JP2004131376A - Silicon carbide single crystal, and method and apparatus for producing the same - Google Patents
Silicon carbide single crystal, and method and apparatus for producing the same Download PDFInfo
- Publication number
- JP2004131376A JP2004131376A JP2003325856A JP2003325856A JP2004131376A JP 2004131376 A JP2004131376 A JP 2004131376A JP 2003325856 A JP2003325856 A JP 2003325856A JP 2003325856 A JP2003325856 A JP 2003325856A JP 2004131376 A JP2004131376 A JP 2004131376A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- single crystal
- silicon
- crucible
- carbide single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 230
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 182
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 118
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 114
- 239000010703 silicon Substances 0.000 claims abstract description 114
- 239000002994 raw material Substances 0.000 claims abstract description 113
- 238000004519 manufacturing process Methods 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 239000007787 solid Substances 0.000 claims abstract description 12
- 238000000859 sublimation Methods 0.000 claims description 42
- 230000008022 sublimation Effects 0.000 claims description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 229910002804 graphite Inorganic materials 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 23
- 239000012298 atmosphere Substances 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 2
- 238000005092 sublimation method Methods 0.000 abstract description 16
- 230000007547 defect Effects 0.000 abstract description 12
- 230000008016 vaporization Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 103
- 238000010438 heat treatment Methods 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、炭化珪素(SiC)単結晶とその製造方法および炭化珪素単結晶の製造装置に関し、特に、マイクロパイプなどの欠陥が少なく、品質が良好でかつ口径が大きな炭化珪素単結晶の製造方法に関するものである。 The present invention relates to a silicon carbide (SiC) single crystal, a method for manufacturing the same, and an apparatus for manufacturing a silicon carbide single crystal, and in particular, a method for manufacturing a silicon carbide single crystal having few defects such as micropipes, good quality, and a large diameter. It is about.
半導体材料として期待されている炭化珪素単結晶は、炭化珪素粉末を原料とする昇華法で通常作製される。昇華法においては、原料の炭化珪素粉末と種結晶基板とを対向させて黒鉛製の成長ルツボ内部に配置し、不活性ガス雰囲気中で1800〜2400℃に炭化珪素原料を加熱する。加熱して発生した炭化珪素の昇華ガスは、結晶成長に適した温度域に保持された種結晶基板上に到達し、単結晶として析出する。 A silicon carbide single crystal expected as a semiconductor material is usually produced by a sublimation method using silicon carbide powder as a raw material. In the sublimation method, the raw material silicon carbide powder and the seed crystal substrate are placed facing each other inside a growth crucible made of graphite, and the silicon carbide raw material is heated to 1800 to 2400 ° C. in an inert gas atmosphere. The silicon carbide sublimation gas generated by heating reaches the seed crystal substrate held in a temperature range suitable for crystal growth and precipitates as a single crystal.
昇華法において、炭化珪素原料からの昇華ガスの成分としては、Si、Si2C、SiC2、SiC等が生成しており、これらの昇華ガスの一部が種結晶基板上に析出して、炭化珪素単結晶が成長する。この昇華法による炭化珪素単結晶の成長は、固体化合物の昇華および析出過程であるため、1)成長速度が遅い、2)成長速度を早くすると結晶欠陥の発生や多結晶化が起きやすい、といった問題が存在していた。 In the sublimation method, as components of the sublimation gas from the silicon carbide raw material, Si, Si 2 C, SiC 2 , SiC and the like are generated, and a part of these sublimation gases are deposited on the seed crystal substrate, A silicon carbide single crystal grows. The growth of a silicon carbide single crystal by this sublimation method is a process of sublimation and precipitation of a solid compound, so that 1) the growth rate is slow, and 2) if the growth rate is increased, crystal defects and polycrystallization are likely to occur. There was a problem.
また、炭化珪素単結晶の成長過程における昇華ガスの成分は、原料の炭化珪素粉末の昇華および分解過程、あるいは気相中における昇華ガス成分の相互の反応や成長ルツボ内壁の黒鉛との接触反応等のさまざまな要因により変動する。あるいは、炭化珪素原料を加熱すると、蒸気圧の高い珪素はガス化しやすく、炭素は逆に残留分として残る傾向がある。このため時間の経過とともに、炭化珪素原料中の珪素成分が炭素成分より先に減少し、昇華ガス中のガス成分が変化する。これも、昇華ガスの成分の変動要因のひとつである。その他、原料の昇華温度や原料組成、反応ルツボ内の温度分布等が経時的に変化することも、昇華ガス成分の変動要因と考えられる。 In addition, the sublimation gas component in the growth process of the silicon carbide single crystal is the sublimation and decomposition process of the raw material silicon carbide powder, the mutual reaction of the sublimation gas component in the gas phase, and the contact reaction with graphite on the inner wall of the growth crucible. Fluctuates due to various factors. Alternatively, when the silicon carbide raw material is heated, silicon having a high vapor pressure tends to gasify, and carbon tends to remain as a residue. For this reason, with the passage of time, the silicon component in the silicon carbide raw material decreases before the carbon component, and the gas component in the sublimation gas changes. This is also one of the fluctuation factors of the sublimation gas component. In addition, changes in the sublimation temperature of the raw material, the raw material composition, the temperature distribution in the reaction crucible, and the like over time are also considered to be a variation factor of the sublimation gas component.
単結晶が成長する種結晶基板の表面近傍の領域における昇華ガスの成分の変動は、結晶欠陥が炭化珪素結晶に取り込まれたり、また多型混入や異方性の成長(いわゆるポリ化)が生じるといった、単結晶の結晶性が低下する要因となっていると考えられる。このため、高品位の炭化珪素単結晶を得るためには、これらの昇華ガス成分の変動要因を制御することが重要である。 Variations in the sublimation gas component in the region near the surface of the seed crystal substrate on which the single crystal grows may cause crystal defects to be incorporated into the silicon carbide crystal, or polymorphism and anisotropic growth (so-called polycrystallization). It is thought that this is a factor that decreases the crystallinity of the single crystal. For this reason, in order to obtain a high-quality silicon carbide single crystal, it is important to control the fluctuation factors of these sublimation gas components.
従来の炭化珪素単結晶の成長に当たっては、成長速度を低く抑えて結晶欠陥発生率を低下させる、あるいは昇華ガス組成の変動があまり大きくならないように成長継続時間を短くすると言った結晶性向上のための対策が行われていた。しかしこれらでは、昇華法で得られた炭化珪素単結晶の品質や安定性が十分とは言えない。 In the growth of conventional silicon carbide single crystals, the growth rate is lowered to reduce the crystal defect occurrence rate, or the growth duration is shortened so that the fluctuation of the sublimation gas composition does not become too large. Measures were taken. However, in these, the quality and stability of the silicon carbide single crystal obtained by the sublimation method cannot be said to be sufficient.
そこで、次のような昇華法の改良案が提案されている。例えば、昇華ガス成分の変動を抑制する方法として、珪素原料および炭素原料を別々に配設し、珪素原料から発生するガス成分と炭素原料を反応させて炭化珪素を形成し、この炭化珪素を昇華させて炭化珪素単結晶を形成する方法が提案されている(例えば、特許文献1参照。)。しかしこの方法でも、昇華と共にガス組成が変化するという昇華法の本質的な欠点は避けられない。また単結晶の製造工程が二段階となり、製造時間が比較的長時間になる。 Therefore, the following improvements of the sublimation method have been proposed. For example, as a method of suppressing fluctuations in the sublimation gas component, a silicon raw material and a carbon raw material are separately disposed, and a silicon component is formed by reacting the gas component generated from the silicon raw material with the carbon raw material, and the silicon carbide is sublimated. And a method of forming a silicon carbide single crystal is proposed (for example, refer to Patent Document 1). However, even with this method, the essential drawback of the sublimation method is that the gas composition changes with sublimation. Moreover, the manufacturing process of a single crystal becomes a two-step, and manufacturing time becomes comparatively long time.
