TW200539963A - Municipal solid waste sorting system and method - Google Patents

Municipal solid waste sorting system and method Download PDF

Info

Publication number
TW200539963A
TW200539963A TW093127288A TW93127288A TW200539963A TW 200539963 A TW200539963 A TW 200539963A TW 093127288 A TW093127288 A TW 093127288A TW 93127288 A TW93127288 A TW 93127288A TW 200539963 A TW200539963 A TW 200539963A
Authority
TW
Taiwan
Prior art keywords
fraction
particle size
medium
sorting
size
Prior art date
Application number
TW093127288A
Other languages
Chinese (zh)
Inventor
Naveen David Singh
Rodney Gerald France
Lance James Sambell
Patrick Thomas Poelzer
Original Assignee
Grl Invest Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grl Invest Pty Ltd filed Critical Grl Invest Pty Ltd
Publication of TW200539963A publication Critical patent/TW200539963A/en

Links

Abstract

A method, and associated system, of sorting municipal solid waste (120) into types of materials, the method including the steps of: sorting the solid waste (120) into an oversize fraction (180), a midsize fraction (170) and an undersize fraction (160); using at least manual-based (210, 330), density-based (234, 310), further size-based (346) and metal-based (318) sorting means to obtain a partial oversize fraction (236), a first partial midsize fraction (348) and a second partial midsize fraction (350); combining the partial oversize fraction (236) and the first partial midsize fraction (348) to produce an oversize-midsize combined fraction (237), and combining the undersize fraction (160) and the second partial midsize fraction (350) to produce an undersize-midsize combined fraction (412); and, using further sorting means to further sort the oversize-midsize combined fraction (237) and the undersize-midsize combined fraction (412) into types of materials.

