SiC

Publications (1)

Publication Number Publication Date
TW200809019A true TW200809019A (en) 2008-02-16

Family

ID=39032853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096116628A TW200809019A (en) 2006-08-09 2007-05-10 Crystal SiC, method and device for producing the same

Country Status (4)

Country Link
JP (1) JP2008037715A (en)
KR (1) KR20090037378A (en)
TW (1) TW200809019A (en)
WO (1) WO2008018319A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505597B2 (en) * 2000-02-23 2004-03-08 日本ピラー工業株式会社 Silicon carbide single crystal
JP3909675B2 (en) * 2001-04-20 2007-04-25 信越半導体株式会社 Silicon single crystal manufacturing apparatus and silicon single crystal manufacturing method using the same
JP2004099414A (en) * 2002-09-13 2004-04-02 National Institute Of Advanced Industrial & Technology Method of manufacturing silicon carbide single crystal

Also Published As

Publication number Publication date
WO2008018319A1 (en) 2008-02-14
JP2008037715A (en) 2008-02-21
KR20090037378A (en) 2009-04-15

Similar Documents

Publication Publication Date Title
US7361222B2 (en) Device and method for producing single crystals by vapor deposition
TW552325B (en) Method and apparatus for growing silicon carbide crystals
TW494147B (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP2006117512A (en) Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer
JP2008169098A (en) Method and apparatus for producing silicon carbide single crystal
CN113151897B (en) Crucible structure
JP5179690B2 (en) Axial core gradient transport apparatus and method for making large single crystals of silicon carbide
TW200806828A (en) Single crystal SiC, production method thereof and producing device of single crystal SiC
JP3505597B2 (en) Silicon carbide single crystal
TW200809019A (en) Crystal SiC, method and device for producing the same
TW200811320A (en) Single crystal SiC, and method for producing the same
JP2004131376A (en) Silicon carbide single crystal, and method and apparatus for producing the same
JP2008308369A (en) SINGLE CRYSTAL SiC, AND METHOD AND APPARATUS FOR PRODUCING THE SAME
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP3970789B2 (en) Nitride single crystal manufacturing method and manufacturing apparatus thereof
JP2006027976A (en) Method for producing nitride single crystal and producing apparatus therefor
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
CN107541782A (en) A kind of aluminum-nitride single crystal selects crystal method
JP2008254945A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD
JP2009073696A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD
JP2009029664A (en) SINGLE CRYSTAL SiC AND ITS MANUFACTURING METHOD
JP2007001805A (en) Manufacturing method of aluminium nitride single crystal
JP2000044394A (en) Production of silicon carbide single crystal