また、珪素を反応ルツボ内で加熱蒸発させて、その珪素蒸気と反応ルツボの内壁の炭素が蒸発した炭素蒸気とを反応させ、その反応ガスを炭化珪素析出室へ移動させて、その内壁に炭化珪素単結晶を析出させる方法も知られている(例えば、特許文献2参照。)。しかしこの方法は、炭素が珪素に比べ蒸気圧が低いため、炭化珪素単結晶の成長速度が遅い欠点がある。
上記のように、現状では昇華ガスの成分が変動する要因を制御し、結晶性の良い炭化珪素単結晶を成長させる有効な方法は確立されていない。本発明は、昇華法による炭化珪素単結晶の成長において、雰囲気ガスを制御することにより昇華ガスの成分の変動を抑制し、結晶欠陥の少ない大口径の炭化珪素単結晶を、安定性よくかつ早い成長速度で、種結晶基板上に成長させる方法を提供することを目的とする。 As described above, at present, an effective method for growing a silicon carbide single crystal having good crystallinity by controlling the factors that cause the sublimation gas component to change has not been established. In the growth of a silicon carbide single crystal by the sublimation method, the present invention suppresses fluctuations in the components of the sublimation gas by controlling the atmospheric gas, and enables a large-diameter silicon carbide single crystal with few crystal defects to be stable and fast. An object is to provide a method of growing on a seed crystal substrate at a growth rate.
すなわち本発明は、
(1)黒鉛からなる成長ルツボに低温部と高温部を設け、該成長ルツボの低温部に炭化珪素(SiC)単結晶からなる種結晶基板を設置し、高温部に炭化珪素原料を設置して、炭化珪素原料から昇華した昇華ガスを種結晶基板上に析出させて炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法において、成長ルツボを取り囲む雰囲気ガスを珪素(Si)ガスから構成することを特徴とする炭化珪素単結晶の製造方法である。
That is, the present invention
(1) A growth crucible made of graphite is provided with a low temperature portion and a high temperature portion, a seed crystal substrate made of a silicon carbide (SiC) single crystal is placed in the low temperature portion of the growth crucible, and a silicon carbide raw material is placed in the high temperature portion. In a method for producing a silicon carbide single crystal in which a sublimation gas sublimated from a silicon carbide raw material is deposited on a seed crystal substrate to grow a silicon carbide single crystal, the atmosphere gas surrounding the growth crucible is composed of silicon (Si) gas Is a method for producing a silicon carbide single crystal.
また本発明は、
(2)成長ルツボ内の珪素ガスの蒸気圧(「ルツボ内珪素ガス圧」という。)を、炭化珪素原料の昇華ガスにおける珪素ガスの平衡蒸気圧(「昇華ガス中珪素ガス圧」という。)と同等以上に維持しながら炭化珪素単結晶を成長させることを特徴とする上記(1)に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(2) The vapor pressure of silicon gas in the growth crucible (referred to as “silicon gas pressure in crucible”) is the equilibrium vapor pressure of silicon gas in the sublimation gas of the silicon carbide raw material (referred to as “silicon gas pressure in sublimation gas”). The method for producing a silicon carbide single crystal according to the above (1), wherein the silicon carbide single crystal is grown while maintaining at least the same as the above.
また本発明は、
(3)成長ルツボを外ルツボ内に設置し、成長ルツボと外ルツボの間に外部から珪素原料を継続的に供給し、該珪素原料を成長ルツボと外ルツボの間で蒸発させながら炭化珪素単結晶を成長させることを特徴とする上記(1)または(2)に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(3) A growth crucible is installed in the outer crucible, a silicon raw material is continuously supplied from the outside between the growth crucible and the outer crucible, and the silicon raw material is evaporated between the growth crucible and the outer crucible. The method for producing a silicon carbide single crystal according to the above (1) or (2), wherein the crystal is grown.
また本発明は、
(4)黒鉛からなる成長ルツボに低温部と高温部を設け、該成長ルツボの低温部に炭化珪素(SiC)単結晶からなる種結晶基板を設置し、高温部に炭化珪素原料を設置して、炭化珪素原料から昇華した昇華ガスを種結晶基板上に析出させて炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法において、成長ルツボを外ルツボ内に設置し、成長ルツボと外ルツボの間に外部から珪素原料を継続的に供給し、該珪素原料を成長ルツボと外ルツボの間で蒸発させながら炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法である。
The present invention also provides
(4) A growth crucible made of graphite is provided with a low temperature part and a high temperature part, a seed crystal substrate made of a silicon carbide (SiC) single crystal is placed in the low temperature part of the growth crucible, and a silicon carbide raw material is placed in the high temperature part In a method for producing a silicon carbide single crystal in which a sublimation gas sublimated from a silicon carbide raw material is deposited on a seed crystal substrate to grow a silicon carbide single crystal, the growth crucible is installed in the outer crucible, and the growth crucible and the outer crucible A silicon carbide single crystal manufacturing method characterized in that a silicon carbide single crystal is grown while continuously supplying a silicon raw material from outside and evaporating the silicon raw material between a growth crucible and an outer crucible.
また本発明は、
(5)外部から固体の珪素原料を供給することを特徴とする上記(4)に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(5) The method for producing a silicon carbide single crystal according to (4), wherein a solid silicon raw material is supplied from the outside.
また本発明は、
(6)固体の珪素原料が、直径0.2〜5mmの粉体であることを特徴とする上記(5)に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(6) The method for producing a silicon carbide single crystal according to (5) above, wherein the solid silicon raw material is a powder having a diameter of 0.2 to 5 mm.
また本発明は、
(7)珪素原料を0.5〜20mg/秒の速度で供給することを特徴とする上記(4)ないし(6)のいずれか1項に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(7) The method for producing a silicon carbide single crystal according to any one of (4) to (6), wherein the silicon raw material is supplied at a rate of 0.5 to 20 mg / second.
また本発明は、
(8)成長ルツボと外ルツボの間の珪素原料が投入される場所の温度を1900℃以上とすることを特徴とする上記(4)ないし(7)のいずれか1項に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(8) The temperature of the place where the silicon raw material between the growth crucible and the outer crucible is charged is set to 1900 ° C. or higher, and the silicon carbide unit according to any one of (4) to (7) above It is a manufacturing method of a crystal.
また本発明は、
(9)成長ルツボを取り囲む雰囲気ガスの圧力を、1.33×102〜4.0×104Paとすることを特徴とする上記(4)ないし(8)のいずれか1項に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(9) The pressure of the atmospheric gas surrounding the growth crucible is 1.33 × 10 2 to 4.0 × 10 4 Pa, as described in any one of (4) to (8) above A method for producing a silicon carbide single crystal.
また本発明は、
(10)成長ルツボを取り囲む雰囲気ガスの圧力を、6.65×103〜2.0×104Paとすることを特徴とする上記(9)に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(10) The method for producing a silicon carbide single crystal according to (9) above, wherein the pressure of the atmospheric gas surrounding the growth crucible is set to 6.65 × 10 3 to 2.0 × 10 4 Pa. .
また本発明は、
(11)炭化珪素単結晶の成長速度を1mm/時間以上とすることを特徴とする上記(9)ないし(10)に記載の炭化珪素単結晶の製造方法である。
The present invention also provides
(11) The method for producing a silicon carbide single crystal as described in (9) to (10) above, wherein the growth rate of the silicon carbide single crystal is 1 mm / hour or more.
