200538522 (1) 九、發明說明 【發明所屬之技術領域】 • 本發明爲一種黏著劑組成物,使用黏著劑組成物之薄 膜狀黏著劑,電路連接材料,使用電路連接材料之薄膜狀 電路連接材料’電路構件之連接構造及電路構件之連結構 造的製造方法之技術。 Φ 【先前技術】 於電氣工業或電子工業之技術領域中,常使用以鍵結 各種電路構件等構件爲目的之各種連接材料。特別是於半 導體元件或液晶顯示元件之技術領域中,於尋求更高度密 度化、高精細化之同時,適用於前述用途之黏著劑,亦被 期待應具有更高之黏著強度,特別是高溫高濕條件下之優 良黏著強度。 又,經使用黏著劑黏著之被黏著物,例如由印刷電路 • 板或聚醯亞胺等有機基材開始,至銅、鋁等金屬或ITO (indiumtinoxide)、氮化砂(SiNx)、二氧化砂(Si〇2) 等具有多種各樣表面狀態之基材。因此,黏著劑以配合各 被黏著物進行設計者爲佳。 % 以往,半導體元件或液晶顯示元件用之黏著劑,由環 " 氧樹脂開始至熱硬化性樹脂等皆有被使用(例如特開平1- 1 1 3 4 8 0號公報)。前述黏著劑,一般爲於1 7 〇至2 5 (TC下 經1至3小時熱處理而硬化。 近年來,隨著半導體元件之高集積化、液晶顯示元件 (2) 200538522 之高精細化,元件間與電路間之間隔已有狹窄化之趨勢。 因此,於上述170至250 °C溫度下進行熱處理時’於硬化 時之加熱會有對週邊構件產生不良影響之疑慮。因此’爲 避免對週邊構件產生不良影響下,黏著劑則尋求應具有較 低溫度下(1 〇 〇至1 70 °C )進行硬化之特性。又,爲提昇 效能,黏著劑已被要求應具有可於短時間(1小時內)內 硬化之特性。換言之,目前極度需要一種「低溫快速硬 φ 化」之黏著劑。 配合前述需求,特開2000-44905號公報中揭示一種 含有自由基聚合性樹脂、有機過氧化物、熱塑性彈性體、 磷酸酯,及環氧矽烷偶合劑之樹脂組成物所得之異向導電 性黏著劑。 【發明內容】 但,上述特開2000-44905號公報所揭示之異向導電 φ 性黏著劑,雖具有低溫快速硬化之特性,但黏著強度卻不 充分。 本發明,即爲鑒於以往技術所產生之問題所提出者, 即提供一種具有充分強度之黏著劑組成物,使用黏著劑組 成物之薄膜狀黏著劑,電路連接材料,使用電路連接材料 之薄膜狀電路連接材料,電路構件之連接構造及電路構件 之連結構造的製造方法爲本發明之目的。 爲解決上述問題,本發明之黏著劑組成物,以含有自 由基聚合性化合物,與自由基聚合起始劑,與具有氮-矽 -6- (3) 200538522 鍵結之化合物(以矽胺烷化合物爲更佳)爲特徵。 本發明之黏著劑組成物,爲一種含有自由基聚合性化 合物與自由基聚合起始劑之自由基硬化型黏著劑組成物。 本發明之黏著劑組成物,因自由基硬化型黏著劑組成物中 含有具有氮-矽鍵結之化合物,故具有充分之黏著強度, 特別是高溫高濕(8 5 °C、8 5 % RH )條件下仍顯示出極優良 之黏著強度。又,本發明之黏著劑組成物,對於表面爲金 φ 屬至由無機材質所構成之被黏著物顯示出極高之黏著強 度,且於低溫下亦可快速硬化。基於對表面由無機材質所 構成之被黏著物顯示出極高之黏著強度,本發明之黏著劑 組成物極適合作爲於電路連接材料之用途。 本發明之黏著劑組成物具有上述效果之理由雖尙未確 定,本發明者們推測其爲基於下述理論者。即,本發明之 黏著劑組成物,爲含具有氮-矽鍵結之化合物。該氮-矽鍵 結因具有與Si02或SiNx相同之鍵結形式,故本發明之黏 Φ 著劑組成物之黏著強度具有相較於以往黏著劑組成物爲更 優良之黏著強度。又,本發明之黏著劑組成物中,具有 氮-矽鍵結之化合物可抑制於硬化時之硬化收縮而提昇黏 著力,故可得到充分之黏著強度。 _ 本發明之薄膜狀黏著劑,爲將上述本發明之黏著劑組 成物形成薄膜狀所得者。此薄膜狀黏著劑具有容易處理 性,且容易設置於被黏著物上,故可使連接作業更容易進 行。 本發明之電路連接材料,爲一種具有於第一電路基板 (4) 200538522 之主面上形成有第一電路電極之第一電路構件,與於第二 電路基板之主面上形成有第二電路電極之第二電路構件, 且前述第一電路電極與前述第二電路電極爲以相對向配置 方式連接之電路連接材料,其以含有上述本發明之黏著性 組成物爲特徵。該電路連接材料,因含有上述本發明之黏 著劑組成物,故對於由無機材質所構成之電路構件具有高 度黏著強度,而適合用於電路構件之黏著。 φ 本發明之電路構件之連接構造,其爲具備有於第一電 路基板之主面上形成有第一電路電極之第一電路構件,與 於第二電路基板之主面上形成有第二電路電極之第二電路 構件,與設置於前述第一電路基板之主面與前述第二電路 基板之主面之間,且與前述第一電路電極與前述第二電路 電極成對向配置狀態,以連接前述第一與第二電路構件之 間的電路連接構件之電路構件之連接構造,其中,該電路 連接構件爲由本發明之電路連接材料之硬化物所形成,且 φ 第一電路電極與前述第二電路電極爲以電路方式連接爲特 徵者。該電路構件之連接構造,因電路連接構件爲由本發 明之電路連接材料之硬化物所構成,故可大幅降低連接電 阻,且可得到優良信賴性之黏著強度。 又,本發明之電路連接材料,爲一種於第一電路基板 之主面上形成有第一電路電極之第一電路構件,與於第二 電路基板之主面上形成有第二電路電極之第二電路構件, 並將前述第一電路電極與前述第二電路電極成對向配置狀 態連接之電路連接材料,其爲含有自由基聚合性化合物與 -8- (5) 200538522 自由基聚合起始劑之黏著劑組成物,與經具有氮-矽鍵結 之化合物表面處理所得之導電粒子爲特徵。 本發明之電路連接材料,因含有被作爲導電材料之具 有氮-矽鍵結之化合物表面處理所得之導電粒子,故配置 於對向之電路構件之電極間並經硬化後,電極間即可得到 極低之連接電阻。又,本發明之電路連接材料,於保存後 仍顯示出極優良之連接電阻的安定性。又,本發明之電路 •連接材料因於保存後仍可顯示出極優良之連接電阻的安定 性,故應具有充分之黏著強度方可達到前述效果。保存後 之連接電阻之安定性,係指相對於使用剛製造後之電路連 接材料所得之電路構件之連接構造的連接電阻而言,使用 製造後放置特定時間後之電路連接材料所得之電路構件之 連接構造的連接電阻之變動極小之意。 又,本發明之電路連接材料,因含有含自由基聚合性 化合物與自由基聚合起始劑之黏著劑組成物,故可低溫急 _ 速硬化。 本發明之薄膜狀電路連接材料,爲將上述電路連接材 料形成薄膜狀所得者。此薄膜狀電路連接材料因具有容易 處理性,且容易設置於被黏著物上,故可使連接作業更容 易進行。 本發明之電路構件之連接構造,爲具備有於第一電路 基板之主面上形成有第一電路電極之第一電路構件,與於 第二電路基板之主面上形成有第二電路電極之第二電路構 件,與設置於前述第一電路基板之主面與前述第二電路基 -9 - (6) 200538522 板之主面之間,且與前述第一電路電極與前述第二電路電 極成對向配置狀態,以連接前述第一與第二電路構件之間 的電路連接構件之電路構件之連接構造,其中,該電路連 接構件爲本發明之電路連接材料之硬化物所形成,且該第 一電路電極與前述第二電路電極爲介由具有矽-氮鍵結之 化合物表面處理所得之導電粒子以電路方式連接者爲特 徵。該電路連接構件之連接構造中,因電路連接構件爲由 B 上述電路連接材料之硬化物所形成,故可充分降低第一電 路電極與第二電路電極之間之連接電阻,且使其安定化, 故具有優良之黏著強度性賴性。 本發明之電路構件之連接構造的製造方法,其爲具備 有於第一電路基板之主面上形成有第一電路電極之第一電 路構件,與於第二電路基板之主面上形成有第二電路電極 之第二電路構件,與設置於前述第一電路基板之主面與前 述第二電路基板之主面之間,且與前述第一電路電極與前 • 述第二電路電極成對向配置狀態,以連接前述第一與第二 電路構件之間的電路連接構件之電路構件之連接構造的製 造方法,其中,第一電路基板之主面與第二電路基板之主 面之間,配置有本發明之電路連接材料,且介由第一與第 二電路構件將前述電路連接材料經加熱與加壓等硬化處 理,使其與第一電路構件與第二電路構件連接以製造電路 構件之連接結構爲特徵。使用本發明之電路連接材料,可 於低溫急速硬化,且可充分抑制對電路構件之不良影響, 而提局效率。 -10- (7) 200538522 以下,將參酌所附圖式對本發明之較佳實施形態作一 說明。又,同一要件爲使用同一符號表示,且將略除重複 之說明。又,以下說明中之(甲基)丙烯酸酯,爲指丙烯 酸酯或其對應之甲基丙烯酸酯之意。 [第1實施形態] (黏著劑組成物) B 本發明之黏著劑組成物爲含有自由基聚合性化合物, 與自由基聚合起始劑,與具有氮·矽鍵結之化合物。 自由基聚合性化合物,爲指具有可自由聚合之官能基 的化合物。自由基聚合性化合物,例如(甲基)丙烯酸酯 化合物、馬來醯亞胺化合物、檬康醯亞胺化合物、卡巴醯 亞胺化合物等。其可單獨使用1種或將2種以上混合使用 亦可。又,自由基聚合性化合物,於單體,或低聚物等任 一狀態下皆可使用,或將單體與低聚物混合使用亦可。 # (甲基)丙烯酸酯化合物,例如甲基(甲基)丙烯酸 酯、乙基(甲基)丙烯酸酯、異丙基(甲基)丙烯酸酯、 異丁基(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、 二乙二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基) 丙烯酸酯、四伸甲基二醇四(甲基)丙烯酸酯、2-羥基-1,3_二丙烯醯氧基丙烷、2,2-雙[4-(丙烯醯氧基甲氧基) 苯基]丙烷、2,2-雙[4-(丙烯醯氧基乙氧基)苯基]丙烷、 二環戊烯基(甲基)丙烯酸酯、三環癸烯基(甲基)丙烯 酸酯、三(丙烯醯氧乙基)異氰酸酯、尿烷(甲基)丙烯 -11 - (8) 200538522 酸酯、異氰酸乙烯氧化物變性二丙烯酸酯等。其可單獨使 用1種或將2種以上混合使用亦可。上述(甲基)丙烯酸 酯化合物,經由自由基聚合反應可製得(甲基)丙烯酸樹 馬來醯亞胺化合物,爲至少具有1個馬來醯亞胺基之 化合物。馬來醯亞胺化合物,例如苯基馬來醯亞胺、1 -甲 基-2,4-雙馬來醯亞胺苯、N,N’-m-伸苯基雙馬來醯亞胺、 0 N,N’-p-伸苯基雙馬來醯亞胺、N,N’-4,仁二伸苯基雙馬來 醯亞胺、N,N’-4,4- ( 3,3·二甲基二伸苯基)雙馬來醯亞 胺、N,N’-4,4- ( 3,3-二甲基二苯基甲烷)雙馬來醯亞胺、 N,N’-4,4- ( 3,3-二乙基二苯基甲烷)雙馬來醯亞胺、N,N’-4,4-二苯基甲烷雙馬來醯亞胺、N,N’-4,4-二苯基丙烷雙馬 來醯亞胺、1化-4,4-二苯基醚雙馬來醯亞胺、1:^’-4,4-二 苯基硕雙馬來醯亞胺、2,2-雙(4- ( 4-馬來醯亞胺苯氧 基)苯基)丙烷、2,2-雙(3-s-丁基- 3,4-(4-馬來醯亞胺 φ 苯氧基)苯基)丙烷、1,1-雙(4-(4_馬來醯亞胺苯氧 基)苯基)癸烷、4,4’-環亞己基-雙(1- ( 4-馬來醯亞胺苯 氧基)苯氧基)-2-環己基苯、2,2-雙(4-(4-馬來醯亞胺 苯氧基)苯基)六氟丙烷等。其可單獨使用1種或將2種 ^ 以上混合使用亦可。 "檬康醯亞胺化合物,爲至少具有1個檬康醯亞胺基之 化合物。檬康醯亞胺化合物,例如苯基檬康醯亞胺、1 ·甲 基-2,4-雙檬康醯亞胺苯、N,N’-m-伸苯基雙檬康醯亞胺、 N,N’-p-伸苯基雙檬康醯亞胺、N,N’-4,4-二伸苯基雙檬康 -12- (9) 200538522 醯亞胺、N,N’-4,4-(3,3-二甲基二伸苯基)雙檬康醯亞 胺、1>^’-4,4-(3,3-二甲基二苯基甲烷)雙檬康醯亞胺、 N,N’-4,4- ( 3,3-二乙基二苯基甲烷)雙檬康醯亞胺、N,N’-4,4-二苯基甲烷雙檬康醯亞胺、Ν,Ν’-4,4-二苯基丙烷雙檬 康醯亞胺、1『-4,4-二苯基醚雙檬康醯亞胺、:^川’-4,4-二 苯基硕雙檬康醯亞胺、2,2-雙(4- ( 4-檬康醯亞胺苯氧 基)苯基)丙烷、2,2-雙(3-s-丁基-3,4-(4-檬康醯亞胺 • 苯氧基)苯基)丙烷、1,1-雙(4- (4-檬康醯亞胺苯氧 基)苯基)癸烷、4,4’-環亞己基-雙(1-(4-檬康醯亞胺苯 氧基)苯氧基)-2-環己基苯、2,2-雙(4-(4-檬康醯亞胺 苯氧基)苯基)六氟丙烷等。其可單獨使用1種或將2種 以上混合使用亦可。 卡巴醯亞胺化合物,爲至少具有1個卡巴醯亞胺基之 化合物。卡巴醯亞胺化合物,例如苯基卡巴醯亞胺、1 -甲 基-2,4-雙卡巴醯亞胺苯、N,N’-m-伸苯基雙卡巴醯亞胺、 # N,N’-p-伸苯基雙卡巴醯亞胺、N,N’-4,4-二伸苯基雙卡巴 醯亞胺、N,N’-4,4- ( 3,3-二甲基二伸苯基)雙卡巴醯亞 胺、N,N’-4,4- (3,3·二甲基二苯基甲烷)雙卡巴醯亞胺、 1>1’-4,4-(3,3-二乙基二苯基甲烷)雙卡巴醯亞胺、11^,-4,4-二苯基甲烷雙卡巴醯亞胺、n,N’-4,4-二苯基丙烷雙卡 巴醯亞胺、1>!’-4,4-二苯基醚雙卡巴醯亞胺、>^,,-4,4-二 苯基硕雙卡巴醯亞胺、2,2·雙(4- (4 -卡巴醯亞胺苯氧 基)苯基)丙烷、2,2-雙(3 +丁基-3,4-(4-卡巴醯亞胺 苯氧基)苯基)丙烷、1,卜雙(4- (4 -卡巴醯亞胺苯氧 -13- 200538522 do) 基)苯基)癸烷、4,4’-環亞己基-雙(1-(4-卡巴醯亞胺苯 氧基)苯氧基)-2-環己基苯、2,2-雙(4-(4-卡巴醯亞胺 苯氧基)苯基)六氟丙烷等。其可單獨使用1種或將2種 以上混合使用亦可。 自由基聚合性化合物中,以將(甲基)丙烯酸酯化合 物與具有磷酸酯結構之自由基聚合性化合物組合爲佳。前 述組合與分別單獨使用(甲基)丙烯酸酯化合物、具有磷 酸酯結構之自由基聚合性化合物相比較時,具有使黏著劑 組成物之黏著強度更予提昇之效果。 自由基聚合起使劑,只要可經光照射及/或加熱以產 生自由基之化合物則未有特別限定,前述自由基聚合起始 劑,例如於150至75 Onm之光照射及/或80至200 °C之加 熱而可產生自由基之化合物爲佳,具體而言,例如以過氧 化物、偶氮化合物等爲佳。其可依連接溫度、連接時間、 保存安定性等目的作適當選擇使用。 過氧化物,就高反應性與保存安定性之觀點,以使用 有機過氧化物爲佳,其以半衰期10小時之溫度爲40°C以 上,且半衰期1分鐘之溫度爲180 °C以下之有機過氧化物 爲佳,半衰期10小時之溫度爲50°C以上,且半衰期1分 鐘之溫度爲170 °C以下之有機過氧化物爲更佳。又,連接 時間爲1 〇秒以下時,欲得到充分反應率之自由基聚合起 始劑之添加量,依黏著劑組成物之固體成份全量爲基準 時,以0.5至20質量%爲較佳,以1至15質量%爲更 佳。 -14- (11) 200538522 有機過氧化物,其具體例如二醯基過氧化物、過氧化 二碳酸酯、過氧化酯、過氧化縮酮、二烷基過氧化物、氫 化過氧化物、矽烷基過氧化物等。其中又以過氧化酯、二 烷基過氧化物、氫化過氧化物、矽烷基過氧化物,以其所 得起始劑中之氯離子或有機酸之濃度爲5000ppm以下,故 加熱分解後所產生之有機酸較少,而可抑制電路構件之電 路電極之腐蝕,故爲最佳。 φ 二醯基過氧化物,例如異丁基過氧化物、2,4-二氯基 苯醯過氧化物、3,5,5-三甲基己醯基過氧化物、辛醯基過 氧化物、月桂醯基過氧化物、硬脂醯基過氧化物、丁二醯 基過氧化物、苯醯過氧化甲苯、苯醯過氧化物等。 過氧化二碳酸酯,例如二-η-丙基過氧化二碳酸酯、二 異丙基過氧化二碳酸酯、雙(4-1-丁基環己基)過氧化二 碳酸酯、二-2-乙氧基甲氧基過氧化二碳酸酯、二(2-乙基 己基過氧化)二碳酸酯、二甲氧基丁基過氧化二碳酸酯、 # 二(3-甲基-3-甲氧基丁基過氧化)二碳酸酯等。 過氧化酯,例如異丙苯基過氧化新癸酯、1,1,3,3 -四 甲基丁基過氧化新癸酯、1-環己基-1_甲基乙基過氧化新癸 酯、t -己基過氧化新癸酯、t -丁基過氧化三甲基乙酯、 1,1,3,3-四甲基丁基過氧-2-乙基己酯、2,5-二甲基-2,5-二 (2-乙基己醯基過氧化)己烷、1-環己基-1·甲基乙基過氧 化-2 -乙基己酯、t -己基過氧化-2 -乙基己酯、t -丁基過氧 化-2-乙基己酯、t-丁基過氧化異丁酯、ι,ΐ-雙(t_ 丁基過 氧化)環己烷、卜己基過氧化異丙基單碳酸酯、丁基過 -15- (12) 200538522 氧化-3, 5,5-三甲基己酯、t-丁基過氧化月桂酯、2,5-二甲 基-2,5-二(m-甲苯醯基過氧化)己烷、t-丁基過氧化異丙 基單碳酸酯、t-丁基過氧化異丙基單碳酸酯、t-丁基過氧 化-2-乙基己基單碳酸酯、t-己基過氧化苯甲酸酯、t-丁基 過氧化乙酸酯等。 過氧化縮_,例如1,1-雙(卜己基過氧化)-3,3,5-三 甲基環己烷、M-雙(卜己基過氧化)-環己烷、1,1-雙 B (t-丁基過氧化)-3,3,5-三甲基環己烷、1,卜雙(卜丁基過 氧化)-環十二烷、2,2-雙(t-丁基過氧化)癸烷等。 二烷基過氧化物,例如α,α 雙(t-丁基過氧化)二 異丙基苯、二異丙苯基過氧化物、2,5-二甲基-2,5-二(t-丁基過氧化)己烷、t-丁基異丙苯基過氧化物等。 氫化過氧化物,例如二異丙基苯氫化過氧化物、異丙 苯氫化過氧化物等。 矽烷基過氧化物,例如t- 丁基三甲基矽烷基過氧化 Φ 物、雙(t_丁基)二甲基矽烷基過氧化物、t-丁基三乙烯 矽矽烷基過氧化物、雙(t- 丁基)二乙烯矽烷基過氧化 物、三(t-丁基)乙烯矽烷基過氧化物、t-丁基三烯丙基 石夕院基過氧化物、雙(t - 丁基)二嫌丙基砂院基過氧化 物、三(t-丁基)烯丙基矽烷基過氧化物等。 前述自由基聚合起始劑,可單獨使用1種或將2種以 上混合使用亦可,亦可與分解促進劑、抑制劑等混合使 用。 又,前述自由基聚合起始劑經聚胺基甲酸乙酯系、聚 -16- (13) •200538522 酯系之高分子物質被覆而形成微膠囊時,可再延長時間而 爲更佳。 又,黏著劑組成物用於電路連接材料使用時,爲抑制 電路構件之電路電極之腐蝕,故自由基聚合起始劑中所含 之氯離子或有機酸之濃度以5 00 Op pm以下爲佳。又,以使 用加熱分解後所產生之有機酸較少之自由基聚合起始劑爲 佳。又,爲提昇黏著劑組成物硬化後之安定性,於室溫與 Φ 常溫下放置於開放空間24小時後,以仍具有20質量%以 上之質量保持率爲佳。 分子內具有氮-矽鍵結之化合物,並未有特別限制而 可使用公知化合物。分子內具有氮-矽鍵結之化合物,例 如矽胺烷化合物、矽烷基胺與胺基矽烷所成群中所選出之 至少1種爲佳。其中,又以矽胺烷爲更佳。 矽胺烷化合物,可爲聚合物、低聚物、單體中任一 者。矽胺烷化合物,具體而言,例如六甲基二矽胺烷、 • 1,1,3,3-四甲基-1,3-二乙烯基二矽胺烷、四甲基- l53_二苯 基二矽胺烷、1,1,13,3,3_六甲基二矽胺烷、2,2,4,4,6,6_六 甲基環三矽胺烷、七甲基二矽胺烷、八甲基環四矽胺院、 1,1,3,3 -四甲基二矽胺烷、烯丙基二甲基(二異丙基胺 基)矽院、三甲基矽烷基苯胺、l53_雙(氯甲基)四甲基 二砂胺院、雙(二乙基胺基)二甲基矽烷、雙(二甲基胺 基)二乙基矽烷、雙(二甲基胺基)二甲基矽烷、雙(二 甲基胺基二甲基矽烷基)乙烷、雙(二甲基胺基)二苯基 砂院、雙(二甲基胺基)甲基矽烷、雙(二甲基胺基)乙 -17- (14) 200538522 烯基乙基矽烷、雙(二甲基胺基)乙烯基甲基矽烷、雙 (乙基胺基)二甲基矽烷、雙(N-甲基苯并醯胺)乙氧基 甲基矽烷、1,3-雙(3,3,3-三氟丙基)四甲基二矽胺烷、 N-6,9-雙(三甲基矽烷基)腺嘌呤、N,N’-雙(三甲基矽烷 基)-1,4-丁烷二胺、雙(三甲基矽烷基)胞嘧啶、N,0-雙 (三甲基矽烷基)羥基胺、n_ 丁基二甲基(二甲基胺基) 矽烷、氯甲基三環矽胺烷(silatrane ) 、氯基苯氧基三 p 環矽胺烷、3 -胺基丙基(二異丙基)二甲基胺基矽烷、3-胺基丙基甲基環矽胺烷、二丁基四甲基二矽胺烷、(二 乙基胺基)三甲基矽烷、(二異丙基胺基)三甲基矽烷、 (Ν,Ν-二甲基胺基)二甲基矽烷、(Ν,Ν-二甲基胺基)二 甲基氯矽烷、二甲基胺基甲基乙氧基矽烷、(Ν,Ν-二甲基 胺基)三乙基矽烷、(Ν,Ν-二甲基胺基)三甲基矽烷、 1,3 -一 -η -辛基四甲基二石夕胺院、1,3 - 一苯基-1,1,3,3 -四甲 基二矽胺烷、1,3-二丙基-l,l,3,3-四甲基二矽胺烷、1,3-二 φ 乙烯基-1,3-二苯基-1,3-二甲基二矽胺烷、1,1,3,3,5,5-六甲 基環三矽胺烷、1,2,3,4,5,6-六甲基環三矽胺烷、羥基乙氧 基三環矽胺烷、甲基丙烯醯胺三甲基矽烷、甲基丙烯醯氧 丙基三環矽胺烷、甲基三環矽胺烷、甲基·Ν-三甲基矽烷 基胺基甲酸酯、Ν-甲基-Ν-三甲基矽烷基三氟乙烯醯胺、 九甲基三矽胺烷、η-辛基癸基二異丁基(二甲基胺基)矽 烷、η -辛基癸基二甲基(二甲基胺基)矽烷、^辛基二甲 基(二甲基胺基)矽烷、苯基雙(二甲基胺基)氯基矽 烷、苯基甲基雙(二甲基胺基)矽烷、1,3,5,7 -四乙基- -18- (15) 200538522 2,4,6,8 -四甲基環四矽胺烷、四(二乙基胺基)砂院、 2,2,5,5-四甲基-2,5-二矽-1-氮雜環戊烷、151,3,3_四苯基二 甲基二矽胺烷、1,3,5,7-四乙烯基-1,3,5,7-四甲基環四砂胺 太兀、1,2,3-二乙基-2,4,6 -二甲基環二砂胺院、三-n_己基石夕 烷基胺、N-(三甲基矽烷基)乙烯醯胺、m_三甲基?夕院基 月女基本基乙炔、N -(二甲基砂院基)嗎琳、3 ·三甲基砂院 基-2-噁唑烷二酮、1-三甲基矽烷基吡咯、丨_三甲基砂院 • 基-1,2,4-三唑、三(環己基胺基)甲基矽烷、三(二甲基 胺基)氯基矽烷、三(二甲基胺基)乙基砂院、三(二甲 基胺基)甲基矽烷、三(二甲基胺基)苯基矽院、三(二 甲基胺基)砂院、1,3,5 -三乙條基_1,3,5 -三甲基環三砂胺 烷、(N-乙烯基甲醯胺)三甲基矽烷、乙烯基三環矽胺 烷、1 -三甲基矽烷基吡咯烷酮、聚(1,1 -二甲基矽胺 烷)、聚(1,2-二甲基矽胺烷)等。其可單獨使用1種或 將2種以上混合使用亦可。 φ 矽烷基胺,例如N,N-二乙基·1,1,1-三甲基矽烷基胺、 Ν,Ν-二異丙基三甲基矽烷基胺、Ν,0-雙(三甲基矽烷基) 乙烯醯胺、Ν-6,9-雙(三甲基矽烷基)腺嘌呤、雙(三甲 基矽烷基)胞嘧啶、Ν,Ο-雙(三甲基矽烷基)羥基胺等。 其可單獨使用1種或將2種以上混合使用亦可。 胺基矽烷,例如烯丙基胺基三甲基矽烷、烯丙基二甲 基(二異丙基胺基)矽烷、苯胺基三甲基矽烷、雙(二乙 基胺基)二甲基矽烷、雙(二甲基胺基)二乙基矽烷、雙 (二甲基胺基)二甲基矽烷、雙(二甲基胺基)二苯基矽 -19- (16) 200538522 烷、雙(二甲基胺基)二甲基矽烷、雙(二甲基胺基)乙 烯基乙基矽烷、雙(N-甲基苯并醯胺)乙氧基甲基矽烷、 n_ 丁基二甲基(二甲基胺基)矽烷等。其可單獨使用1種 或將2種以上混合使用亦可。 又,必要時,黏著劑組成物,可於無損其硬化性之範 圍內,添加氫醌、甲基醚氫醌等自由基聚合阻礙劑。 黏著劑組成物,可再含有自由基聚合性化合物以外之 φ 熱硬化性樹脂。前述熱硬化性樹脂,例如環氧樹脂等。環 氧樹脂,例如雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙 酚S型環氧樹脂、酚型酚醛淸漆型環氧樹脂、甲酚型酚醛 淸漆型環氧樹脂、雙酚A型酚醛淸漆型環氧樹脂、雙酚F 型酚醛淸漆型環氧樹脂、脂環式環氧樹脂、縮水甘油酯型 環氧樹脂、縮水甘油胺型環氧樹脂、乙內醯脲型環氧樹 月旨、異氰酸酯型環氧樹脂、脂肪族鏈狀環氧樹脂等。前述 環氧樹脂,可予鹵化,或氫化亦可。前述環氧樹脂可單獨 • 使用1種或將2種以上混合使用亦可。 又,上述環氧樹脂之硬化劑,可使用一般環氧樹脂中 作爲硬化劑使用之物質。具體而言,例如胺類、酚類、酸 酐類、咪唑類、二氰基二醯胺等。又,一般作爲硬化促進 劑之3級胺類、有機磷系化合物等皆可適度配合使用。 又,使環氧樹脂反應之方法,例如除使用上述硬化劑 以外,可使用銃鹽、碘鑰鹽等以進行陽離子聚合亦可。 黏著劑組成物,爲賦予薄膜成型性、黏著性、硬化時 之應力和緩性等,以再含有高分子化合物亦可。高分子化 -20- (17) 200538522 合物,例如可使用聚乙烯丁縮醛、聚乙烯甲縮醛、聚酯樹 月旨、聚胺基甲酸乙酯樹脂、尿素樹脂等。 前述高分子化合物,其分子量以10000至10,000,000 者爲佳。又,前述高分子化合物,可由自由基聚合性之官 能基所形成,此時可提升其耐熱性。又,前述高分子化合 物,可含有羧基亦可。黏著劑組成物中高分子化合物之添 加量,以相對於黏著劑組成物中固體成份全體,以2至80 B 質量%爲佳,以5至70質量%爲更佳,以10至60質量 %爲最佳。高分子化合物之添加量,低於2質量%時,應 力和緩性或黏著例會有不充分之傾向。又,超過80質量 %時,流動性會有降低之傾向。 黏著劑組成物,可適當的添加塡充劑、軟化劑、促進 劑、劣化防止劑、著色劑、難燃劑、偶合劑等。 以上說明之黏著劑組成物中,相對於自由基聚合性化 合物10 0質量份,自由基聚合起始劑以含有〇·5至30質 φ 量份爲佳,以含有1 · 〇至1 〇質量份爲更佳。自由基起始 劑之含量低於〇 · 5質量份時,將未能充分進行硬化反應’ 使硬化有不充分之傾向。又,超過3 0質量份時,保存安 定性會有降低之傾向。 又,相對於自由基聚合性化合物100質量份,具有 氮-矽鍵結之化合物以含有0 ·1至2 0質量份爲佳’以含有 0.5至15質量份爲更佳,以含有0.5至10質量份爲最 佳。具有氮-矽鍵結之化合物之含量低於〇. 1質量份時,黏 著例會有降低之傾向,或有不能提昇黏著力之傾向。又’ -21 - (18) 200538522 超過2 0質量份時,硬化物性會有惡化之傾向。 又,黏著劑組成物之使用形態並未有特別限制,例如 可使用將各成份溶解及/或分散於甲苯、乙酸乙酯等有機 溶劑所得之溶液,或於該溶液中去除溶劑並經成型爲一定 形狀之成型體(例如後述薄膜狀黏著劑)後使用。 圖1爲本發明之薄膜狀黏著劑之一實施形態的截面 圖。圖1所示之薄膜狀黏著劑1,爲將上述黏著劑組成物 B 成型爲薄膜狀所得者。此薄膜狀黏著劑具有容易處理性, 且容易設置於被黏著物上,故可使連接作業更容易進行。 又,薄膜狀電路連接材料1 a,可由2種以上經硬化時 之黏著劑組成物之Tg (玻璃移轉溫度)具有5 °C以上差異 之層所形成之多層結構(未標示於圖示中)亦可。 薄膜狀黏著劑1,例如黏著劑組成物經溶劑溶解所得 之物以塗佈裝置塗佈於支撐物(PET (聚對苯二甲酸乙二 醇酯)薄膜等)上,並於不會使黏著劑組成物硬化之溫度 • 下於一定時間下進行熱風乾燥而製得。又,薄膜狀黏著劑 1之厚度,以10至50μιη之範圍爲佳。 (電路構件之連接構造) 圖2爲本發明之電路構件之連接構造之一實施形態的 槪略圖。如圖2所示般,本發明實施形態之電路構件之連 接構造,爲具備有相對向之第一電路構件2 0與第二電路 構件3 0,且於第一電路構件2 0與第二電路構件3 0之間, 設置有連接前述構件之電路連接構件1 〇。 -22- (19) (19)200538522 第一電路構件2 0,爲具備有電路基板(第一電路基 板)21與,電路基板21之主面21a上所形成之電路電極 (第一電路電極)22。又,於電路基板21之主面21a 上,必要時可形成絕緣層(未標示於圖示中)。 又,第二電路構件30,爲具備有電路基板(第二電路 基板)31與,電路基板31之主面31a上所形成之電路電 極(第二電路電極)32。又,於電路基板31之主面31a 上’必要時可形成絕緣層(未標示於圖示中)。 第一及第二電路構件20、30上,只要具有可形成連 接電路所必須之電極時,並未有特別之限定。具體而言, 例如可爲由液晶顯示器所使用之ITO等形成電極之玻璃或 塑膠基板、印刷電路板、陶瓷電路板、可撓性電路板、半 導體矽晶體等,前述物質可依需要組合使用。如前所述 般,本實施形態,可用於由印刷電路板或聚醯亞胺等有機 物所得之材質開始,至銅、鋁等金屬,或ITO ( indiumtin oxide)、氮化矽(SiNx)、二氧化矽(Si02)等無機材質 般具有多項表面狀態之電路構件。 電路連接構件1 〇,爲含有絕緣性物質Π與導電粒子 7。導電粒子7,除相對向之電路電極22與電路電極32之 間以外,亦設置於主面2 1 a、3 1 a之間。電路構件之連接 構造中,電路電極22、32爲介由導電粒子7以電路連 接。即,導電粒子7直接與電路電極22、3 2二者直接接 觸。 其中,導電粒子7,只要具有可連接電路之導電性時 -23- (20) 200538522 並未有特別限制,例如可爲 A u、A g、N i、C u、C 〇、焊料 等金屬粒子或碳等。又,非導電性之玻璃、陶瓷、塑膠等 被覆上述金屬等導電物質之物品亦可使用。此時,爲得到 充分之導電性,所被覆之金屬層之厚度以10nm以上爲 佳。 此電路構件之連接構造,如上所述般,爲介由導電粒 子 7以電路方式連接相對向之電路電極22與電路電極 p 32。因此,可充分降低電路電極22、32間之連接電阻。 因此,可使電路電極22、3 2間電流之流動極爲順暢,而 可充分發揮電路所具有之機能。又,電路連接構件10於 不含有導電粒子7之情形下,電路電極22與電路電極32 將形成直接接觸以連接電路。 電路連接構件1 〇,係如後所述般,由含有上述黏著劑 組成物之電路連接材料之硬化物所構成,故相對於電路構 件2 0或30而言,電路連接構件10之黏著強度極高,特 • 別是高溫高濕條件下仍可顯示出極高之黏著強度。又,電 路構件之連接構造可持續長時間維持極高之黏著強度。因 此可充分防止電路電極2 2、3 2間因距離所產生之經時性 變化,使電路電極22、32間之電特性具有極高之長期信 賴度。 (電路構件之連接構造之製造方法) 以下,將說明上述電路構件之連接構造之製造方法。 首先,準備上述之第一電路構件2 0,與薄膜狀電路連 -24- (21) 200538522 接材料4 0 (請參考圖3(a))。薄膜狀電路連接材料 40,爲將電路連接材料成型爲薄膜狀所得者。電路連接材 料爲含有黏著劑組成物5與導電粒子7。其中,黏著劑組 成物5,如上所述般,爲使用含有自由基聚合性化合物, 與至少可因加熱而產生自由基之自由基聚合起始劑,與具 有氮-矽鍵結之化合物者。又,電路連接材料於爲含有導 電粒子7時,該電路連接材料可使用絕緣性黏著劑之異向 鲁 導電性黏者劑’特別是可使用稱爲NCP ( Non-Conductive Paste )者。又,電路連接材料於含有導電粒子7時,該電 路連接材料則爲使用 ACP ( Anisotropic Conductive Paste )者。 又,電路連接材料中之導電粒子7之含量,以相對於 電路連接材料之全量,以0·1至30體積%爲佳,以1.0至 2 0體積%爲更佳。含量低於〇 · 1體積%時,會有未能得到 良好連通狀態之傾向,又,超過3 0體積%時,相鄰接之 Φ 電路會有引起短路(short )之可能性。 薄膜狀電路連接材料40之厚度,以1〇至50μιη爲 佳。薄膜狀連接材料40之厚度低於ΐ〇μηι時,電路電極 22、32間之電路連接材料會有形成塡充不足之傾向。又, 超過5 0 μηι時,電路電極2 2、3 2間將無法充分排除連接劑 組成物,而會有難以確保電路電極2 2、3 2間連通狀態之 傾向。 其次,將薄膜狀電路連接材料4 0負載於第一電路構 件2 0之形成電路電極2 2之面上。又,薄膜狀電路連接材 -25- (22) 200538522 料4 0附著於支撐體(未標示於圖示中)上時,薄膜狀電 路連接材料40側以面向第一電路構件20之方向負載於第 一電路構件20之上。此時,薄膜狀電路連接材料40爲薄 膜狀,故容易進行處理。因此,第一電路構件20與第二 電路構件3 0之間可容易的挾夾薄膜狀電路連接材料40, 使第一電路構件2 0與第二電路構件3 0之連接作業更容易 進行。 φ 其後,將薄膜狀電路連接材料40,依圖3(a)之箭 頭A與B之方向加壓,使薄膜狀電路連接材料40於第一 電路構件20上形成暫時連接(參考圖3 ( b ))。此時, 可於加熱中進行加壓亦可。但,加熱溫度爲不使薄膜狀電 路連接材料4 0中之黏著劑組成物硬化下之溫度,即,較 自由基聚合起始劑發生自由基之溫度爲更低之溫度。 其次,如圖3 ( c )所示般,將第二電路構件3 0,以 第二電路電極面向第一電路構件20之方向負載於薄膜連 # 接材料40之上。又,薄膜狀電路連接材料40附著於支撐 物(未標示於圖示中)上時,因支撐物剝離而使得第二電 路構件30負載於薄膜狀電路連接材料40上。 隨後,將薄膜狀電路連接材料4 0於加熱中,依圖3 (a)之箭頭 A與B之方向並介於第一與第二電路構件 2 〇、3 0間進行加壓,此時之加熱溫度,爲可使自由基聚合 起始劑產生自由基之溫度。如此,於自由基聚合起始劑產 生自由基,而使自由基聚合性化合物開始聚合。隨後將薄 膜狀電路連接材料40進行硬化處理而進行連接後,而製 -26- (23) •200538522 得圖2所示之電路構件連接構造。 加熱溫度,例如設定於90至200 °C之間,連接時間例 如爲1秒至1 0分鐘之間。前述條件可依使用用途、黏著 劑組成物、電路構件等作適當之選擇,必要時,可再進行 後硬化處理。前述薄膜狀電路連接材料40,因含有本發明 之黏著劑組成物,故可在較含有環氧樹脂等之電路連接材 料爲更低之溫下進行連接。 φ 如上所述般,製造電路構件之連接構造時,於所得電 路構件之連接構造中,可使導電粒子7接觸相對向之電路 電極22、32二者,而可充分降低電路電極22、32間之連 接電阻。 又,薄膜狀電路連接材料40經由加熱結果,可使電 路電極22與電路電極32之間於極小的距離下,使黏著劑 組成物5硬化而形成絕緣性物質1 1,並使第一電路構件 20與第二電路構件30介由電路連接構件10而堅固的連 • 接。即,於所得電路構件之連接構造中,因電路連接構件 10爲由含有上述黏著劑組成物之電路連接材料之硬化物所 構成,故對電路構件20或3 0而言,電路連接構件10具 有極高之黏著強度,特別是高溫高濕條件下,仍可顯出極 佳之黏著強度。又,電路構件之連接構造可持續長時間維 持極高之黏著強度。因此所得電路構件之連接構造,可充 分防止電路電極22、3 2間因距離所產生之經時性變化, 使電路電極22、3 2間之電特性具有極高之長期信賴度。 又,上述實施形態,黏著劑組成物5爲使用含有至少 -27- (24) 200538522 需經加熱以產生自由基之自由基聚合起始劑者,故此自由 基聚合起始劑,亦可使用僅使用光照射及可產生自由基之 自由基聚合起始劑。此時,薄膜狀電路連接材料4 0於硬 化處理之際,可以光照射替代加熱亦可。又,上述實施形 態中,爲使用薄膜狀電路連接材料40以製造電路構件之 連接構造,故薄膜狀電路連接材料40也可以電路連接材 料替代。此情形中,亦爲將電路連接材料溶解於溶劑中, • 再將溶液塗佈於第一電路構件20或第二電路構件3〇之任 一者,並使其乾燥,即可使用第—與第二電路構件2〇、3〇 間挾夾電路連接材料。 又,電路構件之連接結構之製造方法,除加熱或光照 射產生自由基之自由基聚合起始劑以外,必要時,可使用 基於超音波、電磁波等產生自由基之自由基聚合起始劑。 又,導電粒子7,可以其他導電材料替代。其他導電 材料,例如爲粒子狀、或短纖維狀之碳、鍍AuNi線等金 # 屬條線等。 [第2實施形態] (電路連接材料) 本實施形態之電路連接材料,其爲將於第一電路基板 之主面上形成有第一電路電極之第一電路構件,與於第二 電路基板之主面上形成有第二電路電極之第二電路構件, 以第一電路電極與第二電路電極成對向配置狀態連接之電 路連接材料,其爲含有自由基聚合性化合物與自由基聚合 -28- (25) 200538522 性起始劑之黏著劑組成物,與經具有氮-矽鍵結之化合物 表面處理所得之導電粒子者。 首先,將對本實施形態之電路連接材料中所含之黏著 劑組成物作一說明。黏著劑組成物爲至少含有自由基聚合 性化合物與自由基聚合起始劑。 自由基聚合性化合物與自由基聚合起始劑例如可使用 第1實施形態中所使用之相同內容。又,本實施形態中, B 連接時間爲1 0秒以下之情形時,爲得到充分之反應率時 之自由基聚合起始劑之添加量,以對黏著劑組成物之固體 成份全量爲基準,爲1至20質量%爲佳,以2至15質量 °/◦爲特佳。 又’必要時,黏著劑組成物,可於無損其硬化性之範 圍內’添加氫醌、甲基醚氫醌等自由基聚合阻礙劑。 黏著劑組成物,可再含有自由基聚合性化合物以外之 熱硬化性樹脂。前述熱硬化性樹脂,例如環氧樹脂等。環 # 氧樹脂,例如與第1實施形態中所列舉之內容相同。 又’上述環氧樹脂之硬化劑,可使用一般環氧樹脂中 作爲硬化劑使用之物質。具體而言,例如胺類、酚類、酸 酐類、咪唑類、二氰基二醯胺等。又,一般作爲硬化促進 劑之3級胺類、有機磷系化合物等皆可適度配合使用。 又’使環氧樹脂反應之方法,例如除使用上述硬化劑 以外,可使用銃鹽、碘銷鹽等以進行陽離子聚合亦可。 黏著劑組成物,爲賦予薄膜成型性、黏著性、硬化時 之應力和緩性等,可再含有高分子化合物。高分子化合 -29- (26) 200538522 物,例如與第1實施形態中所列舉之內容相同。 黏著劑組成物,可適當的添加塡充劑、軟化 劑、劣化防止劑、著色劑、難燃劑、偶合劑等。 以上說明之黏著劑組成物中,相對於自由基 合物100質量份,自由基聚合起始劑以含有0.5 量份爲佳,以含有1.0至10質量份爲更佳。自由 劑之含量低於0.5質量份時,將未能充分進行硬化 B 使硬化有不充分之傾向。又,超過3 0質量份時, 定性會有降低之傾向。 其次,將對經具有氮-矽鍵結之化合物表面處 之導電粒子(以下簡稱「表面處理導電粒子」) 明。 表面處理導電粒子,爲於含有分子內具有氮-之化合物之溶液中,加入導電粒子後進行攪拌,隨 電粒子由前述溶液中分離而製得。更具體而言,爲 • 有含有分子內具有氮-矽鍵結之化合物之特定溶液 入導電粒子後進行一定時間之攪拌,此時,以於溶 爲20至40 °C之範圍內進行爲佳,攪拌時間以於3 ] 鐘之範圍內進行爲佳。又,溶劑例如使用甲基乙基 機溶劑。隨後,將導電粒子由前述溶液中過濾、乾 而製得表面處理導電粒子。 其中’導電粒子只要具有可連接電路之導電性 有特別限制,例如可爲Au、Ag、Ni、Cu、Co、焊 屬粒子或碳等。又,非導電性之玻璃、陶瓷、塑膠 、促進 合性化 ;30質 基起始 反應, 保存安 理所得 進行說 矽鍵結 後將導 於溶解 中,加 液溫度 ? 30分 酮等有 燥結果 時並未 料等金 等被覆 -30- (27) 200538522 上述金屬等導電物質之物品亦可使用。此時,爲得到充分 之導電性,所被覆之金屬層之厚度以1 〇nm以上爲佳。 上述分子內具有氮-矽鍵結之化合物,並未有特別限 制而可使用公知化合物。分子內具有氮-矽鍵結之化合 物,例如矽胺烷化合物、矽烷基胺與胺基矽烷所成群中所 選出之至少1種爲佳。其中,又以矽胺烷爲更佳。 矽胺烷化合物,可爲聚合物、低聚物、單體中任一 φ 者。矽胺烷化合物,例如與第1實施形態中所列舉之內容 相同。 又,電路連接材料中之表面處理導電粒子之含量,相 對於電路連接材料全量以0.1至30體積%爲佳,以1.0至 2 0體積%爲更佳。含量低於〇. 1體積%時,會有未能得到 良好連通狀態之傾向,又,超過3 0體積%時,相鄰接之 電路會有引起短路(short )之可能性。 又,電路連接材料之使用形態並未有特別限制,例如 φ 可使表面處理導電粒子分散於溶解有上述黏著劑組成物之 各成份的甲苯、乙酸乙酯等有機溶劑所得之溶液後使用。 又,亦可使用將分散有上述表面處理導電粒子之溶液經去 除溶劑後,再依一定形狀成型所得之成型體(例如後述薄 膜狀電路連接材料)。 圖4爲薄膜狀電路連接材料之一實施形態的槪略截面 圖。圖4所示之薄膜狀電路連接材料la,爲含有上述含有 自由基聚合性化合物與自由基聚合起始劑之黏著劑組成 物,與表面處理導電粒子7a。此薄膜狀電路連接材料具有 -31 - (28) 200538522 容易處理性,且容易設置於被黏著物上,故可使連接作業 更容易進行。 又,薄膜狀電路連接材料1 a,可由2種以上經硬化時 之黏著劑組成物之Tg (玻璃移轉溫度)具有5 t以上差異 之層所形成之多層結構(未標示於圖示中)亦可。 薄膜狀電路連接材料1 a,例如使黏著劑組成物溶解於 溶劑中,使分散有表面處理導電粒子之溶液以塗佈裝置塗 • 佈於支撐物(PET (聚對苯二甲酸乙二醇酯)薄膜等) 上,並於不會使黏著劑組成物硬化之溫度下於一定時間下 進行熱風乾燥而製得。 又,薄膜狀電路連接材料之厚度,以10至50 μπι之範 圍爲佳。薄膜狀連接材料之厚度低於ΙΟμηι時,相對向之 電路構件間將會有電路連接材料塡充不足之傾向。又,超 過5 0 μπι時,電路電極間之黏著劑組成物將極不容易排 除’而會有難以確保電路電極間連通狀態之傾向。 # 圖5爲本發明之電路構件之連接構造之實施形態的槪 略截面圖。如圖5所示般,本實施形態之電路構件之連接 構造,爲具有相對向之第一電路構件20a與第二電路構件 3〇a,且於第一電路構件20a與第二電路構件30a之間, 設置有連接前述構件之電路連接構件10a。 第一電路構件20a,爲具備有電路基板(第一電路基 板)21b與,電路基板21b之主面21c上所形成之電路電 極(第一電路電極)22a。又,於電路基板21b之主面21c 上,必要時可形成絕緣層(未標示於圖示中)。 -32- (29) 200538522 又’第二電路構件30a,爲具備有電路基板(第二電 路基板)3 1 b與,電路基板3 1 b之主面3 1 c上所形成之電 路電極(第二電路電極)32。又,於電路基板3 lb之主面 3 1 c上’必要時可形成絕緣層(未標示於圖示中)。 第一及第二電路構件20a、30a上,只要具有可形成 連接電路所必須之電極時,並未有特別之限定。具體而 言,例如可爲由液晶顯示器所使用之ITO等形成電極之玻200538522 (1) IX. Description of the invention [Technical field to which the invention belongs] • The present invention is an adhesive composition, a film-shaped adhesive using an adhesive composition, a circuit connection material, and a film-shaped circuit connection material using a circuit connection material 'Technology of manufacturing method of circuit member connection structure and circuit member connection structure. Φ [Prior art] In the technical field of the electrical industry or the electronics industry, various connection materials are often used for the purpose of bonding various circuit components and other components. Especially in the technical field of semiconductor elements or liquid crystal display elements, while seeking higher density and higher definition, adhesives suitable for the aforementioned applications are also expected to have higher adhesive strength, especially high temperature and high Excellent adhesion strength under wet conditions. In addition, to be adhered by using an adhesive, for example, starting from an organic substrate such as a printed circuit board or polyimide, to a metal such as copper or aluminum, or ITO (indiumtinoxide), silicon nitride (SiNx), or dioxide. Substrates with various surface states such as sand (SiO2). Therefore, it is better for the adhesive to be designed for each adherend. % In the past, adhesives for semiconductor devices or liquid crystal display devices have been used from ring " oxy resins to thermosetting resins (for example, Japanese Patent Application Laid-Open No. 1-134-480). The aforementioned adhesive is generally hardened by heat treatment at 170 to 25 (TC for 1 to 3 hours. In recent years, with the high integration of semiconductor elements and the high definition of liquid crystal display elements (2) 200538522, the elements The distance between the circuit and the circuit has been narrowed. Therefore, when the heat treatment is performed at the temperature of 170 to 250 ° C, there is a concern that the heating during hardening will adversely affect the surrounding components. Under the adverse effects of components, the adhesive seeks to have the property of hardening at a lower temperature (1000 to 1 70 ° C). In addition, to improve the performance, the adhesive has been required to have a short time (1 Within hours). In other words, an adhesive that "hardens rapidly at low temperatures at low temperatures" is extremely needed. In accordance with the aforementioned needs, JP 2000-44905 discloses a radical polymerizable resin and organic peroxide. , Thermoplastic elastomer, phosphate ester, and an epoxy conductive silane coupling agent resin composition obtained from anisotropic conductive adhesives. [Summary of the Invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 2000-44905 The anisotropic conductive φ-type adhesive disclosed in the report has the characteristics of rapid hardening at low temperature, but the adhesive strength is insufficient. The present invention is to provide a kind of adhesive with sufficient strength in view of the problems caused by the prior art. An adhesive composition, a film-shaped adhesive using the adhesive composition, a circuit connection material, a film-shaped circuit connection material using a circuit connection material, a connection structure of a circuit member, and a manufacturing method of a connection structure of a circuit member are the objects of the present invention In order to solve the above problems, the adhesive composition of the present invention contains a radical polymerizable compound, a radical polymerization initiator, and a compound having nitrogen-silicon-6- (3) 200538522 bonding (using silamine The alkane compound is more preferred). The adhesive composition of the present invention is a radical curing adhesive composition containing a radical polymerizable compound and a radical polymerization initiator. The adhesive composition of the present invention, Since the radically hardening adhesive composition contains a compound having a nitrogen-silicon bond, it has sufficient adhesive strength, Especially under the conditions of high temperature and high humidity (85 ° C, 85% RH), it still shows very good adhesive strength. In addition, the adhesive composition of the present invention has a surface of gold φ to an inorganic material. The adherend exhibits extremely high adhesive strength and can harden rapidly at low temperatures. Based on exhibiting extremely high adhesive strength to adherends composed of inorganic materials on the surface, the adhesive composition of the present invention is very suitable as It is used for circuit connection materials. Although the reason why the adhesive composition of the present invention has the above-mentioned effects has not been determined, the inventors speculate that it is based on the following theory. That is, the adhesive composition of the present invention contains Nitrogen-silicon bonding compound. The nitrogen-silicon bonding has the same bonding form as Si02 or SiNx, so the adhesive strength of the adhesive Φ adhesive composition of the present invention is more than that of the conventional adhesive composition. Excellent adhesion strength. In addition, in the adhesive composition of the present invention, the compound having a nitrogen-silicon bond can suppress hardening shrinkage during hardening and improve the adhesive force, so that sufficient adhesive strength can be obtained. _ The film-shaped adhesive of the present invention is obtained by forming the above-mentioned adhesive composition of the present invention into a film. This film-like adhesive is easy to handle and can be easily placed on an adherend, so that connection work can be performed more easily. The circuit connecting material of the present invention is a first circuit member having a first circuit electrode formed on a main surface of a first circuit substrate (4) 200538522, and a second circuit formed on a main surface of a second circuit substrate. The second circuit member of the electrode, and the first circuit electrode and the second circuit electrode are circuit connection materials connected in an opposite arrangement, and are characterized by containing the adhesive composition of the present invention. The circuit connection material contains the adhesive composition of the present invention, and therefore has high adhesive strength to circuit members made of inorganic materials, and is suitable for adhesion of circuit members. φ The connection structure of the circuit member of the present invention includes a first circuit member having a first circuit electrode formed on a main surface of a first circuit substrate, and a second circuit formed on a main surface of a second circuit substrate. The second circuit member of the electrode is disposed between the main surface of the first circuit substrate and the main surface of the second circuit substrate, and is arranged opposite to the first circuit electrode and the second circuit electrode. A connection structure of a circuit member that connects the circuit connection member between the first and second circuit members, wherein the circuit connection member is formed of a hardened object of the circuit connection material of the present invention, and the φ first circuit electrode and the first The two circuit electrodes are characterized by being connected in a circuit manner. The connection structure of the circuit member is composed of a hardened object of the circuit connection material of the present invention, so the connection resistance can be greatly reduced, and the adhesive strength with excellent reliability can be obtained. The circuit connecting material of the present invention is a first circuit member having a first circuit electrode formed on a main surface of a first circuit substrate, and a first circuit member having a second circuit electrode formed on a main surface of a second circuit substrate. Two circuit members, and a circuit connecting material that connects the first circuit electrode and the second circuit electrode in an opposing arrangement state, which contains a radical polymerizable compound and -8- (5) 200538522 radical polymerization initiator The adhesive composition is characterized by conductive particles obtained by surface treatment of a compound having a nitrogen-silicon bond. Since the circuit connecting material of the present invention contains conductive particles obtained by surface treatment of a compound having a nitrogen-silicon bond as a conductive material, it is arranged between the electrodes of the opposing circuit members and hardened, and then obtained between the electrodes. Very low connection resistance. In addition, the circuit connection material of the present invention shows excellent stability of connection resistance after storage. In addition, the circuit of the present invention • The connection material can show excellent stability of connection resistance after storage, so it should have sufficient adhesive strength to achieve the aforementioned effects. The stability of the connection resistance after storage refers to the connection resistance of the circuit structure obtained by using the circuit connection material immediately after manufacture, and the circuit structure obtained by using the circuit connection material after a certain period of time after manufacture. The change in the connection resistance of the connection structure is extremely small. In addition, the circuit connecting material of the present invention contains an adhesive composition containing a radically polymerizable compound and a radical polymerization initiator, so that it can be rapidly hardened at a low temperature. The film-shaped circuit connection material of the present invention is obtained by forming the circuit connection material into a film shape. This film-like circuit connection material is easy to handle and can be easily placed on an adherend, so that connection work can be performed more easily. The connection structure of a circuit member of the present invention includes a first circuit member having a first circuit electrode formed on a main surface of a first circuit substrate, and a circuit member having a second circuit electrode formed on a main surface of a second circuit substrate. The second circuit member is disposed between the main surface of the first circuit substrate and the main surface of the second circuit base-9-(6) 200538522 board, and is formed with the first circuit electrode and the second circuit electrode. In the opposite arrangement state, the connection structure of the circuit members connecting the circuit connection members between the first and second circuit members is described, wherein the circuit connection member is a hardened product of the circuit connection material of the present invention, and the first A circuit electrode and the aforementioned second circuit electrode are characterized in that conductive particles obtained by surface treatment of a compound having a silicon-nitrogen bond are connected in a circuit manner. In the connection structure of the circuit connection member, since the circuit connection member is formed of a hardened material of the above-mentioned circuit connection material, the connection resistance between the first circuit electrode and the second circuit electrode can be sufficiently reduced and stabilized. Therefore, it has excellent adhesion strength. A method for manufacturing a connection structure of a circuit member according to the present invention includes a first circuit member having a first circuit electrode formed on a main surface of a first circuit substrate, and a first circuit member formed on a main surface of a second circuit substrate. The second circuit member of the two circuit electrodes is disposed between the main surface of the first circuit substrate and the main surface of the second circuit substrate, and is opposed to the first circuit electrode and the second circuit electrode. The manufacturing method of a connection structure of a circuit member that connects the circuit connection member between the first and second circuit members in the disposition state, wherein the disposition is between the main surface of the first circuit substrate and the main surface of the second circuit substrate. The circuit connection material of the present invention is provided, and the aforementioned circuit connection material is hardened by heating and pressing through the first and second circuit members, so that it is connected with the first circuit member and the second circuit member to manufacture the circuit member. The connection structure is characteristic. By using the circuit connecting material of the present invention, it can be rapidly hardened at low temperature, and the adverse effects on circuit components can be sufficiently suppressed, and the efficiency can be improved. -10- (7) 200538522 Hereinafter, a preferred embodiment of the present invention will be described with reference to the attached drawings. In addition, the same elements are represented by the same symbols, and duplicate descriptions will be omitted. The (meth) acrylate in the following description means an acrylate or a corresponding methacrylate. [First embodiment] (Adhesive composition) B The adhesive composition of the present invention is a compound containing a radical polymerizable compound, a radical polymerization initiator, and a nitrogen-silicon bond. The radically polymerizable compound refers to a compound having a freely polymerizable functional group. The radically polymerizable compound is, for example, a (meth) acrylate compound, a maleimide compound, a lemon continimide compound, or a carbamate imine compound. These can be used singly or in combination of two or more kinds. The radically polymerizable compound may be used in any state such as a monomer or an oligomer, or a monomer and an oligomer may be mixed and used. # (Meth) acrylate compounds such as meth (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene Alcohol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylene glycol tetrakis (meth) acrylate, 2- Hydroxy-1,3-dipropenyloxypropane, 2,2-bis [4- (propenyloxymethoxy) phenyl] propane, 2,2-bis [4- (propenyloxyoxyethoxy) Group) phenyl] propane, dicyclopentenyl (meth) acrylate, tricyclodecenyl (meth) acrylate, tris (acryloxyethyl) isocyanate, urethane (meth) propylene-11 -(8) 200538522 Ester, ethylene isocyanate modified diacrylate, etc. These can be used alone or in combination of two or more. The (meth) acrylic acid ester compound can be obtained through a radical polymerization reaction to obtain a (meth) acrylic acid maleimide compound, which is a compound having at least one maleimide group. Maleimide compounds such as phenylmaleimide, 1-methyl-2,4-bismaleimide benzene, N, N'-m-phenylenebismaleimide, 0 N, N'-p-phenylene bismaleimide, N, N'-4, rendiphenylene bismaleimide, N, N'-4,4- (3,3 · Dimethyldiphenylene) bismaleimide, N, N'-4,4- (3,3-dimethyldiphenylmethane) bismaleimide, N, N'- 4,4- (3,3-diethyldiphenylmethane) bismaleimide, N, N'-4,4-diphenylmethane bismaleimide, N, N'-4 1,4-diphenylpropane bismaleimide, 1--4,4-diphenyl ether bismaleimide, 1: ^ '-4,4-diphenyl bismaleimide Amine, 2,2-bis (4- (4-maleimideiminophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-maleimide) Imine φ phenoxy) phenyl) propane, 1,1-bis (4- (4-_maleiminoimidephenoxy) phenyl) decane, 4,4'-cyclohexylene-bis (1 -(4-maleimidophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-maleimidophenoxy) phenyl) hexafluoropropane Wait. It can be used singly or in combination of two or more kinds. " Mercamidine imine compound is a compound having at least one mercamidine imine group. Lemon continimine compounds, such as phenyl lemon conimine, 1, methyl-2,4-bis lemon conimine benzene, N, N'-m-phenylene citrate imine, N, N'-p-phenylene bisammonium imine, N, N'-4,4-Diphenyl dimethylammonium-12- (9) 200538522 aryleneimine, N, N'-4 , 4- (3,3-Dimethyldiphenylphenyl) biscamidine imine, 1 > ^ '-4,4- (3,3-dimethyldiphenylmethane) biscamidine Amine, N, N'-4,4- (3,3-Diethyldiphenylmethane) bismethylconimine, N, N'-4,4-diphenylmethane bismethylconimine , Ν, Ν'-4,4-diphenylpropane bismethoxamine, 1′-4,4-diphenyl ether bismethoxamine, ^ chuan'-4,4-diphenyl Gigaso bismethyl scopolamine, 2,2-bis (4- (4-methyl scopolamine phenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4 -(4-Mexaconimine phenoxy) phenyl) propane, 1,1-bis (4- (4-Mexaconiminephenoxy) phenyl) decane, 4,4'- Cyclohexylene-bis (1- (4-Merconyliminophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-Mercamidineiminophenoxy) ) Phenyl) hexafluoropropane . These can be used singly or in combination of two or more kinds. A carbamateimine compound is a compound having at least one carbamateimine group. Carbamate imine compounds, such as phenylcarbamate imine, 1-methyl-2,4-biscarbamate imine benzene, N, N'-m-phenylene biscarbamate imine, # N, N '-p-Phenylbiscarbaziridine, N, N'-4,4-Diphenylphenylcarbaziridine, N, N'-4,4- (3,3-dimethyldimethyl (Phenylene) biscarbaziridine, N, N'-4,4- (3,3 · dimethyldiphenylmethane) biscarbaziridine, 1 > 1'-4,4- (3, 3-diethyldiphenylmethane) biscarbamidine, 11 ^,-4,4-diphenylmethanebiscarbamide, n, N'-4,4-diphenylpropanebiscarbamate Imine, 1 >! '-4,4-diphenyl ether biscarbabaimine, > ^ ,,-4,4-diphenylsulfocarbabaimide (4-Carbamateimidephenoxy) phenyl) propane, 2,2-bis (3 + butyl-3,4- (4-carbabaimidephenoxy) phenyl) propane, 1, Bu Bis (4- (4-Carbamateimidephenoxy-13-200538522 do) yl) phenyl) decane, 4,4'-cyclohexylene-bis (1- (4-Carbamateimidephenoxy) ) Phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-carbamazepinephenoxy) phenyl) hexafluoropropane Alkanes, etc. These can be used singly or in combination of two or more kinds. Among the radical polymerizable compounds, a (meth) acrylate compound and a radical polymerizable compound having a phosphate structure are preferably combined. The aforementioned combination has the effect of further improving the adhesive strength of the adhesive composition when compared with the use of a (meth) acrylic acid ester compound and a radical polymerizable compound having a phosphate structure alone. The radical polymerization initiator is not particularly limited as long as it can be irradiated with light and / or heated to generate a radical. The aforementioned radical polymerization initiator is, for example, irradiated with light at 150 to 75 Onm and / or 80 to Compounds capable of generating free radicals upon heating at 200 ° C are preferred. Specific examples include peroxides and azo compounds. It can be selected and used according to the connection temperature, connection time, storage stability and other purposes. Peroxide, from the standpoint of high reactivity and storage stability, it is better to use organic peroxides, which have an organic matter with a half-life of 10 hours at a temperature of 40 ° C or higher and a half-life of 1 minute at a temperature of 180 ° C or lower Peroxides are preferred. Organic peroxides having a half-life of 10 hours at a temperature of 50 ° C or higher and a temperature of 170 minutes at a half-life of 1 minute are more preferred. In addition, when the connection time is 10 seconds or less, the amount of the radical polymerization initiator to be added to obtain a sufficient reaction rate is based on the total solid content of the adhesive composition as a reference, 0. 5 to 20% by mass is more preferable, and 1 to 15% by mass is more preferable. -14- (11) 200538522 Organic peroxides, specific examples of which are difluorenyl peroxide, peroxydicarbonate, peroxyester, ketal peroxide, dialkyl peroxide, hydrogen peroxide, silane Radical peroxide, etc. Among them, peroxides, dialkyl peroxides, hydrogen peroxides, and silane alkyl peroxides are used, and the concentration of chloride ions or organic acids in the obtained starter is less than 5000 ppm, so it is generated after thermal decomposition. It has less organic acid and can suppress the corrosion of the circuit electrode of the circuit component, so it is the best. φ difluorenyl peroxide, such as isobutyl peroxide, 2,4-dichlorophenylfluorene peroxide, 3,5,5-trimethylhexyl peroxide, octyl peroxide, Lauryl fluorenyl peroxide, stearyl fluorenyl peroxide, succinyl fluorenyl peroxide, benzene fluorenyl toluene, benzene fluorene and the like. Peroxydicarbonates, such as di-η-propylperoxydicarbonate, diisopropylperoxydicarbonate, bis (4-1-butylcyclohexyl) peroxydicarbonate, di-2- Ethoxymethoxyperoxydicarbonate, bis (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, #bis (3-methyl-3-methoxy Butyl peroxide) dicarbonate and the like. Peroxy esters, such as cumyl neodecyl peroxide, 1,1,3,3-tetramethylbutyl neodecyl peroxide, 1-cyclohexyl-1 -methylethyl neodecyl peroxide , T-hexyl neodecyl peroxide, t-butyl trimethylethyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexyl ester, 2,5-di Methyl-2,5-bis (2-ethylhexylperoxy) hexane, 1-cyclohexyl-1 · methylethylperoxide-2 -ethylhexyl, t-hexylperoxide-2 -Ethylhexyl ester, t-butylperoxy-2-ethylhexyl ester, t-butylisobutylperoxide, ι, ΐ-bis (t_butylperoxy) cyclohexane, peroxyl peroxide Isopropyl monocarbonate, butyl per-15- (12) 200538522 oxy-3,5,5-trimethylhexyl ester, t-butyl lauryl peroxide, 2,5-dimethyl-2, 5-di (m-toluenylperoxy) hexane, t-butylperoxyisopropylmonocarbonate, t-butylperoxyisopropylmonocarbonate, t-butylperoxy-2- Ethylhexyl monocarbonate, t-hexylperoxybenzoate, t-butylperoxyacetate, and the like. Peroxidation shrinkage, such as 1,1-bis (oxhexyl peroxide) -3,3,5-trimethylcyclohexane, M-bis (oxhexyl peroxide) -cyclohexane, 1,1-bis B (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,2-bis (butylbutyl peroxide) -cyclododecane, 2,2-bis (t-butylperoxide) ) Decane and so on. Dialkyl peroxides, such as α, α bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t -Butyl peroxide) hexane, t-butyl cumyl peroxide, and the like. Hydrogen peroxide, such as diisopropylbenzene hydroperoxide, cumene hydroperoxide, and the like. Silyl peroxides, such as t-butyltrimethylsilyl peroxide Φ, bis (t_butyl) dimethylsilyl peroxide, t-butyltriethylene silyl peroxide, Bis (t-butyl) divinylsilyl peroxide, tris (t-butyl) ethylenesilylperoxide, t-butyltriallylsilyl peroxide, bis (t-butyl) ) Dimethyl sulphonyl peroxide, tris (t-butyl) allyl silyl peroxide, etc. The radical polymerization initiator may be used singly or in combination of two or more kinds, and may be used in combination with a decomposition accelerator, an inhibitor, or the like. In addition, when the aforementioned radical polymerization initiator is coated with a polyurethane-based, poly-16- (13) • 200538522 ester-based polymer material to form microcapsules, it is more preferable to extend the time. In addition, when the adhesive composition is used for circuit connection materials, in order to suppress the corrosion of the circuit electrodes of the circuit components, the concentration of the chloride ion or organic acid contained in the radical polymerization initiator is preferably less than 500 Op pm. . It is also preferable to use a radical polymerization initiator having less organic acid generated after thermal decomposition. In addition, in order to improve the stability of the adhesive composition after hardening, it is better to keep the mass retention rate of 20% by mass or more after being left in an open space at room temperature and normal temperature for 24 hours. The compound having a nitrogen-silicon bond in the molecule is not particularly limited, and a known compound can be used. A compound having a nitrogen-silicon bond in the molecule, for example, at least one selected from the group consisting of a silamine compound, a silylamine, and an aminosilane, is preferable. Among them, silamine is more preferred. The silamine compound may be any of a polymer, an oligomer, and a monomer. Silamine compounds, specifically, for example, hexamethyldisilazane, • 1,1,3,3-tetramethyl-1,3-divinyldisilazane, tetramethyl-l53_di Phenyldisilazane, 1,1,13,3,3-hexamethyldisilazane, 2,2,4,4,6,6_hexamethylcyclotrisilazane, heptamethyldisiloxane Silamine, octamethylcyclotetrasilamine, 1,1,3,3-tetramethyldisilazane, allyldimethyl (diisopropylamino) silicon, trimethylsilane Aniline, l53_bis (chloromethyl) tetramethyldisaramine, bis (diethylamino) dimethylsilane, bis (dimethylamino) diethylsilane, bis (dimethyl) Amine) dimethylsilane, bis (dimethylaminodimethylsilyl) ethane, bis (dimethylamino) diphenyl sand, bis (dimethylamino) methylsilane, Bis (dimethylamino) ethene-17- (14) 200538522 alkenylethylsilane, bis (dimethylamino) vinylmethylsilane, bis (ethylamino) dimethylsilane, bis ( N-methylbenzofluorenamine) ethoxymethylsilane, 1,3-bis (3,3,3-trifluoropropyl) tetramethyldisilazane, N-6,9-bis Trimethylsilyl) adenine, N, N'-bis (trimethylsilyl) -1,4-butanediamine, bis (trimethylsilyl) cytosine, N, 0-bis (tri Methylsilyl) hydroxylamine, n-butyldimethyl (dimethylamino) silane, chloromethyltricyclosilamine (silatrane), chlorophenoxytri-p-cyclosilylamine, 3-amine Propyl (diisopropyl) dimethylaminosilane, 3-aminopropylmethylcyclosilamine, dibutyltetramethyldisilazane, (diethylamino) trimethyl Silane, (diisopropylamino) trimethylsilane, (N, N-dimethylamino) dimethylsilane, (N, N-dimethylamino) dimethylchlorosilane, dimethyl Aminoaminomethylethoxysilane, (N, N-dimethylamino) triethylsilane, (N, N-dimethylamino) trimethylsilane, 1,3 --- η- Octyltetramethyldixanthamine, 1,3-monophenyl-1,1,3,3-tetramethyldisilazane, 1,3-dipropyl-l, l, 3,3 -Tetramethyldisilazane, 1,3-diφ vinyl-1,3-diphenyl-1,3-dimethyldisilazane, 1,1,3,3,5,5- Hexamethyl ring Silamine, 1,2,3,4,5,6-hexamethylcyclotrisilamine, hydroxyethoxytricyclosilamine, methacrylamidine trimethylsilane, methacrylamidine Propyltricyclosilamine, methyltricyclosilamine, methyl · N-trimethylsilylcarbamate, N-methyl-N-trimethylsilyltrifluoroethenamine, Nonamethyltrisilamine, η-octyldecyldiisobutyl (dimethylamino) silane, η-octyldecyldimethyl (dimethylamino) silane, ^ octyldimethyl (Dimethylamino) silane, phenylbis (dimethylamino) chlorosilane, phenylmethylbis (dimethylamino) silane, 1,3,5,7 -tetraethyl- -18- (15) 200538522 2,4,6,8-tetramethylcyclotetrasilazane, tetra (diethylamino) sand, 2,2,5,5-tetramethyl-2,5 -Disila-1-azacyclopentane, 151.3,3,3-tetraphenyldimethyldisilazane, 1,3,5,7-tetravinyl-1,3,5,7-tetra Methylcyclotetrasylamine, 1,2,3-diethyl-2,4,6-6-dimethylcyclodisaratamine, tri-n-hexylsilylamine, N- (trimethyl Silyl) vinylammonium, m_trimethyl? Xiyuan Jiyue Female Basic Group Acetylene, N- (Dimethyl Sandoyl) Morin, 3 · Trimethyl Sandolyl-2-oxazolidinedione, 1-Trimethylsilylpyrrole, 丨 _ Trimethyl sulphonate • 1,2,4-triazole, tris (cyclohexylamino) methylsilane, tris (dimethylamino) chlorosilane, tris (dimethylamino) ethyl Shayuan, Tris (dimethylamino) methylsilane, Tris (dimethylamino) phenylsilicon, Tris (dimethylamino) sand, 1,3,5 -triethyl stripe_ 1,3,5-trimethylcyclotrisamine, (N-vinylformamide) trimethylsilane, vinyltricyclosilamine, 1-trimethylsilylpyrrolidone, poly (1,1 -Dimethylsilazane), poly (1,2-dimethylsilazane), etc. These can be used singly or in combination of two or more kinds. φ Silylamine, such as N, N-diethyl · 1,1,1-trimethylsilylamine, Ν, N-diisopropyltrimethylsilylamine, Ν, 0-bis (trimethyl Silyl) vinylammonium, N-6,9-bis (trimethylsilyl) adenine, bis (trimethylsilyl) cytosine, N, 0-bis (trimethylsilyl) hydroxylamine Wait. These can be used individually by 1 type or in mixture of 2 or more types. Aminosilanes, such as allylaminotrimethylsilane, allyldimethyl (diisopropylamino) silane, anilinetrimethylsilane, bis (diethylamino) dimethylsilane , Bis (dimethylamino) diethylsilane, bis (dimethylamino) dimethylsilane, bis (dimethylamino) diphenylsilane-19- (16) 200538522 alkane, bis ( Dimethylamino) dimethylsilane, bis (dimethylamino) vinylethylsilane, bis (N-methylbenzofluorenamine) ethoxymethylsilane, n-butyldimethyl ( Dimethylamino) silane and the like. These can be used singly or in combination of two or more. If necessary, the adhesive composition may be added with a radical polymerization inhibitor such as hydroquinone or methyl ether hydroquinone within a range that does not impair its hardenability. The adhesive composition may further contain a φ thermosetting resin other than a radical polymerizable compound. The thermosetting resin is, for example, epoxy resin. Epoxy resins, such as bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenolic phenolic epoxy resin, cresol phenolic epoxy resin, Bisphenol A-type phenolic lacquer type epoxy resin, bisphenol F-type phenolic lacquer type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, and betaine Urea epoxy resin, isocyanate epoxy resin, aliphatic chain epoxy resin, etc. The aforementioned epoxy resin may be halogenated or hydrogenated. The aforementioned epoxy resins can be used alone or in combination of two or more. In addition, as the curing agent of the epoxy resin, those used as a curing agent in general epoxy resins can be used. Specifically, for example, amines, phenols, anhydrides, imidazoles, dicyandiamines, and the like. In addition, tertiary amines, organophosphorus compounds, and the like, which are generally used as hardening accelerators, can be appropriately blended. In addition, the method of reacting the epoxy resin, for example, in addition to the above-mentioned hardening agent, sulfonium salt, iodonium salt, etc. may be used for cationic polymerization. The adhesive composition may further contain a polymer compound in order to impart film moldability, adhesion, and stress and ease at the time of curing. Polymerization -20- (17) 200538522 Compounds such as polyvinyl butyral, polyethylene methylal, polyester tree, polyurethane resin, urea resin, etc. can be used. The molecular weight of the aforementioned polymer compound is preferably 10,000 to 10,000,000. The polymer compound may be formed of a radical polymerizable functional group, and in this case, its heat resistance can be improved. The polymer compound may contain a carboxyl group. The addition amount of the polymer compound in the adhesive composition is preferably 2 to 80 B% by mass, more preferably 5 to 70% by mass, and 10 to 60% by mass relative to the entire solid content of the adhesive composition. optimal. When the addition amount of the polymer compound is less than 2% by mass, the stress relaxation or adhesion examples tend to be insufficient. When it exceeds 80% by mass, the fluidity tends to decrease. The adhesive composition may be appropriately added with fillers, softeners, accelerators, deterioration inhibitors, colorants, flame retardants, coupling agents, and the like. In the adhesive composition described above, the radical polymerization initiator is preferably contained in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable compound, and is contained in an amount of 1.0 to 100 parts by mass. Serve is better. If the content of the radical initiator is less than 0.5 parts by mass, the hardening reaction will not proceed sufficiently, and the hardening tends to be insufficient. When it exceeds 30 parts by mass, storage stability tends to decrease. In addition, with respect to 100 parts by mass of the radically polymerizable compound, the compound having a nitrogen-silicon bond is preferably contained in a content of from 0.1 to 20 parts by mass' to contain 0. 5 to 15 parts by mass is more preferred to contain 0. 5 to 10 parts by mass is most preferred. The content of the compound having a nitrogen-silicon bond is less than 0. At 1 part by mass, the adhesion example tends to decrease or the adhesion force cannot be improved. Also, -21-(18) 200538522 When it exceeds 20 parts by mass, the hardened physical properties tend to deteriorate. In addition, the use form of the adhesive composition is not particularly limited. For example, a solution obtained by dissolving and / or dispersing each component in an organic solvent such as toluene, ethyl acetate, or the like can be used to remove the solvent from the solution and mold it into Use a molded article of a certain shape (such as a film-shaped adhesive described later). Fig. 1 is a cross-sectional view of an embodiment of a film-like adhesive according to the present invention. The film-like adhesive 1 shown in FIG. 1 is obtained by molding the above-mentioned adhesive composition B into a film. This film-like adhesive has easy handling properties and is easy to install on an adherend, so that connection work can be performed more easily. In addition, the film-shaped circuit connection material 1 a can be a multilayer structure formed by two or more layers having a difference in Tg (glass transition temperature) of 5 ° C or more when the adhesive composition is cured (not shown in the figure) ) Yes. Film-like adhesive 1, for example, the solution obtained by dissolving the adhesive composition in a solvent is applied to a support (PET (polyethylene terephthalate) film, etc.) with a coating device, and the adhesive is not caused Temperature at which the agent composition hardens • It is prepared by hot air drying at a certain time. The thickness of the film-like adhesive 1 is preferably in the range of 10 to 50 µm. (Connection Structure of Circuit Component) FIG. 2 is a schematic view of an embodiment of a connection structure of a circuit component of the present invention. As shown in FIG. 2, the connection structure of the circuit member according to the embodiment of the present invention includes a first circuit member 20 and a second circuit member 30 that are opposite to each other, and the first circuit member 20 and the second circuit Between the components 30, a circuit connection component 10 for connecting the foregoing components is provided. -22- (19) (19) 200538522 The first circuit component 20 is a circuit electrode (first circuit electrode) formed on the main surface 21a of the circuit substrate 21 (the first circuit substrate) 21 and the circuit substrate 21 twenty two. In addition, an insulating layer (not shown in the figure) may be formed on the main surface 21a of the circuit substrate 21 as necessary. The second circuit member 30 includes a circuit substrate (second circuit substrate) 31 and a circuit electrode (second circuit electrode) 32 formed on a main surface 31a of the circuit substrate 31. An insulating layer (not shown in the figure) may be formed on the main surface 31a of the circuit substrate 31 as necessary. The first and second circuit members 20 and 30 are not particularly limited as long as they have electrodes necessary for forming a connection circuit. Specifically, for example, glass or plastic substrates formed with electrodes such as ITO used for liquid crystal displays, printed circuit boards, ceramic circuit boards, flexible circuit boards, and semiconductor silicon crystals can be used in combination as required. As mentioned above, this embodiment can be used for materials from printed circuit boards or organic materials such as polyimide, to metals such as copper and aluminum, or ITO (indiumtin oxide), silicon nitride (SiNx), and Circuit components with multiple surface states like inorganic materials such as silicon oxide (Si02). The circuit connection member 10 is made of an insulating material Π and conductive particles 7. The conductive particles 7 are also provided between the main surfaces 2 1 a and 3 1 a in addition to the opposing circuit electrodes 22 and 32. In the connection structure of the circuit members, the circuit electrodes 22 and 32 are connected in a circuit through the conductive particles 7. That is, the conductive particles 7 are in direct contact with both of the circuit electrodes 22 and 32. Among them, the conductive particle 7 is not particularly limited as long as it has the conductivity of a connectable circuit. For example, it can be metal particles such as Au, Ag, Ni, Cu, C0, solder, etc. Or carbon. In addition, non-conductive glass, ceramics, plastic, or the like coated with a conductive material such as the above metal may be used. In this case, in order to obtain sufficient conductivity, the thickness of the metal layer to be coated is preferably 10 nm or more. As described above, the connection structure of the circuit member is such that the opposite circuit electrode 22 and the circuit electrode p 32 are connected in a circuit manner via the conductive particles 7. Therefore, the connection resistance between the circuit electrodes 22 and 32 can be sufficiently reduced. Therefore, the current flowing between the circuit electrodes 22 and 32 can be made extremely smooth, and the functions of the circuit can be fully exerted. When the circuit connection member 10 does not contain the conductive particles 7, the circuit electrode 22 and the circuit electrode 32 will be in direct contact to connect the circuit. The circuit connection member 10 is composed of a hardened material of the circuit connection material containing the above-mentioned adhesive composition, as described later. Therefore, compared with the circuit member 20 or 30, the adhesion strength of the circuit connection member 10 is extremely high. High, especially under high temperature and high humidity conditions, can still show very high adhesion strength. In addition, the connection structure of the circuit components can maintain extremely high adhesion strength for a long time. Therefore, the chronological change due to the distance between the circuit electrodes 2 and 32 can be fully prevented, and the electrical characteristics between the circuit electrodes 22 and 32 have a high long-term reliability. (Manufacturing method of connection structure of circuit member) Hereinafter, the manufacturing method of the connection structure of the above-mentioned circuit member will be described. First, prepare the above-mentioned first circuit member 20 and connect it with a thin film circuit. -24- (21) 200538522 Connection material 40 (refer to FIG. 3 (a)). The film-shaped circuit connection material 40 is obtained by molding the circuit connection material into a film shape. The circuit connection material includes an adhesive composition 5 and conductive particles 7. Among them, the adhesive composition 5 is, as described above, a radical polymerization initiator containing a radically polymerizable compound, a radical polymerization initiator capable of generating at least a radical upon heating, and a compound having a nitrogen-silicon bond. When the circuit connection material contains conductive particles 7, the circuit connection material may be an anisotropic adhesive. An electrically conductive adhesive is used, particularly a NCP (Non-Conductive Paste). When the circuit connection material contains conductive particles 7, the circuit connection material is ACP (Anisotropic Conductive Paste). In addition, the content of the conductive particles 7 in the circuit connection material is preferably 0.1 to 30% by volume relative to the total amount of the circuit connection material, and 1. 0 to 20% by volume is more preferable. When the content is less than 0.1% by volume, there is a tendency that a good communication state cannot be obtained, and when it exceeds 30% by volume, adjacent Φ circuits may cause a short circuit (short). The thickness of the film-like circuit connection material 40 is preferably 10 to 50 µm. When the thickness of the film-shaped connection material 40 is less than 100 μm, the circuit connection material between the circuit electrodes 22 and 32 tends to be insufficiently formed. When it exceeds 50 μm, the connection electrode composition cannot be sufficiently excluded between the circuit electrodes 2 and 32, and there is a tendency that it is difficult to ensure the connection state between the circuit electrodes 2 and 32. Next, a film-shaped circuit connection material 40 is loaded on the surface of the first circuit member 20 where the circuit electrode 22 is formed. In addition, when the film-shaped circuit connection material -25- (22) 200538522 material 40 is attached to a support (not shown in the figure), the film-shaped circuit connection material 40 side is loaded in a direction facing the first circuit member 20 On the first circuit member 20. At this time, since the thin-film circuit connection material 40 is thin-film-like, it is easy to handle. Therefore, the film-shaped circuit connection material 40 can be easily sandwiched between the first circuit member 20 and the second circuit member 30, so that the connection operation between the first circuit member 20 and the second circuit member 30 can be performed more easily. φ Thereafter, the film-shaped circuit connection material 40 is pressurized in the directions of arrows A and B in FIG. 3 (a), so that the film-shaped circuit connection material 40 is temporarily connected to the first circuit member 20 (refer to FIG. 3 ( b)). In this case, you may pressurize during heating. However, the heating temperature is a temperature at which the adhesive composition in the film-like circuit connection material 40 is not hardened, that is, a temperature lower than the temperature at which radicals occur in the radical polymerization initiator. Next, as shown in FIG. 3 (c), the second circuit member 30 is loaded on the thin film connection material 40 with the second circuit electrode facing the first circuit member 20. When the film-shaped circuit connection material 40 is attached to a support (not shown), the second circuit member 30 is supported on the film-shaped circuit connection material 40 due to the support peeling. Subsequently, the film-shaped circuit connection material 40 is heated and pressurized according to the directions of arrows A and B in FIG. 3 (a) and between the first and second circuit members 20 and 30. At this time, The heating temperature is a temperature at which the radical polymerization initiator can generate radicals. In this way, radicals are generated in the radical polymerization initiator, and the radically polymerizable compound starts to polymerize. Subsequently, the thin film-like circuit connection material 40 is hardened to be connected, and -26- (23) • 200538522 is obtained to obtain a circuit member connection structure shown in FIG. 2. The heating temperature is set, for example, between 90 and 200 ° C, and the connection time is, for example, between 1 second and 10 minutes. The foregoing conditions may be appropriately selected depending on the use, adhesive composition, circuit member, and the like, and if necessary, post-curing treatment may be performed. Since the film-shaped circuit connection material 40 contains the adhesive composition of the present invention, it can be connected at a lower temperature than a circuit connection material containing epoxy resin or the like. φ As described above, when the connection structure of the circuit member is manufactured, in the connection structure of the obtained circuit member, the conductive particles 7 can be brought into contact with both of the opposite circuit electrodes 22 and 32, and the interval between the circuit electrodes 22 and 32 can be sufficiently reduced. Its connection resistance. In addition, the film-shaped circuit connecting material 40 can heat the circuit electrode 22 and the circuit electrode 32 at an extremely small distance to harden the adhesive composition 5 to form an insulating substance 11 and make the first circuit member. 20 and the second circuit member 30 are firmly connected via the circuit connection member 10. That is, in the connection structure of the obtained circuit member, since the circuit connection member 10 is made of a hardened material of a circuit connection material containing the above-mentioned adhesive composition, the circuit connection member 10 has Very high adhesion strength, especially under high temperature and high humidity conditions, it can still show excellent adhesion strength. In addition, the connection structure of the circuit components can maintain extremely high adhesion strength for a long time. Therefore, the connection structure of the obtained circuit components can sufficiently prevent the chronological changes caused by the distance between the circuit electrodes 22 and 32, and make the electrical characteristics between the circuit electrodes 22 and 32 extremely long-term reliability. In addition, in the above embodiment, the adhesive composition 5 is a radical polymerization initiator containing at least -27- (24) 200538522 which needs to be heated to generate radicals. Therefore, the radical polymerization initiator may also be used alone. Use a free radical polymerization initiator that is irradiated with light and generates free radicals. At this time, when the thin film-shaped circuit connection material 40 is subjected to a hardening treatment, light irradiation may be used instead of heating. Further, in the above embodiment, the film-shaped circuit connection material 40 is used to manufacture the connection structure of the circuit members, so the film-shaped circuit connection material 40 may be replaced with a circuit connection material. In this case, it is also to dissolve the circuit connection material in a solvent, and then apply the solution to either the first circuit member 20 or the second circuit member 30 and allow it to dry. The second circuit member 20 and 30 sandwich the circuit connection material. In addition, in the manufacturing method of the connection structure of the circuit member, in addition to a radical polymerization initiator that generates radicals by heating or irradiation with radiation, a radical polymerization initiator that generates radicals based on ultrasonic waves or electromagnetic waves may be used if necessary. The conductive particles 7 may be replaced with other conductive materials. Other conductive materials are, for example, particulate or short-fiber carbon, Au # metal plated wires such as AuNi wires, and the like. [Second Embodiment] (Circuit Connection Material) The circuit connection material of this embodiment is a first circuit member having a first circuit electrode formed on a main surface of a first circuit substrate, and a circuit circuit material on a second circuit substrate. A second circuit member having a second circuit electrode formed on the main surface, and a circuit connecting material connected in a state in which the first circuit electrode and the second circuit electrode are arranged in an opposite arrangement, which contains a radical polymerizable compound and radical polymerization-28 -(25) 200538522 Adhesive composition of a basic initiator and conductive particles obtained by surface treatment of a compound having a nitrogen-silicon bond. First, the adhesive composition contained in the circuit connecting material of this embodiment will be described. The adhesive composition contains at least a radical polymerizable compound and a radical polymerization initiator. As the radical polymerizable compound and the radical polymerization initiator, for example, the same contents as those used in the first embodiment can be used. In addition, in the present embodiment, when the B connection time is 10 seconds or less, in order to obtain a sufficient reaction rate, the amount of the radical polymerization initiator to be added is based on the total solid content of the adhesive composition. It is preferably from 1 to 20% by mass, and particularly preferably from 2 to 15% by mass / °. If necessary, a radical polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be added to the adhesive composition within a range that does not impair its hardenability. The adhesive composition may further contain a thermosetting resin other than a radical polymerizable compound. The thermosetting resin is, for example, epoxy resin. The cyclic # oxygen resin is the same as that described in the first embodiment. As the curing agent of the above-mentioned epoxy resin, those used as a curing agent in general epoxy resins can be used. Specifically, for example, amines, phenols, anhydrides, imidazoles, dicyandiamines, and the like. In addition, tertiary amines, organophosphorus compounds, and the like, which are generally used as hardening accelerators, can be appropriately blended. In addition, the method of reacting the epoxy resin, for example, in addition to the above-mentioned curing agent, sulfonium salt, iodine salt, etc. may be used for cationic polymerization. The adhesive composition may further contain a polymer compound in order to impart film moldability, adhesion, and stress and ease at the time of curing. Polymer compounds -29- (26) 200538522 The same as the contents listed in the first embodiment, for example. As the adhesive composition, a filler, a softener, a deterioration preventing agent, a coloring agent, a flame retardant, a coupling agent and the like can be appropriately added. In the adhesive composition described above, the radical polymerization initiator contains 0.1% by weight relative to 100 parts by mass of the radical compound. 5 portions are preferred to contain 1. 0 to 10 parts by mass is more preferred. Free agent content is less than 0. At 5 parts by mass, hardening is not sufficiently performed. B tends to be insufficient. When it exceeds 30 parts by mass, the qualitative property tends to decrease. Next, conductive particles (hereinafter referred to as "surface-treated conductive particles") at the surface of a compound having a nitrogen-silicon bond will be described. The surface-treated conductive particles are prepared by adding the conductive particles to a solution containing a compound having nitrogen- in the molecule, stirring them, and separating the electrical particles from the solution. More specifically, it is: • A specific solution containing a compound having a nitrogen-silicon bond in the molecule is stirred into the conductive particles for a certain period of time. In this case, it is preferably carried out in a range of 20 to 40 ° C. The stirring time is preferably within a range of 3] minutes. As the solvent, for example, a methyl ethyl organic solvent is used. Subsequently, the conductive particles were filtered from the aforementioned solution and dried to obtain surface-treated conductive particles. Among them, the "conductive particles" are particularly limited as long as they have conductivity to which a circuit can be connected, and may be, for example, Au, Ag, Ni, Cu, Co, solder particles, or carbon. In addition, non-conductive glass, ceramics, plastics, promote synthesizing; 30-mass-based reaction is initiated, and the results obtained after preservation of Arsenic are said to be dissolved after the silicon bonding, and the temperature of the solution? 30 minutes, such as ketone, have dry results. It is not expected to cover with gold and other materials at the time-30- (27) 200538522 The above-mentioned metals and other conductive substances can also be used. At this time, in order to obtain sufficient conductivity, the thickness of the metal layer to be covered is preferably 10 nm or more. The compound having a nitrogen-silicon bond in the molecule is not particularly limited, and a known compound can be used. A compound having a nitrogen-silicon bond in the molecule, for example, at least one selected from the group consisting of a silamine compound, a silylamine, and an aminosilane, is preferable. Among them, silamine is more preferred. The silamine compound may be any one of polymer, oligomer, and monomer. The silamine compound is, for example, the same as that described in the first embodiment. In addition, the content of the surface-treated conductive particles in the circuit connection material is 0. 1 to 30% by volume is preferred to 1. 0 to 20% by volume is more preferable. The content is less than 0. At 1% by volume, there is a tendency that a good connection state cannot be obtained, and at more than 30% by volume, there is a possibility that short circuits may occur between adjacent circuits. In addition, the use form of the circuit connection material is not particularly limited. For example, φ may disperse the surface-treated conductive particles in a solution obtained by dissolving an organic solvent such as toluene or ethyl acetate in which each component of the adhesive composition is dissolved. In addition, a molded body (for example, a thin film-like circuit connecting material described later) obtained by removing the solvent in which the surface-treated conductive particles are dispersed, and then molding the solution in a certain shape may be used. Fig. 4 is a schematic cross-sectional view of an embodiment of a thin-film circuit connection material. The film-shaped circuit connection material la shown in Fig. 4 is an adhesive composition containing the above-mentioned radical polymerizable compound and a radical polymerization initiator, and the surface-treated conductive particles 7a. This film-like circuit connection material has -31-(28) 200538522, which is easy to handle and easy to install on the adherend, so it makes connection work easier. In addition, the film-like circuit connection material 1 a can be a multilayer structure formed by two or more layers having a difference in Tg (glass transition temperature) of 5 t or more of the adhesive composition (not shown in the figure) Yes. Film-like circuit connection material 1 a, for example, dissolve the adhesive composition in a solvent, and apply the solution in which the surface-treated conductive particles are dispersed, and apply the coating device to a support (PET (polyethylene terephthalate) ), Etc.), and it is prepared by hot air drying at a certain time at a temperature that will not harden the adhesive composition. The thickness of the film-shaped circuit connection material is preferably in the range of 10 to 50 μm. When the thickness of the film-shaped connection material is less than 10 μηι, the circuit connection material tends to be insufficiently charged between the opposing circuit components. In addition, if it exceeds 50 μm, the adhesive composition between the circuit electrodes will be extremely difficult to remove 'and there is a tendency that it is difficult to ensure the communication state between the circuit electrodes. # FIG. 5 is a schematic cross-sectional view of an embodiment of a connection structure of a circuit member of the present invention. As shown in FIG. 5, the connection structure of the circuit members of this embodiment has a first circuit member 20 a and a second circuit member 30 a which are opposite to each other, and is formed between the first circuit member 20 a and the second circuit member 30 a. In the meantime, a circuit connection member 10a is provided to connect the aforementioned members. The first circuit member 20a includes a circuit substrate (first circuit substrate) 21b and a circuit electrode (first circuit electrode) 22a formed on a main surface 21c of the circuit substrate 21b. In addition, an insulating layer (not shown in the figure) may be formed on the main surface 21c of the circuit substrate 21b when necessary. -32- (29) 200538522 The second circuit member 30a is provided with a circuit board (second circuit board) 3 1 b and a circuit electrode formed on the main surface 3 1 c of the circuit board 3 1 b (the Two circuit electrodes) 32. In addition, an insulating layer (not shown in the figure) may be formed on the main surface 3 1 c of the circuit board 3 lb if necessary. The first and second circuit members 20a and 30a are not particularly limited as long as they have electrodes necessary for forming a connection circuit. Specifically, for example, the electrode may be made of ITO or the like used in a liquid crystal display.
• 璃或塑膠基板、印刷電路板、陶瓷電路板、可撓性電路 板、半導體矽晶體等,前述物質可依需要組合使用。如前 所述般,本實施形態,可用於由印刷電路板或聚醯亞胺等 有機物所得之材質開始,至銅、鋁等金屬,或ITO (indiumtin oxide )、氮化矽(SiNx )、二氧化矽 (Si02)等無機材質般具有多項表面狀態之電路構件。 電路連接構件l〇a,爲含有絕緣性物質11a與表面處 理導電粒子7。表面處理導電粒子7a,除相對向之電路電 • 極22a與電路電極32a之間以外,亦設置於主面21c、31a 之間。電路構件之連接構造中,電路電極22a、32a爲介 由表面處理導電粒子7a以電路連接。即,表面處理導電 粒子7a直接與電路電極22a、32a二者直接接觸。 此電路構件之連接構造,如上所述般,爲介由表面處 理導電粒子7 a以電路方式連接相對向之電路電極2 2 a與 電路電極32a。因此,可充分降低電路電極22a、32a間之 連接電阻。因此,可使電路電極2 2 a、3 2 a間電流之流動 極爲順暢,而可充分發揮電路所具有之機能。 -33- (30) 200538522 電路連接構件1 〇a,係由含有上述黏著劑組 面處理導電粒子之電路連接材料之硬化物所構成 電路構件20a、30a之電路電極22a、32a間具有 定之連接電阻。又,因電路連接構件10a具有極 之連接電阻,故得知本實施形態之電路連接材料 充分之黏著強度。 ·(電路構件之連接構造之製造方法) 以下’將說明上述電路構件之連接構造之製: 首先,準備上述之第一電路構件20a,與薄 連接材料40a (請參考圖6(a))。薄膜狀電路 40a ’爲將電路連接材料成型爲薄膜狀所得者。 路連接材料40a爲與薄膜狀電路連接材料ia具 谷。即’電路連接材料,如上所述般,爲含有含 合性化合物,與至少可因加熱而產生自由基之自 • 起始劑之黏著劑組成物。 其次’將薄膜狀電路連接材料40a負載於第 件2 0a之形成電路電極22a之面上。又,薄膜狀 #料4〇a附著於支撐體(未標示於圖示中)上時 電路連接材料40a側以面向第一電路構件20a之 於第一電路構件2〇a之上。此時,薄膜狀電路 4 〇a爲薄膜狀,故容易進行處理。因此,第一 20a與第二電路構件3〇a之間可容易的挾夾薄膜 接材料40a,使第一電路構件20a與第二電路構‘ 成物與表 ,故可使 極低且安 低且安定 具有極爲 造方法。 膜狀電路 連接材料 薄膜狀電 有相同內 自由基聚 由基聚合 一電路構 電路連接 ,薄膜狀 方向負載 連接材料 電路構件 狀電路連 件30a之 -34- (31) 200538522 連接作業更容易進行。 其後,將薄膜狀電路連接材料4 0a,依圖6 ( a )之箭 頭Aa與Ba之方向加壓,使薄膜狀電路連接材料40a於第 一電路構件20a上形成暫時連接(參考圖6 ( b ))。此 時’可於加熱中進行加壓亦可。但,加熱溫度爲不使薄膜 狀電路連接材料40a中之黏著劑組成物硬化下之溫度, 即’較自由基聚合起始劑發生自由基之溫度爲更低之溫 • 度。 其次,如圖6 ( c )所示般,將第二電路構件3 0a,以 第二電路電極面向第一電路構件20a之方向負載於薄膜連 接材料40a之上。又,薄膜狀電路連接材料4〇附著於支 撐物(未標示於圖示中)上時,因支撐物剝離而使得第二 電路構件30a負載於薄膜狀電路連接材料4〇a上。 隨後’將薄膜狀電路連接材料4 0 a於加熱中,依圖6 (c)之箭頭Aa與Ba之方向並介於第一與第二電路構件 ® 20a、3 0a間進行加壓,此時之加熱溫度,爲可使自由基聚 合起始劑產生自由基之溫度。如此,於自由基聚合起始劑 產生自由基’而使自由基聚合性化合物開始聚合。隨後將 薄膜狀電路連接材料40a進行硬化處理而進行連接後,而 製得圖5所示之電路構件連接構造。 加熱溫度,例如設定於9 0至2 0 0 °C之間,連接時間例 如爲1秒至1 0分鐘之間。前述條件可依使用之用途、黏 著劑組成物、電路構件等作適當之選擇,必要時,可再進 行後硬化處理。前述薄膜狀電路連接材料4〇a,因具有上 -35- (32) 200538522 述構成內容,故可在較含有環氧樹脂等之電路連接材料爲 更低之溫下進行連接。 如上所述般,製造電路構件之連接構造時,於所得電 路構件之連接構造中,可使表面處理導電粒子7a接觸相 對向之電路電極22a、32a二者,而可充分降低電路電極 22a、32a間之連接電阻。 又,薄膜狀電路連接材料40a經由加熱結果,可使電 B 路電極22a與電路電極32a之間於極小的距離下,使黏著 劑組成物硬化而形成絕緣性物質1 1 a,並使第一電路構件 20a與第二電路構件30a介由電路連接構件l〇a而堅固的 連接。即,於所得電路構件之連接構造中,因電路連接構 件1 〇a爲由含有上述電路連接材料之硬化物所構成,故對 電路構件20a或30a而言,電路連接構件l〇a具有極高之 黏著強度,而使電路構件20a、30a之電路電極22a、32a 間可得到極低之連接電阻。 # 又,上述實施形態,黏著劑組成物爲使用含有至少需 經加熱以產生自由基之自由基聚合起始劑者,故此自由基 聚合起始劑,亦可使用僅使用光照射及可產生自由基之自 由基聚合起始劑。此時,薄膜狀電路連接材料4 0 a於硬化 處理之際,可以光照射替代加熱亦可。又,上述實施形態 中,爲使用薄膜狀電路連接材料4 0 a以製造電路構件之連 接構造,故薄膜狀電路連接材料4 0 a也可以電路連接材料 替代。此情形中,亦爲將電路連接材料溶解於溶劑中,再 將溶液塗佈於第一電路構件2 0a或第二電路構件3 0a之任 -36- (33) 200538522 一者’並使其乾燥,即可使用第一與第二電路構件2 〇 a、 3 0 a間挾夾電路連接材料。 又’電路構件之連接結構之製造方法,除加熱或光照 射產生自由基之自由基聚合起始劑以外,必要時,可使用 基於超音波、電磁波等產生自由基之自由基聚合起始劑。 又’表面處理導電粒子7a,可以其他導電材料替代。 其他導電材料,例如未經分子內具有氮-矽鍵結之化合物 # 經表面處理之導電粒子、粒子狀、或短纖維狀之碳、鍍 AuNi線等金屬條線等。 【實施方式】 以下,將本發明之內容以實施例做更具體之說明,但 本發明並不受前述實施例所限定。 (實施例1 ) 將苯氧樹脂(優你公司製,商品名PKHC,平均分子 量45,000 ) 5〇g,溶解於質量比爲甲苯(沸點110.6°C,SP 値 8·90) / 乙酸乙酯(沸點 77.1。(:,SP 値 9.10) =50/50 之混合溶劑中,而製得固體成份40質量%之苯氧樹脂溶 液。 另外準備自由基聚合性化合物之羥乙基丙三酸二甲基 丙烯酸酯(共榮社化學公司製,商品名80MFA ),與磷酸 酯二甲基丙烯酸酯(共榮社化學公司製,商品名Ρ-2Μ ) 〇 -37- (34) 200538522 準備矽胺烷化合物(具有氮_砂鍵結之 1,3,5,7-四乙烯基_1,3,5,7-四甲基環四矽胺烷 製)。 準備自由基聚合起始劑之一 -2 -乙基己基過 酯(曰本油脂公司製,商品名派羅〇PP ) ° 於使用聚苯乙烯作爲核之粒子之表面上’ 爲材料之厚度〇 · 2 μ m之鎳層’於此鎳層之外側 馨 作爲材料之厚度0.0 4 μ m之金層。經此處理後 徑爲5μηι之導電粒子。 將所準備之材料以表1所示之固體成份比 力口 1 · 5體積%之導電粒子,並使其分散。將所 使用塗佈裝置塗佈厚度爲80μπι之氟樹脂薄膜 經10分鐘熱風乾燥處理後,得厚度20μηι之薄 接材料。所得薄膜狀電路連接材料,於室溫下 之柔軟性。 化合物)之 (窒素公司 氧化二碳酸 舖設以鎳作 ’舖設以金 製得平均粒 組合,再添 得之溶液, ,於70°C下 膜狀電路連 顯示出極佳 -38- (35) 200538522 表1 添加劑 實施例1 實施例2 實施例3 比較例1 熱塑性樹脂 PKHC 50 50 50 50 自由基聚合性 化合物 80MFA 50 50 50 50 萊特酯P-2M 10 10 10 10 自由基聚合起始劑 派羅OPP 5 5 5 5 矽胺烷化合物 1,3,5,7-四乙烯基-1,3,5,7-四 甲基環四矽胺烷 3 - - 參 1,3-二乙烯基-1,3-二苯基- 1,3-二甲基二矽胺烷 - 3 - - 聚(1,2-二甲基矽胺烷) 3 3 喊 (實施例2 ) 除矽胺烷使用1,3 -二乙烯基-1,3 -二苯基-1,3 -二甲基二 矽胺烷(窒素公司製)以外,其他皆依實施例1相同方法 • 製得厚度爲20μηι之薄膜狀電路連接材料。所得薄膜狀電 路連接材料,於室溫下顯示出極佳之柔軟性。 (實施例3 ) 除矽胺烷使用聚(1,2-二甲基矽胺烷)(窒素公司 製)以外,其他皆依實施例1相同方法製得厚度爲2 0 μ m 之薄膜狀電路連接材料。所得薄膜狀電路連接材料,於室 溫下顯示出極佳之柔軟性。 -39- (36) 200538522 (比較例1 ) 除未添加矽胺烷以外,其他皆依實施例1相同方法製 得厚度爲20μηι之薄膜狀電路連接材料。所得薄膜狀電g各 連接材料,於室溫下顯示出極佳之柔軟性。 (黏著強度與連接電阻之測定) 首先,準備具有500條線寬50μιη、間距50μπι、厚度 • 18μπι之銅電路的可撓性電路板(FPC基板),與於玻璃 基板(厚度1.1mm,表面電阻20Ω /□)上形成〇·2μπι之 氧化銦(ΙΤΟ)薄層之ΙΤΟ基板。於FPC基板與ΙΤΟ基板 之間設置實施例1至3與比較例1之薄膜狀電路連接材料 後,使用熱壓裝置(加熱方式:接觸加熱型,東麗機械公 司製)以160 °C、3 MPa之條件下進行15秒之加熱加壓處 理。此時FPC基板與ITO基板間使用寬度2mm之薄膜狀 電路連接材料連接,依此方式製作實施例1至3與比較例 φ 1之電路構件之連接構造(ΙΤΟ/FPC連接構造)。 實施例1至3與比較例1之ΙΤΟ/FPC連接構造之連接 電路間之電阻値,爲於黏著後,與於保持85 °C、85% RH 之高溫高濕槽中經240小時高溫高濕處理後,使用電阻測 定計測定。電阻値爲由相鄰電路間之電阻之1 5 0點測定値 之平均(X + 3 σ )。所得結果係如表2所示。 又,實施例1至3與比較例1之ΙΤΟ/FPC連接構造之 黏著強度’爲使用依JIS-Z0237爲基準之90度剝離法進 行測定、評估。其中’黏著強度之測定裝置爲使用東洋博 -40- (37) 200538522 覽公司製電斯龍UTM-4(剝離速度50mm/min,25 t:)。 所得結果係如表2所示。 表2 項目 ITO/FPC 連接構造之電阻値 (Ω) ITC 連接構造, )/FPC 之黏著強度 Γ/m) SiN 連接構造, x/FPC 之黏著強度 [/m) 黏著後 高溫高濕 處理後 黏著後 高溫高濕 處理後 黏著後 高溫高濕 處理後 實施例1 2.3 2.5 1000 800 500 300 實施例2 2.2 2.6 950 750 450 200 實施例3 2.8 2.2 900 770 550 150 比較例1 2.8 8.9 800 700 500 0• Glass or plastic substrate, printed circuit board, ceramic circuit board, flexible circuit board, semiconductor silicon crystal, etc., the aforementioned substances can be used in combination as required. As mentioned above, this embodiment can be used for materials starting from printed circuit boards or organic materials such as polyimide, to metals such as copper and aluminum, or ITO (indiumtin oxide), silicon nitride (SiNx), Circuit components with multiple surface states like inorganic materials such as silicon oxide (Si02). The circuit connection member 10a contains the insulating substance 11a and the surface-treated conductive particles 7. The surface-treated conductive particles 7a are provided between the main circuit surfaces 21c and 31a in addition to the opposing circuit electrodes 22a and 32a. In the connection structure of the circuit members, the circuit electrodes 22a and 32a are connected in a circuit through the surface-treated conductive particles 7a. That is, the surface-treated conductive particles 7a are in direct contact with both of the circuit electrodes 22a, 32a. As described above, the connection structure of this circuit member is to electrically connect the opposite circuit electrode 2 2a and the circuit electrode 32a in a circuit manner through the surface-treated conductive particles 7a. Therefore, the connection resistance between the circuit electrodes 22a and 32a can be sufficiently reduced. Therefore, the current flow between the circuit electrodes 2 2 a and 3 2 a can be made extremely smooth, and the functions of the circuit can be fully exerted. -33- (30) 200538522 Circuit connection member 10a is a circuit member 20a, 30a which has a fixed connection resistance between circuit electrodes 20a, 30a, which is composed of a hardened material of a circuit connection material containing conductive particles as described above. . Further, since the circuit connection member 10a has a pole connection resistance, it is known that the circuit connection material of this embodiment has sufficient adhesive strength. · (Manufacturing method of connection structure of circuit member) The following will describe the system of the connection structure of the above circuit member: First, prepare the above-mentioned first circuit member 20a and thin connection material 40a (refer to FIG. 6 (a)). The thin film circuit 40a 'is obtained by molding a circuit connection material into a thin film. The circuit connection material 40a is a valley-shaped circuit connection material ia. That is, the 'circuit connection material' is an adhesive composition containing a compound containing a compound and a self-initiator which can generate free radicals at least upon heating, as described above. Next, a thin film-shaped circuit connection material 40a is supported on the surface of the circuit member 22a of the second member 20a. In addition, when a film-shaped material 4〇a is attached to a support (not shown), the circuit connection material 40a side faces the first circuit member 20a above the first circuit member 20a. In this case, since the thin film circuit 40a is thin film, it is easy to handle. Therefore, the film connection material 40a can be easily clamped between the first 20a and the second circuit member 30a, so that the first circuit member 20a and the second circuit structure can form a structure and a watch, so that it can be extremely low and safe. And stability has a great manufacturing method. Membrane-like circuit connection material Film-like electricity has the same internal radical polymerization, radical polymerization, circuit structure, circuit connection, film-like directional load connection material, circuit-member-like circuit connector 30a -34- (31) 200538522 The connection operation is easier. Thereafter, the film-shaped circuit connection material 40a is pressed in the directions of arrows Aa and Ba in FIG. 6 (a), so that the film-shaped circuit connection material 40a is temporarily connected to the first circuit member 20a (refer to FIG. 6 ( b)). In this case, 'may be pressurized during heating. However, the heating temperature is a temperature at which the adhesive composition in the film-shaped circuit connection material 40a is not hardened, that is, a temperature lower than the temperature at which radicals occur in the radical polymerization initiator. Next, as shown in FIG. 6 (c), the second circuit member 30a is loaded on the thin film connection material 40a with the second circuit electrode facing the first circuit member 20a. When the film-shaped circuit connection material 40 is attached to a support (not shown in the figure), the second circuit member 30a is supported on the film-shaped circuit connection material 40a due to the peeling of the support. Subsequently, the film-shaped circuit connection material 4 a is heated and pressurized according to the directions of the arrows Aa and Ba of FIG. 6 (c) between the first and second circuit members ® 20a and 3 0a. At this time, The heating temperature is a temperature at which the radical polymerization initiator can generate radicals. In this way, radicals are generated in the radical polymerization initiator, and the radical polymerizable compound starts to polymerize. Subsequently, the film-shaped circuit connection material 40a is hardened and connected to obtain a circuit member connection structure shown in FIG. 5. The heating temperature is set, for example, between 90 and 200 ° C, and the connection time is, for example, between 1 second and 10 minutes. The foregoing conditions can be appropriately selected depending on the use, adhesive composition, circuit member, and the like, and if necessary, post-hardening treatment can be performed. Since the film-shaped circuit connection material 40a has the above-mentioned constitutional content of -35- (32) 200538522, it can be connected at a lower temperature than a circuit connection material containing epoxy resin or the like. As described above, when manufacturing the connection structure of the circuit member, in the connection structure of the obtained circuit member, the surface-treated conductive particles 7a can be brought into contact with both of the opposite circuit electrodes 22a, 32a, and the circuit electrodes 22a, 32a can be sufficiently reduced. Between the connection resistance. In addition, as a result of heating the film-shaped circuit connection material 40a, the adhesive composition can be hardened to form an insulating substance 1 1 a at a very small distance between the circuit B electrode 22a and the circuit electrode 32a, and the first The circuit member 20a and the second circuit member 30a are firmly connected via the circuit connection member 10a. That is, in the connection structure of the obtained circuit member, since the circuit connection member 10a is made of a hardened material containing the above-mentioned circuit connection material, the circuit connection member 10a is extremely high for the circuit member 20a or 30a. The adhesive strength makes it possible to obtain extremely low connection resistance between the circuit electrodes 22a and 32a of the circuit members 20a and 30a. # Also, in the above embodiment, the adhesive composition is a radical polymerization initiator containing at least a radical that needs to be heated to generate free radicals. Therefore, the radical polymerization initiator can also be used only with light irradiation and can generate free Radical polymerization initiator. In this case, the film-shaped circuit connecting material 40 a may be light-irradiated instead of being heated during the hardening treatment. In the above embodiment, the film-shaped circuit connection material 40a is used to manufacture the connection structure of the circuit members, so the film-shaped circuit connection material 40a may be replaced with a circuit connection material. In this case, it is also to dissolve the circuit connection material in a solvent, and then apply the solution to either the first circuit member 2 0a or the second circuit member 3 0a -36- (33) 200538522 and dry it. , You can use the first and second circuit components 20a, 30a between the circuit connection material. In addition, in the method of manufacturing a connection structure of a circuit member, in addition to a radical polymerization initiator that generates radicals by heating or light irradiation, a radical polymerization initiator that generates radicals based on ultrasonic waves or electromagnetic waves may be used if necessary. The surface-treated conductive particles 7a may be replaced with other conductive materials. Other conductive materials, such as compounds without nitrogen-silicon bonds in the molecule # Surface-treated conductive particles, particulate or short-fiber carbon, metal strips such as AuNi wires, etc. [Embodiment] Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the foregoing examples. (Example 1) 50 g of a phenoxy resin (manufactured by Ubisoft, trade name PKHC, average molecular weight 45,000) was dissolved in toluene (boiling point 110.6 ° C, SP 値 8.90) / ethyl acetate ( The boiling point is 77.1. (:, SP 値 9.10) = 50/50 mixed solvent to prepare a phenoxy resin solution with a solid content of 40% by mass. In addition, a hydroxyethylmalonic acid dimethyl is prepared as a radical polymerizable compound. Acrylate (produced by Kyoeisha Chemical Co., Ltd., 80MFA) and phosphate dimethacrylate (produced by Kyoeisha Chemical Co., Ltd., P-2M) 〇-37- (34) 200538522 Preparation of a silamine compound (1,3,5,7-tetravinyl_1,3,5,7-tetramethylcyclotetrasilamine with nitrogen-sand bond). Prepare one of the radical polymerization initiators-2 -Ethylhexyl perester (produced by Ben Fat Oil Co., Ltd. under the trade name ParoPP) ° On the surface of particles using polystyrene as a core, a nickel layer having a thickness of 0.2 μm is made of nickel The outer side of the layer is a gold layer with a thickness of 0.0 4 μm. After this treatment, the conductive particles with a diameter of 5 μm are prepared. Conductive particles with a solid content ratio of 1.5% by volume as shown in Table 1 were dispersed. The coating device used was coated with a fluororesin film having a thickness of 80 μm and dried by hot air for 10 minutes to obtain a thickness. 20μηι thin joint material. The obtained film-like circuit connection material is soft at room temperature. Compound) (Chrysin Corporation oxidized dicarbonic acid is laid with nickel as the 'layout and made of gold to obtain an average particle combination, and then the obtained solution is added, The film-like circuit connection at 70 ° C shows excellent -38- (35) 200538522 Table 1 Additive Example 1 Example 2 Example 3 Comparative Example 1 Thermoplastic resin PKHC 50 50 50 50 Radical polymerizable compound 80MFA 50 50 50 50 Lite ester P-2M 10 10 10 10 Free radical polymerization initiator Paro OPP 5 5 5 5 Silamine compound 1,3,5,7-tetravinyl-1,3,5,7-tetra Methylcyclotetrasilazane 3--1,3-divinyl-1,3-diphenyl-1,3-dimethyldisilazane 3--poly (1,2-dimethyl (Silyl silamine) 3 3 (Example 2) 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisilazane (1 Except for Choshin Co., Ltd., everything else was carried out in the same manner as in Example 1. A film-shaped circuit connection material having a thickness of 20 μm was prepared. The obtained film-shaped circuit connection material showed excellent flexibility at room temperature. (Example 3 ) A film-shaped circuit connection material having a thickness of 20 μm was prepared in the same manner as in Example 1 except that poly (1,2-dimethylsilazane) (made by Chosin Co., Ltd.) was used as the silamine. The obtained film-shaped circuit connection material exhibited excellent flexibility at room temperature. -39- (36) 200538522 (Comparative Example 1) A film-shaped circuit connection material having a thickness of 20 µm was prepared in the same manner as in Example 1 except that silamine was not added. Each of the obtained film-shaped electrical connection materials exhibited excellent flexibility at room temperature. (Measurement of Adhesive Strength and Connection Resistance) First, prepare a flexible circuit board (FPC substrate) with 500 copper circuits with a line width of 50 μm, a pitch of 50 μm, and a thickness of 18 μm, and a glass substrate (thickness: 1.1 mm, surface resistance) 20Ω / □) is formed on the 0.2μm indium oxide (ITO) thin layer of the ITO substrate. After setting the film-like circuit connection materials of Examples 1 to 3 and Comparative Example 1 between the FPC substrate and the ITO substrate, a hot pressing device (heating method: contact heating type, manufactured by Toray Machinery Co., Ltd.) was used at 160 ° C, 3 The heat and pressure treatment was performed under the conditions of MPa for 15 seconds. At this time, the FPC substrate and the ITO substrate were connected using a film-shaped circuit connection material with a width of 2 mm. In this way, the connection structure (ITO / FPC connection structure) of the circuit members of Examples 1 to 3 and Comparative Example φ 1 was fabricated. The resistance between the connection circuits of the ITO / FPC connection structure of Examples 1 to 3 and Comparative Example 1 was 240 hours of high temperature and high humidity after being stuck in a high temperature and high humidity tank maintained at 85 ° C and 85% RH. After the treatment, it was measured using a resistance meter. Resistance 値 is the average (X + 3 σ) of 値 measured from 150 points of the resistance between adjacent circuits. The results obtained are shown in Table 2. The adhesion strength of the ITO / FPC connection structure of Examples 1 to 3 and Comparative Example 1 was measured and evaluated using the 90-degree peeling method based on JIS-Z0237. Among them, the measurement device for the "adhesive strength" is Toyobo -40- (37) 200538522 Denso STL UTM-4 (peeling speed 50mm / min, 25 t :). The results obtained are shown in Table 2. Table 2 Resistance of ITO / FPC connection structure 値 (Ω) ITC connection structure,) / FPC adhesion strength Γ / m) SiN connection structure, x / FPC adhesion strength [/ m) Adhesion after high temperature and high humidity treatment after adhesion After high temperature and high humidity treatment after adhesion Example 1 After high temperature and high humidity treatment after adhesion Example 1 2.3 2.5 1000 800 500 300 Example 2 2.2 2.6 950 750 450 200 Example 3 2.8 2.2 900 770 550 150 Comparative Example 1 2.8 8.9 800 700 500 0
其次,準備具有500條線寬50μιη、間距ΙΟΟμιη、厚 度18μιη之銅電路的可撓性電路板(FPC基板),與於玻 璃基板(厚度〇.7mm)上形成0·5μηι之矽化氮(SiNx)薄 贖之SiNx基板。於FPC基板與SiNx基板之間設置實施例 i至3與比較例1之薄膜狀電路連接材料後,使用熱壓裝 眞(加熱方式:接觸加熱型,東麗機械公司製)以160 、3 MPa之條件下進行15秒之加熱加壓處理。此時FPC 棊板與SiNx基板間使用寬度2mm之薄膜狀電路連接材料 連接,依此方式製作實施例1至3與比較例1之電路構件 之連接構造(SiNx/FPC連接構造)。 實施例1至3與比較例1之SiNx /FPC連接構造之黏 -41 - (38) 200538522 著強度,爲使用依JIS-Z023 7爲基準之90度剝離法進行 測定、評估。其結果係如表2所示。 實施例1至3之薄膜狀電路連接材料,於黏著後與高 溫高濕處理後,皆顯示出良好之連接電阻與黏著強度。相 ¥寸於此’黏著劑組成物中未含砂胺院化合物之比較例1, .連接電阻顯示出較高之數値,且特別是SiNx /FPC連接構 造於高溫高濕處理後之黏著力完全消失,而爲一種未能滿 φ 足實用性能之連接結構。又,實施例1至3與比較例1係 屬第一實施形態之實驗。 (經具有氮-矽鍵結之化合物表面處理所得之導電粒子) 首先,於使用聚苯乙烯作爲核之粒子之表面上,舖設 以鎳作爲材料之厚度〇·2μηι之鎳層,於此鎳層之外側,舖 設以金作爲材料之厚度0.04 μιη之金層。經此處理後製得 平均粒徑爲5 μιη之導電粒子(未處理之導電粒子)。 φ 其次,於矽胺烷化合物lg與甲基乙基酮l〇g之混合 溶液中,添加平均粒徑爲5μιη之導電粒子,並於30°C下 攪拌5分鐘。將導電粒子濾出後,於80 °C下乾燥5分鐘, 得經矽胺化合物表面處理所得之導電粒子1至3。其中, 矽胺烷化合物,於表面處理導電粒子1爲1,3,5,7-四乙烯 基·1,3,5,7-四甲基環四矽胺烷(窒素公司製),表面處理 導電粒子2爲1,3-二乙烯基-1,3·二苯基-1,3·二甲基二矽胺 烷(窒素公司製),及表面處理導電粒子3爲聚(1,2-二 甲基矽胺烷)(窒素公司製)。 -42- (39) 200538522 (實施例4) 準備一將苯氧樹脂(優你公司製,商品名PKHC,平 均分子量45,000 ) 5 0g,溶解於質量比爲甲苯(沸點1 10.6 °C,S P 値 8 · 9 0 ) / 乙酸乙酯(沸點 7 7 · 1 °C,S P 値 9 · 1 0 )= 5 0/5 0之混合溶劑中,而製得固體成份40質量%之苯氧樹 脂溶液。 • 另外準備自由基聚合性化合物之羥乙基丙三酸二甲基 丙烯酸酯(共榮社化學公司製,商品名80MFA),與磷酸 酯二甲基丙烯酸酯(共榮社化學公司製,商品名 P-2M )。 準備自由基聚合起始劑之二-2-乙基己基過氧化二碳酸 酯(日本油脂公司製,商品名派羅OPP )。 將依上述內容所準備之材料以表3所示之固體成份比 組合,再添加對電路連接材料之全量爲3體積%之表面處 φ 理導電粒子1,並使其分散。將所得之溶液,使用塗佈裝 置塗佈厚度爲80μηι之氟樹脂薄膜,於7(TC下經10分鐘 熱風乾燥處理後,得厚度2〇Mm之薄膜狀電路連接材料。 所得薄膜狀電路連接材料’於室溫下顯示出極佳之柔軟 性0 -43- (40) 200538522 表3 實施例4 實施例5 實施例6 比較例2 熱塑性樹脂 PKHC 50 50 50 50 自由基聚合性化合物 80MFA 50 50 50 50 萊特酯Ρ-2Μ 10 10 10 --- 10 自由基聚合起始劑 派羅ΟΡΡ 5 5 5 5 • (實施例5) 除將表面處理導電粒子1以表面處理導電粒子2替代 外,其他皆依實施例4相同方法製得厚度爲20μηι之薄膜 狀電路連接材料。所得薄膜狀電路連接材料,於室溫下顯 示出極佳之柔軟性。 (實施例6 ) 除將表面處理導電粒子1以表面處理導電粒子3替代 # 外,其他皆依實施例4相同方法製得厚度爲20μπι之薄膜 狀電路連接材料。所得薄膜狀電路連接材料,於室溫下顯 示出極佳之柔軟性。 (比較例2 ) 除將表面處理導電粒子1以未經矽胺烷化合物表面處 理之導電粒子(未處理之導電粒子)替代外,其他皆依實 施例4相同方法製得厚度爲20μηι之薄膜狀電路連接材 料。所得薄膜狀電路連接材料,於室溫下顯示出極佳之柔 -44· (41) 200538522 軟性。 (黏著強度與連接電阻之測定) 首先,準備具有500條線寬50μηι、間距ΙΟΟμηι、厚 度18μηα之銅電路的可撓性電路板(FPC基板),與於玻 璃基板(厚度1.1mm,表面電阻20Ω/Ε])上形成〇·2μιη 之氧化銦(ΙΤΟ )薄層之ΙΤΟ基板。於FPC基板與ΙΤΟ基 _ 板之間設置實施例4至6與比較例2之薄膜狀電路連接材 料(未處理,寬度2mm )後,使用熱壓裝置(加熱方式: 接觸加熱型,東麗機械公司製)以160 °C、3 MPa之條件下 進行1 5秒之加熱加壓處理。依此方式製作實施例4至6 與比較例2之使用薄膜狀電路連接材料之電路構件之連接 構造(ΙΤΟ/FPC連接構造)。 實施例4至6與比較例2之IT Ο/FPC連接構造之連接 電路間之電阻値,爲於黏著後立即使用電阻測定計測定。 φ 電阻値爲由相鄰電路間之電阻之1 50點測定値之平均 (x + 3 α )。所得結果係如表4所示。 -45- (42) •200538522 表4 ITO/FPC連接構造之電阻値 (Ω) ITO/FPC連接構造之黏著強度 (N/m) 未處理之薄膜狀 電路連接材料 開放放置試驗 後之薄膜狀電 路連接材料 未處理之薄膜狀 電路連接材料 開放放置試驗 後之薄膜狀電 路連接材料 實施例4 2.3 2.2 930 800 實施例5 2.2 2.6 1000 850 實施例6 2.5 2.8 950 770 比較例2 2.8 8.9 800 700 又,使用實施例4至6與比較例2之薄膜狀電路連接 材料所製作之ITO/FPC連接構造之黏著強度,爲使用依 JIS-Z023 7爲基準之90度剝離法進行測定。其中,黏著強 度之測定裝置爲使用東洋博覽公司製電斯龍UTM-4 (剝離 ® 速度5〇mm/min,25°C )。所得結果係如表4所示。 (開放放置(保存)試驗) 將實施例4至6與比較例2之薄膜狀電路連接材料, 於3 5 °C、6 0 % RH恆溫恆濕槽中,開放放置(空氣中)5 小時(開放放置(保存)試驗)。除使用開放試驗後之實 施例4至6與比較例2之薄膜狀電路連接材料以外,並依 上述相同方法製得實施例4至6與比較例2之電路構件之 連接構造(ITO/FPC連接構造)。所得ITO/FPC連接構造 -46 - (43) *200538522 之相鄰皆電路間之電阻値與黏著強度亦依前述相同方法測 定。所得結果係如表4所示。 將實施例4至6之薄膜狀電路連接材料,於黏著後與 開放放置試驗後,皆顯示出良好之連接電阻與黏著強度。 特別是使用開放放置試驗後之薄膜狀電路連接材料所得之 電路構件之連接構造,於實施例4至6皆顯示出優良之安 定化連接電阻特性,故應具有極佳之黏著強度。相對於 φ 此’含有未處理導電粒子之比較例2,開放放置試驗後之 連接電阻顯示出較高數値,得知其連接電阻之安定性並不 佳。又,比較例2之連接電阻之安定性並不充分,故得知 其黏著強度亦不佳。又,實施例4至6與比較例2爲本發 明第2實施形態之實施例。 本發明之黏著劑組成物,因具有極佳之黏著強度,特 別是於高溫高濕(8 5 °C、8 5 % RH )條件下仍顯示出絕佳之 黏著強度。又,本發明之黏著劑組成物,由至少表面爲金 • 屬開始至由無機材質所構成之被黏著物皆顯示出極高之黏 著強度,且可低溫快速硬化。 又,使用本發明之黏著劑組成物所得之電路連接材 料,因適合連接電路構件(例如半導體元件、液晶顯示元 件),故使用前述電路連接材料所製作之電路構件之連接 構造,可充分降低連接電阻,而具有極佳之黏著強度(特 別是於高溫高濕下)信賴性。又,使用前述電路連接材料 之電路構件之連接構造之製造方法,因可低溫快速硬化, 故可充分抑制對電路構件之不良影響而提昇生產效率。 -47- (44) 200538522 本發明之第2實施形態之電路連接材料,於保存後連 接電阻仍具有優良之安定性,且可低溫快速硬化,故適合 連接電路構件(例如半導體元件、液晶顯示元件)。又, 本發明之第2實施形態之電路連接材料,於保存後連接電 阻仍具有優良之安定性之特徵,應爲具有充分之黏著強度 所造成者。又,使用前述電路連接材料所製作之電路構件 之連接構造,可充分降低連接電阻並具有安定性,故具有 φ 極佳黏著強度之信賴性。又,使用前述電路連接材料之電 路構件之連接構造之製造方法,因可低溫快速硬化,故可 充分抑制對電路構件之不良影響而提昇生產效率。 【圖式簡單說明】 圖1爲本發明之薄膜狀黏著劑之一實施形態的截面 圖。 圖2爲本發明之電路構件之連接構造之一實施形態的 • 槪略圖。 圖3 ( a )至圖3 ( c )分別爲連接電路構件之連續步 驟圖。 圖4爲本發明之薄膜狀電路連接材料之一實施形態的 槪略截面圖。 圖5爲本發明之電路構件之連接構造之實施形態的槪 略截面圖。 圖6 ( a )至圖6 ( c )分別爲連接電路構件之連續步 驟圖。 -48- (45) 200538522 【主要元件符號說明】 I 薄膜狀黏著劑 5 黏著劑組成物 7 導電粒子 10 電路連接構件 II 絕緣性物質Next, a flexible circuit board (FPC substrate) having 500 copper circuits with a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm was prepared, and 0.5 μm of silicon silicide (SiNx) was formed on a glass substrate (thickness 0.7 mm) A thin redeemed SiNx substrate. After setting the film-like circuit connection materials of Examples i to 3 and Comparative Example 1 between the FPC substrate and the SiNx substrate, a thermocompression attachment (heating method: contact heating type, manufactured by Toray Machinery Co., Ltd.) was used at 160 and 3 MPa. Under the conditions, heat and pressure treatment was performed for 15 seconds. At this time, the FPC fascia and the SiNx substrate were connected using a film-shaped circuit connection material with a width of 2 mm. In this way, the connection structure (SiNx / FPC connection structure) of the circuit members of Examples 1 to 3 and Comparative Example 1 was fabricated. The adhesion of the SiNx / FPC connection structure of Examples 1 to 3 and Comparative Example 1 was measured and evaluated using the 90-degree peeling method based on JIS-Z023 7 as the basis. The results are shown in Table 2. The film-like circuit connection materials of Examples 1 to 3 showed good connection resistance and adhesion strength after being adhered and treated at high temperature and high humidity. The comparison example 1 does not contain a sarcosin compound in this adhesive composition. The connection resistance shows a higher number, especially the adhesion of the SiNx / FPC connection structure after high temperature and high humidity treatment. It completely disappears, and it is a connection structure that cannot satisfy the practical performance. In addition, Examples 1 to 3 and Comparative Example 1 are experiments of the first embodiment. (Conductive particles obtained by surface treatment of a compound having a nitrogen-silicon bond) First, on the surface of particles using polystyrene as a core, a nickel layer having a thickness of 0.2 μm as a material of nickel is laid, and the nickel layer is formed thereon. On the outside, a gold layer with a thickness of 0.04 μm is laid using gold as a material. After this treatment, conductive particles (untreated conductive particles) having an average particle diameter of 5 μm were prepared. φ Next, in a mixed solution of the silamine compound lg and 10 g of methyl ethyl ketone, conductive particles having an average particle diameter of 5 μm were added, and the mixture was stirred at 30 ° C. for 5 minutes. After the conductive particles were filtered out, the conductive particles were dried at 80 ° C. for 5 minutes to obtain conductive particles 1 to 3 obtained by the surface treatment of the silamine compound. Among them, the silamine compound is 1,3,5,7-tetravinyl · 1,3,5,7-tetramethylcyclotetrasilazane (made by Chosin Corporation) on the surface, and the surface is treated. The conductive particles 2 are 1,3-divinyl-1,3 · diphenyl-1,3 · dimethyldisilazane (manufactured by Chosin Corporation), and the surface-treated conductive particles 3 are poly (1,2- Dimethylsilamine (manufactured by Chosin). -42- (39) 200538522 (Example 4) Prepare 50 g of a phenoxy resin (manufactured by Ubisoft, trade name PKHC, with an average molecular weight of 45,000) and dissolve it in toluene (boiling point 1 10.6 ° C, SP 値). 8 · 9 0) / ethyl acetate (boiling point 7 7 · 1 ° C, SP 値 9 · 1 0) = 5 0/5 0, and a phenoxy resin solution with a solid content of 40% by mass was prepared. • Separately prepared hydroxyethylmalonic acid dimethacrylate (produced by Kyoeisha Chemical Co., Ltd., 80MFA), which is a radical polymerizable compound, and phosphate dimethacrylate (produced by Kyoeisha Chemical Co., Ltd.). Name P-2M). A di-2-ethylhexyl peroxydicarbonate (produced by Nippon Oil Corporation, trade name Paro OPP) was prepared as a radical polymerization initiator. The materials prepared according to the above were combined at the solid content ratio shown in Table 3, and then the φ physical conductive particles 1 at the surface of 3 vol% of the total amount of the circuit connection material were added and dispersed. The obtained solution was coated with a fluororesin film having a thickness of 80 μm using a coating device, and then subjected to hot air drying treatment at 7 ° C for 10 minutes to obtain a film-shaped circuit connection material having a thickness of 20 Mm. The obtained film-shaped circuit connection material 'Excellent softness at room temperature 0 -43- (40) 200538522 Table 3 Example 4 Example 5 Example 6 Comparative Example 2 Thermoplastic resin PKHC 50 50 50 50 Radical polymerizable compound 80MFA 50 50 50 50 Wright ester P-2M 10 10 10 --- 10 Free radical polymerization initiator PaloPP 5 5 5 5 • (Example 5) Except replacing surface-treated conductive particles 1 with surface-treated conductive particles 2 A film-shaped circuit connection material having a thickness of 20 μm was prepared in the same manner as in Example 4. The obtained film-shaped circuit connection material exhibited excellent flexibility at room temperature. (Example 6) Except the surface-treated conductive particles 1 to The surface-treated conductive particles 3 were replaced by #, and the others were prepared in the same manner as in Example 4 into a film-shaped circuit connection material having a thickness of 20 μm. The obtained film-shaped circuit connection material showed excellent softness at room temperature. (Comparative Example 2) A thin film having a thickness of 20 μm was prepared in the same manner as in Example 4 except that the surface-treated conductive particles 1 were replaced with conductive particles (untreated conductive particles) not surface-treated with a silamine compound. Circuit connection material. The obtained film-shaped circuit connection material shows excellent flexibility at room temperature. (44) (2005) 200538522. (Measurement of adhesive strength and connection resistance) First, prepare 500 lines with a width of 50 μm, A flexible circuit board (FPC substrate) of a copper circuit with a pitch of 100 μηι and a thickness of 18 μηα, and a thin layer of 0.2 μm of indium oxide (ΙΤΟ) on the glass substrate (thickness 1.1mm, surface resistance 20Ω / Ε). Substrate. Between the FPC substrate and the ITO-based substrate, the film-shaped circuit connection materials (untreated, width 2mm) of Examples 4 to 6 and Comparative Example 2 were set, and then a hot pressing device (heating method: contact heating type, east (Manufactured by Lai Machinery Co., Ltd.) under the conditions of 160 ° C and 3 MPa for 15 seconds. The thin film circuit connection materials of Examples 4 to 6 and Comparative Example 2 were produced in this manner. Connection structure of circuit components (ITO / FPC connection structure). The resistance between connection circuits of IT Ο / FPC connection structure of Examples 4 to 6 and Comparative Example 2 was measured using a resistance meter immediately after adhesion. Φ resistance値 is the average (x + 3 α) of 値 measured from 150 points of resistance between adjacent circuits. The results are shown in Table 4. -45- (42) • 200538522 Table 4 Resistance of ITO / FPC connection structure Ω (Ω) Adhesive strength of ITO / FPC connection structure (N / m) Unprocessed film-shaped circuit connection material Untreated film-shaped circuit connection material Untreated film-shaped circuit connection material Example 4 of circuit connection material 2.3 2.2 930 800 Example 5 2.2 2.6 1000 850 Example 6 2.5 2.8 950 770 Comparative Example 2 2.8 8.9 800 700 The film-shaped circuit connection materials of Examples 4 to 6 and Comparative Example 2 were used. The adhesive strength of the fabricated ITO / FPC connection structure was measured using a 90-degree peel method in accordance with JIS-Z023 7 as a standard. Among them, the measuring device for the adhesive strength was the electric Sloan UTM-4 (peeling speed 50mm / min, 25 ° C) manufactured by Toyo Expo. The results obtained are shown in Table 4. (Open storage (storage) test) The film-shaped circuit connection materials of Examples 4 to 6 and Comparative Example 2 were left open (in air) for 5 hours at 35 ° C, 60% RH constant temperature and humidity tank ( Open storage (preservation) test). Except for using the film-shaped circuit connection materials of Examples 4 to 6 and Comparative Example 2 after the open test, the connection structure (ITO / FPC connection) of circuit components of Examples 4 to 6 and Comparative Example 2 was prepared in the same manner as described above. structure). The resulting ITO / FPC connection structure -46-(43) * 200538522 The resistance 皆 and adhesion strength between adjacent circuits are also measured in the same way as described above. The results obtained are shown in Table 4. The film-shaped circuit connection materials of Examples 4 to 6 showed good connection resistance and adhesion strength after the adhesion and after the open-position test. In particular, the connection structure of the circuit members obtained by using the film-shaped circuit connection material after the open placement test shows excellent stable connection resistance characteristics in Examples 4 to 6, so it should have excellent adhesive strength. Compared to φ, which is a comparative example 2 containing untreated conductive particles, the connection resistance after the open-position test showed a higher number, and it was found that the stability of the connection resistance was not good. In addition, since the stability of the connection resistance of Comparative Example 2 was not sufficient, it was found that its adhesive strength was also poor. Examples 4 to 6 and Comparative Example 2 are examples of the second embodiment of the present invention. The adhesive composition of the present invention, because of its excellent adhesive strength, especially under high temperature and high humidity (85 ° C, 85% RH) conditions still shows excellent adhesive strength. In addition, the adhesive composition of the present invention exhibits extremely high adhesion strength from at least a metal surface to an adherend composed of an inorganic material, and can be rapidly hardened at a low temperature. In addition, the circuit connection material obtained by using the adhesive composition of the present invention is suitable for connecting circuit components (such as semiconductor elements and liquid crystal display elements). Therefore, the connection structure of circuit components made using the circuit connection material described above can sufficiently reduce the connection. Resistance, and has excellent adhesion strength (especially under high temperature and humidity) reliability. In addition, the manufacturing method of the connection structure of the circuit member using the aforementioned circuit connection material can be rapidly hardened at low temperature, so it can sufficiently suppress the adverse effect on the circuit member and improve the production efficiency. -47- (44) 200538522 The circuit connection material according to the second embodiment of the present invention has excellent stability after connection, and can be rapidly hardened at low temperature, so it is suitable for connecting circuit components (such as semiconductor elements, liquid crystal display elements). ). In addition, the circuit connection material of the second embodiment of the present invention has the characteristics of excellent stability after connection, and should be caused by having sufficient adhesive strength. In addition, the connection structure of circuit members made using the aforementioned circuit connection materials can sufficiently reduce the connection resistance and has stability, so it has the reliability of φ excellent adhesive strength. In addition, the manufacturing method of the connection structure of the circuit member using the aforementioned circuit connection material can be rapidly hardened at low temperature, so that it can sufficiently suppress the adverse effect on the circuit member and improve the production efficiency. [Brief description of the drawings] Fig. 1 is a cross-sectional view of one embodiment of a film-shaped adhesive of the present invention. Fig. 2 is a schematic diagram of an embodiment of a connection structure of a circuit component of the present invention. Figures 3 (a) to 3 (c) are successive step diagrams for connecting circuit components, respectively. Fig. 4 is a schematic cross-sectional view of an embodiment of a film-like circuit connection material of the present invention. FIG. 5 is a schematic cross-sectional view of an embodiment of a connection structure of a circuit member of the present invention. Figures 6 (a) to 6 (c) are successive step diagrams for connecting circuit components, respectively. -48- (45) 200538522 [Description of main component symbols] I Film adhesive 5 Adhesive composition 7 Conductive particle 10 Circuit connection member II Insulating substance
20 第一電路構件 21 (第一)電路基板 21a 主面 22 (第一)電路電極 30 第二電路構件 3 1 (第二)電路基板 31a主面 32 (第二)電路電極 40 電路連接材料 -4920 First circuit member 21 (first) circuit substrate 21a main surface 22 (first) circuit electrode 30 Second circuit member 3 1 (second) circuit substrate 31a main surface 32 (second) circuit electrode 40 Circuit connection material- 49