TW200806818A - Method of forming gold bump and gold wiring - Google Patents

Method of forming gold bump and gold wiring Download PDF

Info

Publication number
TW200806818A
TW200806818A TW095134066A TW95134066A TW200806818A TW 200806818 A TW200806818 A TW 200806818A TW 095134066 A TW095134066 A TW 095134066A TW 95134066 A TW95134066 A TW 95134066A TW 200806818 A TW200806818 A TW 200806818A
Authority
TW
Taiwan
Prior art keywords
gold
plating
gold plating
electrolytic
film
Prior art date
Application number
TW095134066A
Other languages
Chinese (zh)
Other versions
TWI385281B (en
Inventor
Hiroshi Nakamura
Original Assignee
N E Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N E Chemcat Corp filed Critical N E Chemcat Corp
Publication of TW200806818A publication Critical patent/TW200806818A/en
Application granted granted Critical
Publication of TWI385281B publication Critical patent/TWI385281B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

To provide a method of forming a gold bump or a gold wiring by which the difference of level of gold plating caused by a passivation film having an uneven film thickness is suppressed to form the gold bump or the gold wiring of a flat gold coating film. In the method of forming the gold bump or the gold wiring by electrolytically gold-plating on a patterned wafer using a non-cyan based electrolytic gold plating bath or a cyan based electrolytic gold plating bath, the gold plating on the wafer is carried out through a step 1 for carrying out electrolytic gold plating at ≤ 0.1 A/dm<SP>2</SP>current density at least one time and a step 2 for carrying out electrolytic gold plating at 0.3-1.2 A/dm<SP>2</SP>current density at least one time to have 0.1-5 μm total thickness of plating in the step 1 and to have a prescribed thickness in total of the thickness of plating in the step 1 and the step 2.