また本発明は、
(12)上記(1)ないし(11)のいずれか1項に記載の炭化珪素単結晶の製造方法により製造された、マイクロパイプ密度が10000個/cm2以下であることを特徴とする炭化珪素単結晶である。
The present invention also provides
(12) Silicon carbide produced by the method for producing a silicon carbide single crystal according to any one of (1) to (11) above, wherein the micropipe density is 10,000 pieces / cm 2 or less. Single crystal.
また本発明は、
(13)黒鉛からなる成長ルツボに低温部と高温部を設け、該成長ルツボの低温部に炭化珪素単結晶からなる種結晶基板を設置し、高温部に炭化珪素原料を設置して、炭化珪素原料から昇華した昇華ガスを種結晶基板上に析出させて炭化珪素単結晶を成長させる炭化珪素単結晶の製造装置において、成長ルツボが外ルツボ内に設置され、成長ルツボと外ルツボの間に外部から珪素原料を継続的に供給する供給手段が設けられたことを特徴とする炭化珪素単結晶の製造装置である。
The present invention also provides
(13) A low temperature part and a high temperature part are provided in a growth crucible made of graphite, a seed crystal substrate made of a silicon carbide single crystal is installed in the low temperature part of the growth crucible, a silicon carbide raw material is installed in the high temperature part, and silicon carbide In a silicon carbide single crystal manufacturing apparatus in which a sublimation gas sublimated from a raw material is deposited on a seed crystal substrate to grow a silicon carbide single crystal, a growth crucible is installed in the outer crucible, and an external space between the growth crucible and the outer crucible. An apparatus for producing a silicon carbide single crystal, characterized in that a supply means for continuously supplying a silicon raw material from is provided.
また本発明は、
(14)定量供給装置により、固体の珪素原料を0.5〜20mg/秒の速度で供給する供給手段が設けられていることを特徴とする上記(13)に記載の炭化珪素単結晶の製造装置である。
The present invention also provides
(14) Production of a silicon carbide single crystal as described in (13) above, wherein a supply means for supplying a solid silicon raw material at a rate of 0.5 to 20 mg / sec is provided by a quantitative supply device. Device.
また本発明は、
(15)成長ルツボの種結晶基板を装着するシード台と蓋板との間に、空間が設けられていることを特徴とする上記(13)または(14)に記載の炭化珪素単結晶の製造装置である。
The present invention also provides
(15) The production of a silicon carbide single crystal as described in (13) or (14) above, wherein a space is provided between the seed base on which the seed crystal substrate of the growth crucible is mounted and the cover plate. Device.
本発明による炭化珪素単結晶の製造方法および製造装置によれば、得られる炭化珪素単結晶内の結晶欠陥を低減することができる。例えば、本発明を用いて成長した炭化珪素単結晶内のマイクロパイプ密度は10000個/cm2以下とすることができる。さらに、従来の昇華法等では限界のあった成長速度も、良好な結晶品質を維持したまま1.0mm/時間以上とすることができ、さらに条件の最適化により2.0mm/時間以上まで高速にすることが可能となり、生産効率を向上させることができる。 According to the method and apparatus for manufacturing a silicon carbide single crystal according to the present invention, crystal defects in the obtained silicon carbide single crystal can be reduced. For example, the micropipe density in a silicon carbide single crystal grown using the present invention can be 10,000 pieces / cm 2 or less. Furthermore, the growth rate, which was limited by the conventional sublimation method, can be set to 1.0 mm / hour or more while maintaining good crystal quality, and further to 2.0 mm / hour or more by optimizing the conditions. Production efficiency can be improved.
図1に本発明に係る炭化珪素単結晶の製造装置の一例を示す。図1をもとに本発明の一実施形態を説明する。図1において、1は外ルツボ、2は成長ルツボである。成長ルツボ2は、外ルツボ1内に設置されている。また成長ルツボ2は、蓋板3及びシード台4を有する。蓋板3はシード台4を兼ねる場合がある。成長ルツボ2の材質は、黒鉛とする。外ルツボ1、蓋板3およびシード台4の材質も、黒鉛が好ましい。黒鉛材質に高純度が要求される場合は、ハロゲンガスによる精製処理を行った黒鉛を用いるのが好ましい。成長ルツボ2内の下部は、結晶成長時に充分な量の炭化珪素原料11を貯留できる大きさを有する。
FIG. 1 shows an example of an apparatus for producing a silicon carbide single crystal according to the present invention. An embodiment of the present invention will be described with reference to FIG. In FIG. 1, 1 is an outer crucible and 2 is a growth crucible. The
本発明では、図1に示す炭化珪素単結晶の製造装置を用いて、次のように炭化珪素の結晶成長を行う。まず、シード台4の下側の面に炭化珪素単結晶からなる種結晶基板5を装着する。装着には機械的な結合方法、接着による接合方法などを用いることができる。装着する種結晶基板5としては、アチソン法、レーリー法、昇華法、または本発明の方法で得られた単結晶を板状に加工した種結晶基板を用いることができる。基板の結晶面の方向は、一般に(0001)面が用いられる。結晶面の方向を(0001)面からずらして加工した種結晶基板も使用することができる。また、成長ルツボ2内の下部には、十分な量の粉末の炭化珪素原料11を設置する。半導体用途の高い比抵抗の炭化珪素単結晶を得るには、炭化珪素原料11としては、純度8ナインのような高純度のものを用いるのが好ましい。本発明の炭化珪素単結晶の成長により、下側を向いた種結晶基板5の表面上に炭化珪素単結晶6が成長する。
In the present invention, crystal growth of silicon carbide is performed as follows using the silicon carbide single crystal manufacturing apparatus shown in FIG. First, a
外ルツボ1の外側には、外ルツボ1および成長ルツボ2を加熱する加熱装置として、高周波誘導コイル7を設置する。この加熱装置は、成長ルツボ2内の炭化珪素原料11を、昇華ガスが発生する例えば1900℃以上の温度に加熱する装置である。なお、加熱装置は抵抗加熱方式のものでもよい。外ルツボ1は、高温状態を維持するために、例えば炭素繊維製の断熱材8で覆われる。炭化珪素原料11が設置されている部分を高温部とし、種結晶基板5が設置されている部分を低温部として、成長ルツボ2に所望の温度分布を実現するためには、例えば、高周波誘導コイル7による加熱方式では、高周波誘導コイル7を上下に分割して設け、各高周波誘導コイルに流す電流を独立に制御する方法を用いることができる。あるいは高周波誘導コイル7のコイルの巻き回し密度を上下方向で調節する方法も使用可能である。外ルツボ1の温度については、例えば外ルツボ1の底面および蓋板を覆っている断熱材8にそれぞれ測温穴9を設けて、その測温穴9を通し放射温度計10を用いて、外ルツボ1の表面の温度を測ることができる。その測温結果をもとに、高周波誘導コイル7の位置や高周波誘導コイル7に流す電流を調整して、成長ルツボ2の温度分布を所望の状態にすることができる。
A high frequency induction coil 7 is installed outside the
ここで、炭化珪素単結晶の成長中は、炭化珪素原料11が設置される高温部は、1900℃以上好ましくは2300℃以上の温度に設定し、種結晶基板5が設置される低温部は、1500〜2500℃の範囲、好ましくは2000〜2400℃の範囲に設定するのが望ましい。但し、炭化珪素単結晶を種結晶基板上に安定して成長させるためには、通常炭化珪素原料の温度は、種結晶基板の温度よりも100℃以上高くする必要がある。
Here, during the growth of the silicon carbide single crystal, the high temperature portion where the silicon carbide raw material 11 is installed is set to a temperature of 1900 ° C. or more, preferably 2300 ° C. or more, and the low temperature portion where the
炭化珪素単結晶の成長では、成長ルツボ内の炭化珪素原料を1900℃以上好ましくは2300℃以上に加熱しておくことにより、炭化珪素原料からの昇華ガスの蒸気圧が十分高くなり、炭化珪素単結晶の成長速度を大きくすることが可能となる。また、種結晶基板の温度が1500℃より低いと、成長した結晶は多型混入が起こり易い、あるいは単結晶として成長しない場合がある。また種結晶基板の温度が2500℃より高いと、種々の結晶欠陥が発生しやすく、多型混入も起こり易くなる。 In the growth of the silicon carbide single crystal, by heating the silicon carbide raw material in the growth crucible to 1900 ° C. or higher, preferably 2300 ° C. or higher, the vapor pressure of the sublimation gas from the silicon carbide raw material becomes sufficiently high. The crystal growth rate can be increased. When the temperature of the seed crystal substrate is lower than 1500 ° C., the grown crystal is likely to be mixed with polymorphism or may not grow as a single crystal. Further, when the temperature of the seed crystal substrate is higher than 2500 ° C., various crystal defects are likely to occur, and polymorphism is likely to occur.
