TW200807896A - Sigma-delta modulation with offset - Google Patents

Sigma-delta modulation with offset Download PDF

Info

Publication number
TW200807896A
TW200807896A TW96101109A TW96101109A TW200807896A TW 200807896 A TW200807896 A TW 200807896A TW 96101109 A TW96101109 A TW 96101109A TW 96101109 A TW96101109 A TW 96101109A TW 200807896 A TW200807896 A TW 200807896A
Authority
TW
Taiwan
Prior art keywords
samples
dac
sample
compensation
output
Prior art date
Application number
TW96101109A
Other languages
Chinese (zh)
Inventor
Edward Arthur Keehr
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/489,960 external-priority patent/US7456766B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200807896A publication Critical patent/TW200807896A/en

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Techniques for performing ΣΔ modulation with offset in order to reduce out-of-band quantization noise are described. In an exemplary oversampling DAC that implements ΣΔ modulation with offset, an interpolation filter performs upsampling and interpolation filtering on data samples to generate input samples. A summer adds an offset to the input samples to generate intermediate samples. The offset alters the characteristics of the quantization noise from a ΣΔ modulator and may be selected to obtain the desired quantization noise characteristics, to retain as much dynamic range as possible, and to simplify the removal of the offset. The ΣΔ modulator performs upsampling and noise shaping on the intermediate samples and provides output samples. An offset removal unit removes at least a portion of the offset from the output samples in the digital or analog domain. A DAC converts the output samples to analog.

Description

200807896 九、發明說明: 【發明所屬之技術領域】 且更具體而言係關於 本揭示一般而言係關於電子器件 累加增量(ΣΔ)調變器。 【先前技術】200807896 IX. INSTRUCTIONS: [Technical field to which the invention pertains] and more particularly to the present disclosure relates generally to electronic device incremental delta (ΣΔ) modulators. [Prior Art]

/△調㈣廣泛地用於諸如超取樣音訊數位類比轉換哭 (MC)、超取樣類比數位轉換器(ADC)、儀器DAc等之2 種應用。ΣΔ調變器以較低輸人樣本率接收具有許多位元 (例如,16位元)的解析度之數位輸人且以較高輸出樣本: 產生具有相同解析度但使用一或少數位元之數位輪出。以 調變器可使用具有一或少數位元之解析度之量化器產生數 位輸出且可因此而達成良好線性。此外,Σ△調變器可在光 譜上重整量化雜訊以使得大部分雜訊自所要的信號頻帶推 開而朝向較高頻率。可使用簡單的類比濾波器器來較容易 地過濾掉較高頻率之頻帶外雜訊。 然而,來自ΣΔ調變器之高頻頻帶外雜訊即使在存在類比 過濾之情況下亦可能會導致某些問題。舉例而言,頻帶外 雜訊在過濾之前可能與其他信號混合且折回至所要的信號 頻帶中,因此使頻帶中之雜訊底部升高。Μ高的雜訊底部 可導致Σ△調變器無法達到信雜比(SNR)及/或其他規定。此 外,可由定位於類比積體電路(IC)晶粒上之數位電路來處 理頻帶外雜訊。量化雜訊在操作之敏感期期間直接轉化為 數位電路之活動率且可使鄰近定位之類比電路區塊惡化, 因此使此等類比電路區塊之雜訊底部升高。歸因於來自ςδ 117836.doc 200807896 調變器之頻帶外雜訊之此耸 至為有害的。之此4不利影響係非所要的且可能甚 因此,在此項技術中需要減小來自ς 訊之技術。 。周又裔之頻帶外雜 【發明内容】 本文中描述用於執行具有補償緣…/△ Tuning (4) Widely used in two applications such as oversampling audio digital analog conversion crying (MC), oversampling analog-to-digital converter (ADC), instrument DAc, etc. The ΣΔ modulator receives a digital input with a resolution of many bits (eg, 16 bits) at a lower input sample rate and outputs the sample at a higher resolution: produces one or a few bits with the same resolution The number is round. The modulator can use a quantizer with one or a few bits of resolution to produce a digital output and thus achieve good linearity. In addition, the ΣΔ modulator can spectrally refine the noise so that most of the noise is pushed away from the desired signal band toward a higher frequency. A simple analog filter can be used to more easily filter out out-of-band noise at higher frequencies. However, high frequency out-of-band noise from the ΣΔ modulator can cause certain problems even in the presence of analog filtering. For example, out-of-band noise may be mixed with other signals and folded back into the desired signal band before filtering, thus raising the bottom of the noise in the band. A high noise floor can cause the ΣΔ modulator to fail to meet the signal-to-noise ratio (SNR) and/or other regulations. In addition, out-of-band noise can be handled by digital circuitry located on the analog integrated circuit (IC) die. The quantization noise is directly converted into the activity rate of the digital circuit during the sensitive period of operation and can deteriorate the analog circuit block of the adjacent positioning, thereby raising the noise floor of the analog circuit blocks. This is due to the out-of-band noise from the ςδ 117836.doc 200807896 modulator. These four adverse effects are undesirable and may be even less necessary in the art to reduce the technology from the communication. . The extra-band of the Zhou dynasty [Abstract] The description herein is for performing the compensation edge...

量化雜訊之技術。更減小頻帶外 之一 ^施具有補償之Σ△調變的超取樣DAC 插過遽並產生輪入樣本。加==:頻=及内 生中間樣本。補償改變了來自£ ::;補“產 _ Π夂^之里化雜訊之特徼 且可經選擇以獲得所要的量化 仅杜去 濰讯特被,從而如下所描述 保持盡可能多的動態範圍並簡化補償之移除。ς△調變哭對 中間樣本執行升頻取樣及雜訊重整並提供輸出樣本。補償 移除單元在數位域(例如,藉由使每—輸出取樣之所有位 兀反相)及/或類比域(例如,#由在類比電路中添加補償)Techniques for quantifying noise. A further reduction in the out-of-band one is applied with a compensated ΣΔ modulated oversampling DAC that is inserted and produces a wheeled sample. Add ==: frequency = and endogenous intermediate samples. The compensation changes the characteristics of the noise from £:;; complements the production of _ Π夂 ^ and can be selected to obtain the desired quantification only to remove the singularity, so as to maintain as much dynamic as possible as described below Range and simplify the removal of compensation. ς △ 变 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 中间 中间 中间 对 中间 中间 中间 中间 中间 对 中间 中间 中间 中间 中间 对 对 对 对 对 对 对兀 inverting) and / or analog domain (for example, # by adding compensation in the analog circuit)