Description

200806818 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於使用規定的電解鍍金浴而於晶 金凸塊或金配線之方法。進而更詳細地,本發明 * 種金凸塊或金配線之形成方法,其係可抑制起因 - 膜厚不平均所產生之鍍金的段差,且可形成平坦 之金凸塊或金配線。 【先前技術】 使用非氰系或氰系電解鍍金浴而形成之鍍金 僅具電氣傳導性、熱壓接性等物理特性,亦具優 化性、耐藥品性等化學特性。因此,自過去即適 圓上之凸塊形成,及Ga/As晶圓等化合物晶圓 形成等。 使用於矽晶圓上之凸塊形成,及Ga/As晶 0 物晶圓上之配線形成之非氰系電解鍍金浴,係例 浴之做爲金離子來源之亞硫酸金鹼鹽或亞硫酸金 安定劑之水溶性胺、結晶調整劑之微量T1化合1 ' 合物或As化合物、用作傳導鹽之亞硫酸鹽以及 緩衝劑所構成。 氰系電解鍍金浴,係例如由基本浴之做爲金 之氰化金鹼鹽或氰化金銨、微量的結晶調整劑、 鹽之磷酸鹽、硼酸鹽等之無機酸鹽、有機酸(羧 酸、草酸)鹽等所構成。 圓上形成 係關於一 於護層膜 的金皮膜 皮膜,不 越之耐氧 用於矽晶 上之配線 圓等化合 如由基本 銨、用作 、Pb 化 硫酸鹽、 離子來源 用作傳導 酸、羥羧 -4- 200806818 (2) 藉由電解鍍金形成金凸塊之晶圓其一例示於圖i。 圖1中,1爲矽或Ga/As晶圓,於其向上面形成有 微小的A1電極3。於晶圓1以及A1電極3之上方,形成 有被覆於晶圓以及A1電極3週邊之護層膜5。進而,於 護層膜5之上方以及A1電極3之上方中央部分層積有金 濺鍍膜7。 於金濺鍍膜7上方層積有光罩材9,藉由該光罩材9 ’於A1電極3之上方形成有開口之光罩圖案。於光罩材 9之開口部1〇,藉由電解鍍金而形成金凸塊。圖1中 ,:I 3爲金球或銲錫球。 金凸塊及金配線電鍍用之細小的經圖案化之矽晶圓至 G a/As晶圓上,一般,爲保護金濺鍍膜7與晶圓1之絕 緣以及週邊配線,形成有上述之護層膜5。該護層膜5係 如圖1所示,於A1電極3之週邊部較其中央部突出而產 生凹凸(X爲護層段差)。 過去之非氰系或氰系電解鍍金,一般係於40〜65 °C 的溫度條件下,大多保持於電流密度爲0.3〜1.2A/dm2之 範圍內之一定値而進行電鍍。於該條件下進行電鍍時,於 光罩材9之開口部1 0所形成之金凸塊1 1,會依著護層膜 5的凹凸形狀而形成爲中央部陷落之形狀。 於該形狀的金凸塊1 1之表面,放置接合時所使用之 金球或銲錫球1 3時,金球或銲錫球1 3大多會掉入凹部 1 5。於此狀態下,將金配線壓接接合於金凸塊1 1時,球 介於金配線與金凸塊U之間而無法獲得平均的壓接面。 -5- 200806818 (3) 其結果爲金配線與金凸塊11無法獲得充分的緊密度’而 於二者間發生黏著不良的狀況。 以電解鍍金而形成金凸塊之方法係一周知之方法。例 如專利文件1所記載之藉由使用氰化金鉀之鍍金之形成方 _ 法。 * 專利文件1 :特開2 0 0 3 - 7 7 6 2號公報(段落編號( 002 1 ) 、 ( 0022 )) 【發明內容】 本發明有鑑於上述現狀,係以提供於凸塊與配線接合 時,爲獲得介有金球或銲錫球之凸塊與配線之間充分的緊 密度,並抑制起因於護層膜膜厚不平均所產生金皮膜之段 差,且可形成平坦的金凸塊或金配線之金凸塊或金配線形 成方法爲目的。 本發明之發明者,爲解決前述課題,經反複檢討後, ^ 使用規定之非氰系或氰系電解鍍金浴,於獲得規定膜厚前 ,以Ο.ΙΑ/dm2以下之電流密度進行電鍍,其後,再以0.3 〜1.2A/dm2以下之電流密度進行電鍍直到獲得所期望之厚 度。根據該方法,保持平均且緻密、良好的外觀特性與皮 ' 膜硬度以及接合強度特性的同時,可抑制起因於護層膜之 鍍金段差,且可形成平坦的金皮膜之金凸塊或金配線。本 發明之發明者發現上述方法,本發明遂至完成。 亦即,解決上述課題之本發明係如下述者。 〔1〕一種金凸塊或金配線之形成方法,係使用含有 -6 - 200806818 (4) 做爲金離子來源之亞硫酸金鹼鹽或亞硫酸金銨、用作安定 劑之水溶性胺、結晶調整劑、用作缚導鹽之亞硫酸鹽以及 硫酸鹽、及緩衝劑之非氰系電解鍍金浴,於圖案化之晶圓 上進行電解鍍金,其特徵係由於晶圓上以〇.lA/dm2以下 ' 之電流密度進行至少一次電解鍍金的步驟1,與以0.3〜 • 1.2A/dm2之電流密度進行至少一次電解鍍金的步驟2所構 成,以使步驟1之合計鍍金層厚度爲〇 · 1〜5 // m,步驟1 與步驟2之合計鍍金層厚度爲所期望厚度,而於晶圓上進 行鍍金之方法。 〔2〕一種金凸塊或金配線之形成方法,係使用含有 做爲金離子來源之氰化金鹼鹽或氰化金銨、結晶調整劑、 用作傳導鹽之無機酸鹽或有機酸鹽、及緩衝劑之氰系電解 鍍金浴,於圖案化之晶圓上進行電解鍍金,且該於晶圓上 進行電解鍍金之方法,其特徵係由以0.1 A/dm2以下之電 流密度進行至少一次電解鍍金的步驟1,與於進行步驟1 後,以0.3〜1.2A/dm2之電流密度進行至少一次電解鍍金 9 的步驟2所構成,以使步驟1之合計鍍金層厚度爲0.1〜5 Am,步驟1與步驟2之合計鍍金層厚度爲所期望厚度, 而於晶圓上進行鍍金之方法。 ' 根據本發明,因使用非氰系或氰系電解鍍金浴,於形 成規定膜厚前,以規定之電流密度進行電鍍,而可抑制起 因於晶圓上所形成之底層(護層膜)其不平均的膜厚,所 造成之金凸塊以及金配線之段差至1 // m以下。 根據本發明所形成之金凸塊、金配線本身,係具平均 200806818 (5) 且緻密、良好的外觀特性與皮膜硬度及接合強度特性之鍍 金皮膜。 以下針對本發明所使用之非氰系電解鍍金浴、氰系電 解鍍金浴之組成加以說明。 ' 〔非氰系電解鍍金浴〕 本發明所使用之非氰系電解鑛金浴,係以做爲金離子 0 來源之亞硫酸金鹼鹽或亞硫酸金銨、用作安定劑之水溶性 胺、微量的結晶調整劑、用作傳導鹽之亞硫酸鹽以及硫酸 鹽、及緩衝劑所構成之非氰系電解鍍金浴爲基本組成。該 電鍍浴之組成係爲人所周知者。 (1)亞硫酸金鹼鹽、亞硫酸金銨(金離子來源) 亞硫酸金鹼鹽可無所限制地使用周知之亞硫酸金鹼鹽 。亞硫酸金鹼鹽可舉出例如亞硫酸金(I )鈉、亞硫酸金 φ ( I )鉀等。可以單獨1種,或是倂用2種以上。 於本發明所使用之非氰系電解鍍金浴,金離子來源係 混合上述之亞硫酸金鹼鹽或亞硫酸金銨,其混合量以金量 而言,一般係1〜50g/L,以8〜15g/L爲佳。亞硫酸金鹼 鹽或亞硫酸金銨之混合量未達1 g/L時,會有電鍍皮膜厚 度不平均的情形出現。超過5 Og/L時,電鍍皮膜之物性等 並不會出現問題,但不經濟。 (2 )水溶性胺(安定劑) -8- 200806818 (6) 水溶性胺可使用例如1,2 —乙二胺、1,2 -丙二胺、 1,6 —己二胺等。可以單獨1種而使用,亦可倂用2種以 上而使用。 水溶性胺之混合量一般爲1〜30g/L,以4〜20g/L爲 佳。水溶性胺之混合量超過3 0 g/ L時,金錯合物之安定性 ' 會增大。然而,會有電鍍皮膜過度緻密化,接合性變差的 情形出現。未達1 g/L時,會減低限界電流密度而變成燒 _ 焦電鍍。 (3 ) T1化合物、Pb化合物、As化合物(結晶調整劑) 結晶調整劑可舉出例如蟻酸鉈、丙二酸鉈、硫酸鉈、 硝酸鉈等T1化合物;檸檬酸鉛、硝酸鉛、丙烯基磺酸鉛 等Pb化合物;三氧化二砷等As化合物。可將這些T1化 合物、Pb化合物、As化合物以單獨1種而使用,亦可組 合2種以上而使用。 結晶調整劑之混合量可於未損及本發明之目的的範圍 內適宜地加以設定,金屬濃度一般爲0.1〜l〇〇mg/L,以 0.5〜50mg/L爲佳,3〜25mg/L特佳。結晶調整劑之混合 量未達0.1 mg/L時,電鍍附著性、電鍍浴之安定性、以及 耐久性會惡化,電鍍浴之構成成份會分解。超過1 00mg/L 時,會使電鍍附著性惡化,以及電鍍皮膜外觀產生不平均 (4 )亞硫酸鹽、硫酸鹽(傳導鹽) -9 - (7) 200806818 做爲傳導鹽所使用之亞硫酸鹽、硫酸鹽可舉出例如亞 硫酸鈉、亞硫酸鉀、焦亞硫酸鈉、亞硫酸氫鈉等亞硫酸鹽 ;硫酸鈉等硫酸鹽。其中,以亞硫酸鈉與硫酸鈉之組合爲 佳。 * 於電解鍍金浴中上述之亞硫酸鹽以及硫酸鹽之混合量 * ,可於未損及本發明之目的的範圍內適宜地加以設定。而 以下述之混合量爲佳。 ^ 亞硫酸鹽以S032·而言,一般係5〜100g/L,但以10 〜80g/L爲佳,20〜60g/L特佳。亞硫酸鹽之混合量未達 5g/L時,附著性以及液體安定性會惡化,產生電鍍浴之 分解。超過100 g/L時,會減低限界電流密度而變成燒焦 電鍍。 硫酸鹽以 S〇42·而言,一般係1〜120g/L,但以1〜 60g/L爲佳,1〜40g/L特佳。未達 lg/L時,液體安定性 會惡化,產生電鍍浴之分解。超過12 Og/L時,會減低限 φ 界電流密度而變成燒焦電鍍。 (5 )緩衝劑 緩衝劑若爲一般使用於電解鍍金浴者則無特別限制。 _ 例如可使用磷酸鹽、硼酸鹽等無機酸鹽、檸檬酸鹽、酞酸 鹽、乙二胺四乙酸鹽等有機酸(羧酸、羥羧酸)鹽等。 於非氰系電解鍍金浴中緩衝劑之混合量,一般係1〜 3 Og/L,但以2〜1 5g/L爲佳,2〜1 〇g/L特佳。緩衝劑未達 1 g/L時,因pH降低,液體安定性會惡化,產生電鍍浴之 -10 - 200806818 (8) 分解。超過30g/L時,會減低限界電流密度而變成燒焦電 鍍。 於非氰系電解鍍金浴中,可於未損及本發明之目的的 範圍內適宜地使用pH調整劑及安定劑等。 pH調整劑可舉出酸例如硫酸、亞硫酸、磷酸等、鹼 ' 例如氫氧化鈉、氫氧化鉀、氨水等。安定劑可舉出重金屬 (Tl、Pb、As等)離子等。 ^ 非氰系電解鍍金浴之pH —般係7·0以上,以7.2〜 10.0爲佳。電鍍浴之pH未達7.0時,電鍍浴會顯著地不 安定且產生電鍍浴之分解。相反的pH爲10.0以上時,會 使做爲電鍍素材之光罩劑之鄰甲酚系正型光阻溶解,而無 法形成所期望圖案之電鍍皮膜。 [氰系電解鍍金浴] 氰系電解鍍金浴係以做爲金離子來源之氰化金鹼鹽或 φ 氰化金銨、微量的結晶調整劑、傳導鹽、及緩衝劑爲基本 組成,係周知者。 (1 )氰化金鹼鹽、氰化金銨(金離子來源) 氰化金鹼鹽可無所限制地使用周知之氰化金鹼鹽。例 如可舉出氰化金鉀、氰化金鈉、氰化金銨等。以單獨1種 而使用,或可倂用2種以上。 本發明所使用之氰系電解鍍金浴,以上述之氰化金鹼 鹽或氰化金銨做爲金離子來源,其混合量以金量而言,一 -11 - 200806818 Ο) 般係1〜50g/L,以8〜15g/L爲佳。混合量未達1 g/L時 ,會有電鍍皮膜厚度不平均的情形出現。超過50g/L時, 電鍍皮膜特性等並無問題,但不經濟。 • (2) T1化合物、Pb化合物、As化合物(結晶調整劑) * 結晶調整劑可舉出例如犠酸鉈、丙二酸鉈、硫酸鉈、 硝酸鉈等T1化合物;檸檬酸鉛、硝酸鉛、丙烯基磺酸鉛 ^ 等Pb化合物;三氧化二砷等As化合物。可將這些T1化 合物、Pb化合物、As化合物以單獨1種而使用,亦可組 合2種以上而使用。 結晶調整劑之混合量可於未損及本發明之目的的範圍 內適宜地加以設定,金屬濃度一般爲〇·1〜l〇〇mg/L,以 0.5〜50mg/L爲佳,3〜25mg/L特佳。結晶調整劑之混合 量未達〇. 1 mg/L時,電鍍附著性、電鍍浴之安定性、以及 耐久性會惡化,電鍍浴之構成成份會分解。超過100mg/L 時,會使電鍍附著性惡化,以及電鍍皮膜外觀產生不平均 (3 )無機酸鹽、有機酸鹽(傳導鹽) 做爲傳導鹽所使用之無機酸鹽可舉出例如磷酸鹽、硼 酸鹽等。有機酸鹽可舉出檸檬酸鹽、草酸鹽等。 於電解鍍金浴中無機酸鹽或有機酸鹽之混合量,可於 未損及本發明之目的的範圍內適宜地加以設定。而以下述 之混合量爲佳。 -12- 200806818 (10) 無機酸鹽一般係50〜250g/L,但以100&lt; 佳。混合量未達50g/L時,附著性以及液體姜 ,產生電鍍浴之分解。超過250g/L時,會源 密度而變成燒焦電鍍。 • 有機酸鹽一般係50〜250g/L,但以100〜 • 。未達50g/L時,液體安定性會惡化,產生電 。超過25 Og/L時,會減低限界電流密度而變 (4 )緩衝劑 緩衝劑若爲一般使用於電解鍍金浴者則無 例如可使用磷酸鹽、硼酸鹽等無機酸鹽、檸檬 鹽、乙二胺四乙酸鹽等有機酸(羧酸、羥羧酸 緩衝劑之混合量,一般係1〜3 0 g/ L,但 爲佳,2〜10g/L特佳。緩衝劑未達lg/L時, ,液體安定性會惡化,產生電鍍浴之分解。超 ,會減低限界電流密度而變成燒焦電鍍。 氰系電解鍍金浴中,可於未損及本發明5 內適宜地使用pH調整劑及安定劑等。 pH調整劑可舉出酸例如硫酸、磷酸等_ 酸、草酸等有機酸,驗例如氫氧化鈉、氫氧伯 。安定劑可舉出重金屬(Tl、Pb、As等)離〒 氰系電解鍍金浴之pH —般係3.0以上, 爲佳。 ^ 200/ L 爲 定性會惡化 低限界電流 2 0 0 g / L 爲 f圭 鍍浴之分解 成燒焦電鍍 〖特別限制。 建酸鹽、酞酸 :)鹽等。 以2〜15g/L 因pH降低 過3〇g/L時 :目的的範圍 :機酸及檸檬 :鉀、氨水等 P等。 以4 · 0〜7 · 〇 -13- 200806818 (11) 本發明之金凸塊或金配線之形成方法,係使用上述非 氰系電解鍍金浴或氰系電解鍍金浴,藉由以下所述之步驟 1與步驟2而進行電解鍍金。 步驟1係以Ο.ΙΑ/cm2以下,更佳係以0.01〜0.05 * A/cm2之低電流密度,於金凸塊或金配線上形成膜厚爲 0 · 1〜5 μ m之步驟。 步驟2係以0·3〜1.2A/cm2之電流密·度,於金凸塊或 金配線上形成所期望厚度爲止之步驟。 步驟1鍍金皮膜之膜厚以0.1〜5/zm爲佳,〇.5〜3 /z m更佳,1〜2 /z m最佳。步驟1所形成之電鍍層厚度, 係可依據護層段差大小及底層金屬狀態、處理狀態,而可 於上述範圍中適當地選擇。 自電鍍開始至完成期間,電流密度爲0.1 A/cm2以下 之步驟1其次數可爲1次,亦可爲數次。 步驟2與步驟1相同,可爲1次,亦可分爲數次進行 ^ 本發明之電解鍍金,可以步驟1與步驟2至少一次交 互地進行,其順序何者爲先均可。 自電鍍開始至完成期間,經過數次以步驟1進行電鍍 _ 時,每次所使用之電流密度,於各次鍍金時,未損及量產 _ 時之輸出量,且若爲於上述範圍內則無特別限制。例如, 第1次之步驟1之電流密度爲0.02A/dm2,而第2次步驟 1之電流密度改爲〇.〇5A/dm2亦可。 護層段差小至0.5 // m以下時,使用上述之鍍金浴, 以步驟1形成金皮膜時,皮膜上表面相反地會出現凸狀而 -14- 200806818 (12) 產生接合上的問題。護層段差超過3 // m大時,以步驟1 所形成之金皮膜膜厚爲l//m以下時,鍍金皮膜上表面之 段差不會降爲1/zm,會出現即使鍍金後仍無法充分消除 段差之情形。 ^ 設定步驟1之電流密度極低且由步驟1所得之金皮膜 膜厚合計很厚,電解浴溫度高時,會出現金皮膜表面之過 於粗大化。 ^ 形成金凸塊、金配線時之電解浴溫度,一般爲40〜 6 5 °C爲佳,4 5〜6 0 °C更佳。 電解浴溫度超過40〜65 °C之範圍時,會出現不易析 出電解皮膜,及無法充分消除護層段差之情形,電解皮膜 外觀異常時,電解液變爲不安定而分解,會有於電解浴產 生沉澱之情形出現。 依據本發明形成金凸塊或金配線用之電解皮膜時,特 別爲以高效率消除護層段差,且將金凸塊或金配線之段差 φ 降至1从m以下,而將電解浴溫度設定於50〜60°C之範圍 ’以便於步驟1形成當作基底之金皮膜後,再藉由步驟2 形成金皮膜。 藉由步驟1與步驟2之電解膜厚度合計以1〜30//m ’特別以1〜2 5 // m爲佳。 本發明所適用者,若爲表面經金屬噴鍍導通之晶圓, 則不特別選擇被電鍍物,例如特別適用於鄰甲酚系正型光 阻、丙嫌系負型光阻等圖案化·之矽晶圓上之凸塊形成,及 Ga/ As晶圓等化合物晶圓上之配線形成。 -15- 200806818 (13) 【實施方式】 實施例1〜12,比較例1〜4 依表1〜3所示之混合量而調整非氰系電解鍍金浴或 氰系電解鍍金浴。各原料之混合濃度單位若無特別註明則 爲g/L。使用各電解浴,依照步驟A〜E或F〜K之順序, 以各步驟所記載之電流密度,進行電解鍍金直至膜厚爲表 中所載。 使用之被電鍍物係鄰甲酚系正型光阻’其具經圖案化 凸塊開口部之矽晶圓(表面剖面組成係金濺鍍膜/ Tiw/ Si〇2)。其剖面圖示於圖2 ( A)。圖2中,21爲光阻, 23爲金濺鍍膜,25爲護層膜(TiW) ,27爲矽晶圓,29 爲A1電極。將被電鍍物浸漬於1 L中調整後之非氰系電 解鍍金浴或氰系電解鍍金浴,藉由施以通電而形成具15 //m膜厚之電鍍皮膜。 形成具規定膜厚之鍍金皮膜後,將所得皮膜表面段差 程度、電鍍浴安定性、電鍍皮膜外觀、皮膜硬度(未熱處 理以及經300°C、30分鐘熱處理後),以Au濺鍍膜之碘 系鈾刻劑,針對蝕刻性以下述方法及基準進行評價。結果 倂示於表1〜3。 [凸塊皮膜表面段差程度] 如圖2(A)所示’使用鄰甲酚系正型光阻21,以觸 針式表面形狀測定器測定圖案化凸塊圖案之護層段差a後 -16- 200806818 (14) ,得知爲1 · 5 // m。 使用非氰系或氰系電解鍍金浴形成金凸塊後,將鄰甲 酚系正型光阻以專用溶劑之丁酮溶解。電鍍後之晶圓剖面 圖示於圖2(B)。將凸塊31端緣部之最大高度値與中央 之最小高度値之差b視爲電鍍後段差(# m ),使用觸針 ~ 式表面形狀測定器測定段差。一般凸塊所要求之特性係段 差在1 g m以下。 [鍍金浴安定性] 觀察依表1〜3之電鍍條件對被鍍物施以電鍍後之電 鍍浴情況,並以下述基準評價。 分解:電解液產生分解。 X :以肉眼判斷之程度觀察到電解浴中之金沉澱。 △:僅觀察到電解浴中之金沉澱。以0.2 // m過濾膜 過濾而可觀察程度。 φ 〇:未觀察到電解浴中之金沉澱。 [鍍金皮膜外觀] 觀察被鍍物上被電鍍之金凸塊的表面皮膜外觀,並以 下述基準評價。 X:顏色爲紅色,可見樹枝狀析出,觀察到不均勻, 還發生燒焦情形。 △:無異常析出,外觀具光澤。 〇:顏色爲檸檬黃,外觀無至半光澤且均勻。 -17- 200806818 (15) [鍍金皮膜硬度(Vickers硬度;Hv)] 使用於被鍍物上形成特定的角凸塊部位,以Vickers 硬度計測定其皮膜硬度(未熱處理以及經3 00 °C、3 〇分鐘 熱處理後)。 一般用於凸塊電鍍所要求之特性係回火後之皮膜硬度 爲60 Hv以下。測定條件係將測定壓頭荷重25gf下保持 10秒之條件而進行。 [藉由Au電鍍凸塊之之碘系飩刻劑之蝕刻性] 將被鍍物浸漬於在常溫下充分被攪拌後之碘系蝕刻劑 中90秒後,以酒精系沖洗液洗淨,以乙醇噴霧再以乾燥 機進行乾燥。 其後,使用金屬顯微鏡,以50〜150倍之倍率觀察被 鍍物上所形成之全凸塊表面狀態,並以下述基準評價。 X :觀察到50%以上之凸塊表面上有不均勻。 △:局部區域觀察到凸塊表面上有不均勻。 〇:被鍍物上之全凸塊表面未觀察到不均勻。 [綜合評價] 自上述之各評價結果,以下述之評價基準評價。 X :關於所形成之鍍金皮膜(金凸塊)以及電鍍處理 後之鍍金浴之上述結果中,包含不佳之結果者。 △:關於所形成之鍍金皮膜(金凸塊)以及電鍍處理 -18- 200806818 (16) 後之鍍金浴之上述結果中,均爲良好結果,但考慮極限後 S忍爲無法判斷爲良好者。 ◦:關於所形成之鍍金皮膜(金凸塊)以及電鍍處理 後之鍍金浴之上述結果中,均爲良好結果者。 表1200806818 (1) Description of the Invention [Technical Field of the Invention] The present invention relates to a method of using a predetermined electrolytic gold plating bath for a gold bump or a gold wiring. More specifically, the present invention relates to a method of forming a gold bump or a gold wiring which can suppress a step of gold plating caused by unevenness in film thickness, and can form a flat gold bump or a gold wiring. [Prior Art] Gold plating formed by using a non-cyanide or cyanide electrolytic gold plating bath has physical properties such as electrical conductivity and thermocompression bonding, and also has chemical properties such as optimisation and chemical resistance. Therefore, the formation of bumps on the appropriate circle and the formation of compound wafers such as Ga/As wafers have been made. A non-cyanide electrolytic gold plating bath formed by bump formation on a germanium wafer and a wiring on a Ga/As crystal wafer, which is a gold ion source of gold sulfite or sulfurous acid. A water-soluble amine of a gold stabilizer, a trace amount of a T1 compound or an As compound of a crystal modifier, a sulfite used as a conductive salt, and a buffer. The cyanide electrolytic gold plating bath is, for example, a mineral acid salt of a gold cyanide or a gold crystal cyanide, a trace amount of a crystal modifier, a salt phosphate, a borate, or the like, and an organic acid (carboxylate). It is composed of acid, oxalic acid, and the like. Forming on the circle with respect to a gold film film on the cover film, not using oxygen resistance for the wiring circle on the crystal, such as basic ammonium, use, Pb sulfate, ion source as the conduction acid, Hydroxycarboxyl-4-200806818 (2) An example of a wafer in which gold bumps are formed by electrolytic gold plating is shown in Fig. i. In Fig. 1, 1 is a germanium or Ga/As wafer, and a minute A1 electrode 3 is formed thereon. A cover film 5 covering the periphery of the wafer and the A1 electrode 3 is formed over the wafer 1 and the A1 electrode 3. Further, a gold sputtering film 7 is laminated on the upper portion of the cover film 5 and above the central portion of the A1 electrode 3. A photomask 9 is laminated on the gold sputter film 7, and an open mask pattern is formed above the A1 electrode 3 by the photomask 9'. Gold bumps are formed by electrolytic gold plating on the opening 1 of the photomask 9 . In Fig. 1, : I 3 is a gold ball or a solder ball. The gold patterned bumps and the gold patterned wiring are used to polish the patterned silicon wafer onto the Ga/As wafer. Generally, the protection of the gold sputter film 7 and the wafer 1 and the peripheral wiring are formed. Layer film 5. As shown in Fig. 1, the sheath film 5 protrudes from the peripheral portion of the A1 electrode 3 at a central portion thereof to produce irregularities (X is a sheath step). In the past, non-cyanide or cyanide electrolytic gold plating was generally carried out at a temperature of 40 to 65 ° C, and was kept at a constant current in a range of a current density of 0.3 to 1.2 A/dm 2 . When the plating is performed under these conditions, the gold bumps 1 formed in the opening portion 10 of the mask member 9 are formed into a shape in which the center portion is depressed depending on the uneven shape of the sheath film 5. When the gold ball or the solder ball 13 used for bonding is placed on the surface of the gold bump 1 1 of this shape, the gold ball or the solder ball 13 mostly falls into the concave portion 15 . In this state, when the gold wiring is pressure-bonded to the gold bumps 1 1 , the balls are interposed between the gold wirings and the gold bumps U, and an average pressure-bonding surface cannot be obtained. -5- 200806818 (3) As a result, the gold wiring and the gold bump 11 could not obtain sufficient tightness, and the adhesion was poor between the two. A method of forming gold bumps by electrolytic gold plating is a method known in the past. For example, the method of forming gold plating by using gold potassium cyanide as described in Patent Document 1. * Patent Document 1: Japanese Patent Publication No. 2000-76 (No. 002 1 ), (0022). SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned state of the art, and is provided for bonding a bump to a wire. In order to obtain sufficient tightness between the bumps and the wirings with the gold balls or the solder balls, and to suppress the difference of the gold film caused by the uneven thickness of the cover film, and to form flat gold bumps or Gold bumps or gold wiring forming methods are used for the purpose of gold wiring. In order to solve the above problems, the inventors of the present invention have conducted a review using a predetermined non-cyanide or cyanide electrolytic gold plating bath to perform plating at a current density of Ο.