本発明では、炭化珪素単結晶の成長の間、成長ルツボ2を取り囲む雰囲気ガスを珪素(Si)ガスから構成することを特徴とする。本発明では、成長ルツボ2を外ルツボ1内に設置し、成長ルツボ2と外ルツボ1の間に外部から珪素原料を継続的に供給し、成長ルツボ2と外ルツボ1の間で該珪素原料を継続的に蒸発させながら炭化珪素単結晶を成長させることにより、成長ルツボ2を取り囲む雰囲気ガスを珪素ガスから構成することができる。
In the present invention, the atmospheric gas surrounding the
外部からの珪素原料の供給は次のようにして行う。図1で21は、外部から珪素原料22を継続的に供給するための原料容器であり、23は押し出し式定量供給装置、24は振動機である。原料容器21に、珪素原料22を入れておく。珪素原料22は後述する定量供給装置を用いることができる形態とする。原料容器21の材質は、所定の形状に加工でき珪素原料22に不純物の混入がないものであれば良く、例えばステンレス等の金属を用いることができる。図1では、この原料容器21に押し出し式定量供給装置23を取り付ける。定量供給装置は、珪素原料22を成長ルツボ2と外ルツボ1との間に定量供給、すなわち所定の量の珪素原料を所定の時間で供給する目的で設けられている。
Supplied from the outside with silicon material as follows. In FIG. 1, 21 is a raw material container for continuously supplying the silicon
本発明において、外部からの珪素原料22の供給量は、外ルツボ1内の成長ルツボを取り囲む珪素ガスの蒸気圧(「ルツボ外周珪素ガス圧」という。)が、成長ルツボ3内における昇華ガス中珪素ガス圧より高い状態、すなわち珪素ガスが過剰な状態を継続的に維持できる量とする。本発明において得られる昇華ガス中珪素ガス圧とは炭素−炭化珪素混合系における珪素成分ガスの平衡蒸気圧であり、例えば、成長ルツボ内の炭化珪素原料の温度が2100℃の場合、およそ61Pa以上であるから、ルツボ外周珪素ガス圧がそれより高い状態を維持するように、外部から珪素原料を継続的に供給する。
In the present invention, the supply amount of the silicon
黒鉛製の成長ルツボは、2000℃近い高温ではガスに対する気密性は無いため、成長ルツボを取り囲む珪素ガスは、成長ルツボ2の黒鉛の壁を透過して成長ルツボ内へと拡散する。そのため、ルツボ外周珪素ガス圧を上記のように過剰にすることにより、ルツボ内珪素ガス圧を、昇華ガス中珪素ガス圧より過剰な状態に継続的に維持できる。
Since the graphite growth crucible is not gas-tight at a high temperature close to 2000 ° C., the silicon gas surrounding the growth crucible permeates through the graphite wall of the
珪素原料が外ルツボ内で蒸発気化し発生した珪素ガスの圧力は、成長チャンバー51内における雰囲気ガス圧と等しくなるが、同チャンバー51を経て徐々に単結晶成長装置の外部へ排気されるため、それに見合う速度で珪素原料を外ルツボ1内に供給することにより、外ルツボ1内の成長ルツボ2を取り囲む雰囲気内で、珪素ガスが過剰な状態は維持できる。現実には、珪素ガスが単結晶成長装置の外部へ廃棄される速度は、成長チャンバー51内の保持圧力、珪素ガスの拡散速度及びルツボの形状等により変化するため、成長装置毎に適正な珪素供給量を実験的に決定する必要がある。一般的な珪素原料の供給量は、珪素原料が0.5〜20mg/秒の速度で外ルツボ内に供給される程度とするのが好適である。
The pressure of the silicon gas generated by evaporation and evaporation of the silicon raw material in the outer crucible is equal to the atmospheric gas pressure in the
定量供給装置は、珪素原料を上記の供給量で供給できれば構造を限定する必要はなく、スクリューフィーダー、定量押し出し装置、振動供給装置等のいずれも用いることができる。図1のように、原料容器を振動させるための振動機24を装着した定量供給装置を設置しておくと、供給を円滑に行わせることができるため好ましい。珪素原料は固体で供給するほうが、定量供給装置の機構を簡易にできるため好ましい。溶融した珪素原料を定量供給することも可能であるが、溶融状態の維持や供給経路の加熱或いは定量方法に工夫が必要となる。
The structure of the quantitative supply device is not limited as long as the silicon raw material can be supplied at the above supply amount, and any of a screw feeder, a quantitative extrusion device, a vibration supply device, and the like can be used. As shown in FIG. 1, it is preferable to install a fixed amount supply device equipped with a
本発明において用いられる固体の珪素原料の形態は、定量供給するのに適した粉体であるのが好ましい。たとえば粉砕したもの、球状ポリシリコン等を用いればよい。珪素原料の粉体の大きさは、平均粒径が0.2mm以上であるのが好ましい。0.2mm未満では供給時に舞い上がったり供給用の導入管31の内壁に付着しやすくなり供給が不安定になりやすい。一方、投入された珪素原料による成長ルツボへの衝撃と蒸発効率から、珪素原料の直径の上限がほぼ決まる。たとえば粉体の直径が5mmを超えるような粉体は使用できない。固体の珪素原料は、直径が0.2〜5mmの粉体とするのが好ましい。特に定量供給装置が押出し型である場合は、移送を容易にする点からその形態は球状が好ましく、平均粒径は1〜2mmであるのが好ましい。 The form of the solid silicon raw material used in the present invention is preferably a powder suitable for quantitative supply. For example, pulverized material, spherical polysilicon or the like may be used. The silicon raw material powder preferably has an average particle size of 0.2 mm or more. If it is less than 0.2 mm, it tends to rise at the time of supply or adhere to the inner wall of the supply introduction pipe 31 and the supply tends to become unstable. On the other hand, the upper limit of the diameter of the silicon raw material is almost determined from the impact on the growth crucible by the supplied silicon raw material and the evaporation efficiency. For example, a powder having a powder diameter exceeding 5 mm cannot be used. The solid silicon raw material is preferably a powder having a diameter of 0.2 to 5 mm. In particular, when the quantitative supply device is an extrusion type, the shape is preferably spherical from the viewpoint of facilitating transfer, and the average particle size is preferably 1 to 2 mm.
原料容器21から外ルツボ1内に珪素原料22を供給するために、その間を黒鉛製の導入管31で接続する。石英ガラスや炭化珪素からなる導入管も温度条件により使用可能で、さらに十分温度が低い部分にはステンレス等の金属からなる導入管も使用できる。また導入管はこれらの複合材でも構成できる。また高周波誘導コイルからの放電がある場合、それを防ぐために絶縁体(例えばセラミックあるいは石英ガラス)で保護するのが好ましい。
In order to supply the silicon
これらの成長ルツボ2を内蔵した外ルツボ1、高周波誘導コイル7、導入管31等は、雰囲気の制御が可能な成長チャンバー51内に設置する。成長チャンバー51は、ガスの出口側に排気装置52が接続されており、またガスの入り口側にガス精製機54を経たガス導入ライン53が接続されている。ガス導入ライン53の途中にはマスフローコントローラー55が設置されている。アルゴン(Ar)等の不活性ガスが、成長チャンバー51内の雰囲気ガスとして、炭化珪素単結晶の成長中、ガス導入ライン53から成長チャンバー51に供給され、排気装置52を経て排出される。マスフローコントローラー55と排気装置52を調節することにより、成長チャンバー51内へのガス導入量と成長チャンバー51からの排気量をコントロールし、成長チャンバー51内の圧力を所定の値に制御することができる。
The
図1に示したように、外ルツボ1内に供給された珪素原料は、蒸発気化し、外ルツボ1と成長ルツボ2の間の空間を満たす。成長ルツボと外ルツボの間の珪素原料が投入される場所は、その場所の温度を1900℃以上とすれば好適に珪素原料を蒸発気化することができるため、特に限定はない。一般的な昇華法による炭化珪素の成長温度である1900℃以上では、珪素が気化する際の平衡蒸気圧は2.7×104Pa以上である。外ルツボ1と成長ルツボ2の間で珪素原料の蒸発により過剰に生成した珪素ガスの一部は、導入管31を通って成長チャンバー51内に放出される。また黒鉛製の成長ルツボは、2000℃近い高温ではガスに対する気密性は無いため、外ルツボ1内の残りの珪素ガスは、成長ルツボ2の黒鉛の壁を透過して成長ルツボ内へと拡散し、ルツボ内珪素ガス圧を維持しまたは高める。
As shown in FIG. 1, the silicon raw material supplied into the
成長チャンバー51内の圧力と外ルツボ1内の圧力は、導入管31で結ばれていているため等しくなる。また、外ルツボ1内の成長ルツボ2を取り囲む雰囲気ガスは、外部から供給される珪素原料の蒸発により、珪素ガスから構成される。また、外ルツボ1内の珪素ガスは、成長ルツボ2の黒鉛の壁を透過して成長ルツボ内へと拡散する。従って、成長ルツボの黒鉛材の厚さと成長ルツボの温度分布が同一なら、成長ルツボ2内のルツボ内珪素ガス圧は、成長チャンバー51の圧力によって制御することが可能である。則ち、成長チャンバー51内の圧力を高くすると、ルツボ内珪素ガス圧も高くなる。ただし、外ルツボ1内のルツボ外周珪素ガス圧が成長チャンバーの保持圧力と等しくなるのに十分な珪素原料が、外部から外ルツボ1内に継続的に供給される必要がある。
The pressure in the
炭化珪素単結晶の成長中に、成長ルツボ2中のルツボ内珪素ガス圧を、炭化珪素原料11からの昇華ガス中珪素ガス圧と等しいかより高く維持することは、炭化珪素単結晶の品質を向上する上で望ましい。そのため、成長チャンバー51内の圧力は、高めに設定するのが望ましい。ただし、炭化珪素単結晶を成長させる成長ルツボ内の圧力を増加させると、昇華ガスの拡散による炭化珪素単結晶の成長速度は低下する。そのため、炭化珪素単結晶の結晶性と成長速度が最適になるように、成長チャンバー51内の成長ルツボを取り囲む雰囲気ガスの圧力を設定する必要がある。
During the growth of the silicon carbide single crystal, maintaining the silicon gas pressure in the crucible in the
炭化珪素単結晶を成長する際の成長ルツボを取り囲む雰囲気ガスの圧力は、高度の減圧から常圧より少し高い程度、即ち1.33〜1.33×105Paの範囲で行うことが可能である。特に、炭化珪素原料からの昇華ガスの発生を効率良く行うためには、1.33×102〜4.0×104Paとするのがよい。さらに単結晶成長を効率よく実施するためには、炭化珪素単結晶を成長する際の圧力を6.65×103〜2.0×104Paとするのが好ましい。 The pressure of the atmospheric gas surrounding the growth crucible when growing the silicon carbide single crystal can be performed within a range from a high pressure reduction to a level slightly higher than normal pressure, that is, 1.33 to 1.33 × 10 5 Pa. is there. In particular, in order to efficiently generate sublimation gas from the silicon carbide raw material, it is preferable to set the pressure to 1.33 × 10 2 to 4.0 × 10 4 Pa. Furthermore, in order to efficiently perform the single crystal growth, it is preferable that the pressure at the time of growing the silicon carbide single crystal is 6.65 × 10 3 to 2.0 × 10 4 Pa.
本発明によれば、炭化珪素単結晶を成長中の成長ルツボを取り囲む雰囲気ガスの圧力を1.33×102〜4.0×104Paとすることにより、炭化珪素単結晶の成長速度が1mm/時間以上で、かつマイクロパイプ密度が10000個/cm2以下の炭化珪素単結晶を製造することが出来る。さらに圧力を6.65×103〜2.0×104Paとすることにより、炭化珪素の成長速度を2mm/時間以上とすることが可能である。このように炭化珪素単結晶の成長速度を1mm/時間、好ましくは2mm/時間以上とすると、炭化珪素単結晶の成長を効率良く実施することが出来る。 According to the present invention, the growth rate of the silicon carbide single crystal can be increased by setting the pressure of the atmospheric gas surrounding the growth crucible during the growth of the silicon carbide single crystal to 1.33 × 10 2 to 4.0 × 10 4 Pa. A silicon carbide single crystal having a micropipe density of 10,000 pieces / cm 2 or less can be produced at 1 mm / hour or more. Furthermore, by setting the pressure to 6.65 × 10 3 to 2.0 × 10 4 Pa, the growth rate of silicon carbide can be set to 2 mm / hour or more. Thus, when the growth rate of the silicon carbide single crystal is 1 mm / hour, preferably 2 mm / hour or more, the growth of the silicon carbide single crystal can be carried out efficiently.
本発明の炭化珪素単結晶の成長では、炭化珪素単結晶の不純物ドーピングも必要に応じ実施できる。例えば、予め不純物がドープされた珪素原料を用いる、あるいは、ガスとしてドーピング元素を供給することで、炭化珪素単結晶に不純物をドーピングすることも可能である。 In the growth of the silicon carbide single crystal of the present invention, impurity doping of the silicon carbide single crystal can be performed as necessary. For example, it is possible to dope impurities into a silicon carbide single crystal by using a silicon raw material doped with impurities in advance or by supplying a doping element as a gas.