中自輸出樣本移除補償之至少一部分。dac使用多個DAC 凡件將輸出樣本轉換為類比樣本。動態元件匹配⑴判單 凡基於輸出樣本而選擇DAC元件中之不同者。低通濾波器 過濾來自DAC之類比信號以移除頻帶外之雜訊。放大器放 大及/或緩衝經過濾之信號以產生輸出信號。 下文中將更詳細地描述本發明之各種態樣及實施例。 【實施方式】 明 詞語”例示性"在本文中用以意謂,, ”。本文中描述為”例示性”之任一 充當實例、例子或說 實施例或設計並非必 117836.doc 200807896 須建構為優於甘^ + t 設計。 、、他貫把例或設計之較佳或有利的實施例或 —β展丁貝知具有補償之Σ△調變之超取樣之一 =的方魏圖。…可用於超取樣音訊崎其他 本=t圖1中所展示之實施例’數位處理器110以,”之樣 112…具彳所要數目(N)位元之資料樣本W。記憶體 子。。於處理器110之資料及程式碼。加法器120向來 Y 。U〇之每一資料樣本添加補償且提供中間樣本 :補償係可如下所述而選擇之靜態值。暫存器(圖艸 不但可為Σ△調變器130之部分)對中間樣本執行組合升 頻取樣及零階保持内插操作4△調變器⑴晴經升頻取樣 ’’執行雜汛重整並以乂^之樣本率提供具有一或少數 (M)位7L之輪出樣本χ〇υτ。冑出樣本率通常比輸入樣本率言 許多倍。舉例而言,Ν可等於16, Μ可等於卜2或4,且= 取樣比(OSR)可等於32或256。詳言之,齡脚脾,盆中 /㈣為正處理之信號之頻寬,且Λ為取樣率。對於數位處理 益no而言,由於⑽為】,故以因數κ之取樣率之增大導 致OSR相應地增大κ倍。對於Ν、Μ及〇sR,其他值㈣可 能的。下文中描述Σ△調變器130之例示性設計。ΣΔ調變器 130具有由ΣΔ調變器之設計確定之特定雜訊轉移函數。如 下所述,經由加法器120添加至資料樣本之補償導致量化 雜訊以較高頻率衰減。 補償移除單元140移除在輸出樣本中之所有補償或補償 117836.doc 200807896 之一部分並提供經校正之樣本x⑽。可在數位域(如在_ 中所示)或在類比域(在目1 +未展示)中執行補償移除。m :tlDAC 150將經杈正之數位樣本轉換為類比樣本並提供 類比信號。低通濾波器16〇過濾類比信號以移除頻帶外雜 2並提供經過遽之信號。低通濾'波器⑽亦可稱為後濾、波 益、、重建濾波器等等。放大器(Amp)m放大及/或緩衝經 過濾之信號並將輸出信號提供至(例如)揚聲器或某個其他 輸出電路。 圖2展示實施具有補償之Σ△調變之超取樣DAC 200之另 一實施例的方塊圖。DAC 亦可用於超取樣音訊DM及 其他應用。 對於在圖2中所展不之實施例,數位處理器2〇以乂之樣 本率產生具有N位元解析度之資料樣本‘T。記憶體扣儲 存用於處理器1 1 〇之眘祖 ^ A ^ 貝科及私式碼。内插濾波器2 i 4以因數 8對資料樣本進行升頻取樣、執行内插過渡且以8/ί之樣本 率提供具有N位元解析度之輸入樣本XiNm22〇向來 自濾波态214之每一輸入樣本添加補償且提供中間 XINT。 單兀226執仃升頻取樣及雜訊重整。在單元内,零階 保持(細)單元228藉由將每—中間樣本保持ς△調變器㈣ 之32個時脈循環而以因數32執行升頻取樣。ς△調變器㈣ 將來自ΖΟΗ早凡228之樣本量化至職$、執行雜訊重整 且以二6々之樣本率提供具有難元之輸出樣本χ〇υτ。補償 私除早7L 240移除輸出樣本中之所有補償或補償之一部分 117836.doc 200807896 並提供經校正之樣本Xc〇R。動態元件匹配(DEM)單元242 接收經校正之樣本且動態地選擇在Dac 25〇内之不同元件 以改善在此等DAC兀件中之失配的不利影響。Μ。謂將 、二杈正之樣本轉換為類比樣本並提供類比信號。低通濾波 器2 6 0過濾類比信號以移除頻帶外雜訊並提供經過濾之信 號。放大器270放大及/或緩衝經過濾之信號並提供輸出信 號。 圖2亦展示用於實施超取樣DAC 2〇〇之實施例。對於此 實施例,數位處理器210至補償移除單元24〇係建構於數位 1C晶粒202上,且DEM單元242至放大器27〇係建構於類比 1C晶粒204上。對於此實施例,即使DEM單元242為數位電 路,其亦建構於類比IC晶粒上,以便減小在數位IC晶粒 202與類比1C晶粒204之間通過的信號線之數目。M位元 調變器可僅經由Μ個信號線而介接於dem單元242。DEm 單元242執行溫度計碼(thermometer code)轉譯,其改變資 料以使得資料含有2M個位準。此等個位準直接介接於類 比硬體。 DEM單元242可將相對較大量之數位雜訊引入至基板 及/或類比1C晶粒之電源中。此數位雜訊可使鄰近的類比 電路之效能降級。此數位雜訊可視來自Σ△調變器之量化雜 訊之特徵而定。藉由使用經添加的補償改變量化雜訊特 徵,來自DEM單元242之數位雜訊可得以減輕,且鄰近類 比電路之效能可得以改良。 圖1中之ΣΔ調變器130及圖2中之ΣΔ調變器230可以各種 117836.doc 200807896 設計加以建構。此外,ΣΑ調變器130及230可接收具有任何 數目位元之樣本且可提供具有任何數目位元之輸出樣本。 下文中描述例示性ΣΑ調變器設計。 圖3展示可分別用於圖1中之ςα調變器ι3〇及圖2中之Σδ 調變器230中的每一者之二階Μ位元ΣΔ調變器3〇〇之實施例 之方塊圖。對於圖3中所展示之實施例,ςα調變器3〇〇包括 一輸入增益元件308、兩級雜訊重整及一 Μ位元量化器 〇柁風元件308接收中間樣本χΙΝΤ並以增益Αι按比例放 大中間樣本XINT。中間樣本具有N位元之解析度,其中”可 為16或某個其他值。 》對於第一雜訊重整級,加法器3〗0自增益元件3〇8之輸出 減去增益元件318之輸出並向濾波器部分312提供差值。濾 波益邛分3 12包括一加法器314及一延遲元件316。加法器 314對加法器31〇之輸出與延遲元件316之輸出進行相加。 延遲元件316接收加法器314之輸出並提供-時脈週期之延 遲。對於第二雜訊重整級,加法器32〇自延遲元件316之輸 出減去增益元件328之輸出並向遽波器部分322提供差值。 在處波器部分322内,加法器324對加法器320之輸出盘延 遲凡件326之輸出進行相加。延遲元件似接收加法器似 之輸出並提供一時脈週期之延遲。 變器·内之元件可經設計具有大於n位元之解 位:里化對延遲70件326之輪出進行量化並提供M 兀雨出樣本X0UT。量化器3 量化器而言,〜可為!,㈣讀一對於多位元 仁對於1位兀調變器而言,其可能 117836.doc 200807896 為不明確的。增益元件3 1 8以增益A2按比例放大輪 本’且增益元件328以增益As按比例放大輸出樣本。 濾波器部分312及322中之每一者之轉移函數❻2)可表達 為· 2 一1 G(z) = — 專式(1) 一者的一時脈循環 U, 其中z-1指示由延遲元件316及3 26中之每 之延遲。At least a portion of the compensation is removed from the output sample. Dac uses multiple DACs to convert output samples to analog samples. Dynamic Component Matching (1) Decisions Where the different ones of the DAC components are selected based on the output samples. The low pass filter filters the analog signal from the DAC to remove out-of-band noise. The amplifier amplifies and/or buffers the filtered signal to produce an output signal. Various aspects and embodiments of the invention are described in more detail below. [Embodiment] The term "exemplary" is used herein to mean, ". Any of the "exemplary" described herein as an example, example, or embodiment or design is not necessarily 117836.doc 200807896 shall be constructed to be superior to the Gan + t design. A preferred or advantageous embodiment of the example or design, or a square of the oversampling of one of the compensated ΣΔ modulations. ... can be used for oversampling audios. Others = t embodiment shown in Fig. 1 'digital processor 110," sample 112... has a desired number (N) of bits of data samples W. memory sub-. The data and code of the processor 110. The adder 120 adds compensation to each data sample of the Y. U〇 and provides an intermediate sample: the compensation system can select a static value as described below. The temporary memory (not only For the ΣΔ modulator 130 part) perform combined up-sampling and zero-order hold interpolation for the intermediate sample. 4 △ modulator (1) clearing upsampled ''executive helium reforming and taking the sample rate of 乂^ Provide a round-out sample χ〇υτ with one or a few (M) bits of 7L. The sample rate is usually many times higher than the input sample rate. For example, Ν can be equal to 16, Μ can be equal to 2 or 4, and = The sampling ratio (OSR) can be equal to 32 or 256. In detail, the age of the foot spleen, the basin / (four) is the bandwidth of the signal being processed, and Λ is the sampling rate. For the digital processing benefit no, because (10) is Therefore, the increase in the sampling rate of the factor κ causes the OSR to increase by a factor of κ. For Ν, Μ, and 〇 sR, other The value (4) is possible. An exemplary design of the ΣΔ modulator 130 is described below. The ΣΔ modulator 130 has a specific noise transfer function determined by the design of the ΣΔ modulator, which is added via adder 120 to Compensation of the data samples results in quantization noise being attenuated at a higher frequency. The compensation removal unit 140 removes all of the compensation or compensation 117836.doc 200807896 in the output samples and provides a corrected sample x(10). In the digital domain (eg Compensating removal is performed in the _ field or in the analog domain (in item 1 + not shown). m : tlDAC 150 converts the digitized digital sample into an analog sample and provides an analog signal. Low pass filter 16 〇 filter The analog signal is used to remove the out-of-band impurity 2 and provide a signal through the chirp. The low-pass filter '10' can also be called post-filter, wave, reconstruction filter, etc. Amplifier (Amp) m amplification and / or buffer The filtered signal provides the output signal to, for example, a speaker or some other output circuit. Figure 2 shows a block diagram of another embodiment of implementing an oversampled DAC 200 with compensated ΣΔ modulation. The DAC can also be used ultra Sample audio DM and other applications. For the embodiment shown in Figure 2, the digital processor 2 generates a data sample 'T with N-bit resolution' at a sample rate of 乂. Memory bank storage for the processor 1 1 〇之慎祖^ A ^ Becco and private code. Interpolation filter 2 i 4 upsamples the data samples by a factor of 8, performs an interpolation transition and provides N bits at a sample rate of 8/ί The meta-resolution input sample XiNm22 adds compensation to each input sample from the filtered state 214 and provides an intermediate XINT. The single-pass 226 performs up-sampling and noise reforming. Within the cell, the zero-order hold (fine) cell 228 performs upsampling at a factor of 32 by maintaining each of the intermediate samples for 32 clock cycles of the ςΔ modulator (4). ς△ 调器 (4) Quantify the sample from ΖΟΗ早凡228 to job$, perform noise re-formation, and provide the output sample χ〇υτ with difficult elements at a sample rate of two 々. Compensation Private 7L 240 removes any compensation or compensation portion of the output sample 117836.doc 200807896 and provides a corrected sample Xc〇R. Dynamic Component Matching (DEM) unit 242 receives the calibrated samples and dynamically selects different components within Dac 25A to improve the adverse effects of mismatches in such DAC components. Hey. It is said that the samples of the two positives are converted into analog samples and the analog signals are provided. The low pass filter 210 filters the analog signal to remove out of band noise and provide a filtered signal. Amplifier 270 amplifies and/or buffers the filtered signal and provides an output signal. Figure 2 also shows an embodiment for implementing an oversampling DAC. For this embodiment, the digital processor 210 to the compensation removal unit 24 are constructed on the digital 1C die 202, and the DEM cell 242 to the amplifier 27 are constructed on the analog 1C die 204. For this embodiment, even though the DEM unit 242 is a digital circuit, it is constructed on the analog IC die to reduce the number of signal lines passing between the digital IC die 202 and the analog 1C die 204. The M-bit modulator can be interfaced to the dem unit 242 via only one signal line. The DEm unit 242 performs a thermometer code translation that changes the data so that the data contains 2M levels. These levels are directly related to analog hardware. The DEM unit 242 can introduce a relatively large amount of digital noise into the power supply of the substrate and/or analog 1C die. This digital noise can degrade the performance of adjacent analog circuits. This digital noise can be determined by the characteristics of the quantized noise from the ΣΔ modulator. By using the added compensation to change the quantization noise characteristics, the digital noise from the DEM unit 242 can be mitigated and the performance of the adjacent analog circuit can be improved. The ΣΔ modulator 130 of Fig. 1 and the ΣΔ modulator 230 of Fig. 2 can be constructed in various designs 117836.doc 200807896. In addition, chirp modulators 130 and 230 can receive samples having any number of bits and can provide output samples having any number of bits. An exemplary chirp modulator design is described below. 3 is a block diagram showing an embodiment of a second-order Σ Σ Δ modulator 3 可 that can be used for each of the ςα modulator ι3 图 of FIG. 1 and the Σ δ modulator 230 of FIG. 2, respectively. . For the embodiment shown in FIG. 3, the ςα modulator 3〇〇 includes an input gain element 308, two-level noise reforming, and a one-bit quantizer hurricane element 308 that receives the intermediate sample χΙΝΤ and gains Αι Scale up the intermediate sample XINT. The intermediate sample has a resolution of N bits, where "may be 16 or some other value." For the first noise reforming stage, the adder 3 "0" is subtracted from the output of the gain element 3 〇 8 by the gain element 318 The difference is supplied to the filter portion 312. The filter benefit portion 3 12 includes an adder 314 and a delay element 316. The adder 314 adds the output of the adder 31 and the output of the delay element 316. 316 receives the output of adder 314 and provides a delay of the -clock cycle. For the second noise reforming stage, adder 32 subtracts the output of delay element 316 from the output of delay element 328 and provides to chopper portion 322. In the waver portion 322, the adder 324 adds the output of the output disk delay element 326 of the adder 320. The delay element appears to receive the adder-like output and provide a delay of one clock period. The inner component can be designed to have a dislocation greater than n bits: the refinement quantizes the rotation of the delay 70 pieces 326 and provides the M 兀 rain out sample X0UT. Quantizer 3 quantizer, ~ can be ! (4) Reading one for multiple yuan yuan for 1 person For the modulator, it is possible that 117836.doc 200807896 is ambiguous. Gain element 3 1 8 scales up the wheel with gain A2 and gain element 328 scales up the output sample with gain As. Filter sections 312 and 322 The transfer function ❻2) of each of them can be expressed as · 2 - 1 G(z) = - Specialized (1) One of the clock cycles U, where z-1 is indicated by delay elements 316 and 3 26 Every delay.

對於Σ △調變器3 〇 〇而言 表達為: 所要信號之總轉移函數打㈡可 Α】·ΑΓ - — --------ζ._ 1+(Α3 · w , 等式(2) 在二面中’㈣轉移函數物纟〜Ό處具有兩個零點且For Σ Δ modulator 3 〇〇, it is expressed as: The total transfer function of the desired signal is (2) Α ΑΓ ΑΓ — — — — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2) In the two sides, the '(four) transfer function has two zeros at the object 纟~Ό

具有兩個複數極點’其中心由增益Α2 Ή 石疋。k號轉移函數ff(z)具有低通形狀。 Q 對於Σ△調變器300 表達為: 而口里化雜訊之總轉移函數可 u \厶)· 在ζ平面中,雜訊轉移函數 等式(3) 在a+/b處呈右不乂 ㈤在“*7·0處具有兩個零點且 -片疫/、有兩個複數極點。 形狀。 雜Λ轉私函數具有高通 圖3展不Σ△調變器之例示性 可與具有任何數 …十。本文中所描述之技術 輪出位元、任何階、任何數目部分及 U7836.doc 200807896 級等之各種Σ△調變器一起使用。為清楚起見,下文中之描 述之某些部分係用於圖3中之Σ△調變器3〇〇。 ΣΔ調變器可實施在此項技術中已知的各種量化機制中之 任者。在第一機制中,在16位元域中之,,〇,,至"4〇95”之範 圍映射至4位元域中之”〇",且在16位元域中之,,·ι"至 -4096"之範圍映射至在4位元域中之"_ i '此機制(例如)藉 由降低位元而允許在數㈣巾之簡單量化。在第二機制 中’在16位元域中之"2()47"至"_2G48„範圍映射至在4位元 域中之”0"。不同的量化機制可具有不同的雜訊特徵。對 於較小的輸入信號,第二滤波器部分322之輸出可在"〇"上 下徘徊,此係量化雜訊確實有關係之情況。纟第一機制 中’量化器輸出可規律性地過渡至,,]",此係因為臨限 ,,,係汝此接近。在第一機制中,量化器輸出可在1 "與 1之間很不頻繁地跳動,此係因為臨限值2〇47與々θα相 差較遠m其活動率將為較低的。本文中所描述之技 術可用於所有量化機制且對於第一機制尤其有益。 μ向輸入樣本添加補償影響來自2△調變器之量化雜訊之特 ,。誶言之’可藉由施加適當補償而減小高頻頻帶外雜 Λ。下文中說明頻帶外雜訊之此減小。 圖4Α展示來自圖3中之Σ△調變器3〇〇的無任何補 2初始機制)之量化雜訊之曲線41。及來自㈤—ς△調變器的冉 ”有施加至16位元輸入樣本之_4929補 制)之旦π,ρ 補彳貝(其稱為補償機 入里化雜讯之曲線420。對於此實例’ ΝΑ,心,輸 ’本率為Λ,khz,且輸出樣本率為w88 ϊ I7836.doc 200807896 MHz。量化雜訊被描緣於具有頻率之對數雄之圖表上。 圖4A展示較小輸人信號之f化雜訊特徵,因為對於較小的 輸入心遽而吕要求信雜比為高,故此為重要情形。量化雜 訊特徵對於較大的輸入信號而言可為不同的。 ’、 在無任何補償之情況τ,如對於:階ς△調變器而令可預 期的,雜訊振幅以每十頻率4〇分貝_之速率增大。°如由 曲,41〇所指示,雜訊振幅在約2顧2處變平。在—彻之 補償之情況下,雜訊振幅以每十頻率4〇犯之速率择大但 在較高頻率處降得較低。如圖4A且亦如下文㈣令戶: 不’對於兩個機制而言’來自2△調變器之量化雜訊之主體 在自約i MHz至稍超過6 MHz之較高頻率處出現,兩個頻 率中之後者指示輸出樣本率之—半。《而,如由曲線㈣ 及曲線420所指示’具有補償之雜訊振幅在較高頻率處低 於無任何補償之雜訊振幅。 圖4B展示在較高頻率處之量化雜訊之較詳細曲線。來自 Σ△調變器3〇〇之無任何補償的量化雜訊由曲線412展示,且 來自同一Σ△調變器之具有,之補償的量化雜訊由曲線 422展示。曲線412及曲線422指示藉由添加補償而在較高 頻率處使頻帶外雜訊減小達1〇dB。此雜訊減小量轉化為 具有比原始機制之信號變動小超過九倍的信號變動之 機制。 圖4A及圖4B展示具有施加至…立元輸入樣本之特定補 償-4929之特定4位元Σ△調變器的頻帶外雜訊之減小。此特 定補償提供若干優勢。首先,施加至16位元輸入樣本之補 117836.doc • ]3· 200807896 償-4929在來自Σ△調變器之4位元輸出樣本中導致約—I之補 償。如下所述,由於輪出補償係接近4位元輪出之一最低 有效位元(LSB),故此補償之大多數可容易地數位移除。 其次,_4929之16位元補償避免由Σ△調變器限制輸入信 號。Σ△調變器具有+7至-8之4位元範圍。在無補償之情況 下,ΣΔ調變器之輸出在+7至_7之範圍内。在之補償 之情況下,ΣΔ調變器之輸出在為有效之+6至奴範圍内: 然而,若使用+4929之補償,則^調變器之輸出在+8至_6 之範圍内,由於+8係不可用的,因此該範圍無效。因此, 對於非常大的信號,Σ△調變器將使用補償+4929來限制, 且輸入信號將具有自頂端之減小的動態範圍。 圖4Α及圖4Β展示無及具有施加至輸人樣本之特定補償 之例示性Σ△調變器設計的量化雜訊。一般而言,補償可產 生允許Σ△調變器内之回饋更快地衰減内部狀態之量值之严 號統計,因此降低輸出信號之變動。由不同㈣△調變Μ :二不同的補償可獲得不同的雜訊特徵。對於給定_ k益,各種補償可用以使頻帶 σ Γ里化雜5fl變低。對於Σ△調 ……猎由選擇合適的補償而 徵。此合適的補償可基於電腦模擬 m孔特 試等來確i 驗室測 可能需要經由加法器22G移除所引人之補 、 償可使系統之有效動態範圍變低,此二自 心於兩個雷调鉍+ ^ r 。虓不再疋中 们电源轨之間。因此,在與該 撞之前之範園诘丨^ 表源執中之一者碰 圍減小。其次,輪出信號可為(例如)自功率放 117836.doc 14 200807896 大器耦接至音訊系統中之揚聲器之直流(DC)。在數位域中 引入且未移除之任何DC補償將在功率放大器輸出處導致 自標稱中心電壓之DC偏移。若DC偏移相當大,則除消耗 更多的待機功率外,顯著的DC電可流經揚聲器線圈且可 能損害揚聲器。 在一實施例中,在ΣΑ調變器之前添加之補償在ΣΑ調變 器之後(例如)由圖1中之補償移除單元140或圖2中之單元 240數位移除。可藉由自由ΣΑ調變器產生之輸出樣本減去 • 補償而移除補償。若輸出樣本以二之補數格式表示且若輸 出樣本中之補償為約-1,則可藉由簡單地使輸出樣本中之 Μ個位元中之每一者反相而移除補償。表1展示二進位及 十進位格式之4位元ΣΑ調變器之輸出及二進位及十進位格 式之經反相之輸出。 表1It has two complex poles' whose center is dominated by the gain Α2 Ή 疋. The k-th transfer function ff(z) has a low-pass shape. Q is expressed as ΣΔ modulator 300: and the total transfer function of the mouth noise is u \厶)· In the ζ plane, the noise transfer function equation (3) is right at a+/b (5) There are two zeros at the "*7·0 and - plague /, there are two complex poles. Shape. The chowder transfer private function has a high-pass graph 3 exhibits the △ Δ modulator can be exemplified with any number ...10. The technical turn-out bits described in this article, any order, any number of parts, and various ΣΔ modulators of the U7836.doc 200807896 class, etc. For clarity, some parts of the description below Used in the ΣΔ modulator 3〇〇 in Figure 3. The ΣΔ modulator can implement any of the various quantization mechanisms known in the art. In the first mechanism, in the 16-bit domain The range of ", 〇,, to "4〇95" is mapped to "〇" in the 4-bit field, and in the 16-bit field, the range of ·ι" to -4096" is mapped to The "_i' mechanism in the 4-bit field (for example) allows simple quantization of the number (four) towel by lowering the bit. In the second mechanism 'at 16 bits The "2()47" to "_2G48„ range in the meta-domain maps to "0" in the 4-bit domain. Different quantization mechanisms can have different noise characteristics. For smaller input signals, The output of the second filter portion 322 can be & 〇 徘徊 徘徊 徘徊 徘徊 徘徊 徘徊 徘徊 徘徊 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 量化 ' ' ' ' ' ' ' ' ' Because of the threshold, the system is close to this. In the first mechanism, the quantizer output can jump very frequently between 1 " and 1, because the threshold 2〇47 is different from 々θα. The activity rate will be lower at far m. The techniques described herein can be used for all quantization mechanisms and are especially beneficial for the first mechanism. μ Adding compensation to the input samples affects the quantization noise from the 2 delta modulator, The rumor 'can reduce the high frequency out-of-band noise by applying appropriate compensation. The reduction of out-of-band noise is explained below. Figure 4Α shows the ΣΔ modulator from Figure 3 There is no curve 2 for the quantized noise of the initial mechanism) and from (5)-ς△ The 冉" of the transformer" has a _4929 complement applied to the 16-bit input sample. π, ρ complements the mussel (which is called the compensation machine into the curve 420 of the noise. For this example 'ΝΑ, heart, The input rate is Λ, khz, and the output sample rate is w88 ϊ I7836.doc 200807896 MHz. Quantization noise is traced to the logarithm of the logarithm of frequency. Figure 4A shows the smaller input signal The feature is because the signal-to-noise ratio is high for a small input heart, so this is an important situation. The quantized noise characteristics can be different for larger input signals. In the absence of any compensation, τ, as for the order ςΔ modulator, is expected to increase the noise amplitude at a rate of 4 〇 decibels per ten frequencies. ° As indicated by Qu. 41, the amplitude of the noise is flattened at approximately 2 points. In the case of full compensation, the amplitude of the noise is chosen to be large at a rate of 4 每 every ten frequencies but lower at a higher frequency. As shown in Figure 4A and also as follows (4): No, for the two mechanisms, the subject of the quantized noise from the 2 Δ modulator appears at a higher frequency from about i MHz to slightly over 6 MHz, two The latter of the frequencies indicates the half of the output sample rate. "And, as indicated by curve (4) and curve 420, the noise amplitude with compensation is lower at higher frequencies than the noise amplitude without any compensation. Figure 4B shows a more detailed plot of quantized noise at higher frequencies. The quantized noise from the ΣΔ modulator 3〇〇 without any compensation is shown by curve 412, and the compensated quantization noise from the same ΣΔ modulator is shown by curve 422. Curve 412 and curve 422 indicate that out-of-band noise is reduced by up to 1 dB at higher frequencies by adding compensation. This amount of noise reduction translates into a mechanism that has signal variations that are more than nine times smaller than the original mechanism. Figures 4A and 4B show the reduction in out-of-band noise for a particular 4-bit ΣΔ modulator with a particular compensation -4929 applied to a singular input sample. This specific compensation offers several advantages. First, the application to the 16-bit input sample complements 117836.doc • ]3· 200807896 The compensation -4929 results in a compensation of approximately -I in the 4-bit output sample from the ΣΔ modulator. As described below, since the round-off compensation is close to one of the least significant bits (LSB) of the 4-bit round, most of this compensation can be easily digitally removed. Second, the 16-bit compensation of _4929 avoids the input signal being limited by the ΣΔ modulator. The ΣΔ modulator has a 4-bit range of +7 to -8. In the absence of compensation, the output of the ΣΔ modulator is in the range of +7 to _7. In the case of compensation, the output of the ΣΔ modulator is in the range of +6 to the slave: However, if the compensation of +4929 is used, the output of the modulator is in the range of +8 to _6. Since the +8 system is not available, this range is invalid. Therefore, for very large signals, the ΣΔ modulator will be limited using compensation +4929, and the input signal will have a reduced dynamic range from the top. Figures 4A and 4B show quantified noise for an exemplary ΣΔ modulator design with no specific compensation applied to the input sample. In general, compensation can result in a statistic that allows the feedback within the ΣΔ modulator to attenuate the magnitude of the internal state more quickly, thus reducing the variation in the output signal. Different (four) △ modulation Μ: two different compensation can obtain different noise characteristics. For a given _ k benefit, various compensations can be used to make the frequency band σ 化 5 5f low. For Σ△调...... Hunting is chosen by choosing the appropriate compensation. This suitable compensation can be based on a computer simulation m-hole test, etc., to confirm that the laboratory test may need to be removed by the adder 22G, and the effective dynamic range of the system can be lowered. Thunder 铋 + ^ r .虓 No longer between the power rails. Therefore, the collision with one of the Fanyuan 诘丨^ table source before the collision is reduced. Secondly, the turn-off signal can be, for example, a direct current (DC) coupled to a speaker in the audio system, for example, from a power amplifier. Any DC compensation introduced and not removed in the digital domain will result in a DC offset from the nominal center voltage at the power amplifier output. If the DC offset is quite large, in addition to consuming more standby power, significant DC power can flow through the speaker coil and can damage the speaker. In one embodiment, the compensation added prior to the ΣΑ modulator is removed digitally by, for example, the compensation removal unit 140 of Figure 1 or the unit 240 of Figure 2 after the ΣΑ modulator. The compensation can be removed by subtracting • compensation from the output samples produced by the free chirp modulator. If the output sample is represented in a two's complement format and if the compensation in the output sample is about -1, the compensation can be removed by simply inverting each of the bits in the output sample. Table 1 shows the output of the 4-bit ΣΑ modulator in binary and decimal formats and the inverted output of the binary and decimal formats. Table 1

ΣΑ調變器輸 出(二進位) Σ△調變器輸 出(十進位) 經反相之ΣΔ 調變器輸出 (二進位) 經反相之Σ△調 變器輸出(十進 位) 0111 +7 1000 -8 0110 +6 1001 -7 0101 +5 1010 -6 0100 +4 1011 -5 0011 +3 1100 -4 0010 +2 1101 -3 0001 +1 1110 -2 0000 0 1111 -1 1111 -1 0000 0 1110 -2 0001 +1 117836.doc -15- 200807896 —---— __1101 11----- -3 _J100 '—| 一~ -4 —_J011 , ----—- -5 _1010 '-6 ~1001 -7 _1000 - _-8ΣΑ modulator output (binary) Σ △ modulator output (decimal) 反相 Δ Δ modulator output (binary) 反相 Δ Δ modulator output (decimal) 0111 +7 1000 -8 0110 +6 1001 -7 0101 +5 1010 -6 0100 +4 1011 -5 0011 +3 1100 -4 0010 +2 1101 -3 0001 +1 1110 -2 0000 0 1111 -1 1111 -1 0000 0 1110 - 2 0001 +1 117836.doc -15- 200807896 —---— __1101 11----- -3 _J100 '—| One ~ -4 —_J011 , ------ -5 _1010 '-6 ~1001 -7 _1000 - _-8

+7_ 達為 1,Σ△調變器之輪出χ〇υτ&經反相 之輸出XC0R可表 XC〇R =~0+X〇UT) 〇 ,. 等式(4) 如表1及等式(4)中所示,,使來. 使米自4位兀Σ△調變器之輸出 樣本中之四個位元中的每一者反 有夂相具有如下效應··(1)向輸 出樣本添加+1之補償及(2)使所得樣本反相。在位元反相 j之經校正樣本Xc〇R相對於來自圖2中之數位處理器之 資料樣本XDAT及來自内插遽波器2 14之輸入樣本Xm被反 相對於曰5孔應用,#號反相並不影響輸出的聲音,且不 需要校正信號反相。即使需要使信號反相,在類比電路内 方通吊存在可經调換以在無電路附加項之情況下使信號反 相的不同路徑。對於信號極性為重要之應用,資料樣本 Xdat或輸入樣本又⑺可經反相以解決由位元反相引起之信 號反相。 在另一實施例中,在Σ△調變器之前添加之補償在ςα調 後:斋之後(例如)由圖2中之D A C 2 5 0在類比域中移除。下文 描述用於在類比域中移除補償之特定實施例。+7_ reaches 1, ΣΔ 调 调 之 & & 经 经 经 经 经 经 & & & & & & X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X As shown in equation (4), the resulting phase of each of the four bits in the output sample of the 4-bit 兀ΣΔ modulator has the following effect: (1) The output sample adds +1 compensation and (2) reverses the resulting sample. The corrected sample Xc〇R of the bit inversion j is inverted with respect to the data sample XDAT from the digital processor of FIG. 2 and the input sample Xm from the interpolation chopper 2 14 for the 曰5 hole application, # The phase inversion does not affect the output sound and does not require the correction signal to be inverted. Even if the signal needs to be inverted, there are different paths within the analog circuit that can be swapped to reverse the signal without additional circuitry. For applications where signal polarity is important, the data sample Xdat or the input sample (7) can be inverted to resolve the signal inversion caused by the bit inversion. In another embodiment, the compensation added prior to the ΣΔ modulator is removed after 斋α: after fasting, for example, by D A C 2 5 0 in Fig. 2 in the analog domain. Specific embodiments for removing compensation in the analog domain are described below.

圖5展示圖2中之DAC 250之一實施例之示意圖。對於此 實施例,DAC 250係建構為4位元電容切換式DAC。DAC 117836.doc -16- 200807896 2 5 0包括用於四個位元之1 6個可能位準之1 6個DAC元件 51〇a至510p。每一 DAC元件510包括一電容器512及開關 514 516及518。電谷^§512具有|馬接至節點a之一端及華馬 接至開關514、516及5 18之一端之另一端。開關514之另一 端叙接至高參考電壓VREF_HI。開關516之另一端耦接至低 參考電壓VREF—L0。開關5 1 8之另一端|馬接至中等或輸入乓 用模式電壓VICM。 16個〇入(:元件510&至51(^接收來自]^]^單元242之16個 控制信號,一控制信號用於一DAC元件。每一控制信號控 制在相關聯的DAC元件510中之開關514及516。在時脈相 Η期間,DAC元件510i之控制信號/(其中卜仏…,…使開關 514接通以將電容器512耦接至Vref_hi或使開關516接通以 將電容器512耦接至VREF—L0。電容器512因此視控制信號/ 之邏輯值而耦接至Vref_—Vref—L〇。在時脈相^期間,; 有16個DAC元件51〇3至51〇1)之開關518接通,且所有 元件之電容器512耦接至VlCM。時脈相0及0可分別對應 於用於DAC 250之時脈的邏輯高位準及邏輯低位準。、心 若無補償添加至輸入樣本,則輸出樣本將無補償。在此 情況下,平均8個DAC元件將耦接至Vref—hi,且平均^個 DAC元件將耦接至Vref 若 ,目^ 7 - REFJD 。,則提供至低 通滤波器260之淨平均輸入可表達為: 8 ’ Cunii · + 8 · Cunit · 乂赃-⑴=〇, 等式(5) 之每一者中的電容 其中Cunit為在DAC元件5i〇a至51〇p中 117836.doc -17· 200807896 器5 1 2之電容。 然而,若將-4929之補償添加至16位元輸入樣本,則4位 元輸出樣本將具有約―!之補償。在此情況下,平均7個 DACtl件將耦接至vREF_HI,且平均9個DAC元件將耦接至 Vref—L0。若ν^ΗΙ =—Vrefl〇,則提供至低通濾波器26〇之淨平 均輸入可表達為: 等式(6)FIG. 5 shows a schematic diagram of one embodiment of the DAC 250 of FIG. 2. For this embodiment, the DAC 250 is constructed as a 4-bit capacitive switched DAC. DAC 117836.doc -16- 200807896 2 5 0 includes 16 DAC elements 51〇a to 510p for 16 possible levels of four bits. Each DAC component 510 includes a capacitor 512 and switches 514 516 and 518. The electric valley § 512 has a horse connected to one end of the node a and a horse connected to the other end of one of the switches 514, 516 and 5 18 . The other end of the switch 514 is connected to the high reference voltage VREF_HI. The other end of the switch 516 is coupled to a low reference voltage VREF-L0. The other end of the switch 5 1 8 | Ma is connected to medium or input pong mode voltage VICM. 16 intrusions (: elements 510 & to 51 (^ receive from) ^) ^ 16 control signals of unit 242, a control signal for a DAC component. Each control signal is controlled in the associated DAC component 510 Switches 514 and 516. During clock phase contrast, the control signal of DAC component 510i / (where 仏 ..., ... turns switch 514 on to couple capacitor 512 to Vref_hi or switch 516 to couple capacitor 512 Connected to VREF-L0. Capacitor 512 is thus coupled to Vref_-Vref_L〇 depending on the logic value of the control signal. During the clock phase, there are 16 DAC components 51〇3 to 51〇1) 518 is turned on, and capacitor 512 of all components is coupled to VlCM. Clock phase 0 and 0 can respectively correspond to logic high level and logic low level of clock for DAC 250. If no compensation is added to input sample , the output sample will be uncompensated. In this case, the average of 8 DAC components will be coupled to Vref-hi, and the average ^ DAC components will be coupled to Vref if the target is 7 - REFJD. The net average input of the pass filter 260 can be expressed as: 8 ' Cunii · + 8 · Cunit · 乂赃-(1)=〇 The capacitance in each of equations (5) where Cunit is the capacitance of 117836.doc -17·200807896 5 1 2 in DAC components 5i〇a to 51〇p. However, if the compensation of -4929 is added to For a 16-bit input sample, the 4-bit output sample will have a compensation of about ―! In this case, an average of 7 DACtl pieces will be coupled to vREF_HI, and an average of 9 DAC elements will be coupled to Vref_L0. If ν^ΗΙ = -Vrefl〇, the net average input provided to the low pass filter 26〇 can be expressed as: Equation (6)

.C— . VreF_hi + 9. Cunit. I L〇 = -2 · Q.C— . VreF_hi + 9. Cunit. I L〇 = -2 · Q

參看圖5,兩個DAC元件520a及520b可用以補償在等式 (6)中展示之補償。每一 DAC元件520包括分別以與DAC元 件510内之電谷器512以及開關514及518相同的方式操作之 一電容器522以及開關524及528。DAC元件520a及520b之 電令器522—直耦接至vREF_HI且導致提供至低通濾波器26〇 之約為0之淨平均輸入。 若將-4929之16位元補償添加至16位元輸入樣本且自4位 凡輸出樣本移除-丨之4位元補償(其對應於4〇96之16位元補 仏)’假定Σ△調變器230具有1.0之增益,則-833之剩餘16位 凡補償(其對應於0.20之剩餘4位元補償)保留於來自DAC之 類比信號中。若Σ△調變器230具有不同於1.〇之增益,則剩 餘補償可能不同。在任何情況下,此剩餘補償可在低通濾 波器260中被移除或可遺留於類比信號中。 圖5亦展示圖2中之低通濾波器26〇之實施例。對於此實 加例’低通濾波器260由具有兩個四元組部分530a及530b 之電容切換式二四元組濾波器而建構。在每一四元組部分 117836.doc 200807896 530内,電容器534具有輕接至放大器说之輸出之—端及 耦接至開關536及538之一端的另一端。開關536之另一端 耦接至放大器532之反相輸入。開關538 而 74 丨而耦接至四 元組部分之輸入。電容器540耦接於放大器532之反相輸入 與四元組部分之輸入之間。開關542耦接於四元組部分之 輸入與電路接地之間。 開關550具有耦接至放大器532&之輸出之_ 開關-之-端及電容器554之一端的另一端。開關= 另一端耦接至電路接地。電容器554之另一端耦接至四元 組部分530b之輸入。電容器56〇具有耦接至四元組部分 530b之輸入之一端及耦接至開關562及564之一端且耦接至 反相緩衝器570的輸入之另一端。反相緩衝器57〇可藉由簡 單地交叉耦接在不同電路設計中之不同信號之導線而加以 建構。開關562之另一端耦接至電路接地,且開關564之另 一端耦接至四元組部分530b之輸出。電容器572耦接於四 元組部分530a之輸入與反相緩衝器57〇的輸出之間。開關 53 8a、53 6b、542b、5 50及5 62在時脈相y期間接通。開關 536a、53 8b、542a、552及564在時脈相炉2期間接通。 圖5展示DAC 250及低通濾波器26〇之例示性設計。一般 而5,DAC 250及低通濾波器260可以各種設計加以建 構。舉例而έ,低通濾波器260可由被動濾波器及/或主動 濾、波器加以建構。 DEM單7〇 242以預定或偽隨機方式選擇dac 250中之不 同DAC元件,以便減輕在DAC中的組件失配之不利影響。 117836.doc -19- 200807896 對於圖5中所展示之DAC實施例,組件失配可能係由DAC 元件510a至5 10p中之電容器512的不同電容而引起。藉由 選擇不同的DAC元件,歸因於DAC元件中之失配之誤差可 經重整並推出頻帶外,而不需要在先驗上瞭解組件是如何 失配的。 圖6展示圖2中之DEM單元242之一實施例。對於此實施 例,DEM單元242實施資料加權平均(DWA)機制。來自補 償移除單元240之經校正樣本XC0R自零平均值(zero-mean) • 表示轉換為具有平均值8之表示。經轉換之樣本XDEM具有1 至16之範圍。每一經轉換樣本啟用由經轉換的樣本之值指 示之數目的DAC元件。以循環方式(開始於與最後選擇的 DAC元件鄰接之DAC元件)選擇DAC元件。對於圖6中展示 之實例,DEM單元242接收-5,-3,+1,0,-2,…之經校正的樣本 序列,且產生3, 5, 9, 8, 6,…之經轉換的樣本序列。對於第一 經轉換樣本3,DEM單元242選擇DAC元件1至3 ;接著對於 第二經轉換樣本5,DEM單元242選擇DAC元件4至8 ;接著 _ 對於第三經轉換樣本9,DEM單元242選擇DAC元件9至16 及DAC元件1 ;接著對於第四經轉換樣本8,DEM單元242 選擇DAC元件2至9 ;接著對於第五經轉換樣本6,DEM單 元242選擇DAC元件10至15等等。 圖6展示DEM單元242之特定實施例。DEM單元242亦可 實施在此項技術中已知的其他動態元件匹配演算法。 圖7展示用於執行超取樣及雜訊重整之過程700之一實施 例。對資料樣本執行升頻取樣及内插過濾以產生輸入樣本 117836.doc -20- 200807896 (步驟712)。向輸入樣本添加補償以產生中間樣本(步驟 714)。對中間樣本執行升頻取樣及雜訊重整以產生輪出樣 本(步驟716)。自輸出樣本移除補償之至少一部分(步驟 718)。可在數位域中(例如,藉由使每一輸出樣本之所有位 元反相)或在類比域(例如,藉由在DAC中添加補償)中移除 補償。由於在數位域中之補償移除通常並不添加雜訊或損 耗或導致其他不利影響,故其通常係較佳的。 、 使用多個DAC元件將輸出樣本轉換為類比樣本(步驟 720)。(例如)使用DWA機制或某個其他D]gM機制而基於輸 出樣本來選擇不同的DAC元件(步驟722)。過濾來自DAC之 類比信號以移除頻帶外雜訊(步驟724)。放大及/或緩衝經 過濾、之信號以產生輸出信號(步驟726)。 具有本文中所描述之補償技術及超取樣DAC22△調變器 可用於諸如無線通信設備(例如,蜂巢式電話、終端等 等)、消費型電子設備(例如,立體聲播放機、電視、cd* 放機等等)、電腦之各種電子設備及其他設備。 超取樣DAC可建構於一或多個特殊應用積體電路 (ASIC)、數位信號處理器(Dsp)、數位信號處理設備 (DSPD)、可程式化邏輯設備(pLD)、場可程式化閘陣列 (FPGA)處理器、控制态、微控制器、微處理器及/或其 他電子單元上。超取樣DAC可建構於一或多個1(:晶粒上及 -或多個1C上。舉例而言,可將在圖2中之數位1〇晶粒2〇2 上展不之所有電路建構於一Ic晶粒上,且可將在類比1(^晶 粒204上展示之所有電路建構於另_IC晶粒上。作為另一 117836.doc -21 - 200807896 電路可建構 BJT等之各 實例’超取樣DAC 100或之所有或大多數 於1C晶粒上。亦可藉由諸如CMOS、NMOS、 種冗處理技術來製造超取樣DAC。 ::樣戰某些部分可建構於軟體及/或物體中。舉 ^可藉由軟體/拿刃體來添加補償。軟體/拿刃體可 於記憶體(例如,圖〗中之記情㉙ 1己匕、體112或圖2中之記憶體212)Referring to Figure 5, two DAC elements 520a and 520b can be used to compensate for the compensation shown in equation (6). Each DAC component 520 includes a capacitor 522 and switches 524 and 528 that operate in the same manner as the guillotine 512 and switches 514 and 518 in DAC component 510, respectively. The actuators 522 of DAC components 520a and 520b are directly coupled to vREF_HI and result in a net average input of approximately zero to the low pass filter 26A. If the -4929 16-bit compensation is added to the 16-bit input sample and the 4-bit is removed from the 4-bit output sample - the 4-bit compensation (which corresponds to the 16-bit complement of 4〇96)' assumes Σ△ Modulator 230 has a gain of 1.0, then the remaining 16 bits of -833 are compensated (which corresponds to the remaining 4 bit compensation of 0.20) remaining in the analog signal from the DAC. If the ΣΔ modulator 230 has a gain different from 1.1, the remaining compensation may be different. In any event, this residual compensation can be removed in the low pass filter 260 or can be left in the analog signal. Figure 5 also shows an embodiment of the low pass filter 26A of Figure 2. For this practical example 'low pass filter 260 is constructed from a capacitively switched two quad filter having two quad portions 530a and 530b. In each quad portion 117836.doc 200807896 530, capacitor 534 has a terminal that is lightly coupled to the output of the amplifier and to the other end of one of switches 536 and 538. The other end of switch 536 is coupled to the inverting input of amplifier 532. Switch 538 and 74 are coupled to the input of the quad portion. Capacitor 540 is coupled between the inverting input of amplifier 532 and the input of the quad portion. Switch 542 is coupled between the input of the quad portion and the circuit ground. The switch 550 has a terminal coupled to the output of the amplifier 532& and the other end of the capacitor 554. Switch = the other end is coupled to the circuit ground. The other end of the capacitor 554 is coupled to the input of the quad portion 530b. The capacitor 56A has one end coupled to the input of the quad portion 530b and the other end coupled to one of the switches 562 and 564 and coupled to the input of the inverting buffer 570. The inverting buffer 57 can be constructed by simply cross-coupling the wires of different signals in different circuit designs. The other end of the switch 562 is coupled to the circuit ground, and the other end of the switch 564 is coupled to the output of the quad portion 530b. Capacitor 572 is coupled between the input of quad block portion 530a and the output of inverting buffer 57A. The switches 53 8a, 53 6b, 542b, 5 50 and 5 62 are turned on during the clock phase y. Switches 536a, 53 8b, 542a, 552 and 564 are turned "on" during clock phase furnace 2. Figure 5 shows an exemplary design of DAC 250 and low pass filter 26A. In general, 5, DAC 250 and low pass filter 260 can be constructed in a variety of designs. For example, the low pass filter 260 can be constructed by passive filters and/or active filters and filters. The DEM single 7 242 selects different DAC components in the dac 250 in a predetermined or pseudo-random manner to mitigate the adverse effects of component mismatch in the DAC. 117836.doc -19- 200807896 For the DAC embodiment shown in Figure 5, component mismatch may be caused by the different capacitances of capacitor 512 in DAC components 510a through 510p. By choosing different DAC components, the error due to mismatch in the DAC component can be reformed and out of band, without a priori understanding of how the components are mismatched. FIG. 6 shows an embodiment of the DEM unit 242 of FIG. 2. For this embodiment, DEM unit 242 implements a data weighted average (DWA) mechanism. The corrected sample XC0R from the compensation removal unit 240 is zero-mean • represents a conversion to have a representation of the average value of 8. The converted sample XDEM has a range of 1 to 16. Each converted sample enables the number of DAC elements indicated by the value of the converted sample. The DAC component is selected in a round-robin fashion (starting with a DAC component adjacent to the last selected DAC component). For the example shown in Figure 6, DEM unit 242 receives the corrected sample sequence of -5, -3, +1, 0, -2, ... and produces a converted 3, 5, 9, 8, 6, ... Sample sequence. For the first converted sample 3, the DEM unit 242 selects the DAC elements 1 to 3; then for the second converted sample 5, the DEM unit 242 selects the DAC elements 4 to 8; then _ for the third converted sample 9, the DEM unit 242 DAC elements 9 to 16 and DAC element 1 are selected; then for fourth converted sample 8, DEM unit 242 selects DAC elements 2 to 9; then for fifth converted sample 6, DEM unit 242 selects DAC elements 10 to 15 and so on . FIG. 6 shows a particular embodiment of a DEM unit 242. The DEM unit 242 can also implement other dynamic component matching algorithms known in the art. Figure 7 shows an embodiment of a process 700 for performing oversampling and noise reforming. Perform up-sampling and interpolation filtering on the data samples to generate input samples 117836.doc -20- 200807896 (step 712). A compensation is added to the input samples to produce an intermediate sample (step 714). Upsampling and noise reforming are performed on the intermediate samples to produce a rounded sample (step 716). At least a portion of the compensation is removed from the output sample (step 718). The compensation can be removed in the digital domain (e.g., by inverting all of the bits of each output sample) or in the analog domain (e.g., by adding compensation to the DAC). Compensation removal in the digital domain is generally preferred because it typically does not add noise or loss or cause other adverse effects. The output samples are converted to analog samples using a plurality of DAC components (step 720). Different DAC elements are selected based on the output samples, for example, using a DWA mechanism or some other D]gM mechanism (step 722). The analog signal from the DAC is filtered to remove out of band noise (step 724). The filtered signal is amplified and/or buffered to produce an output signal (step 726). The compensation techniques and oversampling DAC 22 delta modulators described herein can be used in, for example, wireless communication devices (eg, cellular phones, terminals, etc.), consumer electronic devices (eg, stereo players, televisions, cd*s) Machines, etc.), various electronic devices and other devices of computers. The oversampling DAC can be built into one or more special application integrated circuits (ASICs), digital signal processors (Dsp), digital signal processing devices (DSPDs), programmable logic devices (pLDs), field programmable gate arrays. (FPGA) processor, control state, microcontroller, microprocessor, and/or other electronic unit. The oversampling DAC can be constructed on one or more 1s (on the die and/or on multiple 1Cs. For example, all circuit constructions can be performed on the digital 2〇2 in Figure 2) On an Ic die, and all the circuits shown in analog 1 (^ die 204 can be constructed on another _IC die. As another 117836.doc -21 - 200807896 circuit can construct various examples of BJT, etc. 'Oversampling DAC 100 or all or most of it on 1C die. Oversampling DACs can also be fabricated by techniques such as CMOS, NMOS, and redundancy. Some parts of the sample can be built into software and/or In the object, the compensation can be added by the software/blade body. The software/blade body can be used in the memory (for example, the picture in the picture 29 1 匕, the body 112 or the memory 212 in FIG. 2) )

理哭……(例如,處理器110或21〇)來執行。可在處 理為内或處理器外部建構記憶體。 =對所揭示實施例之先前描述以使得熟習此項技術者 :夠製造或使用本發明。熟習此項技術者將易瞭解對此等 :細例之各種修改,且可在不脫離本發明之精神或範脅之 情況下將本文中界定之一般原理應用於其他實施例。因 此,並不意欲本發明限於本文中所展示之實施例,而是使 其與和本文中所揭示之原萃及新賴特徵一致的最廣泛範脅 一致。 【圖式簡單說明】 圖1展示實施具有補償之Σ△調變之超取樣DAC。 圖2展示實施具有補償之Σ△調變之另一超取樣DAC。 圖3展示二階4位元Σ A調變器之方塊圖。 圖4A及圖4B展示無補償及具有補償之量化雜訊。 圖5展示DAC及低通濾波器之方塊圖。 圖6展示DEM單元之操作。 圖7展示用於執行超取樣及雜訊重整之過程。 【主要元件符號說明】 117836.doc -22- 200807896Rough... (for example, processor 110 or 21〇) to execute. Memory can be built inside or outside the processor. The previous description of the disclosed embodiments is made to enable those skilled in the art to: make or use the invention. A person skilled in the art will be able to understand the various modifications of the invention, and the general principles defined herein may be applied to other embodiments without departing from the spirit and scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is in accord with the broadest scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an oversampling DAC implementing a compensated ΣΔ modulation. Figure 2 shows another oversampling DAC implementing a compensated ΣΔ modulation. Figure 3 shows a block diagram of a second-order 4-bit Σ A modulator. 4A and 4B show uncompensated and compensated quantization noise. Figure 5 shows a block diagram of the DAC and low pass filter. Figure 6 shows the operation of the DEM unit. Figure 7 shows the process for performing oversampling and noise reforming. [Main component symbol description] 117836.doc -22- 200807896

100 超取樣DAC no 數位處理器 112 記憶體 120 加法器 130 ΣΔ調變器 140 補償移除單元 150 Μ位元DAC 160 低通濾波器 170 放大器 200 超取樣DAC 202 數位1C晶粒 204 類比IC晶粒 210 數位處理器 212 記憶體 214 内插濾波器 220 加法器 226 口0 一 早兀 228 零階保持單元 230 ΣΑ調變器 240 補償移除單元 242 動態元件匹配單元 250 DAC 260 低通濾波器 270 放大器 -23- I17836.doc 200807896 ❿ 300 ΣΔ調變器 308 輸入增益元件 310 加法器 312 濾波器部分 314 加法器 316 延遲元件 318 增益元件 320 加法器 322 濾波器部分 324 加法器 326 延遲元件 328 增益元件 330 Μ位元量化器 410 曲線 412 曲線 420 曲線 422 曲線 510 a DAC元件 510b DAC元件 51 Op DAC元件 512 電容器 514 開關 516 開關 518 開關 117836.doc _24· 200807896 520 a DAC元件 52〇b DAC元件 522 電容器 524 開關 528 開關 530a 四元組部分 530 b 四元組部分 532a 放大器 532b 放大器 534a 電容器 534b 電容器 536a 開關 536b 開關 538a 開關 5 38b 開關 540a 電容器 540b 電容器 542a 開關 542b 開關 550 開關 552 開關 554 電容器 560 電容器 562 開關 117836.doc -25- 200807896 564 開關 570 反相緩衝器 572 電容器 117836.doc -26-100 Oversampling DAC no Digital Processor 112 Memory 120 Adder 130 ΣΔ Modulator 140 Compensation Removal Unit 150 Μ Bit DAC 160 Low Pass Filter 170 Amplifier 200 Oversampling DAC 202 Digital 1C Grain 204 Analog IC Die 210 Digital Processor 212 Memory 214 Interpolation Filter 220 Adder 226 Port 0 Early 228 228 Zero Order Hold Unit 230 ΣΑ Modulator 240 Compensation Removal Unit 242 Dynamic Component Matching Unit 250 DAC 260 Low Pass Filter 270 Amplifier - 23- I17836.doc 200807896 ❿ 300 ΣΔ modulator 308 input gain element 310 adder 312 filter section 314 adder 316 delay element 318 gain element 320 adder 322 filter part 324 adder 326 delay element 328 gain element 330 Μ Bit Quantizer 410 Curve 412 Curve 420 Curve 422 Curve 510 a DAC Element 510b DAC Element 51 Op DAC Element 512 Capacitor 514 Switch 516 Switch 518 Switch 117836.doc _24· 200807896 520 a DAC Element 52〇b DAC Element 522 Capacitor 524 Switch 528 switch 530a quad portion 53 0 b quaternion portion 532a amplifier 532b amplifier 534a capacitor 534b capacitor 536a switch 536b switch 538a switch 5 38b switch 540a capacitor 540b capacitor 542a switch 542b switch 550 switch 552 switch 554 capacitor 560 capacitor 562 switch 117836.doc -25- 200807896 564 switch 570 Inverting Buffer 572 Capacitor 117836.doc -26-

Claims (1)

200807896 十、申請專利範圍: 1 ·種裝置,其包含: 一加法器, 中間樣本;及 其經組態 以向輸入樣本添加 一補償以產生 ’、加增里調變器,其經组熊 雜訊重整並提供輸出樣本、:工中間樣本執行 2·如:求項1之震置,其進—步包含: 、、甫核#夕除單几’其經組態以自該等輸 補償之至少一部分。 ’出樣本私除该 3.如請求項1之裝置,其進一步包含: 移除::::除單元,其經組態以自該等輸出樣本數位地 矛夕除4補償之至少一部分。 4·如請求们之裝置,其中每一輸出樣 5. 如請求項4之裝置,其進一步包含: 個位疋 補彳貝移除早7C ’其經組態以使每—輸出樣本之該多 固位兀中之每一者反相以移除該補償之至少一部分。 6. 如請求項丨之裝置,其進一步包含; 一内插濾、波H ’其經組態以對資料樣本執行升頻取樣 及内插過濾並提供該等輸入樣本。 如請求項1之裝置,其進一步包含: 數位類比轉換器(DAC),其包含複數個DAC元件且 、、二組恶以將該等輸出樣本轉換為類比樣本;及 一動態元件匹配(DEM)單元,其經組態以基於該等輸 出樣本而選擇該複數個DAC元件中之不同OAC元件。 117836.doc 200807896 月长項7之裝置,其中該DAC為一電容切換式DAC, 且其中該複數個DAC元件包含複數個可切換電容器。 9. =請求項7之裝置,其中該DEM單元經組態以基於—資 料加權平均(DWA)機制而選擇該複數個DAC元件。、 10. 如請求項7之裝置,其進一步包含: • 一低通濾波器,其經組態以過濾一來自該dac之類比 •滤I:項1〇之襄置’其中該低通遽波器為-電容切換式 導二:二裝置:其中該添加至該等輸入樣本之補償 ^ 力-1之補償之該等輸出樣本。 13 ·如清求項丨^^继 析产,曰、甘 其中該等輸入樣本具有“位元之解 又且其中該補償為-4929。 14 ·如清求項1之駐 Λ 、,其中該加法器及該累加增量調變琴 為一超取樣DAC之部分。 里门文益 15·如請求項1之梦 ,號。 、、、中該等輸入樣本係用於一音訊信 10· —禮積體電路,其包含: 二:器及其經“樣本添加-補償《』 -累加增量調變器,其經組態以 雜訊重整並提供輪出樣本。 彳+間樣本聋 17.如請求項丨6之籍 、、 積體電路,其進-步包含: 一補償移除單元, 其經組態以自該等輪出樣本移β 117836.doc 200807896 補償之至少一部分。 18. 如請求項16之積體電路,其進一步包含: -内插濾、波H,其、經組態以對資料樣本執行 及内插過濾並提供該等輸入樣本。 ,、樣 19. 一種方法’其包含: 向輸入樣本添加—補償以產生中間樣本;及 對5亥等中間樣本執行雜訊重整以產生輸出樣本。 20. 如請求項19之方法,其進一步包含: 自該等輸出樣本移除該補償之至少-部分。 21. 如請求項19之方法,其進一步包含: 對資料樣本執行弁 樣本。 丁升頻取樣及内插過遽以產生該等輸入 22. 如請求項19之方法,其進一步包含: 本==轉換11 (DAC)元件將該等輸出樣 ::等輸出樣本而選擇該複數個DAC元件中之不同 23· —種裝置,其包含: 用用=入二本添加—補償以產生中間樣本之構件;及 構件 間樣本執行雜訊重整以產生輸出樣本之 24.如請求項23之裝置,其進_步包含: 用於自該等輪出描 件。 7私除該補償之至少一部分之構 117836.doc 200807896 25. 26. _ 如請求項23之裝置,其進一步包含: 用於對育料樣本執行升頻取樣及内插過濾以產生該等 輸入樣本之構件。 如請求項23之裝置,其進一步包含: 用於使用複數個數位類比轉換器元件將該等輸 出樣本轉換為類比樣本之構件;及 用於基於該等輪屮媒士 出樣本而選擇該複數個DAC元件中之 不同DAC元件之構件。200807896 X. Patent application scope: 1 · A device comprising: an adder, an intermediate sample; and configured to add a compensation to the input sample to generate ', add a transformer, the group of bears Reconstruction and provide output samples,: intermediate sample execution 2 · such as: the impact of item 1, the further steps include: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , At least part of it. The apparatus of claim 1 further comprising: a remove:::: divide unit that is configured to divide at least a portion of the compensation from the output samples. 4. The device of the request, wherein each output sample 5. The device of claim 4, further comprising: a bit 疋 彳 移除 移除 移除 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Each of the retention ports is inverted to remove at least a portion of the compensation. 6. The apparatus of claim 1, further comprising: an interpolation filter, wave H' configured to perform up-sampling and interpolation filtering on the data samples and providing the input samples. The apparatus of claim 1, further comprising: a digital analog converter (DAC) comprising a plurality of DAC elements and, two sets of evils to convert the output samples into analog samples; and a dynamic component matching (DEM) A unit configured to select a different one of the plurality of DAC elements based on the output samples. 117836.doc 200807896 The apparatus of the monthly term 7, wherein the DAC is a capacitive switching DAC, and wherein the plurality of DAC components comprise a plurality of switchable capacitors. 9. The apparatus of claim 7, wherein the DEM unit is configured to select the plurality of DAC elements based on a data weighted average (DWA) mechanism. 10. The device of claim 7, further comprising: • a low pass filter configured to filter an analogy from the dac • filter I: item 1 of the device 'where the low pass chopping The device is a capacitor-switched guide: two devices: wherein the output samples are added to the compensation of the input samples. 13 ·If the Qing 求^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ And the accumulative incremental modulation piano is part of an oversampling DAC. Limen Wenyi 15·If the dream of the request item 1, the number, the input samples are used for an audio message 10· An integrated circuit comprising: a two-stage device and its "sample addition-compensation"-accumulation incremental modulator configured to perform noise reforming and provide round-robin samples.彳+Between Samples 聋 17. As requested in Item 、6, the integrated circuit, the further step includes: a compensation removal unit configured to shift from the rounds of samples 117836.doc 200807896 At least part of it. 18. The integrated circuit of claim 16, further comprising: - an interpolation filter, a wave H, configured to perform and interpolate the data samples and provide the input samples. 19. A method </ RTI> comprising: adding - compensation to an input sample to produce an intermediate sample; and performing a noise reforming on an intermediate sample such as 5 hai to generate an output sample. 20. The method of claim 19, further comprising: removing at least a portion of the compensation from the output samples. 21. The method of claim 19, further comprising: performing a 弁 sample on the data sample. Sampling and interpolating the enthalpy to generate the input 22. The method of claim 19, further comprising: the present == conversion 11 (DAC) component: the output sample:: the output sample is selected to select the complex number A different device of the DAC components, comprising: means for generating an intermediate sample by using = two additions - compensation; and inter-component samples performing noise reforming to produce an output sample. The device of 23, the step of the step comprises: for drawing the article from the wheel. 7 私 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The components. The apparatus of claim 23, further comprising: means for converting the output samples into analog samples using a plurality of digital analog converter elements; and for selecting the plurality of samples based on the samples of the rim media A component of a different DAC component in a DAC component. 117836.doc117836.doc
TW96101109A 2006-01-11 2007-01-11 Sigma-delta modulation with offset TW200807896A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75034406A 2006-01-11 2006-01-11
US11/489,960 US7456766B2 (en) 2006-07-19 2006-07-19 Sigma-delta modulation with offset

Publications (1)

Publication Number Publication Date
TW200807896A true TW200807896A (en) 2008-02-01

Family

ID=41190736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96101109A TW200807896A (en) 2006-01-11 2007-01-11 Sigma-delta modulation with offset

Country Status (2)

Country Link
JP (2) JP2009534874A (en)
TW (1) TW200807896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467923B (en) * 2012-01-16 2015-01-01 Novatek Microelectronics Corp Analog-to-digital converting circuit and analog-to-digital converting method
TWI477086B (en) * 2011-10-06 2015-03-11 Issc Technologies Corp A dual mode sigma delta analog to digital converter and circuit using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808415B1 (en) * 2009-03-25 2010-10-05 Acco Semiconductor, Inc. Sigma-delta modulator including truncation and applications thereof
JPWO2018123145A1 (en) * 2016-12-28 2019-10-31 住友電気工業株式会社 ΔΣ modulator, transmitter, semiconductor integrated circuit, processing method, system, and computer program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1580447A (en) * 1976-12-01 1980-12-03 Post Office Code converters
JPH01198830A (en) * 1988-02-03 1989-08-10 Matsushita Electric Ind Co Ltd Digital analog converter
JP3852721B2 (en) * 1997-07-31 2006-12-06 旭化成マイクロシステム株式会社 D / A converter and delta-sigma type D / A converter
JP3425344B2 (en) * 1997-12-05 2003-07-14 株式会社東芝 D / A converter
JP3438018B2 (en) * 1998-06-24 2003-08-18 株式会社ケンウッド A / D converter and D / A converter
JP2001332973A (en) * 2000-03-16 2001-11-30 Burr-Brown Japan Ltd Method and device for digital/analog conversion using common weight generating element
JP2002374170A (en) * 2001-06-12 2002-12-26 Nippon Precision Circuits Inc One-bit d/a converter
JP3657580B2 (en) * 2002-07-16 2005-06-08 株式会社東芝 Phased zero data detection mute circuit
JP2005064720A (en) * 2003-08-08 2005-03-10 Renesas Technology Corp Digital to analog converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477086B (en) * 2011-10-06 2015-03-11 Issc Technologies Corp A dual mode sigma delta analog to digital converter and circuit using the same
TWI467923B (en) * 2012-01-16 2015-01-01 Novatek Microelectronics Corp Analog-to-digital converting circuit and analog-to-digital converting method

Also Published As

Publication number Publication date
JP5113285B2 (en) 2013-01-09
JP2012029307A (en) 2012-02-09
JP2009534874A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
KR100993155B1 (en) Sigma-delta modulation with offset
JP2994497B2 (en) D / A converter DC offset calibration method and D / A converter DC offset calibration system
JP6147706B2 (en) Sampling / quantization converter
JP4890503B2 (en) Delta-sigma modulator
CN107770708B (en) Digital silicon microphone with configurable sensitivity, frequency response and noise transfer function
US6271782B1 (en) Delta-sigma A/D converter
JP3992287B2 (en) Complex bandpass filter, complex bandpass ΔΣ AD modulator, AD conversion circuit, and digital radio receiver
US6249237B1 (en) System and method for bandpass shaping in an oversampling converter
JPH05259910A (en) D-a converter device and its calibrating method
JPH1155121A (en) D/a converter and delta sigma type d/a converter
US10348326B2 (en) Digital silicon microphone with interpolation
WO2017037744A2 (en) A delta sigma modulator with noise attenuating feedback filters
TWI232639B (en) Sigma-delta data conversion employing quantization error feedback
TWI538412B (en) Converter circuit and method thereof
JP2007036383A (en) BANDPASS DeltaSigmaAD MODULATOR AND DIGITAL RADIO RECEIVER
TW200807896A (en) Sigma-delta modulation with offset
US20090267816A1 (en) Delta sigma-type a/d converter
JP6910301B2 (en) High linear sigma-delta transducer
CN109889203A (en) Semiconductor devices and its operating method
US6473011B1 (en) Serial D/A converter compensating for capacitor mismatch errors
Cho et al. A 1.2-V 108.9-dB A-Weighted DR 101.4-dB SNDR Audio $\Sigma\Delta $ ADC Using a Multi-Rate Noise-Shaping Quantizer
Enuchenko et al. Digital-to-Analog Converters Based on Delta-Sigma Modulators
US11996814B2 (en) Active filter configured to suppress out-of-band peaking and an analog-to-digital converter using the same
US20080055132A1 (en) Sigma-Delta Circuit And Related Method with Time Sharing Architecture
Pelgrom Time-Discrete Σ Δ Modulation