Description

200539963 九、發明說明: (一) 發明所屬之技術領域 本發明係關於用於固體廢棄物物料分選之系統和方法 ’特別言之,係關於都市固體廢棄物分選之系統和方法, 以便加強自都市固體廢棄物中回收可循環、可再使用之物 料’或者有用之資源。 (二) 先前技術 傳統上都市固體廢棄物("MS W”)(即:袋裝或未袋裝之 都市固體廢棄物物料)已構成處理上的難題。因爲人□膨脹 及因爲每人產生的固體廢棄物增加,而使該困難變得日漸 嚴重。典型之都市固體廢棄物包括値得回收之各種成分。 舉例而Η,各種資源例如有機物質、玻璃、金屬、塑膠、 紙成分寺’在經濟和运境思義兩方面是充分有價値,而値 得將其自混合M S W中分離出。 在過去,MSW係經由焚化及/或垃圾掩埋予以處理。 隨著目前關心與環境保護相關之問題,且因爲垃圾掩埋空 間的缺乏及政府法規,該兩種傳統的處理技術已不再合乎 而要 ° 循環和資源回收活動可減少垃圾集中掩埋之廢棄物體 積,及增加適合再使用或再處理之可回收物料的數量。爲 了有效,必須將M S W分選或分離成爲不同型式的物料,通 常稱爲級分,然後可將它根據可應用於每種型式的級分物 料之循環或資源回收技術予以更進一步處理。各種的機械 的、生物的和熱處理技術等,係藉由循環或經分選之資源 -7- 200539963 回收級分中之物料,提供實現資源回收之方法。 舉例而言,如果可將生物物質在複合或混合的M S W中 有效分離出,例如需氧、厭氧、發酵、轉化成生質燃料或 以蠕蟲培養爲基礎的各種方法之處理,可利用其他方面所 廢棄之生物物質,例如製造堆肥或促進可再生之能量生成 。不同範圍的其他工藝技術可同樣利用其他型式分離之物 料。 然而,爲了循環利用或再使用工藝技術的利益,必須 將M S W有效且高效地分選。在分選階段期間,不同級分中 各種型式的物料之交叉污染可能影響循環或再使用工藝技 術的有效性。就隨後之循環或再使用處理的效率和成本效 率兩者而論,重要的是,最初分選之過程其本身應是有效 且精確。關於此點,該最初分選之過程構成各種問題。 分選系統或方法應容許(具有)適當高處理量速率而依 然效率高者,但另一方面,仍自MSW有效(即:相當精確) 分選資源成爲具有減少或最少交叉污染之級分。最初分選 之過程由於典型形成M S W之各種不同的物料而變得複雜 。且MSW在每天組成方面亦顯著不同,因此,就最初分選 或分離而論,均勻的,由不同種類的各部分組成或複合都 市廢棄物物料不可能得到。 目前已知某些分離或分選技術。最近趨勢爲提供物料 回收設備,通常將它建1在大工廠中,試圖處理大量的混 合之可循環物料。通常’完全依賴人工分選器之手工技術 被視爲不符合成本效益或不合乎需要。一實例爲一種系統 200539963 ,其使用輸送機來進料MSW ;其係透過沿著該輸送機所在 之許多分選站,因此,將有限數目的廢料型式,經由人χ 分選器個別提取,然後將殘餘之M S w送至垃圾掩埋。依賴 級分大小,即:M S W的物理大小、級分的電磁性或磁性性 質’或級分的松、度之自動技術,工業界尙未成功地經能以 效率高且有效地予以採用。 在適度的成本限度以內實現高品質分選是先前技術中 固有的一個問題(其證明難以解決)。欲提供以相當快速且 精確方式分離M S W的適當方法,以便建立取回可循環物料 的成本效益系統或方法,卻遭遇到各種問題和困難。 此現象確認需要一種都市固體廢棄物分選系統或方法 ,以克服或至少改善先前技藝中固有之各種問題。 (三)發明內容 在第一種廣泛形式中,本發明提供都市固體廢棄物分 選成爲各種型式的物料之方法,該方法包括下列步驟:使 用一種粒度方式之分選方法,分選固體廢棄物成爲粒度特 大級分、中粒度級分及粒度過小級分;使用至少以手工方 式、密度方式、更進一步地粒度方式、及金屬方式之分選 方法而獲得部分粒度特大級分,第一部分中粒度級分及第 二部分中粒度級分;連合該部分粒度特大級分和第一部分 中粒度級分而產生粒度特大-中粒度連合之級分,及連合該 粒度過小級分和第二部分中粒度級分而產生粒度過小-中 粒度連合之級分;及使用更進一步以手工方式、密度方式 200539963 、粒度方式或金屬方式之分選方法,更進一步分選該粒度 特大-中粒度連η之級分及粒度過小_中粒度連合之級分成 爲各種型式的物料。 在特別、非限制形式中,部分粒度特大級分是手工方 式取和隨後以密度方式提取的殘留物,而,第一部分中 粒度級分和第一邰分中粒度級分是以密度方式提取,然後 ’以金屬方式提取’及然後以手工方式提取,然後以粒度 方式分選的殘留物。 在第二種廣泛形式中,本發明提供用於都市固體廢棄 物分選成爲各種型式的物料之系統,該系統包括:一種粒 度方式分選設備’用於分選固體廢棄物成爲粒度特大級分 、中粒度級分和粒度過小級分;以手工方式、密度方式、 更進一步以粒度方式和金屬方式之分選設備而獲得部分粒 度特大級分,第一部分中粒度級分和第二部分中粒度級分 ;連合該部分粒度特大級分和第一部分中粒度級分而產生 一種粒度特大-中粒度連合級分之設備,及連合該粒度過小 級分和第二部分中粒度級分而產生粒度過小-中粒度連合 級分之設備;及,使用更進一步以手工方式、密度方式、 粒度方式或金屬方式之分選設備,更進一步分選該粒度特 大-中粒度連合之級分及粒度過小-中粒度連合之級分成爲 各種型式的物料。 特別在非限制形式中,自動粒度方式分選之設備爲轉 筒篩,各個手工分選站具有斜槽來便利於分離出各型的物 -10- 200539963 料,密度方式之分選設備爲風力篩分器或回彈黏附輸送機 ’金屬方式之分選設備爲個別或組合所提供之磁力分離器 或有色金屬分離器,該磁力分離器是旋轉帶式磁力分離器 ,及/或該金屬方式分選之設備利用物料的磁性、電磁性、 導電率或絕緣等性質。此外,可設置一個產物打包機來包 裝各種物料經提取的型式。 根據本發明的另外具體實施例,可將一或數個手工分 選站經由適於實施所需要之分選之適當自動系統代替。 (四)實施方式 爲了提供對於本發明主題的更精確了解,敘述下列之 方式。各圖中,合倂各圖來舉例說明本發明的特徵,遍歷 各圖,使用相同參考數字來指示相同零件。 如第1圖說明用於都市固體廢棄物分選成爲各種型式 的物料之流程圖。例如可將M S W經由各種設備,由輸送卡 車輸送至放置本發明系統之設施。可提供一個接收大廳使 輸送卡車可存放M S W在一指定之區域中,以便隨後可將 MSW經由如前端裝貨機移除,遠離連接至指定區域之傾斜 地面。可在接收大廳中提供龐大廢品及危險物料之垃圾箱 或起重箱。 將MS W( 100)經由如前端裝貨機裝載入袋式開口機 (1 1 0)的進料給料斗中,例如,一種S c T型劈裂機_ 3,其具 有一組三個螺旋鑽在一個單獨強化片板外殼中。該袋式開 口機(110)設計爲撕裂和破裂含有袋裝之固體廢棄物(1〇〇) 之袋,而不會對包含其中之可循環或可再使用之物料造成 200539963 甚大損害。 將自袋式開口機(1 1 0)卸出之固體廢棄物(1 2 0)進料或 沉積至輸送機(130)上並導引至第一自動粒度方式之分選 設備(150)。在特定之具體實施例中,第一自動粒度方式之 分選設備(1 5 0)是一個飾選轉筒篩,可有一稱重計來測量轉 筒篩(150)輸入。 第一自動粒度方式之分選設備分選固體廢棄物(120) 成爲粒度過小級分(160)、中粒度級分(170)和粒度特大級分 (180)。特定具體實施例中,將第一自動粒度方式之分選設 備(1 5 0)與兩個粗篩板條區(具有經由廢棄物特性所決定之 孔徑)組合。可產生三種粒度級分:主要由高有機物含量之 物料所組成之粒度過小級分(1 6 0 )(如小於5 0毫米)、中粒度 級分(170)(如大於50毫米但小於200毫米,其中含有大部 分的硬質可再循環物)、及粒度特大級分(1 80),其中含有大 部分龐大之可再循環物和廢品。使粒度過小級分(1 6 0)通過 粒度過小輸送機(1 6 5 ),以便運輸至指定區域,使中粒度級 分(170)通過中粒度輸送機(175),以便運輸至指定區域,及 使粒度特大之級分(1 8 0)通過粒度特大之輸送機(1 8 5 ),以便 運輸至有關之粒度特大級分指定區域。 如第2圖,粒度特大級分(180)在輸送機(220)上輸送通 過第一手工分選站(210)。弟一手工分選站(210)係由許多人 工分選器P12, 2丨4, 216和21 8)所組成。雖然第2圖中僅舉 例說明四個人工分選器,但是應了解:可提供任何數目的 -12- 200539963 人工分選器。粒度特大級分(1 8 0)卸至相當緩慢移動、用途 設計之手工分選輸送帶(220)上,宜(但不一定)在完全通風 、空調之手工分選小室中。在一般第一手工分選站(2 10)的 範圍內可提供一系列的人工分選器,以便人工分選器可自 粒度特大級分(1 8 0)中移出具有重要性之特別廢棄物物料 。舉例而言,可使個別之人工分選器(212,214,216和218) 移出出龐大之未加工廢棄物、塑膠膜、其他龐大之廢品、 大硬紙板及/或紙質可再循環物料,或任何其他型式的物料 。可設置聯合之斜槽供分離出之物料(2 1 3,2 1 5,2 1 7和2 1 9) ,用以將不同型式的經分離物料導引至不同垃圾箱、壓縮 器、輸送機、區域或位置。舉例而言,此可使分離出之物 料(213,215,217或219)導引至垃圾箱(222)或輸送機(224 或226)。輸送機(224或226)可再導引物料至其他垃圾箱, 其連同垃圾箱(222)可爲儲藏倉庫或導引至打包機器以便 壓實所分離出之物料。 將係第一手工分選站(2 10)的殘留物(23 0)之第一手工 分選站(2 1 0 )後剩餘之物料經由輸送機(2 3 2 )或一系列的輸 送機輸送通過第一密度方式之分選設備(2 3 4)。在一特定實 例中,第一密度方式之分選設備(23 4)適合於移除薄膜塑膠 之風力篩分器。以該第一密度方式之分選設備(2 3 4)分選殘 留物物料(2 3 0)成爲如由薄膜塑膠主要組成之第一粒度特 大級分(2 3 8 )及被卸至輸送機(2 3 8 )上之第二粒度特大級分 (236) ° 將第二粒度特大級分(2 3 6 )與第六中粒度級分(3 4 8 )連 200539963 合(下文中將更進一步予以詳細敘述)而形成粒 度連合之級分(237)’將其沉積在第三手工分選 送機(24 1)上。相似於上文中所述之第一手工 ’該第三手工分選站(240)包括許多的人工分選 246和248),指示此等人工分選器自粒度特大 之級分(237)中分離出特定物料,在彼等前面, 正被輸送在輸送機(2 4 1 )上。相似於上文中所述 使分離出之物料(243,24 5,2 4 7和24 9)移動及 至容納之垃圾箱(242)或輸送帶(244或24 6)上。 所述,基於在第三手工分選站(240)處予以分離 目和型式,可提供任何數目或構型的人工分選 物料之斜槽、垃圾箱或輸送帶。 根據較佳,但非限制性具體實施例,第三 (2 4 0)包括一系列的手工分選站,以便移出硬紙 色和透明PET、及/或不透明和著色之HDPE塑 等可再循環物可通過斜槽投入垃圾箱、儲存倉 如先前所述,投置在輸送機上。 在第三手工分選站(2 4 0)後剩餘之廢棄物 成爲第三手工分選站(240)的殘留物(2 5 0)。將] 經由輸送機(252)運輸至上方,至下面或通過第 之分選設備(2 5 4及/或262)。基於予以分選或分 型式,可將第二金屬方式之分選設備(254及/或 獨或許多的個別金屬分選設備(以串聯或以並 單獨單元)而提供。 度特大-中粒 站(24 0)的輸 分選站(210) 器(242,244, -中粒度連合 此級分(2 3 7 ) :之配置,可 通過下斜槽 亦如上文中 之物料的數 器,分離出 手工分選站 板、紙、著 膠容器。此 庫等中,或 物料進一步 淺留物(2 5 0 ) 二金屬方式 離之金屬的 262),由單 聯提供成爲 -14- 200539963 在特別但非限制的具體實施例中,殘留物(2 5 0 )通過鐵 類金屬分選設備(2 5 4 )其提取高金屬成分之級分(2 5 8 ),可將 其沉積或輸送至垃圾箱(2 5 9 ),然後將級分(2 5 6)沉積在輸送 機(260)上,以便其餘之物料經過有色金屬分選設備(262) ,提取另外之高金屬成分級分(2 66),將其沉積或輸送至垃 圾箱(267)反應,因此,在將第二金屬方式之分選設備(2 5 4 及/或262)施加至殘留物(250)後,留下第一粒度特大-中粒 度連合之級分(2 64)。此處,將高金屬成分之級分(2 5 8和2 6 6) 稱爲第二粒度特大-中粒度連合之級分(258和266)。 在特定具體實施例中,鐵類金屬分選設備(2 5 4)可爲一 個旋轉帶在磁力分離器,而有色金屬分選設備(262)可爲各 種型式的有色金屬分離器裝置之一。 在本發明的另外特別具體實施例中,可將第一粒度特 大-中粒度連合之級分(264)通入破碎機(2 70)中來產生經破 碎之連合級分(272),然後將它沉積在輸送機(2 7 4)上予以運 輸至第三自動粒度方式之分選設備(2 7 6),舉例而言,它可 能是一個轉筒篩,可使用任何所需要大小的孔徑在該轉筒 篩中。第三自動粒度方式之分選設備(2 7 6)產生一種粒度過 小級分係第五粒度特大-中粒度連合之級分(2 7 8 ),一種中粒 度級分係第四粒度特大-中粒度連合之級分(2 80)及一種粒 度特大級分係第三粒度特大-中粒度連合之級分(282)。粒度 過小及中粒度級分(27 8和2 8 0 )通常富含有機物。可將粒度 特大級分(2 82)通至輸送機(2 8 4)上予以沉積在垃圾箱(2 8 6 ) -15- 200539963 中,收集區域中、卡車中等等,移除作爲垃圾掩埋。 如第3圖,將中粒度級分(1 7 0 )沉積至輸送機(3 0 8 )上並 輸送通過第二密度方式之分選設備(310),舉例而言,它可 能是一個另外之風力篩分器。第二密度方式之分選設備 (3 1 0)分選中粒度級分(1 7 0 )成爲較輕密度物料的第一中粒 度級分(312),舉例而言,薄膜塑膠,及經沉積至輸送機(316) 上之第二中粒度級分(3 Μ)。 輸送機(3 16)運輸第二中粒度級分(3 14)通過第一金屬 方式之分選設備(3 1 8),舉例而言,它可能是一個旋轉帶式 磁力分離器或可用來提取金屬或具有金屬性質之物料之任 何其他型式的裝置,舉例而言,經由利用第二中粒度級分 (3 1 4)中之磁性、電磁性、導電率或絕緣等性質。第一金屬 方式之分選設備(318)(它可能是一系列的裝置,唯本文中僅 舉例說明一個單獨裝置),提取第三中粒度級分(3 22)(係高 金屬含量之級分),將它沉積入或輸送至垃圾箱(3 24)中。將 其餘的第二中粒度級分(314),係第四中粒度級分(3 2 0)沉積 至輸送機(331)上,形成部分的第二手工分選站(330)。 如上文中已敘述,第二手工分選站(330)包括分選(332, 3 3 4和3 3 6 )及與經提取之物料(3 3 3,3 3 5和3 3 7 )相關之斜槽 。亦經設置者可能是垃圾箱(3 3 8 )或輸送機(3 4 0或3 4 2 )。在 特定具體實施例中,第二手工分選站(330)是人工分選玻璃 站,其中,將透明玻璃、棕色玻璃和綠玻璃自第四中粒度 級分(3 20)中分離出。 -16- 200539963 將第二手工分選站(3 3 0)的殘留物( 3 44)沉積在第二自 動粒度方式之分選設備(346)中,在特定具體實施例中,它 疋:一'種移除有機物之轉同飾。將粒度過小級分’係第五中 粒度級分(3 5 0 )分選並沉積至輸送機(3 5 2 )上。預期自第二自 動粒度方式之分選設備(3 4 6 )所獲得之第五中粒度級分(3 5 0 ) 係由高有機物含量之物料所組成。將粒度特大級分,係第 六中粒度級分(3 4 8 )與第二粒度特大級分(2 3 6)連合並引導 至第三手工分選站(240),其在上文中已敘述係具有隨後之 分選步驟。 如第4圖,將粒度過小級分(160)與自第二自動粒度方 式之分選設備(3 4 6)所產生之第五中粒度級分(3 5 0)連合。將 此等級分沉積在輸送機(4 10)上,或是粒度過小-中粒度連合 之級分(412),將其經由輸送機(4 14)運送通過第三金屬方式 之分選設備(416及/或424)。如前述關於以金屬方式之分選 設備(254及/或262),將高金屬含量之級分(420和428)自 第三金屬方式之分選設備(416和424)獲得。可將高金屬含 量之級分(42 0和42 8)(本文中集體稱爲第一粒度過小-中粒 度連合之級分(4 2 0和4 2 8 )),基於級分是否爲高鐵類含量或 高有色金屬含量,各自沉積入或輸送至垃圾箱(4 21和429) 。然而,可設置任何數目的第三金屬方式之分選設備(416 及/或4 2 4),並非如所舉例說明者,受限爲兩個金屬方式之 分選設備。 隨著第三金屬方式之分選設備(416及/或424)後’將殘 留物之第二粒度過小-中粒度連合之級分(4 2 6)沉積至輸送 -17- 200539963 機(4 3 0)上予以輸送至一指定區域。預期第二粒度過小-中粒 度連合之級分(42 6)是一種高有機物含量之級分,可將它輸 送以便更進一步以生物學或以有機物基礎處理。 在本發明的各種形式中,各種金屬方式之分選設備可 能是各型的靜電粒子分離器、摩擦帶電式分離器、高張力 輥分離器或類似者,可將它個別設置或連合設置成爲串聯 或並聯元件。 此外,應了解:可設置附加之輸送機,或適合於廢棄 物物料之其他運輸裝置(文中未舉例說明),以便利於運輸 各種廢棄物物料或級分在各站間、機器間、垃圾筒間、壓 縮器間、儲存區域間、輸送機間及/或其他指定區域間。 本發明另外具體實施例中,可將已分選之可再循環或 可再使用之物料,例如硬紙板、紙、HDPE及/或PET塑膠 等導引至打包機給料輸送機(文中未舉例說明),其進料各 種物料入打包機機器(文中未舉例說明)中。然後可將每種 型式的物料壓縮成爲大包並準備儲存以便輸送至可再循環 物市場。 亦應了解可採用廣泛種類的參數在本發明的各種具體 實施例中。舉例而言,以粒度方式之分選設備基於各種粒 度定形,可分選廢棄物物料。亦,可將各種型式的輸送機 基於經由輸送機予以運送之物料的型式或性質,運用在各 種具體實施例中。各種型式的輸送機、工業界是眾所周知 並可將它以各種構型利用來便利於本發明的具體實施例。 -18- 200539963 如一個特定實例,輸送機帶可爲自5毫米至1 5毫米厚度範 圍之抗切割和抗油之合成橡膠。另外一特定具體實施例中 ,該以密度方式之分選設備可能是一種水平空氣篩系統具 有可調整之傳導板及一個空氣篩吹口。可提供葉片轉子與 迴轉閥連合來提供吸力。亦可能提供容器壓榨單元來壓實 任何經分選或經分離出之型式的物料。 本發明特別適合回收高有機物含量之級分(一般具有 30至65 %有機物含量),由於先前技藝系統之無能,高有機 物含量之級分可用不同方法進入垃圾掩埋。可將高有機物 含量之級分,如第二粒度過小-中粒度連合級分(4 2 6 )引至滲 濾器及連合之設備中,包括厭氧消化池、砂分離器、污泥 苢币網及/或水脫氣器。舉例而g ’此等型式的裝置可由ISKA 德國有限公司所提供之ISLA滲濾技術予以提供。 因此’依照本發明,提供一種都市固體廢棄物分選系 統和方法。 本發明亦可陳述爲廣義地由本文所述或所指示之零件 、元件和特徵、個別或集體以二或數種的零件、元件或特 徵的任一個或全部組合所構成,其中本文述及之特定整體 ’爲熟知該項技藝之同義詞,此等所熟知之同義詞列入於 本文中。 雖然i羊細欽述較佳之具體貫施例,但是應了解只要;不 脫離本發明的範圍,各種改變 '代替和變更可由通常精於 該項技藝之人士作成。 200539963 (五)圖式簡單說明 本發明自下列敘述應顯然可知,此敘述係僅經由附隨 圖式所敘述之較佳但非限制性的具體實施例之實例。 第1圖說明:本發明的一具體實施例,最初級分分選 的處理流程圖; 第2圖說明:本發明的一具體實施例,隨後粒度特大 級分分選的處理流程圖; 第3圖說明:本發明的一具體實施例,隨後中粒度級 分分選的處理流程圖; 第4圖說明:本發明的一具體實施例,隨後粒度過小 級分分選的處理流程圖。 主要元件符號說明 1 00 都市固體廢棄物 110 袋式開口機 120 都市固體廢棄物 1 3 0,22 0 輸送機 15 0 自動粒度方式之分選設備 15 0 轉筒篩 1 60 粒度過小級分 1 65 過小粒度輸送機 1 70 中粒度級分 175 中等粒度輸送機 1 80 粒度特大級分 18 5 過大粒度輸送機 •20- 200539963 210,330 手工方式 2 10 第一手工 2 1 2 至 2 1 4 人工分選 2 1 3 至 2 1 9 分離出之 2 1 6 至 2 1 8 人工分選 220 手分類輸 222,25 9 垃圾箱 224,226,23 2 輸送機 234,310 密度方式 23 6 部分粒度 23 7 粒度特大 23 8 第一粒度 240 第三手工 242-248 人工分選 243-249 分離出之 254 有色金屬 256 級分 2 5 8,2 6 6 高金屬成 262 第二金屬 270 破碎機 272 經破碎之 276 第三自動 278 第五粒度 280 第四粒度 分選站 器 物料 器 7¾ m 特大級分 /中粒度連合級分 特大級分 分選站 器 物料 (非鐵金屬)分選設備 分之級分 方式之分選設備 連合級分 粒度方式之分選設備 特大/中粒度連合之級分 特大/中粒度連合之級分 -21- 200539963 282 第 二 也丄 度 3 10 第 二 密 度 3 12 較 輕 密 度 3 14 第 二 中 \T/-L· 松 3 18 金 屬 方 式 特大/中粒度連合之級分 方式之設備 物料之第一中粒度級分 度級分 320 第四 3 22 第三 3 3 0 第二 332,334,336 人工 333,335,337 經提 344 殘留 346 粒度 3 4 8 第一 3 5 0 第二 4 12 粒度 416,424 第三 420,428 高金 中粒度級分 中粒度級分 手工分選站 分選器 取之物料 物 方式 部分中粒度級分 部分中粒度級分 過小/中粒度連合級分 金屬方式之分選設備 屬含量之級分200539963 IX. Description of the invention: (1) the technical field to which the invention belongs The present invention relates to a system and method for sorting solid waste materials' In particular, it relates to a system and method for sorting municipal solid waste in order to strengthen Recyclable, reusable materials' or useful resources from municipal solid waste. (2) In the prior art, traditional urban solid waste (" MS W ") (that is, bagged or non-bagged municipal solid waste materials) has constituted a problem in handling. Because of the expansion of people and because of the The increase in solid waste has made this problem increasingly serious. Typical urban solid waste includes various components that can be recovered. For example, various resources such as organic substances, glass, metals, plastics, and paper components Both economic and environmental considerations are sufficiently valuable that they have to be separated from the mixed MSW. In the past, MSW was handled through incineration and / or landfill. With the current concerns about environmental issues And because of the lack of landfill space and government regulations, these two traditional treatment technologies are no longer in compliance. Circulation and resource recovery activities can reduce the volume of waste that is concentrated in landfills, and increase the volume of waste suitable for reuse or reprocessing. The quantity of recyclable materials. In order to be effective, MSW must be sorted or separated into different types of materials, usually called fractions, and then the It is further processed according to the recycling or resource recovery technology that can be applied to each type of grade material. Various mechanical, biological and heat treatment technologies, etc., are recovered by recycling or sorted resources-7- 200539963 The materials in the fractions provide a means to achieve resource recovery. For example, if biological matter can be effectively separated in a composite or mixed MSW, such as aerobic, anaerobic, fermentation, conversion to biomass fuel, or worming Various methods based on the cultivation of insects can use waste materials from other aspects, such as making compost or promoting renewable energy generation. Other processes in different scopes can also use other types of separated materials. However, for recycling To utilize or reuse the benefits of process technology, MSW must be effectively and efficiently sorted. During the sorting phase, cross-contamination of various types of materials in different fractions may affect the effectiveness of recycling or reuse of process technology. In terms of both recycling and reuse efficiency and cost efficiency, it is important that the initial sorting The process itself should be effective and precise. In this regard, the process of initial sorting poses various problems. The sorting system or method should allow (with) a suitably high throughput rate and still be efficient, but on the other hand, still Effective since MSW (ie, quite accurate) sorting resources into fractions with reduced or minimal cross-contamination. The initial sorting process is complicated by the various materials that typically form MSW. And MSW is also significant in terms of daily composition Different, therefore, as far as the initial sorting or separation is concerned, it is impossible to obtain uniform, composed of different kinds of parts or composite urban waste materials. Some separation or sorting technologies are currently known. Recent trends are to provide material recovery The equipment, which is usually built in a large factory, attempts to handle a large amount of mixed recyclable materials. Manual techniques that are 'fully dependent on manual sorters are generally considered to be not cost effective or desirable. An example is a system 200539963 that uses a conveyor to feed MSW; it passes through many sorting stations along which the conveyor is located. Therefore, a limited number of waste types are individually extracted by the human x sorter, and then Residual MS w is sent to landfill. Depending on the size of the fraction, that is, the physical size of the MSW, the electromagnetic or magnetic properties of the fraction ', or the looseness and degree of the fraction's automatic technology, the industry has not successfully adopted it with high efficiency and effectiveness. Achieving high-quality sorting within modest cost limits is a problem inherent in the prior art (which proved difficult to solve). Various problems and difficulties have been encountered in order to provide a suitable method for separating M SW in a relatively fast and precise manner in order to establish a cost-effective system or method for recovering recyclable materials. This phenomenon confirms the need for a municipal solid waste sorting system or method to overcome or at least improve the problems inherent in previous techniques. (3) Summary of the Invention In a first broad form, the present invention provides a method for sorting municipal solid waste into various types of materials. The method includes the following steps: using a particle size separation method to sort solid waste Become an extra-large particle size fraction, a medium-sized particle size fraction, and a too-small particle size fraction; use at least manual, density, and further particle size methods to obtain partial-size extra-large particles. Fractions and medium-size fractions in the second part; combining the extra-large-size fractions in the part and the medium-size fractions in the first part to produce a super-large-medium-size combination fraction; Fractions result in fractions with too small-medium size combined; and use manual, density 200539963, particle size or metal sorting methods to further sort the extra-large-medium size particle size. The fraction and the particle size are too small _ the combined fraction of medium particle size becomes various types of materials. In a special, non-limiting form, some of the extra-large particle size fractions are residues taken manually and subsequently extracted in a density manner, while the particle size fractions in the first part and the first fraction are extracted in a density manner, The residue is then 'extracted metallically' and then manually, and then sorted in a granular manner. In a second broad form, the present invention provides a system for sorting municipal solid waste into various types of materials. The system includes: a particle size sorting device 'for sorting solid waste into extra-large particles. , Medium-granularity fractions, and small-granularity fractions; manual, density, and further particle-size and metal-based sorting equipment to obtain some large-size fractions, the first-size and second-size fractions Fractions; combining the ultra-large particle size fraction in this part with the granularity fraction in the first part to produce a device with an ultra-large-medium size fraction, and combining the fraction that is too small and the particle size fraction in the second part to produce too small a size -Equipment for medium-sized particle size combined fractions; and, further sorting equipment using manual, density, particle size, or metal sorting equipment is used to sort the extra-large particle size-medium-sized particle size combined fractions are too small-medium Grain size combined fractions become various types of materials. Especially in the non-restricted form, the equipment for automatic particle size sorting is a rotary screen. Each manual sorting station has a chute to facilitate the separation of various types of materials. -10- 200539963 The density type of the sorting equipment is wind power. The sifter or rebound adhesion conveyor's metal sorting equipment is a magnetic separator or non-ferrous metal separator provided individually or in combination, the magnetic separator is a rotating belt type magnetic separator, and / or the metal method The sorting equipment makes use of the magnetic, electromagnetic, electrical conductivity or insulation properties of the materials. In addition, a product packer can be set up to pack various types of extracted materials. According to a further specific embodiment of the invention, one or several manual sorting stations may be replaced by a suitable automatic system suitable for carrying out the required sorting. (IV) Embodiments In order to provide a more accurate understanding of the subject matter of the present invention, the following modes are described. The drawings are combined to illustrate the features of the present invention by traversing the drawings and using the same reference numerals to indicate the same parts. As shown in Figure 1, the flow chart for the sorting of municipal solid waste into various types of materials is illustrated. For example, M SW can be transported from a transport truck to a facility where the system of the present invention is placed via various equipment. A reception hall can be provided to allow the transport truck to store MSW in a designated area, so that the MSW can then be removed via, for example, a front-end loader, away from the sloped ground connected to the designated area. Large bins or lifting bins for waste and hazardous materials can be provided in the reception hall. The MS W (100) is loaded into a feed hopper of a bag opener (110) via, for example, a front-end loader, e.g., a S c T-type splitter_3, which has a set of three spirals Drilled in a separate reinforced sheet shell. The bag opening machine (110) is designed to tear and rupture bags containing solid waste (100) in the bag without causing significant damage to the materials contained in the recyclable or reusable 200539963. The solid waste (120) discharged from the bag opening machine (110) is fed or deposited on a conveyor (130) and guided to a sorting device (150) in a first automatic particle size mode. In a specific embodiment, the sorting device (150) in the first automatic particle size mode is a decorated rotary screen, and a scale can be used to measure the input of the rotary screen (150). The first automatic particle size separation device sorts the solid waste (120) into fractions with too small particle size (160), fractions with medium particle size (170), and fractions with extra large particle size (180). In a specific embodiment, the first automatic particle size sorting device (150) is combined with two coarse screen slat areas (having a pore size determined by the characteristics of the waste). Three particle size fractions can be produced: fractions with excessively small particle size (160) mainly composed of materials with high organic content (e.g. less than 50 mm), fractions with medium particle size (170) (e.g. greater than 50 mm but less than 200 mm) , Which contains most of the hard recyclables), and the extra-large particle size fraction (1 80), which contains most of the bulky recyclables and waste products. Passing the undersize fraction (1 60) through the undersize conveyor (16.5) for transportation to the designated area, and passing the medium size fraction (170) through the medium size conveyor (175) for transportation to the designated area, And the extra-large-grain size fraction (180) is passed through the extra-large-size conveyor (18.5) for transportation to the designated area of the extra-large-grain size fraction. As shown in Figure 2, the extra-large granularity (180) is conveyed on a conveyor (220) through a first manual sorting station (210). Yiyi manual sorting station (210) is composed of many manual sorters P12, 2 丨 4, 216 and 21 8). Although Figure 2 illustrates only four manual sorters by way of example, it should be understood that any number of -12-200539963 manual sorters can be provided. The extra-large granularity (180) is unloaded onto a relatively slow-moving, purpose-designed manual sorting conveyor (220), which should (but not necessarily) be in a fully ventilated, air-conditioned manual sorting cell. A series of manual sorters can be provided within the range of the general first manual sorting station (2 10), so that the manual sorter can remove special wastes of great importance from the extra-large granularity (1 8 0) materials. For example, individual manual sorters (212, 214, 216, and 218) can be removed from bulky unprocessed waste, plastic film, other bulky waste products, large cardboard and / or paper recyclable materials, Or any other type of material. A combined chute can be set for the separated materials (2 1 3, 2 1 5, 2, 1 7 and 2 1 9) to guide different types of separated materials to different garbage bins, compressors, and conveyors , Area, or location. This allows, for example, the separated material (213, 215, 217 or 219) to be directed to a bin (222) or a conveyor (224 or 226). The conveyor (224 or 226) can re-direct the material to other bins, which together with the bin (222) can be a storage warehouse or guided to a packing machine to compact the separated material. The remaining material after the first manual sorting station (2 1 0) which is the residue (23 0) of the first manual sorting station (2 10) is conveyed through the conveyor (2 3 2) or a series of conveyors Sorting equipment through the first density method (2 3 4). In a specific example, the first-density sorting device (23 4) is suitable for removing a thin-film plastic wind screener. The sorting equipment (2 3 4) with the first density method sorts the residual material (2 3 0) into the first size extra large fraction (2 3 8), which is mainly composed of film plastic, and is discharged to the conveyor (2 3 8) The second-largest-size fraction (236) ° Connects the second-large-size fraction (2 3 6) and the sixth medium-size fraction (3 4 8) to 200539963 (more on this later) (Detailed description) to form a size-associated fraction (237) 'which is deposited on a third manual sorting feeder (24 1). Similar to the first manual 'the third manual sorting station (240) includes a lot of manual sorting (246 and 248), indicating that these manual sorters are separated from the extra large granularity (237) The specific materials are discharged in front of them and are being conveyed on the conveyor (2 4 1). Similar to the above, the separated materials (243, 24 5, 2 4 7 and 24 9) are moved and moved to the contained bin (242) or conveyor belt (244 or 24 6). As mentioned, any number or configuration of manually sorted materials can be provided on the basis of the mesh and type to be separated at the third manual sorting station (240), a chute, a trash can or a conveyor belt. According to a preferred, but non-limiting, specific embodiment, the third (240) includes a series of manual sorting stations to remove cardboard and transparent PET, and / or opaque and colored HDPE plastic, etc., which can be recycled The objects can be put into the dustbin through the chute, and the storage bin is placed on the conveyor as described previously. The waste remaining after the third manual sorting station (240) becomes the residue (250) of the third manual sorting station (240). [Transfer] to the top via conveyor (252), to the bottom or through a sorting device (2 5 4 and / or 262). Based on the sorting or sorting type, the second metal sorting equipment (254 and / or single or many individual metal sorting equipment (in series or in separate units) can be provided. Degree extra large-medium grain station (240) input and sorting station (210) device (242, 244,-medium granularity combined with this fraction (2 37)): The configuration can be separated by the lower chute as well as the material counter above Manual sorting station board, paper, glue container. In this library, etc., or the material is further shallow (2 50 0), two-metal separation of the metal 262), provided by the single unit to become -14- 200539963 in special but In a non-limiting specific embodiment, the residue (2 50) is extracted by a ferrous metal sorting device (2 5 4), and the fraction (2 5 8) with a high metal content can be extracted, which can be deposited or transported to a trash bin. (2 5 9), and then deposit the fraction (2 5 6) on the conveyor (260), so that the remaining materials pass through the non-ferrous metal sorting equipment (262) to extract another high metal component fraction (2 66) , It is deposited or transported to the dustbin (267) for reaction, so in the second metal sorting After the preparation (2 5 4 and / or 262) is applied to the residue (250), the first ultra-large-medium size combined fraction (2 64) is left. Here, the high-metal fraction (2 5 8 and 2 6 6) are called the second-large-medium-size combined fractions (258 and 266). In a specific embodiment, the ferrous metal sorting device (2 5 4) may be a rotating belt under magnetic force Separator, and the non-ferrous metal sorting device (262) may be one of various types of non-ferrous metal separator devices. In another particularly specific embodiment of the present invention, the first-large-medium-sized particle size combined fraction ( 264) is passed into a crusher (2 70) to produce a crushed connected fraction (272), which is then deposited on a conveyor (2 7 4) and transported to a third automatic particle size sorting device (2 7 6), for example, it may be a rotary sieve, which can use any desired size of pores in the rotary sieve. The third automatic particle size separation device (2 7 6) produces a particle size that is too small The fifth particle size is extra large-the middle particle size fraction (2 7 8), a middle particle size fraction is the fourth particle Extra large-medium particle size fraction (2 80) and one extra-large particle size fraction is the third large-medium particle size fraction (282). Too small and medium particle size fractions (27 8 and 2 8 0) are usually It is rich in organic matter. The extra-large granularity (2 82) can be passed to the conveyor (2 8 4) and deposited in the dustbin (2 8 6) -15- 200539963, in the collection area, in the truck, etc., and removed Landfill as garbage. As shown in Figure 3, the medium-sized fraction (170) is deposited on a conveyor (308) and transported through a sorting device (310) of the second density method. For example, it may It's another wind screener. The sorting equipment (3 1 0) of the second density method sorts the particle size fraction (17 0) to become the first medium particle size fraction (312) of lighter density materials, for example, film plastic, and deposited To the second medium particle size fraction (3M) on the conveyor (316). The conveyor (3 16) transports the second medium-sized fraction (3 14) through the first metal sorting device (3 1 8). For example, it may be a rotating belt magnetic separator or can be used to extract Any other type of device of metal or materials with metallic properties, for example, by using magnetic, electromagnetic, electrical conductivity, or insulation properties in the second medium particle size fraction (3 1 4). Sorting equipment (318) in the first metal mode (it may be a series of devices, but only a single device is exemplified in this article), extracting the third medium particle size fraction (3 22) (high metal content fraction) ), Deposit or transfer it to the dustbin (3 24). The remaining second medium-size fraction (314), which is the fourth medium-size fraction (320), is deposited on the conveyor (331) to form part of the second manual sorting station (330). As already described above, the second manual sorting station (330) includes sorting (332, 3 3 4 and 3 3 6) and diagonals associated with the extracted material (3 3 3, 3 3 5 and 3 3 7). groove. It may also be a dustbin (3 3 8) or a conveyor (3 4 0 or 3 4 2). In a specific embodiment, the second manual sorting station (330) is a manual sorting glass station, wherein transparent glass, brown glass, and green glass are separated from the fourth medium-size fraction (320). -16- 200539963 The residue (344) of the second manual sorting station (330) is deposited in the sorting equipment (346) in the second automatic particle size method. In a specific embodiment, it: 'Ornament to remove organic matter. The fraction with an excessively small particle size is the fifth medium-sized particle fraction (3 50) and is sorted and deposited on a conveyor (3 5 2). It is expected that the fifth medium particle size fraction (3 50) obtained from the second automatic particle size sorting device (3 4 6) is composed of materials with a high organic content. The ultra-large-grained fraction, which is the sixth medium-sized grain fraction (3 4 8), and the second-grained extra-large fraction (2 3 6) are combined and guided to the third manual sorting station (240), which has been described above. It has a subsequent sorting step. As shown in Figure 4, the fraction with too small granularity (160) is combined with the fifth medium-sized fraction (3 50) generated from the second automatic granularity sorting device (3 4 6). This grade is deposited on the conveyor (4 10), or the fraction (412) with a combination of too small-medium size is transported via the conveyor (4 14) through a third metal sorting device (416 And / or 424). As mentioned above regarding the metal sorting equipment (254 and / or 262), the high metal content fractions (420 and 428) are obtained from the third metal sorting equipment (416 and 424). Fractions with high metal content (42 0 and 42 8) (collectively referred to herein as the first small-to-medium size combined fractions (4 2 0 and 4 2 8)) are based on whether the fractions are high-speed iron Content or high non-ferrous metal content, respectively deposited or transported to the trash (4 21 and 429). However, any number of third-metal sorting equipment (416 and / or 4 2 4) can be provided, and is not limited to two-metal sorting equipment as illustrated. With the third metal sorting equipment (416 and / or 424), 'the second particle size of the residue is too small-medium particle size combined fraction (4 2 6) is deposited to the conveyor-17- 200539963 machine (4 3 0) to be transported to a designated area. It is expected that the second too small-medium size combined fraction (42 6) is a fraction with a high organic content, which can be transported for further biological or organic basis treatment. In various forms of the present invention, the sorting equipment of various metal methods may be various types of electrostatic particle separators, frictional charged separators, high-tension roller separators, or the like, which can be individually or connected in series. Or parallel components. In addition, it should be understood that additional conveyors or other transport devices suitable for waste materials (not illustrated in the text) can be provided to facilitate the transportation of various waste materials or fractions between stations, machines, garbage cans , Compressor rooms, storage areas, conveyors and / or other designated areas. In another embodiment of the present invention, the sorted recyclable or reusable materials, such as cardboard, paper, HDPE, and / or PET plastic, can be guided to a baler feed conveyor (not illustrated in the text) ), Which feeds various materials into the baler machine (not illustrated in the article). Each type of material can then be compressed into bales and ready for storage for delivery to the recyclables market. It should also be understood that a wide variety of parameters can be used in various specific embodiments of the invention. For example, a sorting device in a granular manner is based on a variety of particle shapes that can sort waste materials. Also, various types of conveyors can be used in various embodiments based on the type or nature of the material being conveyed via the conveyor. Various types of conveyors are well known in the industry and can be utilized in various configurations to facilitate specific embodiments of the invention. -18- 200539963 As a specific example, the conveyor belt can be a cut-resistant and oil-resistant synthetic rubber with a thickness ranging from 5 mm to 15 mm. In another specific embodiment, the density sorting device may be a horizontal air screen system with an adjustable conductive plate and an air screen mouthpiece. Vane rotors can be provided in conjunction with rotary valves to provide suction. It is also possible to provide a container press unit to compact any sorted or separated material. The invention is particularly suitable for recovering fractions with high organic content (generally having 30 to 65% organic content). Due to the inability of the prior art system, the fractions with high organic content can be put into landfill by different methods. Fractions with high organic content, such as the second small-to-medium-sized combined fraction (4 2 6), can be directed to percolators and associated equipment, including anaerobic digesters, sand separators, and sludge coins. And / or water degasser. By way of example, this type of device can be provided by ISLA diafiltration technology provided by ISKA Germany GmbH. Therefore, according to the present invention, a municipal solid waste sorting system and method are provided. The present invention may also be stated to be broadly composed of any one or all of the parts, elements, and features described or indicated herein, individually or collectively, of two or more parts, elements, or features, as described herein 'Specific whole' is a synonym well known to the art, and these well-known synonyms are included herein. Although the present invention is described in a better specific embodiment, it should be understood that, as long as it does not depart from the scope of the present invention, various changes' substitutions and changes can be made by those who are usually skilled in the art. 200539963 (V) Brief description of the drawings The present invention should be apparent from the following description. This description is only an example of a preferred but non-limiting specific embodiment described by accompanying drawings. Fig. 1 illustrates: a specific embodiment of the present invention, a processing flow chart of the initial grade sorting; Fig. 2 illustrates: a specific embodiment of the present invention, a subsequent processing flow diagram of the extra-large granularity sorting; The figure illustrates: a specific embodiment of the present invention, followed by a processing flowchart of middle-granularity sorting; FIG. 4 illustrates: according to a specific embodiment of the present invention, the subsequent processing step of small-granularity sorting. Explanation of symbols of main components 1 00 Municipal solid waste 110 Bag opening machine 120 Municipal solid waste 1 3 0,22 0 Conveyor 15 0 Sorting equipment of automatic particle size method 15 0 Rotary screen 1 60 Small particle size fraction 1 65 Too small grain size conveyor 1 70 Medium grain size fraction 175 Medium grain size conveyor 1 80 Fine grain size fraction 18 5 Oversize grain size conveyor • 20- 200539963 210,330 Manual method 2 10 First manual 2 1 2 to 2 1 4 Manual sorting 2 1 3 to 2 1 9 Separated 2 1 6 to 2 1 8 Manual sorting 220 Manual sorting 222,25 9 Trash bin 224,226,23 2 Conveyor 234,310 Density method 23 6 Partial particle size 23 7 Large particle size 23 8 First Granularity 240 Third manual 242-248 Manual sorting 243-249 Isolated 254 Non-ferrous metal 256 Fraction 2 5 8, 2 6 6 High metal into 262 Second metal 270 Crusher 272 After crushing 276 Third automatic 278 No. Five-granularity 280 Fourth-granularity sorting station material feeder 7¾ m Extra-large / medium-granular combined grade Extra-large sorting station material (non-ferrous metal) sorting equipment Sorting equipment with combined fractionation granularity sorting equipment extra large / medium granularity combined fractional extra large / medium granularity combined fraction-21- 200539963 282 Second degree 3 10 Second density 3 12 Lighter density 3 14 No. Erzhong \ T / -L · Loose 3 18 Metal material super-large / medium-granularity combined grading system equipment materials No. 1 medium-granularity grade division grade 320 fourth 3 22 third 3 3 0 second 332,334,336 artificial After extraction 344 Residual 346 Particle size 3 4 8 First 3 5 0 Second 4 12 Particle size 416,424 Third 420,428 High gold medium particle size fraction Medium particle size fraction Manual sorting station material taken from the material method part in the particle size fraction part The particle size fraction is too small / medium particle size combined fraction. The metal separation device is a content fraction.

-22--twenty two-

Claims (1)

200539963 十、申請專利範圍: 1 . 一種都市固體廢棄物分選成爲各種型式的物料之方法, 該方法包括下列步驟: (A) 使用以粒度方式之分選設備,分選固體廢棄物 成爲粒度特大級分、中粒度級分及粒度過小級分; (B) 使用至少以手工方式、密度方式、再者以粒度 方式、及金屬方式之分選設備而獲得一種部分粒度特大 級分、第一部分中粒度級分及第二部分中粒度級分; (C) 連合該部分粒度特大級分和第一部分中粒度級 分而產生粒度特大-中粒度連合之級分,及連合粒度過小 級分和第二部分中粒度級分而產生粒度過小-中粒度連 合之級分;及 (〇)使用另外以手工方式、密度方式、粒度方式或 金屬方式之分選設備來更進一步分選該粒度特大-中粒 度連合之級分及粒度過小-中粒度連合之級分成爲各種 型式的物料。 2 ·如申請專利範圍第1項之方法,其中該部分粒度特大級 分是以手工方式提取及隨後以密度方式提取的殘留物。 3 ·如申請專利範圍第1或2項之方法,其中該第一部分中 粒度級分和第二部分中粒度級分是以密度方式提取,和 然後以金屬方式提取,然後以手工方式提取及然後以粒 度方式分選的殘留物。 4 · 一種將混合之固體廢棄物分選成爲各種型式的物料之方 法,該方法包括下列步驟: -23- 200539963 (A) 使用第一自動粒度方式之分選設備分選固體廢 棄物成爲粒度特大級分、中粒度級分和粒度過小級分; (B) 經由下列(1)和(2)項,分選粒度特大級分成爲各 型的物料: (1) 使用第一手工分選,分離出至少部分的粒度 特大級分;及 (2) 使用第一密度方式之分選設備,分選第一手 工分選的殘留物而產生較低密度物料的第一粒度特大 級分及較高密度物料的第二粒度特大級分; (C) 經由下列(1)至(4)項,分選中粒度級分成爲各種 型式的物料: (1 )使用第二密度方式之分選設備而產生較低密 度物料的第一中粒度級分及較高密度物料的第二中粒 度級分; (2) 使用第一金屬方式之分選設備,分選第二中 粒度級分而產生高金屬含量之物料的第三中粒度級分 及高非金屬含量之物料的第四中粒度級分; (3) 使用第二手工分選,分離出至少部分的第四 中粒度級分;及 (4) 使用第二自動粒度方式之分選設備,分選第 二手工分選的殘留物成爲較小粒度之物料的第五中粒 度級分及較大粒度之物料的第六中粒度級分; (D) 連合第二粒度特大級分和第六中粒度級分及, 使用第二手工分選,分離出至少部分的連合之粒度特大- -24- 200539963 中粒度級分; (E) 經由使用第二金屬方式之分選設備,分選第三 手工分選的殘留物而產生高非金屬含量之物料的第一粒 度特大-中粒度連合之級分及高金屬含量之物料的第二 粒度特大-中粒度連合之級分;及 (F) 連合粒度過小級分和第五中粒度級分並使用第 二金屬方式之分選設備,分選連合之粒度過小-中粒度級 分而產生局金屬含量之物料的第一粒度過小_中粒度連 合之級分及高非金屬含量之物料的第二粒度過小-中粒 度連合之級分。 5 ·如申請專利範圍第4項之方法,其中使用第一手工分選 來分離出至少龐大或實質上甚大之物料。 6 .如申請專利範圍第4項之方法,其中使用第二手工分選 來分離出至少玻璃物料。 7 .如申請專利範圍第4項之方法,其中使用第三手工分選 來分離出至少紙或塑膠物料。 8·如申請專利範圍第4至7項中任一項之方法,其中使用 岔度方式之分選(設備)來分離出薄膜塑膠物料。 9 .如申請專利範圍第4至8項中任一項之方法,其中使用 金屬方式之分選設備來分離出鐵類和有色金屬物料之任 —者或兩者。 1 0 ·如申請專利範圍第4至9項中任一項之方法,其中該第 一粒度過小-中粒度連合之級分是高有機物含量之物料。 H·如申請專利範圍第4至1〇項中任一項之方法,其中將第 -25- 200539963 一粒度特大-中粒度連合之級分經由第三自動粒度方式 之分選設備更進一步分選而產生第三粒度特大-中粒度 連合之級分及至少第四粒度特大-中粒度連合之級分。 1 2 ·如申請專利範圍第1 〇項之方法,其中至少該第四粒度特 大-中粒度連合之級分是高有機物含量之物料。 1 3 · —種用於分選都市固體廢棄物成爲各種型式的物料之系 統,該系統包括: (A) 用於分選固體廢棄物成爲粒度特大級分、中粒 度級分及粒度過小級分之一種粒度方式之分選設備; (B) 手工方式、密度方式、再者粒度方式、及金屬 方式之分選設備而獲得一種部分粒度特大級分,第一部 分中粒度級分及第二部分中粒度級分; (C) 連合該部分粒度特大級分和第一部分中粒度級 分而產生一種粒度特大-中粒度連合之級分的設備,及連 合粒度過小級分和第二部分中粒度級分而產生粒度過小 級分-中粒度連合級分的設備;以及 (D) 另外以手工方式、密度方式、粒度方式或金屬 方式之分選設備,來更進一步分選該粒度特大-中粒度連 合之級分及粒度過小-中粒度連合之級分成爲各種型式 的物料。 1 4 ·如申請專利範圍第1 3項之系統,其中該部分粒度特大級 分是以手工方式之提取及隨後以密度方式之提取的殘留 物。 1 5 .如申請專利範圍第1 3或1 4項之系統,其中該第一部分 -26- 200539963 中粒度級分和第二部分中粒度級分是以密度方式之 ,然後以金屬方式之提取,然後以手工方式之提取 後以粒度方式之分選的殘留物。 1 6 . —種用於分選混合之固體廢棄物成爲各種型式的物 系統,該系統包括: (A) —種第一自動粒度方式之分選設備用於分 體廢棄物成爲粒度特大級分、中粒度級分和粒度過 分; (B) 第一手工分選站,經由提取至少部分的粒 大級分,用於分選該粒度特大級分成爲各型的物料 (C) 第一密度方式之分選設備用於分選第一手 選站的殘留物而產生較低密度物料的第一粒度特大 及較高密度物料的第二粒度特大級分; (D) 第二密度方式之分選設備用於分選中粒度 成爲各種型式的物料而產生較低密度物料的第一中 級分及較高密度物料的第二中粒度級分; (E) 桌一金屬方式之分選設備,用於分選第二 度級分而產生高金屬含量之物料的第三中粒度級分 非金屬含量之物料的第四中粒度級分; (F) 桌一手工分選站用於分離出至少部分的第 粒度級分; (G) 第二自動粒度方式之分選設備用於分選第 工分選的殘留物成爲較小粒度物料的第五中粒度級 較大粒度物料的第六中粒度級分; 提取 及然 料之 選固 小級 度特 > 工分 級分 級分 粒度 中粒 及高 四中 二手 分及 -27- 200539963 (Η)連合第二粒度特大級分及第六中粒度級分之設 備以及第三手工分選站用於分離出至少部分的連合之粒 度特大-中粒度級分; (I) 第二金屬方式之分選設備用於分選第三手工分 選的殘留物而產生高非金屬含量之物料的第一粒度特大 -中粒度連合之級分及高金屬含量之物料的第二粒度特 大-中粒度連合之級分;以及 (J) 連合粒度過小級分和第五中粒度級分之設備以 及第二金屬方式之分選設備,用於分選該粒度過小-中粒 度連合之級分而產生高金屬含量之物料的第一粒度特·大 -中粒度連合之級分及高非金屬含量之物料的第二粒度 過小-中粒度連合之級分。 1 7 ·如申請專利範圍第1 6項之系統,其中自動粒度方式之分 選設備爲轉筒篩。 1 8 ·如申請專利範圍第1 6或1 7項之系統,其中手工分選站 具有斜槽來便利各種型式的物料之分離。 1 9 ·如申請專利範圍第1 6至1 8項中任一項之系統,其中該 密度方式之分選設備是風力篩分器或回彈黏附輸送機。 2 0 .如申請專利範圍第1 6至1 9項中任一項之系統,其中該 金屬方式之分選設備是個別或連合所提供之磁力分離器 或有色金屬分離器。 2 1 .如申請專利範圍第20項之系統,其中磁力分離器是旋轉 帶式磁力分離器。 2 2 .如申請專利範圍第1 6項之系統,其中該金屬方式之分選 -28- 200539963 設備利用物料的磁性、電磁性、導電率或絕緣等性質。 23 .如申請專利範圍第! 6 f 22項中任—項之系統,其中連 口各級分之方法是沉積各級分在一個共同輸送帶上。 24 ·如申請專利範圍第i 6至23項中任一項之系統,其中提 供一個產物打包機來包裝各種經提取型式的物料。 25 .如申請專利範圍第i 6至24項中任一項之系統,其中將 物-有機物處 第二粒度過小-中粒度連合之級分輸送至生 理器。 26 ·如申請專利範圍第1 6至25項中任一項之系統,其中另 外設置〜個第三自動粒度方式之分選設備用於分選該第 二粒度特大-中粒度連合之級分而產生第三粒度特大-中 粒度連合之級分及至少第四粒度特大-中粒度連合之級 分。 27 .如申請專利範圍第1 6至25項中任一項之系統,其中將 任何的手工分選站經由自動手工分選站代替。 -29-200539963 X. Scope of patent application: 1. A method for sorting municipal solid waste into various types of materials, the method includes the following steps: (A) using a sorting device using a particle size method to sort the solid waste into a very large particle size Fractions, medium-granularity fractions, and small-granularity fractions; (B) Use a sorting device that uses at least a manual method, a density method, and a particle size method, and a metal method to obtain a partially-large-size extra-large fraction. Granularity fraction and the medium-size fraction in the second part; (C) Combining the extra-large-size fraction in this part with the medium-size fraction in the first part to produce a super-large-medium-size fraction, and combining the fraction with too small size and the second Partial medium particle size fractions result in fractions that are too small-medium particle size combined; and (0) use another manual, density, particle size, or metal sorting equipment to further sort the extra large-medium particle size The combined fractions and the particle size are too small-the medium-sized and granular fractions become various types of materials. 2. The method according to item 1 of the scope of patent application, wherein the part of the extra-large particle size fraction is a residue extracted manually and then extracted in a density manner. 3. The method according to item 1 or 2 of the scope of patent application, wherein the particle size fraction in the first part and the particle size fraction in the second part are extracted in a density manner, and then extracted in a metal manner, then manually extracted and then Residue sorted in a granular manner. 4 · A method for sorting mixed solid waste into various types of materials, the method includes the following steps: -23- 200539963 (A) using the first automatic particle size sorting equipment to sort solid waste into a very large particle size Fractions, medium-granularity fractions, and small-granularity fractions; (B) Through the following (1) and (2), sort the extra-large-grained fractions into various types of materials: (1) Use the first manual sorting and separation At least part of the extra-large particle size fraction; and (2) using a first-density sorting device to separate the first manually sorted residue to produce a first-density extra-large fraction with a higher density and a higher density The second particle size extra large fraction of the material; (C) The following particle size fractions are sorted into various types of materials through the following items (1) to (4): (1) using the second density sorting equipment to produce more The first medium particle size fraction of the low density material and the second medium particle size fraction of the higher density material; (2) using the first metal sorting equipment to sort the second medium particle size fraction to produce a high metal content Third medium particle size fraction The fourth medium-size fraction of materials with high non-metal content; (3) the second manual sorting is used to separate at least part of the fourth medium-size fraction; and (4) the sorting equipment using the second automatic particle size method , Sorting the residue of the second manual sorting into the fifth medium particle size fraction of the smaller particle size material and the sixth medium particle size fraction of the larger particle size material; (D) combining the second large particle size fraction and the first Six medium particle size fractions, using the second manual sorting, to separate at least part of the combined large particle size--24-200539963 medium particle size fractions; (E) using the second metal sorting equipment to sort the first Three manually sorted residues to produce a first non-large-medium size combined fraction with high non-metal content materials and a second extra-large-medium size combined fraction with high metal content materials; and (F) Combine the fraction with too small size and the fifth medium-size fraction and use the second metal sorting equipment. The combined size is too small-the medium-size fraction produces the first metal with a small metal content. Medium-size combination Grades and High Africa The second particle size of the metal content material is too small-a medium particle size fraction. 5. The method according to item 4 of the patent application, wherein the first manual sorting is used to separate at least bulky or substantially large materials. 6. The method of claim 4 in which the second manual sorting is used to separate at least the glass material. 7. The method according to item 4 of the patent application, wherein a third manual sorting is used to separate at least paper or plastic material. 8. The method according to any one of claims 4 to 7, wherein a separation method (equipment) using a fork method is used to separate the thin film plastic material. 9. The method according to any one of claims 4 to 8 of the scope of patent application, wherein a metal sorting device is used to separate any one or both of the iron and non-ferrous materials. 10 · The method according to any one of claims 4 to 9 in the scope of patent application, wherein the first small-to-medium-sized combined fraction is a material with a high organic content. H. The method according to any one of claims 4 to 10 in the scope of patent application, wherein the -25-200539963 one-size-medium-size combination grades are further sorted by a sorting device of a third automatic size method A third ultra-large-medium size combined fraction and at least a fourth ultra-medium-medium size combined fraction are generated. 1 2. The method according to item 10 of the scope of patent application, wherein at least the fourth-large-medium-size combined fraction is a material with a high organic content. 1 3 · — A system for sorting municipal solid waste into various types of materials, the system includes: (A) Used to sort solid waste into extra-large particle size, medium-size particle size, and over-small particle size A sorting device of one kind of granularity method; (B) a sorting device of manual method, density method, particle size method, and metal method to obtain a part of the particle size extra large fraction, the particle size fraction in the first part and the second part Granularity fraction; (C) A device that combines the ultra-large granularity fraction in this part and the granularity fraction in the first part to produce an ultra-large-medium-sized granularity fraction, and combines the fraction with too small size and the granularity fraction in the second part And a device that generates a fraction with too small particle size-medium-sized particle size; and (D) a sorting device that uses manual, density, particle size, or metal methods to further sort the extra-large-medium size particle size Fractions and particle sizes are too small-the combined fractions of medium particle size become various types of materials. 14 · The system according to item 13 of the scope of patent application, wherein the part of the extra-large particle size fraction is a residue obtained by manual extraction and subsequent density extraction. 15. If the system of claim 13 or 14 of the scope of patent application, wherein the particle size fractions in the first part-26-200539963 and the particle size fractions in the second part are extracted by density, and then extracted by metal, The residue is then sorted in a granular manner after being extracted manually. 16. — A kind of solid waste system for sorting and mixing into various types of material systems, the system includes: (A) — a sorting equipment of the first automatic particle size method for separating waste into extra-large particle size fractions , Medium particle size fraction and excessive particle size; (B) the first manual sorting station, by extracting at least part of the large particle fraction, is used to sort the large particle size fraction into various types of materials (C) the first density method The sorting equipment is used to sort the residues of the first-hand sorting station to produce the first ultra-large particle size of the lower density material and the second ultra-large size particle of the higher density material; (D) Sorting by the second density method The equipment is used to sort the granularity into various types of materials to produce the first medium fraction of the lower density material and the second medium size fraction of the higher density material; (E) Table-one metal sorting equipment for Sorting the second-degree fraction to produce a third medium-size fraction of a material with a high metal content; a fourth medium-size fraction of a material that is not a metal content; (F) a manual sorting station for separating at least part of the Particle size fraction; (G) Second particle size The sorting equipment of the method is used for sorting the residue of the first sorting to become the fifth medium-size fraction of the small-size material and the sixth medium-size fraction of the larger-size material; ; Industrial classification, classification, particle size, middle and high school second-hand, and -27- 200539963 (Η) Equipment that combines the second and sixth medium-size fractions and the third manual sorting station for separating at least Partially combined extra-large particle size-medium particle size fraction; (I) The second metal sorting device is used to sort the residue of the third manual sorting to produce materials with a high non-metal content. Grades with combined size and second metal with extra-large-medium size for high-metal content materials; and (J) Equipment with too small combined size and fifth medium-sized size and separation with second metal method Equipment for sorting the fraction with too small-medium particle size combined to produce a high metal content of the first particle size. Large-medium size combined fraction and second non-metal material with too small- Medium granularity Combined grades. 17 · If the system of item 16 in the scope of patent application, the automatic particle size separation device is a rotary screen. 1 8 · If the system of item 16 or 17 of the scope of patent application, the manual sorting station has a chute to facilitate the separation of various types of materials. 19 · The system according to any one of claims 16 to 18 in the scope of patent application, wherein the density sorting device is a wind screener or a rebound adhesion conveyor. 20. The system according to any one of claims 16 to 19 in the scope of patent application, wherein the metal sorting device is a magnetic separator or a non-ferrous metal separator provided individually or in combination. 2 1. The system as claimed in claim 20, wherein the magnetic separator is a rotating belt type magnetic separator. 2 2. The system according to item 16 of the scope of patent application, in which the metal sorting is performed. -28- 200539963 The equipment utilizes the magnetic, electromagnetic, electrical conductivity or insulation properties of materials. 23. If the scope of patent application is the first! 6 f 22. Any system of item 22, in which the method of connecting the levels is to deposit the levels on a common conveyor. 24. The system according to any one of claims i 6 to 23 of the scope of patent application, wherein a product baler is provided to pack various types of extracted materials. 25. The system of any one of items i 6 to 24 of the scope of application for a patent, wherein the second-to-medium-size combined fractions at the bio-organic matter are conveyed to the physic. 26. The system according to any one of claims 16 to 25 in the scope of patent application, wherein a third automatic granularity sorting device is additionally provided for sorting the second-largest-medium-granularity combined fraction and A third fraction of extra-large-medium size combined fractions and at least a fourth fraction of extra-large-medium size combined fractions are produced. 27. The system according to any one of claims 16 to 25 of the scope of patent application, wherein any manual sorting station is replaced by an automatic manual sorting station. -29-
TW093127288A 2004-06-09 2004-09-09 Municipal solid waste sorting system and method TW200539963A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2007006304 2004-06-09

Publications (1)

Publication Number Publication Date
TW200539963A true TW200539963A (en) 2005-12-16

Family

ID=52349179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093127288A TW200539963A (en) 2004-06-09 2004-09-09 Municipal solid waste sorting system and method

Country Status (1)

Country Link
TW (1) TW200539963A (en)

Similar Documents

Publication Publication Date Title
US20090032442A1 (en) Municipal solid waste sorting system and method
JP6001550B2 (en) Machine sorting of mixed solid waste and collection of recyclable products
US5465847A (en) Refuse material recovery system
US8322639B2 (en) Mechanized separation of mixed solid waste and recovery of recyclable products
US8398006B2 (en) Mechanized separation of mixed solid waste and recovery of recyclable products
CN113020224A (en) High-value recovery system for household garbage and treatment process thereof
CN107362977B (en) Automatic sorting line for decoration garbage
CN109226194A (en) A kind for the treatment of process for fitting up waste material
CN110523639A (en) A kind of processing method and system of decoration garbage
CN104722494A (en) Comprehensive rubbish sorting technology and comprehensive rubbish sorting machine
US9713812B1 (en) Methods and systems for separating and recovering recyclables using a comminution device
KR900000617B1 (en) Recovery method of useful material from refuse and plant therefrom
US7188730B2 (en) Separation system for single stream compressed recyclables
CN208628097U (en) Screening rubbish recovery system
CN215844838U (en) High-value recovery system for household garbage
TW200539963A (en) Municipal solid waste sorting system and method
CN112264427A (en) Broken system of selecting separately of major possession rubbish
AU2004212536B9 (en) Municipal solid waste sorting system and method
CN110947740A (en) Automatic sorting line for household garbage
CN213052049U (en) Garbage classification processing system
CN219233140U (en) Mixed household garbage screening treatment system
CN220678605U (en) Household garbage sorting and classifying system
Savage et al. Processing of solid waste for material recovery
JPH0929218A (en) Apparatus for treating large-sized discharge article and nonflammable waste
CN110665936A (en) Urban household garbage classification treatment method