図2に、本発明に係る炭化珪素単結晶の製造装置の別の一例を示す。図2は、図1に示した炭化珪素単結晶の製造装置の成長ルツボにおいて、蓋板3がシード台4を兼ねており、炭化珪素の種結晶基板5が蓋板3に装着されている場合の図である。このような装置でも、本発明を実施することができる。
FIG. 2 shows another example of the silicon carbide single crystal manufacturing apparatus according to the present invention. FIG. 2 shows a case where the
(作用)
本発明が、炭化珪素単結晶の結晶欠陥の発生を抑制する機構については、以下のように推定される。炭化珪素原料からの昇華ガス内では、炭化珪素(SiC)の他に未反応のSiやSi2C、SiC2等のガス成分が、ある平衡蒸気圧に達していると考えられる。しかし、黒鉛製の成長ルツボは、2000℃近い高温ではガスに対する気密性は無いため、成長ルツボの内外で蒸気圧に差があれば内部のガスはルツボの黒鉛壁を容易に透過する。通常の昇華法にあっては、成長ルツボの外部における昇華ガスの蒸気圧はほぼ0であるため、成長ルツボ内部の昇華ガスは外部に漏れ出し、その蒸気圧は平衡蒸気圧より低下する傾向にある。
(Function)
The mechanism by which the present invention suppresses the occurrence of crystal defects in a silicon carbide single crystal is presumed as follows. In the sublimation gas from the silicon carbide raw material, it is considered that gas components such as unreacted Si, Si 2 C and SiC 2 reach a certain equilibrium vapor pressure in addition to silicon carbide (SiC). However, since the graphite growth crucible is not gas-tight at a high temperature close to 2000 ° C., if there is a difference in vapor pressure between the inside and outside of the growth crucible, the gas inside easily passes through the graphite wall of the crucible. In the normal sublimation method, the vapor pressure of the sublimation gas outside the growth crucible is almost zero, so the sublimation gas inside the growth crucible leaks to the outside, and the vapor pressure tends to be lower than the equilibrium vapor pressure. is there.
化合物半導体の結晶成長においては、結晶の構成元素の化学量論的組成(いわゆるストイキオメトリー)を一定に保つためには、その結晶成長時に乖離圧の高い構成元素の蒸気圧を高く保つことが有効であることが知られている。仮に構成元素の蒸気圧を等しくして結晶成長を行った場合、乖離圧の高い元素は結晶成長時に固体内への取り込まれ率が低くなり、結晶内で空孔の発生やそれに伴う微小な格子歪みが生じ、成長する結晶内に転位や積層欠陥を誘発する可能性が高い。炭化珪素の単結晶成長においては、珪素が乖離圧の高い構成元素に相当する。 In the crystal growth of compound semiconductors, in order to keep the stoichiometric composition (so-called stoichiometry) of the constituent elements of the crystal constant, it is necessary to keep the vapor pressure of the constituent elements having a high dissociation pressure high during the crystal growth. It is known to be effective. If crystal growth is performed with the vapor pressures of the constituent elements being equal, elements with high dissociation pressure will have a low rate of incorporation into the solid during crystal growth, generating vacancies in the crystal and the accompanying small lattices. There is a high possibility that distortion occurs and induces dislocations and stacking faults in the growing crystal. In single crystal growth of silicon carbide, silicon corresponds to a constituent element having a high separation pressure.
本発明においては、成長ルツボを取り囲む雰囲気ガスを珪素ガスから構成したため、通常の昇華法の場合とは逆に、乖離圧の高い珪素ガスは成長ルツボ壁を通して成長ルツボ外から成長ルツボ内に拡散することになり、成長ルツボ内の珪素ガスの蒸気圧(ルツボ内珪素ガス圧)が昇華ガス中珪素ガス圧と等しいかより過剰になる傾向を有する。このため、従来の昇華法による炭化珪素単結晶の成長に伴う結晶欠陥の発生を大幅に抑制することができると考えられる。 In the present invention, since the atmosphere gas surrounding the growth crucible is composed of silicon gas, contrary to the case of the normal sublimation method, silicon gas having a high dissociation pressure diffuses from outside the growth crucible into the growth crucible through the growth crucible wall. Thus, the vapor pressure of the silicon gas in the growth crucible (silicon gas pressure in the crucible) tends to be equal to or more excessive than the silicon gas pressure in the sublimation gas. For this reason, it is thought that generation | occurrence | production of the crystal defect accompanying the growth of the silicon carbide single crystal by the conventional sublimation method can be suppressed significantly.
本実施例1では、図1に示す炭化珪素単結晶の製造装置を用いて、炭化珪素単結晶の成長を実施した。まず、(0001)面を有する6H−SiC単結晶を直径40mm、厚さ1.0mmに加工した種結晶基板を成長ルツボのシード台(黒鉛製、厚さ9mm)の成長ルツボ底側面の中央部に接着により取りつけた。成長ルツボは内径52mm高さ116mmの底のある円筒で、材質は黒鉛である。成長ルツボの底の下端から約52mmの高さまで炭化珪素粉末原料(約172g)を入れた。さらにその上32m上に種結晶の下端面が位置するようにシード台を取り付けた。成長ルツボは外ルツボ内の中央に置いた。外ルツボは内径75mm高さ157mmの底のある円筒で材質は黒鉛である。外ルツボの上蓋には珪素原料の導入管が取り付けてあり、その内径は5mmである。珪素原料としては、半導体用の高純度球状ポリシリコン(純度8ナイン、平均粒径1.5mm)を100g原料容器に入れた。珪素原料は、原料容器から振動型の定量供給装置を用いて黒鉛製の導入管を経由して外ルツボと成長ルツボの間に供給した。
In Example 1, a silicon carbide single crystal was grown using the silicon carbide single crystal manufacturing apparatus shown in FIG. First, the center part of the growth crucible bottom side surface of a seed crucible seed base (made of graphite, thickness 9 mm) formed from a seed crystal substrate obtained by processing a 6H-SiC single crystal having a (0001) plane to a diameter of 40 mm and a thickness of 1.0 mm It was attached by gluing. The growth crucible is a bottomed cylinder with an inner diameter of 52 mm and a height of 116 mm, and the material is graphite. A silicon carbide powder raw material (about 172 g) was placed from the bottom bottom of the growth crucible to a height of about 52 mm. Further, a seed stand was attached so that the lower end surface of the seed crystal was positioned 32 m above it. The growing crucible was placed in the center inside the outer crucible. The outer crucible is a cylinder with a bottom with an inner diameter of 75 mm and a height of 157 mm, and the material is graphite. A silicon raw material introduction pipe is attached to the upper cover of the outer crucible, and its inner diameter is 5 mm. As the silicon raw material, 100 g of high-purity spherical polysilicon for semiconductor (
成長ルツボと導入管を減圧可能な成長チャンバー内に設置した。成長チャンバー内を1.33×10-1Paまで減圧した後、アルゴンガスを大気圧まで導入し成長雰囲気の置換を行った。ついで外ルツボを約2400℃まで約30分で昇温し、ルツボ等に付着したガス等を除去する熱処理を行った。つぎに外ルツボ下部の温度を約2440℃、外ルツボ上部の温度を1900℃に保持して、成長チャンバー内にアルゴンを導入しながら、そのアルゴン雰囲気を2.7×104Paまで減圧して維持し、その後珪素原料を0.12g/分の供給速度で成長ルツボと外ルツボの間に継続的に供給し、蒸発させながら5時間結晶成長を行った。 The growth crucible and the introduction tube were installed in a growth chamber that can be depressurized. After reducing the pressure in the growth chamber to 1.33 × 10 −1 Pa, argon gas was introduced to atmospheric pressure to replace the growth atmosphere. Next, the temperature of the outer crucible was raised to about 2400 ° C. in about 30 minutes, and a heat treatment was performed to remove gas adhering to the crucible and the like. Next, while maintaining the temperature of the lower part of the outer crucible at about 2440 ° C. and the temperature of the upper part of the outer crucible at 1900 ° C., the argon atmosphere is reduced to 2.7 × 10 4 Pa while introducing argon into the growth chamber. Then, the silicon raw material was continuously supplied between the growth crucible and the outer crucible at a supply rate of 0.12 g / min, and crystal growth was performed for 5 hours while evaporating.
成長終了後、成長ルツボを開放した。成長ルツボのシード台の種結晶基板上には単結晶が成長していた。成長した炭化珪素単結晶は、直径が先端部で約50mmで、成長した長さは7.0mmであった。 After the completion of growth, the growth crucible was released. A single crystal was grown on the seed crystal substrate of the seed base of the growth crucible. The grown silicon carbide single crystal had a diameter of about 50 mm at the tip and a grown length of 7.0 mm.
次いで、成長ルツボ内の炭化珪素粉原料を新しく入れ替え、成長した結晶上に再度炭化珪素単結晶の成長を行った。成長に用いた温度や圧力等の設定は初回の成長と同様である。結晶成長は再び5時間行った。 Next, the silicon carbide powder raw material in the growth crucible was newly replaced, and a silicon carbide single crystal was again grown on the grown crystal. Settings such as temperature and pressure used for growth are the same as for the first growth. Crystal growth was performed again for 5 hours.
2回目の成長終了後、再び成長ルツボを開放した。2回目の成長で成長した炭化珪素単結晶は、直径が先端部で約50mmで、成長した長さは6.0mmであった。成長した単結晶を成長方向に沿って切断し、断面を研磨により磨きだして顕微鏡観察を行った。その結果、成長した単結晶内でインクルージョンは皆無であった。またラマン分光測定によるピーク位置から、成長した結晶は6Hの炭化珪素で、他の多型の混入の全くない単結晶であることを確認した。 】 After the second growth, the growth crucible was released again. The silicon carbide single crystal grown in the second growth had a diameter of about 50 mm at the tip and a grown length of 6.0 mm. The grown single crystal was cut along the growth direction, the cross section was polished by polishing and observed with a microscope. As a result, there was no inclusion in the grown single crystal. Further, from the peak position by Raman spectroscopic measurement, it was confirmed that the grown crystal was 6H silicon carbide and was a single crystal having no other polymorphic contamination.
また、単結晶を成長方向に垂直に切断し断面を顕微鏡で観察したところ、炭化珪素成長に伴ってみられるマイクロパイプという固有欠陥の密度については、種結晶でおよそ105個/cm2であったものが、種結晶から5mm成長した時点の単結晶内ではおよそ103個/cm2となり、1/100程度に減少していた。さらに、単結晶が成長するに従い、マイクロパイプの密度が減少していく様子が観察された。 In addition, when the single crystal was cut perpendicularly to the growth direction and the cross section was observed with a microscope, the density of inherent defects called micropipes that accompany silicon carbide growth was about 10 5 / cm 2 in the seed crystal. In the single crystal at the time of growing 5 mm from the seed crystal, it was about 10 3 pieces / cm 2 and decreased to about 1/100. Furthermore, it was observed that the density of the micropipes decreased as the single crystal grew.
(比較例1)
本比較例1では、図1に示す装置を用いて炭化珪素単結晶の成長を実施した。温度条件等を一致させるため、ルツボや種結晶は実施例1と同一のものを用い、温度や圧力の設定も実施例1と同様にした。ただし、温度を成長温度に維持した後、アルゴン雰囲気を2.7×104Paまで減圧した後にも、外部からの珪素原料の供給は行わなかった。結晶成長時間も実施例1と同様に5時間とした。
(Comparative Example 1)
In Comparative Example 1, a silicon carbide single crystal was grown using the apparatus shown in FIG. In order to match the temperature conditions and the like, the same crucible and seed crystal as in Example 1 were used, and the temperature and pressure were set in the same manner as in Example 1. However, the silicon raw material was not supplied from the outside even after maintaining the temperature at the growth temperature and then reducing the argon atmosphere to 2.7 × 10 4 Pa. The crystal growth time was also 5 hours as in Example 1.
成長終了後、成長ルツボを開放した。成長ルツボのシード台の種結晶基板上には全面にわたって多結晶が成長していた。成長した炭化珪素多結晶は、直径が先端部で約50mmで、成長した長さは6.5mmであった。成長した結晶の成長方向に沿って切断し、断面を研磨により磨きだして顕微鏡観察をおこなった結果、多結晶化は種結晶基板の直上から発生していたことがわかった。 After the completion of growth, the growth crucible was released. Polycrystals were grown over the entire surface of the seed crystal substrate of the growth base of the crucible. The grown polycrystalline silicon carbide had a diameter of about 50 mm at the tip and a grown length of 6.5 mm. As a result of cutting along the growth direction of the grown crystal, polishing the cross section by polishing and observing under a microscope, it was found that polycrystallization occurred from directly above the seed crystal substrate.
本実施例2でも、図1に示す装置を用いて炭化珪素単結晶の成長を実施した。ルツボや種結晶は実施例1と同一のものを用いた。成長のプロセスも実施例1と同様にした。ただし、成長実施時の外ルツボ下部の温度を約2480℃、外ルツボ上部の温度を1980℃に保持し、成長チャンバー内のアルゴン雰囲気は成長中1.5×104Paに維持した。珪素原料を実施例1と同様に投下しながら5時間の結晶成長を行った。 Also in Example 2, the silicon carbide single crystal was grown using the apparatus shown in FIG. The same crucible and seed crystal as in Example 1 were used. The growth process was the same as in Example 1. However, the temperature at the lower part of the outer crucible during the growth was maintained at about 2480 ° C., the temperature at the upper part of the outer crucible was maintained at 1980 ° C., and the argon atmosphere in the growth chamber was maintained at 1.5 × 10 4 Pa during the growth. Crystal growth was performed for 5 hours while dropping the silicon raw material in the same manner as in Example 1.
成長した炭化珪素単結晶は、直径が先端部で約50mmで、成長した長さは10.5mmであった。 The grown silicon carbide single crystal had a diameter of about 50 mm at the tip and a grown length of 10.5 mm.
次いで、成長ルツボ内の炭化珪素粉原料を新しく入れ替え、成長した結晶上に再度炭化珪素単結晶の成長を行った。成長に用いた温度や圧力等の設定は初回の成長と同様である。結晶成長は再び5時間行った。 Next, the silicon carbide powder raw material in the growth crucible was newly replaced, and a silicon carbide single crystal was again grown on the grown crystal. Settings such as temperature and pressure used for growth are the same as for the first growth. Crystal growth was performed again for 5 hours.
2回目の成長終了後、再び成長ルツボを開放した。2回目の成長で成長した炭化珪素単結晶は、直径が先端部で約50mmで、成長した長さは10.2mmであった。成長した単結晶を成長方向に沿って切断し、断面を研磨により磨きだして顕微鏡観察を行った。その結果、成長した単結晶内でインクルージョンは皆無であった。またラマン分光測定によるピーク位置から、成長した結晶は6Hの炭化珪素で、他の多型の混入の全くない単結晶であることを確認した。 】 After the second growth, the growth crucible was released again. The silicon carbide single crystal grown by the second growth had a diameter of about 50 mm at the tip and a grown length of 10.2 mm. The grown single crystal was cut along the growth direction, the cross section was polished by polishing and observed with a microscope. As a result, there was no inclusion in the grown single crystal. Further, from the peak position by Raman spectroscopic measurement, it was confirmed that the grown crystal was 6H silicon carbide and was a single crystal having no other polymorphic contamination.
また、単結晶を成長方向に垂直に切断し断面を顕微鏡で観察し、マイクロパイプの密度については、種結晶から15mm成長した時点の単結晶内ではおよそ15個/cm2であることを確認した。 Further, the single crystal was cut perpendicularly to the growth direction and the cross section was observed with a microscope, and the density of the micropipe was confirmed to be about 15 / cm 2 in the single crystal at the time of growing 15 mm from the seed crystal. .
昇華法による炭化珪素単結晶の成長において、雰囲気ガスを制御することにより昇華ガスの成分の変動を抑制し、結晶欠陥の少ない大口径の炭化珪素単結晶を、安定性よくかつ早い成長速度で、種結晶基板上に成長させる方法を提供できる。 In the growth of a silicon carbide single crystal by the sublimation method, the fluctuation of the components of the sublimation gas is suppressed by controlling the atmospheric gas, and a large-diameter silicon carbide single crystal with few crystal defects can be stably grown at a high growth rate. A method of growing on a seed crystal substrate can be provided.
1 外ルツボ
2 成長ルツボ
3 蓋板
4 シード台
5 炭化珪素種結晶基板
6 成長した炭化珪素単結晶
7 高周波誘導コイル
8 断熱材
9 測温穴
10 放射温度計
11 炭化珪素原料
21 原料容器
22 珪素原料
23 押し出し式定量供給装置
24 振動機
31 導入管
51 成長チャンバー
52 排気装置
53 ガス導入ライン
54 ガス精製機
55 マスフローコントローラー
DESCRIPTION OF
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003325856A JP4505202B2 (en) | 2002-09-19 | 2003-09-18 | Method and apparatus for producing silicon carbide single crystal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002272384 | 2002-09-19 | ||
JP2003325856A JP4505202B2 (en) | 2002-09-19 | 2003-09-18 | Method and apparatus for producing silicon carbide single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004131376A true JP2004131376A (en) | 2004-04-30 |
JP4505202B2 JP4505202B2 (en) | 2010-07-21 |
Family
ID=32301708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003325856A Expired - Lifetime JP4505202B2 (en) | 2002-09-19 | 2003-09-18 | Method and apparatus for producing silicon carbide single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4505202B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006117512A (en) * | 2004-09-24 | 2006-05-11 | Showa Denko Kk | Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer |
WO2008056758A1 (en) * | 2006-11-09 | 2008-05-15 | Bridgestone Corporation | Process for producing silicon carbide single crystal |
JP2010013296A (en) * | 2008-07-01 | 2010-01-21 | Showa Denko Kk | Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal |
KR20130074705A (en) * | 2011-12-26 | 2013-07-04 | 엘지이노텍 주식회사 | Apparatus and method for fabricating single crystal |
JP2016199415A (en) * | 2015-04-08 | 2016-12-01 | 住友電気工業株式会社 | Manufacturing apparatus of silicon carbide single crystal |
CN114174565A (en) * | 2019-03-05 | 2022-03-11 | 学校法人关西学院 | Method and apparatus for manufacturing SiC epitaxial substrate |
CN115467028A (en) * | 2022-08-24 | 2022-12-13 | 江苏星特亮科技有限公司 | Single crystal growing device |
CN116575122A (en) * | 2023-07-13 | 2023-08-11 | 宁波合盛新材料有限公司 | N-type silicon carbide crystal, preparation method and growth device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06298600A (en) * | 1993-04-15 | 1994-10-25 | Nippon Steel Corp | Method of growing sic single crystal |
WO2001048277A1 (en) * | 1999-12-27 | 2001-07-05 | Showa Denko Kabushiki Kaisha | Method and apparatus for producing single crystal of silicon carbide |
JP2001226198A (en) * | 2000-02-15 | 2001-08-21 | Denso Corp | Method and device for producing silicon carbide single crystal |
JP2002012500A (en) * | 2000-06-21 | 2002-01-15 | Showa Denko Kk | Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal |
-
2003
- 2003-09-18 JP JP2003325856A patent/JP4505202B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06298600A (en) * | 1993-04-15 | 1994-10-25 | Nippon Steel Corp | Method of growing sic single crystal |
WO2001048277A1 (en) * | 1999-12-27 | 2001-07-05 | Showa Denko Kabushiki Kaisha | Method and apparatus for producing single crystal of silicon carbide |
JP2001226198A (en) * | 2000-02-15 | 2001-08-21 | Denso Corp | Method and device for producing silicon carbide single crystal |
JP2002012500A (en) * | 2000-06-21 | 2002-01-15 | Showa Denko Kk | Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006117512A (en) * | 2004-09-24 | 2006-05-11 | Showa Denko Kk | Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer |
JP4733485B2 (en) * | 2004-09-24 | 2011-07-27 | 昭和電工株式会社 | Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal |
WO2008056758A1 (en) * | 2006-11-09 | 2008-05-15 | Bridgestone Corporation | Process for producing silicon carbide single crystal |
JP2010013296A (en) * | 2008-07-01 | 2010-01-21 | Showa Denko Kk | Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal |
KR20130074705A (en) * | 2011-12-26 | 2013-07-04 | 엘지이노텍 주식회사 | Apparatus and method for fabricating single crystal |
KR101882317B1 (en) | 2011-12-26 | 2018-07-27 | 엘지이노텍 주식회사 | Apparatus and method for fabricating single crystal |
JP2016199415A (en) * | 2015-04-08 | 2016-12-01 | 住友電気工業株式会社 | Manufacturing apparatus of silicon carbide single crystal |
CN114174565A (en) * | 2019-03-05 | 2022-03-11 | 学校法人关西学院 | Method and apparatus for manufacturing SiC epitaxial substrate |
CN115467028A (en) * | 2022-08-24 | 2022-12-13 | 江苏星特亮科技有限公司 | Single crystal growing device |
CN116575122A (en) * | 2023-07-13 | 2023-08-11 | 宁波合盛新材料有限公司 | N-type silicon carbide crystal, preparation method and growth device |
CN116575122B (en) * | 2023-07-13 | 2023-10-03 | 宁波合盛新材料有限公司 | N-type silicon carbide crystal, preparation method and growth device |
Also Published As
Publication number | Publication date |
---|---|
JP4505202B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11761117B2 (en) | SiC single crystal sublimation growth apparatus | |
JP4733485B2 (en) | Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal | |
US7361222B2 (en) | Device and method for producing single crystals by vapor deposition | |
US6336971B1 (en) | Method and apparatus for producing silicon carbide single crystal | |
CN101553604B (en) | Process for producing single crystal of silicon carbide | |
JP4122548B2 (en) | Method for producing silicon carbide single crystal | |
JP4199921B2 (en) | Method and apparatus for producing silicon carbide single crystal | |
US7371281B2 (en) | Silicon carbide single crystal and method and apparatus for producing the same | |
US6797060B2 (en) | Method and apparatus for producing silicon carbide single crystal | |
RU2094547C1 (en) | Sublimation method for growing silicon carbide monocrystals and silicon carbide source involved | |
JP4819069B2 (en) | Method for producing silicon carbide single crystal | |
JP4505202B2 (en) | Method and apparatus for producing silicon carbide single crystal | |
JP4833780B2 (en) | Lid graphite crucible and silicon carbide single crystal growth apparatus | |
EP1132505B1 (en) | Method for producing single-crystal silicon carbide | |
EP1158077B1 (en) | Method and apparatus for producing single crystal of silicon carbide | |
JP2002274994A (en) | Method and apparatus of manufacturing silicon carbide single crystal and silicon carbide single crystal ingot | |
WO2008023635A1 (en) | SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME | |
US20020071803A1 (en) | Method of producing silicon carbide power | |
JP2009023846A (en) | Method for producing silicon carbide single crystal and apparatus for producing the same | |
JP2006248795A (en) | Group iii nitride single crystal and method for growing the same | |
JP2008273819A (en) | Method for manufacturing silicon carbide single crystal and silicon carbide single crystal obtained by the method | |
JP2008037715A (en) | SINGLE CRYSTAL SiC, METHOD FOR MANUFACTURING THE SAME, AND MANUFACTURING DEVICE FOR SINGLE CRYSTAL SiC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4505202 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160430 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |