TW200541280A - Transmitter predistortion circuit and method therefor - Google Patents

Transmitter predistortion circuit and method therefor Download PDF

Info

Publication number
TW200541280A
TW200541280A TW94102132A TW94102132A TW200541280A TW 200541280 A TW200541280 A TW 200541280A TW 94102132 A TW94102132 A TW 94102132A TW 94102132 A TW94102132 A TW 94102132A TW 200541280 A TW200541280 A TW 200541280A
Authority
TW
Taiwan
Prior art keywords
signal
linear
equalizer
distortion
analog
Prior art date
Application number
TW94102132A
Other languages
Chinese (zh)
Inventor
Ronald Duane Mccallister
Original Assignee
Crestcom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/766,779 external-priority patent/US7430248B2/en
Priority claimed from US10/766,768 external-priority patent/US20050163249A1/en
Priority claimed from US10/766,801 external-priority patent/US7099399B2/en
Priority claimed from US10/840,735 external-priority patent/US7342976B2/en
Priority claimed from US11/012,427 external-priority patent/US7469491B2/en
Application filed by Crestcom Inc filed Critical Crestcom Inc
Publication of TW200541280A publication Critical patent/TW200541280A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Abstract

A digital communications transmitter (100) includes a digital linear-and-nonlinear predistortion section (200, 1800, 2800) to compensate for linear and nonlinear distortion introduced by transmitter-analog components (120). A direct-digital-downconversion section (300) generates a complex digital return-data stream (254) from the analog components (120) without introducing quadrature imbalance. A relatively low resolution exhibited by the return-data stream (254) is effectively increased through arithmetic processing. Distortion introduced by an analog-to digital converter (304) may be compensated using a variety of adaptive techniques. Linear distortion is compensated using adaptive techniques with an equalizer (246) positioned in the forward-data stream (112). Nonlinear distortion is then compensated using adaptive techniques with a plurality of equalizers (226) that filter a plurality of orthogonal, higher-ordered-basis functions (214) generated from the forward-data stream (112). The filtered-basis functions are combined together and subtracted from the forward-data stream (112).

Description

200541280 九、發明說明: 【發明所屬之技術領域】 [0001]本專利為預失真電路與補償趟方法與數位射頻通訊發射機 之/、他失真之挪延續’由本此專利之發明人於2GG4年5月6日在美國 提出申請,序縣1()錢735,而鱗·“失絲控之·麵通訊發射 機與其設計方法”之部份延、續,由本專利之發明人於綱彳i月27日在美 國提出申請,序號1〇/766耀。二者均納入本專利作為參考。 【0002】本專利與贸满彦游之事 1〇/971,628,2004年10月22日在美國提出申請)、“贸关料路婦 頻通訊發射機補償線性失真之方法、γ色力这 良表風象乾今議、、贫、預失真電路與數位射頻通訊發射機補償非線性失真 之才法”(序號1〇/766,779,2004年i月27日在美國提出申請)有相關, 均由本專利之發明人所發明。 【0003】本發明一般而言與數位射頻通訊方面有關。更明確的說,本發 明,與控制和減低由發射機類比零件而產生之數位通訊訊號之誤差有關。 【先前技術】 【0004】數位通訊發射機可以利用低價,而大量使用數位處理於通訊信 號。即使是相對宽頻的通訊信號也可以利用數位方式表達,並以合理價格 之數位方法精確的處理。信號之數位表示法,是從提供一適合其頻寬且符 合要求之解析度的串流取樣而來,但是數位表示之通訊信號傳統上卻被轉 換成類比形式、升頻、濾'波、再放大,以供類比零件做傳輸用。 200541280 【】類比7件不像數位零件,只能_有限的精確度,而且,即使 類比的精確曰度不良也還是較貴,並且要達到更大的精確度就須更大的花 費 $近數位通訊發射機的趨勢是以儘量延伸數位處理至天線端, 來替代類比處理,然後將射頻信號自天線播放出去。 [0006〗錄兩個㈣的趨勢,是需要雜放大之使賴魏式,和使 用較便且C也較不精確的類比零件。需要線性放大之使用調變形式有其 需要因祕們允許在-定時間、—定頻寬與—定的傳輸神下,傳達更 φ多資訊。使用較便宜的零件_直是理想的目標,但是量大市場的訴求與/或 高競爭性的市場也是重要的目標。 【_71線性功率放大器在發射器中是一種最責而且最耗費功率的類比 零件,但是當線性轉放大器物無法完整複製與放大其輸人訊號時即 產生訊號失真。而且般規岐,當使絲價且低功率的放大器時失 真更形嚴重。 【0008】+種受到相當注意的功率放大器失真是其非線性,非線性是線 魯性功率放大器特別明顯的特性,而且是指功率放大器的輸出無法與放大器 的輸入達到線性相關的程度。射頻發射機的非線性特別麻煩,因為會產生 頻譜再生問題。或許-個放大器的射頻輸入可能完全位於特定的電磁波頻 譜内,但任何放大器的非線性會引起互調,而致放大器的射頻輸出橫跨較 大的電磁波頻譜。 【0009]發射機最好要能使用法令所允許的最大頻寬,以便很有效率的 傳送資訊。因此,頻譜再生通常會導致發射機違反規定。欲避免違反規定, 6 200541280 線性功率放大ϋ最好雜量精確地以雜放大軌錢。數位通訊發射機 面對的另-趨勢是,標準與法令不斷地緊縮發射機操作_譜,因此,減 少功率放大器非線性的頻譜再生的需求,比以往更形迫切。 [0010】解決功率放大器非線性頻譜再生的一個方法是使用較高功率 之放大器,並以較大之回退操作此較高功率之放大器。回退是指一放大器 產生較其所能產生的信號為弱的信號之程度。一般而言,當功率放大器操 作於其最大能力之下時,會變得較為線性;且較大之回退會維持放大器操 作於更線性的範圍。這方法不只需要使用更貴且更高功率的放大器,而且 通常需要將放大器操作於較不具效率之範圍,因而導致發射機消耗更多功 率。當通訊信號顯現較高之峰-均功率比,例如幾個數位通訊信號在放大之 前先予以混合時,則這問題變得更顯著。而且,將幾個數位通訊信號在放 大前先予混合常見於如行動電話基地台之應用。 【0011】另一個解決功率放大器非線性問題的方法,是透過數位預失真。 數位預失真已被用於數位通訊信號,以允許使用較便宜的放大器,並且用 來增進較貴的放大器之效果。數位預失真是指,當通訊信號仍為數位形式 時,在類比轉換之前做數位信號處理。數位信號處理試囷以精確方式扭曲 數位通訊信號,以使其在加入線性放大器與其他類比處理之誤差後,其通 訊信號之結果能儘量正確。放大器之非線性,透過數位預失真而更正,使 得可以使用較低功率較便宜的放大器,放大器也可以更有效率,並減低頻 譜再生。而且,由於數位預失真是透過數位信號處理而執行,它可以極精 確地以合理的價錢執行任何預失功能。 7 200541280 [0012】雖然以前的預失真技術已有些許成功,但成果有限,而且近代 的法令要求更嚴密,而致傳統的預失真技術不足應付。 【0013】預失真技術需要知道類比零件扭曲通訊信號的方式,以便製作 適當的反預失真轉換函數,而精確的補償類比零件產生的扭曲。傳統的預 失真技術愈精確的使用功率放大器輸出端的反饋,以獲得即時資訊,則愈 能精破的反映實際的類比零件與操作狀況。 【0014】傳統上,為了監督此反饋信號,需要執行大量的處理,以獲得 # 失真轉換函數。然後,計算反失真轉換函數,並將此轉變成程式,置入數 位預失真器。在許多傳統的應用上,發射機需要傳送預設的一系列訓練資 料,以減低複雜度,並改進導出失真轉換函數所需之大量處理的精確度。 較不精確或窄頻的傳統預失真技術,可能最多只能建構_數位預失真器做 為簡單的通訊信號濾波H,來執行反轉換函數。但是在許多更精確,而且 通常較貴的傳統_上,數位預失真器本身包括—個或多個檢絲,此表 用作疋義預失真雖之程式命令,以使數位預失真器麟其加在通訊信號 • 上。 _】U彺鬲階應用技術來補償記憶效應,因較複雜而成本較高。一 般而言,記憶效應是指功率放大器在一環境的行為與另一環境不同的傾 向。例如’功率放大器之增益與她轉換特性可能視頻率、_功率放大 器t偏壓情形、溫度、與零件老化的函數而變。為了解決記憶效應,預失 靡in、般目為包括了多錄絲與許?處理軟似先行财記憶效 ㈣合的反轉換函數、並依此改變預失真指令,而變得更複雜。 200541280 [0016]廣泛的傳統預失真技術遭遇多種問題,訓練序列的使用特別是 不想要的,因為它需要使用頻譜來控制,而不是以負載做為目的,並且這 通常會增加複雜度。一般而言,在反饋信號的路徑上,與在預失真器的設 計上,會增加使用處理的複雜度,以增進精確性,但是大量的增加複雜度 卻往往只能增進些許的精確性。反饋信號之處理複雜度的增加不是想要 的,因為這會導致發射機費用與功率消耗的增加。遵循傳統數位預失真之 技術,數位預失真之成本,迅速達到甚或超越在較高之回退下操作使用較 • 高功率之放大器之成本,以達到實質上同樣的結果。因此,數位預失傳統 上只在高階之應用比較實際,即使如此,也只能違到有限的成效。 [0017〗更確切地說,使用傳統的技術處理反饋信號,會遭遇特別煩人 的問題。傳統上會使用一反操作,形成反轉換函數,以用於數位預失真器 之程式雖然反操作本身可能即有些複雜,更嚴重的問題,是它對反饋信 號的微小誤差很敏感。即使是通過一反操作的微小誤差,也會造成反轉換 函數非常不準確的結果。 Φ 【0018】使用傳統的預失真技術,反饋信號應該很精準地捕捉,以精確 地計算反轉換函數。使用傳統的預失真技術,這需要高精確度之類比/數位 轉換電路(A/D) ’以捕捉反饋信號,然後接到高解析、低誤差之數位電路, 以處理反饋信號。更麻煩的是,反饋信號通常由於功率放大器之非線性而 引起頻譜再生而呈現擴張的頻寬。欲使用傳統的技術精確地捕捉反饋信號 擴張的頻寬,則A/D也應該由高速電路組成。但是這樣的高速高解析度 A/D往往是昂貴、高功率的零件,會否定數位預失真的任何功率放大器所 9 200541280 省的電,除了最高階的應用之外。 [0019】為了避免使用高速高解析度_,一些傳統的預失真技術,沿 用只處理反饋信麵寬以外之部分的神。但是,反饋信號頻寬以外之部 分的功率只間接地說明類比零件之失真,在反轉換函數再度增加誤差與減 低精確度。 [0020】即使當傳統的設計使用高速、高解析度鳩捕捉反饋信號,仍 然無法控制其他誤差來源,以致在反操作之後可能導致反轉換函數相當的 φ 不準確度。^時脈的相位抖動加大誤差,一如任何類比處理在A/D轉換 之前會發生的情形。並且,傳統的習慣需要帶有同相與正交的零件之複信 號的數位通訊信號,而此零件在A/D轉換之前的反饋信號傳統上是分別處 理的。任何反饋彳§號引入的正交不平衡會導致進一步的誤差,而在反操作 之後,會在一反轉換函數導致顯著的誤差。 【0021】由類比零件導入通訊信號的線性失真,相信是困擾傳統數位預 失真技術的另一誤差的來源。線性失真是指信號的誤差,由功率放大器複 春製或引進,並且落於頻寬之内。線性失真的例子包括正交增益、相位與群 延遲之不平衡。並且,當通訊信號頻率變得更寬時,依頻率而變的增益與 相位變化,強加更大的線性失真影響。線性失真的更多例子包括某類信號 影像與互調。線性失真通常被當成比非線性失真形式較為仁慈的誤差因 為不會導致頻譜再生。一般而言,接收機在傳送頻道之後有補償線性失真, 並且在接收機前端,類比零件已加入進一步的線性失真,但是,在至少一 個例子裏,通訊系統已組合成接收機決定某些線性失真更正夥伴,然後發 200541280 射機進行一些更正動作。 【0022】線性傳送通訊信號的線性失真需要降低,因為它會減少接收機 必須補償的線性失真數量,得到效能改進。而且,當通訊信號的頻寬變大 時,更需要降低線性失真。但是,使用一接收機來設定發射機應採行的改 進方法行不通,因為它無法將頻道引發的失真從發射機引發的失真分離。 由於多重路徑往往加諸動態影響於傳送的射頻通訊信號,這種方法常常無 法成功。另外,它會浪費發射控制資料的頻譜,而不是負載的資料,並且 它需要很多接收機以達到相容能力。 【0023】傳統的發射機不只是無法解決線性失真問題,也相信會在將非 線性轉換函數特性化時引發進一步的誤差。多數轉換原始資料至轉換函數 的演算法是根據在控制狀況下合理的精確之放大器模型,但是根據此模型 而使用線性失真號導出轉換函數’特別是在較廣大的頻寬上,則可能會 違反控制狀況。因此,在此導出之轉換函數相信會比較不準確,並且任何 用於數位預失真器而計算出的反轉換函數,可能因此而非常不準確。 [0024】在一些數位通訊應用中(例如行動電話基地台),一個宽頻通訊 信號由數個獨立的窄頻信號構成’以頻率多工形成寬頻通訊信號。這情形 對預失真電路構成挑戰。於此多重窄頻信號應用中,有一些窄頻信號會顯 示比其他信號更弱,在一般的情形,通訊系統規格堅持所有發射頻道須符 合一最小的向量大小(EVM)或信號雜訊比之要求。因此,有需要使用預失 真與其他同時符合此弱與強頻道之要求的發射處理。 【發明内容】 11 200541280 【0025】本發明的至少一個實施例,可提供改進的發射預失真電路與方 法。 【0026】本發明的另一個實施例,可提供量化誤差補償器,以補償類比 數位轉換電路(A/D)在監督類比發射機零件產生的反饋信號所引發的量化 誤差。 [0027】本發明的另一個實施例,可提供在使用反饋信號路徑之前,補 償反饋信號路徑之失真的程序,以抵消類比發射機零件產生的失真。 【0028】本發明還另有至少一個實施例,可提供以回應頻率多工通訊頻 道相對強度之方式,抵消類比發射器零件產生的失真。 【0029】這些與其他好處,以一種補償類比發射機零件產生的失真方法 之形式實現。此方法要求取得一個設定成可傳送多個頻率分工通訊頻道之 前向資料流。此前向資料流透過類比發射機零件而處理,在前向資料流受 到類比發射機零件之影響後,而以回返資料流做回應。各通訊頻道對前向 資料流而有其通訊信號強度之反應,並且各通訊頻道對前向資料流而有其 誤差信號之反應。類比發射機零件產生之失真,由上述通訊頻道相對於通 訊信號強度與誤差信號強度之反應而抵消。 【0030】這些與其他好處,以另一種補償類比發射機零件產生的失真之 預失真電路之形式實現。此預失真電路包括一設置成接收一前向資料流與 產生一處理過的前向資料流之適應性等化器。一數位/類比轉換器(d/a)柄 合至適應性等化器,並設置成將處理過的前向資料流轉換成前向類比信 號,而透過類比發射機零件傳送出去。一類比/數位轉換器(A/D)接收一從 12 200541280 類比發射機零件回返之類比信號。此回返之類比信號回應前向類比信號, 並且此A/D設置成產生一回返之原始數位資料流。一 a/D補償部份用來 接收前向資料流,此A/D補償部份設置成補償由A/D產生進入回返原始 數位資料流之誤差,並產生一回返資料流。一控制電路耦合至適應性等化 器,此控制電路設置成改變處理過的前向資料流,以回應回返資料流。 【實施方式】 【0031】圖1顯示一數位通訊射頻(Rp)發射機1〇〇,依照本發明傳授之配 φ 置的方塊圖。發射機10()為可以用於行動電話、行動基地台的發射機,但 發射機100亦可用於其他應用。 [0032】發射機1〇〇提供多個數位資訊流ι〇2 ,以對應多個數位調變器 104。於行動基地台的應用,資訊流102可能傳送欲發射的資訊至多個使用 者,不同的訊流102可能與他人有一些關聯,或者可能完全沒有關聯。 【0033】調變器1〇4可能執行任何種類的數位調變,但是本發明的優點 可以從調變的形式而體會,此調變的幅度與相角用於以數位方式傳達訊 鲁息,這種調變一般需使用線性高功率放大器(HPA,S)。這種調變的例子包括 任何正交振幅調變(QAM)、分碼多重擷取(CDMA)、正交頻分調變 (OFDM)、多重輸入多重輸出(MIM〇)系統等等。在較佳的實施例中,從調 變器104輸出的調變資訊,使用複雜的資訊流,以數位方式傳達訊息。對 此技術熟悉的人會了解,複雜的資訊流包括兩個平行的訊流。圖丨使用傳 統的名稱繪出訊流之一為同相①訊流,而另一則為正交(Q)訊流,反映當 此二訊流被處理與合併向下由移流時的正交關係。雖然此處未指出,調變 13 200541280 器104可能包括形成脈波之濾波器,以配置成熟悉技術的人了解的符號間 之干擾(ISI) ’將其減低至最小的程度,以及調變後信號處理之其他形式。 【0034】在較佳的實施例中之一,調變器104耦接至合併部份106,而 多個各自調變的複資訊流在此合併成單一的數位通訊信號,在此稱做複前 向資訊流108。為了此處容易說明起見,複前向資訊流108與此後下游在 合併部份106與一天線之間用來做發射之處理的所有變化型態,此後統稱 前向資訊流,以與下列討論之以相反方向傳播的回返資訊流做區別。即使 資訊流102為窄頻資訊流,合併的複前向資訊流108亦可視為寬頻資訊流。 合併不同的調變資訊流的後果之一,是複前向資訊流108的峰均比會增 加,使得下游必須應付較高的線性放大。 【0035】合併部份1〇6的輸出之一耦合至峰值減低部份110,而峰值減 低部份110減低前向資訊流108之峰均比,以便其結果之複峰值減低前向 資訊流112會使得下游只需應付較小的線性放大。在較佳的實施例中,峰 值減低部份110使用一僅會於前向資訊流1〇8產生頻帶内之失真之峰值減 低或巔峰減低技術。因此,於複峰值減低前向資訊流112或其他應用峰值 減低之結果的地方,不會有明顯的頻譜再生。 【0036】另外,峰值減低部份11〇需在控制下使用峰值減低,以便能回 應峰值減低反饋信號114。特別是,反饋信號U4可能會提供一能夠被峰 值減低部份110轉換成臨界值之剩餘非線性EVM值,此臨界值表示再使 用任何峰值減低之前,前向資訊流108需要顯示的最小幅度。一般而言, 當前向資訊流108的大小超過此臨界值甚多時,則大量的峰值減低會應用 200541280 在前向資訊流108之上。峰值減低的提升可能以降低臨界值大小而逹到, 其中峰值減低,是應用在前向資訊流1〇8上,而這會有加上更大的頻寬内 失真,進入峰值減低前向資訊流112之效應。 適合峰值減低的技術於美國專利號碼6,1〇4,761與6,366,619有說明,二者 在此均納入供參考,但於此未說明的技術以可使用。 [0037】在較佳的實施例中,反饋信號114表示在從發射機1〇〇發射至 射頻通訊信號116之剩餘非線性失真的量,反饋信號114的發展在以下討 論。在較佳的實施例之一中,峰值減低部份11〇經操作,以使當非線性失 真超過的量出現時,加於前向資訊流1〇8之峰值減低量與一預設值相較會 增加。發射機100的設計要求,是在正常穩態之操作情況下,射頻通訊信 號116之非線性失真的量不會過大,並且整個誤差向量大小(EVM)略小於 系統規格容許的最大值。但是不正常的操作狀況可能導致過量的非線性失 真,結果可能會有超過法令規定與EVM規格的頻譜再生。 【0038]因此,反饋信號114有能力控制射頻通訊信號116之失真量, 並使失真多數未於頻寬内而少數未於頻寬外。反饋信號114允許峰值減低 部份110增加峰值減低,然後使ΗΡΑ 136操作於更大的回退。於更大的回 退下操作ΗΡΑ 136會有減低非線性失真與頻寬外之輻射之結果。但是,增 加峰值減低,也會使頻寬内之失真增加。因此,總失真可以維持約定值, 但是其特性會從頻寬外位移至頻寬内。 【0039〗如果有峰值減低部份110,則可做為線性與非線性預失真電路 200之前向資訊流ι12之來源。預失真電路20〇使用多個特性,以透過數 15 200541280 位訊號方法特意產生線性與非線性失真進人前向資訊流11:2。此多個特性 會在下面討論。反饋信號114是由預失真電路2〇〇產生,在預失真電路2〇〇 處理之後’前向資訊流112變成複正交平衡等化前向資訊流118。對於前 向資訊流108與112代表的寬頻訊號,前向資訊流118現在代表的是一個 超寬頻訊號。前向資職118不只傳達寬舰訊減,也傳達由預失真電 路產生的反内調失真,而此預失真電路2〇0ffl來補償往後類比零件12〇 產生的非線性失真。 【00401在-實施例之中,一個可選擇的峰值減低控制信號114,可以從 峰值減低部份m提供給預失真電路·。峰值減健制信號114,代表這 是經由預估、量測、或計算,操作峰值減低部份110而加入的前向資訊流 112之雜訊量。在目前較佳的實施例之中,夺值減低控制信號114,用來傳 達短期平均雜訊,此短期平均雜訊加入從調變器104輸出之如上述各獨立 調變的複資訊流,#同後低通渡波能量決定的渡波量。峰值減健制信號 114’之使用在以下與圖29 —併討論。 [〇〇41】類比零件12〇包括分別給複前向資訊流118各點之的數位/類比 轉換器(D/A) 122。胳122將前向資訊流118從數位轉換成類比信號,接 下來的别向通訊>fs號處理為類比處理,並且受類比處理之特性影響而有誤 差。例如,兩個不同的D/A 122可能不會有一樣的增益,而且會產生稍微 不同的時延,這種增益與時延之差異可能導致通訊信號的線性失真。再者, 只要複信號分職不_脈零件分翁理,則零魏可能加諸繼不同 的頻率響應,使得線性失真因為加人頻率相_增益與時延不平衡變得更 200541280 惡化。並且’與頻率相關的增益與時延不平衡因為通訊信號頻寬變寬而惡 化0 [0042】類比信號的兩段複信號通過D/A 122的兩個低通濾波器(LpF,s) 124 «LPF’s 124可以是稍微不同的頻率相關的特性之外,以稍微不同的增 益與時延位移而增加的線性失真。從LPF,S 124,這兩段類比信號的複信號 通往一直接正交升頻部份126。升頻部份126以一本地震盪信號混合此兩 段複信號,並從一本地震盪信號12g以熟悉此技術的人之方式獲得。以增 # 益與時延不平衡方式的另一線性失真也可以產生,並且本地震盪漏電可以 產生不要的直流位移。還有,升頻部份126合併兩段不同的複信號,並通 過此合併的信號,現在稱做射頻類比信號13〇,而到達一帶通濾波器 (BPF)132。為了成本的理由,126部份最好進行直接升頻,至少直至低於 約2.5 GHz之頻率。對更高的頻率,可以使用多重階段之升頻。 【0043] BPF 132在射頻類比信號,現在稱做類比信號130,被配置成 可阻播不要的旁波帶,但也會在通訊信號,現在稱做射頻類比信號134, 41 而產生相角時延。射頻類比信號134驅動一功率放大器136,傳統上也稱 做高功率放大器(ΗΡΑ)。ΗΡΑ 136耦合至天線138,並產生一放大的射頻類 比信號,上述被稱做射頻通訊信號116。 [0044] ΗΡΑ 136有可能是在通訊信號產生數種線性與非線性失真的來 源’圖1是使用Wiener-Hammerstein射頻放大器模型的ΗΡΑ 136,可以用 來解釋這些失真的一部份,至少是理想信號的控制狀況。根據200541280 IX. Description of the invention: [Technical field to which the invention belongs] [0001] This patent is a predistortion circuit and compensation method and a digital radio frequency communication transmitter. On May 6, an application was filed in the United States, Xu County 1 () Qian 735, and the part of the scale "out-of-wire control surface communication transmitter and its design method" was extended and continued by Yu Gangyi, the inventor of this patent. The application was filed in the United States on May 27, serial number 10/766. Both are incorporated herein by reference. [0002] This patent is related to the trade of Yan Man You 10 / 971,628, filed in the United States on October 22, 2004), "Methods for Compensating Linear Distortion of Women's Frequency Communication Transmitters in Trade and Material Roads, and Gamma Power This good watch style is related to the current, poor, pre-distortion circuit and digital RF communication transmitter compensation method for non-linear distortion "(serial number 10 / 766,779, filed in the United States on January 27, 2004). All were invented by the inventor of this patent. [0003] The present invention is generally related to digital radio frequency communications. More specifically, the present invention relates to controlling and reducing errors in digital communication signals generated by analog parts of the transmitter. [Prior Art] [0004] Digital communication transmitters can take advantage of low prices and use digital processing for communication signals in large numbers. Even relatively wideband communication signals can be expressed digitally and processed accurately with digital methods at reasonable prices. The digital representation of a signal is obtained by providing a stream sample that is suitable for its bandwidth and meets the required resolution. However, the communication signal of digital representation has traditionally been converted into an analog form, upscaling, filtering Zoom in for analog parts for transmission. 200541280 [] 7 pieces of analogy are not like digital parts, they can only have limited accuracy, and even if the accuracy of the analogy is poor, it is still more expensive, and to achieve greater accuracy, it costs more than $ The trend of communication transmitters is to extend the digital processing to the antenna as much as possible instead of analog processing, and then broadcast the RF signal from the antenna. [0006] Two trends are recorded, which require amplifying the Lai Wei formula and using analog parts that are more convenient and less accurate. The use of modulation forms that require linear amplification has its needs. Because of the secrets, they are allowed to convey more information at a fixed time, fixed bandwidth, and fixed transmission. The use of cheaper parts is always the ideal goal, but the demands of large markets and / or highly competitive markets are also important goals. [_71 Linear power amplifier is the most responsible and most power-consuming analog component in the transmitter, but when the linear converter cannot fully copy and amplify its input signal, it will cause signal distortion. In addition, the distortion is more serious when the silk-priced and low-power amplifier is made. [0008] A type of power amplifier distortion that has received considerable attention is its non-linearity. Non-linearity is a particularly obvious characteristic of a linear power amplifier, and it refers to the degree to which the output of the power amplifier cannot be linearly related to the input of the amplifier. The non-linearity of RF transmitters is particularly troublesome because of the problem of spectrum regeneration. Perhaps the RF input of an amplifier may be completely within a specific electromagnetic frequency spectrum, but the non-linearity of any amplifier will cause intermodulation, and the RF output of the amplifier will span a large electromagnetic frequency spectrum. [0009] The transmitter should preferably be able to use the maximum bandwidth allowed by the statute in order to transmit information efficiently. Therefore, spectrum regeneration often leads to transmitter violations. To avoid violating the regulations, 6 200541280 linear power amplifier, it is best to precisely increase the amount of miscellaneous rails with miscellaneous amounts. Digital communication transmitters are facing another trend: standards and regulations continue to tighten the transmitter operation spectrum, so the need to reduce the non-linear spectrum regeneration of power amplifiers is more urgent than ever. [0010] One method to solve the non-linear spectrum regeneration of the power amplifier is to use a higher power amplifier and operate the higher power amplifier with a larger backoff. Backoff is the degree to which an amplifier produces a weaker signal than it can produce. Generally speaking, when the power amplifier operates below its maximum capacity, it will become more linear; and a larger backoff will maintain the amplifier operation in a more linear range. This method not only requires the use of more expensive and higher power amplifiers, but also typically requires the amplifier to be operated in a less efficient range, which causes the transmitter to consume more power. This problem becomes more significant when the communication signal exhibits a higher peak-to-average power ratio, such as when several digital communication signals are mixed before being amplified. Furthermore, mixing several digital communication signals before amplification is common in applications such as mobile phone base stations. [0011] Another method to solve the non-linear problem of power amplifiers is through digital predistortion. Digital predistortion has been used for digital communication signals to allow the use of less expensive amplifiers and to increase the effectiveness of more expensive amplifiers. Digital pre-distortion means that when the communication signal is still in digital form, digital signal processing is performed before analog conversion. The digital signal processing test distorts the digital communication signal in an accurate manner so that the result of the communication signal can be as accurate as possible after adding the error of the linear amplifier and other analog processing. The non-linearity of the amplifier is corrected by digital pre-distortion, so that lower power and cheaper amplifiers can be used. The amplifier can also be more efficient and reduce the low frequency spectrum regeneration. Moreover, since digital predistortion is performed through digital signal processing, it can perform any premiss function with great accuracy at a reasonable price. 7 200541280 [0012] Although the previous predistortion technology has been somewhat successful, the results are limited, and the recent legal requirements are more stringent, resulting in insufficient traditional predistortion technology. [0013] The predistortion technology needs to know the way in which the analog part distorts the communication signal in order to make an appropriate anti-predistortion transfer function and accurately compensate the distortion produced by the analog part. The more accurately the traditional pre-distortion technology uses the feedback from the output of the power amplifier to obtain real-time information, the more accurately it reflects the actual analog parts and operating conditions. [0014] Traditionally, in order to monitor this feedback signal, a large amount of processing needs to be performed to obtain a #distortion conversion function. Then, the inverse distortion conversion function is calculated and converted into a program, and a digital predistorter is placed. In many traditional applications, the transmitter needs to transmit a preset series of training data to reduce complexity and improve the accuracy of the large amount of processing required to derive the distortion transfer function. The traditional predistortion technology with less accuracy or narrow frequency may at most only construct a _digital predistorter as a simple communication signal filter H to perform the inverse conversion function. But in many more accurate and often more expensive traditional systems, the digital predistorter itself includes one or more wire detectors. This table is used to define the predistortion program, so that the digital predistorter can Add to communication signal •. _] U-stage application of technology to compensate for memory effects is more complicated and more expensive. In general, the memory effect refers to the behavior of a power amplifier in one environment that is different from another environment. For example, the gain of a power amplifier and its conversion characteristics may vary as a function of video rate, power amplifier bias condition, temperature, and part aging. In order to solve the memory effect, pre-missing in and out of order includes multiple recording silk and Xu? Dealing with soft inverse transformation memory functions combined with inverse conversion functions and changing the predistortion instructions accordingly becomes more complicated. 200541280 [0016] A wide range of traditional pre-distortion techniques suffer from a variety of problems. The use of training sequences is particularly undesirable because it requires the use of frequency spectrum for control, not for load purposes, and this usually increases complexity. Generally speaking, in the path of the feedback signal and in the design of the predistorter, the complexity of the processing is increased to improve the accuracy, but a large increase in complexity often only improves a little accuracy. The increase in the processing complexity of the feedback signal is not desirable because it will result in increased transmitter costs and power consumption. Following the traditional digital pre-distortion technology, the cost of digital pre-distortion quickly reaches or even exceeds the cost of using a higher power amplifier operating at a higher backoff to achieve essentially the same result. Therefore, digital pre-missing has traditionally been more practical in high-end applications, and even then, it can only be of limited effectiveness. [0017] More precisely, the use of conventional techniques for processing feedback signals suffers from particularly annoying problems. Traditionally, an inverse operation is used to form an inverse conversion function for the digital predistorter program. Although the inverse operation itself may be somewhat complicated and more serious, it is sensitive to small errors in the feedback signal. Even small errors through an inverse operation can cause very inaccurate results for the inverse conversion function. Φ [0018] Using the traditional predistortion technology, the feedback signal should be captured very accurately to accurately calculate the inverse conversion function. Using traditional predistortion technology, this requires a high-precision analog / digital conversion circuit (A / D) 'to capture the feedback signal, and then connect to a high-resolution, low-error digital circuit to process the feedback signal. What's more troublesome is that the feedback signal usually exhibits an expanded bandwidth due to the non-linearity of the power amplifier due to the spectrum regeneration. To accurately capture the extended bandwidth of the feedback signal using traditional techniques, the A / D should also be composed of high-speed circuits. However, such high-speed and high-resolution A / Ds are often expensive and high-power parts. They will negate the power savings of any power amplifier with digital pre-distortion, except for the highest-order applications. [0019] In order to avoid the use of high speed and high resolution, some traditional predistortion techniques continue to use gods that only process parts outside the width of the feedback signal. However, the power outside of the feedback signal bandwidth only indirectly explains the distortion of the analog parts, which increases the error and reduces the accuracy again in the inverse conversion function. [0020] Even when the traditional design uses a high-speed, high-resolution dove capture feedback signal, it is still unable to control other error sources, so that the inverse conversion function may cause considerable φ inaccuracy after the inverse operation. ^ The phase jitter of the clock increases the error, as it would happen before any analog processing before A / D conversion. Moreover, the traditional habit requires digital communication signals with complex signals of in-phase and quadrature parts, and the feedback signals of this part before A / D conversion are traditionally processed separately. The quadrature imbalance introduced by any feedback 彳 § number will cause further errors, and after the inverse operation, it will cause significant errors in an inverse conversion function. [0021] The linear distortion of communication signals introduced by analog parts is believed to be another source of error that plagues traditional digital predistortion techniques. Linear distortion refers to the error of the signal, which is reproduced or introduced by the power amplifier and falls within the bandwidth. Examples of linear distortion include the imbalance of quadrature gain, phase, and group delay. In addition, when the frequency of the communication signal becomes wider, the frequency-dependent gain and phase change impose greater linear distortion effects. More examples of linear distortion include certain types of signal image and intermodulation. Linear distortion is often considered a more benevolent error than non-linear distortion because it does not cause spectral regeneration. In general, the receiver has compensated linear distortion after transmitting the channel, and at the front end of the receiver, further linear distortion has been added to the analog parts, but in at least one example, the communication system has been combined into a receiver to determine some linear distortion Correct the partner, then send the 200541280 shooter for some corrective actions. [0022] The linear distortion of a linear transmission communication signal needs to be reduced because it will reduce the amount of linear distortion that the receiver must compensate for and improve performance. Moreover, as the bandwidth of the communication signal becomes larger, it is more necessary to reduce linear distortion. However, the improvement method used by a receiver to set the transmitter should not work because it cannot separate channel-induced distortion from the transmitter-induced distortion. Because multiple paths often impose dynamic effects on the transmitted RF communication signals, this method is often unsuccessful. In addition, it wastes spectrum of emission control data, not load data, and it requires many receivers to achieve compatibility. [0023] Traditional transmitters are not only unable to solve the linear distortion problem, they are also believed to cause further errors when characterizing non-linear transfer functions. Most algorithms that convert raw data to a transfer function are based on a model of the amplifier that is reasonably accurate under control conditions, but using this model to derive the transfer function using a linear distortion number, especially over a wider bandwidth, may violate Control status. Therefore, the conversion function derived here is believed to be relatively inaccurate, and any inverse conversion function calculated for the digital predistorter may be very inaccurate because of this. [0024] In some digital communication applications (such as mobile phone base stations), a broadband communication signal is composed of several independent narrowband signals' to form a broadband communication signal by frequency multiplexing. This situation poses a challenge to the predistortion circuit. In this application of multiple narrowband signals, some narrowband signals will show weaker than other signals. In general, communication system specifications insist that all transmission channels must meet a minimum vector size (EVM) or signal-to-noise ratio. Claim. Therefore, there is a need to use predistortion and other transmission processing that meet the requirements of this weak and strong channel at the same time. [Summary of the Invention] 11 200541280 [0025] At least one embodiment of the present invention can provide an improved transmit predistortion circuit and method. [0026] In another embodiment of the present invention, a quantization error compensator may be provided to compensate for the quantization error caused by the analog digital conversion circuit (A / D) in the feedback signal generated by the analog transmitter component. [0027] Another embodiment of the present invention may provide a procedure for compensating the distortion of the feedback signal path before using the feedback signal path to cancel the distortion generated by the analog transmitter parts. [0028] The present invention also provides at least one other embodiment, which can provide a method of responding to the relative strength of the frequency multiplex communication channel to offset the distortion generated by the analog transmitter parts. [0029] These and other benefits are realized in the form of a method of compensating for distortions generated by analog transmitter parts. This method requires obtaining a forward data stream that is configured to transmit multiple frequency division communication channels. The previous data stream is processed through the analog transmitter parts. After the forward data stream is affected by the analog transmitter parts, it responds with the return data stream. Each communication channel responds to the forward data stream with its communication signal strength, and each communication channel responds to the forward data stream with its error signal. The distortion generated by the analog transmitter parts is offset by the response of the aforementioned communication channel to the strength of the communication signal and the strength of the error signal. [0030] These and other benefits are realized in the form of another predistortion circuit that compensates for distortions produced by analog transmitter parts. The predistortion circuit includes an adaptive equalizer configured to receive a forward data stream and generate a processed forward data stream. A digital / analog converter (d / a) is coupled to the adaptive equalizer and is configured to convert the processed forward data stream into a forward analog signal for transmission through an analog transmitter part. An analog / digital converter (A / D) receives an analog signal returned from the 12 200541280 analog transmitter part. The returned analog signal responds to the forward analog signal, and the A / D is set to generate a returned original digital data stream. An a / D compensation section is used to receive the forward data stream. This A / D compensation section is set to compensate the error generated by the A / D into the original digital data stream and returns a return data stream. A control circuit is coupled to the adaptive equalizer, and the control circuit is configured to change the processed forward data stream in response to the returned data stream. [Embodiment] [0031] FIG. 1 shows a block diagram of a digital communication radio frequency (Rp) transmitter 100, which is configured according to the present invention. The transmitter 10 () is a transmitter that can be used in a mobile phone or a mobile base station, but the transmitter 100 can also be used in other applications. [0032] The transmitter 100 provides a plurality of digital information streams 102 to correspond to the plurality of digital modulators 104. In the application of the mobile base station, the information stream 102 may transmit the information to be transmitted to multiple users, and the different information streams 102 may be related to others or may not be related at all. [0033] The modulator 104 may perform any kind of digital modulation, but the advantages of the present invention can be realized from the form of the modulation. The amplitude and phase angle of this modulation are used to digitally convey information This modulation typically requires the use of linear high-power amplifiers (HPA, S). Examples of such modulation include any quadrature amplitude modulation (QAM), code division multiple acquisition (CDMA), orthogonal frequency division modulation (OFDM), multiple input multiple output (MIM0) systems, and so on. In the preferred embodiment, the modulation information output from the modulator 104 uses a complex information flow to digitally convey the message. Those familiar with this technology will understand that a complex information stream consists of two parallel streams. Figure 丨 uses the traditional name to plot one of the streams as an in-phase ① stream, and the other as a quadrature (Q) stream, reflecting the orthogonal relationship between the two streams when they are processed and merged downward. Although not indicated here, the modulation 13 200541280 may include a pulse-forming filter configured to be intersymbol-interference (ISI) known to those skilled in the art 'to minimize it, and after modulation Other forms of signal processing. [0034] In one of the preferred embodiments, the modulator 104 is coupled to the merging part 106, and multiple complex modulated information streams are combined into a single digital communication signal, which is referred to herein as the complex Forward Information Flow 108. For ease of explanation here, the complex forward information flow 108 and all subsequent variations of the downstream processing between the merged portion 106 and an antenna are used for transmission processing. Hereinafter, the forward information flow is collectively referred to as the following discussion. The difference is the return flow of information traveling in the opposite direction. Even if the information stream 102 is a narrow-band information stream, the combined complex forward information stream 108 can also be regarded as a wide-band information stream. One of the consequences of merging different modulation information streams is that the peak-to-average ratio of the complex forward information stream 108 will increase, so that the downstream must cope with higher linear amplification. [0035] One of the outputs of the merged portion 106 is coupled to the peak reduction portion 110, and the peak reduction portion 110 reduces the peak-to-average ratio of the forward information flow 108 so that the complex peak of the result reduces the forward information flow 112 It will make the downstream only need to deal with smaller linear amplification. In the preferred embodiment, the peak reduction section 110 uses a peak reduction or peak reduction technique that only produces distortion in the frequency band of the forward information stream 108. Therefore, where the complex peak reduces the forward information flow 112 or other application peak reduction results, there will be no significant spectrum regeneration. [0036] In addition, the peak reduction part 110 needs to use the peak reduction under control so as to respond to the peak reduction feedback signal 114. In particular, the feedback signal U4 may provide a residual non-linear EVM value that can be converted by the peak reduction portion 110 into a critical value, which indicates the minimum amplitude that the forward information flow 108 needs to display before any peak reduction is used. Generally speaking, when the size of the forward information stream 108 exceeds this threshold a lot, a large amount of peak reduction will be applied to 200541280 on the forward information stream 108. The increase in peak reduction may be achieved by reducing the size of the threshold. The peak reduction is applied to the forward information flow 108. This will add greater internal bandwidth distortion and enter the peak to reduce the forward information flow. The effect of 112. Techniques suitable for peak reduction are described in U.S. Patent Nos. 6,104,761 and 6,366,619, both of which are incorporated herein by reference, but techniques not described herein may be used. [0037] In a preferred embodiment, the feedback signal 114 represents the amount of residual non-linear distortion transmitted from the transmitter 100 to the radio frequency communication signal 116. The development of the feedback signal 114 is discussed below. In one of the preferred embodiments, the peak reduction portion 11 is operated so that when the amount of non-linear distortion exceeds the peak reduction amount added to the forward information flow 108 is in accordance with a preset value Will increase. The design requirement of the transmitter 100 is that under normal steady-state operation, the amount of non-linear distortion of the RF communication signal 116 will not be too large, and the entire error vector size (EVM) is slightly smaller than the maximum allowed by the system specifications. However, abnormal operating conditions may cause excessive non-linear distortion, and as a result, spectrum regeneration exceeding the regulations and EVM specifications may result. [0038] Therefore, the feedback signal 114 has the ability to control the amount of distortion of the radio frequency communication signal 116, so that most of the distortion is not within the bandwidth and a few is not outside the bandwidth. The feedback signal 114 allows the peak reduction portion 110 to increase the peak reduction, and then causes the HPA 136 to operate with a larger backoff. Operating the PPA 136 with a larger setback has the effect of reducing nonlinear distortion and radiation outside the bandwidth. However, increasing the peak reduction will also increase the distortion in the bandwidth. Therefore, the total distortion can be maintained at a predetermined value, but its characteristics will shift from outside the bandwidth to within the bandwidth. [0039] If there is a peak reduction portion 110, it can be used as the source of the previous information flow 12 of the linear and non-linear predistortion circuit 200. The predistortion circuit 20 uses a number of characteristics to deliberately generate linear and non-linear distortion into the forward information stream 11: 2 through the number 15 200541280 bit signal method. These multiple features are discussed below. The feedback signal 114 is generated by the predistortion circuit 200, and after the predistortion circuit 2000 processes it, the 'forward information stream 112 becomes a complex orthogonal balanced equalized forward information stream 118. For the broadband signals represented by forward streams 108 and 112, forward stream 118 now represents an ultra-wideband signal. The forward manager 118 not only conveys the wide ship signal reduction, but also the anti-inversion distortion generated by the predistortion circuit, and this predistortion circuit 200ffl compensates for the nonlinear distortion generated by the analog part 12 in the future. [00401 In the embodiment, a selectable peak reduction control signal 114 can be provided to the predistortion circuit from the peak reduction portion m. The peak reduction system signal 114 represents the amount of noise in the forward information stream 112 added by operating the peak reduction portion 110 through estimation, measurement, or calculation. In the presently preferred embodiment, the value reduction control signal 114 is used to convey short-term average noise, and this short-term average noise is added to the complex information stream output from the modulator 104 as described above for each independent modulation, # The amount of waves determined by the low-pass wave energy at the same time. The use of the peak decrement signal 114 'is discussed below with FIG. 29. [0041] The analog part 12 includes a digital / analog converter (D / A) 122 for each point of the complex forward information flow 118. The frame 122 converts the forward information stream 118 from digital to analog signals, and the subsequent bidirectional communication > fs number processing is analog processing, and is affected by the characteristics of the analog processing and is erroneous. For example, two different D / A 122s may not have the same gain, and they may produce slightly different delays. The difference between this gain and the delay may cause linear distortion of the communication signal. Furthermore, as long as complex signals are not separated, pulses and parts are separated, Zwei may add different frequency responses, making the linear distortion worse due to the increase in frequency phase gain and delay imbalance 200541280. And 'the frequency-dependent gain and delay imbalance worsens because the communication signal bandwidth becomes wider. [0042] The two complex signals of the analog signal pass through the two low-pass filters (LpF, s) of D / A 122. 124 «LPF's 124 can be a slightly different linear distortion with slightly different gain and delay shifts in addition to slightly different frequency dependent characteristics. From LPF, S 124, the complex signal of these two analog signals leads to a direct orthogonal up-conversion section 126. The up-conversion part 126 mixes these two complex signals with a seismic signal, and obtains it from a 12g seismic signal in a manner familiar to the person skilled in the art. Another linear distortion in the manner of gain and delay imbalance can also be generated, and the leakage of this earthquake can produce unwanted DC displacement. In addition, the up-conversion section 126 combines two different complex signals and passes the combined signal, which is now called a radio frequency analog signal 13 and reaches a band-pass filter (BPF) 132. For cost reasons, the 126 part is preferably up-converted, at least up to a frequency below about 2.5 GHz. For higher frequencies, multi-stage upscaling can be used. [0043] BPF 132 is in the radio frequency analog signal, now called analog signal 130, which is configured to block unwanted sidebands, but also in communication signals, which are now called radio frequency analog signals 134, 41 and generate a phase angle. Delay. The radio frequency analog signal 134 drives a power amplifier 136, which is also traditionally referred to as a high power amplifier (HPA). The HPA 136 is coupled to the antenna 138 and generates an amplified radio frequency analog signal, referred to above as the radio frequency communication signal 116. [0044] HPA 136 may be the source of several linear and nonlinear distortions in the communication signal. Figure 1 is HPA 136 using the Wiener-Hammerstein RF amplifier model. It can be used to explain some of these distortions, at least ideally. Control status of the signal. according to

Wiener-Hammerstein ΗΡΑ 模型,ΗΡΑ 136 像是一輸入帶通濾波器(BPF) 17 200541280 140,後接無記憶的非線性,而在圖1中標籤為amp 142,再接上輸出帶通 濾波器(BPF) 144。Amp 142產生一輸出信號,可能是一輸入的較高階之複 多項式函數。各個BPF’s 140與144可能產生線性失真,但可能是很小的 非線性失真。另一方面,amp 142是一個非線性失真的來源。 [0045】在較佳的實施例中,線性與非線性預失真電路200接收至少三 或四個類比輸入信號。其中之一是本地震盪信號,由上升頻率部份126用 做上升頻率;另一則是可選擇的反饋信號,從D/A,s 122之複信號的至少一 或二段輸出,此輸出在圖1標示為基頻(BB)信號123 ;其他類比輸入信 號為從射頻類比信號134得出之反饋信號,用做ΗΡΑ 136之輸入信號,與 通過一直接耦合元件115之射頻通訊信號116,用做從ΗΡΑ 136之輸出信 號〇 【0046】透過監控此反饋信號,線性與非線性預失真電路200學習如何 應用預失真,以減少線性,然後非線性失真。雖然已有數種不同的失真來 源,引起失真的類比零件之實際屬性改變很慢,這允許電路200執行預估 而收斂之程式,以決定適合的預失真特性,並且在此程式允許緩慢的收斂 速度。預估而收斂程式之使用減少了處理之複雜性,也減少了反饋信號對 誤差的敏感。再者,緩慢收斂速度之使用,允許電路200減少反饋信號之 實際誤差’而可獲得精確的預失真特性。既然反饋信號之誤差可以容忍, 則反饋信號可以使用低解析之電路處理,因此達到減少電路零件與節省電 力之目的。 【0047]圖2顯示線性與非線性預失真電路200之第一個實施例的方塊 200541280 圖’第一個貫施例’稱做線性與非線性預失真電路18〇〇,與圖18連結而 在以下討論;而第三個實施例,稱做線性與非線性預失真電路2800,與圖 28連⑽而在以下讨論。配置成傳達數位資訊的複前向資訊流u],加於電 路200之輸入埠202。與下面討論的回返資訊流做比較,前向資訊流U2 顯不較高的解析度,如圖2以字母“H,,所指示者。熟悉此技術者會了解此 解析度的決定’至少其中的部份,是由各前向資訊流112之取樣的位元數 表不者。更南解析度的資訊流,通常使用比低解析度資訊流更多位元之取 # 樣而傳輸。同樣的,前向資訊流112顯示從量化雜訊、相角誤差等等,相 對較低的誤差程度。如上述之討論,任何以前向資訊流112為基本,流向 類比零件120之信號也被認為是前向資訊流的一種形式。由於前向資訊流 112流過預失真電路2〇〇,它可以保有高解析度、低誤差準位的特性。 【0048】在較佳的實施例中,前向資訊流112連接至速率加倍器2〇4。 於此較佳的實施例中,前向資訊流112只傳達基頻數位通訊信號,並且需 要以支援Nyquist條件的資訊速率流動。但是,在一較佳的實施例中,後 ® 續前向資訊流112的處理會產生更高頻的成分,以補償非線性失真。因此, 速率加倍器204為即將產生的最高頻而上調資訊速率,達到至少等於而且 最好大於Nyquist條件。至此,前向資訊流ι12可以當做一超寬頻資訊流, 速率加倍器204可以由熟悉此法的人,使用内插法的方式執行;或者,如 果要將非線性補償省略,則速率加倍器204可以跟著省略。 【0049】前向資訊流從加倍器204輸出而交給一高通溏波器(HpF) 2〇5,配置成只過濾直流成分。高通濾波器205最好有與加入回返資訊流之 200541280 另一高通濾波器相同的濾波特性,如下所討論者。高通濾波器205也可以 位於速率加倍器204之前,如下圖所繪,並與圖18與圖25關聯,或位於 其他相等位置。 【0050】一速率提升複前向資訊流2〇6從高通濾波器205流向時延部份 208、基本功能產生部份16〇〇、以及一熱改變評估部份17〇〇。基本功能產 生部份1600用來與非線性補償連結,如果將非線性補償省略,則基本功能 產生部份亦可以省略。基本功能產生部份16〇〇產生多個複基本功能資訊流 ® 214,而各複基本功能資訊流214對χ(η)·|Χ(η)|κ而反應,其中χ(η)代表16〇〇 部份接收的前向資訊流,而Κ是大於或等於一的整數。因此,16〇〇部份從 前向資訊流206產生多個較高次諧波。一複基本功能資訊流214,提供最高 次基本功能資訊流214 (亦即,有最大之κ值),資訊流214,接至一多工器 (MUX)222之輸入端。基本功能產生部份16⑻將與圖15以及圖16在以下 詳加討論。 【0051】同樣的,熱改變評估部份17〇〇用來與非線性補償連結,如果將 ® 非線性補償省略’則熱改變評估部份亦可以省略。一般而言,熱交換評估 部份1700產生-熱差信號(Δ_Η_ 216,用以說明前向資訊流2〇6中的相 對功率’以將ΗΡΑ 136相對於長期平均熱而累積的瞬間改變特性化。熱差 信號216接著用來影響基本功能資訊流214,以補償一典型ήρα 136之熱 §己憶效應。熱改變評估部份17〇〇將在以下與圖15以及圖17更詳盡討論。 [0052]在較佳的實施例中,所有基本功能資訊流214於基本功能產生 部份1600顯tf相等的時延。因此,從時延部份2〇8輸出的一複前向 資訊流 20 200541280 218在各基本功能資訊流214有相同的時脈,包括最高次基本功能資訊流 214’。從時延部份208輸出的複前向資訊流218,接至一合併電路22〇與一 夕工器222之第二個輸入。合併電路220緣於圖2之複減電路,複信號路 徑之各段有一相減元件,而複前向資訊流218接至相減元件之正輸入端。 [0053】所有複基本功能資訊流214均接至一非線性預失真器224,而 如果將非線性補償從發射機1〇〇省略,則複基本功能資訊流亦可以省略。 非線性預失真器224包括多個等化器(EQ) 226,而一等化器226提供給各 • 複基本功能資訊流214。圖2標示等化器226與一二次基本功能、一三次 基本功能等等、至(κ+1)次基本功能之關係。各等化器226為一複等化器, 如圖12顯示之等化器1200,而且各等化器226之輸出與等化器12〇〇合併 而形成複過濾基本功能資訊流230。資訊流230,用做一非線性預失真補償 流,接至合併電路220之相減輸入。 【0054】為了本說明的目的,如任何等化器226之一等化器,均為可程 式。濾波器以指定其係數之方法,而決定它如何改變其處理之信號。在較 _ 佳的實施例中,擬使用多種複雜度之渡波器。各等化器226可以有-個接 點或任何大於它的數目。適應性等化器是配置來決定其自身之濾波係數, 並持續改變其係數的等傾,_辆性等化綠接受濾波絲但不做係 數改變直至下一次的燒錄為止的等化器。但是,如以下之討論,在某些地 方熱差信號216可能會導致非適應性等化器濾波係數的改變。 [0055】在較佳的實施例中,其等化器226係非適應性等化器。但當耦 接至-適應引擎1300時,等化器226與非適應性等化器的合併會形成一適 21 200541280 紐等化器。各等化器226、包含在線性與非線性預失真電路·的其他 等化器、與適應引擎1300均屬於-等化器部份。在較佳的實施例中, 適應引擎1300隨時選擇性地與位於等化器部份234之多個等化器耦人或退 耦合,以透過執行一預估並收斂程式而決定濾波器係數。圖2繪出此透過 非線性預失真器224與在適應引擎酬内之236特性的選擇性麵合或退輕 合’熱差信號216是接至適應引擎1300 _入之一,而且熱差信號216也 是非線性預失真器224的輸入之-。等化器226、適應引擎13⑽與執行 之預估並收斂程式,隨即於下詳細討論,如圖U_13。 【0056】合併電路220之輸出,提供-複非線性預失真前向資訊流现。 在本發明之實施例中,前向資訊流238驅動一差模時間定位部份的卜如 果線性補償從發射器100中省略,則時間定位部份8〇〇亦可以省略。時間 定位部份800在前向資訊流238之!與Q複頻段中,加入不同量的時延, 以補償-反向的差時時延’此差時時延可缺透過類比零件12〇而產生 的。時間定位部份800在以下有詳盡的討論,如圖5與8。 【0057卜時間定位部份8〇〇之輸出,產生一複差時定位前向資訊流 242 ,以驅動一線性預失真器244。另一方面,時間定位部份8⑻如果需要 可月b位於線性預失真器244之後,而不是如圖2所示之在前面。並且,如 果線性補償從發射器1〇〇中省略,則預失真器244亦可能省略。 【0058】線性預失真器244於前向資訊流242做數種調整,例如,線性 預失真器244執行正交平衡調整部份。因此,線性預失真器244對複前向 資訊流242之I與Q複頻段產生增益與相角調整,並對複前向資訊流2幻 22 200541280 之I與Q頻段獨立做調整,以便正交平衡可以進行。另外,線性預失真器 244補償依鮮而變的正交增益與㈣不平衡,因此,即使寬頻與上述討 論之超寬頻通訊信號,透過線性預失真器244是正交平衡的。 [0059】在較佳的實施例中,線性預失真器244使用一複等化器以 實現之,而此等化器可配置成等化器12〇〇,但很可能會有較多的接點。如 果接點數夠多,則差模時間定位部份8〇〇可以整個省略。等化器2邾標示 為EQF,其中下標“F”代表等化器246將過遽前向資訊。如以上等化器挪 # 之討論,等化器246用做等化器部份234之一部份。並且,等化器246需 要是非適應性等化器,以便當透過236特性耦合至適應引擎13〇〇時會變 成適應性等化器。適當的選擇前向據波絲(亦即前向等化器eQf之渡波 係數)給等化器246,則線性預失真器244可補伽比零件12〇產生的預 失真。前向濾波係數透過-訓練過程而決定者,以下會討論,如圖卜叫心 與19等。當訓練過後,前向濾波魏除可更正隨頻率而便之相角與增益不 平衡和I與Q段之失真以外,尚可做為正交平衡係數或參數。 春丨GG6G】線性預失真器244產生複正交平衡等化前向資訊流丨18,而交 給類比零件i20。前向資訊流118必須維持高解析度、低誤差準位之特性, 以做為上游資訊。它已在在較佳的實施例中先失真,以補償由類比零件12〇 尚未加入通訊信號之非線性與線性失真。再者,它必須提雜支援上述討 論,包括基頻信號加上較高諧波之超頻寬,但其他之實關可能仍會從僅 補償線性失真或僅補償非線性失真而獲益。 【0061】參考圖i,其中從類比零件12〇之反饋透過反饋信號m與134 23 200541280 獲得。反饋信號117從ΗΡΑ 136輸出之射頻類比信號獲得,而反饋信號134 則是從輸入ΗΡΑ 136之射頻類比信號獲得。回到圖2,反饋信號117與134 送至在一多工器250之線性與非線性預失真電路2〇〇的反饋部份248。反 饋部份248亦包括一數位降頻部份3〇〇,此用來接收從多工器25〇之輸出。 降頻部份300亦顯著地從本地震盪128接收同樣的本地震盪信號,此信號 由升頻部份126使用。降頻部份3〇〇先將反饋信號134降頻,供訓練線性 與非線性預失真電路200使用,以補償輸入ΗΡΑ 136之信號產生的線性失 _ 真之多種型態。然後,降頻部份300將反饋信號117降頻,以供訓練線性 與非線性預失真電路200使用,以補償ΗΡΑ 136輸出之信號產生的線性失 真之多種型態。降頻部份300將在以下進一步討論,如圖3所示。 [0062]降頻部份300產生一複回返資訊流254。如圖2之字母“L”所 示’回返資訊流254顯示一相較於前向資訊流之多個形式為低之解析度與 高誤差度。為了此處之討論方便,所有從類比零件120流出與以回返資訊 流254為基礎之資訊流均當成回返資訊流之一種形式。 ® 【0063]複回返資訊流254驅動一可調整之衰減電路256。可調整之衰 減電路256必須做為一微調或游標,可控制或決定如何衰減回返資訊流 254,以補償ΗΡΑ 136加入前向傳播通訊信號之增益,與偶合器115提供的 衰減。可調整之衰減器256可以用一複多工器實現。 【0064】可調整之衰減器256產生一衰減複反向資訊流258,至一複等 化器260,此可配置成如等化器12〇〇,但最有可能會有較多接點。圖2於 等化器260加上標藏EQR,而下標“R”代表等化器260過濾回返資訊流。如 24 200541280 以上等化器226與246之討論,等化器260做為等化器部份234之一部份, 並且等化器260必須是-非適應性等化器,當其透過236特性而麵接至適 應引擎1300 _,則變成-適應性等化器。適當的調整進入等化器26〇之回 返濾波係數(亦即回返等化器EQR之濾波係數),主要由ΗΡΑ 136本身產 生之線性失真會被補償’而此ΗΡΑ 136本身產生之線性失真的形式不會污 染後續發生用來補償非線性失真的訓練。回返濾波係數透過—訓練過程決 定,以下將會討論,如圖1Μ4。 # 【_5】冑化11 260產生—等化複回返資訊流262,以維持如上述討論 之相對低之解析度與高誤差度。使用低解析度處理回返資訊流可以導致節 省功率與零件。 【0066】多工器222之一輸出用來驅動一共模時間定位部份7〇〇。時間 定位部份700依其是否為多工器222選擇,而在前向資訊流218或最高次 基本函數資訊流214’之I與Q複頻段加入同量的時延。並且,時間定位部 份700插入之時延數量可以調整。時間定位部份7〇〇產生一時延複前向資 • 訊流266,而且時間定位部份700可程控,以便訊流266之時間定位能夠 與回返資訊流262 —致。時間定位部份700將在以下做更詳盡的討論,如 圖5-7所示。 [0067】時延複前向資訊流266接至一相轉部份1〇〇〇與一個多工器 (MUX)270之第一個資料輸入。相轉部份1000將時延複前向資訊流2恥旋 轉一可變之量,並產生一定位複前向資訊流272。相轉部份1〇〇〇為可程抑, 以便資訊流272能與回返資訊流262之相位一致,以補償類比零件12〇之 25 200541280 濾波器132、140、與/或144帶來之時延。相轉部份將在以下做更詳盡的 討論,如圖5與9-10所示。 [0068】定位複前向資訊流272接至適應引擎丨300與多工器27〇之第二 個資料輸入,而且,定位複前向資訊流272與等化複回返資訊流262接至 一複合併電路274,於圖2緣成兩個減法元件。合併電路274於前向資訊 流272減去回返資訊流262,而成為一誤差信號或誤差訊流276。等化回返 資訊流262與誤差訊流276均接至一多工器(mux)278 ,而熱差信號216亦 同。並且,誤差訊流276接至多工器270之第三資訊輸入端與適應引擎 1300,而一由適應引擎13〇〇產生之差係數(△•coeff)信號279則接至多工 器270之第四資訊輸入端。 [0069〗多工器270與278之輸出各接至一關聯引擎280,特別是,從 多工器270與278之輸出供應至一複乘法器282之不同資訊輸入端,且複 乘法器282之一輸出端耦接至一累加器284之一輸入端。透過多工器27〇 與278,多個不同之資訊流可以在關聯引擎280巾互相關聯。乘法器282 執行-基本關聯運算,且關聯結果在累加器284中整合。關聯引擎28〇執 行的關聯之一資訊流是根據回返資訊流,並如上述顯示低解析與高誤差位 階。 [0070】在較佳的實施例中,累加器284必須允許大量的累積(例如介 於216與224之間的樣本),以便能在根據關聯結果做出決定之前,處理數倍 的樣本。a樣’回返資訊流之低解析與高誤差位階可以忽略,以便在整合 之後的結果’能有-較小的有效誤差位階。—般而言,只要雜訊或多或少 26 200541280 無關聯,則取樣信號之雜訊變異數依平均取樣數的平方根之增加而減,ι、 因此,例如回返資訊流之有效誤差位階的減少,相當於細誤 差位階累積超過以者約1〇6之樣本增加10位元之解析度(亦即,約為 60 dB) 〇 网圖2緣有控制器286與數個輸入和輸出雖然在圖2的簡化方 塊圖未顯示’各些輸入和輸出麵接至線性與非線性預失真電路2⑽之多個 子部份,以提供控制資料至此,並從此讀取資料。例如,控制器挪控制 多工器278與270 ’以指定在關聯引擎28〇中,哪一個資訊流或信號必須 關聯在-起,並且從關聯引擎28〇之累加器284的—輸出接至控制器挪。 熟悉此技術的人可能使用任何傳統微處理器或難提而提供給控制器 286 ’因此,控制器286可以執行儲存在記憶體部份(未顯示出)之電滕軟 體命令。在-實施例中,控制器286可能提供控制功能给線性與非線性預 失真電路200與發射機1〇〇之其他部份。控制器286與線性與非線性預失 真電路200因控制器286之控制影響而執行之工作,將於圖4-6、9、η與 14-15中進一步討論。 【0072】圖3顯示一數位降頻部份300之方塊圖,適於用在發射機100 之線性與非線性預失真電路200。 [0073】300部份從多工器250接收一射頻類比輸入,並將此輸入接至 一可程式類比衰減器302。衰減器302之控制輸入,決定衰減器302提供 的衰減量,並由控制器(C)286提供。衰減器302必須做為與可調整之數位 衰減器256聯合操作之粗略調整,以衰減回返資訊流254之信號準位,來 27 200541280 補償加人ΗΡΑ m之前向傳播通訊信號的增益與麵合器提供的衰減。 [0074】衰減器302之一個輸出耦接至一類比/數位轉換器(α/〇)3〇4之 一輸入,另外,升頻部份126使用的相同本地震盪器,用來輸入3⑻部 份,並在合成器306接收。合成器306必須配置成本地震盪器頻率乘以四, 並將乘積結果除以-奇數,如2N±1之形式,其中N是滿足上述超寬頻信 號之Nyquist條件之一正整數,且通常大於或等於十。結果,_3〇4透過 次諧波取樣而執行一直接降頻轉換。 【0075】在一實施例中,300部份可能包含一平均功率計算器(未顯 示),此平均功率計算器會回應回返資訊流254。平均功率必須保持在一定 的位階,因此,類比衰減器302可以調整至最佳A/D 304負載,以回應平 均功率,並且可調整之數位衰減器256接著可以調整至接近等於類比衰減 器302加諸的相互增益。這樣可以維持整體增益在一常數。 【0076】 A/D 304執行的直接次諧波取樣降頻轉換過程,要求a/d 3〇4 能夠做咼速轉換。另外,次譜波取樣過程趨向於將熱雜訊從數個基頻諧波 加總至最終的基頻信號,因而相對於其他種類的降頻轉換增加了雜訊。雖 然這些因素在許多應用是個問題,但是在300部份不算太大的負擔,因為, 如上討論,這裡只需低解析度。再者,A/D 304之低解析度需求,同樣的 對合成器306產生的時脈中的相角-雜訊,或A/D 304特有的光圈誤差,不 會有特別的負擔。由於以下將討論的多個預估並收斂程式的操作,此低解 析度的要求可以被允許。最後之平均效應可以減少雜訊、相角誤差、與/或 光圈誤差。 28 200541280 [0077】特別是,A/D 304只需要提供最多比通過線性與非線性預失真 電路200之前向資訊流112的前向解析度少四位元之解析度即可。在一實 施例中,A/D 304可以以僅提供一或二位元之解析度而實現。如上述之討 論,多種技術,例如預估並收斂程式與整合,可用來將增加的處理時間轉 換成減少回返資訊流之有效誤差程度。因此,由於在根據反饋信號做決定 之前處理樣本之倍增,且沒有一個或甚至小或中型族群之樣本,對根據反 饋信號做決定有顯著的影響,所以低解析度有效地增加了。高度量化誤差 φ 與高熱雜訊誤差對線性與非線性預失真電路200沒有造成明顯的問題。 【0078】在較佳的實施例中,線性與非線性預失真電路2〇〇以一般的半 導體基板1*£供’可能大多以CMOS製程而製造。但是,a/D 304與合成器 306之高速要求可以使用與CMOS製程相當的矽鍺製程提供。 【0079】 A/D 304上游的反饋信號之處理已經由使用類比技術而實現過 了’因此受類比製程之不精確性而影響。但是A/D 304提供一數位資訊流, 並且後續處理不會受類比之不精確而影響。此數位資訊流以複反饋信號為 # 特性’做為I與Q頻段合併之合併信號。後續之處理為將次諧波適當置於 基頻,並將複信號之I與Q頻段分開。雖然這是獨立的對複信號之丨與Q 頻段之後續處理,但這是以數位方式的處理,所以沒有正交不平衡之線性 失真產生,與/或各種頻率的增益與相角特性。 [0080】特別是’來自A/D 304的數位資訊流接至一分工器(DEMUX) 308,用來將資訊流分成偶數與奇數取樣資訊流。這些偶數與奇數取樣資訊 流之一,僅於時延元件310中延遲,而其他則在轉換部份312中轉 29 200541280 換。7G件310與部份312之輸出經由高通濾波器(11?1^) 314濾波以去除直 流成伤’然後整個用做複回返資訊流254。當然,當它們傳播通過3〇〇部 份時’資訊流的速率較慢,而且時脈信號已適當地下除(未顯示)以支援 減少的資訊速率。高通濾波器314則與高通濾波器2〇5相配。 【0081]圖3繪有複數位次諧波取樣降頻器之一個形式,適合做為數位 降頻部份300使用。但那些在設計時被捨棄的可以用作直接數位次取樣降 頻’在此也能接受。雖然降頻是必須的,因為這不會產生不同的類比誤差 # 進入1與Q頻段,而此可導致線性失真,在較高頻率之應用時(例如高於 2.5 GHz)降頻可以分成兩個階段,而第一階段為類比降頻。在此情形下, 第一階段類比降頻產生的失真會比較不明顯,因其用於相當窄的頻寬,僅 為載波頻率的一部份而已。 【0082】圖4顯示發射機失真管理過程4〇〇之第一個實施例。過程4〇〇 與其子過程和其包括的子子過程,由控制器286執行同一行業的人士熟悉 的軟體之控制而進行。過程4〇〇之第二個實施例,在以下討論,並稱做過 # 程1900,如圖19所示。過程400之第三個實施例,在以下討論,並稱做 過程3200,如圖32所示。 【0083]過程400可以在發射機1〇〇開機時,或任何時後發射機1〇〇運作 時啟動。一般而言,類比零件12〇於各種來源之射頻通訊信號116中加入 失真;換句話說,射頻通訊信號116可以當作會顯現多種失真而不是單一 失真。不只線性與非線性失真之間有差異,線性失真也有多個不同的原因。 過程400訓練線性與非線性預失真電路2〇〇以一個一個地補償最糟的失 30 200541280 真,訓練是經由使用預估並收斂程式而進行,以便可以避免複雜處理,而 反饋信號對誤差的敏感可以減少,但是前向轉換函數與反函數之計算可以 避免。 丨0084】過程400首先進行次過程500,以補償加入HpA 136上游之線 性失真。 【0085】圖5顯示次過程500之流程圖,過程500首先進行一初始工作 502。特別是,前向等化器246與反向等化器260均設定濾波係數,使它們 分別只通過而不改變前向與反向資訊流。適應引擎13〇〇與所有的等化器去 耦。可調衰減器256與302調整至增益等於一(亦即無增益也無衰減),而 將選擇控制值提供給多工器250Α,以使射頻類比反饋信號134 (RIM)接 至降頻部份300。基本功能以控制預失真器224產生一定的零姪兒不管輸 入為何。多工器222被控制,以將前向資訊流218接至時間定位部份7〇〇。 關聯引擎(CE) 280以選擇適當值加於多工器278與270,而配置成將“理想” 時延前向資訊流266與回返資訊流262相關聯。時延前向資訊流266可當 成理想的,因為它尚未被預失真電路2〇〇或類比零件120扭曲。時間定位 部份700與800執行時間定位,將其設為中間值,並且熱差信號216之處 理功能被移除。於此時,線性與非線性預失真電路200準備開始訓練線性 補償。 [0086】工作502之後,工作504啟動次處理600,以執行一預估並收 斂程式。特別是,次處理600於工作504中執行此程式,以供給一由共模 時間定位部份700提供之可程式時延元件。因此,次處理6〇〇現在會將時 31 200541280 延複前向資訊流266與複回返資訊流262做時間定位。工作5〇4之後,工 作506再度啟動次處理600或一相當之處理,以再度執行時間定位預估並 收斂程式,但是這次是為由差模時間定位部份8〇〇提供之可程式時延元 件。於工作506時,次處理600將複前向資訊流238之I與Q頻段做時間 定位。 [0087】圖6顯示可以用於502與504各工作,與時間定位部份7〇〇與 800之次處理600的流程圖。在共模工作504中,時間定位部份7〇〇之控 制可調整加諸於時延複前向資訊流266之時延,但是在差模工作5〇6中, 時間定位部份800之控制可調整加諸於時間定位回返資訊流262之〗與Q 頻段之一的相對時延。 【0088】次處理600執行工作602以將關聯引擎(CE) 28〇關聯至“理想” 的時延複前向資訊流266,並於多工器270與278適合的選擇複回返資訊 流 262 〇 [〇〇89】接下來,工作604設定關聯收斂條件。收斂條件決定關聯引擎 280需要多少樣本足夠收斂成一關聯結果,以供關聯與整合。如上述之討 論,處理較多的樣本可導致回返資訊流之有效崎度較大的增加,或誤差 準位之減少。因此,程式處理時間的增加對回返資訊流轉換成一減少的有 效誤差位階。透過工作6〇4,收斂速率受控制以達到_預設的有效回返誤 差位階,而此位階較回返資訊流之誤差位階為小。例子之一是,約可以處 理1〇6之樣本以達到訊雜比60册的改進。當然,次處理6〇〇在不同的情 況不需設定不同的收敛條件,但是關聯引擎280可以對所有狀況使用相同 32 200541280 的條件做硬體設定。於此情況,工作604以關聯引擎28〇執行,而非控制 器 286。 [0090】工作604之後,次處理600進行一詢問工作6〇6,工作6〇6決 定關聯引擎280何時已收斂至一關聯結果。於工作6〇4期間,關聯引擎28〇 處理多個倍數的樣本。透過以預先設定的時延元件,於回返資訊流與時延 刖向^訊流之間進行關聯,而此設定的時延元件之初始值為中間值。 丨⑽91】當關聯結果發生時,初始工作6G8接著做—大梯級正位移的初 • 始預估’贿用—即將來_二元搜尋程式。“大,,梯級指的是即將來臨的 二元搜尋程式演算時間,相對於之前關聯加諸的時延。而“正,,位移指的 是表示即將來臨的演算之時延,會大於之前的一任意值。在工作6〇8之後, 一工作610調整可程控之時間定位硬體(部份7〇〇或部份8〇〇)以反映現 有的梯級大小與位移方向。 【0092]圖7顯示一共模時間定位部份7〇〇之實施例的方塊圖,此實施 例使用一相對簡單的硬體應用而可達到精準的結果,因而有需要使用。但 _ 是雖然時間定位部份700 A 了線性與非線性預失真電路200而提供適合的 結果,同一行業的人士們可以設計其自己的實施例。時間定位部份7⑽包 括一最小時延元件202,可從多工器222接收複資訊流。最小時延元件7〇2, 唯一不可程控的元件,用來加入一整個時脈之時延,約相當於合併電路 200、時間定位部份800、線性預失真器244、類比零件120、反饋部份248、 衰減器256與等化器26〇之合併而加諸的最小時延。一時脈複接點時延線 704由最小時延元件7〇2驅動,而複信號的各段在時延線有相等的 33 200541280 時延。雖然圖7繪的是八接點706,同一行業的人士可以提供任何數目的 接點706。接點706耦接至多工器708的資料輸入點,而多工器之一輸出 接至一複内插裔710之一輸入點。内插器710可以使用一 Farrow或其他架 構,並將複信號之兩端加上相等的時延。内插器710之一輸出提供時延複 前向資訊流266 ’而控制器(〇 286提供控制輸入點給多工器708與内插器 710。一時脈仏號712亦提供給最小時延元件702、時延線704、與内插器 710。時脈712最好與前向與返回資訊流之資料速率同步。 [0093】當工作610用於共模時間定位部份7〇〇(亦即於工作5〇4期間) 之時,時間定位部份700可以經由提供多工器7〇8與内插器71〇適當的控 制輸入而調整。-整個部份714包括時延線704與多工器708,並用來提 供時脈712的整數倍時延,如控制$ 286指定的控制資料。部份716的一 部份包括内插器710並用來提供時脈712-週期的時延。時間定位部份7〇〇 可以利用控制多工器708而達成任意倍數的時延,而控制内插器71〇可以 達到時延的分數。 I _圈8顯示錢時狀位部份8⑻之一實施例之方塊圖而此實 施例因為它使用相對簡單的硬趙設計而可達到精準的結果因而有需要。 但是雖然時間定位部份咖可提供線性與非線性預失真電路200適合的結 果’同-行業的人士可以自行設計其可行之線路。差模時間定位部份咖 在很多方面與共模時間定位部份7〇〇類似’但有一不同的效應如圖㈣ 示,複前向資訊流238的其中一隻聊接至一時脈時延雜’而另-隻腳’ 示於圖8之Q腳’則接至—固定時延元件m。時延元件8(H配置成實現 34 200541280 B夺延元件802之!/2之時延。雖賴8 _是具有人健點之時延線 8〇2 ’同一行業的人士可以設計任何數目的接點。接點搞接至多工 益8〇8之資料輸入點,而多工器有一輸出接至内插器81〇之輸入的一個接 點。内插器810可以使用_ FarrOW或其他架構而實現。内插器81〇之一個 輸出k供複刖向 > 訊流242之I段,而時延元件8〇4之一輸出提供資訊流 242之Q段。控制器(Q 286提供控制輸入給多工器8〇8與内插器81〇,而 一時脈“號812亦提供至時延線8〇2、時延元件8〇4、與内插器81〇。時脈 % 812最好與前向資訊流之資料速率同步。 【0095】當工作610用於差模時間定位部份8⑻時(亦即在工作5〇6 時)’時間定位部份800可以利用提供適合的控制輸入給多工器8〇8與内插 器810的方式,而做調整。一整合部份814包括時延線8〇2與多工器8⑽, 並做為提供時脈812整數倍之時延,如控制器286指定之控制資料。部份 816之一部份包括内插器810並提供時脈812之一分數的。如欲預設時間 定位部份800任何分數之時延,則可以控制多工器8〇8而達成,而分數部 @ 份之時延可以利用控制内插器810而達成。 丨0096】回到圖6,當工作610調整時間定位硬體而根據舊時延與目前 之梯階大小與極性而反映新時延之後,即進行詢問工作612。在工作612 期間,關聯引擎280進行其關聯與集成操作直至達到關聯條件為止。當工 作612確定達到關聯條件條件時,一詢問工作614即決定目前的關聯結果 是否大於從過程600啟動之後的紀錄之最大關聯值。如果目前的關聯結果 未大於之前的關聯,則工作616使梯階之預估的大小與前者相同,但改變 35 200541280 位移的正負值’然後程式控制繼續進行工作618。如果目前的關聯結果未 大於之前的關聯,則一個工作620從前面的梯階大小預估一梯階之大小, 通常是0·5至1.0乘以前一個梯階大小,並且也同樣的預估極性位移,然後, 程式控制繼續工作618。 【0097】工作618決定預估並收斂程式是否已收斂至一共模時延值或差 模時延值,而使如向負訊流與回返資訊流的關聯最大化。收斂可以以監控 目前之梯階大小,並且如果目前之梯階小於内插器71〇或81〇之解析度時, φ 則判斷已達到收斂。當工作618確定時延收斂尚未發生時,則程式控制回 到工作610。在工作610,前一個時延的預估根據目前之梯階大小與位移極 性而改變,然後重複此關聯過程。 【0098】工作618確定時延收斂已發生時,則次處理6〇〇已完成。此時, 時延複前向資訊流266已經與複資訊流262在時間上定位。並且,線性補 償處理500可以繼續執行另一定位處理,而這是較佳的實施例做實際線性 補償的先決條件。 鲁 【0099】回頭參考圖5,在啟動次處理600兩次之後,一次給共模時間 定位而一次給差模時間定位,分別為工作5〇4與5〇6,會進行一次處理9㈧ 以執行一預估並收斂程式,而其定位複前向資訊流272之相角,經過相角 旋轉器1000轉成與時延複前向資訊流266同相。 【0100】圖9顯示次處理900之流程圖,次處理9〇〇包括一工作9〇2用 來控制多工器270 ’以便關聯引擎280可耦合而在“理想的,,定位複前向資 訊流272與複回返資訊流262之間進行關聯運算。然後,工作2〇4取消選 36 200541280 擇CORDIC單元。工作904接至一特定之硬體,以執行在較佳的實施例中 之相角旋轉器1000。 [〇1〇1]圖10顯示相角旋轉器部份1000之一實施例的方塊圖,此實施 例很有用,因為它可以使用一相對簡單的硬體設計達到精準的效果。但是 雖然相角旋轉器1000可提供適合的結果給線性與非線性預失真電路200, 同一行業的人士可以自行設計其變通的實施例。相角旋轉器丨0⑻包括一象 限選擇單元1002,接著是CORDIC單元1004之串聯。圖10只繪出CORDIC 鲁 單元1004中之兩個,標示為1004與1004,,但剩下的單元⑴⑽應該有與 單元1004’相同的架構。任何數目的CORDIC單元1004可以包含進去,而 較佳的實施例有6至16個單元1004。如果包函10個單元1〇〇4,則可以提 供0:112度之精準度。 [0102] 時延複前向資訊流266於象限選擇單元1〇〇2處接收,複資訊流 之各腳在其自身的選擇反轉電路1〇〇6做接收,而圖10則繪的是一乘法器。 選擇反轉電路1006由控制器286獨立的控制成反轉,或讓資訊流不變地通 魯 過。圖丨〇中繪出各單元1002與1004做為鎖存器1〇〇8之終端,控制電路 1006以顯示各種反轉與通過之組合,則可省掉四種可能的象限,而單元 1002可以將流入的資訊流266位移0。、90。、180。、或270〇。 [0103] 在各CORDIC單元1004中,各單元之流入複資訊流的I與Q 腳各別接至位移器1〇1〇。圖1〇繪出位移器1010做為乘法電路,因為位移 器1010以二的次方的倒數執行數學乘法。於第一個Cordic單元1〇〇4, 位移器1010可以省略,因為它們將流入的資料向右位移零位元並執行乘以 37 200541280 一的運算。於第-個C0RDIC單元10〇4,與接下來的單元顯,位移器 w將机入的資料,向右位移比前一個單元增加一位元。因此,圖⑺繪 有位移器1G1G在單元麵,做為乘以Q 5者,㈣三個c〇R〇IC單元_ 則實際上細G·25,以此娜。同-行業的人士可能認為不必使用實際的 零件執行位移器1〇1〇,而只以連線取代之。 【0104】在各CORDIC單元1〇〇4中,位移器1〇1〇之輸出接至一選擇 啟用之電路1G12 ’如圖中實施例之幾個AND閘所示,其中複資訊流之各 腳有一個閘。而各AND閘之其他輸入由控制器286所控制。因此,控制 器286不是使位移器1010之輸出完整的通過,就是加上一個零值。 [0105】在各CORDIC單元1004之I腳中,一減法器1014減掉流入資 訊流之Q腳中的選擇啟用電路1〇12的輸出。在各c〇RDIC單元1〇〇4之q 腳中’一加法器1016將流入資訊流之Q腳加上流入資訊流之I腳中的選擇 啟用電路1012的輸出。從減法器1014與加法器1016,I與q腳透過鎖存 器1008流出CORDIC單元1〇〇4。 【0106】各CORDIC單元1〇〇4以逐步小角度的方式旋轉其流入複資訊 流,如以下之例子所示: 表I 一 10 CORDIC單元相角旋轉器 乘數 1.0 0.5 0.25 0.125 0.063 0.031 0.016 0.008 0.004 0.002 角度 (度) 45.0 26.6 14.0 7.125 3.576 1.790 0.895 0.448 0.224 0.112 各單元之旋轉只比前一單元旋轉之%稍多一點,因此,對於包含在相角旋 轉器部份1〇〇〇而由CORDIC單元之數目決定解析度,經由選擇性地組合 38 200541280 多個CORDIC單元1004,任何介於〇。_90。的範圍都可以達到。 [0107】雖然未顯示出,一縮放階段可以用來補償透過CORDIC單元 1004處理信號幅度之縮放。在一實施例中,各CORDIC單元1004可以設 定成正或負值,以對不同的旋轉維持其縮放在一定值。 [0108】參考圖9與10,工作1〇4在各單元1004中使選擇啟用電路1012 失效,以便單元1004的任一接腳之信號不會交連至另一接腳。因此, CORDIC單元1004不會因為工作904而旋轉。工作904之後,一個工作 906設定收斂條件。如上述有關工作6〇4之討論,設定收斂條件可以控制 關聯收斂速率,以使用低解析度回返資訊流而達到一預設的有效誤差位 階。透過工作906,程式處理時間的增加轉換成回返資訊流減低有效的誤 差位階。 [0109】工作906之後,一工作908選擇於選擇的反向器1〇〇6調整控制 輸入而控制另一象限。相轉部份1〇〇〇影響旋轉之現有量代表所需相轉之預 估以將定位複前向資訊流272帶至與複回返資訊流262同相。 【0110】工作908之後,關聯引擎280以目前之相轉預估於定位複前向 資訊流272與複回返資訊流262之間整合。一詢問工作91〇決定上述工作 906之收斂條件是否符合,當收斂條件符合時,則一詢問工作912決定是 否所有四象限已被選擇。如果已試過的象限數少於四,則將關聯結果儲存, 且程式控制回到工作908,直到所有四象限已被測試過為止。 【0111]雖然工作908、910與912描述象限評估之一實施例,另一變通 的實施例為,前向與反向資訊流中之一腳與反資訊流可以與其他資訊流之 39 200541280 兩個腳相關聯,而且,前面的關聯次處理之結果,如次處理6〇〇可以使用。 然後,可以根據關聯結果的相對大小與極性選擇象限。 [0112】當所有四象限已被測試過或以其他方式評估過,則一工作914 從四個象限選擇會產生或應產生最大關聯之象限,並設定選擇的反向器 1006。然後,一工作916以選用單元1004的方式選擇下一個最明顯的 CORDIC單元10〇4。工作916的第一次演算中,選擇位移45。之c〇R〇IC 卓元1004。此時,另一用來將定位複前向資訊流272帶入與複回返資訊流 鲁 同相的相轉之預估已完成,而關聯引擎280則進行其關聯與整合工作。 [0113】工作918之後,一詢問工作916決定上述工作906設定之收斂 條件是否符合。當符合收斂條件時,一詢問工作920決定從啟動次處理9〇〇 至現在之最大關聯紀錄是否增加最近的預估量。如果未發現,則一工作922 會取消選擇目前的CORDIC単元1004。工作922之後且工作920發現最大 關聯值增加時,則一工作924會決定最近的而且最小的CORDIC單元1004 是否被選擇。只要仍有較小的未測CORDIC單元1004,程式控制就會回到 # 工作916。 【0114】當工作924確定最後的CORDIC單元1004已被評估之後,次 處理900即告完成。此時次處理900已測完所有的CORDIC單元1004,並 且已選擇所有產生相轉評估達到最大關聯之單元1004,如關聯引擎280決 定者。此次處理將定位複前向資訊流272帶至與複回返資訊流262同相, 達到關聯引擎280使用的收斂條件所設定之精確程度,與包括在相轉部份 1000之CORDIC單元1004之數目。 200541280 【0115]參考前面的圖5,在次處理900完成之後,一工作5〇8將可調 衰減器提供的增益調整最佳化。因此工作508執行一適合的最佳化程式, 以分別提供粗調與微調衰減器302與256之中的増加與/或減少可程式之衰 減。最佳化程式必須可做衰減調整,以便將前向資訊流272與回返資訊流 262之間的累積差異最小化。最佳化程式可使用與上述討論相似之技術, 如圖6-10所示,或其他可能使用的技術。 【0116]工作508之後,線性與非線性預失真電路2〇〇現在已有足夠的 • 訓練,並準備好更直接面對類比零件120產生的線性失真之補償問題。至 此,在合併電路274巾之“理想的,,前向資訊流與反資訊流彼此間之時間與 相角相合。因此,誤差資訊流276現在代表類比零件12〇產生的失真。但 如上之說明,誤差資碰276是從回返資訊流,至少是一部份,而形成者, 並且顯不高程度的誤差與低解析度。現在啟動一個次處理ι〇〇以為前向等 化器246執行預估並收斂程式。 [0117】® 11顯示次處理1100之一流程圖。次處理11〇〇西己置成與一 _特別的實施例之非適應等化器1200與一特別的實施例之適應引擎謂一 起操作。圖I2顯示適合使用於線性與非線性預失真電路2〇〇之幾個部份之 代表性非適應等化器麗與使用於次處理蘭的方塊圖。前向等化器246 可以配置成類似非適應等化器·,但很可能有較多的接點。的,圖 13顯示-適驗搭配如@ 12所示之_麟傾騰的適應引擎測, 與線性與非線性預失真電路200。但是同一行業的人士可以辨別其他非適 應等化器·、適應引擎測與次處理聰之實施例可以設計用來達成 200541280 現有發明之許多目標。 【0118]參考圖12,非適應等化器12〇〇為一複等化器而為方便計只繪 有三個接點,但同-行業的人士可以辨別接點的數目可以依特別的應用而 很容易的增加或減少。複輸入資訊流之I與Q腳分別接至節點12〇2與12〇4 上、等化器1200,或其相等者,可以在線性與非線性預失真電路2〇〇之多 個地點使用,例如位於等化器226、246、與/或260等。因此,複輸入資訊 流之真正身份依使用之地點而異。 • 【❶119】1·節點1202耦接至並驅動時脈接點時延線12〇6與12〇8,且Q_ 卽點1204麵接至並驅動時脈接點時延線121〇與1212。時延線1206驅動 一等化器1200之同相直接路徑1216 ;時延線12ι〇驅動等化器12〇〇之正 交直接路徑1216,時延線1208驅動等化器1200之同相至正交交叉路徑 1218 ,而時延線1212驅動等化器1200之正交至同相交叉路徑1220。 【0120】各時延線1206、1208、1210與1212之各接點1222驅動其自己 的乘法器1224之第一個輸入,而乘法器1224之輸出驅動加法器1226。相 0 角路徑1214之一輸出,由在其路徑上之所有乘法器1224之和提供,至一 減法器1228之正輸入端,並且正交至同相路徑122〇之一輸出,由在其路 徑上之所有乘法器Π24之和提供,至一減法器1228之負輸入端。正交路 徑1216之一輸出,由在其路徑上之所有乘法器1224之和提供,至一加法 器1230之第一個輸入端,並且同相至正交路徑1218之一輸出由在其路 徑上之所有乘法器1224之和提供,至一加法器1230之第二個輸入端。減 法器1228之一輸出提供複輸出資訊流之j—腳,而加法器123〇之輸出提供 42 200541280 複輸出貧訊流之Q-腳。 [0121】同相與正交直接路徑1214與1216之各接點1222有相同的滤波 係數,由乘法器1232透過一可選用的適熱器單元1234而提供,而其各接 點1222有一輸出。圖12顯示二個適熱器單元1234,而只有其中之一個適 熱器單元1234標示有細節。如果省略適熱器單元1234,則各接點之濾波 係數直接由乘法器1232提供。此濾波係數輸出耦接至直接路徑1214與1216 之兩個對應的乘法器的第二個輸入點。同樣的,交叉路徑Pig與1220之 φ 各接點1222有相同的濾波係數,由乘法器1236透過一可選用的適熱器單 元1234而提供,而其各接點1224有一輸出。此濾波係數輸出耦接至交叉 路徑1218與1220之兩個對應的乘法器的第二個輸入點。 【0122]多工器1232與1236從適應引擎1300於特性236或從控制器 286接受濾波係數。當適熱器單元1234包含進去時,同時也從適應引擎13〇〇 或控制器286接收熱敏係數。控制器286亦控制多工器1232與1234之選 擇輸入,使用從控制器286或從適應引擎將濾波係數與熱敏係數接出,而 • 從適應引擎1300將等化器1200耦接與去耦。當濾波係數與可選擇的熱敏 係數是從控制器286提供時,等化器1200以非適應模式操作。於非適應模 式時,一組直接濾波係數與直接熱敏係數由控制器286設定至直接路徑 1214與1216,並且一組交叉濾波係數與交叉熱敏係數由控制器2祕設定至 交叉路徑1218與1220。除非控制器286更改程式,任何一組濾波係數都 不會改變,但是濾波係數可以選擇性地反應熱差信號216而在適熱器單元 1234中調整。在較佳的實施例中,包含可選擇的適熱器單元1234與非適 43 200541280 應性等化器226,但在其他應用可能包含此與其他等化器,或從所有的等 化器中省略掉。 【0123】各適熱器單元丨234包括各接點之一乘法器1238與各接點之一 加法器1240,熱差信號216耦接至各乘法器1238之第一個輸人。對於各 接點,多工器1232或1238提供-熱敏係數“α”至乘法器1238之接點的第 二個輸入。乘法器1238之相對輸出耦接至加法器124〇之第一對應輸入。 而且,對於各接點,多工器1232或1238提供一濾波係數“ w,,至加法器124〇 鲁之接點的第二個輸入。加法器1240之輸出提供適熱器單元1234之濾波係 數輸出。因此,濾波係數有位移,也許正極性也許負極性,以熱敏係數之 加權回應熱差信號216。 【0124】當適應引擎1300提供濾波係數與可選擇的熱敏係數時,等化器 1200在適應模式下操作。在適應模式下,適應引擎13〇〇提供至少一直接 與交又組之濾波係數與熱敏係數,並且只要等化器12〇〇維持在其適應模 式’這些濾波係數與熱敏係數之各組會不斷地改變。 _ 【0125】參考囷13,於一實施例中適應引擎1300配置成可容納一個部 份複等化器,以減少線性與非線性預失真電路2〇〇之零件數。特別是當 適應引擎1300麵接至-非適應性等化器12〇〇時,它會麵接至直接路徑i2i4 與1216或之交叉路控1218與1220,但不會同時耦接。為了與圖12之三 接點複等化器1200 —致,圖13顯示一三接點之電路。但是同一行業的人 士可以辨別,接點的數目可以根據其特別的應用而很容易的增加或減少。 [0126] ‘‘理想的”定位複前向資訊流272之〗與Q腳分別供應至時脈接 44 200541280 點時延線1302與1304,而為方便計各時延線繪有三個接點。當適應引擎 1300操作於其耦接至非適應等化器12〇〇之直接路徑1214與PM的模式 時’誤差資訊流276之I與Q腳則接至時延元件13〇6與13〇8,其中時延 元件1306與1308各配置成,可延遲誤差資訊流276至接點時延線13〇2與 1304之中點的時間。當適應引擎13⑻在耦接至交叉路徑i2i8與之 模式操作時,誤差資訊流276之〗與Q腳分別供應至時脈元件13〇6與 1308。從同相時延線13〇2之接點131〇分別耦接至對應的同相乘法器i3i2 • 之第一個輸入,並且從正交時延線13〇4之接點ΠΜ分別耦接至對應的正 父相位乘法器1316之第一個輸入。從同相乘法器1312之輸出分別耦接至 對應的加法器1318之第一個輸入,並且從正交乘法器1318之輸出,透過 選擇的反元件1320,分別耦接至對應的加法器1318之第二個輸入。 【0127】選擇的反元件1320於圖13中所示為乘法器,而乘法器之一個 輸入由控制器286所控制。當適應引擎1300操作於其耦接至非適應等化器 1200之交叉路徑1218與1220的模式時,控制器286使加權正交信號之輸 ® 出反轉,但當適應引擎1300在耦接至直接路徑1214與1216之模式操作 時’正交乘法器1316沒有輸出反轉之加權正交信號。同一行業的人士會辨 別不需要使用乘法器執行選擇的反元件1320。同樣的,同一行業的人士會 辨別,將量化誤差信號276、理想定位信號272、或二者成單一位元或成一 -/0/+之二值,可以減低適應引擎13〇〇之複雜度。在此變通設計中,上述之 乘法器可以換成較簡單的電路。 【0128】加法器1318之各個輸出會呈現雜訊,因為它們以回返資訊流為 45 200541280 基礎。這些輸出耦接至對應的乘法器1322之第一個輸入,而所有乘法器 1322之第二個輸入都耦接至控制器286。控制器286提供一收斂因數“μ,,, 用以決定相較於時脈週期至時脈週期可以允許濾波係數多大的改變。在較 佳的實施例中,μ使用一小值,以防止加法器1318允許相當的變量而產生 很大的影響,而從任何單一的元件或甚至相當大小的一組元件輸出雜訊。 [0129】乘法器1322之各個輸出耦接至對應的加法器1324之第一個輸 入,而各加法器1324之輸出透過對應的多工器(mux) 1326之第一個資料 # 輸入而耦接至對應的單週期時延元件1328。控制器286提供多工器1326 之第二個資料輸入與選擇控制輸入。時延元件1328可以從控制器286初始 化預先設定之濾波係數,但是在正常的適應操作條件下,各加法器1324將 以前留在對應的時延元件1328之係數值,加上濾波係數改變值。另外,對 於各個接點,加法器1324之輸出提供由適應引擎13⑻在特性輸出之 濾波係數w”。當操作於其適應模式時,控制器286提供濾波係數“w”至 等化器1200,並且可以由控制器2祕讀取。 _ 【0130】後續遽波係數之處理針對與熱相關之記憶效應特別是從各加 法器1324輸出之據波係數“w”被接至對應的IIR•渡波器電路。遽波器電路 各包括一減法器電路1330、一乘法器1322、-加法器1324、與一單週期 時延70件1336。從各加法器1324之輸出輕接至對應的減法器電路測之 正輸入端。各減法器電路133〇之輸岐供渡波器輸出,並輕接至靈敏度乘 法器1322之第一個輸入。各靈敏度乘法器1322之第二個輪入調適去接收 控制器286提供的雜細數^各乘法器㈣之輸出提供至對應的加 46 200541280 法器1334之第個輸入,並且各加法器1334之輸出透過對應的時延元件 1336而個時脈。時延元件1336之各輸丨被接至對應的加法器⑶4 以及至對應的減法器電路133〇之負輸入端。 【0131】加法器1334提供各滤波器電路一個平均係數輸出,此^出m ;慮波係數w之-長時間之平均值或過渡信號。減法器電路測決定滤 波係數“w”之目前瞬間值與從前一個時脈週期開始之長期平均值之間的 差。係數靈敏因數γ決定長期平均值對於瞬時濾波係數之影響的靈敏度, 籲雜小的Y值使平均值反映較長的期間,且對於任何-時脈週期之濾波係 數較不靈敏。減法器電路133〇之輸出提供一係數差資訊流1338。對於適 應引擎1300之中間接點,係數差資訊流1338形成係數差信號別,而有 選擇的接至關聯引擎280。 【0132】當ΗΡΑ 136經過與熱相關 均濾波係數,可以與溫度之改變做_,而決定瀘波絲之改變。因此, 隨後的適祕理於缝差資域⑽執行—㈣册魏錢應程式。 _ 侧是,各係數差資訊流⑽接至對應的減法器電路胸之正輸入端。 各減法器電路mo接至對應的乘法器1342之第一個輸人,並且,各乘法 器1342之輸出接至對應的收敛乘法器1344之第一個輸入。各收絲法器 1344之輸出接至對應的加法器1346之第—個輸人,並且,各加法器⑽ 之輸出,透過對應的單-職時延元件⑽,接回相同加法器⑽之第 二個輸入,因而從加法器1346與時延元件⑽形成積分器。再者,各加 法器1336之輸出,接至對應的乘法器135〇之第一個輸入,並且,各乘法 47 200541280 器1350之輸出接至對應的加法器134〇之負輸入端。熱差信號216驅動所 有的乘法器1350與所有的乘法器1342之第二個輸入,並且控制器286提 供收斂值λ給收斂乘法器1344之第二個輸入。 [0133】加法器1346之輸出,提供熱敏係數α,在特性236從適應引擎 1300輸出。當操作於其適應模式時,熱敏係數α提供至等化器12⑻,並且 也可由控制器286讀取。經過一段時間,到熱差信號216的熱敏係數〇1收 敛至更精確的濾波係數“w”改變之靈敏度之預估。如以下之討論與圖17 所示,熱差信號216使ΗΡΑ 136的改變特性化。因此,熱敏係數α、熱信 號和濾波係數一起使用於適熱器單元1234,以去除可能存在ήρα 136的熱 改變與等化器濾波係數的改變之間的關聯。換句話說,決定熱敏係數α, 當其與熱差信號216相成時,會導致熱信號變成與對應的係數差信號丨 成極大關聯。 【0134】圖13將所有單一週期時延元件1348繪成有一清除輸入由控制 器286之輸出驅動,此輸入允許控制器286初始化時延元件1348成零狀 態,並消除熱處理。 【0135】在適應引擎1300之一實施例中,積分並輸出之操作(未顯示) 可以在熱差信號216與係數差信號1338上進行,以緩慢其資料速率。這可 被允許因為熱改變以比透過發射機100 —個一個處理資料為基礎的速度發 生的速度為慢之故。在此減低資料速率,可以節省下游的係數差信號1338 之電能。 [0136】參考前面之圖11,次處理11〇〇與等化器12〇〇、適應引擎13〇〇 48 200541280 一起操作,以執行一可容忍誤差資訊流276之特性的低解析度與高誤差準 位之預估並收斂程式。當針對線性失真補償與非線性失真補償之最初階段 而操作次處理1100時,熱處理透過操作初始工作5〇2而被取消。利用將單 一週期時延元件1348設定成顯示零值與將收斂值χ設定成零,可以將熱處 理取消。這會導致適熱器單元1234失效,但取消熱處理,是一個與等化器 1200有關連的懸而未決點,用做前向或回返等化器246與260,並且這在 較佳的實施例中可省略適熱器單元1234。 φ 【0137】次處理1100執行一工作U02,以鎖住適應引擎1300。適應引 擎1300可以利用提供一收斂因數μ=0給適應引擎13〇〇而鎖住。鎖住適應 引擎1300 ’透過特性236共應的渡波係數“w”即無法改變。在工作ι1〇2 之後’一工作1104初始化適應引擎(ΑΕ) 1300之模式,以決定等化器12〇〇 的直接路徑1214與1216之濾波係數。在此時,直接路徑1214與1216和 父叉路徑1218與1220之選擇是隨意的。適應引擎13〇〇可以經由控制選擇 的反向電路1320而初始化至直接路徑濾波係數之適應,以便不會將它們處 _ 理的加權正交信號反向。工作11〇4之後,次處理1100開始一程式11〇6, 在此用1/2複等化器1200之預估並收敛程式,以決定一組遽波係數。 丨0138】當然,沒有需要適應引擎1300只適應一等化器副之路經的 一部份之情形,如果適應引擎1300配置成同時適應一等化器12〇〇之所有 路徑’則緣於圖13之適應引擎電路實質上增加一倍,但一些反向電路13如 與工作1104可以省略。於此情形,適應引擎1300在電路1318會執行加法 而另一半適應引擎1300在電路1318則會執行減法。 49 200541280 陶9】特別是,在工作11〇4之後,一工作·初始化適應引擎(綱 遽波係數。工作圓可以將單一週期時延元件⑽初始化以顯示現行使 用之等化益路控设定之濾波係數。但是一經初始化以後與其他情況,單一 週期輕元件可峨定絲意值、職值、或根本不設定。 【0140】在工作1108之後,一工作11〇〇將適應引擎(ae) 13〇〇柄接至 此非適應等化器1200之%部份。柄接是以控制多工器1232或1236,視情 況而定,以從適應引擎聽選擇遽波係數,而不是從控制器挪。 • 【〇141】接著’ 一工作1112設定收敛條件,在一部份,給預估並收讎 式,並將適應引擎(AE)蘭解鎖。收斂條件之部份設定與適應引擎 之解鎖二者可能以提供正值適應引擎謂給收斂值μ而達成。此值最好是 非常小於一的小數,而收斂條件決定適應引擎13〇〇應處理多少取樣,才能 認定已收斂至一濾波係數組的答案。如上述之討論,越多取樣處理會有越 大的有效解析度,或者在回返資訊流減少誤差準位。程式處辦間的增加, 於是轉變成減低回返資訊流之誤差準位。透過工作1112,可控制收斂的速 • 度以達到預設的有效回返誤差準位低於回返資訊流之誤差準位。在一實施 例中,收斂變數μ最初設定成一較高之值,但經時間而呈衰減。此方法允 許快速之收斂至一接近之結果,然後接著減緩收斂速率,以達到一較小的 最後追蹤誤差。 【0142】在工作1112之後,適應引擎1300會執行一最小均方(LMS)、 預估並收斂之程式,其中濾波係數預估值持續改變,以使誤差信號最小化。 LMS、預估並收斂之程式反複地改變濾波係數,以使誤差信號最小化,並 50 200541280 且使從前向資訊流來之誤差信號流無關聯,此動作也增加前向與回返資訊 流。更特別地,濾波係數經調整直到從ΗΡΑ輸入信號134或ΗΡΑ輸出信 號117之結果,依照目前多工器250之狀態,變成實質上無關聯之信號(例 如盡量靠近白雜訊)。 [0143】在此時,一詢問工作1114確認由適應引擎13〇〇決定之渡波係 數是否以收斂。工作1114與工作1112 —起進行,以設定收斂條件。使用 較小的μ值,工作1114使用的較長時間進一步增加有效的解析度且進一步 減少有效的回返資訊流誤差準位。工作1114可以只決定是否有足夠的時間 達到收敛,或者工作1114可以監控適應引擎1300產生的濾波係數,並且 當測出濾、波係數無一致的改變形態時,確定收斂已發生。 【0144】當工作1114確定收斂已發生之後,一詢問工作1115決定次處 理1100是否已啟動去包含熱處理與濾波係數之決定。沒有熱處理、前向和 回返等化器246與260、和最初決定係數演算之等化器226相連結。在這 些情形’程控會交給工作1116。熱處理之情形將在下面與圖15和17中討 論。 【0145]工作1116以设定漉波係數收敛因數與熱收斂因數人=〇而 鎖住適應引擎1300,接著,一工作ιι18於適應引擎(处)13〇〇之特性236, 讀取一組濾波係數與熱敏係數。在工作1116與1118之後,一工作112〇將 這組渡波係數設定至subject非適應等化器12〇〇,並且一工作1122將適應 引擎(AE) 1300從非適應等化器12〇〇去耦。當次處理11〇〇使用於決定熱敏 係數時,工作1120也將subject非適應等化器12〇〇設定一組熱敏係數。 51 200541280 [0146】去耦可以利用選擇在subject多工器1232或1234之控制器資料 輸入達成,而不是使用適應引擎資料輸入。在此時,適應引擎13〇〇已決 定一組濾波係數和可能是一組的熱敏係數,而濾波係數組與熱敏係數組已 在非適應等化器1200中設定,故適應引擎1300現在可以決定另一組濾波 係數,而完成程式1106。剛決定的濾波係數組與熱敏係數組最好能靜止不 變,但是濾波係數組在非適應性等化器中可能因熱差信號216與熱敏係數 而繼續被調整。 丨0147】工作1122與程式1106之後,一工作1124啟動適應引擎13〇〇 之模式,以決定subject非適應等化器1200之交叉路徑係數。適應引擎13〇〇 可以利用控制選擇的反轉電路1320而起動至交又路徑渡波係數,以便它們 月b反轉它們處理的加權正交信號。接著,一工作1126重複程式11〇6於其 他濾波係數組。當工作1126完成其他濾波係數組之後,次處理11〇〇即告 完成。 【〇148】參考前面的圖5,在完成次處理1100之時,次處理5〇〇也同時 完成。在此時,線性預失真器244之前向等化器246已設定前向濾波係數 而補償在ΗΡΑ 136之輸入,由類比零件120引起的射頻類比信號134之線 性失真。特別是,前向等化器246現在可以補償依頻率而變之增益與相位 不平衡,也可以補償副通訊信號各腳之間引起的增益與時延之差異。因此, 在ΗΡΑ 136的輸入端之射頻類比信號越接近理想越好,而Μ 136上游之 類比零件120弓丨起的線性失真,由雜預失真器244產生的預失真負責。 [0149】參考前面圖丨的高通濾波器205與圖3的高通渡波器314,各 52 200541280 滤《只有非常小的影響。特別是,為了阻擋值流成份,小量接近直流的 能量也在回流路徑被高通觀器314阻擋了。但是對於頻譜中此接近直流 的同。回概路仏用來驅動前向等化器246,以匹配回流路徑。因此, 適應引擎1300決定則向遽波係數而控制前向資訊流之線性失真,除了接近 直抓的此里之外。南通濾波器2〇5僅從前向資訊流移除此接近直流的能 量,以便所有通過前向等化器246 _量被用來控制線性失真。Wiener-Hammerstein's HPA model, HPA 136 is like an input band-pass filter (BPF) 17 200541280 140, followed by a memoryless non-linearity, and labeled amp 142 in Figure 1, and then connected to the output band-pass filter ( BPF) 144. Amp 142 produces an output signal, which may be an input higher-order complex polynomial function. Each of the BPF's 140 and 144 may produce a linear distortion, but may be a small non-linear distortion. On the other hand, amp 142 is a source of non-linear distortion. [0045] In a preferred embodiment, the linear and non-linear predistortion circuit 200 receives at least three or four analog input signals. One of them is the local oscillation signal, and the rising frequency part 126 is used as the rising frequency. The other is an optional feedback signal, which is output from at least one or two sections of the complex signal of D / A, s 122. This output is shown in the figure. 1 is labeled as the fundamental frequency (BB) signal 123; the other analog input signals are the feedback signals derived from the radio frequency analog signal 134, which is used as the input signal of the HPA 136, and the radio frequency communication signal 116 through a direct coupling element 115, which is used as [0046] By monitoring this feedback signal, the linear and non-linear predistortion circuit 200 learns how to apply predistortion to reduce linearity and then non-linear distortion. Although there are several different sources of distortion, the actual properties of the analog parts that cause the distortion change slowly. This allows the circuit 200 to perform a prediction and convergence procedure to determine the appropriate predistortion characteristics, and this procedure allows a slow convergence speed. . The use of prediction and convergence procedures reduces the complexity of processing and reduces the sensitivity of the feedback signal to errors. Furthermore, the use of a slow convergence speed allows the circuit 200 to reduce the actual error of the feedback signal 'and obtain accurate predistortion characteristics. Since the error of the feedback signal can be tolerated, the feedback signal can be processed using a low-resolution circuit, so the purpose of reducing circuit parts and saving power is achieved. [0047] FIG. 2 shows a block of a first embodiment of a linear and non-linear predistortion circuit 200 200541280 FIG. 'First embodiment' is referred to as a linear and non-linear predistortion circuit 1800, which is connected to FIG. 18 and It is discussed below; and the third embodiment, referred to as a linear and non-linear predistortion circuit 2800, is concatenated with FIG. 28 and discussed below. A complex forward information stream u] configured to convey digital information is added to input port 202 of circuit 200. Compared with the return information flow discussed below, the forward information flow U2 shows a lower resolution, as indicated by the letter "H," as shown in Figure 2. Those familiar with this technology will understand the resolution decision at least among them The part is represented by the number of bits sampled by each forward information stream 112. For more south-resolution information streams, it is common to use # samples with more bits than low-resolution information streams for transmission. Similarly The forward information stream 112 shows relatively low levels of error from quantization noise, phase angle error, etc. As discussed above, any previous information stream 112 is basic, and the signal to the analog part 120 is also considered to be A form of forward information flow. Since the forward information flow 112 flows through the predistortion circuit 200, it can maintain the characteristics of high resolution and low error level. [0048] In a preferred embodiment, the forward direction The information stream 112 is connected to the rate doubler 204. In this preferred embodiment, the forward information stream 112 only transmits the digital communication signals at the base frequency and needs to flow at an information rate that supports Nyquist conditions. In the preferred embodiment, Continued processing of the forward information stream 112 will generate higher frequency components to compensate for non-linear distortion. Therefore, the rate doubler 204 will increase the information rate for the highest frequency to be generated at least equal to and preferably greater than the Nyquist condition. So far, the forward information stream 12 can be regarded as an ultra-wideband information stream, and the rate doubler 204 can be performed by a person familiar with this method using interpolation; or if the nonlinear compensation is to be omitted, the rate doubler 204 It can be omitted. [0049] The forward information stream is output from the doubler 204 and passed to a high-pass wave filter (HpF) 205, which is configured to filter only the DC component. The high-pass filter 205 preferably has to join the return information stream. 200541280 The same filtering characteristics of another high-pass filter, as discussed below. The high-pass filter 205 can also be located before the rate doubler 204, as shown in the following figure, and associated with FIGS. 18 and 25, or at other equal positions. [0050] A rate-increasing complex forward information flow 206 flows from the high-pass filter 205 to the delay portion 208, the basic function generation portion 160, and a thermal change evaluation The estimated part is 1700. The basic function generating part 1600 is used to connect with the non-linear compensation. If the non-linear compensation is omitted, the basic function generating part can also be omitted. The basic function generating part 1600 generates multiple complexes. Basic Function Information Flow® 214, and each of the Basic Function Information Flows 214 reacts to χ (η) · | χ (η) | κ, where χ (η) represents the forward information flow received by 160%, and K is an integer greater than or equal to one. Therefore, the 1600 part generates multiple higher harmonics from the forward information stream 206. The basic function information stream 214 provides the highest order basic function information stream 214 (ie, Has the largest κ value), the information stream 214 is connected to the input of a multiplexer (MUX) 222. The basic function generating part 16⑻ will be discussed in detail with FIG. 15 and FIG. 16 below. [0051] Similarly, the thermal change evaluation section 1700 is used to link with the non-linear compensation. If the “non-linear compensation” is omitted, the thermal change evaluation section can also be omitted. In general, the heat exchange evaluation section 1700 generates a -thermal difference signal (Δ_Η_ 216, which is used to explain the relative power in the forward information flow 206 'to characterize the instantaneous change in the accumulation of ΗΡΑ 136 relative to the long-term average heat. The thermal difference signal 216 is then used to affect the basic function information flow 214 to compensate for the thermal §memory effect of a typical price ρα 136. The thermal change evaluation section 1700 will be discussed in more detail below with FIG. 15 and FIG. 17 [ 0052] In a preferred embodiment, all basic function information streams 214 display a time delay equal to tf in the basic function generation section 1600. Therefore, a complex forward information stream output from the delay section 208 20 200541280 218 has the same clock in each basic function information stream 214, including the highest-order basic function information stream 214 '. The complex forward information stream 218 output from the delay section 208 is connected to a merging circuit 22 and a night job. The second input of the converter 222. The merging circuit 220 is due to the complex subtraction circuit of FIG. 2, each section of the complex signal path has a subtraction element, and the complex forward information flow 218 is connected to the positive input terminal of the subtraction element. ] All basic function information flow 214 To a non-linear predistorter 224, and if the non-linear compensation is omitted from the transmitter 100, the complex basic function information flow can also be omitted. The non-linear predistorter 224 includes multiple equalizers (EQ) 226, The first equalizer 226 provides the basic function information flow 214. Fig. 2 shows the relationship between the equalizer 226 and the one or two basic functions, one or three basic functions, etc., to (κ + 1) basic functions. Each equalizer 226 is a multiple equalizer, as shown in FIG. 12 for equalizer 1200, and the output of each equalizer 226 and equalizer 1200 are combined to form a complex filtering basic function information stream 230. Information Stream 230, used as a non-linear predistortion compensation stream, is connected to the subtraction input of the merging circuit 220. [0054] For the purpose of this description, any equalizer such as one of the equalizers 226 is programmable. Filtering The device determines how it changes the signal it processes by specifying its coefficients. In the preferred embodiment, it is intended to use a wavelet of multiple complexity. Each equalizer 226 may have a contact or any greater than Its number. The adaptive equalizer is configured to determine its own The wave coefficient, and the coefficient of constant inclination is continuously changed. It is an equalizer that accepts the filter wire without changing the coefficient until the next burning. However, as discussed below, it is hot in some places. The difference signal 216 may cause the non-adaptive equalizer filter coefficient to change. [0055] In a preferred embodiment, its equalizer 226 is a non-adaptive equalizer. However, when coupled to the -adaptive engine 1300 At the time, the combination of the equalizer 226 and the non-adaptive equalizer will form a new equalizer 21 200541280. Each equalizer 226, other equalizers included in linear and non-linear predistortion circuits, and adaptive The engine 1300 belongs to the equalizer part. In a preferred embodiment, the adaptation engine 1300 selectively couples or decouples with multiple equalizers located in the equalizer section 234 at any time to determine filter coefficients by executing an estimation and convergence procedure. FIG. 2 depicts the selective matching or decoupling of the non-linear predistorter 224 and the 236 characteristic within the adaptive engine compensation. The thermal difference signal 216 is one of the signals connected to the adaptive engine 1300, and the thermal difference signal 216 is also the input of the non-linear predistorter 224-. The equalizer 226, the adaptation engine 13⑽, and the estimation and convergence program executed are discussed in detail below, as shown in Figure U_13. [0056] The output of the merging circuit 220 provides a complex non-linear pre-distortion forward information flow. In the embodiment of the present invention, the forward information stream 238 drives a differential mode time positioning part. If the linear compensation is omitted from the transmitter 100, the time positioning part 800 may also be omitted. Time positioning part 800 of the forward information flow 238! In the Q complex band, a different amount of time delay is added to compensate for the -reverse difference time delay '. This difference time delay may be generated through the analog part 12o. The time positioning part 800 is discussed in detail below, as shown in Figures 5 and 8. The output of the time localization part 800 is used to locate a forward information flow 242 when a complex difference is generated to drive a linear predistorter 244. On the other hand, the time positioning part 8⑻ may be located after the linear predistorter 244 if necessary, instead of being front as shown in FIG. Also, if linear compensation is omitted from the transmitter 100, the predistorter 244 may also be omitted. [0058] The linear predistorter 244 performs several adjustments on the forward information stream 242. For example, the linear predistorter 244 performs an orthogonal balance adjustment portion. Therefore, the linear predistorter 244 adjusts the gain and phase angle of the I and Q complex frequency bands of the complex forward information stream 242, and independently adjusts the I and Q frequency bands of the complex forward information stream 2 magic 22 200541280 so as to be orthogonal. Balance can be done. In addition, the linear predistorter 244 compensates for fresh quadrature gain and chirp imbalance. Therefore, even the wideband and ultra-wideband communication signals discussed above are orthogonally balanced through the linear predistorter 244. [0059] In a preferred embodiment, the linear predistorter 244 uses a complex equalizer to implement this, and this equalizer can be configured as an equalizer 120, but it is likely that there will be more connections. point. If there are enough contacts, the differential mode time positioning part 800 can be omitted entirely. The equalizer 2 is labeled EQF, where the subscript "F" indicates that the equalizer 246 will pass forward information. As discussed above for the equalizer move #, the equalizer 246 is used as part of the equalizer section 234. Also, the equalizer 246 needs to be a non-adaptive equalizer, so that it will become an adaptive equalizer when coupled to the adaptive engine 1300 through the 236 characteristic. By appropriately selecting the forward data wave (that is, the wave coefficient of the forward equalizer eQf) to the equalizer 246, the linear predistorter 244 can compensate the predistortion generated by the gamma ratio component 120. The forward filter coefficient is determined by the-training process, which will be discussed below, as shown in Figure 17 and 19. After training, in addition to correcting the phase angle and gain imbalance and distortion of the I and Q segments that are convenient with frequency, the forward filtering can also be used as an orthogonal balance coefficient or parameter. Spring GG6G] The linear predistorter 244 generates a complex orthogonal balanced equalized forward information stream 18 and passes it to the analog part i20. The forward information flow 118 must maintain the characteristics of high resolution and low error level as upstream information. It has been distorted in the preferred embodiment to compensate for the non-linear and linear distortion of the communication signal that has not been added by the analog part 120. Furthermore, it must support the above discussions, including the fundamental frequency signal plus the super-bandwidth of higher harmonics, but other facts may still benefit from compensating for only linear distortion or only non-linear distortion. [0061] Referring to FIG. I, the feedback from the analog part 12 is obtained through the feedback signals m and 134 23 200541280. The feedback signal 117 is obtained from the radio frequency analog signal output from the HPA 136, and the feedback signal 134 is obtained from the radio frequency analog signal input from the HPA 136. Returning to FIG. 2, the feedback signals 117 and 134 are sent to a feedback part 248 of a linear and non-linear predistortion circuit 200 of a multiplexer 250. The feedback section 248 also includes a digital down-conversion section 300, which is used to receive the output from the multiplexer 25. The down-frequency section 300 also receives the same local oscillator signal from the local oscillator 128, which is used by the up-frequency section 126. The frequency reduction section 300 first reduces the frequency of the feedback signal 134 for use in training the linear and non-linear predistortion circuit 200 to compensate for various types of linearity loss caused by the input signal of the HPA 136. Then, the frequency reduction section 300 frequency-reduces the feedback signal 117 for use in training the linear and non-linear predistortion circuit 200 to compensate for various types of linear distortion generated by the signal output by the HPA 136. The frequency reduction section 300 will be discussed further below, as shown in FIG. 3. [0062] The frequency reduction section 300 generates a multiple return information stream 254. As shown by the letter "L" in Fig. 2, the 'return information stream 254 shows a low resolution and a high degree of error compared to the multiple forms of the forward information stream. For the convenience of the discussion here, all information flows from the analog part 120 and based on the return information flow 254 are regarded as a form of return information flow. ® [0063] The recurrent information stream 254 drives an adjustable attenuation circuit 256. The adjustable attenuation circuit 256 must be used as a trimmer or cursor to control or decide how to attenuate the return information stream 254 to compensate for the attenuation provided by the HPA 136 to the forward propagation communication signal and the attenuation provided by the coupler 115. The adjustable attenuator 256 can be implemented by a multiplexer. [0064] The adjustable attenuator 256 generates an attenuated complex reverse information stream 258 to a equalizer 260, which can be configured as equalizer 1200, but most likely will have more contacts. Figure 2 adds the label EQR to the equalizer 260, and the subscript "R" indicates that the equalizer 260 filters the return information stream. As discussed in 24 200541280 and other equalizers 226 and 246, the equalizer 260 is part of the equalizer part 234, and the equalizer 260 must be a non-adaptive equalizer. When it passes through the 236 characteristic When connected to the adaptation engine 1300, it becomes the -adaptive equalizer. Appropriately adjust the return filter coefficients that enter the equalizer 26 (that is, the filter coefficients of the return equalizer EQR). The linear distortion mainly generated by the HPA 136 itself will be compensated. And the form of the linear distortion generated by this HPA 136 itself Does not contaminate subsequent training to compensate for non-linear distortion. The return filter coefficient is determined through the training process, which will be discussed below, as shown in Figure 1M4. # [_5] Huahua 11 260 produces-equalizes the return information stream 262 to maintain relatively low resolution and high error as discussed above. Using low-resolution processing of return streams can result in power and part savings. [0066] An output of one of the multiplexers 222 is used to drive a common-mode time positioning section 700. The time positioning part 700 is selected according to whether it is the multiplexer 222, and the same amount of delay is added to the I and Q complex frequency bands of the forward information stream 218 or the highest-order basic function information stream 214 '. In addition, the number of delays when the time positioning part 700 is inserted can be adjusted. The time positioning part 700 generates a time delay to forward the information stream 266, and the time positioning part 700 is programmable, so that the time positioning of the stream 266 can be consistent with the return information stream 262. The time positioning part 700 will be discussed in more detail below, as shown in Figure 5-7. [0067] The time delay complex forward information stream 266 is connected to a phase conversion part 1000 and the first data input of a multiplexer (MUX) 270. The phase-conversion part 1000 rotates the time delay complex forward information stream 2 by a variable amount, and generates a positioning complex forward information stream 272. The phase conversion part 1000 is programmable, so that the information stream 272 can be in phase with the return information stream 262 to compensate for the time when the analog part 12 of 25 200541280 filters 132, 140, and / or 144 are brought. Delay. Phase inversion will be discussed in more detail below, as shown in Figures 5 and 9-10. [0068] The positioning complex forward information stream 272 is connected to the second data input of the adaptation engine 300 and the multiplexer 27, and the positioning complex forward information stream 272 and the equalization return information stream 262 are connected to a complex The combining circuit 274 forms two subtraction elements at the edge of FIG. 2. The merging circuit 274 subtracts the return information stream 262 from the forward information stream 272 to form an error signal or error stream 276. The equalized return information stream 262 and error signal stream 276 are connected to a multiplexer (mux) 278, and the thermal difference signal 216 is the same. In addition, the error stream 276 is connected to the third information input terminal of the multiplexer 270 and the adaptation engine 1300, and a difference coefficient (△ • coeff) signal 279 generated by the adaptation engine 1300 is connected to the fourth of the multiplexer 270 Information input. [0069] The outputs of the multiplexers 270 and 278 are each connected to a correlation engine 280, in particular, the outputs of the multiplexers 270 and 278 are supplied to different information input terminals of a complex multiplier 282, and An output terminal is coupled to an input terminal of an accumulator 284. Through multiplexers 27 and 278, multiple different information streams can be related to each other in the correlation engine 280. The multiplier 282 performs a basic correlation operation, and the correlation results are integrated in an accumulator 284. One of the information flows performed by the correlation engine 28o is based on the return information flow and displays the low resolution and high error levels as described above. [0070] In a preferred embodiment, the accumulator 284 must allow a large number of accumulations (e.g., samples between 216 and 224) in order to be able to process several times the number of samples before making a decision based on the correlation results. The low resolution and high error level of the "like" return information stream can be ignored, so that the result after integration can have a smaller effective error level. -In general, as long as the noise is more or less unrelated, the noise variation of the sampled signal decreases as the square root of the average number of samples increases. Therefore, for example, the effective error level of the return information stream is reduced. , Which is equivalent to the accumulation of fine error levels. Samples with a value of approximately 106 increase by 10 bits of resolution (ie, about 60 dB). Network diagram 2 has a controller 286 and several inputs and outputs. The simplified block diagram of 2 does not show that 'the input and output surfaces are connected to multiple sub-parts of the linear and non-linear predistortion circuit 2' to provide control data here and read data from there. For example, the controller controls the multiplexers 278 and 270 'to specify which information flow or signal must be associated at the start of the correlation engine 28o, and the output from the accumulator 284 of the correlation engine 28o is connected to the control器 shift. A person familiar with this technology may use any conventional microprocessor or provide it to the controller 286 ′. Therefore, the controller 286 may execute electronic software commands stored in a memory section (not shown). In an embodiment, the controller 286 may provide control functions to the linear and non-linear predistortion circuit 200 and other parts of the transmitter 100. The work performed by the controller 286 and the linear and non-linear pre-distortion circuit 200 due to the control effect of the controller 286 will be further discussed in FIGS. 4-6, 9, η, and 14-15. [0072] FIG. 3 shows a block diagram of a digital down-conversion section 300, which is suitable for the linear and non-linear predistortion circuit 200 of the transmitter 100. [0073] Part 300 receives a radio frequency analog input from the multiplexer 250 and connects this input to a programmable analog attenuator 302. The control input of the attenuator 302 determines the amount of attenuation provided by the attenuator 302 and is provided by the controller (C) 286. The attenuator 302 must be used as a rough adjustment in conjunction with the adjustable digital attenuator 256 to attenuate the signal level of the return information stream 254, to compensate for the gain and facet of the communication signal that was previously transmitted before adding ΑΡΑ m. Provided attenuation. [0074] One output of the attenuator 302 is coupled to an input of an analog / digital converter (α / 〇) 304. In addition, the same local oscillator used by the up-conversion part 126 is used to input a 3⑻ part And received at the synthesizer 306. The synthesizer 306 must be configured to multiply the cost of the oscillator frequency by four, and divide the result of the product by an -odd number, such as 2N ± 1, where N is a positive integer that satisfies the Nyquist condition of the above ultra-wideband signal and is usually greater than or Equal ten. As a result, _304 performs a direct down-conversion through sub-harmonic sampling. [0075] In an embodiment, the 300 part may include an average power calculator (not shown), which will respond to the return information stream 254. The average power must be maintained at a certain level, so the analog attenuator 302 can be adjusted to the optimal A / D 304 load in response to the average power, and the adjustable digital attenuator 256 can then be adjusted to be close to equal to the analog attenuator 302 plus The mutual gains of all. This keeps the overall gain at a constant. [0076] The direct sub-harmonic sampling down-frequency conversion process performed by A / D 304 requires a / d 300 to be capable of fast conversion. In addition, the sub-spectral wave sampling process tends to add thermal noise from several fundamental frequency harmonics to the final fundamental frequency signal, thus increasing noise compared to other types of down-frequency conversion. Although these factors are a problem in many applications, the 300 part is not too much of a burden because, as discussed above, only low resolution is required here. In addition, the low resolution requirement of A / D 304 does not have a special burden on the phase angle-noise in the clock generated by the synthesizer 306, or the aperture error unique to A / D 304. This low resolution requirement can be allowed due to the operation of multiple estimation and convergence procedures discussed below. The final averaging effect can reduce noise, phase angle errors, and / or aperture errors. 28 200541280 [0077] In particular, the A / D 304 only needs to provide a resolution of at most four bits less than the forward resolution of the forward information stream 112 through the linear and non-linear predistortion circuit 200. In one embodiment, A / D 304 may be implemented with a resolution that provides only one or two bits. As discussed above, multiple techniques, such as prediction and convergence procedures and integration, can be used to convert increased processing time to reduce the effective error level of the return information stream. Therefore, since the multiplication of samples before making a decision based on the feedback signal, and without a sample of one or even a small or medium-sized population, has a significant impact on the decision based on the feedback signal, the low resolution is effectively increased. The high quantization error φ and high thermal noise error do not cause significant problems for the linear and non-linear predistortion circuit 200. [0078] In a preferred embodiment, the linear and non-linear predistortion circuits 2000 are generally manufactured using a semiconductor substrate 1 *. However, the high speed requirements of the a / D 304 and the synthesizer 306 can be provided using a silicon germanium process comparable to the CMOS process. [0079] The processing of the feedback signal upstream of the A / D 304 has been achieved through the use of analog technology 'and is therefore affected by the inaccuracy of the analog process. However, A / D 304 provides a digital information stream, and subsequent processing is not affected by the inaccuracy of the analog. This digital information stream uses the complex feedback signal as the characteristic # as the combined signal of the I and Q bands. The subsequent processing is to place the sub-harmonics appropriately at the fundamental frequency and separate the I and Q bands of the complex signal. Although this is an independent follow-up to the complex signal and Q-band, it is processed digitally, so there is no linear distortion due to quadrature imbalance, and / or gain and phase angle characteristics of various frequencies. [0080] In particular, the digital information stream from the A / D 304 is connected to a demultiplexer (DEMUX) 308, which is used to divide the information stream into even and odd sampled information streams. One of these even and odd sampled information streams is delayed only in the delay element 310, and the other is converted in the conversion part 312. 29 200541280 The output of the 7G part 310 and the part 312 is filtered by a high-pass filter (11? 1 ^) 314 to remove the direct current into a wound 'and then used as the return information stream 254 as a whole. Of course, when they propagate through the 300 part, the information flow rate is slower, and the clock signals have been properly divided (not shown) to support the reduced information rate. The high-pass filter 314 is matched with the high-pass filter 205. [0081] FIG. 3 depicts a form of a complex digital harmonic sampling down-converter, which is suitable for use as a digital down-frequency section 300. But those that are discarded in the design can be used for direct digital subsampling down-conversion '. Although frequency reduction is necessary, because this does not produce different analog errors # Entering the 1 and Q bands, which can cause linear distortion, in higher frequency applications (such as higher than 2. 5 GHz) frequency reduction can be divided into two phases, and the first phase is analog frequency reduction. In this case, the distortion caused by the analog frequency reduction in the first stage will be less obvious, because it is used for a relatively narrow bandwidth, which is only a part of the carrier frequency. [0082] FIG. 4 shows a first embodiment of a transmitter distortion management process 400. Process 400 and its sub-processes and the sub-processes it includes are performed by the controller 286 executing software familiar to those in the same industry. The second embodiment of process 400 is discussed below and is referred to as process # 1900, as shown in FIG. A third embodiment of process 400 is discussed below and is referred to as process 3200, as shown in FIG. [0083] The process 400 may be initiated when the transmitter 100 is turned on, or any time after the transmitter 100 is in operation. Generally speaking, the analog component 120 adds distortion to the RF communication signal 116 from various sources; in other words, the RF communication signal 116 can be regarded as showing multiple distortions instead of a single distortion. Not only are there differences between linear and non-linear distortions, there are many different causes for linear distortions. Process 400 trains linear and non-linear predistortion circuits 200 to compensate for the worst loss one by one 30 200541280 True, training is performed by using an estimation and convergence program so that complex processing can be avoided, and the feedback signal is Sensitivity can be reduced, but calculation of forward conversion functions and inverse functions can be avoided. [0084] Process 400 first performs subprocess 500 to compensate for linear distortion added upstream of HpA 136. [0085] FIG. 5 shows a flowchart of a sub-process 500. The process 500 first performs an initial job 502. In particular, both the forward equalizer 246 and the reverse equalizer 260 set filter coefficients so that they pass through without changing the forward and reverse information streams, respectively. The adaptation engine 1300 is decoupled from all equalizers. The adjustable attenuators 256 and 302 are adjusted to a gain equal to one (that is, no gain and no attenuation), and the selection control value is provided to the multiplexer 250A, so that the RF analog feedback signal 134 (RIM) is connected to the down-frequency section. 300. The basic function is to control the predistorter 224 to produce a certain value regardless of the input. The multiplexer 222 is controlled to connect the forward information stream 218 to the time positioning part 700. Correlation Engine (CE) 280 is added to multiplexers 278 and 270 to select an appropriate value, and is configured to correlate the "ideal" delay forward stream 266 with return stream 262. The time-delay forward information stream 266 can be considered ideal because it has not been distorted by the predistortion circuit 200 or the analog part 120. Time positioning Part 700 and 800 perform time positioning, set it to the middle value, and remove the thermal difference signal 216 processing function. At this point, the linear and non-linear predistortion circuit 200 is ready to begin training linear compensation. [0086] After job 502, job 504 starts a secondary process 600 to execute an estimation and convergence procedure. In particular, the sub-process 600 executes this routine in task 504 to provide a programmable delay component provided by the common-mode time positioning section 700. Therefore, the sub-process 600 will now delay the time 31 200541280 to delay the forward information flow 266 and the return information flow 262 for time positioning. After work 504, work 506 again starts sub-processing 600 or a comparable process to re-execute the time positioning estimation and converge the program, but this time for the programmable delay provided by the differential time positioning section 800. element. At work 506, the sub-processing 600 performs time positioning on the I and Q frequency bands of the forward information flow 238. [0087] FIG. 6 shows a flowchart of a process 600 that can be used for each of the tasks 502 and 504, and the time positioning part 700 and 800. In the common mode operation 504, the time positioning part 700 control can adjust the time delay added to the delay complex forward information flow 266, but in the differential mode work 506, the time positioning part 800 control The relative delay added to the time-positioned return information stream 262 and one of the Q bands can be adjusted. [0088] The sub-process 600 performs a task 602 to correlate the correlation engine (CE) 28o to the "ideal" time-delay complex forward information stream 266, and returns the information stream 262 at a suitable choice for multiplexers 270 and 278. [0089] Next, work 604 sets association convergence conditions. The convergence condition determines how many samples the correlation engine 280 needs to converge to a correlation result for correlation and integration. As discussed above, processing more samples can lead to a greater increase in the effective ruggedness of the return information stream, or a reduction in error levels. Therefore, an increase in program processing time translates the return information stream into a reduced effective error level. Through work 604, the convergence rate is controlled to achieve the preset effective return error level, which is smaller than the error level of the return information stream. One example is that it is possible to process a sample of 106 to achieve an improvement in the signal-to-noise ratio of 60 volumes. Of course, the sub-processing 600 does not need to set different convergence conditions in different situations, but the correlation engine 280 can use the same 32 200541280 conditions for all settings to do hardware settings. In this case, the task 604 is performed by the correlation engine 280 instead of the controller 286. [0090] After work 604, the sub-process 600 performs a query work 606, which determines when the correlation engine 280 has converged to a correlation result. During work 604, the correlation engine 280 processes multiple multiple samples. By using a preset delay element, a correlation is made between the return information stream and the delay direction ^ stream, and the initial value of the set delay element is an intermediate value.丨 ⑽91] When the correlation result occurs, the initial work 6G8 is followed by—the initial step of the large step positive displacement • Beginning estimation ’Bribery—coming soon_binary search program. "Big, step refers to the calculation time of the upcoming binary search program, relative to the time delay added by the previous association." Positive, displacement refers to the time delay of the upcoming calculation, which will be greater than the previous An arbitrary value. After work 608, a work 610 adjusts the programmable time positioning hardware (part 700 or part 800) to reflect the current step size and displacement direction. [0092] FIG. 7 shows a block diagram of an embodiment of the common-mode time positioning part 700. This embodiment uses a relatively simple hardware application to achieve accurate results, and thus needs to be used. But _ is that although the time positioning part 700 A has a linear and non-linear predistortion circuit 200 and provides suitable results, people in the same industry can design their own embodiments. The time positioning section 7 includes a minimum delay element 202, which can receive a complex information stream from the multiplexer 222. The longest delay element 702, the only non-programmable element, is used to add the delay of a whole clock, which is equivalent to the combined circuit 200, time positioning part 800, linear predistorter 244, analog part 120, feedback part The minimum delay imposed by combining 248, attenuator 256, and equalizer 26. The one-clock multiple junction delay line 704 is driven by the minimum delay element 702, and each segment of the complex signal has an equal 33 200541280 delay on the delay line. Although FIG. 7 depicts eight contacts 706, persons in the same industry can provide any number of contacts 706. The contact 706 is coupled to the data input point of the multiplexer 708, and an output of the multiplexer is connected to an input point of the complex interpolation 710. The interpolator 710 may use a Farrow or other architecture and add equal delay to both ends of the complex signal. One of the outputs of the interpolator 710 provides the delay complex forward information flow 266 ', and the controller (0286 provides control input points to the multiplexer 708 and the interpolator 710. A clock number 712 is also provided to the minimum delay component 702, delay line 704, and interpolator 710. The clock 712 is preferably synchronized with the data rate of the forward and return information streams. [0093] When work 610 is used for common mode time positioning part 700 (that is, During the working period of 504), the time positioning part 700 can be adjusted by providing appropriate control inputs for the multiplexer 708 and the interpolator 71.-The entire part 714 includes the delay line 704 and the multiplexer. 708, and is used to provide an integer multiple of the delay of the clock 712, such as the control data specified by control $ 286. Part of the section 716 includes the interpolator 710 and is used to provide the clock 712-cycle delay. Time positioning Part 700 can use the control multiplexer 708 to achieve an arbitrary multiple of time delay, and control the interpolator 71 can achieve the fraction of the delay. I _circle 8 shows the time of the money. Block diagram and this embodiment can achieve accurate results because it uses a relatively simple hard-zhao design. The result is needed. But although the time positioning part can provide the suitable results of the linear and non-linear predistortion circuit 200, people in the industry can design their own feasible lines. Differential time positioning part can The common-mode time positioning part 700 is similar to 'but with a different effect as shown in Figure ,. One of the complex forward information streams 238 is connected to a clock delay and the other is a foot' shown in Figure 8 The Q pin 'is connected to the fixed delay element m. The delay element 8 (H is configured to realize the delay of 34 200541280 B delay element 802! / 2. Although it depends on 8_ is the delay with human health points Line 802 'People in the same industry can design any number of contacts. Contacts connect to the data input points of Duoyi 808, and the multiplexer has one output connected to the input of the interpolator 810. Point. The interpolator 810 can be implemented using FarrOW or other architectures. One output k of the interpolator 810 is used for complex direction > section I of the stream 242, and one of the delay elements 804 output provides information Segment Q of stream 242. The controller (Q 286 provides control inputs to the multiplexer 808 and interpolator 81 And the clock "812" is also provided to the delay line 802, the delay element 804, and the interpolator 81. The clock% 812 is preferably synchronized with the data rate of the forward information flow. [0095] When working 610 is used for the differential mode time positioning part 8 hours (that is, when working at 506), the time positioning part 800 can use the way of providing suitable control inputs to the multiplexer 808 and the interpolator 810. An integration part 814 includes a delay line 802 and a multiplexer 8⑽, and provides a delay of an integer multiple of the clock 812, such as control data specified by the controller 286. Part of part 816 includes interpolator 810 and provides a fraction of clock 812. If you want to preset the time delay of any fraction of the positioning part 800, you can control the multiplexer 808 to achieve it, and the fractional part @part time delay can be achieved using the control interpolator 810. [0096] Returning to FIG. 6, when task 610 adjusts the time positioning hardware and reflects the new delay according to the old delay and the current step size and polarity, inquiry work 612 is performed. During work 612, the correlation engine 280 performs its correlation and integration operations until the correlation condition is reached. When job 612 determines that the association condition is met, a query job 614 determines whether the current association result is greater than the maximum association value recorded since the start of process 600. If the current correlation result is not greater than the previous correlation, then work 616 makes the estimated size of the steps the same as the former, but changes 35 200541280 the positive and negative values of the displacement ’and then program control continues with work 618. If the current association result is not greater than the previous association, a job 620 estimates the size of a step from the previous step size, usually 0.5 to 1. 0 times the size of the previous step, and the polarity displacement is also estimated, then the program control continues to work 618. [0097] Work 618 decides whether the prediction and convergence formula has converged to a common mode delay value or a differential mode delay value, so as to maximize the correlation between the negative signal flow and the return information flow. Convergence can be monitored by the current step size, and if the current step is smaller than the resolution of the interpolator 71 or 81, then φ is judged to have reached convergence. When task 618 determines that delay convergence has not occurred, program control returns to task 610. At work 610, the estimation of the previous time delay is changed according to the current step size and displacement pole, and then the association process is repeated. [0098] When work 618 determines that delay convergence has occurred, the sub-process 600 has been completed. At this time, the time delay complex forward information stream 266 has been positioned in time with the complex information stream 262. In addition, the linear compensation process 500 may continue to perform another positioning process, which is a prerequisite for the actual embodiment to perform actual linear compensation. Lu [0099] Referring back to FIG. 5, after starting the secondary process 600 twice, once for the common mode time and once for the differential mode time, respectively, work 504 and 506, a process of 9㈧ will be performed to execute A prediction and convergence formula is obtained, and the phase angle of the positioning complex forward information flow 272 is transformed into the same phase as the time delay complex forward information flow 266 through the phase angle rotator 1000. [0100] FIG. 9 shows a flowchart of a sub-process 900. The sub-process 900 includes a job 902 for controlling the multiplexer 270 'so that the correlation engine 280 can be coupled to "ideally, locate the complex forward information." A correlation operation is performed between the stream 272 and the return information stream 262. Then, work 204 removes 36 200541280 and selects the CORDIC unit. Work 904 connects to a specific piece of hardware to perform the phase angle in the preferred embodiment. Rotator 1000. [0101] Fig. 10 shows a block diagram of an embodiment of the phase angle rotator part 1000. This embodiment is useful because it can use a relatively simple hardware design to achieve accurate results. But although the phase angle rotator 1000 can provide suitable results to the linear and non-linear predistortion circuit 200, people in the same industry can design their own flexible embodiments. The phase angle rotator includes a quadrant selection unit 1002, followed by The CORDIC unit 1004 is connected in series. Figure 10 only depicts two of the CORDIC Lu unit 1004, labeled 1004 and 1004, but the remaining units should have the same architecture as the unit 1004 '. Any number of CORDIC units 1004 can be included, and the preferred embodiment has 6 to 16 units 1004. If you enclose 10 units of 1004, it can provide 0: 112 degrees of accuracy. [0102] Delay forward information The stream 266 is received at the quadrant selection unit 1002, and the feet of the complex information stream are received at its own selection inversion circuit 1006, while FIG. 10 depicts a multiplier. The selection inversion circuit 1006 Independent control by the controller 286 is reversed, or the information flow is passed through unchanged. The units 1002 and 1004 are plotted in the figure as the terminals of the latch 1008, and the control circuit 1006 is displayed The combination of various inversions and passes can save four possible quadrants, and the unit 1002 can shift the incoming information stream 266 by 0, 90, 180, or 270. [0103] In each CORDIC unit 1004 In each unit, the I and Q pins that flow into the complex information stream are connected to the shifter 1010. Figure 10 depicts the shifter 1010 as a multiplication circuit, because the shifter 1010 is executed by the inverse of the power of two Mathematical multiplication. In the first Cordic unit of 2004, the shifter 1010 can be omitted because they will flow into the The material is shifted to the right by zero and the operation multiplied by 37 200541280 one is performed. At the first CORDIC unit 1004, it is displayed with the next unit. The shifter w shifts the machine-in data to the right by the previous unit. Add one bit. Therefore, the figure shows the displacement unit 1G1G on the element surface, which is multiplied by Q 5, and the three c0ROCIC units_ are actually fine G · 25, so that is the same.- People in the industry may think that it is not necessary to implement the shifter 1010 with actual parts, and only replace it with a wire. [0104] In each CORDIC unit 1004, the output of the shifter 1010 is connected to a selectively enabled circuit 1G12 'as shown in several AND gates in the embodiment of the figure, in which the feet of the complex information flow There is a brake. The other inputs of each AND gate are controlled by the controller 286. Therefore, the controller 286 either passes the output of the shifter 1010 completely or adds a zero value. [0105] In the I pin of each CORDIC unit 1004, a subtractor 1014 subtracts the output of the selection enabling circuit 1012 from the Q pin flowing into the information stream. An adder 1016 in the q pin of each 〇RDIC unit 1004 selects the Q pin of the incoming information stream and the I pin of the incoming information stream to enable the output of the circuit 1012. From the subtracter 1014 and the adder 1016, the I and q pins flow out of the CORDIC unit 1004 through the latch 1008. [0106] Each CORDIC unit 1004 rotates its incoming complex information stream in a gradually small angle manner, as shown in the following example: Table I-10 CORDIC unit phase angle rotator multiplier 1. 0 0. 5 0. 25 0. 125 0. 063 0. 031 0. 016 0. 008 0. 004 0. 002 Angle (degrees) 45. 0 26. 6 14. 0 7. 125 3. 576 1. 790 0. 895 0. 448 0. 224 0. The rotation of each unit is only slightly more than the% of the rotation of the previous unit. Therefore, for the resolution of 1000 included in the phase angle rotator part, the number of CORDIC units determines the resolution by selectively combining 38 200541280 CORDIC units 1004, anything between 0. _90. The range can be reached. [0107] Although not shown, a scaling stage can be used to compensate for the scaling of the amplitude of the signal processed by the CORDIC unit 1004. In one embodiment, each CORDIC unit 1004 can be set to a positive or negative value to maintain its scaling at a certain value for different rotations. [0108] Referring to FIGS. 9 and 10, the operation 104 disables the selection enable circuit 1012 in each unit 1004, so that a signal from any pin of the unit 1004 will not be cross-linked to another pin. Therefore, the CORDIC unit 1004 does not rotate due to work 904. After work 904, a work 906 sets the convergence conditions. As discussed in the above work 604, setting the convergence conditions can control the rate of association convergence to use a low-resolution return information flow to reach a preset effective error level. By task 906, the increase in program processing time translates into a return flow of information that reduces the effective error level. [0109] After work 906, a work 908 is selected to adjust the control input at the selected inverter 1006 to control the other quadrant. The phase rotation part 1000, which affects the rotation, represents an estimate of the required phase rotation to bring the positioning and forward information stream 272 to the same phase as the return and return information stream 262. [0110] After work 908, the correlation engine 280 integrates between the forward and backward information flow 272 and the return information flow 262 based on the current phase transfer estimate. A query work 91 determines whether the convergence conditions of the above work 906 are met. When the convergence conditions are met, a query work 912 determines whether all four quadrants have been selected. If the number of quadrants tried has been less than four, the correlation results are stored and program control returns to work 908 until all four quadrants have been tested. [0111] Although work 908, 910, and 912 describe one embodiment of the quadrant evaluation, another alternative embodiment is that one of the forward and reverse information flows and the reverse information flow can be compared with other information flows. 39 200541280 Each foot is associated, and the result of the previous association sub-processing, such as sub-processing 600, can be used. The quadrants can then be selected based on the relative size and polarity of the correlation results. [0112] When all four quadrants have been tested or otherwise evaluated, a job 914 selects from the four quadrants the quadrant that will or should have the greatest correlation, and sets the selected inverter 1006. Then, a job 916 selects the next most obvious CORDIC unit 1004 by selecting the unit 1004. In the first calculation of work 916, a displacement of 45 was selected. CCoRIC Zhuo Yuan 1004. At this point, another estimation of the phase inversion to bring the positioning forward forward information flow 272 into the return return information flow Lu has completed, and the correlation engine 280 performs its correlation and integration work. [0113] After work 918, a query work 916 determines whether the convergence conditions set by the work 906 described above are met. When the convergence conditions are met, a query 920 decides whether the maximum associated record from the start of the sub-process 900 to the present has increased by the most recent estimate. If not found, a job 922 deselects the current CORDIC unit 1004. After work 922 and work 920 find that the maximum correlation value increases, a work 924 determines whether the nearest and smallest CORDIC unit 1004 is selected. As long as there is still a small untested CORDIC unit 1004, program control will return to # job916. [0114] After job 924 determines that the last CORDIC unit 1004 has been evaluated, sub-process 900 is complete. At this time, the processing 900 has measured all the CORDIC units 1004, and has selected all the units 1004 that generate the phase transition evaluation to the maximum correlation, such as the correlation engine 280 decider. This process brings the positioning complex forward information stream 272 to the same phase as the complex return information stream 262, reaching the accuracy set by the convergence conditions used by the correlation engine 280, and the number of CORDIC units 1004 included in the phase conversion part 1000. 200541280 [0115] Referring to the previous figure 5, after the sub-processing 900 is completed, a job 508 optimizes the gain adjustment provided by the adjustable attenuator. Therefore, task 508 executes a suitable optimization program to provide the addition and / or reduction of programmable attenuation in the coarse and fine adjustment attenuators 302 and 256, respectively. The optimization program must be able to make attenuation adjustments to minimize the cumulative difference between the forward stream 272 and the return stream 262. The optimization procedure may use techniques similar to those discussed above, as shown in Figure 6-10, or other techniques that may be used. [0116] After working 508, the linear and non-linear predistortion circuit 2000 is now sufficiently trained and ready to face the compensation problem of linear distortion generated by the analog part 120 more directly. So far, in the combination circuit 274, "ideally, the time and phase angle of the forward information flow and the reverse information flow coincide with each other. Therefore, the error information flow 276 now represents the distortion produced by the analog part 12. But as explained above The error information 276 is from the return information stream, at least part of which was formed, and shows a high degree of error and low resolution. Now start a secondary process ι〇〇 for the forward equalizer 246 to perform pre- Evaluate and converge the program. [0117] 11 shows a flowchart of the sub-process 1100. The sub-process 1 100 has been adapted to a special embodiment of the non-adaptive equalizer 1200 and a special embodiment. The engines are said to operate together. Figure I2 shows a block diagram of a representative non-adaptive equalizer suitable for several parts of the linear and non-linear predistortion circuit 2000 and a sub-process blue. The forward equalizer 246 can be configured similar to a non-adaptive equalizer, but it is likely to have more contacts. Of course, Figure 13 shows-the proper match with the _Lin Qingteng adaptive engine test shown in @ 12, and linear and non- Linear predistortion circuit 200. But the same People in the industry can identify other non-adaptive equalizers. The embodiment of the adaptive engine test and sub-processing can be designed to achieve many of the goals of the 200541280 existing invention. [0118] Referring to FIG. 12, the non-adaptive equalizer 1200. There are only three contacts drawn for the convenience of a complex equalizer, but people in the same industry can discern that the number of contacts can be easily increased or decreased depending on the particular application. I and Q of the complex input information flow The pins are connected to the nodes 1202 and 1204, and the equalizer 1200, or the equivalent, can be used in multiple locations of the linear and non-linear predistortion circuits 200, such as the equalizers 226 and 246. , And / or 260, etc. Therefore, the true identity of the complex input information flow varies depending on the place of use. • [❶119] 1 · Node 1202 is coupled to and drives the clock contact delay lines 1206 and 1208. And the Q_point 1204 is connected to and drives the clock contact delay lines 121〇 and 1212. The delay line 1206 drives the in-phase direct path 1216 of the equalizer 1200; the delay line 12ι drives the equalizer 12〇 〇 Orthogonal direct path 1216, delay line 1208 drives equalizer 1200 The phase-to-orthogonal cross path 1218, and the delay line 1212 drives the orthogonal to the in-phase cross path 1220 of the equalizer 1200. [0120] Each contact 1222 of each delay line 1206, 1208, 1210, and 1212 drives its own The first input of the multiplier 1224, and the output of the multiplier 1224 drives the adder 1226. An output of the phase 0 angle path 1214 is provided by the sum of all multipliers 1224 on its path to the positive of a subtractor 1228 The input is quadrature to one of the in-phase paths 1220 and is provided by the sum of all multipliers Π24 on its path to the negative input of a subtractor 1228. An output of the quadrature path 1216 is provided by the sum of all multipliers 1224 on its path to the first input of an adder 1230, and an output of the in-phase to quadrature path 1218 is provided by its The sum of all multipliers 1224 is provided to the second input of an adder 1230. One output of the subtractor 1228 provides the j-pin of the complex output information stream, and the output of the adder 1230 provides the 42-200541280 Q-pin of the complex output lean stream. [0121] The contacts 1222 of the in-phase and quadrature direct paths 1214 and 1216 have the same filtering coefficients and are provided by the multiplier 1232 through an optional heat adaptor unit 1234, and each of the contacts 1222 has an output. Figure 12 shows two heat adaptor units 1234, and only one of them is marked with details. If the heat adaptor unit 1234 is omitted, the filter coefficient of each contact is directly provided by the multiplier 1232. This filter coefficient output is coupled to the second input point of two corresponding multipliers of the direct paths 1214 and 1216. Similarly, the cross paths Pig and 1220 have the same filter coefficients as each contact 1222, provided by the multiplier 1236 through an optional heat adaptor unit 1234, and each contact 1224 has an output. This filter coefficient output is coupled to the second input point of two corresponding multipliers of the cross paths 1218 and 1220. [0122] Multiplexers 1232 and 1236 receive filter coefficients from the adaptation engine 1300 at feature 236 or from the controller 286. When the heat adaptor unit 1234 is included, the thermal coefficient is also received from the adaptation engine 1300 or the controller 286. The controller 286 also controls the selection inputs of the multiplexers 1232 and 1234. The slave controller 286 or the adaptation engine is used to connect the filter coefficient and the thermal coefficient. The adaptation engine 1300 is used to couple and decouple the equalizer 1200. . When filter coefficients and selectable thermal coefficients are provided from the controller 286, the equalizer 1200 operates in a non-adaptive mode. In the non-adaptive mode, a set of direct filter coefficients and direct thermal coefficients are set by the controller 286 to the direct paths 1214 and 1216, and a set of cross filter coefficients and cross thermal coefficients are set by the controller 2 to the cross paths 1218 and 1220. Unless the controller 286 changes the program, any set of filter coefficients will not change, but the filter coefficients can be selectively adjusted in the heat adaptor unit 1234 in response to the thermal difference signal 216. In the preferred embodiment, the optional adaptor unit 1234 and the non-adaptor 43 200541280 adaptive equalizer 226 are included, but in other applications may include this and other equalizers, or from all equalizers. Omitted. [0123] Each heat adaptor unit 234 includes a multiplier 1238 of each contact and an adder 1240 of each contact. The thermal difference signal 216 is coupled to the first input of each multiplier 1238. For each contact, the multiplexer 1232 or 1238 provides the second input of the thermal coefficient "?" To the contact of the multiplier 1238. The relative output of the multiplier 1238 is coupled to the first corresponding input of the adder 1240. Moreover, for each contact, the multiplexer 1232 or 1238 provides a filter coefficient "w" to the second input of the contact of the adder 1240. The output of the adder 1240 provides the filter coefficient of the heat adaptor unit 1234. Output. Therefore, the filter coefficient has a displacement, maybe positive or negative, and responds to the thermal difference signal 216 with the weight of the thermal coefficient. [0124] When the adaptation engine 1300 provides a filter coefficient and an optional thermal coefficient, the equalizer 1200 operates in adaptive mode. In adaptive mode, the adaptive engine 1300 provides at least one direct and alternating filter coefficient and thermal coefficient, and as long as the equalizer 1200 maintains its adaptive mode 'these filter coefficients The groups with the thermal coefficient will change continuously. _ [0125] With reference to 囷 13, in one embodiment the adaptation engine 1300 is configured to accommodate a partial equalizer to reduce linear and non-linear predistortion circuits 2 The number of parts of 〇〇. Especially when the adaptive engine 1300 is connected to the -non-adaptive equalizer 12 00, it will be connected to the direct path i2i4 and 1216 or the cross-route control 1218 and 1220, but will not In order to be consistent with the three-contact re-equalizer 1200 of FIG. 12, FIG. 13 shows a three-contact circuit. However, people in the same industry can discern that the number of contacts can be easily adjusted according to their particular application. Increase or decrease. [0126] The "ideal" positioning complex forward information flow 272 and the Q pin are respectively supplied to the clock connection 44 200541280 delay time lines 1302 and 1304, and three delay lines are drawn for convenience. Contacts. When the adaptive engine 1300 operates in its mode coupled to the direct path 1214 and PM of the non-adaptive equalizer 1200, the I and Q pins of the error information stream 276 are connected to the delay elements 1306 and 1308. The delay elements 1306 and 1308 are each configured to delay the time from the error information stream 276 to the midpoint of the contact delay lines 1302 and 1304. When the adaptation engine 13⑻ is operating in the mode coupled to the cross path i2i8 and its mode, the error information flow 276 and the Q pin are supplied to the clock components 1306 and 1308, respectively. The first input of the corresponding in-phase multiplier i3i2 is connected from the contact 131 of the in-phase delay line 1302 and the corresponding input of the quadrature delay line 130 The first input of the corresponding positive father phase multiplier 1316. The output from the in-phase multiplier 1312 is coupled to the first input of the corresponding adder 1318, and the output from the quadrature multiplier 1318 is coupled to the corresponding adder 1318 through the selected inverse component 1320. The second input. [0127] The selected inverse element 1320 is shown in FIG. 13 as a multiplier, and one input of the multiplier is controlled by the controller 286. The controller 286 inverts the output of the weighted quadrature signal when the adaptive engine 1300 is operating in its cross paths 1218 and 1220 coupled to the non-adaptive equalizer 1200, but when the adaptive engine 1300 is coupled to When the modes of the direct paths 1214 and 1216 operate, the 'orthogonal multiplier 1316 does not output an inverted weighted orthogonal signal. Those in the same industry will recognize the inverse element 1320 that does not require the use of a multiplier to perform the selection. Similarly, people in the same industry will recognize that quantizing the error signal 276, the ideal positioning signal 272, or both into a single bit or a-/ 0 / + value, can reduce the complexity of the adaptation engine 1300. In this alternative design, the above multiplier can be replaced with a simpler circuit. [0128] The various outputs of the adder 1318 will be noisy because they are based on the return information stream 45 200541280. These outputs are coupled to the first input of the corresponding multiplier 1322, and the second input of all multipliers 1322 is coupled to the controller 286. The controller 286 provides a convergence factor "μ," to determine how much the filter coefficient can be changed compared to the clock period to the clock period. In a preferred embodiment, μ uses a small value to prevent addition The multiplier 1318 allows considerable variables to have a great impact, and output noise from any single element or even a group of elements of a considerable size. [0129] Each output of the multiplier 1322 is coupled to the corresponding adder 1324. One input, and the output of each adder 1324 is coupled to the corresponding single-cycle delay element 1328 through the first data # input of the corresponding multiplexer (mux) 1326. The controller 286 provides the multiplexer 1326. The second data input and selection control input. The delay element 1328 can initialize the preset filter coefficients from the controller 286, but under normal adaptive operating conditions, each adder 1324 will leave the former in the corresponding delay element 1328. The coefficient value is added to the change value of the filter coefficient. In addition, for each contact, the output of the adder 1324 provides the filter coefficient w "output by the adaptation engine 13 in the characteristic output. When operating in its adaptive mode, the controller 286 provides a filter coefficient "w" to the equalizer 1200, and can be read by the controller 2. _ [0130] The subsequent processing of the wave coefficients is directed to the thermal-related memory effect, especially the data wave coefficient “w” output from each adder 1324 is connected to the corresponding IIR • crosser circuit. The waver circuits each include a subtractor circuit 1330, a multiplier 1322, -adder 1324, and a single-cycle delay 1336. The output from each adder 1324 is tapped to the positive input of the corresponding subtractor circuit. The input of each subtractor circuit 133 is used for the output of the crossover, and is lightly connected to the first input of the sensitivity multiplier 1322. The second in-round adaptation of each sensitivity multiplier 1322 receives the miscellaneous numbers provided by the controller 286 ^ The output of each multiplier 提供 is provided to the corresponding first input of the 2005 461280 generator 1334, and each of the adders 1334 The output is clocked through the corresponding delay element 1336. Each input of the delay element 1336 is connected to the corresponding adder CU4 and to the negative input terminal of the corresponding subtractor circuit 133. [0131] The adder 1334 provides an average coefficient output of each filter circuit, which is expressed as m; the wave coefficient w is considered as a long-term average value or a transition signal. The subtracter circuit measures the difference between the current instantaneous value of the filter coefficient "w" and the long-term average value from the previous clock cycle. The coefficient sensitivity factor γ determines the sensitivity of the long-term average value to the effect of the instantaneous filter coefficient. A small Y value is required to make the average value reflect a longer period, and it is less sensitive to the filter coefficient of any -clock period. The output of the subtractor circuit 1330 provides a coefficient difference information stream 1338. For the indirect points in the adaptation engine 1300, the coefficient difference information stream 1338 forms a coefficient difference signal, and is selectively connected to the correlation engine 280. [0132] When the HPA 136 passes through the average filter coefficients related to heat, it can be changed with the change of temperature to determine the change of the wave. Therefore, the subsequent principle of appropriateness is implemented in the poor resource domain—the book of Wei Qianying. On the _ side, each coefficient difference information stream is connected to the positive input terminal of the corresponding subtractor circuit. Each subtracter circuit mo is connected to the first input of the corresponding multiplier 1342, and the output of each multiplier 1342 is connected to the first input of the corresponding convergent multiplier 1344. The output of each retractor 1344 is connected to the first input of the corresponding adder 1346, and the output of each adder 接 is returned to the same adder 透过 through the corresponding single-service delay element ⑽. The two inputs thus form an integrator from the adder 1346 and the delay element ⑽. Furthermore, the output of each adder 1336 is connected to the first input of the corresponding multiplier 135 °, and the output of each multiplier 47 200541280 is connected to the negative input of the corresponding adder 134 °. The thermal difference signal 216 drives the second input of all multipliers 1350 and all multipliers 1342, and the controller 286 provides a convergence value λ to the second input of the convergence multiplier 1344. [0133] The output of the adder 1346 provides a thermal coefficient α, which is output from the adaptation engine 1300 at characteristic 236. When operating in its adaptive mode, the thermal coefficient α is provided to the equalizer 12⑻, and can also be read by the controller 286. After a period of time, the thermal coefficient 〇1 of the thermal difference signal 216 converges to a more accurate estimation of the sensitivity of the change in the filter coefficient "w". As discussed below and shown in FIG. 17, the thermal difference signal 216 characterizes changes in the HPA 136. Therefore, the thermistor coefficient α, the thermal signal, and the filter coefficient are used together in the adaptor unit 1234 to remove the correlation between the possible thermal change of the price ρα 136 and the change of the equalizer filter coefficient. In other words, determining the thermal coefficient α, when it forms the thermal difference signal 216, it will cause the thermal signal to become greatly correlated with the corresponding coefficient difference signal. [0134] FIG. 13 depicts all single-cycle delay elements 1348 as having a clear input driven by the output of the controller 286. This input allows the controller 286 to initialize the delay element 1348 to a zero state and eliminate heat treatment. [0135] In one embodiment of the adaptation engine 1300, the integration and output operation (not shown) can be performed on the thermal difference signal 216 and the coefficient difference signal 1338 to slow down its data rate. This may be allowed because thermal changes occur at a slower rate than the rate at which the data is processed through the transmitter 100 one by one. Reducing the data rate here can save the power of the downstream coefficient difference signal 1338. [0136] Referring to FIG. 11 above, the sub-processing 1100 operates with the equalizer 1200 and the adaptation engine 130048200541280 to perform a low-resolution and high-error characteristic of a tolerable error information stream 276. Level estimation and convergence formula. When the process 1100 is operated for the initial stages of linear distortion compensation and non-linear distortion compensation, the heat treatment is cancelled by operating the initial work of 502. The heat treatment can be cancelled by setting the single-cycle delay element 1348 to display a zero value and setting the convergence value χ to zero. This will cause the adaptor unit 1234 to fail, but cancelling the heat treatment is an unresolved point associated with the equalizer 1200 and used as a forward or return equalizer 246 and 260, and this can be omitted in the preferred embodiment Heat adaptor unit 1234. [0137] The process 1100 performs a job U02 to lock the adaptation engine 1300. The adaptation engine 1300 can be locked by providing a convergence factor μ = 0 to the adaptation engine 1300. The adaptive wave coefficient "w" of the adaptive engine 1300 'transmission characteristic 236 cannot be changed. After work ι102, a work 1104 initializes the mode of the adaptation engine (AE) 1300 to determine the filter coefficients of the direct paths 1214 and 1216 of the equalizer 1200. At this time, the choice of the direct paths 1214 and 1216 and the parent fork paths 1218 and 1220 is arbitrary. The adaptation engine 1300 can initialize the adaptation of the direct path filter coefficients via an inversion circuit 1320 that controls the selection so that they do not reverse the weighted orthogonal signals they process. After working 1104, the sub-process 1100 starts a program 1106. Here, the estimation and convergence program of the 1/2 complex equalizer 1200 is used to determine a set of chirp coefficients.丨 0138] Of course, there is no need to adapt the engine 1300 to adapt to only a part of the path of the equalizer. If the adaptation engine 1300 is configured to adapt to all the paths of the equalizer 1200 at the same time, it is due to the figure The adaptation engine circuit of 13 is substantially doubled, but some reverse circuits 13 and 1104 can be omitted. In this case, the adaptation engine 1300 performs addition in circuit 1318 and the other half of adaptation engine 1300 performs subtraction in circuit 1318. 49 200541280 Tao 9] In particular, after working 1104, a work · initialization of the adaptation engine (outline wave coefficient. The work circle can initialize a single-cycle delay element 以 to display the currently used equalization road control settings. Filter coefficient. However, once initialized and in other situations, a single-cycle light component can be set to a desired value, duty value, or not set at all. [0140] After work 1108, the work 1100 will adapt to the engine (ae) The 1300 handle is connected to the% part of this non-adaptive equalizer 1200. The handle is to control the multiplexer 1232 or 1236, as the case may be, to select the wave coefficient from the adaptive engine instead of the controller. • [〇141] Next, a job 1112 sets the convergence conditions. In one part, the estimation and closing formula is given, and the adaptive engine (AE) blue is unlocked. Part of the convergence conditions is set and the adaptive engine is unlocked 2 It may be achieved by providing a positive value of the adaptation engine to the convergence value μ. This value is preferably a fraction that is very small, and the convergence condition determines how many samples the adaptation engine 1300 should process before it can be considered to have converged to one. The answer of the wave coefficient group. As discussed above, the more effective the sampling process, the greater the effective resolution, or the error level will be reduced in the return information flow. The increase in the number of program offices has transformed into reducing the error of the return information flow. Level. Through work 1112, the speed of convergence can be controlled to achieve a preset effective return error level lower than the error level of the return information stream. In one embodiment, the convergence variable μ is initially set to a higher value However, it decays with time. This method allows fast convergence to a close result, and then slows down the convergence rate to achieve a smaller final tracking error. [0142] After work 1112, the adaptation engine 1300 will perform a LMS, prediction and convergence formula, in which the estimated value of the filter coefficients is continuously changed to minimize the error signal. LMS, prediction and convergence formula is repeatedly changed in the filter coefficients, to minimize the error signal. And 50 200541280 and make the error signal flow from the forward information flow unrelated, this action also increases the forward and return information flow. More specifically, the filter coefficient After adjustment until the result from the HPA input signal 134 or HPA output signal 117, according to the current state of the multiplexer 250, it becomes a substantially uncorrelated signal (for example, as close to white noise as possible). [0143] At this time, a Work 1114 confirms whether the wave coefficient determined by the adaptation engine 1300 is converging. Work 1114 is performed together with work 1112 to set the convergence conditions. Using smaller μ values, the longer time used by work 1114 further increases the effective analysis. And further reduce the effective return information flow error level. Job 1114 can only decide whether there is enough time to reach convergence, or job 1114 can monitor the filter coefficients generated by the adaptation engine 1300, and when the filter and wave coefficients are measured without consistency When changing morphology, make sure that convergence has occurred. [0144] After work 1114 determines that convergence has occurred, a query work 1115 decides whether the secondary process 1100 has been started to include the decision of heat treatment and filter coefficients. There are no heat treatment, forward and return equalizers 246 and 260, and an equalizer 226 that initially determines the coefficient calculation. In these cases' program control will be handed over to job 1116. The case of heat treatment will be discussed below with FIGS. 15 and 17. [0145] Working 1116 locks the adaptation engine 1300 by setting the convergence coefficient of the wave coefficient and the thermal convergence factor = 0. Then, a job 18 reads the characteristics 236 of the adaptation engine (where) 1300, and reads a set of filters Coefficient and thermal coefficient. After work 1116 and 1118, a job 112 has set the set of wave coefficients to the subject non-adaptive equalizer 1200, and a job 1122 has decoupled the adaptive engine (AE) 1300 from the non-adaptive equalizer 120. . When the sub-process 1100 is used to determine the thermal coefficient, the work 1120 also sets the subject non-adaptive equalizer 1200 to a set of thermal coefficients. 51 200541280 [0146] Decoupling can be achieved using controller data input selected in subject multiplexer 1232 or 1234 instead of using adaptation engine data input. At this time, the adaptive engine 1300 has determined a set of filter coefficients and possibly a set of thermal coefficients, and the filter coefficient group and the thermal coefficient group have been set in the non-adaptive equalizer 1200, so the adaptive engine 1300 is now One can determine another set of filter coefficients and complete the procedure 1106. The filter coefficient group and the thermal coefficient group that have just been determined are preferably static, but the filter coefficient group may continue to be adjusted in the non-adaptive equalizer due to the thermal difference signal 216 and the thermal coefficient.丨 0147] After work 1122 and program 1106, a work 1124 starts the adaptation engine 1300 mode to determine the cross path coefficient of the subject non-adaptive equalizer 1200. The adaptation engine 1300 can use the inversion circuit 1320 selected by the control to start the crossover wave coefficients so that they can invert the weighted orthogonal signals they process. Next, a job 1126 repeats the procedure 1106 with other filter coefficient sets. After work 1126 completes the other filter coefficient sets, the sub-processing 1100 is complete. [0148] Referring to FIG. 5 above, when the sub-process 1100 is completed, the sub-process 500 is also completed at the same time. At this time, the linear predistorter 244 has previously set the forward filter coefficient to the forward equalizer 246 to compensate the linear distortion of the RF analog signal 134 at the input of the HPA 136 caused by the analog part 120. In particular, the forward equalizer 246 can now compensate for frequency-dependent gain and phase imbalances, and it can also compensate for differences in gain and delay caused between the pins of the secondary communication signal. Therefore, the closer the RF analog signal at the input of the HPA 136 is, the better, and the linear distortion caused by the analog part 120 upstream of the M 136 is responsible for the predistortion generated by the hybrid predistorter 244. [0149] With reference to the high-pass filter 205 in the previous figure and the high-pass filter 314 in FIG. 3, each filter has a very small effect. In particular, in order to block the value flow component, a small amount of energy close to DC is also blocked by the high-pass viewer 314 in the return path. But this is the same for DC in the spectrum. An overview circuit is used to drive the forward equalizer 246 to match the return path. Therefore, the adaptation engine 1300 decides to control the linear distortion of the forward information flow toward the wave coefficient, except for approaching the direct capture here. The Nantong filter 205 removes this near-DC energy only from the forward information stream so that all the amount passed through the forward equalizer 246_ is used to control linear distortion.

【0150】在疋成次處理5〇〇之後,及執行一次處理1.以延伸透過 136線性失真之補償。由於現在有相當的未失真信號呈現在· i36的輸 入端,ΗΡΑ 136現在放搭一個較為符合jjpA模型之設計成模型的控制狀況 之信號。再者,於此時,沒有非線性補償加人前向資訊流,而且,此相當 量的呈現至ΗΡΑ 136之未失真信號只包括頻寬内之頻率成份。 【0151】圖14顯示一個次處理14〇〇之流程圖,次處理14〇〇包括一工作 1402,用來以從ΗΡΑ 136之輸入端至ΗΡΑ 136之輸出產生之射頻類比信號 的多工器250,控制提供至降頻部份3〇〇之反饋信號。由於反饋信號現在 傳播通過ΗΡΑ 136,相較於由ΗΡΑ 136之輸入端的反饋信號,它會多遭遇 時延與相轉。接下來,一工作1404啟動次處理600以執行一共模時間定位 部份700之預估並收斂程式。最後,此“理想的,,時延複前向資訊流266被 帶回時間定位複回返資訊流262。在此,不需要進一步的差時定位,因為 複通訊信號之兩腳在ΗΡΑ 136處理之前均已合併。由於同樣的類比零件(亦 即ΗΡΑ 136)處理合併信號的兩腳,不會有機會形成進一步之差時正交不 平衡。 53 200541280 【0152】工作1404之後’ 一工作1406啟動次處理900,以執行一預估 並收斂程式,將定位複前向資訊流272之相位與複回返資訊流262之相位 重新定位。最後,此“理想的’’定位複前向資訊流272被帶回至與複回返資 訊流262而定位。 [0153]工作1406之相位重新定位之後,一工作14〇8由可調衰減器3〇2 與256以相似於工作508執行之方式提供最佳化之增益調整。工作14〇8之 後,一工作1414啟動次處理110〇,以執行一前向等化器246之預估並收 • 斂程式,以增加Μ輸出射頻類比信號117與前向資訊流之間的關聯。最 後,設定在前向等化器246之前向濾波係數被更新,以補償μ 136產生 的線性失真。特別是,此線性失真可以由之ΗΡΑ模式 的輸入帶通濾波器(BPF) 140與輸出帶通濾波器(BpF) 14〇產生。但是,於 此處,線性補償涵蓋不包含非線性零件之寬頻信號。 【0154】工作1414之後,一工作1416控制多工器222將最高次基本函 數資訊流214,,而非前向資訊流218,接至適應引擎13⑻。如前述討論, _ 最高次基本函數資赠214,呈現與前向資訊流218相同之時脈,並且在較 佳的實施例巾’基本函數產生部份16⑽不執行旋轉最冑:欠基本函數資訊流 214之正交相位的處理。因此,不需要進一步的時間或相位定位,以將最 南次基本函數資訊流叫,帶至與回返資訊流加^位。為了線性補償之目 的’最兩次基本函數資訊、流214,與前向資訊流218之間的一明顯差異會顯 現前面討論之超寬頻。 【0155】參考圖1所繪之ηρα模型,&叫)142可以 54 200541280 產生非線性失真,而造成頻寬之外的成分被輸出帶通據波器(bpf) 處理 的結果,而可能遭遇線性失真。為了補償此輸出帶通濾波器(BpF)丨44之 線性失真,一工作1418再度啟動次處理1100,以執行一預估並收斂程式。 但這次次處理1100是啟動回返等化器260去調整回返資訊流,以便回返資 訊流反映之ΗΡΑ射頻類比輸出信號117與超寬頻、最高次基本函數資訊流 214’之關聯能夠極大化。在前向傳播信號中,較高次項不至於有明顯的程 度,直至Wiener-HammersteinHPA模型之無記憶非線性部份之輸出(亦即 • amp 142)為止。但是,當這些較高次項通過Wiener-Hammerstein ΗΡΑ模 型之輸出BPF 144時,它們可能受到線性失真。因此,線性失真的補償涵 蓋輸出BPF 144必須處理的較寬頻寬。 【0156】此操作進一步捕償出現在ήρα 136輸出之線性失真,但不調整 ΗΡΑ輸出信號,而是在回返信號路徑做調整,以允許非線性補償之後續訓 練依賴線性失真補償之信號。工作1418之後,回返渡波係數透過預估並 收斂程式決定,並設定至回返等化器26〇。而且,回返資訊流就如同 修 Wiener_Hammerstein I模型可達到之無記憶非線性部份之輸出(亦即 _ 142)的精確複製一樣。 【0157】接下來,一工作1420控制多工器222將前向資訊流222接至適 應引擎1300,而不是最高次基本函數資訊流214,。然後,一工作1422再 度啟動次處理1100,以執行一預估並收斂程式。這次,既然回返等化器26〇 已經設定針對帶通渡波器Η4輸出之線性失真,故啟動次處理11〇〇給前向 等化器246,以移除可能在回返與前向資訊流之間的任何關聯。此操作是 55 200541280 特別針對補償輸入帶通濾波器(BPF) 140可能產生的線性失真。 [0158】工作1422之後,次處理1400即以完成,而線性與非線性預失 真電路200已訓練成可補償線性失真。由於幾乎是理想的信號提供給ΗΡΑ 136 ’ ΗΡΑ 136現在放大之信號非常匹配放大器模型設計的控制情況。再 者,amp 142後之線性失真來源已被補償,因此現在可以進行非線性失真 訓練,而不會受到線性失真太大的侵蝕。 [0159]參考前面之圖4,在次處理14⑻之後,發射失真管理過程4〇〇 現在進行一工作402以啟動一次處理15〇〇。次處理1500用來補償ΗΡΑ 136 產生的非線性失真。更確切的說,次處理15〇〇在工作4〇2補償非線性失真, 而不補償由熱誘發的記憶效應。 【0160】圖15顯示次處理1500之流程圖。一般而言,次處理15〇〇配置 成與Wiener-Hammerstein ΗΡΑ模型相容。特別是,假設非線性失真是被放 大之信號的高次諧波的型態。於此模型,因為上面討論的線性補償,在細口 142被放大的信號現在與驅動基本功能產生部份16〇〇“理想的,,信號緊密的 契合’而且,基本功能產生部份16〇〇產生此信號的較高次諧波。非線性預 失真器224過濾這些較高次諧波,然後它們與理想信號以相減的方式而合 [0161】次處理15〇〇包括一個從基本功能產生部份16⑻產生之基本功 月b ,選擇下一個基本功能的工作15〇2。工作1502在第一次演算時,任何 一個基本功能,從二次基本功能至第κ次基本功能,都可以選擇。否則, 工作1502最好選擇在工作15〇2的前一次演算之前,最久未被選擇的基本 56 200541280 功能。接下來的工作’是以決定等化器226之濾波係數與設定等化器η 中之濾波係數,來訓練預留給選擇的基本功能之等化器。 【0162】在較佳的實施例中,基本功能之間事實上是互相正交的。以互 相正交的方式,加於基本功能之-的漉波對其他基本功能會有最小的影 響。再者’當-基本功能之濾、波改變時’這些改變較不可能影響其他基本 功能。 [0163】圖16顯示一適合使用於線性與非線性預失真電路2〇〇的基本功 • 能產生部份1600之一實施例的方塊圖,此實施例有需要,因為它可以使用 一相對簡單之硬體設計而達到實質上的正交基本工能。而且,它會對一高 解析度、低誤差輸入之資訊流有反應,並且結果可提供高解析度、低誤差 輸入之資訊流。但是,雖然基本功能產生部份1600為了線性與非線性預失 真電路200之目的而提供適合的結果,同一行業的人士可以設計其替代的 實施例。 【0164】於一幅度電路1602與一乘法器1604可接收複前向資訊流 # 206,幅度電路1602產生一代表複前向資訊流206的大小之純量資訊流, 並接至乘法器1604,以及乘法器1606與1608。圖16表示基本功能產生部 份1600被分割成細胞1610,而各細胞產生一基本功能。乘法器1604、1606 與1608分別結合不同的細胞1610。一般而言,各基本功能會對Χ(η)·|Χ(η)|κ 做出回應,其中Χ(η)代表由部份1600接收的前向資訊流206,而Κ則是 大於或等於一之整數。乘法器1604、1606與1608之輸出為Χ(η)·|Χ(η)|κ資 訊流。 57 200541280 [0165】但是為了達到實質的正交,各基本功能等於一接近加權之 X(n)丨Χ(η)|ϊ^訊流的和,與所有的接近加權之較低次X(n).|X(n)|Kf訊流。 因此’乘法器1604之輸出,直接用做第二次基本功能,並提供複基本功能 資訊流214之一。乘法器16〇6於乘法器1612乘以一係數w22,且乘法器 1604之輸出於Wzi乘法器1614乘以一係數。加法器1616將乘法器1612 與1614之輸出加起來,並且加法器1616用做第三次基本功能,並提供另 一個複基本功能資訊流214。同樣的,乘法器1604之輸出於乘法器1618 φ 乘以一係數W3!;乘法器1606之輸出於乘法器1620乘以一係數w32 ;並 且,乘法器1608之輸出於乘法器1622乘以一係數W33。乘法器1618、1620 與1622之輸出於一加法器1624中加起來,而加法器1624之輸出,用做第 四次基本功能,並提供又另一個複基本功能資訊流214。在較佳的實施例 中,這些係數以Gram-Schmidt正交技術在設計階段決定,或者任何同一 行業的人士之正交技術亦可。因此,這些係數在發射機1〇〇運作的階段保 持不變。但是在某些情況的改變下,發射機1()0運作時這些係數無法保證 • 不變。 【0166】同一行業的人士知道基本功能產生部份ι6⑻可以擴充加裝細 胞1610,以提供任意數量的基本功能。再者,同一行業的人士知道可以依 照需要加裝管線階段,以適應有關零件的時脈特性,並確認各基本功能由 實際上相等的時脈。基本功能的數量愈大,則非線性失真愈能適當補償。 但是加入大量的基本功能則無可避免地要處理非常寬頻與超寬頻的信號。 較佳的實施例預期使用2-5個基本功能,但是本發明沒有這樣的要求。 58 200541280 [0167]參考前面的圖15,在工作15〇2選擇了基本功能之後,一工作 1504或是使用或是不使用熱處理。如果工作4〇2啟動次處理15〇〇,則工作 15〇4不使用熱處理。接下來,一工作15〇6呼叫次處理u⑻以執行一預估 並收斂程式,以為與所選擇的基本功能相關聯的非適應性等化器226決定 適當的濾波係數。在初始與在線性補償期間,所選擇的非適應性等化器可 能已經由於將所有的濾波係數設定為零而失效了。在工作15〇6期間,此非 適應性等化器226之紐係數已被確^,以使前向資料與誤差資訊流間之 • 關聯最小化,並使前向與回返資訊流之關聯最大化。使用正交基本功能時, 前向與回返資訊流之間關聯的增加,對其他基本功能沒有關聯的影響。 【0168】工作1506之後,-詢問工作·決定是否所有基本功能已被 次處理觸處理過,只要有其他基本功能等待處理,程式控制會回到工作 1502,以決定剩下的基本功能之濾波係數。#工作確認所有基本功能 已被處理完畢,則次處理15〇〇即告完成。 【0169】參考前面的圖4,在工作4〇2啟動次處理15〇〇之後一工作 • #度啟動次處理15〇〇。這次處理_用來訓練帶有熱處理之非線性補償。 因此-人處理15〇〇之工作⑼4的熱差信號加之處理會被制。參考圖 13,熱處理可以選擇適應引擎_之單一時延元件1348而使用。 【0170]圖π顯不-適合用於線性與非線性預失真電路2⑻代表熱改 變預估部份17⑻之實施例的方塊圖。此實施例有其需要,因為它配置熱差 信號216,使之回應前向資訊流顯示的長期平均功率的瞬間改變,並且它 使用-相對簡單的硬體實作。但是雖然熱改變預估部份17⑻提供為了線性 59 200541280 與非線性預失真電路200之目的之適合結果,同一行業的人士可以設計能 工作的替代之實施例。 【0171】熱改變預估部份1700中的熱處理之振幅決定電路17〇2,接收 複前向資訊流206。複信號之大小在電路17〇2中確定,因此使一振幅純量 信號驅動-可程式_定位部份·。在—實施例中,振幅決定電路膽 提供一振幅值之訊流,以回應複前向資訊流2〇6之大小,而在另一實施例 中,電路1702提供此振幅值之訊流至提升大於一個冪次。 籲 【〇172】可程式時間定位部份1704從控制器(c) 286接受可程式輸入, 而可程式時間定位部份17〇4可以配置成類似上面圖7與8之說明。換句話 說,部份1704允許控制器改變286部份蘭中振幅值的資訊流之時延。 ^伤1704提供-振幅值的資訊流之時延至一實施例之iir遽波器。 【0173】IIR濾波器於一加法器17〇6之輸出提供一平均振幅輸出,但此 平均振幅輸出不是熱改變預估部份·之輸出。此平均振幅輸出可提供一 長期平均振幅城的現在時間之表示法,而此信號接至一單一週期時延元 籲件簡,其輸出則提供-長期平均振幅信號之前次表示。此長期平均振幅 信號之别-人表不則接至加法器⑽之第一個輸入,並且接至一減法電路 mo之負輸塌。從_定位部份蘭之振·_賴流提供至減法 電路171G之正輸入端,並且減法電路⑽之輸出提供熱差信號加,而 此為熱改變預估部份_之輸出。熱差信號216接回-收雌法器1712 輸人並且控制器(C)286提供一收值η至收敛乘法器171〇之 第二個輸入。收敛乘法器1712之一輸出至加法器聰之第二個輸入。 200541280 陣】θ此,長期平均振幅信號反映與前向資訊流2〇6在時間上之平 均振幅,或其大於-之冪次’並且於各時脈週期,更觀在瞬時振幅值之 分數。此錄社杨㈣值η決^,較小的钱η做得長期平均振幅 信號較無法回應瞬時大小值。再者,熱差信號216將瞬時大小值對長期平 均振幅信號之乖離特性化。 _】參考前面圖4與圖15,在發射失真管理.之工作—_, 等化益226之滤波係數持續被調整。而且,在工作4〇4期間,等化器既 _ 之熱敏錬因為熱差信號216而調整。透過工作404而啟動的工作1506每 演算-次W啟動等化預估並收斂程式次處理謂以決定濾波係數與熱敏 係數。 【0Π6】參考圓1卜當次處理㈣收斂至給一組遽波係數之結果時, 詢問工作1115即開始進行。工作1115決定熱處理是否要包含進去。在工 作404期間,當熱處理要包含進去時,程式控制前進至一工作ιΐ28、ιΐ3〇 與U32。工作1128、1130與1132是選項工作,用來執行為了初始化目的 _ 而經過此路徑之第-次時間程式控制,之後只偶而執行此程式。在一實施 例中,工作1128、1130與1132於次處理15〇〇中設定,只在程式迴路的第 一次演算執行。 【0177〗工作1128將關連引擎(CE)28〇與差異係數信號279,於多工器 270與278 ’以使用適當的選擇的方法,耦接至關聯熱差信號216。然後, 工作1130執行一時間定位最佳化運算。特別是,熱差信號216因為做更準 確的預估而有延遲,直至達到收斂為止,此時可得到熱差信號216與差異 200541280 係數信號279相關聯之結果。一類似上面圖6討論之最佳化程式,哎者其 他最佳化程式,可以在工作113〇中使用。此時,熱差信號279已於適應引 擎屬的中間達到時間定位。ΗΡΑ w之熱改變,如前向資訊流之幕次所 示,追縱中間間點的濾波係數之改變至最大可能程度。 【0178】工作113〇之後,工作1132執行另一最佳化運算。於工作113〇, 收斂值η與γ達到最佳化。收斂值η與γ決定長期平均對於功率與中間濾 波係數信號之瞬間改變的靈敏度。收斂值”與γ最好是小的正值,以便對 籲 瞬間改變足夠敏感。但是,收斂值η與γ的最佳化是經由對這些數值逐漸 精確,直到在關聯引擎280觀察到最大的關聯結果而得。 【0179】接下來,一工作1134之部份為預估並收斂程式之熱部份與解鎖 適應引擎(ΑΕ) 13⑻設定收斂條件,以執行熱敏係數處理與濾波係數處理。 收斂條件的部份設定與適應引擎13〇〇之解鎖,可以經由提供適應引擎13〇〇 一正值之收斂變數λ而同時完成。當然,此值最好是非常小於一之分數。 收斂條件決定適應引擎1300須處理多少樣本才能確定收斂至一組熱敏係 鲁 數之結果。如以上之时論,較大的取樣數可導致回返資訊流有效解析度的 增加,或誤差準位的降低。程式處理時間的增加因此可以轉換成回返資訊 流有效誤差準位的降低。透過工作1134,可控制收斂的速度,以達到一個 預定的比回返資訊流之誤差準位更低有效回返誤差準位。在一實施例中, 收斂變數λ最初設定為稍高值,但隨時間而遞減。 【0180】工作1134之後,適應引擎13〇〇現在執行兩個最小均方、預估 並收斂程式。程式之一持續改變濾波係數之預估值,以使資訊流2%之誤 62 200541280 差信號最小化。另一個程式則持續改變熱敏係數,以使熱差信號216與差 異關聯信號1338間之差異提供之誤差信號最小化。LMS與預估並收斂程 式均重複更新滤波係數與熱敏係數,以各使其誤差信號最小化。 【0181丨於此時,一詢問工作1136由適應引擎1300決定之熱敏係數是 否已收斂。工作1136與工作1134共同設定收斂條件,工作1136可能僅決 定是否有足夠的時間達到收斂,或者工作1136可能監控適應引擎13〇〇產 生的熱敏係數,並且當遽波係數沒有被發現有一致的改變形態時,決定收 斂已經發生。 [0182】當工作1136確定收斂已經發生時,熱敏係數α已被確定,而當 其乘以熱差信號216時,則導致此熱信號變成與對應的差異係數信號1338 有最大的關聯。此時,程式控制進行工作1116,以鎖住適應引擎13〇〇、從 適應引擎1300取得濾波係數與熱敏係數、並且將這些係數設定回subject 非適應性等化器226。然後適熱器單元1234接著回應熱差信號216而調整 濾波係數成為以對應的熱敏係數而加權,以補償在Ηρα 136累積或喪失的 熱。 【0183】參考前面圖4,線性與非線性預失真電路2〇〇已補償由類比零 件120產生的線性與非線性失真,但預失真電路2〇〇無法將所有的失真從 ΗΡΑ射頻類比放大器信號in去除,而會有一些殘留量。此殘留失真會貢 獻至誤差向量幅度(EVM)。殘留失真有兩種形式會貢獻至EVM,一為線 性而另一為非線性。使用發射機100產生的整體EVM應維持越低越好, 以使通訊信號的接收越好。但是工業標準配置成達到可接受的收訊,卻允 63 200541280 汁呆蹄㈣EVM。這兩種貢獻至EVM的殘留失真形式中 許某種程度的EVM。 ,非線性失真[0150] After 500 cycles of processing, and one processing is performed 1. To extend through the compensation of 136 linear distortion. Since a considerable undistorted signal is present at the input of the i36, the HPA 136 now puts a signal that is more in line with the control status of the model designed by the jjpA model. Furthermore, at this time, there is no non-linear compensation and forward information flow, and the considerable amount of undistorted signal presented to the HPA 136 includes only frequency components within the bandwidth. [0151] FIG. 14 shows a flowchart of a sub-process 140, which includes a job 1402, a multiplexer 250 for RF analog signals generated from the input of the HPA 136 to the output of the HPA 136. , Control the feedback signal provided to the down-frequency part 300. Since the feedback signal now propagates through the HPA 136, compared to the feedback signal from the input of the HPA 136, it will experience more delay and phase inversion. Next, a job 1404 starts a sub-process 600 to execute an estimation and convergence procedure for the common-mode time positioning part 700. Finally, this "ideally, the time delay complex forward information flow 266 is brought back to time positioning and the return information flow 262. Here, no further time positioning is needed, because the two feet of the complex communication signal are processed before the HPA 136 processing. Both have been merged. Because the same analog parts (ie, ΑΡΑ 136) handle the two legs of the merged signal, there will be no opportunity to form a further difference in orthogonal imbalance. 53 200541280 [0152] After work 1404 'A work 1406 was started Process 900 to execute an estimation and convergence program to reposition the phase of the positioning complex forward information stream 272 and the phase of the returning complex information stream 262. Finally, this "ideal" positioning complex forward information stream 272 is taken Go back and return to stream 262 to locate. [0153] After the phase repositioning of job 1406, a job 1408 provides optimized gain adjustments by adjustable attenuators 302 and 256 in a manner similar to that performed by job 508. After work 1408, a work 1414 starts a secondary process 110 to execute a forward equalizer 246 estimation and convergence program to increase the correlation between the output RF analog signal 117 of M and the forward information flow. . Finally, the forward filter coefficients set before the forward equalizer 246 are updated to compensate for the linear distortion generated by? 136. In particular, this linear distortion can be generated by the input band-pass filter (BPF) 140 and the output band-pass filter (BpF) 140 of the ΗPA mode. However, here, linear compensation covers wideband signals that do not include non-linear parts. [0154] After job 1414, a job 1416 controls the multiplexer 222 to connect the highest-order basic function information stream 214, instead of the forward information stream 218, to the adaptation engine 13 '. As discussed above, _ the highest-order basic function gift 214 presents the same clock as the forward information flow 218, and in the preferred embodiment, the 'basic function generation part 16' does not perform rotation. The most basic: lack of basic function information Processing of quadrature phases of stream 214. Therefore, no further time or phase positioning is needed to call the most basic function information stream to and return ^ bits. For the purpose of linear compensation, a 'significant difference' between the basic function information, stream 214, and forward information stream 218, will show the ultra-wideband discussed previously. [0155] With reference to the ηρα model depicted in FIG. 1, & 142) may produce 54 200541280 non-linear distortion, causing components outside the bandwidth to be processed by the output bandpass data wave (bpf), and may encounter Linear distortion. In order to compensate the linear distortion of the output band-pass filter (BpF) 44, a job 1418 starts the sub-process 1100 again to execute an estimation and convergence program. However, in this sub-processing 1100, the return equalizer 260 is activated to adjust the return information flow, so that the association between the HPA analog output signal 117 reflected by the return information flow and the ultra-wideband, highest-order basic function information flow 214 'can be maximized. In the forward-propagating signal, the higher-order terms do not have a significant degree until the output of the memoryless nonlinear part of the Wiener-Hammerstein HPA model (that is, • amp 142). However, when these higher-order terms pass the output BPF 144 of the Wiener-Hammerstein HPA model, they may be subject to linear distortion. Therefore, the compensation for linear distortion covers the wider bandwidth that the output BPF 144 must handle. [0156] This operation further captures the linear distortion that appears at the output of ραα136, but does not adjust the HPA output signal, but adjusts it in the return signal path to allow subsequent training of non-linear compensation to rely on linear distortion compensated signals. After working in 1418, the return wave coefficient is determined through the estimation and convergence program and set to the return equalizer 26. Moreover, the return information flow is like an exact copy of the output of the memoryless non-linear part (ie, _142) that can be achieved by modifying the Wiener_Hammerstein I model. [0157] Next, a job 1420 controls the multiplexer 222 to connect the forward information stream 222 to the adaptation engine 1300 instead of the highest-order basic function information stream 214. Then, a job 1422 starts the sub-process 1100 again to execute an estimation and convergence program. This time, since the return equalizer 26 has set linear distortion for the output of the bandpass wave filter Η4, a secondary process of 1100 is initiated to the forward equalizer 246 to remove the possibility of being between the return and forward information flow. Any associations. This operation is 55 200541280 and is specifically aimed at compensating for the linear distortion that the input band-pass filter (BPF) 140 may produce. [0158] After working 1422, the secondary process 1400 is completed, and the linear and non-linear predistortion circuit 200 has been trained to compensate for linear distortion. Since the almost ideal signal is provided to the HPA 136, the HPA 136's amplified signal now closely matches the control design of the amplifier model design. Furthermore, the source of linear distortion after amp 142 has been compensated, so it is now possible to conduct nonlinear distortion training without being eroded by too much linear distortion. [0159] Referring to the previous FIG. 4, after the sub-process 14 ′, the transmission distortion management process 400 now performs a job 402 to start a process 1500. The sub-process 1500 is used to compensate for the nonlinear distortion generated by the HPA 136. More precisely, the sub-process 1500 at work 402 compensates for non-linear distortions without compensating for thermally induced memory effects. [0160] FIG. 15 shows a flowchart of a secondary process 1500. In general, the subprocess 150 is configured to be compatible with the Wiener-Hammerstein HPA model. In particular, it is assumed that the non-linear distortion is a form of higher harmonics of the amplified signal. In this model, because of the linear compensation discussed above, the signal amplified in the narrow mouth 142 is now driven by the basic function generating part 160. "Ideally, the signal fits tightly." Also, the basic function generating part 160 is generated. Higher harmonics of this signal. The non-linear predistorter 224 filters these higher harmonics and then combines them with the ideal signal in a subtractive manner. [0161] The sub-processing 1500 includes a generator from the basic function For the basic skill month b generated by 16⑻, choose the next basic function job 1502. In the first calculation of job 1502, any one of the basic functions, from the second basic function to the κth basic function, can be selected. Otherwise For job 1502, it is best to select the basic 56 200541280 function that has not been selected for the longest time before the previous calculation of job 1502. The next job is to determine the filter coefficient of equalizer 226 and set the equalizer η. Filter coefficients to train equalizers reserved for selected basic functions. [0162] In the preferred embodiment, the basic functions are actually orthogonal to each other. The way of intersecting, the chirp wave added to the basic function will have the smallest impact on other basic functions. Furthermore, when the filtering of the basic function and the wave change, these changes are less likely to affect other basic functions. [0163] FIG. 16 shows a basic function suitable for linear and non-linear predistortion circuits 200. A block diagram of an embodiment capable of generating part 1600. This embodiment is necessary because it can use a relatively simple hardware design It achieves the substantially orthogonal basic function. Moreover, it will respond to a high-resolution, low-error input information flow, and the result can provide a high-resolution, low-error input information flow. However, although the basic function The generating part 1600 provides suitable results for the purpose of the linear and non-linear predistortion circuit 200. Those in the same industry can design alternative embodiments. [0164] An amplitude circuit 1602 and a multiplier 1604 can receive complex pre-distortion. To information stream # 206, the amplitude circuit 1602 generates a scalar information stream representing the size of the complex forward information stream 206, and is connected to multipliers 1604, and multipliers 1606 and 160. 8. Figure 16 shows that the basic function generating part 1600 is divided into cells 1610, and each cell generates a basic function. Multipliers 1604, 1606, and 1608 are combined with different cells 1610. In general, each basic function will affect the X ( η) · | X (η) | κ responds, where χ (η) represents the forward information stream 206 received by part 1600, and K is an integer greater than or equal to one. Multipliers 1604, 1606, and 1608 The output is X (η) · | X (η) | κ information flow. 57 200541280 [0165] But in order to achieve substantial orthogonality, each basic function is equal to a near-weighted X (n) 丨 X (η) | ϊ ^ The sum of the stream, and all lower-weighted X (n). | X (n) | Kf streams. Therefore, the output of the 'multiplier 1604 is directly used as the second basic function and provides one of the complex basic function information streams 214. The multiplier 1606 multiplies the multiplier 1612 by a coefficient w22, and the output of the multiplier 1604 is multiplied by a coefficient by the Wzi multiplier 1614. The adder 1616 adds the outputs of the multipliers 1612 and 1614, and the adder 1616 is used as the third basic function and provides another complex basic function information stream 214. Similarly, the output of multiplier 1604 is multiplied by multiplier 1618 φ by a coefficient W3 !; the output of multiplier 1606 is multiplied by multiplier 1620 by a coefficient w32; and the output of multiplier 1608 is multiplied by multiplier 1622 by a coefficient W33. The outputs of the multipliers 1618, 1620, and 1622 are added to an adder 1624, and the output of the adder 1624 is used for the fourth basic function and provides another complex basic function information stream 214. In the preferred embodiment, these coefficients are determined at the design stage using the Gram-Schmidt orthogonal technique, or any orthogonal technique by anyone in the same industry. Therefore, these coefficients remain unchanged during the operation of the transmitter 100. However, under certain conditions, these coefficients cannot be guaranteed when transmitter 1 () 0 is operating. [0166] People in the same industry know that the basic function generation part ι6⑻ can be expanded and added to the cell 1610 to provide any number of basic functions. Furthermore, people in the same industry know that pipeline stages can be added as needed to suit the clock characteristics of the parts in question, and confirm that the basic functions are made from virtually equal clocks. The larger the number of basic functions, the more appropriately the non-linear distortion can be compensated. But adding a lot of basic functions will inevitably deal with very wideband and ultra-wideband signals. The preferred embodiment is expected to use 2-5 basic functions, but the invention does not have such a requirement. 58 200541280 [0167] Referring to Figure 15 above, after selecting the basic function in job 1502, job 1504 is either with or without heat treatment. If job 402 starts the sub-treatment 150, job 1504 does not use heat treatment. Next, a job 1506 calls the process u⑻ to execute an estimation and convergence procedure to determine the appropriate filter coefficients for the non-adaptive equalizer 226 associated with the selected basic function. During initial and linear compensation, the selected non-adaptive equalizer may have failed by setting all filter coefficients to zero. During work 1506, the coefficients of this non-adaptive equalizer 226 have been determined to minimize the correlation between the forward data and the error information stream and maximize the correlation between the forward and return information streams. Into. When orthogonal basic functions are used, the increase in the correlation between forward and return information flow has no impact on other basic functions. [0168] After work 1506,-ask work · determine whether all basic functions have been touched by the secondary processing. As long as there are other basic functions waiting for processing, program control will return to work 1502 to determine the filter coefficients of the remaining basic functions. . #Work confirms that all basic functions have been processed, and the next processing is completed at 1500. [0169] Referring to FIG. 4 above, a job is started after job 502 starts a sub-process of 150,000. # Degrees starts a sub-process of 150. This process_ is used to train non-linear compensation with heat treatment. Therefore, the human-processed thermal difference signal of the work of 1500 plus 4 will be suppressed. Referring to FIG. 13, the heat treatment may be selected to use a single delay element 1348 adapted to the engine. [0170] FIG. Π shows a block diagram of an embodiment suitable for linear and non-linear predistortion circuits 2 ', which represents a thermal change estimation section 17'. This embodiment has its needs because it is configured with a thermal difference signal 216 to respond to instantaneous changes in the long-term average power displayed by the forward information stream, and it uses a-relatively simple hardware implementation. But although the thermal change estimation section 17 provides suitable results for the purposes of linear 59 200541280 and non-linear predistortion circuit 200, those in the same industry can design alternative embodiments that work. [0171] The thermal processing amplitude determination circuit 1702 in the thermal change estimation section 1700 receives the complex forward information stream 206. The magnitude of the complex signal is determined in the circuit 1702, so that an amplitude scalar signal is driven-programmable_positioning part ·. In the embodiment, the amplitude determining circuit provides a signal flow of amplitude value in response to the magnitude of the complex forward information flow 206. In another embodiment, the circuit 1702 provides the signal flow of the amplitude value to the promotion Greater than a power. [00172] The programmable time positioning section 1704 accepts programmable input from the controller (c) 286, and the programmable time positioning section 1704 can be configured similar to the description of Figures 7 and 8 above. In other words, part 1704 allows the controller to change the delay of the information flow in the amplitude value of part 286. ^ 1704 provides-the amplitude of the information flow delay time to an embodiment of the iir wave filter. [0173] The output of the IIR filter at an adder 1706 provides an average amplitude output, but this average amplitude output is not the output of the thermal change estimation part. This average amplitude output can provide a representation of the long-term average amplitude city's present time, and this signal is connected to a single period delay element. Its output provides a previous representation of the long-term average amplitude signal. The difference of this long-term average amplitude signal is that the human meter is connected to the first input of the adder , and connected to the negative input of a subtraction circuit mo. From the _location part Lan Zhizhen _ Lai Liu is provided to the positive input terminal of the subtraction circuit 171G, and the output of the subtraction circuit 提供 provides a thermal difference signal addition, and this is the output of the thermal change estimation part _. The thermal difference signal 216 receives the input from the receiver-receiver 1712 and the controller (C) 286 provides a receiver value η to the second input of the convergence multiplier 1710. One of the convergence multipliers 1712 outputs to the second input of the adder Satoshi. 200541280 matrix] θ Here, the long-term average amplitude signal reflects the average amplitude in time with the forward information flow 206, or a power greater than-, and at each clock cycle, the fraction of the instantaneous amplitude value. The value of Yang Yang in this recording agency is ^^, and the smaller money η makes the long-term average amplitude signal less able to respond to the instantaneous magnitude value. Furthermore, the thermal difference signal 216 characterizes the deviation of the instantaneous magnitude value from the long-term average amplitude signal. _] Refer to Fig. 4 and Fig. 15 above, in the work of transmitting distortion management. The filter coefficient of Huayi 226 is continuously adjusted. Moreover, during operation 404, the thermal sensitivity of the equalizer is adjusted by the thermal difference signal 216. Work 1506 started through work 404. Each calculation-time W starts to equalize the estimation and converge the program to determine the filter coefficient and the thermal coefficient. [0Π6] Reference circle 1 When the processing process converges to a result of a set of wave coefficients, the inquiry work 1115 starts. Work 1115 determines whether heat treatment is to be included. During work 404, when the heat treatment is to be included, the program control advances to a work 28, 30 and U32. Tasks 1128, 1130, and 1132 are optional tasks and are used to execute the -time program control of this path for initialization purposes, and then only occasionally execute this program. In one embodiment, tasks 1128, 1130, and 1132 are set in the next processing 1500, and are performed only in the first calculation of the program loop. [0177] Work 1128 couples the engine (CE) 280 and the difference coefficient signal 279 to the multiplexers 270 and 278 'to use an appropriately selected method to couple to the associated thermal difference signal 216. Then, job 1130 performs a time positioning optimization operation. In particular, the thermal difference signal 216 is delayed due to more accurate estimation until convergence is reached. At this time, the result that the thermal difference signal 216 is associated with the difference 200541280 coefficient signal 279 can be obtained. An optimization program similar to the one discussed in Figure 6 above. Other optimization programs can be used in job 113. At this time, the thermal difference signal 279 has reached the time position in the middle of the adaptation engine. The thermal change of HPA w, as shown in the scene of the forward information flow, changes the filter coefficient of the intermediate point to the maximum possible degree. [0178] After Job 113, Job 1132 performs another optimization operation. At work 113, the convergence values η and γ are optimized. The convergence values η and γ determine the sensitivity of the long-term average to instantaneous changes in power and intermediate filter coefficient signals. The "convergence value" and γ are preferably small positive values in order to be sensitive enough to instantaneous changes in the call. However, the optimization of the convergence values η and γ is performed by gradually correcting these values until the maximum correlation is observed in the correlation engine 280. The result is obtained. [0179] Next, part of a job 1134 is the hot part of the estimation and convergence program and the unlocking adaptation engine (ΑΕ) 13⑻ sets the convergence conditions to perform the thermal coefficient processing and filter coefficient processing. Convergence The setting of the conditions and the unlocking of the adaptation engine 1300 can be done simultaneously by providing a positive convergence variable λ of the adaptation engine 13000. Of course, this value is preferably a very small fraction of one. The convergence condition determines the adaptation How many samples does the engine 1300 need to process to determine the result that converges to a set of thermal systems. As discussed above, a larger number of samples can lead to an increase in the effective resolution of the return information stream or a reduction in the error level. Program The increase in processing time can therefore be converted into a reduction in the effective error level of the return information stream. By working 1134, the speed of convergence can be controlled to achieve a predetermined The effective return error level is lower than the error level of the return information stream. In one embodiment, the convergence variable λ is initially set to a slightly higher value, but it decreases with time. [0180] After working for 1134, the adaptation engine is 130%. Now execute two minimum mean square, estimation and convergence programs. One of the programs continuously changes the estimated value of the filter coefficients to minimize the 2% error in the information flow. 62 200541280 The difference signal minimizes. The other program continuously changes the thermal coefficient. In order to minimize the error signal provided by the difference between the thermal difference signal 216 and the difference-associated signal 1338. Both the LMS and the prediction and convergence procedures repeatedly update the filter coefficient and the thermal coefficient to minimize their error signals. [0181丨 At this time, a job 1136 is asked if the thermal coefficient determined by the adaptation engine 1300 has converged. Job 1136 and job 1134 jointly set the convergence conditions. Job 1136 may only decide whether there is enough time to reach convergence or job 1136 may monitor Adapting the thermal coefficient generated by the engine 1300, and when the wave coefficient was not found to have a consistent change in shape, it was decided that convergence had occurred. [0182] When work 1136 determines that convergence has occurred, the thermal coefficient α has been determined, and when it is multiplied by the thermal difference signal 216, this thermal signal becomes the largest correlation with the corresponding difference coefficient signal 1338. This At that time, the program control works 1116 to lock the adaptive engine 1300, obtain the filter coefficient and the thermal coefficient from the adaptive engine 1300, and set these coefficients back to the subject non-adaptive equalizer 226. Then the adaptor unit 1234 Then in response to the thermal difference signal 216, the filter coefficient is adjusted to be weighted with the corresponding thermal coefficient to compensate for the heat accumulated or lost at Ηρα 136. [0183] Referring to Figure 4 above, the linear and non-linear predistortion circuit 200 has been The linear and non-linear distortions generated by the analog part 120 are compensated, but the predistortion circuit 2000 cannot remove all the distortions from the HPA analog amplifier signal in, and there will be some residual amount. This residual distortion is contributed to the error vector magnitude (EVM). There are two forms of residual distortion that contribute to EVM, one is linear and the other is non-linear. The overall EVM generated using the transmitter 100 should be kept as low as possible, so that the reception of communication signals is better. However, the industry standard is configured to achieve acceptable reception, but allows 63 200541280 EMU. These two forms of residual distortion that contribute to EVM may to some extent be EVM. , Non-linear distortion

真,並且不會實質上貢獻頻譜再生。 因此,在一些應用上,可能必須偵測 • μ非線性失真導致的EVM已經增加了’伽此形式之失真,交換成較 仁慈的頻帶内失真。 [0185】因此,工作404之後,一工作406取得一殘餘非線性EVM值。 此殘餘非線性EVM值,是在非線性失真引發的線性與非線性補償之後, 殘留在ΗΡΑ射頻類比放大器信號117之預估量或殘餘失真。舉例而言,工 作406可以利用控制多工器270與278而取得殘餘非線性EVM值,以使 誤差資訊流276於關聯引擎280之中與自身關聯,然後至少做兩個關聯。 這兩個關聯之一,是測量從類比信號得出的誤差信號,亦即ΗΡΑ 136之輸 入。另一個則是測量從類比信號,亦即ΗΡΑ 136之輸入,得出之誤差信號。 當然,時脈、相位定位與增益調整,在做各關聯之前,都可以如此處說明 的方式執行。適合的收斂條件用做兩個關聯之運作,以便誤差資訊流276 之有效的誤差準位能如上所述而大大的減少。 [0186]然後工作406可以經由評估兩個關聯,而獲得殘餘非線性EVM 值。此差異主要是由於ΗΡΑ 136之無記憶非線性142並且代表非線性失真 64 200541280 之故。雖__多種來源會錄給各_之結果,這些雜絲源多半對 各關聯運作是共通的。因此,這兩個關聯之差異產生了—個殘餘非線性 EVM值,而此值與雜訊來源實質上是各自獨立的。 【0187】工作406之後,一工作408評估,當殘餘非線性EVM值與一 預設值相比是否過大。過大的值可能造成老化但尚未失效的ΗΡΑ 136、老 化的供電器、在極限溫度操作或其他多種狀況。如果殘餘非線性EVM值 過大,則工作408提供峰值減低反饋信號114至峰值減低部份11〇。反饋 信號114是根據上面玉作406之殘餘非線性EVM值而得者,如上所述, 峰值減低部份110會改變其加於前向資訊流之峰值減低量。特別是,當察 覺殘餘非線性EVM值過大時,峰值減低量會增加,以便ήρα ι36可以在 較大的回退之下操作,而導致減低的非線性失真。峰值減低量的增加同樣 會增加線性失真,但也應該減低一些非線性失真。發射機1〇〇此後會操作 於較低非線性失真,接收會適度減弱,但是頻譜再生實質上可以避免。另 外,工作408可能啟動警報或者自動送出控制訊息,以表示殘餘非線性EVM 之狀況。 【0188】工作408之後,程式控制會回到任何一個處理400内的次處理 與工作,以便次處理與工作可以根據適合的時程隨時可重複。 【0189】上面討論的預失真電路200與發射機失真管理過程400之實施 例,在DDC300之A/D 304僅產生可忽略的小量失真,而顯示依頻率之影 響而加於A/D 304處理的超寬頻反饋信號時,可提供有利的結果。只有由 在A/D 304之相雜訊或光圈跳動引起的量化誤差之幅度與未關聯之誤差不 65 200541280 會呈現明顯的問題,因為上面討論的用來處理反饋信號之預估並收斂程式 可忍受這種誤差、雜訊與抖動。 [0190】但即使是低解析度、高誤差之a/d 3〇4也可能是複雜的元件, 並且預失真電路200的整體花費,可能因為允許使用較不複雜而會產生一 些失真進入反饋信號的A/D 304而進一步減少。這種失真如果沒有補償, 會被發射機失真管理過程400錯誤地解釋為類比發射機零件12〇產生者。 因此,除了移除上述失真來源之外,等化器226、246與260會設定也能在 前向資訊流產生不要的失真之接點值,而不要的失真是A/D產生的失真之 倒數。 [0191】圖18顯示線性與非線性預失真部份2〇〇之第二個實施例的方塊 圖’下面稱為發射機100之預失真電路18〇〇。預失真電路1800配置成用 來補償除了上述與圖2-17所討論的線性與非線性失真以外,一些a/d感 應的失真。透過使用預失真電路1800,發射機1〇〇甚至可以使用一不貴的 A/D而產生明顯的失真,進入其處理的反饋信號。 【0192】預失真電路1800配置成大部份像是預失真電路2〇〇,並且上面 說明的有關預失真電路200之討論大部份亦適用於預失真電路18〇〇,在方 塊圖1、2和18之間’相同的參考數字表示相似的零件。但是,為了方便 起見’預失真電路200的某些部份,如增益調整電路3〇2與256、熱改變 預估電路1700以及為A/D 304產生時脈信號的電路,在圖π中都省略了。 同一行業的人士明白這些部份仍有必要包含在預失真電路18⑻中,而且實 質上使用,一如上面與圖2-17討論者。 66 200541280 【0193】預失真電路ι_也包括速率乘法器2〇4 ,此用來產生增速複前 向資訊流2〇6。前向資訊流206驅動基本功能產生部份·、時延元件2〇8、 -實數轉麟份臟何蚊之時延部份·,相祕2所示之共模時 間定位部份700。 [0194】基本功能產生部份16〇〇提供一多數的基本功能資訊流給非線 性預失真器224,與一對應多數的可設定之時延部份7〇〇。非線性預失真器 224包括在一類比發射機零件補償器18〇3,並包含一多數的等化器挪與 合併電路228,如上面圖2之討論,但是合併電路228為了方便起見從圖 18中省略了。類比發射機零件補償器18〇3用來對付類比發射機零件12〇。 圖18將等化器226加註成EQ|^PA,其中下標“k”代表等化器226有關的基 本功能’而下標“ΗΡΑ”則表示等化器226適用來補償ΗΡΑ 136產生的非線 性失真。非線性預失真器224提供複濾波基本功能資訊流230至一合併電 路22〇之負端,而時延元件208則提供複前向資訊流218至一合併電路220 之正端。合併電路220提供複非線性預失真前向資訊流238至前向等化器 246與至可設定時延部份的〇,如上面之討論,但是,囷18將等化器246 與時延部份800繪成不同的順序。前向等化器246亦包含在類比發射機零 件補償器1803。時延部份800實際上相等於圖2-17討論之差模時間定位部 份 800 〇 【0195】時延部份8〇〇提供複正交平衡等化前向資訊流118至數位/類比 轉換器(D/A’s) 122,以驅動類比發射機零件120剩餘之部份。如上述討論, D/A’s 122最好呈現一個比a/d 3〇4高很多的解析度。圖18中,標示有 67 200541280 “XPF”之方塊包括低通濾波器124、升頻部份126和圖1之帶通濾波器 132。帶通濾波器132之一輸出提供射頻類比信號丨34至多工器250與ΗΡΑ 136,而射頻類比信號117則來自Μ!%之輸出,並接至多工器25〇。不 像上面圖2討論的預失真電路200,D/A,s 122之一也直接產生基頻信號 123,並接至多工器250。基頻信號123是一位濾波之信號,因為它不通過 類比發射機零件120提供的濾波器。因此,它不會遭受濾波器加諸的失真。 【0196】在一實施例中,D/A 122實際上在解析度與其他參數相等於對 方,在另一實施例中,產生基頻信號123之D/A122比其他D/A122有較 高的解析度與/或品質。還有另-實施例中,第三個D/A (未顯示)專用 於驅動基雜號123 ’但也;ϊ;需要轉其他類比發射齡件12()。驅動基頻 信號I23 WD/A最好有高解析度與高品質,因為,如下會有更仔細的討論, D/A是用來為A/D 304建立補償者,而這麵會被D/A產生的任何失真限 制住。幸好,咼解析度與高品質之D/A到處都有低價產品。 【0197】可設定之時延部份7〇〇提供時延複前向資訊流挪至相轉部份 誦,並且相轉部份1000提供定位複前向資訊流272,。前向資訊流272, 將前向資磁272’升頻至-數位±升轉換(DUC)雜祕。Duc部份 1806以數位方式將前向資訊流272,升頻至⑽,其中Fs為取樣頻率。 部份1806之一輸出驅動一實數轉換部份18〇8。 【0198】各可設定之時延部份7〇〇,,配置成類似於時延部份7〇〇,而且各 搞接至其自身的相轉部份嶋,。轉部份誦,都配置成類似相轉部份 誦,而轉部份1_,各提供—定位基本功能資訊流騰至_非線性預 68 200541280 失真抑224非線性預失真器224,最好配置成類似於非線性預失真器224, 但包s於A/D補償部份18〇5。特別是,非線性預失真器224,包括一多 數的線性等化器226,,而其中一等化器226,專用於獨立的遽波各基本功 月匕圖18將等化器226’標示為eqI,其中上標“k”代表與等化器226, 有關聯之基本功能,而下標“趟,,代表等化器226,是用來補償鳩產生 的失真等化器226的輸出均合併在一起,如上述之討論(未顯示出),然 後非線|±預失真H 224’產生—複瀘基本功能波資訊流18G9,並提供至一數 ® 位升頻(DUC) ^伤1810。而此轉而驅動-實數轉換部份1812。 【〇199】實數轉換部份職、腦與1812各將其複前向資訊流分別轉 成實數資訊流,使用同一行業的人士熟悉的技術,從複前向資訊流之每組 四對取樣’實數轉換部份觀、麵與職各選擇其!、q與〇樣 本。實數轉換部份1802耦接至一可設定之時延部份700,,而此可以配置成 實質上類似可設定之時延部份7〇〇。時延部份7〇〇,麵接至一固定時延部份 ⑻4 ’而此執仃一實質上等於相轉部份1〇〇〇與麵,加諸的時延。時延部 籲份刪提供-時延前向資訊流娜至_固定時延元件⑻^時延元件 1818加上一實質上等於數位升頻部份18〇6之時延。 [〇2〇〇】實數轉換部份麵與時延元件1818 1820,而此包含於趟補償部份·。交換部份獅之第一個輸出,輛 接至-線性失真補償器觀。線性失真補償器體由一線性等化器職 提供,而_ 18標示成EQk,其中上標“丨,,表示是—個線性運算子,而 下標‘奮,表示等化器鼎是用來補償趟產生的失真。在本發明的較 69 200541280 佳實施例中,等化器1824最好配置成類似於等化器226、246、260與226,, 但等化器1824只需要處理一實資訊流而不是一複資訊流,而且接點之數目 可能不同。但是,如同等化器226、246、260與226,,等化器1824最好 配置成一適應性等化器,或是直接地或是透過適應引擎1300的操作。因 此,如以下參考圖19與24更詳盡的討論,等化器1824調整成補償A/D 304 產生的線性失真。 [0201]交換部份1820之第二輸出耦接至一量化誤差補償器2200,而 _ 此補償器亦包含於A/D補償部份1805。一般而言,量化誤差補償器2200 對於量化誤差之大小會忽略其補償,但量化誤差補償器2200會將補償誤差 對稱化。量化誤差補償器2200,在下面將以圖21-22更詳盡的討論。第二 個會對稱化與補償量化誤差之量化誤差補償器2200之實施例,於以下之圖 31中討論。 [0202丨實數轉換部分1812、線性失真補償器1822和量化誤差補償器 1826之輸出於合併電路1828中加在一起。從合併電路1828輸出之前向資 # 訊流的版本提供至合併電路1830之一輸入,合併電路1830提供一補償點, 以使處理過的前向資訊流與從A/D 304輸出之回返資訊流合併。 [0203】合併電路1830之一輪出提供一 A/D補償回返資訊流1832至直 接數位降頻部分1834。於此第二個實施例中,DDC 1834只包含從上面討 論第一個實施例的DDC 300零件308、310和312。一般而言,A/D 304有 效地將其取樣之反饋信號降頻成一中頻(IF)之時信號jy4,其中&為取樣 頻率。DDC 1834產生複回返資訊流254,而此實質上為一位於基頻之複信 200541280 號。如上述第-實施例之討論,複回返資訊流Μ可能呈現比前向資訊流 為咼之誤差與為低之前向資訊流。複回返資訊流254驅動回返等化器, 而此等化器轉而產生等化複回返資訊流262,如上述圖2_17之討論。回返 等化器260也包含於類比發射機零件補償器18〇3。 [0204]於此第二個預失真電路18〇〇實施例中,如上述圖217之討論, 控制器286、適應引擎13〇〇、適應引擎13⑻、和關聯引擎28〇必須耦接至 預失真電路腦之多個零件,以控制資訊流之流向與時脈,並處理回返資 _ 訊流之不同版本。 【0205】圖19顯示發射機1〇〇執行的發射失真管理過程4〇〇之第二實施 例的流程圖,此實施例稱做處理19〇〇。處理1900與上述之處理4〇〇不同, 在於其包含多出的次處理,用來補償A/D 304產生之一些形式的失真。處 理1900在下面做更詳盡的討論。 [0206】圖20顯示一典型之類比/數位轉換器之模型2〇〇〇,例如用以說 > 明A/D 304者。模型2000顯示A/D 304可能產生的多種失真來源。一輸 入類比信號2002提供給放大器2004,圖20之放大器2004標示為“NL AMP”,以表示放大器20〇4為非線性失真的可能來源。放大器2004之一個 輸出,驅動一低通濾波器(LPF) 2006。LPF 2006是一低失真的可能來源, 因為此濾波器的“膝部”通常非常高於我們有興趣的頻率。LPF 2006的一個 輸出耦接之一交換器2008,然後驅動一取樣並保留電路2010。取樣並保留 電路2010與低通濾波器相似,會產生大量的線性失真。取樣並保留電路 2010透過一交換器2014而驅動一加法器2012。在加法器2012上,可能會 71 200541280 加入一直流位移。雖然直流位移通常是不要的結果,但是它不一定會產生 失真相關的問題。加法器2012驅動一量化器娜,而量化器2016將取樣 並保留電路2010捕捉的類比電壓數位化,並提供數位輸出給加。量化器 2016可能是幾個不同的誤差之來源。 【0207】圖21顯不一位元解析度wd之一例的量化與量化誤差之特 性,而此二位元解析度特性不是本發明的要求。圖21顯示所有A/D在一 直線2102的可能輸入類比電壓之二度空間表示法,這是A/D如何可能在 • 2104線路將輸入類比電壓數位化的-個例子之情況,而其量化誤差之結果 則示於軌跡2106。@ 21左邊的-行三進位數字代表❺量化輸出之傳 統二的補數表示法,而@ 21之右邊—行二進位數字代表之量化輸出 的另一义位元位移表示法,適於用在較佳的實施例中之實施例。此1/2位元位 移表示法與二的補數表示法相比,使用一增加位元之解析度,但不包含零 狀態或任何其他偶數狀態,並且有相同的非零之正與負狀態。 【0208】 A/D模型200之量化器2016以交換臨界值2108而特性化。一 _ 個二位元A/D最好有三個交換臨界值21〇8位於零點和位於士 1/2 χ全值域 (FS/2),而較大解析度之a/d有更多交換臨界值21〇8。於一輸入電壓務微 低於交換臨界值21G8時,A/D會輸出-個碼,而#輸人電壓稍微高於交 換臨界值21G8時,A/D會輸出另—個碼。在交換臨界值21()8上,量化誤 差會從-局部最小值突然跳至-局部最大值。如果所有的交換臨界值厕 準確地擺置,則所有局部最小值與所有局部最大值之絕對值會互等。量化 誤差的大小可能在某射頻通訊應用造成一種A/D產生的失真,如圖27_32 72 200541280 之舛娜。但疋在其他應用中,量化誤差的大小由於根據回返資訊流π%之 預估並收斂程式造成此種誤差頻均成零而不必計較。 [0209】不論量化誤差之大小是否會造成問題,如果交換臨界值 沒有擺好,則會造成不對稱。圖21顯示一個這樣的不對稱,其中實際的 +FS/2交換臨界值2108已被從理想的位置向負方向位移,但是—FS/2交換 臨界值則位於適當的位置。此量化誤差之不對稱,在趟3〇4處理的信號 中產生另一種失真。如果未補償,則此失真會造成等化器226、246、與26〇 _ 之接點係數不準確。有趣的不對稱之特卿式是關於直流位移,而這可以 但不需要等於零。4位元位移表示法之使用進一步提昇對稱性,因為各么位 元位移表示法之數碼有一對應的正值,代表一對應的類比輸入。換句話說, 此編碼方式是於零點對稱。 【0210】預失真電路18〇〇補償a/d量化誤差,但更特別的是使用量化 誤差補償器2200來補償不對稱。圖22顯示代表量化誤差補償器2200之第 一個實施例。一般而言,量化誤差補償器2200允許位於理想位置而有效的 隹交換臨界值2108之形成,至少至d/A 122之精確。另一量化誤差補償器 2200之實施例在以下圖31中討論。 【0211】參考圖22,於合併電路2202將一正位移加入驅動A/D 304之 類比反饋輸入信號。此正位移不是一項要求,但可以用來簡化硬體。正位 移最好是稍微大於一個實際交換臨界值2108會在理想交換臨界值之負方 向位移的最大值。因此,正位移具有將所有實際的交換臨界值2108移動, 而相對於類比輸入信號呈現一負誤差的效應。此負交換臨界誤差導致一些 73 200541280 類比輸入之A/D數位輸出,呈現過於正之數值,但是此過於正值之輸出可 以僅加上負位移而矯正。將A/D 304適應化,並加上從A/D 304之一個二 的補數表示法之LSB,以提供上述之1/2位元位移表示法,並且將該位元永 遠設定成“1”。如上述之討論,A/D 304之輸出接至合併電路1830。 [0212】在本實施例中,控制器(c) 286配置成監控從合併電路183〇輸 出之補償回返資訊流1832。控制器286亦配置成可以將資料寫入記錄器 2204、2206和2208。記錄器2204、2206和2208之輸出,分別耦接至比 較器2210、2212和2214之正輸入。比較器2216、2218和2220之負輸入, 全部由交換器1820之輸出推動。比較器221〇、2212和2214之負輸入,分 別適應接至接受-FS/2、0、和+FS/2之值,其中“FS”是指整個值域。比較 器2216、2218和2220之正輸人端,也由交換器1820之輸出推動。從比較 器2210與2216之“大於,,輸出,當正輸入端大於負輸入端,並且耦接至一 AND問2222的輸入時,即產生一主動信號;從比較器2212與2218之“大 於輸出’耦接至一 AND閘2224的輸入端;並且從比較器2214與2220 之大於輸出,耦接至一 AND閘2226的輸入端。從AND閘2222、2224、 和2226的輸出端,耦接至〇R閘2228的輸入端,並且〇R閘2228的一輸 出端’麵接至多工器(MUX) 223〇之零資料輸入。一個“〇,,值提供至多工器 2230之零資料輸人,而—個‘‘]”值則提供至多m⑽之壹資料輸入。多 器2230之一輸出,透過一時延元件2234提供一位移值之資訊流2232至 口併電路I828,其中此資訊流與從實數轉換部份⑻2與等化器刪合併。 以時延το件2234加入資訊流迎會導致量化誤差補償器屬顯示相同的 200541280 時延’如等化斋1824所示。如上述討論,合併電路脱8之輸出,輕接至 合併電路1830之一個負輸入端。 [0213】參考前面之圖19,過程19〇〇最初進行一個次處理23㈨,_ 次處理與量化誤差補償器2200共同作業,以將a/d量化誤差對稱化。在 下面量化誤差補償器之第二個實施例之討論與圖31中,次處理23〇〇補償 量化誤差之大小與對稱量化。圖23顯示次處理2300之流程圖。 [0214】次處理2300配置成執行開機形式,或當發射機1〇〇不發射資料 # 之時。次處理2300首先進行一工作2302,以初始化一預失真電路18〇〇。 工作2302可以,舉例而言,設定基本功能產生器16⑻,以便只輸出零值。 多工器250應設定成基頻(BB)反餚信號123接至A/D 304。等化器1824 最好設定成只輸出零值,並且交換器1820最好控制成透過時延部份7〇〇, 之基頻路徑被接至量化誤差補償器2200。而且,記錄器2204、2206、和 2208最好設定成最大負值。在此狀態下,類比發射機零件12〇除了 D/A 122 驅動基頻反饋信號123之外,沒有產生失真進入a/D 304監控之信號。同 # 樣的,於合併電路1830的補償點,A/D 304的輸出沒有施加任何影響。使 記錄器2204、2206和2208呈現最大負值同樣的可防止量化誤差補償器2200 影響A/D 304之輸出。 [0215】工作2302之後,一工作2304辨識一 A/D 304使用的實際交換 臨界值。第一個交換臨界值,舉例而言,可能是-FS/2臨界值,而加在合併 電路2202之正位移,使得實際的交換臨界值小於辨識的理想臨界值。接下 來,一工作2306使D/A 122輸出一類比形式的值。由於D/A 122之解析 75 200541280 度比A/D 304為高,此類比數值以高準確度輸出,並且透過多工器25〇直 接反饋至A/D 304。 [0216】接下來’在等待一段相當時間之後,一詢問工作2308決定A/D 之輸出值是否已經從前面的數值轉換完畢。假設工作2308沒有察覺轉換動 作’則一工作2310將南解析度之前向資訊流的輸出值增加一 LSB,並且程 式流程回到2306輸出此新而稍大的數值。程式流程停留在工作23〇6、23〇8 和2310之迴圈,直至輸出一引起A/D之輸出轉換成新的輸出碼之數值為 止。由於正位移導致交換臨界值呈現一負誤差值,A/D 304之輸出此時會 顯示一正誤差值。 【0217】一實際的交換臨界值既已定出,一工作2312接著記錄實際的交 換臨界值,並且一詢問工作2314決定前一個察覺的實際交換臨界值是否是 前一個臨界值。只要有其他的交換臨界值等待查出,程式流程會回到工作 2304,以偵測另一個實際交換臨界值。當工作2314確定最後一個實際交換 臨界值已偵測出,則一工作2316設定記錄器2204、2206和2208成各實際 交換臨界值。於一變通的實施例中,工作2316設定的實際交換臨界值,可 能比偵測出的實際交換臨界值與紀錄於工作2312者少%個LSB或一個 LSB。此時,次處理2300即告完成。實際交換臨界值已被測出在D/A 122 提供的精確度範圍。 [0218】在接下來的操作中,驅動D/A 122的前向資訊流亦提供至比較 器2210, 2212、2214、2216、2218和2220(圖22)。前向資訊流之值是否介 於理想與實際交換臨界值之間,可經由偵測比較器2210、2212、2214、 76 200541280 2216、2218 和 2220 與 AND 閘 2222、2224 和 2226,透過合併電路 ι828 和1830而提供一 1之位移值,以補償a/d 304之輸出。最後,可達到量化 誤差之對稱化。對於A/D 304使用的有效交換臨界值2108,比任何直流位移 更加正向時,A/D 304亦使用一比有效交換臨界值2108,任何直流位移更 加負向,而更正與更負之交換臨界值的平均,即等於直流位移。更精確地, 對於D/A 122之解析度而言,實際交換臨界值2108轉換成更接近理想之有 效父換臨界值2108’。這設定了接近零的直流位移,並且使所有的有效交換 ϋ 臨界值2108,在零附近成對稱。 [0219】雖然上述圓22-23之量化誤差補償器2200的實施例是依據發射 機100未發射資料而過程2300操作之時,這並不是本發明的必要條件。在 一變通的實施例中,發射機100可能在發射資料而同時辨識實際交換臨界 值2108。於此變通的量化誤差補償器2200裡,前向資訊流可以在量化誤 差補償器2200中監控一段時間,而紀錄各A/D輸出狀態最大的前向資訊 流之值。實際交換臨界值2108接著可以確定是稍微小於或等於最大的紀錄 • 值。在另一個變通的實施例中,各A/D輸出狀態之最大的和最小的前向資 訊流之值可以在發射大量資料時記錄下來。然後實際交換臨界值可以取一 個狀態的最大值與下一値狀態的最小值之平均而確定。 【0220】稍微回到過程1900,在完成次處理2300之後,一個次處理2400 開始執行,以補償A/D 304產生的線性失真。參考圖20,A/D 304可能主 要透過取樣並保留電路2010與次要透過LPF 2006而產生線性失真。 【0221】圖24顯示一個次處理2400的流程圖之例子。次處理2400於發 77 200541280 射機100發射資料的任何時間進行,並且最好在次處理23〇〇設定好量化誤 差補偵态2200以補償A/D量化誤差之後。在補償趣3〇4下游線性失真 來源產生的量化誤差失真之後,量化誤差失真就不可能傷害一個經過適當 補償線性失真的解析度。因此,在次處理24⑻期間,量化誤差補償器22〇〇 最好啟用並操作。 【0222】次處理2400執行一初始工作2402,以初始化預失真電路18〇〇 給次處理2400進行。工作2402可以控制多工器250,以便基頻(BB)反饋 _ 佗號123可接至A/D 304。交換器1820可以控制以便通過時延部份7〇〇,的 前向資訊流可以接至線性失真補償器1822。線性失真補償器1822之等化 器1824初始化至一要求之狀態,以通過但是不過濾資料。並且,一適應多 工器2500(圖25)可以調整,以便當等化器1824用做一適應性等化器時, 將接至適應引擎1300的適當理想定位與誤差信號,直接接至等化器ι824。 【0223】圖25顯示一與預失真電路1800共同使用產生信號,以驅動多 個適應性等化器’包括等化器1824之接點的多工器2500的方塊圖。這些 • 接點可以透過等化器引擎1300而驅動。變通的方式是,多個等化器,包括 等化器1824,可以配置成適應性等化器。圖25為了方便而省略了複信號 之記號,但是同一行業的人士知道,複信號如果有需要可以透過多工部份 2500而接線。一般而言,在適應引擎1300驅動等化器接點之誤差信號276, 是在減法器電路274中,從前向資訊流之一版本減去回返資訊流而產生 的。回返資訊流透過多工器2502接至減法電路274,並且多個版本的前向 資訊流透過一多工器2504接至減法電路274。理想定位信號272亦驅動多 78 200541280 個適應性等化器之接點’包括等化器1824。理想定位信號272以透過一多 工器2506之適當接線’而從前向資料信號獲得。多工部分25〇〇配置成引 導適當的前向資訊流與回返資訊流,以便產生適合的理想定位與誤差信號 272與276。在此實施例,高通濾波器(HpF)314已與圖2實施例之 合併,並供給下游之減法電路274。因此,誤差信號276多半直接由HPF 314 產生。並且,一時延元件2508加在多工器2506之後。時延元件2508加入 約等於HPF 314加入的時延,以便誤差信號276與理想定位信號272能維 _ 持時間之定位。 [0224】參考圖24與25,工作24〇2可以初始化多工器部份25〇〇,以選 擇圖25中註明“〇,,之多工器輸入。這些選擇將一 〇透過多工器25〇2輸入減 法器274與透過一時延元件251〇與多工器輸入Μ補償回返資訊流以幻。 因此,誤差信號276基本上游合併電路183〇提供。理想定位信號272由時 延刚向資訊流1816透過多工器2506與一時延元件2512提供。時延元件 2510由DDC 1834與回返等化器260插入一等於整艘信號時延之固定時 > 延。時延元件2512由DDC 1834、回返等化器260、數位升頻器和等化器 1824插入一等於整體信號時延之固定時延。時延元件251〇與2512之時延 引起誤差定位信號276與272,以在後面發生之處理,維持時間定位,而 在此處理時’不同的零件會轉接進入信號路徑》 [0225】工作2402之後’次處理2400最好進行次處理6〇〇,如上述討 論,或者一類似之處理以執行一預估並收斂程式而導致前向與回返資訊流 在合併電路1830提供的補償點之時間定位。時間定位可以改變時延元件 79 200541280 蕭加入的可程耕延錢立,_監___8)預㈣測之輸 出。RMS預估器2514有-輸入接至減法器274的輪丨,而此輸出反映補 償點之時脈。RMS預估器2514最好可以進行與關聯引擎28〇相同的功能, 並且配置成累積預估的大量樣本之腹8值,如上面關聯引擎2⑽之討論。 當時延树700’經設;^在顧雜胃2514 _丨—最小麵值時, 即達到時間定位。於-變通之實施例中,關聯引擎28〇可以用來在補償點 之前向資料與回返資料信號間找出最大之關聯。 【0226】從次處理2400之次處理600執行之後,次處理2400即執行次 處理1100’如上时論,以執行一預估並收斂程式,而此程式解出等化器1824 之接點係數。在次處理1100完成之後,其係數以決定,並且設定至等化器 1824,而剛確定之係數使從a/d 3〇4輸出的回返資訊流與前向資訊流得到 最大關聯之結果。此時,等化器1824已經調整而補償A/D 304產生的線性 失真,並且次處理2400已完成。 【0227】參考前面之圖19,在次處理2400完成之後,過程1900接著進 行次處理500,如上討論,以補償在ΗΡΑ 136的上游產生的線性失真。在 次處理500與接下來的次處理期間,量化誤差補償器2200與線性失真補償 器1822仍舊保持在設定和操作狀態,以便當這些後續的補償發生時,使用 A/D失真補償次處理。 【0228]在次處理500之工作502期間,多工器250轉接而使射頻反饋 信號134接至A/D 304。射頻反饋信號134是基頻反饋信號123的升頻形 式,而且包含在基頻反饋信號123沒有的失真。因此,工作502最好將交 200541280 換器1820轉接,使前向資訊流通過時延元件·與數位升頻轉換器應 而至量化誤差補償器2200與線性失真補償器贈。雖然升頻部份126不 需要’也最好不要升頻至Fs/4,如數位升頻轉換器讓之情形, 3〇4 則執行-個次取樣降頻而將其輸出置中於Fs/4。因此,升頻部份126與⑽ 304共同進行如同執行升頻至Fs/4。前面為基頻而決定的量化誤差與線性 失真補償現在可以在Fs/4使用。 【0229】另外,初始化工作5〇2應控制多工部份25〇〇,以便選擇圖乃 • 巾註明為τ之多工器輸入端。這些選擇,透過多工器25〇2將回返資訊流 262接至減法器274和透過時延元件挪舆多工器施接至前向資訊流 272,以形成誤差信號276。理想定位信號272由前向資訊流272,透過時延 兀件2516而提供。時延元件2516加入一等於DDC 1834、回返等化器26〇、 數位升頻轉換器刪、與等化器刪加諸之整艘信號時延的固定時延, 以維持與其他處理之時間定位,而在此處理時,不同的零件會轉接進入信 號路徑。 籲 [0230】工作502之後,次處理5〇〇接著以設定時延部份7〇〇與咖的 方式調整共模與差模時間定位,如上面圖Μ之討論,並調整相轉部份麵 以如上面圖9-10之討論將相位定位。然後,次處理5〇〇執行一預估並收斂 程式以為前向等化器246解出接點係數。此時,ήρα 136上游之前向資訊 流產生的線性失真已經補償完畢。 【0231】再度參考圖19,在次處理500完成之後,過程19〇〇接著進行 一次處理2600,以補償A/D 304產生的非線性失真。參考圓2〇,_3〇4 81 200541280 主要透過NL amp 2004之操作而產生非線性失真。 [0232】圖26顯示次處理2600之一流程圖。處理2600最好在預失真電 路1800以設定成補償量化誤差失真、A/D線性失真、和ΗΡΑ 136上游線性 失真之後進行。此時,射頻反饋信號134已調整成移除線性失真,並且射 頻反饋信號134之路徑上沒有實質上的量之非線性失真。因此,任何非線 性失真主要來自A/D304。 【0233】處理2600包括一初始化工作2602,用來設定預失真電路18〇〇 以決定需要補償A/D非線性失真之端正動作。工作2602可以轉換多工器 250’以將射頻反饋信號134接至A/D 304,而控制交換器1820使前向資 訊流通過時延元件700,與數位升頻器ι806接至量化誤差補償器22〇〇與 線性失真補償器1822。並且,多工部份2500可以控制以選擇如圖25中註 明“2”之多工器輸入端。這些選擇將回返資訊流262通過多工器25〇2而接 至減法器274,而前向資訊流272,通過時延元件2516與多工器2504,以形 成誤差信號276。理想定位信號272由基本功能資訊流1804之一提供,如 標有D2之資訊流,透過時延元件2518而有延遲。時延元件2518加入一等 於DDC 1834、回返等化器260、數位升頻器1806和一等化器1826,加諸之 總體信號時延之固定時延,以維持與其他處理之_定位,而其他處理之 不同零件轉換進人信號路徑。初始化玉作26G2也可以選擇基本功能產生器 1600以產生基本功能,但是等化器226冑好不選擇以產生零資訊流。心㈣ 基本功能之等化H 226,,如d2基本魏f訊流之EQ^,最好設定成初始 值仁疋任何其他為處理的等化器226,最好初始化成輸出零資訊流。 82 200541280 【0234】在初始化工作施之後,次處理2綱進行κ乍細以設定 時延部份700”與相轉部份麵,。工作施可以,但不是需要,使用預 估並收斂程式以決定適當的時延與相位設定。如果使用這程式,則它們可 以實質上配置成如上述圖㈣之討論。但是時延部份7〇〇”與相轉部份麗 分別對時延部份700與相轉部份麵有一固定的關係,此固定關係分別由 前向資訊流路徑之零件加入的相對時延而決定。因此,時延部份蕭,可以 只使用由上面於時延部份700與相轉部份1〇〇〇預先決定的位移而設定。此 • 程式的目的是使此路徑上的前向資訊流在時間定位上與傳播通過時延部份 700與700’之前向資訊流到達合併電路1828與1830。 【0235】接下來次處理26〇〇進行次處理11〇〇,以執行一 等化器 226’之預估並收斂程式。在完成次處理蘭之後,eql等化器挪,設定 係數,而使二階基本功能過濾,以便它與從W 3〇4之回返資訊流呈現最 大相關。然後將這回返資訊流之二階失真零件最小化。 【0236】圖26顯示一例子,其中預失真電路18〇〇使用三個基本功能。 _ 因此,為了使這情況之次處理26〇〇重複次處理11〇〇多兩:欠以為eq2a① 等化器226’與EQK+ 等化器226,求得係數。在接下來次處理u⑻的演 算中’最好控制多工部份2500選擇如圖25之多工器標示有“3,,與“4”之 輸入。兩種選擇均將回返資訊流262透過多工器25〇2接至減法器274,和 前向資訊流272,透過時延元件2516與多工器25〇4,而形成誤差信號276。 在‘3的選擇中,由基本功能資訊流18〇4提供的理想定位信號272標示 為&,透過時延元件252〇而延遲。而在“4,,的選擇中,由基本功能資訊 83 200541280 流1804提供的理想定位信號272標示為Dk+i,透過時延元件2522而延遲。 時延元件2520與2522各加上同樣的延遲而做為時延元件2518。同一行業 的人士知道沒有需要規定使用幾組基本功能。次處理11〇〇經過幾次必要的 演算之後,次處理2_即告完成,而非線性預失真器似,已設定補償鳩 304產生之非線性失真。 【0237]參考前面圖19,在執行次處理26〇〇之後,所有a/d 3〇4產生 的失真之實質形式已經補償過。因此,如上討論,剩下的處理19⑻部份追 > 蹤處理400之對應零件。次處理14〇〇用來補償透過Μ 136之線性失真, 因此,如圖14所示,次處理1400中之初始化工作14〇2控制多工器25〇 以將從ΗΡΑ 136輸出之射頻反饋信號117接至a/d 3〇4之輸入。時間與相 位之定位,因為ΗΡΑ 136以監控前向資訊流272,與回返資訊流1832的方 式加入反饋信號路徑,而重新調整。 【0238】然後,次處理11〇〇執行三次。第一次次處理11〇〇的演算是在 工作1414開始,用來控制多工部份25〇〇以選擇圖25中註明“5,,之多工 . ϋ輸入,這與選擇“1”有相同的效果。前向等化器246之前向係數,在第一 次演算期間決定。第二次次處理u⑻之演算在工作1418發生但是前一 個工作1416可以控制多工部份2500以選擇圊25中註明“6”之多工器輸 入。此選擇將回返資訊流262透過時延元件2522與多工器25〇2送達減法 器274與最高階之基本功能(亦即D叫),以形成誤差健m。理想定位信 號272也由最高階基本功能(亦即Dk+〇透過時延元件2522提供。等化器 260之回返係數,在第二次演算期間決定。第三次次處理·之演算在工 84 200541280 作M22發生,但是前一個工作142〇可以控制多工部份測崎擇圖μ 中在月1或5之多工器輸入。在第三次演算期間,前向等化器2你之 前向係數被重新調整。 【0239】在次處理14⑻之後,處理19〇〇進行工作4〇2,事實上如上面 圖4與圖15之討論。工作4〇2進行次處理15⑻以補償從ήρα 136之非線 性失真,而不包含熱感應之記憶效應。次處理15〇0以演算方式將不同的基 本功能接至適應弓丨擎謂並執行次處理1100以進行-預估並收敛程式, φ 由此決疋等化器係數。在上面討論的三個基本功能之後,對於這些演算, 可以控制多工部份2500以分別選擇圖25中註明“7”、“8”、與“9”之多工 器輸入。各選擇透過多工器25G2將回返資訊流262接至減法器別和透過 時延兀件2516與多工器2504接至前向資訊流272,,以形成誤差信號276。 在7的選擇中,標示有D2的基本功能資訊流18〇4提供理想定位信號 272 ’透過時延元件2518而延遲,並且決定EQ?pA等化器226之係數。在 8的選擇中,標示有的基本功能資訊流18〇4提供理想定位信號272, 籲 透過時延元件2522而延遲,並且決定EQjpA等化器226之係數。而在“9,, 的選擇中,標示有DK+1的基本功能資訊流1804提供理想定位信號272,透 過時延元件2518而延遲,並且決定EQK+{pA等化器226之係數。但是同一 行業的人士知道沒有規定一定要使用這些基本功能。 【0240】如上述處理4〇〇之討論,在工作402之後,一工作404重複次 處理1500,但是這次熱感應之記憶效益也要補償。然後,在工作4〇4之後, 工作406與408得到一剩餘EVM值,並且用此值去調整峰值降低。在工 85 200541280 作408之後,任何在處理1900巾之次處理與工作可以依需要而重複以允許 預失真電路1800在時間與溫度上提供補償。 [0241】圖27顯示_絲使—寬頻通訊的多雛㈣性化之頻譜 圖,用來傳達四個多工鮮之頻道的例子。參考圖i與27,在此例子四個 調變器產生四個獨立的資訊流2700。各獨立的資訊流27〇〇當由其個別之 調變器104產生時,均位於基頻。換句話說,各個特性是使用以〇出為 中心點之頻寬而延伸至-3.8 MHz與+3·8 MHz之間。 鲁丨0242】在此例中,合併器106使用頻率分工來合併這四個獨立的資訊 流,以產生複前向資訊流108,如圖中之軌跡2702所示。頻道2704中的 兩個,於囷27中標示為“A”與“B”,是以負頻率為中心(亦即_7·5 MHz 與-2·5 MHz) ’而頻道2704中的兩個,於圖27中標示為“C”與“D”,是 以正頻率為中心(亦即+2.5 MHz與+7·5 MHz)。使用負頻率與正頻率代 表頻率分工頻道2704允許使用較低的時脈^如果所有頻道27〇4都使用同 極性之頻率特性化時,則前向資訊流108必須使用此時脈處理。 ® 【0243】軌跡2702為寬頻前向資訊流1〇8之頻譜特性,因其在發射機 1〇〇中合併器106之下游處理。為了說明的目的,頻道2704之一,本例假 定為頻道B,比其他頻道的信號微弱,在這情形下,一寬頻數位通訊信號 配置成包含多個離散頻率分工頻道,並且這些離散頻道彼此間呈現變化的 信號強度,用來代表某行動基地台與其他數位通訊之應用。但是同一行業 的人士知道本發明不限於只針對此特別的應用,而且此特別的應用不限於 任何特別數目的頻道2704,也不限於任何特別有關相對頻道強度之限制。 86 200541280 [】軌跡2敗財本朗的__,其巾前向資訊流配置成包 含多個離7率分工頻道,並且㈣離散頻道相賴呈現㈣的信號強 度如果複刚向資訊流m在升頻部份以可以完美地升頻則此升頻的 同相部份最初會頻健將各頻道分_率之和與差,而升頻之正交部份最 初也會頻移並將各頻道分成頻率之和與差。織升頻賴減正交部份會 口併而且依“、、同相與正交部份如何合併,頻率之和會完全互相抵消或頻 率之差會7L全互相抵/肖。換句話說,在_個負信號的完全升頻沒有影像 信號的結果。 [0245】但疋’升頻部份126的操作不太可能有完整的升頻。雖然前向 等化器246與差異時間定位部份8〇〇的目標之一,是盡量平衡複前向資訊 流118之同相與正交部份,但是無可避免的會有一些殘餘的不平衡。此殘 餘的不平衡,在升鮮份126之升嫩,會使雜健謂丨現在射頻類 比信號130 ’因為相反的複數部份的正交項不會完全互相抵消。並且,因 為頻道Α位於頻道D使用的負頻率,並且頻道Β位於頻道c使用的負頻 率,影像信號2708會落在頻帶内。換句話說,從頻道a的影像信號27〇8 落於射頻類比信號130中之頻道D;從頻道b的影像信號2708落於射頻類 比信號130中之頻道C ;從頻道c的影像信號2708落於射頻類比信號130 中之頻道B;而從頻道D的影像信號2708落於射頻類比信號130中之頻道 A。影像信號2708是不要的,因為它們在佔用的頻道中代表的是誤差、雜 訊或者干擾。 【0246】軌跡2706說明,影像信號2708比它們是影像的信號更微弱。 87 200541280 因此,當頻道位於互相的影像頻率時,約等於通訊頻道強度2710,如頻道 A與D ’則影像問題很容易由上述圖1-26討論之實施例而管理。接收機調 諧成接收頻道A與D能成功的將它們的信號調變,因為由影像信號引發的 誤差信號強度2712和頻道A與D之通訊信號強度2710相較甚弱的緣故。 [0247】但是當頻道落於互相的影像頻率,而呈現非常不同的強度時, 就會有影像的憂慮發生,例如頻道B與C。特別是,軌跡2706為一例子, 其中較弱的頻道B之通訊信號強度2710比較強的頻道c之誤差信號強度 2712為弱,或許更弱。一調諧而接收頻道c之接收機可以很容易的調變其 信號,因為頻道C之誤差信號強度2712,是由頻道B之影像引起,而與 頻道C之通訊信號強度2710相比是非常微弱的。另一方面,一調諧而接 收頻道B之接收機可能無法成功的解調其信號。於頻道b之誤差信號強度 2712,是由頻道C之影像引起,而與頻道B之通訊信號強度2710相比非 常強。 【0248】圖28顯示線性與非線性預失真部份200之第三實施例的方塊 圖,下面稱做發射機100的預失真電路2800。預失真電路2800配置成用 來以符合發射機100發射的弱與強頻道之誤差向量大小(EVM)與/或雜訊比 (S/N)要求的方式,進行預失真與其他發射機處理。 【0249】預失真電路2800配置成多半類似預失真電路200與1800,並 且上述有關預失真電路200與1800的討論,大部份適用於預失真電路 2800。相同的參考數字可參考圖1、2、18和28之類似零件。但是為了方 便計,預失真電路200與18⑻的一些部分,如增益調整電路302與256、 88 200541280 熱改變預估電路1700、和產生a/D 304時脈信號、速率倍數器2〇4、控制 器286、適應引擎1300、關聯引擎28〇之電路、與一些時延階段都在圖28 中省略掉。同一行業的人士知道這些部份仍然可能加入預失真電路烈⑻並 大量使用如圖2-26之討論。 【0250】速率增加複前向資訊流206驅動一非線性處理部份28〇2、共模 時間定位部份700、和一合併電路之正輸入端22〇。非線性處理部份28〇2 包括上面討論之部份,在針對ΗΡΑ 136與^^々引起的非線性失真有用 處。這些部份包括基本功能產生部份16⑻、等化器226與226,(見圖丨幻等 等。如上面之討論,從處理部份28〇2之一複信號輸出耦接至合併電路之負 輸入端220。合併電路220提供前向資訊流238至前向等化器2你,並且至 差模時間定位部份800。前向等化器246產生-處理過之前向資訊流118。 雖然未顯示於圖28,一變通的實施例可以置於前向等化器248下游之合併 電路220,而不是如圖28所示在上游。於此變通的實施例中,前向等化器 248於是可以在較低的時脈之下操作。 【0251】如刖面討論過的實施例,前向等化器246串接於類比發射機零 件120。時間定位,或者時延,部份8〇〇提供前向資訊流118至數位/類比 轉換器(D/A’s) 122,而此將前向資訊流轉換成一前向類比信號,並媒動剩 下的類比發射機零件120。如上面的討論,D/A122最好呈現一比a/d3〇4 高甚多之解析度。@ 28中標示有“xpF”的方塊包括低通舰器124、升頻 部份Π6 ^從圖1之帶通瀘波· 132。由於前向資訊流持續通過類比發射 機零件120持續被處理,從帶通濾波器132之一輸出提供射頻類比信號134 89 200541280 至多工器250與至ΗΡΑ 136。射頻類比信號117是從ΗΡΑ 136衍生出來, 並接至多工器250。如上圖18之討論,D/A 122之一亦直接產生基頻信號 123,而接至多工器250。但是也可能使用一專用的D/A (未顯示出),以 產生基頻信號123。多工器250的輸出接至A/D 304之一輸入。驅動基頻 信號123之D/A最好有高解析度與高品質,因為,如下面更仔細之討論, D/A是用來建立A/D 304之補償者,並且這種補償受限於D/A產生的任何 失真。 • 【0252】此第三個實施例與上面討論實施例的一個差異是,時間定位部 份700直接提供定位理想前向資訊流272,而相轉器1〇〇〇則置於回返資訊 流262中。但是包含在a/d補償部份18〇5包含之一反相轉器28〇4,有前 向資訊流272驅動的輸入,並且產生前向資訊流272,。反相轉器28〇4使 一相位轉動與相轉器1〇〇〇提供的相位轉動呈反相狀態。 【0253】在一變通的實施例中,共模定位部份7〇〇可以分成一整數部份 714(圖7)與兩個(未標示)分數部份716。分數部份716之一可以操作前 鲁 向資訊流,並饋送減法電路274之-輸入,而其他的分數部份716則接著 操作回返資訊流,並館送減法電路274的另一個輸入。兩個分數部份716 最好可以控制成產生相等但相對於時脈之中點反相的分數時延。接著由這 兩個/刀數部份716產生的任何線性失真可以互相相等,並去除這種失真可 能加諸等化器接點調整的任何影響。 【0254] μ向資訊流272’驅動數位升頻部份i8Q6 (脈^)與_固定時延 το件刪’而此兀件加上_事實上相當錄位升頻部份⑽G的時延之固 200541280 定時延。DUC部份1806將前向資訊流272,以數位方式升頻至一 Fs/4之中 間頻率(IF),其中Fs為取樣頻率。DUC部份18〇6與時延元件1818之輸出 耦接至交換部份1820,而此部份包含於A/D補償部份18〇5。交換部份182〇 有一個輸出可透過實數轉換部份耦接至線性等化器1824,於圖28中標示 為EQ;vd’其中上標“1”表示一線性運算元,而下標“a/d,,則表示提供等 化器1824以補償A/D產生的失真。交換部份1820之輸出亦透過實數轉換 部份1808驅動量化誤差補償器31〇0,而此亦包含於a/d補償部份18〇5 之中。一般而言,量化誤差補償器3100補償量化誤差之大小與不對稱性。 量化誤差補償3100在下面圖31中會詳細討論。 【0255】非線性處理部份2802、等化器1824和量化誤差補償器31〇〇之 輸出,於合併電路1828中加在一起。從合併電路1828輸出之前向資訊流 的版本,提供至合併電路1830之負輸入端。合併電路1830提供補償點, 讓處理過的則向資訊流與從A/D 304輸出的回返原始數位資訊流3〇4,合 併,而形成A/D補償回返資訊流1832。但是,圖28顯示回返原始數位資 訊流304’之解析度如果有必要已在此合併之前的解析度調整器2806中調 整過。解析度可以透過執行上面圖21-22討論的%位元位移表示法與/或透 過增加解析度至約與前向資訊流相同解析度的方式調整。在一些實施例 中,解析度調整器2806中不需要有實際的動作發生。 【0256】 A/D補償回返資訊流1832輸送直接數位降頻部份(DDC) 1834。於此第三個實施例中,DDC 1834只包括從上面第一個實施例討論之 DDC 300的零件308、310與312。一般而言,A/D 304有效地將其取樣的 200541280 反饋信號降頻成一位於Fs/4之中頻(IF)的實信號,其中Fs為取樣頻率。DDC 1834產生複回返資訊流254,而這是依實際上位於基頻的複信號。複回返 資訊流254驅動回返等化器260,而此等化器再驅動相轉器1〇〇〇。相轉器 1000之一輸出產生複回返資訊流262,而此資訊流傳送至減法電路274 , 一相位預估器2808之第一個輸入、和一差異時延衡量器281〇之第一個輸 入。 【0257】減法電路274之輸出產生誤差資訊流276,而此資訊流傳送至 一頻譜管理部份2900與一頻譜管理交換器2814。定位理想前向資訊流272 則傳送至相位預估2808、差異時延預估器2810、頻譜管理部份2900與 交換器2814。從相位預估器2808之一輸出耦接至反相轉器28〇4之一控制 輸入。並且,從差異時延預估器2810之一輸出耦接至差模時間定位部份 800之一控制輸入。 【0258】如上述討論的實施例,等化器246、260、1824、與其他可能包 含於預失真電路2800的等化器最好是當耦接至適應引擎13〇〇時可以變成 適應性等化器的可程式等化器,或是包括係數適應電路之適應性等化器。 [0259】差異時延預估器2810為一硬體方塊,可以達到與時間定位次處 理600相同結果。一般而言,時延預估器281〇將一反饋迴路閉合,而此迴 路驅動一由差模時間定位部份8〇〇加諸的不同時延。因此,部份8⑽加諸 的時延隨時持續調整。前向資訊流同相與正交部份間的差異時延有其需 要,因為影像問題對於差異時延特別敏感。 【0260】同樣地,相位預估器2808為一硬體方塊,可以達到與相位定位 92 200541280 次處理900相同結果。一般而言,相位預估器28〇8將一反饋迴路閉合而 此迴路驅動所需的相位轉動,以使在減法電路274之回返資訊流262與前 向資訊流272達到定位。由相轉器1〇〇〇與反相轉器28〇4加諸的相位轉動 最好互相相等,但是方向相反。並且,這些相位轉動是動態地而且是持續 地調整。相位轉動的動態調整有其需要,因為當前向與回返資訊流在相位 上定位時’差異時延的計算較為精確。 [0261]頻譜管理部份29〇〇亦是針對上面討論的影像問題,此問題會在 前向資訊流傳送多個頻率分工通訊頻道時發生。 【0262】圖29顯示一適合使用於線性與非線性預失真器28〇〇之代表性 頻譜管理部份2900財塊@,麵雜部份鳩以—錢強度量測電路 2902接收前向資訊流272與以—信號強度量測電路29q4接收誤差資訊流 276。資訊流272與276為複信號資訊流,但圖29省略了複數記號。 【0263】於信號強度量測電路29〇2中,前向資赠272送至一互多工器 2906,而此將前向資贿272分成多個離散通訊信號觸,其巾離散通訊 信號2908與通訊賴2704有—對—的對應。信號強度量測電路纖亦包 括-檢測大小電路細給各讎舰纖號職。躺大小電路291〇為 頻道2704辨識通訊信號強度271〇。同樣地,於信號強度量測電路测中, 誤差資U76送至-互多工器2912,而此將前向資訊流μ分成多個離 散通訊信號2914,其中離散通訊信號2914與通訊頻道27〇4有一對一的對 應。碰強度量測電路2904亦包括-檢測大小電路㈣給各個雜通訊 信號測。制大小· 2916 _道篇辨識軌信賴度繼。在較 93 200541280 佳的實施例中’各檢測大小電路2910與2916測量其個別離散或誤差通訊 信號2908或2914之功率。 [0264】檢測大小電路2910與2916之輸出送至一誤差向量大小(EVM) 計算器2918。EVM計算器2918為各通訊頻道2704計算一 EVM統計值 EVM。一般而言,這些EVM之計算,是以將從誤差資訊流276獲得的誤 差功率,除以從前向資訊流獲得的頻道功率272。但是本發明的目的也可 以利用在頻道2704中之其他相對通訊信號強度271〇與相對誤差信號強度 φ 2712之計算而達成。EVM計算器2918將EVM統計值交給一增益控制器 3000。 【0265】EVM計算器2918不需要假設前向資訊流272是一絕對“理想 的”而不傳送錯誤的資訊流。在包含峰值減低部份11〇(圖丨)之發射機的實 施例中,前向資訊流272可以包含峰值減低部份no產生的一些失真。由 峰值減低部份110加入前向資訊流112的失真應該由EVM計算器2918負 責《因此,峰值減低控制信號114’傳送加入前向資訊流112的短程平均雜 ® 訊。最好峰值減低控制信號114’傳送短程平均雜訊至從調變器104(圖1)輸 出之各獨立調變之複資訊流,例如低通濾波後過程能量的大小。於此實施 例中,EVM計算器2918對各頻道2704而言,因此可以計算EVM對從控 制信號114’獲得的峰值減低雜訊與從檢測大小電路2916獲得的誤差雜訊 之RMS總值的反應。 [0266】一般而言,增益控制器3〇〇〇形成比例因數292〇、2922和2924, 用來縮放頻道2704的相對影響,而指示前向等化器246如何調適係數以減 94 200541280 少岫向與誤差資訊流之間的關聯。更確切地說,增益控制器3〇⑻執行一傾 向於強調在調適前向等化器246之係數較弱的離散通訊信號29〇8之影響, 而削弱在調適前向等化器246之係數較強的離散通訊信號29〇8之影響的程 式。較強的信號2908傾向於,但不是必要的,呈現較低的EVM,而較弱 的信號2908傾向於呈現較高的EVM。因此,在較佳的EVM實施例中, 此程式使用公制或其相等的系統。具有較高EVM之信號29〇8相對於具有 較低EVM者受到強調而在前向等化器246中調適其係數。 鲁 【0267】四個縮放因數2920提供至乘法器2926之第一個輸入。乘法器 2926之第二個輸入調適而接收四個離散通訊信號29〇8,而乘法器2926之 輸出提供縮放的離散通訊信號2908之一反互多工器2930。反互多工器2930 執行互多工器2906之反運算並形成一合併通訊信號272”。合併通訊信號 272”同樣傳送四個頻率多功的通訊頻道2704並且通常在資訊率與解析度 對應於前向資訊流272。但是合併通訊信號272”之頻譜内容已被改變成強 調較高的EVM,並且一般而言較弱' 在較低EVM的頻道,與一般而言 •較強的頻道。 【0268】四個縮放因數2922提供給乘法器2932之第一個輸入。乘法器 2932之第二個輸入調適而接收四個離散通訊信號2914,而乘法器2932之 輸出提供縮放的離散通訊信號2934之一反互多工器2936。反互多工器2936 執行互多工器2912之反運算並形成一合併通訊信號276”。合併通訊信號 276”同樣傳送四個頻率多功的通訊頻道2704並且通常在資訊率與解析度 對應於誤差資訊流276。但是合併通訊信號276”之頻譜内容已被改變成強 95 200541280 調較高的EVM,並且一般而言較弱、在較低EVM的頻道,與一般而言 較強的頻道。 [0269】四個縮放因數2924提供給乘法器2938之第一個輸入。乘法器 2938之第二個輸入調適而接收四個離散通訊信號2914,而乘法器2938之 輸出提供縮放的離散通訊信號2940之一反互多工器2942。反互多工器2942 執行互多工器2912之反運算並形成一合併通訊信號276”。 【0270】在正常的操作下,前向等化器246調適其係數以回應合併通訊 k號272”與合併直接路徑誤差信號276”或合併交叉路徑誤差信號276,,之 間的關聯,依照係數是否調適給直接路徑1214與1216或交叉路徑1218與 1220 〇 【0271】圖30顯示用於頻譜管理部份2900之增益控制器3000的操作之 例子。增益控制器3000可以在控制器286、一獨立之控制器元件或者以專 用於提供類似功能之硬體而實現。 【0272】增益控制器3000執行的程式包括一工作3002,用來辨識有最 大EVM之頻道2704。換句話說,用來辨識最差的頻道,也即是ΕγΜ最 需要改進的頻道。工作3002之後,一詢問工作3004決定計算出的係數是 否是給等化器1200的直接路徑1214與1216,這也用做前向等化器246, 或是給交叉路徑1218與1220。如果工作3004彳貞測到的是1218與1220, 則工作3008選擇現在使用於交叉路徑的縮放因數。如果工作3〇〇4俄測到 的是1214與1216,則工作3006選擇現在使用於直接路徑的縮放因數。增 益控制器3000可以配置成在為直接與交叉路徑之間計算縮放因數而隨時 96 200541280 前後切換。切換可以發生在一個固定的時間表或根據一錯誤,而偵測出 EVM統什因為之前縮放因數資料的更新而有明顯之進步。變通的方法是, 增益控制器3000可以配置成先著重在直接路徑,鎖定直接路徑的等化器係 數,然後轉向交又路徑。或者,增益控制器3000可以使用同一行業的人士 設計的其他切換程式。 【0273】在工作3006或3008之後,一詢問工作3010決定目前為辨識的 頻道2704所產生的縮放因數2920、2922、或2924是否在其預設的最大位 階。只要這些目前的縮放因數不是在其最大值,則一工作3〇12將縮放因數 增加一預定的量,然後程式控制回到工作3〇〇2。在其他頻道的縮放因數不 變時’增加最差EVM之頻道的縮放因數,這可加強具有最差EVM之頻道 2704的影響,並削弱其餘頻道2704的影響。 [0274】當作3010確定目前最差頻道的縮放因數是在或高於其最大允 許的位階時,一程式迴路調整所有頻道使用的縮放因數。特別是,一工作 3014在此迴路之第一次演算時辨識第一個頻道,或在其後的演算時辨識下 一個頻道。而在工作3014之後,一工作3016將此辨識的頻道之縮放因數 減少-預定數量。在工作3014之後,一詢問工作決定此頻道之縮放因數現 在是否正在或低於最小的位階。如果偵測到最小的位階,則工作3〇2〇將 縮放因數奴祕最小⑽。在卫作麵之後並且當卫作通確定此頻 道之縮放因數不是在其最小值時,則一詢問工作避蚊程式迴路是否已 調整上-頻道之驗隨。如紅—頻道未被處理,廳式控制回到工作 3014备上一頻道已被處理時,則程式控制回到工作3002。 97 200541280 【0275】由於縮放使用在用來調適前向等化器246之反饋的頻道2704 之增益的結果,係數以驅動通訊頻道2704之個別EVMA至大約相等之值 的方式而改變。具有較高EVM的頻道2704比較低EVM的頻道2704可得 到EVM較大的減少。類比發射機零件Π0產生的失真在回應具有較高EVM 的頻道2704比較低EVM的頻道2704得到較多的抵消。 [0276]雖然上面呈現的討論,是使用執行在增益控制器3〇〇〇之程式的 一個例子,同一行業的人士可以設計替代的並且相等的程式而達到實質上 相同的結果。例如,所有頻道的增益可能最初設定成較低或最小值,然後 具有較高EVM之頻道的增益可以依需要而增加,以使所有頻道的EVM維 持在實質上相等的位階,而此位階應越小越好。 [0277】參考前面圖27-28 ’軌跡2714表示當前向資訊流傳送多個頻率 分工通訊頻道與一或多個頻道比另一個位於影像頻道特別強時,可能發生 的一個增加的憂慮。為了使一迴路可以滿意的執行,最好輸出結果的軌跡 可以依照預定的方式改變一反饋的信號。在上述圖28-30討論的實施例中, 通訊頻道2704計算的EVM值,最好與前向等化器246係數的改變之結果 而放大的射頻通訊信號117,有可預測的關係。 【0278】但是在A/D 304發生的量化,與特別是在A/D模型2000之量 化器2016(圖20)可能破壞EVM的計算。量化是一可在頻道2704之間產 生互調的非線性運算,有些互調現象會落在頻帶之内。並且,由於A/D3〇4 之解析度已經減低,量化誤差與頻帶内之互調變得更糟。軌跡2714顯示較 弱頻道B使用一低解析度A/D 304而導致比通訊信號強度2710更大的例 98 200541280 子。於此情況,上面討論由頻譜管理部份2900對頻道B的EVM量測,對 於頻道B反應強調頻道b測量的EVM值之反饋信號而發生的改變沒有明 顯的關係。因此,量化誤差補償器配置成補償量化誤差大小與量化誤差不 對稱性。以補償量化誤差大小與量化誤差不對稱性的方式,頻帶内之互調 可以大大的改進,而且頻譜管理部份2900為較弱頻道2704進行的EVM 量測會跟進輸出的改變。 【0279】圖31顯示一量化誤差補償器3100,配置成補償一個二位元a/d 304產生的量化誤差大小與不對稱性之方塊圖。同一行業的人士知道本發 明不需要使用一個二位元A/D 304,並且量化誤差補償器3100的例子可以 延伸至任何精確度的A/D。 【0280] —般而言,量化誤差補償器3100包括一量化模擬器31〇2與一 差異電路3104。量化模擬器3102配置成模擬從A/D304之量化器2016的 運算。特別是,量化模擬器3102包括由A/D304為各交換臨界2108(圖21) 執行的一記錄器3106。對一個二位元A/D 304而言,可包含三個記錄器 3106。各記錄器3106配置成儲存由控制器286提供的一數值。記錄器3106 最好設定成根據次處理2300之工作2316的A/D 304測量的實際交換臨 界值,或者從另一可達到相同結果的處理。 【0281】從記錄器3106’輸出之資料,含有中間交換臨界值2108,接至 一比較器3110之負輸入端。於此二位元之例子,從其他記錄器3106輸出 之資料,接至一多工器(MUX) 3112之資料輸入端。比較器3110之輸出驅 動多工器3112之一選擇輸入,而多工器3112之一輸出驅動一比較器3114 99 200541280 之-負輸入端。根據交換器獅的狀態或是在基頻形式或是在射頻形式, 前向資訊流接至比較器測之正輸人端與接至差異電路3刚之正輸入 端。比較器3114之-輸出提供一最高位元,而比較器3114之另一輸出提 供-最低位7L至-解析度調整器3116。解析度調整器3116進行一相似於 位在A/D 304之輸出的解析度調整器28〇6。在一些實施例中,解析度調整 器3116不需要有任何具體的動作發生。解析度調整器3116的一個輸出產 生一量化模擬資訊流3118,代表從量化模擬器3102的輸出。 鲁 【0282】量化模擬資訊流3118驅動差異電路31〇4之一負輸入端。一控 制記錄器3120從控制器286之一控制輸入調適接收,並且有一輸出驅動一 AND功能元件3122之一輸入。從差異電路31〇4之輸出提供一量化誤差資 訊流3122,並且元件3122之一輸出提供一量化誤差資訊流3124,代表量 化誤差補償器3100的輸出。控制記錄器3120與AND元件3122提供與選 用/不選用量化誤差補償器3100之功能。當不選用時,量化誤差補償器31〇〇 對於發射機100之操作沒有任何影響。 _ 【0283】當設定成實際的交換臨界值2108時,量化模擬器3102忠實地 模擬在A/D模型2000之量化器2016。量化模擬器3102將前向資訊流量化 成基頻或射頻形式,並且因此而產生追蹤A/D 304產生的互調。另外,由 於不對稱與/或量化誤差大小而產生的量化誤差,在量化模擬資訊流3118 中反映出來。量化模擬資訊流3118無法配合前向資訊流的程度,提供量化 器2016產生的誤差之預估,不論這是從不對稱性、量化誤差大小或是互調。 【0284】因此,量化誤差資訊流3124將量化模擬資訊流3118無法配合 100 200541280 前向資訊流的程度特性化。如上述圖18討論的第二個實施例,此A/D誤 差與其他A/D補償因數一起,於合併電路183〇從回返原始數位資訊流304, 中減掉,以補償A/D 304之誤差。由於量化誤差補償器3100得運作,所有 通訊頻道2704之互調2716減低至一低於通訊信號強度2710之位階,包括 弱頻道B,如圖27之軌跡2718所示。 [0285】圖32顯示由發射機100進行之發射機失真管理處理4〇〇的流 程圖。此第三個實施例下面稱作處理32〇〇。處理32〇〇與處理4〇〇和19〇〇 不同,如上討論,在於多包含了幾個用來補償上述影像信號與互調問題之 工作。 【0286】參考圖28與32,假設處理32〇〇從開機或重置事件開始。處理 3200先執行幾個基本的初始工作,而可能以任何順序^ 一工作32〇2使ήρα 136無效,以便發射機loo沒有明顯的發射。一工作32〇4於記錄器 設定適當的㈣值,叫選擇使用量化誤差麵^麵。—轉32〇6鎖 住前向等化器(EQF)246與回返等化器(EQr)26g ,並確認等化器施與 260執行-單位轉換函數,以便它們不會對發射機1〇〇有任何影響。鎖住 可能’舉例而言,以設定收敛因數“μ”(圖π)成接近零的方式達成,而 單位轉換函數可能,舉例而言,輯定係數成:_ •的方式達成。同 樣地,-工作3208鎖住所有用來補償观136,和等化器(Ed 226,與 刪產生的絲性失真之等化,峨定成零轉換函數,以便 匕們不會對發射機1GG有任何影響。零轉換函數可能,舉_言,以設定 係數成:··卿"·的方式達成。—工作奴—補償部份獅,以 101 200541280 通過刚向 > 訊流的基頻形式,並且一工作3212設定頻譜管理交換器, 以通過前向資訊流272與誤差資訊流276,而用於前向等化器246之適應 係數換句話說,工作3212的運作可防止頻譜管理部份29〇〇對發射機1〇〇 的運作不會有任何影響。一工作3214不選用時延與相位預估器281〇與 2808,以便差異時延與相位調整不會自動使用。並且,一工作切換多 工器250,以將基頻信號123接至a/d 3〇4的輸入端。工作3216之後基 本的初始化即告完成。 • 【0287]基本的初始化之後,處理32〇〇執行一工作3218以使用次處理 όοο調整共模時間定位70〇,或使用另一功能達到相同結果。工作3218 一 般而s於減法電路274將前向資訊流272與回返資訊流262互相帶入時間 定位。接下來,一工作3220補償A/D量化誤差與不對稱。工作3220最好 能執行次處理2300或另一能產生相同結果之功能。次處理2300評估A/D 304以量測實際的交換臨界值2108,並將實際的交換臨界值21〇8設定至 量化模擬器3102。工作3220可以將一掃描測試信號通過發射機1〇〇的前 • 向路徑。工作3220之後,一工作3222使發射機100處理一頻率多工通訊 信號,而使一頻道比另一位於其影像頻率之頻道更強。換句話說,發射機 100可以開始產生一通訊信號,雖然此信號不一定會從發射機100發射出 去,因為尚未使用ΗΡΑ 136之故。 [0288】接下來,一工作3224啟動線性A/D等化器(EQi〇) 1824,以 補償線性A/D失真。工作3224可以執行次處理2400或使用另一功能達到 相同結果。然後,一工作3226鎖住或大大限制線性A/D等化器1824之頻 102 200541280 寬,以便等化器1824之係數不會繼續有明顯的適應化。 【0289】工作3226之後,一工作3228將多工器250切換射頻類比信號 134至A/D 304的輸入,而回返資訊流262相對於前向資訊流272進一步 延後。因此,一工作3230將前向資訊流272與回返資訊流262之間的時脈 重新定位。工作3230可以再度執行次處理6〇〇或者另一可能產生相同結果 之功能,以恢復所需要的時間定位。帶通濾波器(圖U將一明顯的相轉加 入現在輸入A/D 304之回返類比信號。因此,一工作3232啟動相位預估器 2808,以關閉反饋迴路,並維持從a/D 304來的前向資訊流與回返資訊流 之間的相位定位。並且,一工作3234啟動差異時延預估器2810,以關閉 反饋迴路,並維持透過類比發射機零件120之複前向資訊流的同相(I)與 正交(Q)成分之差異時脈定位。 【0290]工作3234之後,一工作3236設定A/D補償交換器1820,以 通過前向資訊流272的IF形式。此時,量化誤差補償器31〇〇與A/D線性 等化器1824開始在IF形式的通訊信號上運作,一如前向資訊流的特性, 非常類似A/D 304在射頻信號上的次取樣形式。a/D 304產生的量化與線 性失真誤差於現在補償。在此,内調2716減少,但影像信號可能仍舊留在 弱頻道2704並消弱EVM值。 [0291】一工作3238接著啟動前向等化器(EQF)246,使得前向等化器 246進行預估與收斂程式次處理11〇〇,或任何可以產生相同結果之功能, 並使得前向等化器246之係數調適成前向資訊流272與誤差資訊流276間 的關聯最小化之值。這可以減少失真並進一步減少回返資訊流之誤差,而 103 200541280 更進一步減少内調2716。接下來,一個工作324()設定頻譜管理交換器 2814,以通過合併通訊信號272,,與合併誤差信號洗,,至前向等化器2你, 以供調適係數之使用。頻譜管理部份2_現在開始影響發賴1〇〇的運 作。刖向等化器246繼續調適其係數,但是現在回應前向誤差資訊流之頻 譜改變形式。此頻譜改變形式可強調較弱頻道。如圖27之執跡2718所示, 誤差仏號強度2712可能在較強的頻道中增加,但是誤差信號強度2712可 在較弱的頻道中減少。整趙上,所有的頻道27〇4更能符合ΕγΜ規格,而 參 且當EVM實質上等於所有頻道2704時可達到平衡。在一段充分的時間而 允許係數調適至達到平衡之時,一工作3242鎖定前向等化器246,以防止 係數進一步的調適。 【0292】接下來,一工作3244進行非線性A/D補償次處理2600,或者 另一可以達到相同結果之功能,以補償A/D 304產生的非線性失真。然後 一工作3246將多工器250切換至放大的射頻類比信號117,並且預失真電 路2800現在可以開始補償ΗΡΑ 136產生的失真。一工作3248啟動ΗΡΑ # 136,以便ΗΡΑ 130開始產生信號。由於回返類比信號現在使用不同的路 徑’會產生增加的時延,並且干擾前向資訊流與回返資訊流之間的時間定 位。在經過一適當的暖機之後,一工作3250重複工作3230、3232與3234 以重新定位時脈與相位。然後,一工作3252啟動回返等化器(EQR)260, 以補償ΗΡΑ 136在回返等化器(EQR) 260產生的線性失真,而一工作3254 鎖住等化器260,以防止其係數任何明顯的重新調整。 【0293]此時,一非常低失真的信號應呈現至圖i中標示為_ 142之 104 200541280 無記憶的非線性點,由於之前在失真管理處理3200進行的工作。因此,預 失真電路2800現在準備好補償ΗΡΑ 136產生的非線性失真,並且處理3200 進行一工作3256。工作3256以執行工作402而進行ΗΡΑ補償,而此工作 呼叫次處理1500,或者另一可以達到相同結果之功能。然後,前向等化器 246於工作3258再度啟動,以跟進頻道2704之信號強度的相對變動。工 作3258之後,一工作3260進行以隨時重複一些或全部前面在處理32〇〇執 行過的工作’以便追蹤熱與/或老化現象。另外,工作3260可以包括管理 峰值減少之工作,以回應如上討論的EVM值之計算。 【0294】總結上述,本發明提供一改進的發射機與失真電路與方法。一 量化誤差補償器提供用來補償類比/數位電路(A/D)產生的量化誤差,而 此電路監控一類比發射機零件產生的反饋信號。一處理提供在使用反饋信 號路徑以抵消類比發射機零件產生的失真之前,用來補償一反饋信號產生 的失真。並且,發射機零件產生的失真,以反應頻率多功通訊頻道之相對 強度的方式而抵消。 【0295】雖然本發明將較佳的實施例以圖示詳細說明,但同一行業的人 士立刻發現在此可以做多種修改而不乖離本發明的精神或後附聲明的範 圍。例如,差模時間定位部份800或相轉部份1000可以省略,特別是當前 向等化器246有許多接點時。或者,部份8〇〇可以用不同的方式執行,例 如透過使用獨立相鎖迴路為I與Q腳產生的時脈信號。適應引擎13〇〇可以 配置成一適應引擎,而同時在一複等化器的所有路徑同時操作,而不是上 面說明的兩條路徑,做為進出個別資訊流以決定濾波係數之一整個適應性 105 200541280 等化益’或可以替代財非適應性等化ϋ之個職雜等化器,即使功率 與晶片面積會因絲增加。此處齡❹個串聯的峡部份與元件,有許 夕可以合併在-起。在一實施例中,為趟提供線性失真補償的等化器可 以與回返資訊流串聯,而不是如此處顯示者。一增益斜坡等化器可以加入 之輸出以允許等化器完整的權力,為加入的a^d或其他失真零件提 供線性失真麵。並且,雖然上面呈現的討論在前向等化器之適應係數方 面’、提及使用頻道管理部份,頻道管理部份也可以使用於其他適應性等化 _ 器係數之調適。這些與其他修改與使用對同-行業的人士是很明顯的,均 包括於本發明的範圍。 【圖式簡單說明】 【0296】參考詳細說明、專利範圍及圖式,可以更完整了解本發明。 【0297】圖1顯示一按照本發明之傳授而配置的數位通訊發射機之方塊 IS3 · 圃, [0298】圖2顯示繪於圖丨之發射機中之線性與非線性預失真部份的 φ 第一個實施例之方塊圖; 【0299】圖3顯示一適合使用於圖1之發射機中之線性與非線性預失真 部份的數位降頻部份; 【0300】圖4顯示繪於圖1之發射機執行的發射-失真管理的第一個實 施例之流程圖; 【0301】圖5顯示緣於圖4之過程之次處理的流程圖,而此次處理用來 補償一上游高功率放大器(ΗΡΑ)產生的線性失真; 106 200541280 【〇3〇2丨圖6顯示繪於圖5與圖14之一個次處理之次處理的流程圖, 而該次處理執行—時間定位預估並聚合之程式的實例; 【 】圖7顯示緣於圖1的發射機之一適於線性與非線性預失真部广 使用的共模時間定位部份之方Jt鬼圖; 【】圖8顯示一適合使用在繪於圖1的發射機之線性與非線性預失 真部份之差模時間定位部份方塊圖; 【0305】圖9顯示一個緣於圖5與圖14之次處理的次處理之流程圖,而 • 此次處理用來執行-共模定相預估聚欽程式; [0306】® 1〇顯示一適用於圖丨之發射機之線性與非線性預失真部份的 相轉部份之方塊囷; 【_】囷11顯示一個繪於圖5、囷14舆圖15的次處理之次處理的流 程圖,而此次處理用來執行一等化預估聚歛程式; 1_8】® 12顯示—錄適合祕@丨之發射機之線性與雜性預失真 部份之多個部份的等化器之方塊圖; .【⑽09】® 13顯示—適合驗@丨之發射機之線性與雜性預失真部 份之適應引擎部份方塊圖; 【0310】圖14顯示-緣於囷4之處理之次處理的流程圖,而此次處理 用來補償ΗΡΑ產生的線性失真; [0311】@ 15顯tf-緣於圖4之處理之次處理的流程圖,而此次處理用 來補償ΗΡΑ產生的非線性失真; [0312】圖16顯不-適合用於圖丨之發射機之線性與非線性預失真部份 107 200541280 的基本能產生部份之方塊圖; [0313】圖17顯示一適合用於圖1之發射機之線性與非線性預失真部 份的代表熱預估部份之方塊圖; 【0314】圖18顯示一繪於圖1之發射機之線性與非線性預失真部份的第 二個實施例之方塊圖; [0315】圖19顯示一由繪於圖1之發射機執行之發射失真管理的第二個 實施例之流程圖; 【0316】圖20顯示一類比/數位轉換器(A/D)之模型; 【0317】圖21顯示二位元A/D量化與量化誤差特性的圖表之實例; 【0318】圖22顯示一使用於圖1之發射機之線性與非線性預失真部份 的第一個代表之量化誤差補償器之方塊圖; 【0319】圖Z3顯示緣於圖19之處理的次處理之流程圖,而此次處理用 於控制繪於圖22之量化誤差補償器,以補償量化誤差之不對稱性; [032〇】圖24顯示繪於圖19之處理的次處理之流程圖,而此次處理用 於補償A/D產生的線性失真; 【0321】圖25顯示與圖18顯示之線性與非線性預失真部份之第二個實 施例-起使用的多工部份之方塊圓,以產生驅動適應性等化器之接口的信 就, [0322】Η 26顯轉闕19之處理的次處獻流程圖献次處理用 於補償A/D產生的非線性失真; 【]圖27顯示缚有數個頻譜圖表之圈,此用來確定數個傳送多個頻 108 200541280 率多工頻道之通訊信號的特性。 [0324] B 28顯示-緣於圖丨之發射機之線性與非線性預失真部份的第 三個實施例之方塊圖; [0325】129顯tf-代麵料轉份而使麟圖丨之發賴之線性與 非線性預失真部份的方塊圖; 【0326】圖30顯示一緣有使用於圖29顯示之頻譜管理部份的代表的增 益控制器之操作的流程圖; iG327】® 31顯;^使贿@丨之魏狀雜赫雜預失真·部份的 第二個代表的量化誤差補償器之方塊圖; [0328】圖32顯示緣於圖1之發射機執行之發射失真管理之第三個實施 例之流程圖; 【主要元件符號說明】 102數位資訊流 106合併部分 110峰值減低部分 114峰值減低反饋信號 115直接耦合元件 117反饋信號 120類比零件 123基頻(BB)信號 126直接正交升頻部分 130射頻類比信號 134射頻類比信號 138天線 142 Amp 104數位調變器 108複前向資訊流 112峰值減低前向資訊流 114峰值減低控制信號 116射頻通訊信號 118複前向資訊流 122數位/類比轉換器(D/A ) 124低通濾波器(LPF’S)true, And does not substantially contribute to spectrum regeneration.  therefore, In some applications, It may be necessary to detect • EVM caused by μ non-linear distortion has increased ’distortion in this form, Swap into more benevolent band distortion.  [0185] Therefore, After working 404, A job 406 obtains a residual nonlinear EVM value.  This residual nonlinear EVM value, Is after linear and nonlinear compensation caused by nonlinear distortion,  Estimated or residual distortion remaining in the HPA RF analog amplifier signal 117. For example, In operation 406, the residual non-linear EVM value can be obtained by controlling the multiplexers 270 and 278. So that the error information stream 276 is associated with itself in the correlation engine 280, Then make at least two associations.  One of these two associations, Is to measure the error signal from the analog signal, This is the input of the HPA 136. The other is to measure the signal from the analog, That is, the input of QPA 136, The resulting error signal.  of course, Clock, Phase positioning and gain adjustment, Before making the associations, Both can be performed as described here. Suitable convergence conditions are used for the operation of two associations, So that the effective error level of the error information stream 276 can be greatly reduced as described above.  [0186] Job 406 may then evaluate two associations, The residual non-linear EVM value is obtained. This difference is mainly due to the memoryless nonlinearity 142 of HPA 136 and represents the non-linear distortion 64 200541280. Although __ multiple sources will record the results of each _, These filament sources are mostly common to all associated operations. therefore, The difference between these two associations produces a residual nonlinear EVM value, This value and the source of the noise are essentially independent of each other.  [0187] After working 406, A job 408 assessment, When the residual non-linear EVM value is too large compared to a preset value. Excessive values may cause ageing but not expired HPA 136, Aged power supply, Operates at extreme temperatures or a variety of other conditions. If the residual nonlinear EVM value is too large, Then, the operation 408 provides the peak reduction feedback signal 114 to the peak reduction portion 110. The feedback signal 114 is obtained based on the residual non-linear EVM value of Yuzuo 406 above. As mentioned above,  The peak reduction portion 110 changes the amount of peak reduction it adds to the forward stream. especially, When the value of the residual nonlinear EVM is too large, The amount of peak reduction will increase, So that ρρα ι36 can operate under a larger rollback, This results in reduced non-linear distortion. Increasing the amount of peak reduction also increases linear distortion, But it should also reduce some non-linear distortion. The transmitter 100 will thereafter operate at a lower non-linear distortion, Reception is moderately weakened, But spectrum regeneration can be virtually avoided. In addition, Task 408 may trigger an alert or send control messages automatically, To indicate the condition of the residual nonlinear EVM.  [0188] After working 408, Program control will return to any sub-processes and tasks within process 400. So that the processing and work can be repeated at any time according to the appropriate schedule.  [0189] The embodiments of the predistortion circuit 200 and the transmitter distortion management process 400 discussed above, A / D 304 in DDC300 produces only negligible small amount of distortion, When displaying the ultra-wideband feedback signal added to the A / D 304 processing according to the frequency effect, Can provide favorable results. Only when the amplitude of the quantization error caused by phase noise or aperture jump in A / D 304 is not related to the unrelated error 65 200541280 will present obvious problems, Because the estimation and convergence procedures discussed above for processing feedback signals can tolerate such errors, Noise and jitter.  [0190] However, even at a low resolution, The high error a / d 304 may also be a complex component,  And the overall cost of the predistortion circuit 200, It may be further reduced by allowing the use of the less complex A / D 304 which will produce some distortion into the feedback signal. If this distortion is not compensated,  Would be incorrectly interpreted by the transmitter distortion management process 400 as the analog transmitter part 120 producer.  therefore, In addition to removing the above sources of distortion, Equalizer 226, 246 and 260 will set the contact value that can also produce unwanted distortion in the forward information flow. The unwanted distortion is the inverse of the distortion produced by A / D.  [0191] FIG. 18 shows a block diagram of a second embodiment of the linear and non-linear predistortion part 2000, which is hereinafter referred to as a predistortion circuit 180 of the transmitter 100. The pre-distortion circuit 1800 is configured to compensate for the linear and non-linear distortions discussed above with Some a / d induced distortion. By using the predistortion circuit 1800, The transmitter 100 can even use an inexpensive A / D to produce significant distortion, The feedback signal into its processing.  [0192] The predistortion circuit 1800 is configured to be mostly like the predistortion circuit 200, And most of the discussion of the predistortion circuit 200 described above also applies to the predistortion circuit 180, In the block diagram, The same reference numerals between 2 and 18 indicate similar parts. but, For the sake of convenience 'some parts of the predistortion circuit 200, Such as the gain adjustment circuits 30 and 256, Thermal change estimation circuit 1700 and a circuit that generates a clock signal for A / D 304, They are omitted in Figure π.  People in the same industry understand that these parts still need to be included in the predistortion circuit 18⑻, And actually use it, As discussed above with Figure 2-17.  66 200541280 [0193] Pre-distortion circuit ι_ also includes rate multiplier 204 This is used to generate the speed-up complex forward information flow 206. Forward information flow 206 drives the generation of basic functions, Delay element 208,  -The real part of the delay time of the worms, The common mode time positioning part 700 shown in the phase 2 is shown.  [0194] The basic function generating section 1600 provides a majority of basic function information streams to the non-linear predistorter 224, A settable delay portion corresponding to a majority of 700. The non-linear predistorter 224 includes an analog transmitter part compensator 1803, And contains a majority of equalizers and merge circuits 228, As discussed in Figure 2 above, However, the merging circuit 228 is omitted from FIG. 18 for convenience. The analog transmitter component compensator 1803 is used to deal with the analog transmitter component 120.  Fig. 18 Equalizer 226 is injected into EQ | ^ PA, The subscript "k" represents the basic function of the equalizer 226 and the subscript "HPA" indicates that the equalizer 226 is suitable for compensating the non-linear distortion generated by the HPA 136. The non-linear predistorter 224 provides a complex filtering basic function information stream 230 to the negative end of a combined circuit 22o. The delay element 208 provides a complex forward information stream 218 to the positive end of a combining circuit 220. The merging circuit 220 provides a complex non-linear pre-distortion forward information flow 238 to the forward equalizer 246 and 0 to a settable delay portion, As discussed above, but, 囷 18 draws the equalizer 246 and the delay part 800 in a different order. The forward equalizer 246 is also included in the analog transmitter component compensator 1803. The time delay part 800 is actually equivalent to the differential mode time positioning part 800 discussed in Figure 2-17. [0195] The time delay part 800 provides complex orthogonal balance equalization forward information flow 118 to digital / analog conversion (D / A's) 122, The remainder of the analog drive part 120 is driven. As discussed above,  D / A's 122 preferably presents a resolution much higher than a / d 304. In Figure 18, The box labeled 67 200541280 “XPF” includes a low-pass filter 124, The up-conversion section 126 and the band-pass filter 132 of FIG. The output of one of the band-pass filters 132 provides a radio-frequency analog signal 34 to the multiplexer 250 and the HPA 136, The RF analog signal 117 comes from M! % Output, Connected to the multiplexer 25. Unlike the predistortion circuit 200 discussed in FIG. 2 above, D / A, One of s 122 also directly generates the fundamental frequency signal 123, Connected to the multiplexer 250. The fundamental frequency signal 123 is a one-bit filtered signal. Because it does not pass the filter provided by the analog transmitter part 120. therefore, It does not suffer the distortion imposed by the filter.  [0196] In one embodiment, D / A 122 is actually equivalent to the other parameters in terms of resolution, In another embodiment, The D / A122 that generates the fundamental frequency signal 123 has a higher resolution and / or quality than other D / A122s. In another embodiment, The third D / A (not shown) is dedicated to drive the base number 123 ′ but also; ϊ Need to transfer other analog launch age pieces 12 (). The driving base frequency signal I23 WD / A should have high resolution and high quality. because, There is a more detailed discussion below,  D / A is used to create compensation for A / D 304, This side will be limited by any distortion caused by D / A. fortunately, 咼 D / A with high resolution and high quality has low price products everywhere.  [0197] The settable delay part 700 provides the delay before moving the information flow to the phase conversion part. And the phase conversion part 1000 provides positioning complex forward information flow 272, . Forward Information Stream 272,  Upward frequency magnetic 272 ' is up-to-digital ± up conversion (DUC) miscellaneous. Duc part 1806 digitally forwards the information stream 272, Up to ⑽, Where Fs is the sampling frequency.  One of the outputs of part 1806 drives a real number conversion part 1808.  [0198] Each settable delay portion 700, , Configured similar to the delay part 700, And each of them is connected to its own phase-change part, . Turn to some recitations, Are configured to resemble the phase conversion part, And turn to part 1_, Each provides—the basic function information of positioning flows to _non-linear pre-68 200541280 distortion suppression 224 non-linear pre-distorter 224, Preferably configured similar to the non-linear predistorter 224,  However, it is included in the A / D compensation section of 1805. especially, Non-linear predistorter 224, Including a majority linear equalizer 226, , And one of the equalizers 226, Dedicated to the basic functions of the independent wave, the equalizer 226 ′ is labeled as eqI Where the superscript "k" stands for equalizer 226,  Related basic functions, And the subscript "trip, , Represents equalizer 226, The outputs of the equalizer 226 used to compensate for the distortion produced by the dove are all merged together. As discussed above (not shown), Then non-linear | ± pre-distortion H 224 ’generation—complex basic function wave information flow 18G9, And provide up to a digital ® upscaling (DUC) ^ injury 1810. This in turn drives the real-to-real conversion part 1812.  [〇199] Real number conversion, The brain and 1812 each converted their complex forward information flow into a real information flow, Use technology familiar to people in the same industry, Four pairs of samples from each group of complex forward to information flow. Face and job choose it! , q and 0 samples. The real number conversion part 1802 is coupled to a settable delay part 700, , And this can be configured to be substantially similar to the configurable time delay portion 700. Delay part 700, The surface is connected to a fixed delay part ⑻4 ′, and this execution is substantially equal to the phase conversion part 1000 and the surface, Added delay. The delay section calls for the provision of -delay forward information flow to _fixed delay element ^ delay element 1818 plus a delay substantially equal to the digital upscaling part 1806.  [〇2〇〇] real number conversion part of the surface and delay elements 1818 1820, And this is included in the trip compensation part. Swap some of the first output of the lion, Connected to-linear distortion compensator concept. The linear distortion compensator body is provided by a linear equalizer, And _ 18 is labeled EQk, Where superscript "丨, , The representation is a linear operator, And the subscript ‘fen, Indicates that the equalizer tripod is used to compensate for the distortion produced by the trip. In a preferred embodiment of the present invention over 69 200541280, The equalizer 1824 is preferably configured similar to the equalizer 226, 246, 260 and 226, ,  But the equalizer 1824 only needs to process a real information stream instead of a multiple information stream. And the number of contacts may be different. but, Such as equalizer 226, 246, 260 and 226, , The equalizer 1824 is preferably configured as an adaptive equalizer, Either directly or through operation of the adaptation engine 1300. Therefore, As discussed in more detail below with reference to Figures 19 and 24, The equalizer 1824 is adjusted to compensate for the linear distortion produced by the A / D 304.  [0201] The second output of the switching section 1820 is coupled to a quantization error compensator 2200, _ This compensator is also included in the A / D compensation section 1805. Generally speaking, The quantization error compensator 2200 ignores the compensation for the magnitude of the quantization error. However, the quantization error compensator 2200 symmetricizes the compensation error. Quantization error compensator 2200, This is discussed in more detail below with Figures 21-22. The second embodiment of a quantization error compensator 2200 that symmetricizes and compensates for quantization errors. This is discussed in Figure 31 below.  [0202 丨 Real number conversion section 1812 The outputs of the linear distortion compensator 1822 and the quantization error compensator 1826 are added together in a combining circuit 1828. A version of the data stream is provided to one of the inputs of the merge circuit 1830 before being output from the merge circuit 1828, The merging circuit 1830 provides a compensation point,  In order to merge the processed forward information stream with the return information stream output from A / D 304.  [0203] One of the merging circuits 1830 in turn provides an A / D compensation return information stream 1832 to the direct digital down-conversion section 1834. In this second embodiment, DDC 1834 contains only DDC 300 parts 308 discussed above from the first embodiment, 310 and 312. Generally speaking, A / D 304 effectively down-converts the sampled feedback signal to an intermediate frequency (IF) signal jy4, Where & Is the sampling frequency. DDC 1834 generates a return flow 254, This is essentially a reply letter 200541280 located at the fundamental frequency. As discussed in the foregoing first embodiment, The returning information stream M may present a lower error and lower forward information stream than the forward information stream. The return stream 254 drives the return equalizer,  In turn, these equalizers generate an equalized return information stream 262, As discussed in Figure 2-17 above. The return equalizer 260 is also included in the analog transmitter component compensator 1803.  [0204] In this second predistortion circuit 1800 embodiment, As discussed in Figure 217 above,  Controller 286, Adaptation engine 13〇〇, Adapt engine 13⑻, The correlation engine 28 must be coupled to multiple parts of the predistortion circuit brain, To control the direction and timing of information flow, And handle different versions of rebate _ news flow.  [0205] FIG. 19 shows a flowchart of a second embodiment of the transmission distortion management process 400 performed by the transmitter 100, This embodiment is referred to as Process 1900. Process 1900 is different from process 400 described above,  In that it contains extra sub-processing, Used to compensate for some forms of distortion produced by A / D 304. Process 1900 is discussed in more detail below.  [0206] FIG. 20 shows a typical analog / digital converter model 2000, Such as >  Ming A / D 304. Model 2000 shows multiple sources of distortion that A / D 304 can produce. An input analog signal 2002 is provided to the amplifier 2004, The amplifier 2004 of FIG. 20 is labeled "NL AMP", Let the amplifier 204 be a possible source of non-linear distortion. One output of amplifier 2004, Drive a Low Pass Filter (LPF) 2006. LPF 2006 is a possible source of low distortion,  Because the "knee" of this filter is usually very high above the frequencies we are interested in. One output coupling of LPF 2006 is one of switch 2008, A sample and hold circuit 2010 is then driven. The sample and hold circuit 2010 is similar to a low-pass filter. Can produce a lot of linear distortion. The sample and hold circuit 2010 drives an adder 2012 through a switch 2014. On the adder 2012, Probably 71 200541280 Adding DC displacement. Although DC displacement is usually an unwanted result, But it does not necessarily cause distortion-related problems. The adder 2012 drives a quantizer, The quantizer 2016 digitizes the analog voltage captured by the sample and hold circuit 2010. And provide digital output to add. Quantizer 2016 can be a source of several different errors.  [0207] FIG. 21 shows the characteristics of quantization and quantization error for an example of one-bit resolution wd. The two-bit resolution characteristic is not a requirement of the present invention. Figure 21 shows the two-dimensional spatial representation of the possible input analog voltages of all A / D on a straight line 2102, This is an example of how A / D could digitize the input analog voltage on line 2104, The result of the quantization error is shown in trace 2106. The -line three digits to the left of @ 21 represent the traditional two's complement representation of quantized output, And @ 21 之右 — another binary representation of the quantized output represented by the binary number, An embodiment suitable for use in a preferred embodiment. This 1/2 bit shift representation is compared to two's complement notation, Use one to increase the bit resolution, But does not include the zero state or any other even state, And have the same non-zero positive and negative states.  [0208] The quantizer 2016 of the A / D model 200 is characterized by exchanging a critical value of 2108. One _ two-bit A / D preferably has three exchange thresholds 2108 at zero and in the full 1/2 value range (FS / 2), The larger resolution a / d has more switching critical value 2108. When an input voltage is slightly lower than the switching threshold 21G8, A / D will output a code, When #input people voltage is slightly higher than the switching threshold 21G8, A / D will output another code. On the exchange threshold 21 () 8, The quantization error suddenly jumps from -local minimum to -local maximum. If all exchange threshold toilets are placed accurately, Then the absolute values of all local minimums and all local maximums are equal. The magnitude of the quantization error may cause an A / D distortion in a certain RF communication application. As shown in Figure 27_32 72 200541280. But in other applications, The magnitude of the quantization error is zero due to the estimation and convergence formula of the return information stream π%.  [0209] Whether or not the magnitude of the quantization error will cause a problem, If the exchange threshold is not set, Will cause asymmetry. Figure 21 shows one such asymmetry, The actual + FS / 2 exchange threshold 2108 has been shifted from the ideal position to the negative direction. But the —FS / 2 exchange threshold is in place. The asymmetry of this quantization error, Another kind of distortion is produced in the signal processed by pass 304. If uncompensated, Then this distortion will cause equalizer 226, 246, The contact coefficient with 26〇 _ is not accurate. The interesting asymmetry is about DC displacement, And this can but need not be equal to zero. The use of 4-bit displacement representation further enhances symmetry, Because each digit of the displacement representation has a corresponding positive value, Represents a corresponding analog input. in other words,  This encoding method is symmetrical at zero.  [0210] The predistortion circuit 1800 compensates the a / d quantization error, But more specifically, a quantization error compensator 2200 is used to compensate for asymmetry. Fig. 22 shows a first embodiment of a quantization error compensator 2200. Generally speaking, The quantization error compensator 2200 allows the formation of an effective exchange threshold 2108 at an ideal position. At least as accurate as d / A 122. Another embodiment of a quantization error compensator 2200 is discussed in FIG. 31 below.  [0211] Referring to FIG. 22, In the combining circuit 2202, a positive displacement is added to the analog feedback input signal driving the A / D 304. This positive displacement is not a requirement, But it can be used to simplify hardware. The positive displacement is preferably slightly larger than the maximum value of an actual exchange critical value 2108 which will shift in the negative direction of the ideal exchange critical value. therefore, A positive displacement has the effect of moving all actual exchange thresholds 2108,  Compared with the analog input signal, it presents a negative error effect. This negative exchange critical error results in some A / D digital outputs with 73 200541280 analog inputs, Showing too positive values, But this too positive output can be corrected by adding only negative displacement. Adapting A / D 304, And add the LSB of the two's complement representation from A / D 304, To provide the above-mentioned 1/2 bit displacement representation, And set this bit to "1" forever. As discussed above, The output of A / D 304 is connected to a merge circuit 1830.  [0212] In this embodiment, The controller (c) 286 is configured to monitor the compensation return information stream 1832 output from the combining circuit 1830. The controller 286 is also configured to write data to the logger 2204, 2206 and 2208. Recorder 2204, 2206 and 2208 output, Respectively coupled to the comparators 2210, Positive input of 2212 and 2214. Comparator 2216, 2218 and 2220 negative inputs,  All are driven by the output of the switch 1820. Comparator 221〇, The negative inputs of 2212 and 2214, Adapted to receive-FS / 2, 0, And + FS / 2, Where "FS" refers to the entire range. Comparator 2216, The 2218 and 2220 losers, It is also driven by the output of the switch 1820. From the comparators 2210 and 2216, the "greater than, , Output, When the positive input is greater than the negative input, And coupled to an input of an AND 2222, An active signal is generated; The “greater than output” from the comparators 2212 and 2218 is coupled to the input terminal of an AND gate 2224; And the output from the comparators 2214 and 2220 is greater than Coupled to the input of an AND gate 2226. From AND gate 2222 2224,  And the output of 2226, Is coupled to the input of OR gate 2228, And an output terminal of the OR gate 2228 is connected to the zero data input of the multiplexer (MUX) 223. An "〇, , Value is provided to zero input of multiplexer 2230, And one ‘]’ value provides at most one input of data. Output of one of the multiplexers 2230, Through a delay element 2234, a displacement value information stream 2232 to the parallel port circuit I828 is provided. Among them, this information stream is merged with the real number conversion part ⑻2 and equalizer.  Adding the information stream with the delay το 2234 will cause the quantization error compensator to display the same 200541280 delay ′, as shown by Ehwa Zhai 1824. As discussed above, The output of the merging circuit is 8, Tap to a negative input terminal of the merge circuit 1830.  [0213] With reference to FIG. 19 above, Process 1900 initially performed a secondary treatment of 23㈨, _ Sub-processing works with quantization error compensator 2200, To symmetric a / d quantization error. In the following discussion of the second embodiment of the quantization error compensator and FIG. 31, The secondary processing of 2300 compensates the magnitude and symmetric quantization of the quantization error. FIG. 23 shows a flowchart of the secondary process 2300.  [0214] The secondary process 2300 is configured to execute a power-on form, Or when the transmitter 100 does not transmit data #. Sub-process 2300 first performs a job 2302, To initialize a predistortion circuit 180.  Work 2302 can, For example, Set the basic function generator 16⑻, So that only zero values are output.  The multiplexer 250 should be set such that the baseband (BB) inverse signal 123 is connected to A / D 304. The equalizer 1824 is preferably set to output only zero values, And the switch 1820 is preferably controlled to pass through the delay part 700.  The fundamental frequency path is connected to a quantization error compensator 2200. and, Recorder 2204, 2206, And 2208 is best set to the largest negative value. In this state, Analog transmitter part 12 except for D / A 122 driving the fundamental frequency feedback signal 123, No distortion was generated into the signal monitored by the a / D 304. same, At the compensation point of the merge circuit 1830, The output of A / D 304 has no effect. Make recorder 2204, 2206 and 2208 exhibit the same maximum negative value, which prevents the quantization error compensator 2200 from affecting the output of the A / D 304.  [0215] After working 2302, A job 2304 identifies the actual exchange threshold used by an A / D 304. The first exchange threshold, For example, May be -FS / 2 threshold, And the positive displacement added to the merging circuit 2202, Make the actual exchange threshold less than the identified ideal threshold. Next, A job 2306 causes the D / A 122 to output an analog value. Because the resolution of D / A 122 75 200541280 is higher than that of A / D 304, Such ratio values are output with high accuracy, And it is directly fed back to the A / D 304 through the multiplexer 250.  [0216] Next, after waiting for a considerable time, A query 2308 determines whether the A / D output value has been converted from the previous value. Suppose job 2308 is unaware of the conversion action. Then job 2310 increases the output value to the information stream before the South resolution by one LSB. And the program flow returns to 2306 to output this new and slightly larger value. The program flow stays at work 2306, The circles of 23〇8 and 2310, Until outputting a value that causes the A / D output to be converted into a new output code. Due to the positive displacement, the exchange critical value presents a negative error value. The output of A / D 304 will now display a positive error value.  [0217] An actual exchange threshold has been determined, A job 2312 then records the actual switching threshold, And a query 2314 determines whether the previously perceived actual exchange threshold is the previous threshold. As long as there are other exchange thresholds waiting to be detected, The program flow returns to task 2304. To detect another actual swap threshold. When job 2314 determines that the last actual exchange threshold has been detected, Then a job 2316 sets the recorder 2204, 2206 and 2208 are the actual exchange thresholds. In a variant embodiment, The actual exchange threshold set by work 2316, It may be% LSBs or 1 LSB less than the detected actual exchange threshold and recorded in job 2312. at this time, The sub-process of 2300 was completed. The actual exchange threshold has been measured in the accuracy range provided by D / A 122.  [0218] In the next operation, The forward information stream driving D / A 122 is also provided to comparator 2210,  2212, 2214, 2216, 2218 and 2220 (Figure 22). Whether the value of the forward information flow is between the ideal and the actual exchange threshold, Can be detected by comparator 2210, 2212, 2214,  76 200541280 2216, 2218 and 2220 with AND gate 2222, 2224 and 2226, By combining the circuits 828 and 1830 to provide a displacement value of 1, To compensate the output of a / d 304. At last, Symmetry of quantization error can be achieved. For the effective exchange threshold 2108 used by A / D 304, When more positive than any DC displacement, A / D 304 also uses a critical ratio of 2108, Any DC displacement is more negative, And the average of the thresholds of the exchange of correction and more negative, That is equal to the DC displacement. More precisely,  For the resolution of D / A 122, The actual exchange threshold 2108 is converted to a more effective ideal parent exchange threshold 2108 '. This sets a near-zero DC displacement, And make all effective exchanges ϋ critical value 2108, Be symmetrical around zero.  [0219] Although the embodiment of the quantization error compensator 2200 of the circles 22-23 described above is based on the fact that the transmitter 2 does not transmit data and the process 2300 operates, This is not a requirement of the invention. In a variant embodiment, The transmitter 100 may identify the actual exchange threshold 2108 while transmitting the data. In this modified quantization error compensator 2200, The forward information flow can be monitored in the quantization error compensator 2200 for a period of time, And record the value of the maximum forward information flow of each A / D output state. The actual exchange threshold 2108 can then be determined to be a value slightly less than or equal to the maximum record. In another variant embodiment, The value of the largest and smallest forward stream of each A / D output state can be recorded when transmitting a large amount of data. Then the actual exchange threshold can be determined by averaging the maximum value of one state and the minimum value of the next state.  [0220] Slightly back to process 1900, After completing the secondary process 2300, A sub-process of 2400 starts to execute, To compensate the linear distortion produced by A / D 304. Referring to Figure 20, A / D 304 may produce linear distortion mainly through the sample and hold circuit 2010 and secondary through LPF 2006.  [0221] FIG. 24 shows an example of a flowchart of a secondary process 2400. The secondary processing 2400 is performed at any time when the data is transmitted by the transmitter 100 And it is better to set the quantization error compensation detection state 2200 to compensate the A / D quantization error in the second processing 2300. After compensating for the quantization error distortion produced by the source of linear distortion downstream of 304, Quantization error distortion is unlikely to hurt a resolution that is properly compensated for linear distortion. therefore, During the 24h period of the sub-process, The quantization error compensator 2200 is preferably enabled and operated.  [0222] Subprocess 2400 performs an initial job 2402, The initial predistortion circuit 1800 is used to perform the second process 2400. Work 2402 can control multiplexer 250, So that the fundamental frequency (BB) feedback _ 佗 number 123 can be connected to A / D 304. The switch 1820 can be controlled to pass the delay portion 700, The forward information stream can be connected to a linear distortion compensator 1822. The equalizer 1824 of the linear distortion compensator 1822 is initialized to a required state, To pass without filtering. and, One can adapt to multiplexer 2500 (Figure 25), So that when equalizer 1824 is used as an adaptive equalizer,  The appropriate ideal positioning and error signals connected to the adaptation engine 1300, Connect directly to the equalizer ι824.  [0223] FIG. 25 shows a signal used in combination with the predistortion circuit 1800, A block diagram of a multiplexer 2500 to drive multiple adaptive equalizers' including the contacts of the equalizer 1824. These contacts can be driven by the equalizer engine 1300. The workaround is, Multiple equalizers, Including the equalizer 1824, Can be configured as an adaptive equalizer. Figure 25 omits the sign of the complex signal for convenience. But people in the same industry know, The complex signal can be wired through the multiplex section 2500 if necessary. Generally speaking, Error signal 276 at the equalizer contact of the adaptive engine 1300,  Is in the subtractor circuit 274, Generated by subtracting the return flow from one version of the forward flow. The return information stream is connected to the subtraction circuit 274 through the multiplexer 2502. And multiple versions of the forward information flow are connected to the subtraction circuit 274 through a multiplexer 2504. The ideal positioning signal 272 also drives a number of 78 200541280 adaptive equalizer contacts' including the equalizer 1824. The ideal positioning signal 272 is obtained from the forward data signal through appropriate wiring 'of a multiplexer 2506. The multiplexing section 2500 is configured to direct the appropriate forward and return information flow, In order to generate suitable ideal positioning and error signals 272 and 276. In this embodiment, The high-pass filter (HpF) 314 has been combined with the embodiment of FIG. 2, And supplied to the downstream subtraction circuit 274. therefore, The error signal 276 is mostly generated directly by HPF 314. and, A delay element 2508 is added after the multiplexer 2506. The addition of the delay element 2508 is about equal to the delay of the HPF 314. So that the error signal 276 and the ideal positioning signal 272 can maintain the positioning with time.  [0224] With reference to FIGS. 24 and 25, Work 2402 can initialize the multiplexer part 2500, To select "〇 , , Multiplexer input. These choices are input through the multiplexer 2502 input subtractor 274 and through a delay element 2510 and the multiplexer input M compensation return information flow.  therefore, The error signal 276 is basically provided by the combining circuit 1830. The ideal positioning signal 272 is provided by the delay-to-information stream 1816 through the multiplexer 2506 and a delay element 2512. The delay element 2510 is inserted by the DDC 1834 and the return equalizer 260 into a fixed time equal to the delay of the entire signal >  Delay. The delay element 2512 is composed of DDC 1834, Return equalizer 260, The digital upconverter and equalizer 1824 inserts a fixed delay equal to the overall signal delay. The delay of the delay elements 2510 and 2512 causes the error positioning signals 276 and 272, To deal with what happens later, Maintain time positioning, In this process, ‘different parts will be transferred into the signal path’. [0225] After working 2402 ’, it ’s best to perform 2600 for 2400. As discussed above, Or a similar process to perform an estimation and convergence procedure causes the forward and return information flow to be time-positioned at the compensation point provided by the merging circuit 1830. Time positioning can change the delay element. 79 200541280 Xiao Cheng joined Cheng Gengyan Qian Li, _Supervisor 8) Predicted output. The RMS estimator 2514 has a wheel whose input is connected to a subtractor 274, This output reflects the timing of the compensation point. The RMS estimator 2514 preferably performs the same function as the correlation engine 28.  And configured to accumulate an estimated abdominal 8 value for a large number of samples, As discussed in Correlation Engine 2 above.  At that time Yanshu 700 ’was set up; ^ At Gu Zawei 2514 _ 丨 —at the minimum face value,  Time positioning is reached. In a modified embodiment, The correlation engine 28 can be used to find the maximum correlation between the data and the returned data signal before the compensation point.  [0226] After execution of the secondary process 600 from the secondary process 2400, The second process 2400 is the second process 1100 ’. To run an estimation and convergence program, And this program solves the contact coefficient of the equalizer 1824. After the secondary process 1100 is completed, Its coefficient is determined by And set to equalizer 1824, And the coefficient just determined makes the return information flow output from a / d 304 and the forward information flow get the maximum correlation result. at this time, The equalizer 1824 has been adjusted to compensate for the linear distortion produced by A / D 304, And the secondary process 2400 has been completed.  [0227] Referring to Figure 19 above, After the secondary process 2400 is completed, Process 1900 then proceeds to process 500, As discussed above, To compensate for linear distortion generated upstream of HPA 136. During sub-process 500 and subsequent sub-processes, The quantization error compensator 2200 and the linear distortion compensator 1822 remain in the set and operating state. So that when these subsequent compensations occur, Use A / D distortion compensation for sub-processing.  [0228] During work 502 of the sub-process 500, The multiplexer 250 is switched to connect the RF feedback signal 134 to the A / D 304. The radio frequency feedback signal 134 is an up-conversion form of the fundamental frequency feedback signal 123. In addition, there is no distortion included in the fundamental frequency feedback signal 123. therefore, Work 502 is best transferred to 200541280 converter 1820, The forward information stream is passed through the delay element and the digital up-converter to the quantization error compensator 2200 and the linear distortion compensator. Although the up-conversion part 126 is not required, it is better not to up-convert to Fs / 4. As is the case with digital upconverters,  304 performs a sub-sample down-conversion and centers its output at Fs / 4. therefore, The up-conversion part 126 and ⑽ 304 work together as if performing up-conversion to Fs / 4. The quantization error and linear distortion compensation previously determined for the fundamental frequency can now be used at Fs / 4.  [0229] In addition, The initial work 502 should control the multiplexing part 2500, In order to select the multiplexer input terminal marked as τ. These choices, The return information stream 262 is connected to the subtractor 274 through the multiplexer 2502 and the forward multiplexer is connected to the forward information flow 272 through the delay component. To form an error signal 276. The ideal positioning signal 272 consists of a forward information stream 272, It is provided through the delay element 2516. The delay element 2516 adds a value equal to DDC 1834, Return equalizer 26〇,  Digital upconverter delete, Fixed delay with the signal delay added by the equalizer,  To maintain time alignment with other processes, And in this process, Different parts are routed into the signal path.  [0230] After working 502, The second processing is 500, and then the common mode and differential mode time positioning is adjusted by setting a delay of 700 and ca. As discussed in Figure M above, And adjust the phase conversion part to position the phase as discussed in Figure 9-10 above. then, The subprocess 500 performs an estimation and convergence procedure to solve the contact coefficients for the forward equalizer 246. at this time, Цρα 136 The linear distortion generated by the upstream stream to the information stream has been compensated.  [0231] Referring again to FIG. 19, After the secondary process 500 is completed, Process 1900 followed by a process of 2600, To compensate for the non-linear distortion generated by the A / D 304. Reference circle 20, _3〇4 81 200541280 Non-linear distortion is generated mainly through the operation of NL amp 2004.  [0232] FIG. 26 shows a flowchart of one of the sub-processes 2600. The processing 2600 is preferably in the predistortion circuit 1800 to be set to compensate for quantization error distortion, A / D linear distortion, And HPA 136 upstream linear distortion. at this time, The RF feedback signal 134 has been adjusted to remove linear distortion, And there is no substantial amount of nonlinear distortion on the path of the radio frequency feedback signal 134. therefore, Any non-linear distortion mainly comes from A / D304.  [0233] Process 2600 includes an initialization job 2602, It is used to set the predistortion circuit 1800 to determine the corrective action of the A / D nonlinear distortion that needs to be compensated. Work 2602 can convert the multiplexer 250 ’to connect the RF feedback signal 134 to the A / D 304, And the control switch 1820 passes the forward information flow through the delay element 700, The digital upconverter 806 is connected to a quantization error compensator 2200 and a linear distortion compensator 1822. and, The multiplex section 2500 can be controlled to select the multiplexer input terminal indicated by "2" in FIG. These choices connect the return information stream 262 to the subtractor 274 through the multiplexer 2502, While forward information flow 272, Through delay element 2516 and multiplexer 2504, To form an error signal 276. The ideal positioning signal 272 is provided by one of the basic function information streams 1804, If the stream marked D2, There is a delay through the delay element 2518. The delay element 2518 adds one equal to DDC 1834, Return equalizer 260, Digital upconverter 1806 and first equalizer 1826, Added to the fixed delay of the overall signal delay, To maintain the positioning of _ with other processing, Different parts of other processes are converted into the human signal path. Initializing Yuzuo 26G2, you can also choose the basic function generator 1600 to generate basic functions. But the equalizer 226 has no choice but to generate a zero stream of information. Palpitations equalization of basic functions H 226, , For example, the EQ ^ of the d2 basic Wei f news stream, It is best to set the initial value to any other equalizer 226 for processing, It is best to initialize to output a zero stream.  82 200541280 [0234] After initialization work, The second process is to perform κ at a glance to set the delay part 700 ”and the phase conversion part. . Work can, But not needed, Use the estimation and convergence program to determine the appropriate delay and phase settings. If you use this program, They can then be configured substantially as discussed in Figure VII above. However, the delay part 700 ”and the phase transition part have a fixed relationship to the delay part 700 and the phase transition part, respectively. This fixed relationship is determined by the relative delay of the components of the forward flow path. therefore, Partial delays, It can be set using only the displacement determined in advance by the delay portion 700 and the phase conversion portion 1000. The purpose of this program is to make the forward information flow on this path reach the merging circuits 1828 and 1830 in time positioning and propagate through the delay sections 700 and 700 'before.  [0235] The next treatment is 2600, and the next treatment is 1100. To perform the estimation and convergence procedure of the equalizer 226 '. After finishing the secondary treatment, eql equalizer move, Set the coefficient, While making the second-order basic function filtering, So that it is most relevant to the presentation of the return flow from W304. The second-order distorted parts of this return stream are then minimized.  [0236] FIG. 26 shows an example, The predistortion circuit 180 uses three basic functions.  _ So, In order to make this case the secondary processing of 2600 repeats the secondary processing of 11,000 more: I think eq2a① equalizer 226 ’and EQK + equalizer 226, Find the coefficient. In the next calculation of processing u⑻, it is best to control the multiplexing section 2500 and select the multiplexer shown in Figure 25 with "3, , Input with "4". Both options connect the return information stream 262 to the subtractor 274 through the multiplexer 2502, And forward stream 272, Through the delay element 2516 and the multiplexer 2504, An error signal 276 is formed.  In the choice of ‘3, The ideal positioning signal 272 provided by the basic function information stream 1804 is labeled & , Delayed by the delay element 2520. While at "4, , In the selection, The ideal positioning signal 272 provided by the basic function information 83 200541280 stream 1804 is labeled Dk + i, Delayed by the delay element 2522.  The delay elements 2520 and 2522 each add the same delay as the delay element 2518. People in the industry know that there is no need to prescribe the use of several sets of basic functions. After 1100 times of necessary processing, Processing 2_ is complete, And the nonlinear predistorter looks like, The non-linear distortion generated by the dove 304 has been set to compensate.  [0237] With reference to FIG. 19 above, After performing the secondary processing at 2600, All the substantial forms of distortion produced by a / d 304 have been compensated. therefore, As discussed above, The remaining processing 19⑻ part chase >  The corresponding part of the trace processing 400. The secondary processing 1400 is used to compensate linear distortion through M 136,  therefore, As shown in Figure 14, The initialization work 1402 in the secondary process 1400 controls the multiplexer 25 to connect the RF feedback signal 117 output from the HPA 136 to the input of a / d 300. Positioning of time and phase, Because HPA 136 monitors forward information flow 272, And the feedback information stream 1832, And readjusted.  [0238] Then, This process was performed 100 times for three times. The first calculation of 1 100 was started at work 1414, Used to control the multiplex section 2500 to select "5, , So much work.  ϋ Enter, this has the same effect as selecting "1". The forward coefficient of the forward equalizer 246 is determined during the first calculation. The second calculation of processing u⑻ occurred in job 1418 but the previous job 1416 can control the multiplexing part 2500 to select the multiplexer input marked "6" in 圊 25. This selection sends the return information stream 262 through the delay element 2522 and the multiplexer 2502 to the subtractor 274 and the highest-level basic function (that is, D-call) to form the error key m. The ideal positioning signal 272 is also provided by the highest-order basic function (that is, Dk + 0 is provided through the delay element 2522. The return coefficient of the equalizer 260 is determined during the second calculation. The third processing · calculation is in work 84 200541280 Occurs as M22, but the previous job 1420 can control the multiplexer input of the multiplexer in the measurement selection map μ in the month 1 or 5. During the third calculation, the forward equalizer 2 you forward coefficient It is readjusted. [0239] After 14 hours of sub-processing, process 1900 performs work 402, in fact as discussed in Figure 4 and Figure 15 above. Work 402 performs sub-processing 15 years to compensate for the price of 136 The linear distortion does not include the memory effect of thermal induction. The sub-process 1500 calculates and connects different basic functions to the adaptation bow, and executes the sub-process 1100 to perform the -estimation and convergence program.疋 Equalizer coefficients. After the three basic functions discussed above, for these calculations, the multiplexing part 2500 can be controlled to select the multiplexers marked "7", "8", and "9" in Figure 25, respectively. Input. Each selection is through multiplexer 2 5G2 connects the return information stream 262 to the subtractor and the forward information stream 272 through the delay element 2516 and the multiplexer 2504 to form the error signal 276. In the choice of 7, the basic function of D2 is marked The information stream 1804 provides the ideal positioning signal 272 'delayed by the delay element 2518 and determines the coefficient of the EQ? PA equalizer 226. In the choice of 8, the marked basic function information stream 1804 provides the ideal positioning The signal 272 is called for delay through the delay element 2522, and determines the coefficient of the equalizer 226 of EQjpA. In the selection of "9 ,," the basic function information stream 1804 marked with DK + 1 provides the ideal positioning signal 272. The delay element 2518 delays, and determines the coefficient of EQK + {pA equalizer 226. However, people in the same industry know that there is no stipulation that these basic functions must be used. [0240] As discussed above for the processing of 400, after work 402, A job 404 repeats processing 1500 times, but this time the memory benefit of thermal induction must also be compensated. Then, after job 404, jobs 406 and 408 get a residual EVM value, and use this value to adjust the peak reduction After work 85 200541280 and 408, any subsequent processing and work in processing 1900 towels can be repeated as needed to allow the predistortion circuit 1800 to provide compensation in time and temperature. [0241] Figure 27 shows Multiple chicks are used to convey the example of four multiplexed channels. Refer to Figures i and 27. In this example, four modulators generate four independent information flows 2700. Each independent information flow 2700 is located at the fundamental frequency when generated by its individual modulator 104. In other words, each characteristic is extended to -3 using a bandwidth with a center point of 0 out. Between 8 MHz and + 3 · 8 MHz. [Lu 0224] In this example, the combiner 106 uses frequency division to combine the four independent information streams to generate a complex forward information stream 108, as shown in trace 2702 in the figure. Two of channel 2704, labeled "A" and "B" in 囷 27, are centered on negative frequencies (ie, _7 · 5 MHz and -2.5 MHz) 'and two of channel 2704 , Marked as "C" and "D" in Figure 27, are centered on a positive frequency (ie +2. 5 MHz and +7.5 MHz). Use negative and positive frequencies to represent frequency division of labor. Channel 2704 allows the use of lower clocks. ^ If all channels 2704 are frequency-characterized with the same polarity, The forward information stream 108 must be processed using this clock.  ® [0243] Trace 2702 is the spectral characteristic of the wideband forward information stream 108. Because it is processed downstream of the combiner 106 in the transmitter 100. For illustration purposes, One of the channels 2704, This example assumes channel B, Weaker signal than other channels, In this case, A wideband digital communication signal configured to include multiple discrete frequency division channels, And these discrete channels show varying signal strengths with each other, Application used to represent a mobile base station with other digital communications. But those in the same industry know that the invention is not limited to this particular application, And this particular application is not limited to any particular number of channels 2704, Nor is it limited to any particular restrictions on relative channel strength.  86 200541280 [] __ of track 2 losing fortune, Its towel forward information flow is configured to include multiple 7-bit division of labor channels, And the signal strength of the discrete channel depends on the presentation of the signal strength. If the complex information flow m is perfectly up-converted in the up-conversion part, the in-phase part of this up-conversion will initially frequency-synthesize the sum and difference of each channel. , The orthogonal part of the up-scaling will also initially shift the frequency and divide each channel into the sum and difference of the frequencies. The upsampling depends on the orthogonal part of the meeting and is based on ", , How the in-phase and quadrature parts merge, The sum of the frequencies will completely cancel each other out or the difference in frequencies will all cancel each other out / Xiao. in other words, There is no image signal at the full upscaling of _ negative signals.  [0245] However, it is unlikely that the operation of the upsampling section 126 will have a complete upsampling. Although the forward equalizer 246 is one of the 800 targets with the difference time localization portion, Is to try to balance the in-phase and quadrature parts of the complex forward information flow 118, But inevitably there will be some residual imbalances. This residual imbalance, At 126 liters of tenderness, It will make the miscellaneous term 丨 now the radio frequency analog signal 130 ′ because the orthogonal terms of opposite complex parts will not completely cancel each other out. and, Because channel A is on the negative frequency used by channel D, And channel B is at the negative frequency used by channel c, The video signal 2708 will fall within the frequency band. in other words, The image signal 2708 from channel a falls on channel D in the radio frequency analog signal 130; The image signal 2708 from channel b falls on channel C in the radio frequency analog signal 130; The image signal 2708 from channel c falls on channel B in the radio frequency analog signal 130; The image signal 2708 from channel D falls on channel A in the RF analog signal 130. The video signal 2708 is unnecessary. Because they represent errors in occupied channels, Noise or interference.  [0246] Trace 2706 illustrates, The video signal 2708 is weaker than the signal they are video.  87 200541280 Therefore, When the channels are at mutual video frequencies, Approximately equal to the intensity of the communication channel 2710, For channels A and D ', the image problem can be easily managed by the embodiment discussed in Figures 1-26 above. The receiver is tuned so that the receiving channels A and D can successfully modulate their signals. The error signal strength 2712 caused by the video signal and the communication signal strength 2710 of channels A and D are relatively weak.  [0247] But when the channels fall on each other's video frequency, And at very different intensities,  There will be anxiety about images, For example, channels B and C. especially, Trace 2706 is an example,  Among them, the weaker channel B ’s communication signal strength 2710 is stronger than the stronger signal ’s 2712 error signal strength. Maybe weaker. Once tuned, the receiver receiving channel c can easily modulate its signal, Because the error signal strength of channel C is 2712, Is caused by the image of channel B, Compared with the 2710 signal strength of channel C, it is very weak. on the other hand, A receiver receiving channel B upon tuning may not be able to successfully demodulate its signal. The error signal strength at channel b is 2712, Caused by the image of channel C, Compared with the 2710 signal strength of channel B, it is very strong.  [0248] FIG. 28 shows a block diagram of a third embodiment of the linear and non-linear predistortion section 200, This is hereinafter referred to as the predistortion circuit 2800 of the transmitter 100. The predistortion circuit 2800 is configured to meet the requirements of the error vector size (EVM) and / or noise ratio (S / N) of the weak and strong channels transmitted by the transmitter 100, Perform pre-distortion and other transmitter processing.  [0249] The predistortion circuit 2800 is configured mostly like the predistortion circuits 200 and 1800, And the above discussion about the predistortion circuits 200 and 1800, Most of them apply to the predistortion circuit 2800. The same reference numbers can be referred to Figure 1. 2, 18 and 28 similar parts. But for the sake of convenience, Some parts of the predistortion circuits 200 and 18⑻, For example, the gain adjustment circuits 302 and 256,  88 200541280 Thermal change estimation circuit 1700, And generate a / D 304 clock signal, Rate multiplier 204, Controller 286, Adaptation engine 1300, Circuit of correlation engine 28, And some delay stages are omitted in Figure 28. People in the same industry know that these parts may still add predistortion circuits and use them extensively as discussed in Figure 2-26.  [0250] The rate increasing complex forward information flow 206 drives a non-linear processing section 2802. Common mode time positioning part 700, The positive input terminal 22 of a summing circuit. The non-linear processing part 2802 includes the part discussed above, It is useful for nonlinear distortion caused by HPA 136 and ^^ 々. These parts include the basic function generating part 16⑻, Equalizers 226 and 226, (See Figure 丨 Magic, etc. As discussed above, A complex signal output from the processing section 2802 is coupled to the negative input terminal 220 of the combining circuit. Merging circuit 220 provides forward information flow 238 to forward equalizer 2 you, And to the differential mode time positioning part 800. The forward equalizer 246 generates-processes the forward information stream 118.  Although not shown in Figure 28, An alternative embodiment could be a merge circuit 220 downstream of the forward equalizer 248, Instead of upstream as shown in Figure 28. In this modified embodiment, The forward equalizer 248 can then operate at a lower clock.  [0251] As the embodiment discussed above, The forward equalizer 246 is connected in series to the analog transmitter part 120. Time positioning, Or time delay, Some 800s provide forward information streams 118 to digital / analog converters (D / A ’s) 122, And this transforms the forward information stream into a forward analog signal, The remaining analog transmitter parts 120 are merged. As discussed above, D / A122 preferably presents a resolution much higher than a / d304. The box labeled "xpF" in @ 28 includes the low-pass vessel 124, Up-conversion part Π6 ^ From the band-pass wave · 132 of Figure 1. Since the forward information stream continues to be processed through the analog transmitter part 120, A radio frequency analog signal 134 89 200541280 is provided from one of the band-pass filters 132 to the multiplexer 250 and to the HPA 136. The RF analog signal 117 is derived from the HPA 136,  Connected to the multiplexer 250. As discussed in Figure 18 above, One of the D / A 122 also directly generates the fundamental frequency signal 123, And connected to the multiplexer 250. But it is also possible to use a dedicated D / A (not shown), To generate a fundamental frequency signal 123. The output of the multiplexer 250 is connected to one of the inputs of the A / D 304. The D / A of the driving fundamental frequency signal 123 should preferably have high resolution and high quality. because, As discussed more closely below,  D / A is the compensator used to establish A / D 304, And this compensation is limited by any distortion caused by D / A.  [0252] One difference between this third embodiment and the embodiments discussed above is that The time positioning section 700 directly provides the ideal forward information flow 272 for positioning, The phase converter 1000 is placed in the return information stream 262. But included in the a / d compensation section 1805 includes an inverter 2804, There are 272-driven inputs for forward information flow, And generate forward information stream 272, . The inverter 2804 inverts a phase rotation from the phase rotation provided by the inverter 1000.  [0253] In a variant embodiment, The common mode positioning part 700 can be divided into an integer part 714 (Figure 7) and two (unlabeled) fraction parts 716. One of the score parts 716 can operate the forward direction information flow, And feed the-input of the subtraction circuit 274, The other fractional part 716 then operates to return the information stream. The tie-in sends another input of the subtraction circuit 274. The two fractional parts 716 are preferably controlled to produce fractional delays that are equal but opposite to the midpoint of the clock. Then any linear distortions produced by these two / knife portions 716 can be equal to each other, And remove any effects that this distortion may have on the equalizer contact adjustment.  [0254] The μ-direction information stream 272 'drives the digital upscaling part i8Q6 (pulse ^) and _ fixed delay το delete', and this element plus _ is actually equivalent to the delay of the recorded upscaling part ⑽G Fixed 200541280 time delay. Duc section 1806 will forward information flow 272, Digitally upscales to an Fs / 4 intermediate frequency (IF), Where Fs is the sampling frequency. The output of the DUC part 1806 and the delay element 1818 is coupled to the switching part 1820, And this part is included in the A / D compensation part 1805. The exchange part 1820 has an output which can be coupled to the linear equalizer 1824 through the real number conversion part. Marked as EQ in Figure 28; vd ’where the superscript" 1 "represents a linear operand, While the subscript "a / d, , It means that an equalizer 1824 is provided to compensate for the distortion caused by the A / D. The output of the exchange section 1820 is also converted by the real number. The section 1808 drives the quantization error compensator 3100, This is also included in the a / d compensation part 1805. Generally speaking, The quantization error compensator 3100 compensates the magnitude and asymmetry of the quantization error.  The quantization error compensation 3100 is discussed in detail in FIG. 31 below.  [0255] Non-linear processing part 2802 The output of the equalizer 1824 and the quantization error compensator 3100, Add together in the merge circuit 1828. Output the previous version to the information stream from the merging circuit 1828, Provided to the negative input terminal of the merge circuit 1830. Merging circuit 1830 provides compensation points,  Let the processed stream return the original digital information stream to the information stream and output from A / D 304, Merge, An A / D compensation return information stream 1832 is formed. but, Fig. 28 shows that the resolution of the returned original digital data stream 304 'has been adjusted in the resolution adjuster 2806 before this merging if necessary. The resolution can be adjusted by performing the% bit shift notation discussed in Figures 21-22 above and / or by increasing the resolution to approximately the same resolution as the forward information stream. In some embodiments, No actual action needs to occur in the resolution adjuster 2806.  [0256] The A / D compensation return information stream 1832 delivers a direct digital down-conversion part (DDC) 1834. In this third embodiment, DDC 1834 includes only parts 308 of DDC 300 discussed from the first embodiment above, 310 and 312. Generally speaking, A / D 304 effectively down-converts the sampled 200541280 feedback signal into a real signal at Fs / 4 intermediate frequency (IF). Where Fs is the sampling frequency. DDC 1834 generates a return flow 254, And this is a complex signal that actually lies at the fundamental frequency. The return information stream 254 drives the return equalizer 260, The equalizer then drives the phase inverter 1000. An output of one of the phase inverters 1000 generates a return flow information stream 262, This information stream is sent to the subtraction circuit 274,  The first input of a phase estimator 2808, The first input of a difference delay measurer 2810.  [0257] The output of the subtraction circuit 274 produces an error information stream 276, This information stream is transmitted to a spectrum management part 2900 and a spectrum management switch 2814. The ideal forward information stream 272 is sent to the phase estimate 2808, Differential delay estimator 2810, Spectrum management part 2900 and switch 2814. An output from one of the phase estimators 2808 is coupled to a control input of an inverter 2804. and, An output from the differential delay estimator 2810 is coupled to a control input of the differential mode time positioning section 800.  [0258] As in the embodiments discussed above, Equalizer 246, 260, 1824, And other equalizers that may be included in the predistortion circuit 2800 are preferably programmable equalizers that can become adaptive equalizers when coupled to the adaptive engine 1300, Or an adaptive equalizer that includes a coefficient adaptive circuit.  [0259] The difference delay estimator 2810 is a hardware block, The same result as that of the time positioning sub-process 600 can be achieved. Generally speaking, The delay estimator 2810 closes a feedback loop, This circuit drives a different time delay imposed by the differential-mode time positioning part 800. therefore, The delays added by Section 8 are continuously adjusted at any time. Differential delays between the in-phase and quadrature parts of the forward information flow have their needs, Because image problems are particularly sensitive to differential delays.  [0260] Similarly, The phase estimator 2808 is a hardware block. The same result as the phase positioning 92 200541280 processing 900 can be achieved. Generally speaking, The phase estimator 2808 closes a feedback loop which drives the required phase rotation, The return information stream 262 and the forward information stream 272 in the subtraction circuit 274 are positioned. The phase rotations added by the phase inverter 1000 and the phase inverter 28004 are preferably equal to each other. But the direction is opposite. and, These phase rotations are adjusted dynamically and continuously. Dynamic adjustment of phase rotation has its needs, Because the difference between the forward and return information streams is positioned in phase, the calculation of the difference delay is more accurate.  [0261] The spectrum management part 2900 is also directed at the image issues discussed above. This problem occurs when multiple frequency-division communication channels are forwarded to the stream.  [0262] FIG. 29 shows a representative spectrum management part 2900 financial block suitable for linear and non-linear predistorter 2800, The miscellaneous part of the signal receiving circuit 2902 receives the forward information stream 272 and the signal signal measuring circuit 29q4 receives the error information stream 276. Information streams 272 and 276 are complex signal information streams. However, plural signs are omitted in FIG. 29.  [0263] In the signal strength measurement circuit 2902, Forward gift 272 is sent to an multiplexer 2906, And this divides the forward bribe 272 into multiple discrete communication signals, Its discrete communication signal 2908 corresponds to the communication relay 2704. The signal strength measurement circuit also includes-detection of small and large circuits for each of the frigates. The lying size circuit 2910 identifies the communication signal strength 2710 for the channel 2704. Similarly, In the signal strength measurement circuit,  The error data U76 is sent to the inter-multiplexer 2912, And this divides the forward information flow μ into a plurality of discrete communication signals 2914, The discrete communication signal 2914 and the communication channel 2704 have a one-to-one correspondence. The impact strength measurement circuit 2904 also includes a detection circuit for measuring various miscellaneous communication signals. System size · 2916 _ Tao articles identification track reliability following. In a better embodiment than 93 200541280, the respective detection size circuits 2910 and 2916 measure the power of their individual discrete or error communication signals 2908 or 2914.  [0264] The outputs of the detection magnitude circuits 2910 and 2916 are sent to an error vector magnitude (EVM) calculator 2918. The EVM calculator 2918 calculates an EVM statistical value EVM for each communication channel 2704. Generally speaking, These EVM calculations, Is the error power obtained from the error information stream 276, Divide by the channel power 272 obtained from the forward stream. However, the object of the present invention can also be achieved by using the calculation of other relative communication signal strength 2710 and relative error signal strength φ 2712 in channel 2704. The EVM calculator 2918 passes the EVM statistics to a gain controller 3000.  [0265] The EVM calculator 2918 does not need to assume that the forward stream 272 is absolutely "ideal" without transmitting the wrong stream of information. In the embodiment of the transmitter including the peak reduction portion 11 (Figure 丨), The forward information stream 272 may contain some distortion caused by the peak reduction portion no. Distortion added to the forward stream 112 from the peak reduction portion 110 should be the responsibility of the EVM calculator 2918. Therefore, The peak reduction control signal 114 'transmits a short-range average noise signal added to the forward stream 112. Preferably, the peak reduction control signal 114 'transmits short-range average noise to each independent modulated complex information stream output from the modulator 104 (Fig. 1). For example, the amount of process energy after low-pass filtering. In this embodiment, EVM calculator 2918 for each channel 2704, It is therefore possible to calculate the response of the EVM to the total RMS value of the peak reduction noise obtained from the control signal 114 'and the error noise obtained from the detection magnitude circuit 2916.  [0266] In general, Gain controller 3000 has a scaling factor of 292.0, 2922 and 2924,  Used to scale the relative impact of channel 2704, And instructs the forward equalizer 246 to adjust the coefficient to reduce the correlation between the direction and the error information flow. more specifically, The gain controller 30.0 performs an inclination to emphasize the influence of the discrete communication signal 2908, which has a weak coefficient in the forward equalizer 246,  The process of weakening the influence of the discrete communication signal 2908 with a strong coefficient of the forward equalizer 246 is adjusted. Stronger signal 2908 tends, But not necessary, Showing a lower EVM, The weaker signal 2908 tends to show higher EVM. therefore, In a preferred EVM embodiment,  This program uses the metric system or its equivalent. The signal 2908 with the higher EVM is emphasized relative to the person with the lower EVM and its coefficient is adjusted in the forward equalizer 246.  Lu [0267] Four scaling factors 2920 are provided to the first input of the multiplier 2926. The second input of the multiplier 2926 is adapted to receive four discrete communication signals 2908, The output of the multiplier 2926 provides an inverse multiplexer 2930, one of the scaled discrete communication signals 2908. The anti-multiplexer 2930 performs the inverse operation of the inter-multiplexer 2906 and forms a combined communication signal 272 ". The combined communication signal 272 "also transmits four frequency multi-function communication channels 2704 and generally corresponds to the forward information stream 272 at the information rate and resolution. However, the spectrum content of the combined communication signal 272 "has been changed to a more powerful EVM. And generally weaker 'on lower EVM channels, And in general • Stronger channels.  [0268] Four scaling factors 2922 are provided to the first input of the multiplier 2932. The second input of the multiplier 2932 is adapted to receive four discrete communication signals 2914, The output of the multiplier 2932 provides an inverse multiplexer 2936, one of the scaled discrete communication signals 2934. The anti-multiplexer 2936 performs the inverse operation of the inter-multiplexer 2912 and forms a combined communication signal 276 ". The combined communication signal 276 "also transmits four frequency multi-function communication channels 2704 and generally corresponds to the error information stream 276 at the information rate and resolution. However, the spectrum content of the combined communication signal 276 "has been changed to a strong EVM of 95 200541280, And generally weaker, On lower EVM channels, And generally stronger channels.  [0269] Four scaling factors 2924 are provided to the first input of the multiplier 2938. The second input of the multiplier 2938 is adapted to receive four discrete communication signals 2914, The output of the multiplier 2938 provides an inverse multiplexer 2942, one of the scaled discrete communication signals 2940. The anti-multiplexer 2942 performs the inverse operation of the inter-multiplexer 2912 and forms a combined communication signal 276 ".  [0270] Under normal operation, The forward equalizer 246 adapts its coefficients in response to the merged communication number 272 "and the merged direct path error signal 276" or the merged cross path error signal 276, , The relationship between The direct paths 1214 and 1216 or the cross paths 1218 and 1220 are adjusted according to whether the coefficients are adjusted. [0271] FIG. 30 shows an example of the operation of the gain controller 3000 for the spectrum management section 2900. The gain controller 3000 can be A separate controller element is implemented in hardware dedicated to providing similar functions.  [0272] The program executed by the gain controller 3000 includes a job 3002, Used to identify the channel 2704 with the largest EVM. in other words, Used to identify the worst channel. This is the channel where EγM needs most improvement. After working 3002, A query work 3004 decides whether the calculated coefficients are direct paths 1214 and 1216 to the equalizer 1200, This is also used as the forward equalizer 246,  Or give cross paths 1218 and 1220. If Job 3004 measured 1218 and 1220,  Then work 3008 selects the scaling factor now used for the cross path. If working in 2004, Russia measured 1214 and 1216, Then work 3006 selects the scaling factor now used for the direct path. Gain controller 3000 can be configured to switch back and forth 96 200541280 at any time to calculate the zoom factor between the direct and cross paths. Switching can happen on a fixed schedule or based on an error, It was detected that the EVM system has improved significantly due to the previous update of the zoom factor data. The workaround is,  The gain controller 3000 can be configured to focus on the direct path first, Equalizer coefficients that lock the direct path, Then turn to the intersection path. or, The gain controller 3000 can use other switching programs designed by people in the same industry.  [0273] After working 3006 or 3008, A query 3010 determines the scaling factor 2920 currently generated for the identified channel 2704, 2922, Or whether 2924 is at its preset maximum level. As long as these current scaling factors are not at their maximum values, Then a job 3012 increases the scaling factor by a predetermined amount, Program control then returns to work 002. When the scaling factor of other channels is not changed ’, increase the scaling factor of the worst EVM channel, This reinforces the impact of channel 2704, which has the worst EVM, And weaken the impact of the remaining channels 2704.  [0274] As 3010, it is determined that the zoom factor of the current worst channel is at or above its maximum allowable level, A program loop adjusts the zoom factor used by all channels. especially, A job 3014 identifies the first channel during the first calculation of this circuit, Or identify the next channel in subsequent calculations. And after working 3014, A job 3016 reduces the scaling factor of this identified channel by a predetermined amount. After working 3014, A query determines whether the scaling factor for this channel is now at or below the minimum level. If the smallest level is detected, Then work 3020 will minimize the scaling factor. After Wei Zuo face and when Wei Zuo Tong determines that the scaling factor of this channel is not at its minimum value, Then one asks whether the working mosquito program loop has been adjusted on the channel. If red—channel is not processed, Hall control returns to work 3014 When the previous channel has been processed, Program control then returns to work 3002.  97 200541280 [0275] As a result of scaling the gain of channel 2704 used to adjust the feedback from the forward equalizer 246, The coefficients are changed in a manner that drives the individual EVMA of the communication channel 2704 to approximately equal values. Channels 2704 with higher EVM can achieve a greater reduction in EVM than channels 2704 with lower EVM. The distortion generated by the analog transmitter part Π0 is more offset in response to channel 2704 with higher EVM than channel 2704 with lower EVM.  [0276] Notwithstanding the discussion presented above, This is an example of using a program executed in the gain controller 3000. People in the same industry can design alternative and equal programs to achieve essentially the same results. E.g, Gains for all channels may be initially set to low or minimum values. Then the gain of channels with higher EVM can be increased as needed, So that the EVM of all channels is maintained at a substantially equal level, And this rank should be as small as possible.  [0277] Referring to the previous figures 27-28, the track 2714 indicates that multiple frequencies are currently being transmitted to the information stream when the communication channel of the division of labor and one or more channels are particularly stronger than the other of the video channels, An increased worry that can occur. In order for the first loop to perform satisfactorily, It is best to output the trajectory of the result. A feedback signal can be changed in a predetermined manner. In the embodiments discussed above with reference to Figures 28-30,  EVM value calculated by communication channel 2704, The RF communication signal 117 is preferably amplified as a result of a change in the coefficient of the forward equalizer 246, There is a predictable relationship.  [0278] But the quantification that occurred at A / D 304, And especially in the A / D model 2000 quantizer 2016 (Figure 20) may undermine the calculation of EVM. Quantization is a non-linear operation that can produce intermodulation between channels 2704. Some intermodulation phenomena fall within the frequency band. and, Since the resolution of A / D3〇4 has been reduced, Quantization errors and intermodulation in the frequency band become worse. Trace 2714 shows a case where the weaker channel B uses a lower resolution A / D 304 and results in a greater signal strength than the communication signal 2710. In this case, The EVM measurement of channel B by the spectrum management part 2900 is discussed above. There is no obvious relationship between the change in response to the channel B response and the feedback signal that emphasizes the EVM value measured in channel b. therefore, The quantization error compensator is configured to compensate the quantization error magnitude and the quantization error asymmetry. By compensating for the quantization error magnitude and the asymmetry of the quantization error, Intermodulation in the frequency band can be greatly improved, And the EVM measurement performed by the spectrum management part 2900 for the weaker channel 2704 will follow the output change.  [0279] FIG. 31 shows a quantization error compensator 3100, A block diagram configured to compensate for the magnitude and asymmetry of a quantization error generated by a two-bit a / d 304. People in the same industry know that the invention does not require the use of a binary A / D 304, And the example of the quantization error compensator 3100 can be extended to A / D of any accuracy.  [0280] In general, The quantization error compensator 3100 includes a quantization simulator 3102 and a difference circuit 3104. The quantization simulator 3102 is configured to simulate the operation of the quantizer 2016 from the A / D304. especially, The quantization simulator 3102 includes a recorder 3106 executed by the A / D 304 for each switching threshold 2108 (FIG. 21). For a two-bit A / D 304, Three loggers 3106 can be included. Each recorder 3106 is configured to store a value provided by the controller 286. The recorder 3106 is preferably set to the actual exchange threshold value measured according to the A / D 304 of the work 2316 of the secondary process 2300. Or from another process that can achieve the same result.  [0281] Data output from the recorder 3106 ', Contains intermediate exchange threshold 2108, Connect to the negative input of a comparator 3110. In this binary example, Data output from other recorders 3106, Connect to the data input terminal of a multiplexer (MUX) 3112. The output of the comparator 3110 drives one of the multiplexers 3112 to select the input. One of the outputs of the multiplexer 3112 drives a negative input terminal of a comparator 3114 99 200541280. Depending on the status of the switch lion, either in baseband or radio frequency,  The forward information flow is connected to the positive input terminal of the comparator and to the positive input terminal of the difference circuit 3. The output of the comparator 3114 provides a highest bit, The other output of the comparator 3114 provides -the lowest bit 7L to -the resolution adjuster 3116. The resolution adjuster 3116 performs a resolution adjuster 2806 similar to the output at A / D 304. In some embodiments, The resolution adjuster 3116 does not need any specific action to take place. An output of the resolution adjuster 3116 produces a quantized analog information stream 3118, Represents the output from the quantization simulator 3102.  Lu [0282] The quantized analog information stream 3118 drives one of the negative inputs of the difference circuit 3104. A control recorder 3120 adapts to receive from a control input of one of the controllers 286, And one output drives one input of an AND function element 3122. A quantization error information stream 3122 is provided from the output of the difference circuit 3104, And an output of one of the elements 3122 provides a quantized error information stream 3124, Represents the output of the quantized error compensator 3100. The control recorder 3120 and the AND element 3122 provide functions with and without the quantization error compensator 3100. When not selected, The quantization error compensator 3100 has no effect on the operation of the transmitter 100.  _ [0283] When set to the actual exchange threshold 2108, The quantization simulator 3102 faithfully simulates the quantizer 2016 in the A / D model 2000. The quantization simulator 3102 converts the forward information traffic into a base frequency or radio frequency form. And as a result, the intermodulation generated by the tracking A / D 304 is generated. In addition, Quantization error due to asymmetry and / or quantization error, Reflected in Quantitative Analog Information Stream 3118. Quantify the extent to which the simulated information flow 3118 cannot match the forward information flow, Provide an estimate of the errors generated by the quantizer 2016, Whether it's from asymmetry, Quantization error magnitude or intermodulation.  [0284] Therefore, The quantization error information flow 3124 characterizes the extent to which the quantized analog information flow 3118 cannot cope with 100 200541280 forward information flow. As in the second embodiment discussed in FIG. 18 above, This A / D error, along with other A / D compensation factors, In the merge circuit 1830, the original digital information stream 304 is returned,  Minus, To compensate the A / D 304 error. Since the quantization error compensator 3100 has to operate, The intermodulation 2716 of all communication channels 2704 is reduced to a level lower than the communication signal strength 2710. Including weak channel B, This is shown as trace 2718 in FIG. 27.  [0285] FIG. 32 shows a flowchart of a transmitter distortion management process 400 performed by the transmitter 100. This third embodiment is hereinafter referred to as process 3200. Processing 3200 is different from processing 400 and 1900, As discussed above, It includes several tasks to compensate for the above-mentioned image signal and intermodulation problems.  [0286] With reference to FIGS. 28 and 32, Assume that processing 3200 starts from a power-on or reset event. Process 3200 performs a few basic initial tasks first, And may work in any order ^ one work 32〇2 invalidates the price ρα 136, So that the transmitter loo has no obvious transmission. Once working, set the appropriate threshold on the recorder, It is called to use the quantization error facet. -Turn 32〇6 to lock the forward equalizer (EQF) 246 and return equalizer (EQr) 26g And confirm that the equalizer applies 260 execution-unit conversion functions, So that they will not have any impact on the transmitter 100. Locked. Maybe ’for example, Achieved by setting the convergence factor "μ" (Figure π) to near zero, Whereas the unit conversion function may, For example, The edit coefficient is: _ • Way to reach. Similarly, -Work 3208 locks all to compensate for view 136, And equalizer (Ed 226, Equalization with the silk distortion produced by censorship, Erding into a zero conversion function, So that the daggers will not have any effect on the transmitter 1GG. Zero conversion functions are possible, Give Taking the setting coefficient as: · Qing " · Way to reach. — Work slaves — compensation for some lions, Take 101 200541280 through just to >  The fundamental form of the stream, And a job 3212 sets up a spectrum management switch,  To pass forward information stream 272 and error information stream 276, And the adaptation coefficient for the forward equalizer 246, in other words, The operation of job 3212 can prevent the spectrum management part 2900 from having any impact on the operation of the transmitter 100. A job 3214 does not use delay and phase estimators 2810 and 2808. So that the differential delay and phase adjustment are not used automatically. and, One job switch multiplexer 250, The fundamental frequency signal 123 is connected to the input terminal of a / d 304. Basic initialization is complete after work 3216.  [0287] After basic initialization, Process 3200 performs a job 3218 to use the secondary process. Adjust the common mode time positioning 70. Or use another function to achieve the same result. Task 3218 generally takes the subtraction circuit 274 to bring forward information stream 272 and return information stream 262 into each other's time position. Next, A job 3220 compensates for A / D quantization errors and asymmetry. Job 3220 preferably performs a secondary process 2300 or another function that produces the same result. Sub-process 2300 evaluates A / D 304 to measure the actual exchange threshold 2108, The actual exchange threshold value 2108 is set to the quantization simulator 3102. Work 3220 can pass a scan test signal through the forward path of the transmitter 100. After working for 3220, A job 3222 causes the transmitter 100 to process a frequency multiplexed communication signal, This makes one channel stronger than the other channel at its image frequency. in other words, The transmitter 100 can start generating a communication signal, Although this signal may not be transmitted from the transmitter 100, Because HPA 136 has not been used.  [0288] Next, A job 3224 starts a linear A / D equalizer (EQi〇) 1824, To compensate for linear A / D distortion. Job 3224 can perform secondary processing 2400 or use another function to achieve the same result. then, A job 3226 locks or greatly limits the frequency of the linear A / D equalizer 1824 102 200541280 wide, So that the coefficients of the equalizer 1824 will not continue to be significantly adapted.  [0289] After working 3226, A job 3228 switches the multiplexer 250 to the RF analog signal 134 to the input of the A / D 304. The return information stream 262 is further delayed from the forward information stream 272. therefore, A job 3230 repositions the clock between the forward information stream 272 and the return information stream 262. Job 3230 can perform sub-processing 600 or another function that may produce the same result, To restore the required time positioning. Bandpass filter (Figure U adds a significant phase inversion to the return analog signal now input to A / D 304. therefore, A working 3232 starts the phase estimator 2808, To close the feedback loop, And maintain the phase positioning between the forward information flow and the return information flow from a / D 304. and, A job 3234 starts the differential delay estimator 2810, To close the feedback loop, The clock position of the difference between the in-phase (I) and quadrature (Q) components of the complex forward information flow through the analog transmitter part 120 is maintained.  [0290] After working 3234, A work 3236 sets the A / D compensation switch 1820, In the form of an IF through the forward information stream 272. at this time, The quantization error compensator 3100 and the A / D linear equalizer 1824 begin to operate on communication signals in the form of IF. Just like the characteristics of forward information flow,  Very similar to the subsampling form of A / D 304 on RF signals. The quantization and linear distortion errors produced by a / D 304 are now compensated. here, The internal tone of 2716 is reduced, However, the video signal may still remain on the weak channel 2704 and weaken the EVM value.  [0291] A job 3238 then starts the forward equalizer (EQF) 246, Causing the forward equalizer 246 to perform prediction and convergence program processing 1100, Or any function that produces the same result,  And the coefficient of the forward equalizer 246 is adapted to a value that minimizes the correlation between the forward information stream 272 and the error information stream 276. This reduces distortion and further reduces errors in the return flow, And 103 200541280 further reduced the internal tone of 2716. Next, A job 324 () sets the spectrum management switch 2814, To combine communication signals 272, , Wash with combined error signal, , To forward equalizer 2 you,  For the use of the adaptation factor. The spectrum management part 2_ now starts to affect the operation of Lai 100. The heading equalizer 246 continues to adapt its coefficients, But now the frequency spectrum of the forward error stream is changed. This form of spectrum change can emphasize weaker channels. As shown in the track 2718 of FIG. 27,  The intensity of the error 仏 2712 may increase in stronger channels, But the error signal strength 2712 can be reduced in weaker channels. On Zhao, All channels 2704 are more in line with EγM specifications, And the balance can be reached when the EVM is substantially equal to all channels 2704. At a sufficient time to allow the coefficients to adjust to equilibrium, A job 3242 locks the forward equalizer 246, To prevent further adjustment of the coefficient.  [0292] Next, One job 3244 performs non-linear A / D compensation sub-processing 2600, Or another function that can achieve the same result, To compensate for the non-linear distortion generated by the A / D 304. Then a job 3246 switches the multiplexer 250 to the amplified RF analog signal 117, And the predistortion circuit 2800 can now begin to compensate for the distortion produced by the HPA 136. A job 3248 started ΗΡΑ # 136, So that the HPA 130 starts to generate a signal. Since the return analog signal now uses a different path ’, it will cause increased latency, It also interferes with the time positioning between the forward and return streams. After a proper warm-up, One job 3250 repeats job 3230, 3232 and 3234 to reposition the clock and phase. then, A job 3252 starts the return equalizer (EQR) 260,  To compensate for the linear distortion generated by the HPA 136 in the return equalizer (EQR) 260, While a job 3254 locks the equalizer 260, To prevent any significant readjustment of its coefficient.  [0293] At this time, A very low distortion signal should be presented to the non-linear point marked with _ 142 of 104 200541280 in memory i, Due to the work previously performed in the distortion management process 3200. therefore, The predistortion circuit 2800 is now ready to compensate for the non-linear distortion generated by the HPA 136, And process 3200 performs a job 3256. Job 3256 performs QPA compensation to perform job 402, And this job is called 1500 times, Or another function that can achieve the same result. then, The forward equalizer 246 restarts at work 3258, To follow up the relative changes in the signal strength of channel 2704. After work 3258, A job 3260 is performed to repeat at any time some or all of the work previously performed in Process 3200 'to track heat and / or aging. In addition, Work 3260 may include work to manage peak reductions, In response to the calculation of the EVM value as discussed above.  [0294] To summarize the above, The invention provides an improved transmitter and distortion circuit and method. A quantization error compensator is provided to compensate quantization errors generated by analog / digital circuits (A / D). This circuit monitors the feedback signal generated by an analog transmitter part. A process provides that before using the feedback signal path to cancel the distortion produced by the analog transmitter parts, It is used to compensate the distortion caused by a feedback signal. and, Distortion from transmitter parts, Cancel in a way that reflects the relative strength of the frequency multi-function communication channel.  [0295] Although the present invention will be described in detail with reference to the preferred embodiments, However, people in the same industry immediately discovered that many modifications can be made here without departing from the spirit of the present invention or the scope of the accompanying statement. E.g, Differential time positioning part 800 or phase rotation part 1000 can be omitted. Especially when the forward equalizer 246 has many contacts. or, Part 800 can be performed in different ways, For example, by using independent phase-locked loops to generate the clock signals for the I and Q pins. The adaptation engine 1300 can be configured as an adaptation engine, And all the paths in a multiplexer operate simultaneously, Instead of the two paths described above, As an in-and-out individual information stream to determine the overall adaptability of one of the filter coefficients 105 200541280 etc., or it can replace a non-adaptive equalizer, etc. Even power and chip area will increase due to wire. Here are a series of gorge parts and components, There are Xu Xi can be merged in-. In one embodiment, An equalizer that provides linear distortion compensation for a trip can be cascaded with the return information stream, It's not like this. A gain ramp equalizer can be added to the output to allow equalizer full power, Provide linear distortion surface for added a ^ d or other distortion parts. and, Although the discussion presented above is in terms of the fitness factor of the forward equalizer ’, Mention the use of channel management, The channel management part can also be used to adjust other adaptive equalizer coefficients. These and other modifications and uses are obvious to those in the same industry, All are included in the scope of the present invention.  [Schematic description] [0296] Refer to detailed description, Patent scope and drawings, The present invention can be more completely understood.  [0297] FIG. 1 shows a block IS3 of a digital communication transmitter configured according to the teachings of the present invention,  [0298] FIG. 2 shows a block diagram of the first embodiment of φ of the linear and non-linear predistortion parts plotted in the transmitter of FIG. 1;  [0299] FIG. 3 shows a digital down-conversion part suitable for the linear and non-linear predistortion part of the transmitter of FIG. 1;  [0300] FIG. 4 shows a flowchart of a first embodiment of the transmission-distortion management performed by the transmitter of FIG. 1;  [0301] FIG. 5 shows a flowchart of the secondary processing due to the process of FIG. 4, This process is used to compensate the linear distortion generated by an upstream high power amplifier (HPA);  106 200541280 [〇3〇2 丨 FIG. 6 shows a flowchart of the sub-processing of the sub-processing shown in FIG. 5 and FIG. 14.  And the execution of the process—an example of a program for time positioning estimation and aggregation;  [] FIG. 7 shows a square Jt ghost diagram of a common mode time positioning part suitable for the widely used linear and non-linear predistortion parts of one of the transmitters of FIG. 1;  [] FIG. 8 shows a block diagram of a differential mode time positioning part suitable for the linear and non-linear predistortion parts of the transmitter depicted in FIG. 1;  [0305] FIG. 9 shows a flowchart of a sub-process due to the sub-processes of FIGS. 5 and 14. And • This process is used to execute the -common mode phasing estimation Juqin program;  [0306] ® 10 shows a block 相 suitable for the phase conversion part of the linear and non-linear predistortion part of the transmitter of FIG.  [_] 囷 11 shows a drawing in Figure 5, 囷 14 map of the 15th process of the 15th process, And this process is used to execute the first-rate estimation aggregating program;  1_8】 ® 12 Display-Record the block diagram of the equalizer of the multiple parts of the linear and heterogeneous predistortion of the transmitter.  . [⑽09] ® 13 Display—A block diagram of the adaptation engine part of the linear and heterogeneous predistortion part of the transmitter suitable for inspection. [0310] Figure 14 shows the flowchart of the sub-processing due to 囷 4. , And this process is used to compensate the linear distortion generated by HPA; [0311] @ 15 显 tf- is a flowchart of the secondary process of the processing of FIG. 4, and this process is used to compensate the nonlinear distortion generated by HPA; [0311] 0312] FIG. 16 shows a block diagram of the basic generating part of the linear and non-linear predistortion part 107 200541280 suitable for the transmitter of FIG. 丨 [0313] FIG. 17 shows a transmission suitable for use in FIG. 1 The block diagram of the linear and non-linear pre-distortion part of the receiver represents the thermal prediction part; [0314] FIG. 18 shows a second embodiment of the linear and non-linear pre-distortion part of the transmitter shown in FIG. Block diagram; [0315] FIG. 19 shows a flowchart of a second embodiment of the transmission distortion management performed by the transmitter depicted in FIG. 1; [0316] FIG. 20 shows an analog / digital converter (A / D ) Model; [0317] Figure 21 shows the characteristics of two-bit A / D quantization and quantization error. Table example; [0318] FIG. 22 shows a block diagram of the first representative quantization error compensator used in the linear and non-linear predistortion part of the transmitter of FIG. 1; [0319] FIG. Z3 shows the result from the figure The flowchart of the sub-process of the process of 19, and this process is used to control the quantization error compensator drawn in FIG. 22 to compensate for the asymmetry of the quantization error; [032〇] FIG. 24 shows the process drawn in FIG. 19 This process is used to compensate the linear distortion generated by A / D. [0321] The second embodiment of the linear and non-linear predistortion shown in FIG. 25 and FIG. 18 is used. The squares of the multiplexed part are used to generate the interface to drive the adaptive equalizer. [0322] The flow chart of the processing of 26 display and 19 processing is provided to compensate the A / D generated. Non-linear distortion; [] Figure 27 shows a circle bound to several spectrum charts, which is used to determine the characteristics of a number of communication signals that transmit multiple frequency 108 200541280 multiplex channels. [0324] B 28 shows a block diagram of the third embodiment of the linear and non-linear predistortion part of the transmitter due to the figure; [0325] 129 shows the tf-generation fabric transfer and makes the Lin diagram Block diagram of the linear and non-linear pre-distortion parts that depend on; [0326] FIG. 30 shows a flowchart of the operation of a representative gain controller used in the spectrum management part shown in FIG. 29; iG327] ® 31 The block diagram of the second representative quantization error compensator of the Wei-like miscellaneous predistortion of the bribe @ 丨; [0328] FIG. 32 shows the transmission distortion management performed by the transmitter of FIG. 1 The flow chart of the third embodiment; [Key component symbol description] 102 Digital information flow 106 Merging part 110 Peak reduction part 114 Peak reduction feedback signal 115 Direct coupling element 117 Feedback signal 120 Analog part 123 Base frequency (BB) signal 126 Direct orthogonal upscaling section 130 RF analog signal 134 RF analog signal 138 Antenna 142 Amp 104 Digital modulator 108 Complex forward information flow 112 Peak reduction Forward information flow 114 Peak reduction control signal 116 RF communication signal 118 Complex forward information 122 digital / analog converter (D / A) 124 low-pass filter (LPF'S)

128本地震盪信號 132 BPF 136高功率放大器(ΗΡΑ) 140輸入帶通濾波器(BPF) 144輸入帶通濾波器(BPF) 109 200541280128 oscillating signals 132 BPF 136 High Power Amplifier (HPA) 140 Input Band Pass Filter (BPF) 144 Input Band Pass Filter (BPF) 109 200541280

200線性與非線性預失真電路 1800預失真電路 2800預失真電路 202輸入埠 204速率加倍器 205高通濾波器 206速率提升複前向資訊流 208時延部分 1600基本功能產生部分 1700熱交換評估部分 214最高次基本功能資訊流 214’複基本功能資訊流 216熱差信號 218複前向資訊流 220合併電路 222多工器(MUX) 224非線性預失真器 226等化器 230資訊流 238複非線性預失真前向資訊流 234等化器部分 1200等化器 1300適應引擎 242複差時定位前向資訊流 246複等化器 250多工器 256衰減電路 260複等化器 266時延複前向資訊流 800時間定位部分 244線性預失真器 248反饋部分 254複回返資訊流 258衰減複反向資訊流 262等化複回返資訊流 270多工器 272定位複前向資訊流 276誤差訊流 279差係數信號 282複乘法性 274合併電路 278多工器 280關聯引擎 284累加器 110 200541280 286控制器 300降頻部分 700時間定位部分 302衰減器 304類比/數位轉換器(A/D) 306合成器 310時延元件 312時延元件部分 314高通濾波器(HPF’S) 400發射機失真管理過程 404工作 406工作 408工作 1900過程 3200過程 500次過程 502初始工作 504工作 600次處理 700時間定位部分 800時間定位部分 506工作 508工作 602工作 604工作 606工作 608初始工作 610工作 612工作 614詢問工作 616工作 618工作 620工作 702最小時延元件 704時脈複接點時延線 706接點 708多工器 710内插 712時脈信號 714整個部分 802時脈時延線 804固定時延元件 111 200541280200 linear and non-linear predistortion circuit 1800 predistortion circuit 2800 predistortion circuit 202 input port 204 rate doubler 205 high-pass filter 206 rate increase complex forward information flow 208 delay section 1600 basic function generation section 1700 heat exchange evaluation section 214 Highest order basic function information flow 214 'complex basic function information flow 216 thermal difference signal 218 complex forward information flow 220 merge circuit 222 multiplexer (MUX) 224 nonlinear predistorter 226 equalizer 230 information flow 238 complex non-linearity Pre-distortion forward information stream 234 equalizer section 1200 equalizer 1300 adapts to the positioning of the engine 242 complex difference forward information stream 246 multiple equalizer 250 multiplexer 256 attenuation circuit 260 multiple equalizer 266 delay complex forward Information flow 800 time positioning section 244 linear predistorter 248 feedback section 254 complex return information stream 258 attenuation complex reverse information stream 262 equalization complex return information stream 270 multiplexer 272 positioning complex forward information stream 276 error stream 279 difference Coefficient signal 282 Complex multiplication 274 Merging circuit 278 Multiplexer 280 Correlation engine 284 Accumulator 110 200541280 286 Controller 300 Frequency reduction section 700 Time positioning section 302 attenuator 304 analog / digital converter (A / D) 306 synthesizer 310 delay element 312 delay element part 314 high-pass filter (HPF'S) 400 transmitter distortion management process 404 work 406 work 408 work 1900 process 3200 process 500 Secondary process 502 Initial work 504 work 600 times processing 700 time positioning part 800 time positioning part 506 work 508 work 602 work 604 work 606 work 608 initial work 610 work 612 work 614 inquiry work 616 work 618 work 620 work 702 minimum delay element 704 Clock multiple contact delay line 706 contact 708 multiplexer 710 interpolation 712 clock signal 714 whole part 802 clock delay line 804 fixed delay element 111 200541280

806接點 810内插器 816部分 904工作 908工作 912詢問工作 916工作 922工作 1000相角旋轉器 1004CORDIC 單元 1006選擇反轉電路 1010位移器 1014減法器 1102工作 12021-節點 1208時脈接點時延線 1212時脈接點時延線 1216同相直接路徑 1224乘法器 1228減法器 1232乘法器 808多工器 812時脈 900次處理 906工作 910詢問工作 914工作 920詢問工作 924工作 1002象限選擇單元 1004’單元 1008鎖存器 1012電路 1100次處理 1200等化器 1206時脈接點時延線 1210時脈接點時延線 1214相角器 1222接點 1226輸出驅動加法器 1230加法器 1234適熱器單元 112 200541280806 contact 810 interpolator 816 part 904 work 908 work 912 query work 916 work 922 work 1000 phase angle rotator 1004CORDIC unit 1006 selection inversion circuit 1010 shifter 1014 subtractor 1102 work 12021-node 1208 clock contact delay Line 1212 clock contact delay line 1216 in-phase direct path 1224 multiplier 1228 subtracter 1232 multiplier 808 multiplexer 812 clock 900 processing 906 work 910 work 914 work 920 work 924 work 1002 quadrant selection unit 1004 ' Unit 1008 latch 1012 circuit 1100 times processing 1200 equalizer 1206 clock contact delay line 1210 clock contact delay line 1214 phase angler 1222 contact 1226 output drive adder 1230 adder 1234 heat adaptor unit 112 200541280

1236多工器 1240加法器 1304時脈接點時延線 1308時延元件 1312同相乘法器 1316正交相位乘法器 1320反元件 1324加法器 1328時延元件 1332靈敏度乘法器 1336單週期時延元件 1340減法器電路 1344收歛乘法器 1348單一週期時延元件 1400次處理 1404工作 1408工作 1416工作 1420工作 1500次處理 1504工作 1238多工器 1302時脈接點時延線 1306時延元件 1310接點 1314接點 1318加法器 1322乘法器 1326多工器(MUX) 1330減法器電路 1334加法器 1338係數差資訊流 1342乘法器 1346加法器 1350乘法器 1402工作 1406工作 1414工作 1418工作 1422工作 1502工作 1506工作 113 200541280 1508詢問工作 1602幅度電路 1606乘法器 1612乘法器 1616加法器 1620乘法器 1624加法器 φ Π02電路 1706加法器 1710減法電路 1802實數轉換部分 1804基本功能資訊流 1806數位上升轉換(DUC) 1809基本功能資訊流 • 1812實數轉換部分 1816時延前向資訊流 1820交換部分 1824等化器 1828合併電路 1832A/D補償回返資訊流 1900處理 1600基本功能產生部分 1604乘法器 1610細胞 1614乘法器 1618乘法器 1622乘法器 1700熱改變預估部分 Π〇4可程式時間定位部分 1708單一週期時延元件 1712收歛乘法器 1803類比發射機零件補償器 1805補償部分 部分1808實數轉換部分 1810數位上升轉換(DUC)部分 1814固定時延部分 1818固定時延元件 1822線性失真補償器 1826量化誤差補償器 1830合併電路 1834直接數位降頻部分 2000類比/數位轉換器之模型 114 200541280 2002輸入類比信號 2004放大器 2006低通濾波器(LPF) 2008交換器 2010取樣並保留電路 2012加法器 2016量化器 208交換臨界值 2200量化誤差補償器 2202合併電路 2204記錄器 2206記錄器 2208記錄器 2210比較器 2212比較器 2214比較器 2216比較器 2218比較器 2220比較器 2222 AND 閘 2224 AND 閘 2226 AND 閘 2228 OR 閘 2230多工器(MUX) 2232資訊流 2234時延元件 2300次處理 2302工作 2304工作 2308詢問工作 2310工作 2312工作 2314工作 2316工作 2400次處理 2402初始工作 2500多工部分 2502多工器 2504多工器 2506多工器 2508時延元件 2510時延元件 115 2005412801236 multiplexer 1240 adder 1304 clock contact delay line 1308 delay element 1312 in-phase multiplier 1316 quadrature phase multiplier 1320 inverse element 1324 adder 1328 delay element 1332 sensitivity multiplier 1336 single-cycle delay Element 1340 subtracter circuit 1344 convergence multiplier 1348 single cycle delay element 1400 processing 1404 work 1408 work 1416 work 1420 work 1500 processing 1504 work 1238 multiplexer 1302 clock contact delay line 1306 delay element 1310 contact 1314 contact 1318 adder 1322 multiplier 1326 multiplexer (MUX) 1330 subtractor circuit 1334 adder 1338 coefficient difference information stream 1342 multiplier 1346 adder 1350 multiplier 1402 work 1406 work 1414 work 1418 work 1422 work 1502 work 1506 Job 113 200541280 1508 Inquiry Job 1602 Amplitude Circuit 1606 Multiplier 1612 Multiplier 1616 Multiplier 1620 Multiplier 1624 Adder φ Π02 Circuit 1706 Adder 1710 Subtraction Circuit 1802 Real Number Conversion Section 1804 Basic Function Information Stream 1806 Digital Up Conversion (DUC) 1809 Basic function information flow 1812 Real number conversion part 1816 Delay forward information flow 1820 Exchange 1824 equalizer 1828 merge circuit 1832A / D compensation return information stream 1900 processing 1600 basic function generation section 1604 multiplier 1610 cell 1614 multiplier 1618 multiplier 1622 multiplier 1700 thermal change estimation section Π04 programmable time positioning section 1708 single-cycle delay element 1712 convergence multiplier 1803 analog transmitter part compensator 1805 compensation part part 1808 real number conversion part 1810 digital up conversion (DUC) part 1814 fixed delay part 1818 fixed delay element 1822 linear distortion compensator 1826 quantization Error compensator 1830 Merging circuit 1834 Direct digital down-conversion part 2000 Analog / digital converter model 114 200541280 2002 Input analog signal 2004 amplifier 2006 Low-pass filter (LPF) 2008 Switcher 2010 Sampling and retention circuit 2012 Adder 2016 Quantizer 208 exchange threshold 2200 quantization error compensator 2202 merge circuit 2204 recorder 2206 recorder 2208 recorder 2210 comparator 2212 comparator 2214 comparator 2216 comparator 2218 comparator 2220 comparator 2222 AND gate 2224 AND gate 2226 AND gate 2228 OR Gate 2230 Multiplexer (MUX) 2232 Information flow 2234 delay element 2300 processing 2302 work 2304 work 2308 query work 2310 work 2312 work 2314 work 2316 work 2400 work processing 2402 initial work 2500 multiplex part 2502 multiplexer 2504 multiplexer 2506 multiplexer 2508 delay element 2510 delay element 115 200541280

2512時延元件 2516時延元件 2520時延元件 2600次處理 2604工作 2702軌跡 2708影像信號 2710誤差信號強度 2802非線性處理部分 2808相位預估器 2900頻譜管理部分 2904信號強度測量電路 2908離散通訊信號 2914信號強度測量電路 2918 EVM計算器 3100量化誤差補償器 2922比例因數 2926乘法器 2938乘法器 2942反互多工器 3004詢問工作 2514均方根(RMS)預估器 2518時延元件 2522時延元件 2602初始工作 2700資訊流 2704頻道 2710通訊頻道強度 2800預失真電路 2804反相轉器 2810差異時延預估器 2902信號強度測量電路 2906多工器 2912互多工器 2916檢測大小電路 3000增益控制器 2920比例因數 2924比例因數 2932乘法器 2940離散通信訊號 3002工作 3006工作 116 2005412802512 time delay element 2516 time delay element 2520 time delay element 2600 times processing 2604 work 2702 trace 2708 video signal 2710 error signal strength 2802 non-linear processing part 2808 phase estimator 2900 spectrum management part 2904 signal strength measurement circuit 2908 discrete communication signal 2914 Signal strength measurement circuit 2918 EVM calculator 3100 quantization error compensator 2922 scale factor 2926 multiplier 2938 multiplier 2942 anti-inter-multiplexer 3004 inquiry work 2514 root mean square (RMS) estimator 2518 delay element 2522 delay element 2602 Initial work 2700 Information flow 2704 Channel 2710 Communication channel strength 2800 Pre-distortion circuit 2804 Inverter 2810 Differential delay estimator 2902 Signal strength measurement circuit 2906 Multiplexer 2912 Inter-multiplexer 2916 Detection circuit 3000 Gain controller 2920 Scaling factor 2924 Scaling factor 2932 Multiplier 2940 Discrete communication signal 3002 work 3006 work 116 200541280

3008工作 3012工作 3016工作 3020工作 3100量化誤差補償器 3104差異電路 3110比較器 3114比較器 3118量化模擬資訊流 3122 AND功能元件 3200處理 3204工作 3208工作 3212工作 3216工作 3220工作 3224工作 3228工作 3232工作 3236工作 3240工作 3010詢問工作 3014工作 3018工作 3022詢問工作 3102量化模擬器 3106記錄器 3112多工器 3116解析度調整器 3120控制記錄器 3124量化誤差資訊流 3202工作 3206工作 3210工作 3214工作 3218工作 3222工作 3226工作 3230工作 3234工作 3238工作 3242工作 117 200541280 3244工作 3246工作 3248工作 3250工作 3252工作 3256工作 3258工作 3260工作 1183008 work 3012 work 3016 work 3020 work 3100 quantization error compensator 3104 difference circuit 3110 comparator 3114 comparator 3118 quantized analog information flow 3122 AND function element 3200 processing 3204 work 3208 work 3212 work 3216 work 3220 work 3224 work 3228 work 3232 work 3236 Job 3240 job 3010 query job 3014 job 3018 job 3022 query job 3102 quantization simulator 3106 recorder 3112 multiplexer 3116 resolution adjuster 3120 control recorder 3124 quantization error information stream 3202 job 3206 job 3210 job 3214 job 3218 job 3222 job 3226 work 3230 work 3234 work 3238 work 3242 work 117 200541280 3244 work 3246 work 3248 work 3250 work 3252 work 3256 work 3258 work 3260 work 118

Claims (1)

200541280 十、申請專利範圍: 1· 一種發射機之預失真補償電路(2〇〇、1800、2800),用作補償數位通訊發 射機(100)之類比發射機零件(120)產生之失真,此預失真電路包括: 一複變前向資訊流(112)之來源(202),用來以數位方式傳輸資料; 一等化器部分(234),耦合至該複變前向資訊流來源(2〇2)以提供一等化 前向資訊流(118),並將該等化前向資訊流(118)傳送至該類比發射機零 件(120); _ 一數位次諧波取樣降頻轉換器(300),由該類比發射機零件(120)接收反 饋信號(117、123、134),並提供一複變回返資訊流(254);與 一控制器(286),耦接至該降頻轉換器(300)與至該等化器部分(234),並 用來配置成使該等化器部分(234)補償該類比發射機零件(120)產生之該 失真。 2·根據申請專利範圍第丨項之發射機之預失真補償電路,其並包括: 一本地震盪輸入埠(128),由類比發射機零件(120)接收一本地震盪信 號’該本地震盪信號顯示一該類比發射機零件使用之一本地震盪頻率, 作為升頻轉換用; 一合成電路(306),用作合成一顯示等於該本地震盪頻率乘以2Ν±1除以 4之時鐘信號,其中Ν為一供補償失真之頻寬而適合Nyquist條件之正 整數;並且 其中該數位次諧波取樣降頻轉換器(300)包括一類比數位轉換器(304)用 作由該時鐘信號決定之速率取樣之反饋信號(117、123、134)。 200541280 3·根據申請專利範圍第1項之發射機之預失真補償電路,其中·· 前述複變前向資訊流顯示一前向解析度;且 前述複變回返資訊流顯示一回返解析度減去前述前向解析度。 4·根據申請專利範圍第1項之發射機之預失真補償電路,其並包括一可程 式時延元件(700),耦合於該複變前向資訊流來源(2〇2)與該降頻轉換器 (300)之間’該可程式時延元件(7〇〇)用來產生一時延複變前向資訊流 (266),該時延複變前向資訊流(266)暫時與該複變回返資訊流(262)定位。 5·根據申請專利範圍第5項之發射機之預失真補償電路,其中: 該預失真電路另外包括一關聯器(280),具有輸入耦接至該可程式時延 元件(700),並且至該降頻器(300)並有一輸出耦接至該控制器(286);與 該控制器(286)與上述之關聯器(280)配置成執行一預估並收斂程式 (600),以將該時延複前向資訊流與該複回返資訊流帶至時間定位。 6·根據申請專利範圍第4項之發射機之預失真補償電路,其中: 該可程式時延元件是_第-辦延元件,时調整給魏回返資訊流之 間的共模時延;與 該發射機另外包括-第二個時延元件_),接上述之複前向資 訊流與該降頻器,而該第二個時延元件,用來調整給差模時延。 7·根據申請專利範圍第4項之發射機之預失真補償電路,其中·· 該複前向資訊流傳播通過上述之預失真電路以回應一時脈信號;與 該可程式時延元件⑽)包括-積體部份⑽),而延遲至少一部份該複 前向資訊流至數個該時脈之整數週期並包括—分數部份(716),而延遲 200541280 該複前向資訊流至該時脈之分數。 8·根據申請專利範圍第1項之發射機之預失真補償電路,其中: 該預失真電路補償由該類比發射機零件(12〇)之線性失真; 該等化器部份(234)為一正交平衡調整部份(244);與 該控制器(286)配置成該等化器部份(234)補償由類比發射機零件(12〇)產 生的正交增益與相位不平衡。 9· 一種以數位方式補償由數位通訊發射機(1〇〇)之類比發射機零件(12〇)產 • 生之線性失真的方法,該方法包括: 正交平衡(244、11〇〇)—複前向資訊流以回應正交平衡參數而產生一平 衡複前向資訊流(118); 提供該平衡複前向資訊流(118)至該類比發射機零件(12〇); 於該發射機(100),將一從該類比發射機零件(120)接收之反饋信號降頻 (300)以產生一複回返資訊流(254、258、262);與 處理(1300)位於該發射機之該複回返資訊流,以產生該正交平衡參數。 _ 10·根據申請專利範圍帛9項的方法,其中: 該正交平衡動作是由一等化器部份執行(234);與 該處理動作麵-頻率而變,而由該類比發賴零件產生之正交增益與 相位不平衡。 11·根據中請專利範圍第1G項的方法,其中該等化器部份(234)包括一配置 成將該複前向資訊流濾波並產生該平衡複前向資訊流之第—個等化器 (246),與包括一配置成將該複回返資訊流濾波之第二個等化器(260)。 200541280 12·根據申請專利範圍第u項的方法,其中: 該類比發射機零件包括一由功率放大器輸入信號(134)驅動之功率放大 器(136)並產生一功率放大器輸出信號(117); 該反饋信號為一從該功率放大器輸入信號衍生的第一個反饋信號; 該方法另外包括,在將該第一個反饋信號(500)降頻之後,將從該功率 放大器輸出之第二個反饋信號(14〇〇),以產生該複回返資訊流;與 該處理動作使該第一個等化器(246)在該功率放大器輸入信號(134)補償 # 線性失真’以回應該避一個反饋信號,然後使第一個等化器(246)在該 功率放大器輸出信號(117)補償線性失真。 13·根據申請專利範圍第9項的方法,其中該降頻動作(3⑽)由一數位次諳波 取樣降頻器執行。 14·根據申請專利範圍第9項的方法,其中該處理動作控制或更多預估並收 斂程式(600、900、11〇〇)以產生該正交平衡參數。 15·根據申請專利範圍第9項的方法,其中·· 鲁 該類比發射機零件(120)包括一由升頻器(126)驅動之帶通濾波器(132), 該帶通濾波器(132)加入一帶通濾波器時延; 該方法另外包括旋轉(1〇〇〇、9〇〇)該複前向與複回返資訊流之_相位, 相對於另一相位以補償該帶通濾波器之時延。 16·根據申請專利範圍第9項的方法,其中: 該類比發射機零件(120)包括一由類比發射機輸入信號(134)驅動之功率 放大器(136),且產生一功率放大器輸出信號(117); 200541280 該反饋信號為-從功率放大器輸人信號⑴4)衍生之第—個反饋信號; 與 該方法另外包括,在將該第一個反饋信號降頻(5〇〇)之後,將從該功率 放大器輸出信號衍生的第二個反饋信號降頻(14〇〇),以產生該複回返資 訊流。 17·根據申請專利範圍第9項的方法,其中: 該正交平衡動作由一等化器(246)執行; • 域理動作I生給該等化器(246)之瀘、波係數,該濾波係數舰該正交 平衡參數’且該濾波係數使該等化器補償由在一功率放大器之上游的該 類比發射機零件的一部份產生的線性失真; 該處理動作(1300)包括在補償由在該功率放大器上游該類比發射機零 件之該部份產生的該線性失真更改(1414)該濾波係數,用以外加該功率 放大器產生的線性失真之補償。 18·根據申請專利範圍第9項的方法,其中: •該提供動作包括提供一帶有一第一個解度的數位/類比轉換器(122);與 該降頻動作(300)包括提供一帶有一小於該第一個解度之第二個解度的 類比/數位轉換器(304)。 ^一種在數位通訊發射機(1〇〇)中管理失真之方法,其中至少該失真的一部 份由類比發射機零件(120)產生,該方法包括: 獲得一前向資訊流(112)配置成傳播數位資訊; 訓練一線性預失真器(244)以補償該類比發射機零件(120)產生的線性失 200541280 真;與 訓練-非線性預t真器(22句以補償該類比發射機零件⑽)產生的非線 性失真。 # 20.根據申請專利範圍第19項中的方法,其中: 該線性預失真器(244)包括-等化器(246),且該非線性預失真器包括一 第二個等化器(226); 該線性預失真器訓練動作包括在一適應模式操作該第一個等化器⑽) • 以補償該線性失真;與 該非線性預失真器訓練動作包括在一適應模式操作該第二個等化器 (226)以補償該非線性失真。 2i.根據申請專利範圍第19項中的方法,其中該非線性預失真器訓練動作 發生在該線性預失真器訓練動作400之後。 22·根據申請專利範圍第19項中的方法,其中該線性預失真器訓練動作包 括決定-等化器(246)之遽波係數,而此等化器過濾該前向資訊流。 • 23·根據申請專利範圍第22項中的方法,其另外包括·· 使用數位-人皮取樣降頻器,將一從該類比發射機零件獲得的 反嫌L號(117、123、134)降頻(3〇〇),以產生一回返資訊流(254、258、 262);與 處理(1300)該回返資訊流以產生該遽波係數。 24·根據申凊專利範圍第項中的方法,其中: 各該線預失真H訓練與非線性預*真器訓練動作擁有—從該類比發 200541280 射機零件(120)獲得的回返資訊流(254、258、262); 該前向資訊流(112)呈現一前向解析度;與 該回返資訊流(254、258、262)呈現一比該前向解析度為少之回返解析 25·根據申請專利範圍第19項中的方法,其中: 該類比發射機零件(120)包括一由功率放大器輸入信號(134)驅動之功率 放大器(136),而產生一功率放大器輸出信號(117);與 該線性預失真器訓練動作,包括將該功率放大器輸入信號(134)降頻 (300、500) ’然後將該功率放大器輸出信號⑴7)降頻(3⑻、14〇〇、15〇〇)。200541280 10. Scope of patent application: 1. A predistortion compensation circuit (200, 1800, 2800) of a transmitter, which is used to compensate the distortion of analog transmitter parts (120) of digital communication transmitter (100). The predistortion circuit includes: a source (202) of a complex forward information stream (112) for digitally transmitting data; an equalizer section (234) coupled to the source of the complex forward information stream (2) 〇2) to provide an equalized forward information stream (118) and transmit the equalized forward information stream (118) to the analog transmitter part (120); _ a digital harmonic sampling down-converter (300), the analog transmitter part (120) receives the feedback signal (117, 123, 134), and provides a complex variable return information stream (254); and a controller (286), coupled to the frequency reduction The converter (300) is coupled to the carburetor portion (234) and configured to cause the carburetor portion (234) to compensate the distortion generated by the analog transmitter part (120). 2. The predistortion compensation circuit for the transmitter according to item 丨 of the patent application scope, which also includes: a seismic input port (128), and an analog transmitter part (120) receives a seismic signal 'the seismic signal display A part of the analog transmitter uses a local oscillator frequency for upconversion; a synthesizing circuit (306) is used to synthesize a clock signal that is equal to the local oscillator frequency multiplied by 2N ± 1 divided by 4, where N A positive integer suitable for Nyquist conditions for a bandwidth to compensate for distortion; and wherein the digital sub-harmonic sampling down-converter (300) includes an analog digital converter (304) for sampling at a rate determined by the clock signal Feedback signals (117, 123, 134). 200541280 3. The predistortion compensation circuit of the transmitter according to item 1 of the scope of the patent application, wherein the forward information stream of the complex change shows a forward resolution; and the return information stream of the complex change shows a return resolution minus The aforementioned forward resolution. 4. The predistortion compensation circuit of the transmitter according to item 1 of the scope of the patent application, which further comprises a programmable delay element (700), which is coupled to the forward source of the complex information (202) and the frequency reduction. Between the converters (300), the programmable delay element (700) is used to generate a time delay complex change forward information flow (266), and the time delay complex change forward information flow (266) is temporarily associated with the complex Change back to information flow (262) positioning. 5. The predistortion compensation circuit of the transmitter according to item 5 of the scope of patent application, wherein: the predistortion circuit further comprises a correlator (280) having an input coupled to the programmable delay element (700), and The downconverter (300) also has an output coupled to the controller (286); the controller (286) and the above-mentioned correlator (280) are configured to execute an estimation and convergence program (600) to convert The time-delayed forward information flow and the return-backed information flow are brought to time positioning. 6. The predistortion compensation circuit of the transmitter according to item 4 of the scope of the patent application, wherein: the programmable delay element is the _-th delay element, which adjusts the common-mode delay between the information streams returned to Wei; and The transmitter further comprises a second delay element _), which is connected to the above-mentioned complex forward information flow and the downconverter, and the second delay element is used to adjust the delay to the differential mode. 7. The predistortion compensation circuit of the transmitter according to item 4 of the scope of the patent application, wherein the complex forward information flow is transmitted through the above predistortion circuit in response to a clock signal; and the programmable delay element ⑽) includes -Integral part ⑽), and delay at least a part of the complex forward information flow to several integer periods of the clock and include-fractional part (716), and delay 200541280 the complex forward information flow to the The fraction of the clock. 8. The predistortion compensation circuit of the transmitter according to item 1 of the scope of patent application, wherein: the predistortion circuit compensates the linear distortion of the analog transmitter part (12); the equalizer part (234) is a A quadrature balance adjustment section (244); and the controller (286) is configured so that the equalizer section (234) compensates the quadrature gain and phase imbalance generated by the analog transmitter part (120). 9. · A method for digitally compensating the linear distortion produced by the analog transmitter part (12) of the digital communication transmitter (100). The method includes: quadrature balance (244, 1100) — The complex forward information flow responds to the orthogonal balance parameter to generate a balanced complex forward information flow (118); provides the balanced complex forward information flow (118) to the analog transmitter part (12); at the transmitter (100), down-convert (300) a feedback signal received from the analog transmitter part (120) to generate a multiple return information stream (254, 258, 262); and processing (1300) The information stream is returned to generate the orthogonal balance parameter. _10. According to the method of 9 items in the scope of patent application, where: the orthogonal balance action is performed by a first equalizer part (234); and the processing action surface-frequency varies, and the analogy depends on the part The resulting quadrature gain and phase are unbalanced. 11. The method according to item 1G of the patent application, wherein the chemistor part (234) includes a first equalization configured to filter the complex forward information flow and generate the balanced complex forward information flow. And a second equalizer (260) configured to filter the return return information stream. 200541280 12. The method according to item u of the patent application scope, wherein: the analog transmitter part includes a power amplifier (136) driven by a power amplifier input signal (134) and generates a power amplifier output signal (117); the feedback The signal is a first feedback signal derived from the input signal of the power amplifier; the method further includes, after down-converting the first feedback signal (500), a second feedback signal output from the power amplifier ( 14〇〇) to generate the return flow of information; and the processing action causes the first equalizer (246) to compensate for #linear distortion in the power amplifier input signal (134) to avoid a feedback signal, The first equalizer (246) is then compensated for linear distortion at the power amplifier output signal (117). 13. The method according to item 9 of the scope of patent application, wherein the frequency-reducing action (3⑽) is performed by a digital chirp sampling frequency-reducing device. 14. The method according to item 9 of the scope of patent application, wherein the processing action controls or more estimates and convergence procedures (600, 900, 1100) to generate the orthogonal balance parameter. 15. The method according to item 9 of the scope of patent application, wherein the analog transmitter part (120) includes a band-pass filter (132) driven by an upconverter (126), and the band-pass filter (132 ) Adding a band-pass filter delay; the method further includes rotating (100, 900) the phase of the complex forward and return information streams relative to the other phase to compensate for the band-pass filter Delay. 16. The method according to item 9 of the scope of patent application, wherein: the analog transmitter part (120) includes a power amplifier (136) driven by the analog transmitter input signal (134), and generates a power amplifier output signal (117 ); 200541280 The feedback signal is-the first feedback signal derived from the power amplifier input signal (4); and the method additionally includes, after the first feedback signal is down-converted (500), the feedback signal The second feedback signal derived from the output signal of the power amplifier is down-converted (1400) to generate the multiplexed return information stream. 17. The method according to item 9 of the scope of patent application, wherein: the orthogonal balance action is performed by an equalizer (246); The filter coefficient is the orthogonal balance parameter, and the filter coefficient causes the equalizer to compensate linear distortion generated by a part of the analog transmitter part upstream of a power amplifier; the processing action (1300) includes the compensation The linear distortion produced by the portion of the analog transmitter part upstream of the power amplifier changes (1414) the filter coefficients to compensate for the linear distortion generated by the power amplifier. 18. The method according to item 9 of the scope of patent application, wherein: the providing action includes providing a digital / analog converter (122) with a first resolution; and the down-converting action (300) includes providing a An analog / digital converter (304) of the first resolution and the second resolution. ^ A method for managing distortion in a digital communication transmitter (100), wherein at least a part of the distortion is generated by an analog transmitter part (120), the method includes: obtaining a forward information stream (112) configuration Digital information is successfully transmitted; training a linear predistorter (244) to compensate for the linearity loss of the analog transmitter part (120) 200541280 true; and training-a non-linear predistorter (22 sentences to compensate for the analog transmitter part Ii) Non-linear distortion generated. # 20. The method according to item 19 of the scope of patent application, wherein: the linear predistorter (244) includes an equalizer (246), and the non-linear predistorter includes a second equalizer (226) ; The linear predistorter training action includes operating the first equalizer in an adaptive mode ⑽) • to compensate the linear distortion; and the nonlinear predistorter training action includes operating the second equalization in an adaptive mode (226) to compensate for the non-linear distortion. 2i. The method according to item 19 of the scope of the patent application, wherein the non-linear predistorter training action occurs after the linear predistorter training action 400. 22. The method according to item 19 of the scope of the patent application, wherein the training action of the linear predistorter includes determining the wave coefficients of the equalizer (246), and the equalizer filters the forward information stream. • 23 · According to the method in the scope of application for patent No. 22, which additionally includes ·· Using a digital-human skin sampling downconverter, a counter L number obtained from the analog transmitter part (117, 123, 134) Frequency reduction (300) to generate a return information stream (254, 258, 262); and processing (1300) the return information stream to generate the chirp coefficient. 24. According to the method in the scope of the patent application, which includes: Pre-distortion H training and non-linear pre-realizer training actions for this line—return information stream obtained from this analog 200541280 shooter part (120) ( 254, 258, 262); the forward information stream (112) presents a forward resolution; and the return information stream (254, 258, 262) presents a return resolution that is less than the forward resolution 25. According to The method of claim 19 in the scope of patent application, wherein: the analog transmitter part (120) includes a power amplifier (136) driven by a power amplifier input signal (134), and generates a power amplifier output signal (117); and The training operation of the linear predistorter includes frequency-reducing (300, 500) of the power amplifier input signal (134) and then frequency-reducing (7) of the power amplifier output signal (3), 1400, 150,000.
TW94102132A 2004-01-27 2005-01-25 Transmitter predistortion circuit and method therefor TW200541280A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/766,779 US7430248B2 (en) 2004-01-27 2004-01-27 Predistortion circuit and method for compensating nonlinear distortion in a digital RF communications transmitter
US10/766,768 US20050163249A1 (en) 2004-01-27 2004-01-27 Predistortion circuit and method for compensating linear distortion in a digital RF communications transmitter
US10/766,801 US7099399B2 (en) 2004-01-27 2004-01-27 Distortion-managed digital RF communications transmitter and method therefor
US10/840,735 US7342976B2 (en) 2004-01-27 2004-05-06 Predistortion circuit and method for compensating A/D and other distortion in a digital RF communications transmitter
US11/012,427 US7469491B2 (en) 2004-01-27 2004-12-14 Transmitter predistortion circuit and method therefor

Publications (1)

Publication Number Publication Date
TW200541280A true TW200541280A (en) 2005-12-16

Family

ID=36955084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94102132A TW200541280A (en) 2004-01-27 2005-01-25 Transmitter predistortion circuit and method therefor

Country Status (3)

Country Link
EP (1) EP1709729A4 (en)
BR (1) BRPI0507137A (en)
TW (1) TW200541280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397270B (en) * 2009-05-22 2013-05-21 Hon Hai Prec Ind Co Ltd Rf front-end circuit
US8553522B2 (en) 2008-11-18 2013-10-08 Nec Corporation OFDMA-based radio communication apparatus and learning signal generation method for compensation of non-linear distortion in the radio communication apparatus
TWI554060B (en) * 2015-03-13 2016-10-11 瑞昱半導體股份有限公司 Transmitter and method for lowering signal distortion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903823A (en) * 1995-09-19 1999-05-11 Fujitsu Limited Radio apparatus with distortion compensating function
US5732333A (en) * 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US6081158A (en) * 1997-06-30 2000-06-27 Harris Corporation Adaptive pre-distortion apparatus for linearizing an amplifier output within a data transmission system
US6285412B1 (en) * 1997-07-23 2001-09-04 Harris Corporation Adaptive pre-equalization apparatus for correcting linear distortion of a non-ideal data transmission system
US6335767B1 (en) * 1998-06-26 2002-01-01 Harris Corporation Broadcast transmission system with distributed correction
US20030058959A1 (en) * 2001-09-25 2003-03-27 Caly Networks. Combined digital adaptive pre-distorter and pre-equalizer system for modems in link hopping radio networks
EP1318643B1 (en) * 2001-12-05 2007-05-02 Telefonaktiebolaget LM Ericsson (publ) Method and device for performing adaptive predistortion
US7313199B2 (en) * 2002-03-21 2007-12-25 Hypres, Inc. Power amplifier linearization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553522B2 (en) 2008-11-18 2013-10-08 Nec Corporation OFDMA-based radio communication apparatus and learning signal generation method for compensation of non-linear distortion in the radio communication apparatus
TWI397270B (en) * 2009-05-22 2013-05-21 Hon Hai Prec Ind Co Ltd Rf front-end circuit
TWI554060B (en) * 2015-03-13 2016-10-11 瑞昱半導體股份有限公司 Transmitter and method for lowering signal distortion

Also Published As

Publication number Publication date
BRPI0507137A (en) 2007-06-19
EP1709729A1 (en) 2006-10-11
EP1709729A4 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US7099399B2 (en) Distortion-managed digital RF communications transmitter and method therefor
US7469491B2 (en) Transmitter predistortion circuit and method therefor
US7430248B2 (en) Predistortion circuit and method for compensating nonlinear distortion in a digital RF communications transmitter
Anttila et al. Frequency-selective I/Q mismatch calibration of wideband direct-conversion transmitters
US7206356B2 (en) Wireless transmitter with reduced power consumption
US7606322B2 (en) Digital pre-distortion technique using nonlinear filters
US8135055B2 (en) I/Q calibration of transmit and receive paths in OFDM FDD communication systems
US6567478B2 (en) Radio apparatus having distortion compensating function
US20050163251A1 (en) Predistortion circuit and method for compensating A/D and other distortion in a digital RF communications transmitter
US8326239B1 (en) Power amplifier linearization using digital predistortion
US20100309774A1 (en) Method and apparatus for cross-talk cancellation
WO2005015756A1 (en) Transmitter apparatus
US20130177105A1 (en) Method and system for estimating and compensating non-linear distortion in a transmitter using calibration
US10554183B2 (en) Distortion compensation apparatus and distortion compensation method
US20050163249A1 (en) Predistortion circuit and method for compensating linear distortion in a digital RF communications transmitter
Syllaios et al. Recombination of envelope and phase paths in wideband polar transmitters
TW200541280A (en) Transmitter predistortion circuit and method therefor
JP2000078107A (en) Insertion synchronous detection method and radio communication system
TW200407003A (en) Adaptive phase and gain imbalance cancellation
JP2004165900A (en) Communication device
Lee et al. A 10-Gb/s CDR with an adaptive optimum loop-bandwidth calibrator for serial communication links
JP2008028746A (en) Distortion compensating device
Habibi et al. Digital compensation of cross-modulation distortion in multimode transceivers
Luo et al. Joint calibration of frequency selective time variant I/Q-imbalance and modulator DC-offset error in broadband direct-conversion transmitters
Lim et al. Digital compensation in IQ modulators using adaptive FIR filters