ΙΑ/dm2 or less before obtaining a predetermined film thickness. Thereafter, electroplating is performed at a current density of 0.3 to 1.2 A/dm 2 or less until the desired thickness is obtained. According to this method, while maintaining the average and dense, good appearance characteristics and the skin's film hardness and the joint strength characteristics, it is possible to suppress gold bumps or gold wiring which are caused by the gold plating step of the cover film and which can form a flat gold film. . The inventors of the present invention have found the above method, and the present invention has been completed. That is, the present invention for solving the above problems is as follows. [1] A method for forming a gold bump or a gold wiring using a water-soluble amine containing -6 - 200806818 (4) as a gold ion source of gold sulfite or ammonium sulfite, and a stabilizer; A crystal modulating agent, a non-cyanide electrolytic gold plating bath used as a sulfite salt and a sulphate salt, and a buffering agent for electrolytic gold plating on a patterned wafer, which is characterized by 〇.lA on the wafer. Step 1 in which at least one electrolytic gold plating is performed at a current density of /dm2 or less, and step 2 in which at least one electrolytic gold plating is performed at a current density of 0.3 to 1.2 A/dm 2 so that the total thickness of the gold plating layer of the step 1 is 〇 · 1~5 // m, the total thickness of the gold plating layer in steps 1 and 2 is the desired thickness, and the gold plating method is performed on the wafer. [2] A method for forming a gold bump or a gold wiring using a mineral acid salt or an organic acid salt containing a gold cyanide salt or a gold ammonium cyanide as a gold ion source, a crystal modifier, and a conductive salt. And a cyanide electrolytic gold plating bath of a buffer, electrolytic gold plating on the patterned wafer, and the method of performing electrolytic gold plating on the wafer, characterized by at least one current density of 0.1 A/dm 2 or less Step 1 of electrolytic gold plating, and step 2 after performing step 1 at least one electrolytic gold plating 9 at a current density of 0.3 to 1.2 A/dm 2 so that the total thickness of the gold plating layer of step 1 is 0.1 to 5 Am, The total thickness of the gold plating layer in steps 1 and 2 is the desired thickness, and the gold plating method is performed on the wafer. According to the present invention, by using a non-cyanide or cyanide electrolytic gold plating bath, plating is performed at a predetermined current density before forming a predetermined film thickness, thereby suppressing the underlayer (coating film) formed on the wafer. The uneven film thickness causes the difference between the gold bump and the gold wiring to be less than 1 // m. The gold bumps and gold wirings formed according to the present invention are gold-plated films having an average of 200806818 (5) and having excellent compactness, good appearance characteristics, and film hardness and joint strength characteristics. Hereinafter, the composition of the non-cyanide electrolytic gold plating bath and the cyanide electrolytic gold plating bath used in the present invention will be described. '[Non-Cyanide Electrolytic Gold Plating Bath] The non-cyanide electrolytic gold bath used in the present invention is a water-soluble amine used as a stabilizer for gold alkali metal oxysulfite or ammonium sulfite. A non-cyanide electrolytic gold plating bath composed of a trace amount of a crystal modifier, a sulfite salt as a conductive salt, a sulfate, and a buffer is a basic composition. The composition of the electroplating bath is well known. (1) Gold sulfite alkali salt, gold ammonium sulfite (source of gold ion) The gold sulfite salt of sulfite can be used without any limitation using a well-known gold sulfite salt. The gold sulfite salt may, for example, be gold (I) sodium sulfite or potassium sulfite (I) potassium. It can be used alone or in combination of two or more. In the non-cyanide electrolytic gold plating bath used in the present invention, the gold ion source is mixed with the above-mentioned gold sulfite salt or gold ammonium sulfite, and the mixing amount thereof is generally 1 to 50 g/L in terms of gold amount, to 8 ~15g/L is preferred. When the mixing amount of the gold sulfite salt or the gold ammonium sulfite is less than 1 g/L, the plating film thickness may be uneven. When it exceeds 5 Og/L, the physical properties of the plating film and the like do not cause problems, but it is not economical. (2) Water-soluble amine (stabilizer) -8- 200806818 (6) As the water-soluble amine, for example, 1,2-ethanediamine, 1,2-propylenediamine, 1,6-hexanediamine or the like can be used. It can be used alone or in combination of two or more. The amount of the water-soluble amine to be mixed is usually from 1 to 30 g/L, preferably from 4 to 20 g/L. When the amount of the water-soluble amine exceeds 30 g/L, the stability of the gold complex increases. However, there is a case where the plating film is excessively densified and the bonding property is deteriorated. When it is less than 1 g/L, the limit current density is reduced and it becomes burnt-to-focus plating. (3) T1 compound, Pb compound, and As compound (crystal modifier) The crystal modulating agent may, for example, be a T1 compound such as barium sulphate, barium malonate, barium sulfate or barium nitrate; lead citrate, lead nitrate, and propylene sulfonate. A Pb compound such as lead acid; an As compound such as arsenic trioxide. These T1 compounds, Pb compounds, and As compounds may be used alone or in combination of two or more. The mixing amount of the crystal modifier may be appropriately set within the range not detracting from the object of the present invention, and the metal concentration is generally 0.1 to 1 mg/L, preferably 0.5 to 50 mg/L, and 3 to 25 mg/L. Very good. When the amount of the crystal modifier is less than 0.1 mg/L, the plating adhesion, the stability of the plating bath, and the durability are deteriorated, and the components of the plating bath are decomposed. When it exceeds 100 mg/L, the plating adhesion is deteriorated, and the appearance of the plating film is uneven. (4) Sulfite, sulfate (conductive salt) -9 - (7) 200806818 Sulfite used as a conductive salt Examples of the salt and the sulfate include sulfites such as sodium sulfite, potassium sulfite, sodium metabisulfite, and sodium hydrogen sulfite; and sulfates such as sodium sulfate. Among them, a combination of sodium sulfite and sodium sulfate is preferred. * The amount of the above-mentioned sulfite and sulfate in the electrolytic gold plating bath can be suitably set within the range not impairing the object of the present invention. It is preferred to use the following mixing amount. ^ Sulfite is generally 5 to 100 g/L in terms of S032. However, it is preferably 10 to 80 g/L, and particularly preferably 20 to 60 g/L. When the amount of the sulfite is less than 5 g/L, the adhesion and the liquid stability are deteriorated, and decomposition of the plating bath occurs. When it exceeds 100 g/L, it will reduce the limit current density and become burnt. The sulfate is generally 1 to 120 g/L in terms of S〇42·, preferably 1 to 60 g/L, and particularly preferably 1 to 40 g/L. When it is less than lg/L, the liquid stability deteriorates and the decomposition of the plating bath occurs. When it exceeds 12 Og/L, it will reduce the current density of the φ boundary and become a burnt plating. (5) Buffering agent The buffering agent is not particularly limited as long as it is generally used in an electrolytic gold plating bath. For example, an organic acid (carboxylic acid, hydroxycarboxylic acid) salt such as a mineral acid salt such as phosphate or borate, a citrate salt, a citrate salt or an ethylenediaminetetraacetate salt can be used. The mixing amount of the buffering agent in the non-cyanide electrolytic gold plating bath is generally 1 to 3 Og/L, preferably 2 to 15 g/L, and particularly preferably 2 to 1 〇g/L. When the buffer is less than 1 g/L, the stability of the liquid deteriorates due to a decrease in pH, resulting in decomposition of the electroplating bath -10 - 200806818 (8). When it exceeds 30 g/L, the limiting current density is reduced and it becomes a burnt plating. In the non-cyanide electrolytic gold plating bath, a pH adjuster, a stabilizer, and the like can be suitably used insofar as the object of the present invention is not impaired. Examples of the pH adjuster include acids such as sulfuric acid, sulfurous acid, phosphoric acid, and the like, and bases such as sodium hydroxide, potassium hydroxide, and ammonia. Examples of the stabilizer include heavy metal (Tl, Pb, As, etc.) ions. ^ The pH of the non-cyanide electrolytic gold plating bath is generally 7 or more, preferably 7.2 to 10.0. When the pH of the electroplating bath is less than 7.0, the electroplating bath will be significantly unstable and cause decomposition of the electroplating bath. On the contrary, when the pH is 10.0 or more, the ortho-cresol-based positive photoresist which is the photomask of the plating material is dissolved, and the plating film of the desired pattern cannot be formed. [Cyanide Electrolytic Gold Plating] The cyanide electrolytic gold plating bath is known as a gold cyanide gold base or φ cyanide gold nitrate, a trace amount of crystal modifier, a conductive salt, and a buffer. By. (1) Gold cyanide salt, gold ammonium cyanide (source of gold ion) The cyanide gold salt can be used without any limitation. For example, gold potassium cyanide, gold sodium cyanide, gold ammonium cyanide, and the like can be given. It may be used alone or in combination of two or more. The cyanide electrolytic gold plating bath used in the present invention uses the above-mentioned cyanide gold alkali salt or gold cyanide chloride as a source of gold ions, and the mixing amount thereof is in the form of gold, and the amount is 1-11 - 200806818 Ο) 50g / L, preferably 8 ~ 15g / L. When the mixing amount is less than 1 g/L, there is a case where the thickness of the plating film is not uniform. When it exceeds 50 g/L, there is no problem in plating characteristics, etc., but it is not economical. (2) T1 compound, Pb compound, and As compound (crystal modifier) * The crystal modulating agent may, for example, be a T1 compound such as bismuth ruthenate, strontium malonate, barium sulfate or strontium nitrate; lead citrate, lead nitrate, Pb compound such as lead propylene sulfonate; As compound such as arsenic trioxide. These T1 compounds, Pb compounds, and As compounds may be used alone or in combination of two or more. The mixing amount of the crystallization adjusting agent can be appropriately set within the range not impairing the object of the present invention, and the metal concentration is generally 〇·1 to l〇〇mg/L, preferably 0.5 to 50 mg/L, and 3 to 25 mg. /L is especially good. When the amount of the crystallization modifier is less than 〇. 1 mg/L, the plating adhesion, the stability of the plating bath, and the durability are deteriorated, and the components of the plating bath are decomposed. When it exceeds 100 mg/L, the plating adhesion is deteriorated, and the appearance of the plating film is uneven. (3) Inorganic acid salt, organic acid salt (conductive salt) The inorganic acid salt used as the conductive salt may, for example, be a phosphate. , borate, etc. The organic acid salt may, for example, be a citrate or an oxalate. The compounding amount of the inorganic acid salt or the organic acid salt in the electrolytic gold plating bath can be appropriately set within the range not impairing the object of the present invention. It is preferred to use the following mixing amount. -12- 200806818 (10) The inorganic acid salt is generally 50 to 250 g/L, but preferably 100 &lt; When the mixing amount is less than 50 g/L, the adhesion and liquid ginger cause decomposition of the plating bath. When it exceeds 250 g/L, it will become a burnt plating due to the source density. • Organic acid salts are generally 50 to 250 g/L, but with 100 to •. When it is less than 50g/L, the liquid stability will deteriorate and electricity will be generated. When it exceeds 25 Og/L, the limit current density is reduced. (4) If the buffer buffer is generally used in an electrolytic gold plating bath, for example, a mineral acid such as phosphate or borate, lemon salt or ethylene may be used. An organic acid such as an amine tetraacetate (mixture of a carboxylic acid or a hydroxycarboxylic acid buffer is generally 1 to 30 g/L, preferably 2 to 10 g/L. When the buffer is less than lg/L) , the liquid stability will deteriorate, and the electroplating bath will be decomposed. In addition, the limit current density will be reduced to become burnt plating. In the cyanide electrolytic gold plating bath, the pH adjuster can be suitably used without damaging the present invention 5 and The stabilizer may, for example, be an acid such as sulfuric acid or phosphoric acid, or an organic acid such as oxalic acid, such as sodium hydroxide or oxyhydroxide. Examples of the stabilizer include heavy metals (Tl, Pb, As, etc.). The pH of the cyanide electrolytic gold plating bath is generally 3.0 or more, preferably. ^ 200/ L is qualitatively degraded and the low limit current is 2 0 0 g / L. The decomposition of the f-plating bath is into a charred plating. Special restrictions. Salt, citric acid: salt, etc. When the pH is lowered by 3 〇g/L at 2 to 15 g/L: Range of purpose: organic acid and lemon: potassium, ammonia, etc. P. 4·0~7 · 〇-13- 200806818 (11) The method for forming the gold bump or the gold wiring of the present invention is to use the above-mentioned non-cyanide electrolytic gold plating bath or a cyanide electrolytic gold plating bath, as described below. Electrolytic gold plating is carried out in steps 1 and 2. The step 1 is a step of forming a film thickness of 0·1 to 5 μm on the gold bump or the gold wiring at a low current density of 0.01 to 0.05 * A/cm 2 or less, more preferably Ο.ΙΑ/cm 2 or less. Step 2 is a step of forming a desired thickness on the gold bump or the gold wiring with a current density of 0·3 to 1.2 A/cm2. The film thickness of the gold plating film of step 1 is preferably 0.1 to 5/zm, more preferably 55 to 3/z m, and most preferably 1 to 2/z m. The thickness of the plating layer formed in the step 1 can be appropriately selected in the above range depending on the size of the step layer of the sheath layer, the state of the underlying metal, and the state of treatment. The number of steps 1 in which the current density is 0.1 A/cm 2 or less may be one or several times from the start of plating to the completion of the plating. Step 2 is the same as step 1, and may be performed once or several times. ^ Electrolytic gold plating of the present invention may be carried out at least once in steps 1 and 2, and the order may be first. From the start of plating to the completion of the process, when the plating is performed in step 1 several times, the current density used each time, during each gold plating, the output of the mass production is not impaired, and if it is within the above range There is no special restriction. For example, the current density of the first step 1 is 0.02 A/dm2, and the current density of the second step 1 is changed to 〇.〇5A/dm2. When the thickness of the sheath is as small as 0.5 // m or less, when the gold film is formed in the first step using the gold plating bath described above, the upper surface of the film is convexly convex and the problem of joint is caused by -14-200806818 (12). When the thickness of the protective layer is more than 3 // m, the thickness of the upper surface of the gold-plated film will not decrease to 1/zm when the film thickness of the gold film formed in step 1 is less than 1/m, which will not be possible even after gold plating. Fully eliminate the situation of the step. ^ The current density of the setting step 1 is extremely low and the total thickness of the gold film obtained in the step 1 is very thick. When the temperature of the electrolytic bath is high, the surface of the gold film is excessively coarsened. ^ The temperature of the electrolytic bath when forming gold bumps and gold wiring is generally 40~6 5 °C, preferably 4 5~6 0 °C. When the temperature of the electrolytic bath exceeds 40 to 65 ° C, the electrolytic film is not easily deposited, and the difference in the barrier layer cannot be sufficiently eliminated. When the appearance of the electrolytic film is abnormal, the electrolyte becomes unstable and decomposes, and there is an electrolytic bath. A precipitation occurs. When the electrolytic film for gold bump or gold wiring is formed according to the present invention, the step difference of the gold bump or the gold wiring is reduced to 1 or less, and the electrolytic bath temperature is set, in particular, to eliminate the step difference of the cladding layer with high efficiency. In the range of 50 to 60 ° C, in order to form a gold film as a substrate in the step 1, a gold film is formed by the step 2. The thickness of the electrolytic film of the first step and the second step is preferably 1 to 30//m', particularly preferably 1 to 2 5 // m. In the case of the present invention, if the surface is subjected to metallization-plated wafers, the object to be plated is not particularly selected, and for example, it is particularly suitable for patterning of ortho-cresol-based positive photoresists and negative-type photoresists. Then, bump formation on the wafer and wiring on a compound wafer such as a Ga/As wafer are formed. -15-200806818 (13) [Embodiment] Examples 1 to 12 and Comparative Examples 1 to 4 A non-cyanide electrolytic gold plating bath or a cyanide electrolytic gold plating bath was adjusted in accordance with the mixing amounts shown in Tables 1 to 3. The unit of mixed concentration of each raw material is g/L unless otherwise specified. Each of the electrolytic baths was subjected to electrolytic gold plating in the order of steps A to E or F to K in the order of the current density described in each step until the film thickness was as shown in the table. The electroplated material to be used is an o-cresol-based positive photoresist, which has a patterned bump opening portion (a surface cross-section composition of a gold sputter film / Tiw / Si 〇 2). Its cross-sectional view is shown in Figure 2 (A). In Fig. 2, 21 is a photoresist, 23 is a gold sputter film, 25 is a cover film (TiW), 27 is a germanium wafer, and 29 is an A1 electrode. The plated material was immersed in a 1 L-adjusted non-cyanide electrolytic gold plating bath or a cyanide electrolytic gold plating bath, and an electroplated film having a film thickness of 15 //m was formed by applying electricity. After the gold plating film having the predetermined film thickness is formed, the surface difference of the obtained film, the stability of the plating bath, the appearance of the plating film, the hardness of the film (after heat treatment and heat treatment at 300 ° C for 30 minutes), and the iodine system of the Au sputtering film The uranium engraving agent was evaluated for the etching property by the following methods and standards. The results are shown in Tables 1 to 3. [The degree of surface difference of the bump film] As shown in Fig. 2(A), 'the o-cresol-based positive resist 21 is used, and the guard layer step difference a of the patterned bump pattern is measured by a stylus type surface shape measuring device-16 - 200806818 (14), known as 1 · 5 // m. After forming a gold bump using a non-cyanide or cyanide electrolytic gold plating bath, the ortho-cresol-based positive photoresist is dissolved in a specific solvent of methyl ethyl ketone. The wafer profile after plating is shown in Figure 2(B). The difference b between the maximum height 値 of the edge portion of the bump 31 and the minimum height 値 at the center was regarded as the difference (# m ) after plating, and the step was measured using a stylus-type surface shape measuring device. In general, the required characteristics of the bumps are below 1 g m. [Gold plating bath stability] The electroplating bath after plating was applied to the object to be plated according to the plating conditions of Tables 1 to 3, and evaluated according to the following criteria. Decomposition: The electrolyte is decomposed. X: Gold precipitation in the electrolytic bath was observed to the extent of the naked eye. △: Only the gold precipitate in the electrolytic bath was observed. It can be observed by filtering with 0.2 // m filter membrane. φ 〇: No gold precipitate in the electrolytic bath was observed. [Appearance of gold-plated film] The appearance of the surface film of the gold bump to be plated on the object to be plated was observed and evaluated on the basis of the following criteria. X: The color is red, and dendrites are observed, and unevenness is observed, and scorching occurs. △: No abnormal precipitation, and the appearance was shiny. 〇: The color is lemon yellow, and the appearance is not semi-glossy and uniform. -17- 200806818 (15) [Gold plate hardness (Vickers hardness; Hv)] The specific angle of the bump is formed on the object to be plated, and the hardness of the film is measured by a Vickers hardness tester (not heat treated and passed through 300 ° C, 3 〇 minutes after heat treatment). The properties required for bump plating are generally tempered to a hardness of 60 Hv or less. The measurement conditions were carried out under the conditions of measuring the head load of 25 gf for 10 seconds. [Etching property of iodine-based etchant by Au plating bump] The object to be plated is immersed in an iodine-based etchant which is sufficiently stirred at normal temperature for 90 seconds, and then washed with an alcohol-based rinsing liquid to The ethanol spray is then dried in a dryer. Thereafter, the state of the surface of the full bump formed on the object to be plated was observed at a magnification of 50 to 150 times using a metal microscope, and evaluated based on the following criteria. X: 50% or more of the bumps were observed to have unevenness on the surface. △: unevenness was observed on the surface of the bump in a partial area. 〇: No unevenness was observed on the surface of the full bump on the object to be plated. [Comprehensive evaluation] The evaluation results from the above evaluations were evaluated on the basis of the following evaluation criteria. X: Among the above results of the formed gold plating film (gold bump) and the gold plating bath after the plating treatment, the result of the poor result was included. △: Regarding the gold-plated film formed (gold bump) and the gold plating bath after the plating treatment -18-200806818 (16), all of the above results were good results, but it was impossible to judge that it was good after considering the limit. ◦: Among the above results of the formed gold plating film (gold bump) and the gold plating bath after the plating treatment, all were good results. Table 1

表較例 實拥 5例 1 1 2 3 4 電鍍條件 電鍍溫度(°c) 60 60 60 60 60 步驟 A(0.01A/dm2) - 2 β m - - 1 β m 步驟 B(0.02A/dm2) - - 2 β m - 1 β m 步驟 C(0.05A/dm2) - - - 2 μ τη - 步驟 D(0.6A/dm2) 15 μ m 13 μ m 13 μ m 13 β m 1 3 // m 步驟 E(0.7A/dm2) - - - - - 混合濃度(g/L) Na3Au(S03)2 as Au 10 10 10 10 10 Na3S〇3 as SO3 30 30 30 30 30 Na3S〇4 as S〇4 30 30 30 30 30 1,2-乙二胺 15 15 15 15 15 Tl(mg/L) 15 15 15 15 15 磷酸 5 5 5 5 5 電鍍後段差(// m) 1.80 -0.05 0.30 1.20 0.00 浴安定性 〇 〇 〇 〇 〇 電鍍皮膜外觀 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Hv) 110 101 104 105 102 3〇〇°C熱處理後(Ην) 44 48 47 48 47 蝕刻性 〇 〇 〇 〇 〇 綜合評價 X 〇 〇 Δ 〇 -19- 200806818 (17)Table is more than 5 cases 1 1 2 3 4 Plating conditions Plating temperature (°c) 60 60 60 60 60 Step A (0.01A/dm2) - 2 β m - - 1 β m Step B (0.02A/dm2) - - 2 β m - 1 β m Step C (0.05A/dm2) - - - 2 μ τη - Step D (0.6A/dm2) 15 μ m 13 μ m 13 μ m 13 β m 1 3 // m Step E(0.7A/dm2) - - - - - Mixed concentration (g/L) Na3Au(S03)2 as Au 10 10 10 10 10 Na3S〇3 as SO3 30 30 30 30 30 Na3S〇4 as S〇4 30 30 30 30 30 1,2-ethylenediamine 15 15 15 15 15 Tl(mg/L) 15 15 15 15 15 Phosphoric acid 5 5 5 5 5 Post-plating step difference (// m) 1.80 -0.05 0.30 1.20 0.00 Bath stability 〇 〇〇〇〇 Electroplating film appearance 〇〇〇〇〇 film hardness without heat treatment (Hv) 110 101 104 105 102 3〇〇 °C heat treatment (Ην) 44 48 47 48 47 etch 〇〇〇〇〇 comprehensive evaluation X 〇 〇Δ 〇-19- 200806818 (17)

表2 表較例 實施例 2 5 6 7 8 電鍍條件 電鍍溫度(°c) 45 45 45 45 45 步驟 A(0.01A/dm2) - 2 μ m - - 1 β m 步驟 B(0.02A/dm2) - - 2 μ m - 1 β m 步驟 C(0.05A/dm2) - - - 2 β m - 步驟 D(0.6A/dm2) - - - - - 步驟 E(0.7A/dm2) 15 β m 13 β m 13 β m 13 β m 13 β m 混合濃度(g/L) K[Au(CN)2]as Au 5 5 5 5 5 檸檬酸 120 120 120 120 120 Tl(mg/L) 12 12 12 12 12 磷酸 3 0 3 0 3 0 3 0 30 電鍍後段差(// m) 1.50 -0.01 0.00 0.75 -0.10 浴安定性 〇 〇 〇 〇 〇 電鍍皮膜外觀 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Hv) 99 93 96 98 94 3〇〇t:熱處理後(Ην) 41 46 45 44 46 蝕刻性 〇 〇 〇 〇 〇 綜合評價 X 〇 〇 〇 〇 -20- 200806818(18) 表3Table 2 Comparative Example 2 2 6 7 8 Plating Conditions Plating Temperature (°c) 45 45 45 45 45 Step A (0.01A/dm2) - 2 μ m - - 1 β m Step B (0.02A/dm2) - - 2 μ m - 1 β m Step C (0.05A/dm2) - - - 2 β m - Step D (0.6A/dm2) - - - - - Step E(0.7A/dm2) 15 β m 13 β m 13 β m 13 β m 13 β m mixed concentration (g/L) K[Au(CN)2]as Au 5 5 5 5 5 citric acid 120 120 120 120 120 Tl(mg/L) 12 12 12 12 12 Phosphoric acid 3 0 3 0 3 0 3 0 30 Post-plating step difference (// m) 1.50 -0.01 0.00 0.75 -0.10 Bath stability 〇〇〇〇〇 plating film appearance 〇〇〇〇〇 film hardness not heat treated (Hv) 99 93 96 98 94 3〇〇t: After heat treatment (Ην) 41 46 45 44 46 Comprehensive evaluation of etching properties X 〇〇〇〇-20- 200806818(18) Table 3

實方ί g例 表較例 9 10 11 12 3 4 電鍍條件 電鍍溫度fc) 60 60 45 45 60 45 步驟 F(0.6A/dm2) Ί μπι 12 // m 7 // m 12 μ m 15 βτη 15 βτη 步驟 G(0.7A/dm2) - - - - - - 步驟 H(0.01A/dm2) 2 // m 2 // m 2 μ m 2 // m - - 步驟 I(0.02A/dm2) 1 β m 1 // m 1 // m 1 // m - - 步驟 K(0.7A/dm2) 5 // m - - - - - 步驟 J(0.6A/dm2) - - 5 β m - - - 混合濃度(g/L) Na3[Au(S〇3)2]as Au 10 10 - - 10 5 K[Au(CN)2]as Au - - 5 5 - - Na3S〇3 as SO3 30 30 - - 30 - Na3S04 as S04 30 30 - • 30 一 1,2-乙二胺 15 15 - - 15 - 檸檬酸 - - 120 120 - 120 Tl(mg/L) 15 15 12 12 15 12 磷酸 5 5 - - 5 - 電鍍後段差m) 0.10 0.15 0.0 0.10 1.8 1.5 浴安定性 〇 〇 〇 〇 〇 〇 電鍍皮膜外觀 〇 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Hv) 100 104 85 96 110 99 3〇〇°C熱處理後(Ην) 49 47 44 44 44 41 蝕刻性 〇 〇 〇 〇 〇 〇 綜合評價 〇 〇 〇 〇 X X 21 - 200806818 (19) 【圖式簡單說明】 [圖1 ]顯示形成金凸塊後之以往之晶圓之一例之剖面 圖。 [圖2]電鍍前晶圓之剖面圖(A )與電鍍後晶圓之剖 ' 面圖(B )。Example ί g Example 9 10 11 12 3 4 Plating conditions plating temperature fc) 60 60 45 45 60 45 Step F (0.6A/dm2) Ί μπι 12 // m 7 // m 12 μ m 15 βτη 15 Ττη Step G (0.7A/dm2) - - - - - - Step H(0.01A/dm2) 2 // m 2 // m 2 μ m 2 // m - - Step I (0.02A/dm2) 1 β m 1 // m 1 // m 1 // m - - Step K(0.7A/dm2) 5 // m - - - - - Step J(0.6A/dm2) - - 5 β m - - - Mixed concentration (g/L) Na3[Au(S〇3)2]as Au 10 10 - - 10 5 K[Au(CN)2]as Au - - 5 5 - - Na3S〇3 as SO3 30 30 - - 30 - Na3S04 as S04 30 30 - • 30-1,2-ethylenediamine 15 15 - - 15 - Citric acid - - 120 120 - 120 Tl(mg/L) 15 15 12 12 15 12 Phosphoric acid 5 5 - - 5 - Plating After the difference m) 0.10 0.15 0.0 0.10 1.8 1.5 bath stability 〇〇〇〇〇〇 plating film appearance 〇〇〇〇〇〇 film hardness is not heat treated (Hv) 100 104 85 96 110 99 3〇〇 °C heat treatment (Ην ) 49 47 44 44 44 41 Comprehensive evaluation of etching properties 〇〇〇〇 XX 21 - 200806818 (19) [Simple description of the diagram] [Figure 1] A cross-sectional view showing an example of a conventional wafer after gold bumps are formed. [Fig. 2] A cross-sectional view (A) of a wafer before plating and a cross-sectional view (B) of a wafer after plating.

【主要元件符號說明】 1、2 7 :晶圓 3、2 9 : A1 電極 5、25 :護層膜 7、23 :金濺鍍膜 9、21 :光罩材 1 〇 :開口部 1 1、3 1 :金凸塊 13 :球 1 5 :凹部 -22-[Description of main component symbols] 1, 2 7 : Wafer 3, 2 9 : A1 Electrode 5, 25: Cover film 7, 23: Gold sputter film 9, 21: Photomask 1 〇: Opening 1 1 1: Gold bump 13: Ball 1 5 : Concave-22-

Claims (1)

200806818 (1) 十、申請專利範圍 1 · 一種金凸塊或金配線之形成方法,係使用含有做 爲金離子來源之亞硫酸金鹼鹽或亞硫酸金銨、用作安定劑 之水溶性胺、結晶調整劑、用作傳導鹽之亞硫酸鹽以及硫 ^ 酸鹽、及緩衝劑之非氰系電解鍍金浴,於圖案化之晶圓上 * 進行電解鍍金,其特徵係由於晶圓上以0.1 A/dm2以下之 電流密度進行至少一次電解鍍金的步驟 1,與以 0.3〜 ^ 〗.2A/dm2之電流密度進行至少一次電解鍍金的步驟2所構 成,以使步驟1之合計鍍金層厚度爲〇. 1〜5 // m,步驟1 與步驟2之合計鍍金層厚度爲所期望厚度,而於晶圓上進 行鍍金之方法。 2. —種金凸塊或金配線之形成方法,係使用含有做 爲金離子來源之氰化金鹼鹽或氰化金銨、結晶調整劑、用 作傳導鹽之無機酸鹽或有機酸鹽、及緩衝劑之氰系電解鍍 金浴,於圖案化之晶圓上進行電解鍍金,且該於晶圓上進 0 行電解鍍金之方法,其特徵係由以0.1 A/dm2以下之電流 密度進行至少一次電解鍍金的步驟1,與於進行步驟1後 ,以0.3〜1.2A/dm2之電流密度進行至少一次電解鍍金的 步驟2所構成,以使步驟1之合計鍍金餍厚度爲〇. 1〜5 ' /Z m,步驟1與步驟2之合計鍍金層厚度爲所期望厚度’ 而於晶圓上進行鍍金之方法。 -23-200806818 (1) X. Patent application scope 1 · A gold bump or gold wiring is formed by using a water-soluble amine containing gold alkali sulfite or gold ammonium sulfite as a source of gold ions and used as a stabilizer. , a crystal modifier, a non-cyanide electrolytic gold plating bath used as a salt of a conductive salt, a sulphate, and a buffer, and electroplated on a patterned wafer*, characterized by Step 1 of performing electrolytic gold plating at least once at a current density of 0.1 A/dm 2 or less, and step 2 of performing at least one electrolytic gold plating at a current density of 0.3 to 2.3 A/dm 2 so that the total thickness of the gold plating layer of the step 1 is made For example, 1 to 5 // m, the total thickness of the gold plating layer in steps 1 and 2 is the desired thickness, and the gold plating method is performed on the wafer. 2. A method for forming gold bumps or gold wirings using a mineral acid salt or an organic acid salt containing a gold cyanide salt or a gold ammonium cyanide as a source of gold ions, a crystal modifier, and a conductive salt. And a buffered cyanide electrolytic gold plating bath for performing electrolytic gold plating on the patterned wafer, and the method of performing electrolytic gold plating on the wafer is characterized by a current density of 0.1 A/dm 2 or less. The step 1 of electrolytic gold plating is performed at least once, and after the step 1, the step 2 of performing electrolytic gold plating at a current density of 0.3 to 1.2 A/dm 2 is used, so that the total thickness of the gold plating of the step 1 is 〇. 5 ' /Z m, the total thickness of the gold plating layer of steps 1 and 2 is the desired thickness' and the method of gold plating on the wafer. -twenty three-
TW095134066A 2005-09-30 2006-09-14 Gold bump or gold wiring formation method TWI385281B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288424A JP4713290B2 (en) 2005-09-30 2005-09-30 Forming method of gold bump or gold wiring

Publications (2)

Publication Number Publication Date
TW200806818A true TW200806818A (en) 2008-02-01
TWI385281B TWI385281B (en) 2013-02-11

Family

ID=37958664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095134066A TWI385281B (en) 2005-09-30 2006-09-14 Gold bump or gold wiring formation method

Country Status (4)

Country Link
JP (1) JP4713290B2 (en)
KR (1) KR101223861B1 (en)
CN (1) CN1940147B (en)
TW (1) TWI385281B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336785B2 (en) * 2007-08-07 2013-11-06 メタローテクノロジーズジャパン株式会社 Non-cyan electrolytic gold plating bath for bump formation and bump formation method
CN101903988B (en) 2007-12-21 2013-07-31 和光纯药工业株式会社 Etching agent, etching method and liquid for preparing etching agent
JP2014139348A (en) * 2008-08-25 2014-07-31 Electroplating Eng Of Japan Co Hard gold-based plating solution
JP5513784B2 (en) 2008-08-25 2014-06-04 日本エレクトロプレイテイング・エンジニヤース株式会社 Hard gold plating solution
JP4758470B2 (en) * 2008-12-18 2011-08-31 シャープ株式会社 Method for forming protruding electrode and displacement gold plating solution
CN102154669B (en) * 2011-03-28 2013-03-13 冠锋电子科技(梅州)有限公司 Method for plating thick soft gold by utilizing plating thin golden cylinder
CN102184875B (en) * 2011-04-05 2012-07-04 山东理工大学 Manufacturing method of nail head gold bump
CN103290440B (en) * 2012-02-22 2016-12-14 美泰乐科技(日本)股份有限公司 Au bump formation non-cyanogen type electrolytic gold plating bath and au bump forming method
US20150137356A1 (en) * 2012-10-04 2015-05-21 Electroplating Engineers Of Japan Limited Non-cyanide electrolytic gold plating solution
JP6393526B2 (en) * 2014-06-11 2018-09-19 メタローテクノロジーズジャパン株式会社 Cyan-based electrolytic gold plating bath and bump forming method using the same
JP6450560B2 (en) * 2014-10-24 2019-01-09 新日本無線株式会社 Semiconductor device and manufacturing method thereof
CN107250440B (en) * 2015-01-16 2019-07-30 哈钦森技术股份有限公司 Golden electroplating solution and method
CN105112953A (en) * 2015-09-17 2015-12-02 深圳市瑞世兴科技有限公司 Cyanide-free gold plating solution
JP6970346B2 (en) 2018-09-25 2021-11-24 日亜化学工業株式会社 Manufacturing method of semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136950A (en) * 1983-01-27 1984-08-06 Seiko Instr & Electronics Ltd Forming method for bump type electrode
JPS60219741A (en) * 1984-04-17 1985-11-02 Seiko Instr & Electronics Ltd Manufacture of semiconductor device
JP3176973B2 (en) * 1992-01-31 2001-06-18 株式会社東芝 Method for manufacturing semiconductor device
JPH09106940A (en) * 1995-10-13 1997-04-22 Canon Inc Mask structure, its manufacturing method, exposure method using the mask structure and exposure device, device manufactured by the mask structure and its manufacturing method, and gold product
JPH1136094A (en) * 1997-05-20 1999-02-09 Shinko Electric Ind Co Ltd Gold plating solution and gold plating method
JP4220053B2 (en) * 1999-01-14 2009-02-04 日本エレクトロプレイテイング・エンジニヤース株式会社 Gold plating solution and plating method using the gold plating solution
JP4147359B2 (en) 1998-12-24 2008-09-10 石原薬品株式会社 Displacement gold plating bath and gold plating method using the bath
JP2003007762A (en) * 2001-06-18 2003-01-10 Hitachi Ltd Flip chip mounting method of semiconductor device
JP2003013278A (en) * 2001-06-26 2003-01-15 Japan Pure Chemical Co Ltd Gold plating solution
JP4129363B2 (en) 2002-03-15 2008-08-06 エヌ・イーケムキャット株式会社 Electrolytic gold plating solution and gold plating method
JP4227826B2 (en) * 2003-03-31 2009-02-18 株式会社荏原製作所 Direct gold plating method and plating apparatus therefor
JP4186716B2 (en) 2003-06-04 2008-11-26 三菱化学株式会社 Gold plating solution and gold plating method
TWI222198B (en) * 2003-09-04 2004-10-11 Fupo Electronics Corp Fine pitch gold bump fabrication process and its package article

Also Published As

Publication number Publication date
KR101223861B1 (en) 2013-01-17
CN1940147B (en) 2011-07-20
JP4713290B2 (en) 2011-06-29
JP2007100130A (en) 2007-04-19
TWI385281B (en) 2013-02-11
CN1940147A (en) 2007-04-04
KR20070037315A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
TW200806818A (en) Method of forming gold bump and gold wiring
TWI477660B (en) Non cyanide gold plating bath for bump
TWI420609B (en) The gold bump or gold wire is formed with a non-cyanide gold plating bath
TWI390086B (en) Non-cyanide electrolytic gold plating bath for bump formation
CN108138348B (en) Methods and articles for indium or indium alloy deposition
KR20090026075A (en) Non cyanide gold plating bath for bump and preparation method of bump
CN113832509B (en) Plating solution for electroplating gold on nickel plating layer and method for electroplating gold on nickel plating layer and gold-plated part
TWI617707B (en) Cyanide based electrolytic gold plating bath and bump forming method using same
EP3312308A1 (en) Nickel plating solution
US20160108254A1 (en) Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device
JP2009071093A (en) Bump and bump forming method
JP4925792B2 (en) Non-cyan electrolytic gold plating bath for bump formation
JP2011021217A (en) Electrolytic hard-gold-plating liquid and plating method using the same
WO2003040432A1 (en) Nickel-based surface treatment films excellent in heat-resistant adhesion to resin
JPS62151592A (en) Production of gold plated lead frame
KR100760420B1 (en) Palladium Plating Solution
TW201607087A (en) Method of roughening surface of thermoelectric material
JP2024037330A (en) Cu pillar joining method and Cu pillar joined body manufacturing method
JPH0951054A (en) Board for electronic component and its manufacture

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees