TW200530754A - Pattern forming process - Google Patents
Pattern forming process Download PDFInfo
- Publication number
- TW200530754A TW200530754A TW94103896A TW94103896A TW200530754A TW 200530754 A TW200530754 A TW 200530754A TW 94103896 A TW94103896 A TW 94103896A TW 94103896 A TW94103896 A TW 94103896A TW 200530754 A TW200530754 A TW 200530754A
- Authority
- TW
- Taiwan
- Prior art keywords
- laser
- pattern
- pattern forming
- patent application
- item
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/7005—Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/031—Organic compounds not covered by group G03F7/029
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70283—Mask effects on the imaging process
- G03F7/70291—Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0046—Photosensitive materials with perfluoro compounds, e.g. for dry lithography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
200530754 九、發明說明: 【發明所屬之技術領域】 本發明係關於圖案形成方法,其中使經雷射調變器( 如空間光調變器)調變之雷射光束對圖案形成材料成像, 因而將圖案形成材料曝光。 【先前技術】 其中將藉空間光調變器等調變之光或雷射光束導引至 成像光學系統以將圖案形成材料曝光之曝光裝置已逐漸普 及。一般而言’此曝光裝置包括裝有許多個成像部份之平 面陣列之空間光調變器(其視各種控制信號而調變入射光 或雷射光束)、將雷射光束照射至空間光調變器之雷射光 源、及由經調變雷射光束通過空間光調變器在圖案形成材 料上形成影像之成像光學系統(Akito Ishikawa之 ”Shortening of Research and Application to Massproduction by Maskless Exposure”,Electronics Jisso Gijyutsu,Gicho200530754 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a pattern forming method, in which a laser beam modulated by a laser modulator (such as a spatial light modulator) images a pattern forming material, so The pattern forming material is exposed. [Prior Art] Exposure devices in which modulated light such as a spatial light modulator or a laser beam is guided to an imaging optical system to expose a pattern forming material have gradually become common. Generally speaking, this exposure device includes a spatial light modulator (which modulates incident light or laser beam depending on various control signals) equipped with a planar array of many imaging parts, and irradiates the laser beam to the spatial light modulator. Laser source of transformer, and imaging optical system for forming image on pattern forming material by modulated laser beam through spatial light modulator ("Shortening of Research and Application to Massproduction by Maskless Exposure" by Akito Ishikawa, Electronics Jisso Gijyutsu, Gicho
Publishing & Advertising Co.,Ltd.編著,第 18 卷,第 6 期 ,第74-79頁(2002);日本專利申請案公開(jp-A)第2004_ 1244 號)。 空間光調變器之實例包括液晶顯示器(LCD)、數位微 鏡裝置(DM D)等。DMD指裝有許多個微鏡之平面陣列作爲 視控制信號而改變反射角度之成像部份之鏡裝置。 在曝光裝置中,經常希望將投射至圖案形成材料上之 影像放大,因此利用放大成像光學系統作爲反映此需求之 成像光學系統。然而,僅將經調變光自空間光調變器導引 200530754 至放大成像光學系統中之手段導致放大來自空間光調變器 各成像部份之光通量,造成像素淸晰度由於投射圖案內像 素尺寸放大而降低之缺點。 爲了解決此缺點,上述之JP-A第2004- 1 244號專利提 議一種放大投射,其中將第一成像光學裝置置於經空間光 調變器調變之雷射光束之路徑上,及將微透鏡陣列配置於 第一成像光學裝置之成像表面上,此微透鏡各對應空間光 調變器之成像部份,將第二成像光學裝置配置於來自微透 鏡陣列之雷射光束之路徑上,其使經調變光對圖案形成材 料或螢幕成像,及藉第一與第二成像光學裝置將影像放大 。在此提議中,在可將投射至圖案形成材料或螢幕上之影 像尺寸放大時,來自空間光調變器各成像部份之雷射光束 係藉陣列之各微透鏡收集;因此,將投射影像之繪圖尺寸 或點尺寸聚焦及減小,造成較高之影像銳利度。 此外,已提議組合作爲空間光調變器之DMD與微透鏡 陣列之曝光裝置(參見JP-A第2001-305663號專利)亦已 提議類似裝置,其中將具有開口(對應陣列之微透鏡)之 穿孔板配置於微透鏡陣列後方,使得僅使通過微透鏡之雷 射光束通過此開口(參見JP-A第200 1 -5 0062 8號專利)。 在這些曝光裝置中,排除不對應各開口之來自相鄰微透鏡 之入射雷射光束可增加消光比例。 然而,這些提議遭受因利用藉陣列之微透鏡收集之雷 射光束而使形成於圖案形成材料上之影像變形之問題。此 問題在利用DMD作爲空間光調變器時特別明顯。 200530754 因此,迄今仍未提供可形成具有高精細度與精確度, 及由於抑制在圖案形成材料上形成之影像變形而造成之充 分效率之永久圖案(如線路圖案)之圖案形成方法;而且 目前極需要改良此圖案形成方法。 【發明內容】 本發明之目的爲提供可形成具有高精細度與精確度, 及由於抑制在圖案形成材料上形成之影像變形而造成之充 分效率之永久圖案(如線路圖案)之圖案形成方法。 此目的可藉本發明達成。依照本發明,提供一種圖案 形成方法,其包括調變自雷射光源照射之雷射光束,補償 此經調變雷射光束,及藉此經調變與補償雷射光束使感光 層曝光,其中感光層係沈積於撐體上形成圖案形成材料, 調變係藉包括多個各可接收雷射光束且將經調變雷射輸出 之成像部份之雷射調變器而實行,補償係藉由傳送經調變 雷射光束通過多個可由於成像部份輸出表面之扭曲造成補 償像差之具有非球面之微透鏡而實行,而且多個微透鏡係 配置成微透鏡陣列。 在此圖案形成方法中,雷射光源係將雷射光束朝向雷 射調變器照射,多個成像部份接收之雷射光束係經由將照 射來自成像部份之雷射光束而調變,由於成像部份輸出表 面之扭曲造成之像差因通過多個微透鏡傳送經調變雷射光 束而補償,因此有效地控制形成於圖案形成材料上之影像 之扭曲。結果,圖案形成材料上之曝光可爲高精細性及精 確性,而且感光層之顯影可造成高精細及精確圖案。 200530754 較佳爲,此非球面爲複曲面。非球面之複曲面可由於 成像部份輸出表面之扭曲導致像差之有效補償,而且可有 效地控制形成於圖案形成材料上之影像之扭曲。結果,圖 案形成材料上之曝光可爲高精細性及精確性,而且感光層 之藏影可造成筒精細及精確圖案。 較佳爲,此雷射調變器可視圖案資訊而控制多個成像 部份之一部份。視圖案資訊而控制多個成像部份之一部份 可造成較高速度之雷射光束調變。 較佳爲,此雷射調變器爲空間光調變器,更佳爲,此 空間光調變器爲數位微鏡裝置(DMD)。 較佳爲,此曝光係藉通過開口陣列傳送之雷射光束實 行。此藉通過開口陣列傳送之雷射光束之曝光可增加消光 比例。結果,圖案形成材料上之曝光可爲高精細性及精確 性’而且感光層之顯影可造成高精細及精確圖案。 較佳爲,此曝光係同時相對地移動雷射光束與感光層 而實行。此同時相對地移動雷射光束與感光層之曝光可導 致以較高速度曝光。 較佳爲,將感光層顯影係在曝光後實行,及形成永久 圖案係在顯影後實行。 較佳爲,此永久圖案爲線路圖案,及此永久圖案係藉 蝕刻處理與電鍍處理至少之一形成,其可導致高精細及精 確線路圖案。 較佳爲,此雷射光源可一起照射二或更多型雷射。此 二或更多型雷射之照射可導致以較長之焦點深度曝光。結 200530754 果’圖案形成材料上之曝光可爲高精細性及精確性,而且 感光層之顯影可造成高精細及精確圖案。 較佳爲’此雷射光源包括多雷射、多模式光纖、及將 $ §多胃射·之雷射光束收集至多模式光纖中之收集性光學 系統。此組態可導致以較長之焦點深度曝光。結果,圖案 形成材料上之曝光可爲高精細性及精確性,而且感光層之 顯影可造成高精細及精確圖案。 較佳爲,此感光層包括黏合劑、可聚合化合物、與光 聚合引發劑;較佳爲,此黏合劑含酸性基;較佳爲,此黏 合劑含乙烯基共聚物;而且較佳爲,此黏合劑之酸値爲 70至25 0毫克KOH/克。 較佳爲’此可聚合化合物包括含胺基甲酸酯基與芳基 至少之一之單體。 較佳爲,此光聚合引發劑包括選自鹵化烴衍生物、六 芳基貳咪唑、肟衍生物' 有機過氧化物、硫化合物、酮化 合物、芳族鐵鹽、醯基膦氧化物、與金屬錯合物之化合物 〇 較佳爲,此感光層包括3 0至9 0質量%之黏合劑、5 至6 0質量%之可聚合化合物、及〇 · 1至.3 0質量%之光聚 合引發劑;較佳爲,此感光層之厚度爲1至100微米。 較佳爲,此撐體包括合成樹脂且爲透明;較佳爲,此 撐體爲長形;較佳爲,此圖案形成材料爲藉由捲成捆形而 形成之長形。 較佳爲,在此圖案形成材料之感光層上形成保護膜。 -10- 200530754 【實施方式】 (圖案形成方法) 依照本發明之圖案形成方法包括曝光步驟, 選擇之其他步驟。 [曝光步驟] 在曝光步驟中提供一種圖案形成方法,其包 雷射光源照射之雷射光束,補償此經調變雷射光 此經調變與補償雷射光束使感光層曝光,其中感 積於撐體上形成圖案形成材料,調變係藉包括多 收雷射光束且將經調變雷射輸出之成像部份之雷 而實行’補償係藉由傳送經調變雷射光束通過多 成像部份輸出表面之扭曲造成補償像差之具有非 透鏡而實行,而且多個微透鏡係配置成微透鏡陣: -雷射調變器- 雷射調變器可視應用而適當地選擇,只要其 成像部份。雷射調變器之較佳實例包括空間光調: 空間光調變器之指定實例包括數位微鏡裝置 微電機械系統型之空間光調變器、PLZT元件、 片;其中,D M D較佳。 雷射調變器係參考以下之圖式而例示地解釋 DMD 50爲如第1圖所示,在SRAM光電管 元60上具有許多個微鏡62之光電管陣列(例如 768個)之鏡裝置,其中各微鏡作爲一個成像部 成像部份之最上位置處,微鏡6 2經支柱支撐。 及適當地 括調變自 束,及藉 光層係沈 個各可接 射調變器 個可由於 球面之微 列。 包括多個 變器。 (DMD)、 及液晶碎 〇 或儲存單 ,1024 X 份。在各 將具有較 -11- 200530754 高反射性之材料(如鋁)蒸氣沈積於微鏡表面上。 62之反射度爲90%或更高;例如,縱向及寬度方向 列節距各爲1 3.7微米。此外,將習知半導體記憶體 製造之矽閘CMOS之SRAM光電管60經含鉸鏈與轭 柱配置於各微鏡下方。此鏡裝置係完整地構成單片。 在將數位信號寫入DMD 50之SRAM光電管60 以支柱支撐之微鏡62朝向其上配置DMD 50之基板 圍繞成爲轉動軸之對角之土 α度內,例如,1 2度。| 圖顯示微鏡62在開狀態傾斜+α度之情況,第2Β圖 微鏡62在關狀態傾斜-α度之情況。因此,藉由視圖 訊而控制DMD 50之成像部份中微鏡62之各傾斜角 DMD 50上之各入射雷射光束Β按微鏡62之各傾斜 反射,如第1圖所示。 順便一提,第1圖例示地顯示DMD 5 0之部份地 情況,其中微鏡 62係控制於-α度或+α度。連接至 50之控制器302傳送各微鏡62之開關控制。光學吸 (未示)係配置於關狀態之微鏡62所反射雷射光束 路徑上。 較佳爲,DMD 50對次掃描方向稍微傾斜成較短 現預定角度之情況,例如,〇 · 1至5度。第3 Α圖顯 未包括DMD 50時各微鏡之經反射雷射影像或曝光光 之掃描軌跡;第3B圖顯示在包括DMD 50時各微鏡 反射雷射影像或曝光光束5 3之掃描軌跡。 在 DMD50中,將許多個微鏡(例如,1024個 微鏡 之陣 製法 之支 時, 傾斜 I 2A 顯示 案資 度, 方向 放大 DMD 收器 B之 側出 示在 束53 之經 )配 -12- 200530754 置於較長方向形成一個陣列,及將許多個陣列(例如, 7 5 6個)配置於較短方向。如此,藉由如第3 B圖所示傾 斜DMD 50,可使各微鏡之曝光光束53之掃描軌跡或線節 距P2小於不傾斜DMD 5〇之曝光光束53之掃描軌跡或線 節距 Pi,因而可明顯地改良解析度。另一方面,DMD 50 之傾斜角度小,因此,在DMD 50傾斜時之掃描方向 W2 與在D M D 5 0不傾斜時之掃描方向W 1大約相同。 以下解釋將雷射調變器之調變速率加速之方法(以下 稱爲「高速調變」)。。 較佳爲,雷射調變器可視圖案資訊而控制在成像部份 中連續地配置之少於”η”個之任何成像部份(,,η” : 2或更 大之整數)。由於雷射調變器之資料處理速率存在限制, 而且每行之調變速率係定義爲與所利用之成像部份數量成 正比,每行之調變速率可僅經由利用連續地配置之少於 ”η”個之成像部份而增加。 高速調變係參考以下之圖式而解釋。 在將雷射光束Β自纖維陣列雷射光源6 6照射至D M D 50時’在DMD 50爲開狀態之微鏡處之反射雷射光束因透 鏡5 4,5 8而在圖案形成材料1 5 〇上成像。因此,.藉各成像 部份將自纖維陣列雷射光源照射之雷射光束調整爲開或關 ,及使圖案形成材料1 5 0在大約相同數量之成像部份單元 或作爲用於DMD 50之成像部份之曝光區域〗68中曝光。 此外,在以平台1 5 2將圖案形成材料丨5 〇以固定速率輸送 時,藉掃描器162對圖案形成材料15〇以與平台移動方向 -13- 200530754 相反之方向次掃描,如此對應各曝光頭1 6 6形成帶形曝光 區域1 7 0。 在此實例中,微鏡係配置於D M D 5 0上成爲主掃描方 向之1 024個陣列及掃描方向之次76 8個陣列,如第4Α及 4 Β圖所示。這些微鏡中,可藉控制器3 0 2控制及驅動一 部份微鏡,例如,1 024 X 25 6個。 在此控制中,可使用配置於DMD 50之中央區域之微 鏡陣列,如第4Α圖所示;或者,可使用配置於DMD 50 之邊緣區域之微鏡陣列,如第4Β圖所示。此外,在微鏡 部份地受損時,可視狀況而適當地改變所利用之微鏡,使 得利用未受損之微鏡。 由於DMD 50之資料處理速率存在限制,而且每行之 調變速率係定義爲與所利用之成像部份數量成正比,部份 利用微鏡陣列導致較高之每行調變速率。此外,在曝光係 藉由相對曝光區域連續地移動曝光頭而進行時,次掃描方 向未必需要全部成像部份。 在圖案形成材料15〇之次掃描由掃描器162完成,而 且藉感應器1 6 4偵測圖案形成材料1 5 〇後端時,平台1 5 2 沿導件1 5 8回到閘1 60最上方之原始位置處,而且平台 1 5 2再度沿導件1 5 8以固定速率自閘1 6 〇上方移至下方。 例如,在利用微鏡之7 6 8個陣列中之3 8 4個陣列時, 調變速率相較於利用所有7 6 8個陣列可增爲兩倍,此外, 在在利用微鏡之7 6 8個陣列中之2 5 6個陣列時,調變速率 相較於利用所有7 6 8個陣列可增爲三倍。 -14- 200530754 如以上所解釋,在DMD 50在主掃描方向具有1024 個微鏡陣列及在次掃描方向具有7 6 8個微鏡陣列時,相較 於控制及驅動全部微鏡陣列,控制及驅動部份微鏡陣列可 導致較高之每行調變速率。 在反射性表面之各角度可視各種控制信號而改變,而 且基板在指定方向較其垂直方向長時,除了控制及驅動部 份微鏡陣列,其上許多個微鏡以平面陣列配置基板上之長 形DMD類似地增加調變速率。 較佳爲,曝光係在相對地移動曝光雷射及熱感層時實 行;更佳爲,曝光係組合前述之高速調變,因而曝光可在 較短時間內以較高速率進行。 如第5圖所示,圖案形成材料150可藉掃描器162在 X方向之單次掃描而使全部表面曝光;或者,如第6A及 6B圖所不,圖案形成材料150可藉重複多次掃描使得, 圖案形成材料1 5 0在X方向經掃描器! 6 2掃描,然後將掃 描器162以Y方向移動一步,繼而在X方向掃描,至而 使全部表面曝光。在此實例中,掃描器i 62包括十八個曝 光頭1 6 6 ;各曝光頭包括一個雷射光源及雷射調變器。 曝光係在感光層之部份區域上實行,因而將此部份區 域硬化’繼而在後述之顯影步驟中去除部份硬化區域以外 之未硬化區域,如此形成圖案。 包括雷射調變器之圖案形成裝置係參考以下之圖式而 例示地解釋。 包括雷射調變器之圖案形成裝置裝有平台152,其將 -15-Published by Publishing & Advertising Co., Ltd., Vol. 18, No. 6, pp. 74-79 (2002); Japanese Patent Application Publication (jp-A) No. 2004_1244). Examples of the spatial light modulator include a liquid crystal display (LCD), a digital micromirror device (DM D), and the like. DMD refers to a mirror device with a flat array of many micromirrors as the imaging part that changes the reflection angle depending on the control signal. In an exposure device, it is often desired to enlarge an image projected onto a pattern forming material, and therefore a magnifying imaging optical system is used as an imaging optical system reflecting this demand. However, the method of only directing modulated light from the spatial light modulator to 200530754 into the magnifying imaging optical system resulted in magnifying the luminous flux from each imaging part of the spatial light modulator, resulting in pixel sharpness due to the pixels in the projection pattern. The disadvantage is that the size is enlarged and reduced. In order to solve this disadvantage, the aforementioned JP-A No. 2004-1 244 proposes an enlarged projection in which a first imaging optical device is placed on a path of a laser beam modulated by a spatial light modulator, and The lens array is disposed on the imaging surface of the first imaging optical device. Each of the microlenses corresponds to the imaging part of the spatial light modulator. The second imaging optical device is disposed on the path of the laser beam from the microlens array. The modulated light is used to image the pattern forming material or the screen, and the image is enlarged by the first and second imaging optical devices. In this proposal, when the size of the image projected onto the pattern forming material or the screen can be enlarged, the laser beam from each imaging part of the spatial light modulator is collected by the microlenses of the array; therefore, the projected image The drawing size or dot size is focused and reduced, resulting in higher image sharpness. In addition, an exposure device combining a DMD and a microlens array as a spatial light modulator has been proposed (see JP-A No. 2001-305663 patent). A similar device has also been proposed in which an opening (a microlens corresponding to the array) The perforated plate is arranged behind the micro lens array so that only the laser beam passing through the micro lens passes through this opening (see JP-A No. 200 1 -5 0062 8 patent). In these exposure devices, excluding incident laser beams from adjacent microlenses that do not correspond to each opening can increase the extinction ratio. However, these proposals suffer from the problem of distorting the image formed on the pattern forming material by using the laser beam collected by the microlenses of the array. This problem is particularly noticeable when using DMDs as spatial light modulators. 200530754 Therefore, a pattern forming method capable of forming a permanent pattern (such as a circuit pattern) having high precision and accuracy and sufficient efficiency due to suppression of image distortion formed on a pattern forming material has not yet been provided; This pattern forming method needs to be improved. [Summary of the Invention] An object of the present invention is to provide a pattern forming method capable of forming a permanent pattern (such as a circuit pattern) having high precision and accuracy and sufficient efficiency due to suppressing deformation of an image formed on a pattern forming material. This object can be achieved by the present invention. According to the present invention, a pattern forming method is provided, which includes modulating a laser beam irradiated from a laser light source, compensating the modulated laser beam, and exposing the photosensitive layer by modulating and compensating the laser beam, wherein The photosensitive layer is deposited on the support to form a patterning material. Modulation is performed by a laser modulator that includes a plurality of imaging parts that can each receive a laser beam and output the modulated laser light. It is performed by transmitting a modulated laser beam through a plurality of aspherical microlenses that can compensate for aberrations due to distortion of the output surface of the imaging part, and a plurality of microlenses are arranged into a microlens array. In this pattern forming method, the laser light source irradiates the laser beam toward the laser modulator, and the laser beam received by the plurality of imaging sections is modulated by irradiating the laser beam from the imaging section. The aberration caused by the distortion of the output surface of the imaging portion is compensated by transmitting the modulated laser beam through a plurality of microlenses, so the distortion of the image formed on the pattern forming material is effectively controlled. As a result, the exposure on the pattern forming material can be high-definition and accuracy, and the development of the photosensitive layer can result in a high-definition and precise pattern. 200530754 Preferably, the aspheric surface is a toric surface. The aspheric toric surface can effectively compensate for aberrations due to distortion of the output surface of the imaging part, and can effectively control the distortion of the image formed on the pattern forming material. As a result, the exposure on the pattern-forming material can be highly precise and precise, and the shadowing of the photosensitive layer can cause a fine and precise pattern in the barrel. Preferably, the laser modulator controls a portion of the plurality of imaging portions based on pattern information. Controlling one of the multiple imaging sections by viewing the project information can result in higher speed laser beam modulation. Preferably, the laser modulator is a spatial light modulator, and more preferably, the spatial light modulator is a digital micromirror device (DMD). Preferably, the exposure is performed by a laser beam transmitted through the aperture array. This can increase the extinction ratio by the exposure of the laser beam transmitted through the aperture array. As a result, the exposure on the pattern forming material can be highly precise and precise 'and the development of the photosensitive layer can result in a highly fine and accurate pattern. Preferably, this exposure is performed by moving the laser beam and the photosensitive layer relatively relatively simultaneously. This relatively moving the laser beam and the exposure of the photosensitive layer simultaneously can result in higher speed exposure. Preferably, the development of the photosensitive layer is performed after exposure, and the formation of a permanent pattern is performed after development. Preferably, the permanent pattern is a circuit pattern, and the permanent pattern is formed by at least one of an etching process and a plating process, which can result in a high-definition and precise circuit pattern. Preferably, the laser light source can illuminate two or more types of lasers together. Exposure to these two or more types of lasers may result in longer focal depth exposures. Results 200530754 The exposure on the fruit 'patterning material can be highly precise and precise, and the development of the photosensitive layer can result in high fine and precise patterns. Preferably, the laser light source includes a multi-laser, a multi-mode optical fiber, and a collecting optical system for collecting a laser beam of multi-gastric radiation into a multi-mode optical fiber. This configuration can result in deep focus exposures. As a result, the exposure on the pattern-forming material can be high-definition and accuracy, and the development of the photosensitive layer can result in a high-definition and precise pattern. Preferably, the photosensitive layer includes a binder, a polymerizable compound, and a photopolymerization initiator; preferably, the binder contains an acidic group; preferably, the binder contains a vinyl copolymer; and, more preferably, The pH of this binder is 70 to 250 mg KOH / g. Preferably, the polymerizable compound includes a monomer containing at least one of a urethane group and an aryl group. Preferably, the photopolymerization initiator comprises a member selected from the group consisting of a halogenated hydrocarbon derivative, a hexaarylimidazole, an oxime derivative, an organic peroxide, a sulfur compound, a ketone compound, an aromatic iron salt, a fluorenylphosphine oxide, and The metal complex compound 0 is preferably that the photosensitive layer includes 30 to 90% by mass of a binder, 5 to 60% by mass of a polymerizable compound, and 0.1 to .3% by mass of photopolymerization. Initiator; preferably, the thickness of the photosensitive layer is 1 to 100 microns. Preferably, the support body includes a synthetic resin and is transparent; preferably, the support body is elongated; preferably, the pattern forming material is an elongated shape formed by being rolled into a bundle shape. Preferably, a protective film is formed on the photosensitive layer of the pattern forming material. -10- 200530754 [Embodiment] (Pattern forming method) The pattern forming method according to the present invention includes an exposure step and other steps selected. [Exposure step] In the exposure step, a pattern forming method is provided, which includes a laser beam irradiated by a laser light source, and compensates the modulated laser light. The modulated and compensated laser beam exposes the photosensitive layer. A pattern forming material is formed on the support, and the modulation is performed by using a laser that includes multiple laser beams and outputs the modulated laser output imaging portion. The compensation is performed by transmitting the modulated laser beam through the multi imaging unit. The distortion of the output surface causes non-lens compensation to be implemented, and multiple microlenses are configured as a microlens array:-laser modulator-laser modulator is appropriately selected depending on the application, as long as it is imaging Part. Preferred examples of laser modulators include spatial light modulators. Specified examples of spatial light modulators include digital micromirror devices, microelectromechanical system-type spatial light modulators, PLZT elements, and chips; of which D M D is preferred. The laser modulator refers to the following diagram and exemplarily explains the DMD 50 as a mirror device of a photocell array (for example, 768) having a plurality of micromirrors 62 on the SRAM photocell 60 as shown in FIG. 1, where At the uppermost position of each micromirror as an imaging part of an imaging section, the micromirror 62 is supported by a pillar. And appropriately include modulation beams, and the light layer system can each receive a tunable modulator due to the small array of spherical surfaces. Includes multiple transformers. (DMD), and broken LCD or storage order, 1024 X copies. On the surface of the micromirror, a material (such as aluminum) having a higher reflectivity than -11- 200530754 is deposited. The reflectance of 62 is 90% or more; for example, the pitch of the longitudinal and width columns is 1 3.7 microns each. In addition, a silicon gate CMOS SRAM photocell 60 made of a conventional semiconductor memory is arranged under each micromirror via a hinge and a yoke. The mirror device is completely monolithic. In the SRAM photocell 60 in which the digital signal is written into the DMD 50, the micromirror 62 supported by the pillars faces the substrate on which the DMD 50 is arranged, and surrounds the soil α degrees which are the diagonals of the rotation axis, for example, 12 degrees. Figure 2 shows the situation where the micromirror 62 is tilted + α degrees in the on state, Figure 2B shows the situation where the micromirror 62 is tilted -α degrees in the off state. Therefore, the inclination angle of the micromirror 62 at the tilt angle DMD 50 of the imaging part of the DMD 50 in the imaging part of the DMD 50 is controlled by the viewing information to reflect the tilt of the micromirror 62 as shown in FIG. Incidentally, Fig. 1 exemplarily shows a part of the situation of DMD 50, in which the micromirror 62 is controlled at -α degree or + α degree. The controller 302 connected to 50 transmits the switching control of each micromirror 62. The optical absorption (not shown) is arranged on the path of the laser beam reflected by the micromirror 62 in the off state. Preferably, the case where the DMD 50 is slightly inclined to a predetermined angle with respect to the sub-scanning direction, for example, 0.1 to 5 degrees. Figure 3A does not include the scanning trajectory of reflected laser images or exposure light of each micromirror when DMD 50 is included; Figure 3B shows the scanning trajectory of reflected laser image or exposure light of each micromirror when DMD 50 is included. . In DMD50, match many micromirrors (for example, 1024 micromirror arrays, tilt I 2A to display the case qualification, and magnify the side of DMD receiver B to show the beam beam at 53). 200530754 is placed in the longer direction to form an array, and many arrays (for example, 7 5 6) are arranged in the shorter direction. Thus, by tilting the DMD 50 as shown in FIG. 3B, the scanning trajectory or line pitch P2 of the exposure beam 53 of each micromirror can be made smaller than the scanning trajectory or line pitch Pi of the exposure beam 53 without tilting the DMD 50. , So the resolution can be significantly improved. On the other hand, the tilt angle of the DMD 50 is small, and therefore, the scanning direction W2 when the DMD 50 is tilted is approximately the same as the scanning direction W 1 when D M D 50 is not tilted. The following explains the method of accelerating the modulation rate of the laser modulator (hereinafter referred to as "high-speed modulation"). . Preferably, the laser modulator can control the pattern information to control any imaging portion ("," ": 2 or greater) which is continuously arranged in the imaging portion and less than" η ". There is a limitation on the data processing rate of the radio modulator, and the modulation rate of each line is defined as being proportional to the number of imaging parts used. The modulation rate of each line can be continuously configured by using less than "η The high-speed modulation is explained with reference to the following figure. When the laser beam B is irradiated from the fiber array laser light source 66 to the DMD 50, the micromirror is in the on state of the DMD 50 The reflected laser beam is imaged on the pattern forming material 150 by the lenses 5 4, 5 8. Therefore, the laser beam irradiated from the fiber array laser light source is turned on or off by each imaging part, And the pattern forming material 150 is exposed in approximately the same number of imaging portion units or as the exposure area for the imaging portion of the DMD 50, 68. In addition, the pattern forming material is exposed on the platform 1 5 2 5 When feeding at a fixed rate, the scanner 162 The pattern forming material 15 is scanned in the direction opposite to the moving direction of the stage -13- 200530754, so as to form a strip-shaped exposure area 1 7 0 corresponding to each exposure head 16 6. In this example, the micromirror system is arranged at DMD 5 0 1 024 arrays in the main scanning direction and 76 8 arrays in the scanning direction, as shown in Figures 4A and 4 B. Among these micromirrors, a part of the micromirrors can be controlled and driven by the controller 302. For example, 1 024 X 25 6. In this control, a micromirror array arranged in the central area of the DMD 50 can be used, as shown in Figure 4A; or, a micromirror arranged in the edge area of the DMD 50 can be used. Array, as shown in Figure 4B. In addition, when the micromirror is partially damaged, the micromirror used can be appropriately changed depending on the situation, so that the unimpaired micromirror is used. Due to the data processing rate of DMD 50, Limitation, and the modulation rate of each line is defined as being proportional to the number of imaging parts used, and the use of the micromirror array results in a higher modulation rate per line. In addition, the exposure is continuous by the relative exposure area When moving the exposure head continuously, The scanning direction does not necessarily require the entire imaging part. The scanner 162 is used to scan the pattern forming material 15 times, and when the pattern forming material 15 is detected by the sensor 1 64, the stage 1 5 2 is along the guide. 1 5 8 returns to the original position at the top of the gate 1 60, and the platform 15 2 again moves along the guide 15 8 at a fixed rate from above the gate 16 to the bottom. For example, using the micromirror 7 6 8 The modulation rate can be doubled when using three or eight arrays out of three arrays compared to the use of all seven or eight arrays. In addition, in two or six out of seven or eight arrays using micromirrors The modulation rate can be tripled when compared to using all 768 arrays. -14- 200530754 As explained above, when DMD 50 has 1024 micromirror arrays in the main scanning direction and 768 micromirror arrays in the sub-scanning direction, compared to controlling and driving all micromirror arrays, the control and Driving part of the micromirror array can result in a higher modulation rate per row. Various angles on the reflective surface can be changed by various control signals, and when the substrate is longer in the specified direction than its vertical direction, in addition to controlling and driving part of the micromirror array, many of the micromirrors are arranged on the substrate in a flat array Shaped DMDs similarly increase the modulation rate. Preferably, the exposure is performed when the exposure laser and the thermal sensing layer are relatively moved; more preferably, the exposure is combined with the aforementioned high-speed modulation, so that the exposure can be performed at a higher rate in a shorter time. As shown in FIG. 5, the patterning material 150 may expose the entire surface by a single scan of the scanner 162 in the X direction; or, as shown in FIGS. 6A and 6B, the patterning material 150 may be scanned multiple times. Therefore, the pattern forming material 150 passes the scanner in the X direction! 6 2 scan, then move the scanner 162 one step in the Y direction, and then scan in the X direction, so that the entire surface is exposed. In this example, the scanner i 62 includes eighteen exposure heads 166; each exposure head includes a laser light source and a laser modulator. The exposure is performed on a part of the photosensitive layer, so that this part of the area is hardened ', and then the unhardened areas other than the part of the hardened area are removed in a later-described developing step, thereby forming a pattern. The patterning device including the laser modulator is exemplarily explained with reference to the following drawings. The patterning device including the laser modulator is equipped with a platform 152, which will -15-
200530754 片狀圖案形成材料i 5 〇吸收及保留在表面上。 在以四隻腳154支撐之厚板工作台156之上_ 配置沿平台移動方向延伸之兩個導件1 5 8。平台1 置爲使得伸長方向面對平台移動方向,及以導件1 往復地移動之方式支撐。驅動裝置裝有圖案形成裝 示)以沿導件1 5 8驅動平台1 5 2。 在工作台156中間提供閘160,使得閘160 1% 1 5 2之路徑。將閘1 6 〇各端固定於工作台丨5 6兩側 描器1 6 2提供於閘1 6 0之一側,將多個(例如,兩 測感應器1 64提供於閘1 60之相反側以偵測圖案形 1 5 0之前與後端。將掃描器1 6 2與偵測感應器1 6 4 於閘1 6 0上,及固定地配置於平台1 5 2之路徑上力 描器162與偵測感應器164連接至控制其之控制器 如第8及9B圖所示,掃描器162包括多個( 兩個)曝光頭1 6 6,其以實質上「m列X η行」( 三X五)之行列排成陣列。在此實例中,考慮圖案 料1 5 0之寬度,將四個曝光頭1 6 6配置於第三行。 在”m”列及”η”行處之指定曝光頭示爲曝光頭i66mn 曝光頭1 6 6之曝光區域1 6 8爲短側在次掃描方 方形。因此,曝光區域1 7 0係形成於對應連同平台 動之各曝光頭166之帶形圖案形成材料15〇上。以 應在”m”列及” η”行處之曝光頭之指定曝光區域示爲 域 168mn 〇 :面上, 5 2係配 58以可 :置(未 〖越平台 I。將掃 丨個)偵 〃成材料 各安裝 ‘。將掃 丨(未示 例如, 例如, ;形成材 以下將 〇 ‘向之長 152移 、下將對 『曝光區 -16- 200530754 如第9A及9B圖所示,在各行處之各曝光頭係配置 成在線方向有空間(空間:(曝光區域之較長側)X自然 數;在此實例爲兩倍),使得帶形曝光區域1 7 0係配置成 在次掃描方向之垂直方向無空間。因此,在第一列之曝光 區域1 6 8 1 i與1 6 8 12間之非曝光區域可藉由將第二列之曝 光區域16821與第三列之曝光區域16831曝光而曝光。 各曝光頭166^至166mn包括數位微鏡裝置(DMD) 50 (得自 US Texas Instruments Inc.)作爲視圖案資訊而調 變入射雷射光束之雷射調變器或空間光雷射調變器,如第 10及1 1圖所示。將各DMD 50連接至包括資料處理部份 與鏡控制部份之控制器3 02,如第1 2圖所示。控制器3 02 之資料處理部份基於輸入之圖案資訊產生控制信號,以控 制及驅動各曝光頭1 6 6之控制區域之各微鏡。控制區域解 釋於下。鏡驅動-控制部份基於圖案資訊處理部份產生之 控制信號,按各曝光頭1 6 6控制D M D 5 0之各微鏡反射性 表面角度。反射性表面角度之控制解釋於下。 在DMD 50之入射雷射側,依此次序配置裝有雷射照 射部份之纖維陣列光源6 6 (其中光纖之照射端或發射位 置係按沿對應曝光區域1 6 8較長側方向之陣列排列)、補 償來自纖維陣列光源66之雷射光束且在DMD上收集其之 透鏡系統67、及反射雷光束通過透鏡系統67朝向DMD 5 〇之鏡6 9。第丨〇圖略示地顯示透鏡系統6 7。 透鏡系統6 7包括收集來自纖維陣列雷射光源6 6之照 明用雷射光束Β之收集透鏡7 i、插在通過收集透鏡7 1之 -17- 200530754 雷射之光學路徑上之棒形光學整合器72 (以下稱爲「棒 整合益」)、及配置於棒整合器7 2前方或鏡6 9側面之成 像透鏡7 4,如第1 1圖所示。收集透鏡7 1、棒整合器7 2 與成像透鏡7 4使自纖維陣列雷射光源6 6照射之雷射光束 進入DMD 50成爲橫切面強度均勻之大約平行光束之照明 通量。棒整合器之形狀及效用解釋於下。 自透鏡系統6 7照射之雷射光束B經鏡6 7反射,而 且通過全內反射稜鏡70(第10圖中未示)照射至DMD 50 ° 在D M D 5 0之反射側處,配置成像系統5 1使得經 DMD 50反射之雷射先束Β在圖案形成材料15〇上成像。 成像系統5 1裝有第一透鏡系統成像系統5 2,5 4、第二成 像透鏡系統系統57,58、及插入這些成像系統之間之微透 鏡陣列5 5與開口陣列5 9,如第1 1圖所示。 排列各對應D M D 5 0之各成像部份之二維多個微透鏡 5 5 a形成微透鏡陣列5 5。在此實例中,驅動d μ D 5 0之 1 0 2 4列X 7 6 8行中之1 0 2 4列X 2 5 6行之微鏡,因此對應 地配置1 〇 2 4列X 2 5 6行。所配置微透鏡5 5 a在列與線方 向之節距均爲4 1微米。例如,微透鏡5 5 a具有〇 . 1 9毫米 之焦點長度及〇·11之數値孔徑(NA),而且係由光學玻璃 BK7形成。微透鏡之形狀解釋於下。雷射光束B之光束直 徑在微透鏡55a位置處爲41微米。 開口陣列5 9係由各對應微透鏡陣列5 5之各微透鏡 5 5a之許多個開口 59a形成。例如,開口 59a之直徑爲10 -18- 200530754 微米。 第成像系統在微透鏡陣列5 5上將D M D , 形成放大二倍影像。第二成像系統形成且投射通 陣列5 5之影像成爲放大1 .6倍影像。因此,將 之影像形成且投射於圖案形成材料^^上成爲放 影像。 順便一提’稜鏡對73裝設於第二成像系統 | 成材料1 5 0之間;經由棱鏡對7 3之上下移動之 曰周整圖案形成材料150上之影像色量。在第η 案形成材料150係按箭頭F之方向進料作爲次掃 成像部份可視成像部份可接收來自雷射光源 置之雷射光束且可輸出雷射光束所提供之應用而 擇;例如,在依照本發明之圖案形成方法形成之 像圖案時,成像部份爲像素,或者在雷射調變蓉 時’成像部份爲微鏡。 g 含於雷射調變器中之成像部份數量可視應用 擇0 雷射調變器中之成像部份之調整可視應用而 ;較佳爲,成像部份係二維地排列,更佳爲按格 列。 -微透鏡陣列- 微透鏡陣列可視應用而適當地選擇,其條件 具有可補償由於成像部份照射表面應變造成之像 面。 5 0之影像 過微透鏡 DMD 5 0 大4.8倍 與圖案形 操作,可 圖中,圖 或照射裝 適當地選 圖案爲影 !含 DMD 而適當選 適當選擇 子圖案排 爲微透鏡 差之非球 -19- 200530754 非球面可視應用而適當地選擇;例如,較佳爲非球面 爲複曲面。 上述之微透鏡陣列、開口陣列、成像系統係參考圖式 而解釋於下。 第1 3 A圖顯不裝有D M D 5 0、將雷射光束照射於 DMD 50上之雷射光源144、將經DMD 50反射之雷射光 束放大且成像之透鏡系統或成像光學系統4 5 4與4 5 8、對 應D M D 5 0之各成像部份排列許多微透鏡之微透鏡陣列 472、對應微透鏡陣列472之各微透鏡排列許多開口 478 之開口陣列、及使雷射光束通過開口在曝光表面56上成 像之透鏡系統或成像系統4 8 0與4 8 2之曝光頭。 第14圖顯示DMD 50之微鏡62之反射性表面之平坦 性資料。在第1 4圖中,等高線表示反射性表面之各相同 高度;等高線之節距爲五奈米。在第14圖中,X方向及 Υ方向爲微鏡62之兩個對角方向,微鏡62圍繞在Υ方向 延伸之轉動軸轉動。第15Α及15Β圖各顯示微鏡62沿X 與Υ方向之高度位移。 如第14圖、第15Α及15Β圖所示,在微鏡62之反 射性表面上存在應變,特別是在鏡中央區域’一個對角方 向(Υ方向)之應變大於另一個對角方向(X方向)之應 變。因此,在藉微透鏡陣列5 5之微透鏡5 5 a收集雷射光 束B之位置處可引起形狀扭曲之問題。 爲了防止此問題,微透鏡陣列5 5之微透鏡5 5 a具有 異於先行技藝之特殊形狀,如以下所解釋。 -20- 200530754 . 第1 6 A及1 6B圖詳細顯示全部微透鏡陣列5 5之前面 形狀及側面形狀。在第1 6 A及1 6 B圖中,微透鏡陣列之 各部份係以mm (毫米)單位表示。在依照本發明之圖案 形成方法中,DMD 50之1〇24列X 2 5 6行之微鏡係如以上 所解釋而驅動;微透鏡陣列5 5對應地在長度方向構成 1024個陣列,及在寬度方向爲256個陣列。在第16A圖 中,各微透鏡之位置示爲第”j”行及第”k”列。 第17A及17B圖各顯示微透鏡陣列55之一個微透鏡 ® 55a之前面形狀及側面形狀。第17A圖亦顯示微透鏡55a 之等高線。照射側各微透鏡5 5 a之末端表面具有非球面以 補償微鏡6 2之反射性表面之應變像差。特別地,微透鏡 55a爲複曲面;光學X方向之曲率半徑Rx爲- 0.125毫米 ,及光學Y方向之曲率半徑Ry爲- 0.1毫米。 因此,平行X與Y方向橫切面內之雷射光束B之收 集情況大約各如第1 8 A及1 8 B圖所示。即,比較X與Y 方向,Y方向之微透鏡55a之曲率半徑較短且焦點長度亦 I較短。 第 19A、19B、19C、及 19D圖顯示在上示形狀中, 接近微透鏡 5 5 a焦點之光束直徑之模擬。爲了參考’第 2 0 A、2 0 B、2 0 C、及2 0 D圖顯示R X = R y = - 〇 · 1毫米之微透 鏡之類似模擬。圖中之”z”値示爲微透鏡55a焦點方向之 評估位置距微透鏡5 5 a之光束照射表面之距離。 此模擬中之微透鏡5 5 a表面形狀可藉以下方程式計算 -21 - 200530754 、 C;Z2+C272 • " l + sqrt(\ - c^FTc/r2) 在以上方程式中,Cx表示X方向之曲率半徑(=1/Rx) ,Cy表示Y方向之曲率半徑(=i/Ry),X表示在X方向距 光軸〇之距離,Y表示在Y方向距光軸〇之距離。 由第19A至19D圖與第2〇A至20D圖之比較明顯可 知,使用複曲面作爲微透鏡5 5 a (其在平行Y方向之橫切 面具有較平行X方向之橫切面短之焦點長度)之依照本發 • 明之圖案形成方法可降低接近收集位置之光束形狀應變。 因此,可在圖案形成材料1 5 0上將影像以較高淸晰度且無 應變而曝光。此外,顯然第19A至19D圖所示之本發明 模式可產生較寬之具較小光束直徑之區域,即,較長之焦 點深度。 順便一提,與上述相反,在微鏡62中央區域處出現 較大或較小應變時,使用在平行X方向之橫切面具有較平 行Y方向之橫切面短之焦點長度之微透鏡,可在圖案形成 ® 材料1 5 0上將影像以較高淸晰度且無應變而曝光。 配置於接近微透鏡陣列5 5之收集位置之開口陣列5 9 係構成使得各開口 5 9 a僅接收通過對應微透鏡5 5 a之雷射 光束。即,開口陣列5 9可提供確保可防止光自相鄰開口 5 5 a入射且可增加消光比例之各開口。 實際上,爲了上示目的而提供較小之開口 5 9a直徑可 提供在微透鏡5 5 a之收集位置處降低光束形狀應變之效果 。然而,此構造不可避免地增加被開口陣列5 9阻礙之光 -22- 200530754 量,造成較低之光量效率。相反地,微透鏡5 5 a之非球形 不產生光阻礙,因此導致維持高光量效率。 在依照本發明之圖案形成方法中,微透鏡5 5 a可爲二 級或更高級(如四或六級)之非球形。使用較高級非球面 可導致較高之光束形狀準確性。 在上述模式中,微透鏡5 5 a照射側之末端表面爲非球 面或複曲面;或者,藉由將末端表面之一構成球面且將另 一表面構成圓筒表面,如此提供微透鏡,實質上可衍生相 •同之效果。 此外,在上述模式中,微透鏡陣列 5 5之微透鏡5 5 a 爲非球形以補償由於微鏡62之反射性表面之應變造成之 像差;或者,藉由對各微透鏡陣列提供補償由於微鏡62 之反射性表面之應變造成之像差之折射率分布,可衍生實 質上相同之效果。 第22A及22B圖例示地顯示此微透鏡155a。第22A 及2 2 B圖各顯示微透鏡1 5 5 a之前面形狀及側面形狀。微 β 透鏡155a之全部形狀爲平板,如第22A及22B圖所示。 第22A及22B圖中之X及Y方向爲與上述相同之意義。 第23A及23B圖各略示地顯示在平行X及Y方向之 橫切面藉微透鏡1 5 5 a收集雷射光束B之情形。微透鏡 1 5 5 a呈現折射率自光軸〇對向外方向逐漸增加之折射率 分布;第23A及23B圖中之虛線表示折射率自光軸Ο降 低特定値之位置。如第2 3 A及2 3 B圖所示,比較平行X 方向之橫切面及平行Y方向之橫切面’後者顯示折射率分 -23- 200530754 ' 布快速變化,及較短之焦點長度。因此,具有此折射率分 布之微透鏡陣列可提供如上述微透鏡陣列5 5之類似效果 〇 此外,具有如第1 7及1 8圖所示非球面之微透鏡可具 有此折射率分布,而且表面形狀及折射率分布均可補償由 於微鏡6 2之反射性表面之應變造成之像差。 在上述模式中,在DMD 50中補償由於微鏡62之反 射性表面之應變造成之像差;類似地,在使用DMD以外 ® 之空間光調變器之依照本發明圖案形成方法中,在應變出 現於空間光調變器成像部份之表面處時,可補償由於應變 造成之可能像差且可防止光束形狀應變。 上述之成像光學系統解釋於下。 在曝光頭中,在雷射光束自雷射光源1 44照射時,藉 透鏡系統454,45 8將反射至DMD 50開方向之照明通量之 橫切面放大數倍,例如,兩倍。放大之雷射光束係藉微透 鏡陣列472對應DMD 50各成像部份之各微透鏡收集,然 ® 後傳送通過開口陣列476之對應開口。藉透鏡系統480, 482將通過開口之雷射光束在曝光表面上曝光。 在成像光學系統中,藉放大透鏡454,458將DMD 50 反射之雷射光束放大至數倍,而且投射於曝光表面56上 ,因此,將全部影像區域放大。在未配置微透鏡陣列472 及開口陣列4 7 6時,視曝光區域4 6 8之大小將投射至曝光 表面56上各光束點BS之一個繪圖尺寸或一個點尺寸放大 ,因此M TF (調變轉移功能)性質降低,其爲曝光區域 -24- 200530754 • 4 6 8處銳利度之測度,如第1 3 B圖所示。 另一方面,在未配置微透鏡陣列472及開口陣列476 時,經DMD 5 0反射之雷射光束係藉微透鏡陣列472各微 透鏡對應DMD 50各成像部份而收集。因而可將各光束點 B S之點尺寸減小成所需尺寸,例如,1 〇微米X 1 〇微米, 即使是在將曝光區域放大時,如第1 3 C圖所示,及可防止 MFT性質之降低且可以較高準確性進行曝光。順便一提, 曝光區域468之傾斜係由爲了排除成像部份間之空間而傾 •斜配置之DMD 50所造成。 此外,即使是在由於微透鏡像差而存在光束厚度時, 光束形狀可由開口陣列排列以在曝光表面5 6上形成具固 定尺寸之點,及因將光束傳送通過對應各成像部份提供之 開口陣列,而可防止相鄰成像部份間之串音。 此外,由於入射照明通量自透鏡45 8進入微透鏡陣列 4 7 2各微透鏡中之角度變窄,使用較高照明雷射光源作爲 $雷射光源1 44可導致防止照明通量自相鄰成像部份部份地 進入;即,可達成較高之消光比例。 -其他光學系統- 在依照本發明之圖案形成方法中,可組合其他光學系 統,其係由習知系統適當地選擇,例如,可另外使用補償 光量分布之光學系統。 補償光量分布之光學系統改變各輸出位置處之照明通 量寬度,使得週邊區域處照明通量寬度對接近光軸之中央 區域處照明通量寬度之比例在輸出側高於輸入側,因此在 -25- 200530754 ' 將來自雷射光源之平行照明通量照射至D M D時,將在曝 光表面處之光量分布補償至大約固定。補償光量分布之光 學系統在以下參考以下圖式而解釋。 首先解釋輸入照明通量與輸出照明通量間之照明通量 全寬H0與H1相同之情形之光學系統,如第24A圖所示 。第2 4 A圖中參考號碼5 1,5 2表示之部份係想像地表示 補償光量分布之光學系統之輸入表面與輸出表面。 在補償光量分布之光學系統中,假設在接近光軸Z 1 ® 之中央區域處進入之照明通量之照明通量寬度h0,而且在 附近之週邊區域處進入之照明通量之照明通量寬度hi相 同(h0 = hl)。補償光量分布之光學系統產生在照明側具有相 同照明通量之雷射光束h0,h 1,而且用以在中央區域處放 大輸入照明通量之照明通量寬度h0,及用以相反地在週邊 區域處減小輸入照明通量之照明通量寬度h 1。即,此光學 系統在中央區域產生輸出照明通量寬度hlO,及在週邊區 域產生輸出照明通量寬度hll,而且調整爲hll<hl0。換 ^ 言之,關於照明通量寬度之比例,(週邊區域處輸出照明 通量寬度)/(中央區域處輸出照明通量寬度),小於輸入 之比例,即,[hll/hlO]小於(hl/h0=l)或(hll/hl0<l)。 由於改變照明通量寬度,可將代表較高光量之中央區 域處照明通量供應至光量不足之週邊區域;因而在曝光表 面處光量分布大約均勻而不降低利用效率。均勻程度係控 制爲使得在有效區域之光量不均勻性爲3 0 %或更小,例如 ,較佳爲2 0 %或更小。 -26- 200530754 在完全改變輸入側及輸出側之照明通量寬度時’由於 補償光量分布之光學系統造成之操作及效果類似第24A、 24B與24C所示者。 第24B圖顯示將全部光學通量束H0減小且輸出成爲 光學通量束H2 (H0>H2)之情形。在此情形’補償光量分 布之光學系統亦趨於將雷射光束(其中輸入側照明通量寬 度h0與hi相同)處理成爲中央區域處照明通量寬度hlO 大於週邊區域處,而且輸出側照明通量寬度h 1 1小於中央 ^ 區域。考量照明通量之降低比例,相較於週邊區域,光學 系統用以減小中央區域處輸入照明通量之降低比例,及相 較於中央區域,用以增加週邊區域處輸入照明通量之降低 比例。在此情形,(週邊區域處輸出照明通量寬度)/ ( 中央區域處輸出照明通量寬度)亦小於輸入比例,即, [H11/H10]小於(hl/h0 = l)或(hll/hl0<l)。 第24C圖解釋將輸入側照明通量全寬h0放大且輸出 成爲寬度Η 3 ( Η 0 < Η 3 )之情形。在此情形,補償光量分布 ^ 之光學系統亦趨於將雷射光束(其中輸入側照明通量寬度 ho與hi相同)處理成爲中央區域處照明通量寬度hlO大 於週邊區域處,而且輸出側照明通量寬度h 1 1小於中央區 域。考量照明通量之降低比例,相較於週邊區域,光學系 統用以增加中央區域處輸入照明通量之放大比例,及相較 於中央區域,用以減小週邊區域處輸入照明通量之放大比 例。在此情形,(週邊區域處輸出照明通量寬度)/(中 央區域處輸出照明通量寬度)亦小於輸入比例,gp, -27- 200530754 • [HI 1/H10]小於(hl/h0=l)或(hi l/hl0<l)。 因此,補償光量分布之光學系統改變各輸入位置處之 照明通量寬度,及相較於輸入側,降低輸出側比例(週邊 區域處輸出照明通量寬度)/(中央區域處輸出照明通量 寬度);因此,具有相同照明通量之雷射光束在輸出側變 成中央區域處照明通量寬度大於週邊區域處且週邊區域處 照明通量小於中央區域之雷射光束。由於此效果,可將中 央區域處照明通量供應至週邊區域,因而光量分布在照明 ® 通量橫切面處大約均勻而不降低全部光學系統之利用效率。 以下例示地解釋用於補償光量分布之光學系統之組合 透鏡對之特定透鏡資料。在此討論中,解釋在輸出照明通 量橫切面處光量分布顯示高斯分布之情形之透鏡資料,如 雷射光源爲上述雷射陣列之情形。在將一種半導體雷射連 接至信號模式光纖輸出端之情形,來自光纖之輸出照明通 量之光量分布顯示高斯分布。此外,依照本發明之圖案形 0 成方法可應用於接近中央區域之光量顯著地大於週邊區域 處光量之情形,例如,如同將多模式光纖之核心直徑減小 &類似單模式光纖而構成之情形。 透鏡之重要資料歸納於以下表1。 表1 — 基本透鏡資料 Si η di Ni 一(表面號碼) (曲率半徑) (表面距離) (折射率) 01 非球面 5.000 1.52811 02 〇〇 50.000 03 〇〇 7.000 1.52811 — 04 非球面 -28 - 200530754 * 如表1所示,由兩個轉動上對稱之非球面透鏡構成一 ' 對組合透鏡。透鏡表面係定義爲配置於光輸入側處之第一 透鏡之輸入側表面爲第一表面;光輸入側處相反表面爲第 二表面;配置於光輸入側處之第二透鏡之輸入側表面爲第 三表面;及光輸入側處相反表面爲第四表面。第一與第四 表面爲非球面。 在表 1中,「Si (表面號碼)」表示第”i”個表面 (i=l-4), 「ri (曲率半徑)」表示第”i”個表面之曲率半徑 ^ ,di (表面距離)表示第” i”個表面與第”i + 1”個表面間之 距離。di (表面距離)之單位爲毫米(mm)。Ni (折射率) 表示包括第”i”個表面之光學元件對波長爲40 5奈米之光 之折射率。 在以下表2中,歸納第一及第四表面之非球面資料。 表2 非球面資料 第一表面 第四表面 C -1.4098 X l〇·2 -9.8 5 06 X ΙΟ·3 K -4.2192 - 3.6 2 5 3 X 1 0 a 3 - 1.0027 X 1 〇-4 - 8.9 9 8 0 X 1 Ο'5 a4 3.0 5 9 1 X l〇·5 2.3 060 X 1 Ο·5 a 5 -4.5 115 X 1 〇-7 -2.2 8 60 X ΙΟ·6 a 6 -8.2819 X i〇-9 8.766 1 X ΙΟ'8 a7 4.1 020 X 1 〇·12 4.402 8 X 1 0_10 a 8 1.22 3 1 X 1 〇_13 1.3 624 X 1 Ο·12 a9 5.3 7 5 3 X l〇-i6 3.3 9 6 5 X ΙΟ·15 al 0 1.6315Xl〇-i8 7.4 8 2 3 X ΙΟ'18 上述之非球面資料可藉以下表示非球形之方程式(A) 之係數表示。 _ C.P2 — 1+小-κϋ200530754 The sheet-like pattern forming material i 50 is absorbed and retained on the surface. On the thick-plate worktable 156 supported by four feet 154, two guides 1 5 8 extending along the moving direction of the platform are arranged. The platform 1 is set such that the direction of elongation faces the direction of movement of the platform and is supported in such a manner that the guide 1 moves back and forth. The driving device is provided with a pattern forming device) to drive the platform 15 2 along the guide 15 8. A gate 160 is provided in the middle of the table 156, so that the gate 160 has a path of 1% 152. Each end of the gate 16 is fixed to the workbench. 5 6 Both sides of the scanner 1 6 2 are provided on one side of the gate 1 60, and multiple (for example, two test sensors 1 64 are provided on the opposite side of the gate 1 60). The front side and the rear side of the detection pattern are 1 50. The scanner 16 and the detection sensor 16 are placed on the gate 16 and fixedly arranged on the path of the platform 1 52. 162 and the detection sensor 164 are connected to a controller controlling the same as shown in Figs. 8 and 9B. The scanner 162 includes a plurality of (two) exposure heads 166, which are substantially "m columns x η rows" (Three X five) are arranged in an array. In this example, considering the width of the pattern material 150, four exposure heads 16 are arranged in the third row. In the "m" column and the "η" row The designated exposure head is shown as the exposure head i66mn. The exposure area 1 6 6 of the exposure head 1 6 8 is a square on the short side in the sub-scan square. Therefore, the exposure area 1 70 is formed in a belt corresponding to each exposure head 166 moving with the platform. Shape pattern forming material 15 °. The designated exposure area of the exposure head that should be in the “m” column and “η” line is shown as the field 168mn ○: surface, 5 2 series with 58 to be able to set (not Cross the platform I. Scanning will be carried out into materials and installed. 'Scanning (not shown as an example, for example; below the forming material will be moved to the length of 152 ′, and the next will be to the "exposure area-16- 200530754" As shown in Figures 9A and 9B, each exposure head in each line is arranged to have space in the line direction (space: (the longer side of the exposure area) X natural number; twice in this example), so that the strip exposure The area 1 70 is arranged so that there is no space in the vertical direction of the sub-scanning direction. Therefore, the non-exposed areas between the exposed areas 1 6 8 1 i and 1 6 8 12 in the first row can be exposed by exposing the second row. The area 16621 and the exposure area 16831 of the third column are exposed and exposed. Each of the exposure heads 166 to 166mn includes a digital micromirror device (DMD) 50 (available from US Texas Instruments Inc.) as the pattern information to modulate the incident laser beam Laser modulator or space light laser modulator, as shown in Figures 10 and 11. Connect each DMD 50 to the controller including the data processing part and the mirror control part 3 02, as shown in Figure 1. As shown in Figure 2. The data processing part of controller 3 02 is based on the input pattern information Generate control signals to control and drive the micromirrors in the control area of each exposure head 16 6. The control area is explained below. The mirror drive-control part is based on the control signal generated by the pattern information processing part, and presses each exposure head 1 6 6 Control the reflective surface angle of each micromirror of DMD 50. The control of reflective surface angle is explained below. On the incident laser side of DMD 50, a fiber array light source equipped with a laser irradiation part is arranged in this order 6 6 (where the illuminating end or emission position of the optical fiber is arranged in an array along the longer side of the corresponding exposure area 1 6 8), a lens system 67 that compensates the laser beam from the fiber array light source 66 and collects it on the DMD, and The reflected thunder beam passes through the lens system 67 toward the mirror 69 of the DMD 50. Figure 丨 〇 schematically shows the lens system 67. The lens system 67 includes a collection lens 7i that collects the laser beam B for illumination from the fiber array laser light source 66, and a rod-shaped optical integration inserted in the optical path of the laser through the collection lens 7 1-17-200530754. Device 72 (hereinafter referred to as "stick integration benefit"), and an imaging lens 74 arranged in front of the rod integrator 72 or on the side of the mirror 69, as shown in FIG. 11. The collecting lens 71, the rod integrator 72, and the imaging lens 74 enable the laser beam irradiated from the fiber array laser light source 66 to enter the DMD 50 to become an illumination flux of approximately parallel beams with uniform cross-section intensity. The shape and utility of the rod integrator are explained below. The laser beam B irradiated from the lens system 67 is reflected by the mirror 67, and is irradiated to the DMD 50 through total internal reflection 稜鏡 70 (not shown in Fig. 10). At the reflection side of the DMD 50, an imaging system is configured 51 causes the laser beam B reflected by the DMD 50 to be imaged on the pattern forming material 150. The imaging system 5 1 is equipped with a first lens system imaging system 5 2, 5 4, a second imaging lens system 57, 58, and a micro lens array 5 5 and an opening array 59 inserted between these imaging systems, as in the first 1 picture. A plurality of two-dimensional microlenses 5 5 a corresponding to each imaging portion of D M D 50 are arranged to form a micro lens array 55. In this example, driving d μ D 5 0 of 1 0 2 4 columns X 7 6 8 of 1 0 2 4 columns X 2 5 6 rows of micromirrors, so correspondingly 〇 2 4 columns X 2 5 6 lines. The arranged microlenses 5 5 a have a pitch of 41 μm in both the column and line directions. For example, the microlens 55a has a focal length of 0.19 mm and a numerical aperture (NA) of 0.11, and is formed of optical glass BK7. The shape of the microlenses is explained below. The laser beam B has a beam diameter of 41 m at the position of the micro lens 55a. The opening array 59 is formed by a plurality of openings 59a of the respective microlenses 55a of the corresponding microlens array 55. For example, the diameter of the opening 59a is 10 -18- 200530754 microns. The first imaging system forms D M D on the micro lens array 55 to form a magnified double image. The image formed by the second imaging system and projected through the array 55 becomes a 1.6 times magnified image. Therefore, the image is formed and projected on the pattern forming material ^^ to become an image. Incidentally, the “稜鏡 pair 73” is installed between the second imaging system | forming material 150; the color amount of the image on the weekly pattern forming material 150 which is moved up and down through the prism pair 7 3. In the nth case, the forming material 150 is fed in the direction of arrow F as the secondary scanning imaging part. The visible imaging part can be selected for the application provided by the laser beam set by the laser light source and can output the laser beam; for example, When an image pattern is formed according to the pattern forming method of the present invention, the imaging portion is a pixel, or when the laser is modulated, the imaging portion is a micromirror. g The number of imaging parts contained in the laser modulator can be selected depending on the application. 0 The adjustment of the imaging parts in the laser modulator can be used depending on the application; preferably, the imaging parts are arranged two-dimensionally, more preferably By grid. -Microlens array-The microlens array is appropriately selected depending on the application, and its condition is to compensate for the image plane caused by the strain on the surface illuminated by the imaging portion. The image of 50 is too micro lens DMD 5 0 is 4.8 times larger and pattern-shaped operation, you can choose the appropriate pattern as the shadow in the picture, the picture or the irradiation device! Including DMD and the appropriate selection of the appropriate sub-pattern as the aspherical lens -19- 200530754 The aspheric surface is appropriately selected depending on the application; for example, it is preferable that the aspheric surface is a toric surface. The above microlens array, aperture array, and imaging system are explained below with reference to the drawings. Figure 1 3 A is not equipped with DMD 50, laser light source 144 that irradiates the laser beam onto DMD 50, lens system or imaging optical system that magnifies and reflects the laser beam reflected by DMD 50 4 5 4 A microlens array 472 with a plurality of microlenses arranged at each imaging part corresponding to DMD 50, a microlens array 472 with a plurality of openings arranged at each microlens corresponding to the microlens array 472, and a laser beam passing through the openings for exposure. The lens system or the exposure heads of the imaging systems 480 and 482 on the surface 56. Figure 14 shows the flatness data of the reflective surface of the micromirror 62 of the DMD 50. In Fig. 14, the contour lines represent the same height of the reflective surface; the pitch of the contour lines is five nanometers. In FIG. 14, the X direction and the Υ direction are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around a rotation axis extending in the Υ direction. 15A and 15B each show the height displacement of the micromirror 62 in the X and Υ directions. As shown in Figs. 14, 15A, and 15B, there is strain on the reflective surface of the micromirror 62, and particularly in the central region of the mirror, the strain in one diagonal direction (Υ direction) is greater than the other diagonal direction (X Direction). Therefore, the shape distortion problem may be caused at a position where the laser beam B is collected by the microlenses 55a of the microlens array 55. To prevent this problem, the microlenses 55a of the microlens array 55 have a special shape different from the prior art, as explained below. -20- 200530754. Figures 16A and 16B show the front and side shapes of all microlens arrays 55 in detail. In Figures 16 A and 16 B, the parts of the microlens array are shown in mm (millimeters). In the pattern forming method according to the present invention, the micromirrors of 1024 columns X 2 5 6 rows of the DMD 50 are driven as explained above; the micro lens array 55 corresponds to 1024 arrays in the length direction, and There are 256 arrays in the width direction. In FIG. 16A, the positions of the microlenses are shown as the "j" th row and the "k" th column. 17A and 17B each show the front shape and the side shape of one microlens ® 55a of the microlens array 55. FIG. 17A also shows the contours of the microlenses 55a. The end surface of each microlens 5 5 a on the irradiation side has an aspheric surface to compensate for the strain aberration of the reflective surface of the micromirror 62. In particular, the microlens 55a is a toric surface; the radius of curvature Rx in the optical X direction is -0.125 mm, and the radius of curvature Ry in the optical Y direction is -0.1 mm. Therefore, the collection of the laser beams B in the cross-sections parallel to the X and Y directions is approximately as shown in Figures 18A and 18B. That is, when comparing the X and Y directions, the micro lens 55a in the Y direction has a shorter radius of curvature and a shorter focal length I. Figures 19A, 19B, 19C, and 19D show simulations of the beam diameters near the focal point of the lens 5 5a in the shape shown above. For reference, the 'Nos. 20A, 20B, 20C, and 20D figures show similar simulations of microlenses with R X = R y =-0 · 1 mm. "Z" in the figure indicates the distance between the evaluation position of the focal direction of the micro lens 55a and the light irradiation surface of the micro lens 55a. The surface shape of the micro lens 5 5 a in this simulation can be calculated by the following equation: -21-200530754, C; Z2 + C272 • " l + sqrt (\-c ^ FTc / r2) In the above equation, Cx represents the X direction The radius of curvature (= 1 / Rx), Cy represents the radius of curvature (= i / Ry) in the Y direction, X represents the distance from the optical axis 0 in the X direction, and Y represents the distance from the optical axis 0 in the Y direction. From the comparison of the 19A to 19D images and the 20A to 20D images, it is clear that the toric surface is used as the micro lens 5 5 a (the cross section in the parallel Y direction has a shorter focal length than the cross section in the parallel X direction) The patterning method according to the present invention can reduce the beam shape strain near the collection position. Therefore, the image can be exposed on the pattern forming material 150 with high definition and no strain. Further, it is clear that the mode of the present invention shown in Figs. 19A to 19D can produce a wider area with a smaller beam diameter, that is, a longer focal depth. By the way, in contrast to the above, when a large or small strain occurs at the central region of the micromirror 62, a microlens having a focal length shorter than that of the parallel Y-direction cross-section in the cross-section in the parallel X direction can be used in Patterning® Material 150 exposes the image with high definition and no strain. The opening array 5 9 arranged near the collecting position of the micro lens array 55 is structured so that each opening 5 9 a receives only the laser beam passing through the corresponding micro lens 5 5 a. That is, the opening array 59 can provide openings which can ensure that light can be prevented from entering from the adjacent opening 5 5 a and can increase the extinction ratio. In fact, providing a smaller opening 5 9a diameter for the purpose shown above can provide the effect of reducing the beam shape strain at the collection position of the microlens 5 5a. However, this configuration inevitably increases the amount of light -22-200530754 obstructed by the opening array 59, resulting in lower light amount efficiency. In contrast, the non-spherical shape of the microlenses 5 5 a does not cause light obstruction, and thus results in maintaining high light quantity efficiency. In the pattern forming method according to the present invention, the microlenses 55a may be non-spherical of second order or higher order (e.g., fourth or sixth order). The use of higher aspheric surfaces results in higher beam shape accuracy. In the above mode, the end surface of the irradiated side of the micro lens 5 5 a is an aspheric surface or a toric surface; or, by forming one of the end surfaces as a spherical surface and the other surface as a cylindrical surface, a micro lens is provided in this way, substantially Can have similar effects. In addition, in the above mode, the microlenses 55a of the microlens array 55 are non-spherical to compensate for aberrations caused by the strain of the reflective surface of the microlens 62; or, by providing compensation for each microlens array, The refractive index distribution of aberrations caused by the strain on the reflective surface of the micromirror 62 can derive substantially the same effect. 22A and 22B illustrate this microlens 155a by way of example. Figures 22A and 2 2B each show the front shape and the side shape of the microlens 1 5 5 a. The entire shape of the micro β lens 155a is a flat plate, as shown in FIGS. 22A and 22B. The X and Y directions in FIGS. 22A and 22B have the same meanings as described above. Figures 23A and 23B each show the situation where the laser beam B is collected by the micro lens 1 5 5 a in a cross section parallel to the X and Y directions. The microlens 1 5 a shows a refractive index distribution in which the refractive index gradually increases from the optical axis 0 to the outward direction; the dotted lines in Figs. 23A and 23B indicate positions where the refractive index decreases from the optical axis 0 by a specific value. As shown in Figs. 2 3 A and 2 3 B, a comparison of a cross section in the parallel X direction and a cross section in the parallel Y direction 'is shown. The latter shows a rapid change in refractive index score -23- 200530754' and a shorter focal length. Therefore, a microlens array having this refractive index distribution can provide similar effects as the above-mentioned microlens array 55. In addition, a microlens having an aspheric surface as shown in FIGS. 17 and 18 can have this refractive index distribution, and Both the surface shape and the refractive index profile can compensate for aberrations due to strain on the reflective surface of the micromirror 62. In the above mode, the aberration caused by the strain of the reflective surface of the micromirror 62 is compensated in the DMD 50; similarly, in the pattern forming method according to the present invention using a spatial light modulator other than DMD®, the strain When appearing on the surface of the imaging portion of the spatial light modulator, it can compensate for possible aberrations due to strain and prevent beam shape strain. The above-mentioned imaging optical system is explained below. In the exposure head, when the laser beam is irradiated from the laser light source 144, the cross section of the illumination flux reflected to the on-direction of the DMD 50 is magnified by the lens system 454, 45 8 several times, for example, twice. The magnified laser beam is collected by the micro lenses of the micro lens array 472 corresponding to each imaging part of the DMD 50, and then transmitted through the corresponding openings of the opening array 476. By the lens system 480, 482, the laser beam passing through the opening is exposed on the exposure surface. In the imaging optical system, the laser beam reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458, and is projected on the exposure surface 56. Therefore, the entire image area is enlarged. When the microlens array 472 and the opening array 4 7 6 are not configured, the size of the exposed area 4 6 8 will be projected to one drawing size or one point size of each beam spot BS on the exposure surface 56. Therefore, M TF (modulation Transfer function) The quality is reduced, which is a measure of sharpness at the exposed area -24- 200530754 • 4 6 8 as shown in Figure 1 3B. On the other hand, when the microlens array 472 and the opening array 476 are not arranged, the laser beam reflected by the DMD 50 is collected by the microlenses of the microlens array 472 corresponding to the imaging parts of the DMD 50. Therefore, the spot size of each beam spot BS can be reduced to a desired size, for example, 10 μm × 10 μm, even when the exposure area is enlarged, as shown in FIG. 13C, and MFT properties can be prevented. It is reduced and exposure can be performed with higher accuracy. Incidentally, the tilt of the exposure area 468 is caused by the DMD 50 tilted in order to exclude the space between the imaging parts. In addition, even when there is a beam thickness due to microlens aberrations, the beam shape can be arranged by an array of openings to form dots with a fixed size on the exposure surface 56, and by transmitting the beam through the openings provided for the respective imaging sections Array to prevent crosstalk between adjacent imaging sections. In addition, since the angle of the incident illumination flux from the lens 45 8 into the microlens array 4 7 2 becomes narrower, using a higher illumination laser light source as the $ laser light source 1 44 can prevent the illumination flux from adjoining The imaging part partially enters; that is, a higher extinction ratio can be achieved. -Other optical systems-In the pattern forming method according to the present invention, other optical systems may be combined, which are appropriately selected by a conventional system, for example, an optical system that compensates for the light amount distribution may be additionally used. The optical system that compensates the light quantity distribution changes the width of the illumination flux at each output position, so that the ratio of the width of the illumination flux in the peripheral region to the width of the illumination flux in the central region near the optical axis is higher on the output side than on the input side, so it is- 25- 200530754 'When the parallel illumination flux from the laser light source is irradiated to the DMD, the light amount distribution at the exposed surface is compensated to be approximately fixed. The optical system for compensating the light quantity distribution is explained below with reference to the following drawings. First explain the optical system in which the full width H0 and H1 of the illumination flux between the input illumination flux and the output illumination flux are the same, as shown in FIG. 24A. The part indicated by reference number 5 1, 5 2 in Fig. 2 A is an imaginary representation of the input surface and output surface of the optical system that compensates the light quantity distribution. In the optical system that compensates the light quantity distribution, it is assumed that the illumination flux width h0 of the illumination flux entering at the central region near the optical axis Z 1 ® and the illumination flux width of the illumination flux entering at the nearby peripheral region hi is the same (h0 = hl). The optical system that compensates the light quantity distribution generates laser beams h0, h1 with the same illumination flux on the illumination side, and is used to amplify the illumination flux width h0 of the input illumination flux at the central area, and to the contrary in the periphery Reduce the illumination flux width h 1 of the input illumination flux at the area. That is, this optical system generates an output illumination flux width h10 in the central region and an output illumination flux width h11 in the peripheral region, and is adjusted to h11 < hl0. In other words, the ratio of the width of the illumination flux, (the output flux width at the peripheral area) / (the output flux width at the center area), is less than the input ratio, that is, [hll / hlO] is less than (hl / h0 = l) or (hll / hl0 < l). Since the width of the illumination flux is changed, the illumination flux at the central area representing a higher light amount can be supplied to the peripheral region where the light amount is insufficient; therefore, the light amount distribution at the exposure surface is approximately uniform without reducing the utilization efficiency. The degree of uniformity is controlled so that the unevenness of the light amount in the effective area is 30% or less, for example, preferably 20% or less. -26- 200530754 When the illumination flux width of the input side and output side is completely changed, the operation and effect caused by the optical system that compensates the light quantity distribution are similar to those shown in 24A, 24B, and 24C. Fig. 24B shows a case where the entire optical flux beam H0 is reduced and the output becomes an optical flux beam H2 (H0 > H2). In this case, the optical system that compensates the light quantity distribution also tends to process the laser beam (where the input side illumination flux width h0 is the same as hi) to become the illumination flux width hlO at the central area larger than the peripheral area, and the output side illumination The measurement width h 1 1 is smaller than the central region. Considering the reduction ratio of the illumination flux, compared to the surrounding area, the optical system is used to reduce the reduction ratio of the input illumination flux at the central area, and compared to the central area, it is used to increase the reduction of the input illumination flux at the peripheral area. proportion. In this case, (output lighting flux width at the peripheral area) / (output lighting flux width at the center area) is also smaller than the input ratio, that is, [H11 / H10] is smaller than (hl / h0 = l) or (hll / hl0 < l). Fig. 24C illustrates a case where the full width h0 of the input side illumination flux is enlarged and the output becomes a width Η 3 (Η 0 < Η 3). In this case, the optical system that compensates the light quantity distribution ^ also tends to process the laser beam (where the input side illumination flux width ho and hi are the same) into the illumination flux width hl0 at the central area that is greater than the peripheral area, and the output side illumination The flux width h 1 1 is smaller than the central region. Considering the reduction ratio of the illumination flux, compared with the surrounding area, the optical system is used to increase the magnification ratio of the input illumination flux at the central area, and compared to the central area, it is used to reduce the amplification of the input illumination flux at the peripheral area. proportion. In this case, (output lighting flux width at the peripheral area) / (output lighting flux width at the center area) is also smaller than the input ratio, gp, -27- 200530754 • [HI 1 / H10] is less than (hl / h0 = l ) Or (hi l / hl0 < l). Therefore, the optical system that compensates the light quantity distribution changes the width of the illumination flux at each input position, and reduces the ratio of the output side (the output illumination flux width at the peripheral region) / (the output illumination flux width at the center region) compared to the input side. ); Therefore, a laser beam with the same illumination flux becomes a laser beam with a larger width of the illumination flux at the output side at the central region than at the peripheral region and an illumination flux at the peripheral region smaller than the central region. Due to this effect, the illumination flux at the central area can be supplied to the surrounding area, so the light quantity distribution is approximately uniform at the cross section of the illumination ® flux without reducing the utilization efficiency of the entire optical system. The following specifically explains the specific lens data of a combination lens pair of an optical system for compensating the light quantity distribution. In this discussion, lens data explaining the case where the light quantity distribution shows a Gaussian distribution at the cross section of the output illumination flux, such as the case where the laser light source is the above-mentioned laser array. In the case where a semiconductor laser is connected to the signal mode fiber output end, the light amount distribution of the output illumination flux from the fiber shows a Gaussian distribution. In addition, the pattern forming method according to the present invention can be applied to a situation where the amount of light near the central area is significantly larger than the amount of light in the surrounding area, for example, as if the core diameter of a multimode fiber is reduced & similar to a single mode fiber. situation. The important information of the lens is summarized in Table 1 below. Table 1 — Basic lens information Si η di Ni (surface number) (curvature radius) (surface distance) (refractive index) 01 aspherical 5.000 1.52811 02 〇〇50.000 03 〇〇7.000 1.52811 — 04 aspheric -28-200530754 * As shown in Table 1, a pair of combined lenses is formed by two rotationally symmetrical aspheric lenses. The lens surface is defined as that the input side surface of the first lens disposed at the light input side is the first surface; the opposite surface at the light input side is the second surface; the input side surface of the second lens disposed at the light input side is The third surface; and the opposite surface at the light input side is the fourth surface. The first and fourth surfaces are aspherical. In Table 1, "Si (surface number)" indicates the "i" th surface (i = 1-4), and "ri (radius of curvature)" indicates the radius of curvature ^ of the "i" th surface, di (surface distance ) Indicates the distance between the "i" th surface and the "i + 1" th surface. The unit of di (surface distance) is millimeter (mm). Ni (refractive index) represents the refractive index of an optical element including the "i" surface to light having a wavelength of 40 5 nm. In Table 2 below, the aspherical data of the first and fourth surfaces are summarized. Table 2 Aspheric data First surface Fourth surface C -1.4098 X l〇 · 2 -9.8 5 06 X IO · 3 K -4.2192-3.6 2 5 3 X 1 0 a 3-1.0027 X 1 〇-4-8.9 9 8 0 X 1 Ο'5 a4 3.0 5 9 1 X l〇 · 5 2.3 060 X 1 〇 · 5 a 5 -4.5 115 X 1 〇-7 -2.2 8 60 X ΙΟ · 6 a 6 -8.2819 X i〇- 9 8.766 1 X ΙΟ'8 a7 4.1 020 X 1 〇 · 12 4.402 8 X 1 0_10 a 8 1.22 3 1 X 1 〇_13 1.3 624 X 1 〇 · 12 a9 5.3 7 5 3 X l〇-i6 3.3 9 6 5 X ΙΟ · 15 al 0 1.6315Xl0-i8 7.4 8 2 3 X ΙΟ'18 The above aspheric data can be expressed by the following coefficients of equation (A) representing asphericity. _ C.P2 — 1 + small-κ-
(Λ) 在上式(Α)中,係數係定義如下: -29- 200530754 - z:自光軸上高度P (毫米)之非球面上一點延伸至 非球面凸面正切面或垂直光軸面之垂直長度; P :距光軸之距離(毫米); K:圓錐係數; c :旁軸曲率(1 /r,r :旁軸曲率半徑); a i :第” i ”個非球面係數(i = 3至1 〇 )。 第2 6圖顯示表1及表2所示之一對組合透鏡所得照 明光之光量分布。橫座標表示距光軸之距離,縱座標表示 ® 光量比例(%)。第25圖顯示無補償照明光之光量分布(高 斯分布)。如由第25及26圖明顯可知,藉光學系統補償 光量分布之補償產生顯著地超過無補償之大約均勻光量分 布,因此藉均勻雷射光束可達成均勻曝光而不降低光學利 用效率。 -光學照射裝置或雷射光源- 光學照射裝置可視應用而適當地選擇;其實例包括極 高壓汞燈、氙燈、碳弧燈、鹵素燈、螢光管、LED、半導 ^ 體雷射、及其他習知雷射光源,亦及這些裝置之組合。這 些裝置中,可照射二或更多型光或雷射之裝置較佳。 自光學照射裝置或雷射光源照射之光或雷射光束之實 例包括UV射線、可見光、X射線、雷射光束等。其中, 雷射光束較佳,更佳爲含二或更多型雷射光束者(以下有 時稱爲「組合雷射」)。 UV射線及可見光之波長較佳爲3 00至1 5 00奈米,更 嘉爲320至800奈米,最佳爲330至650奈米。 -30- 200530754 • 雷射光束之波長較佳爲200至1500奈米,更嘉爲 300至800奈米,仍更佳爲330至500奈米,而且最佳爲 400至4 5 0奈米。 至於照射組合雷射之裝置,此裝置較佳地例示爲包括 多個雷射照射裝置、多模式光纖、及收集各雷射光束且其 連接至多模式光纖之收集光學系統者。 照射組合雷射或纖維陣列雷射光源之裝置係參考以下 圖式而解釋。 B 纖維陣列雷射光源66裝有多個(例如,十四個)雷 射模組64,如第27A圖所示。將各多模式光纖30之一端 連接至各雷射模組64。將各多模式光纖3 0之另一端連接 至核心直徑與多模式光纖3 0相同且包覆直徑小於多模式 光纖3 0之光纖3 1。特別地,如第2 7 B圖所示,多模式光 纖3 1在多模式光纖3 0相反端處之末端沿垂直次掃描方向 之主掃描方向排列成七個末端,而且將七個末端排列成兩 列,因而構成雷射輸出部份6 8。 由多模式光纖3 1末端形成之雷射輸出部份6 8係藉由 插入兩個平坦支撐板65之間而固定,如第27B圖所示。 較佳爲,爲了保護輸出端表面,將如玻璃板之透明保護板 配置於多模式光纖31之輸出端表面上。多模式光纖31之 輸出端表面趨於攜帶灰塵及由於其較高光學密度而降解; 上述保護板可防止灰塵沈積於末端表面上且可阻止降解。 在此實例中,爲了將具有較小包覆直徑之光纖3 1排 列至陣列中而無空隙,將多模式光纖3 0堆疊在兩個接觸 -31 - 200530754 _較大包覆直徑之多模式光纖3 0之間,而且將連接至堆疊 多模式光纖30之光纖31輸出端插入連接至接觸較大包覆 直徑之兩個多模式光纖3 0之兩個光纖3 1輸出端之間。 此光纖可藉由將長度爲1至3 0公分且包覆直徑較小 之光纖3 1同心地連接至包覆直徑較大之多模式光纖3 0雷 射光束輸出側頂端部份而製造,例如,如第2 8圖所示。 連接兩個光纖使得光纖31之輸入端表面融合至多模式光 纖 30輸出端表面中,以使兩個光纖之中央軸一致。如上 ® 所述,光纖3 1之核心3 1 a直徑與多模式光纖3 0之核心 3〇a直徑相同。 此外,藉由將包覆直徑較小之光纖融合至長度較短且 包覆直徑較大之光纖中而製造之較短光纖可經套圏、光學 連接器等連接至多模式光纖之輸出端。例如,在包覆直徑 較小之光纖部份地損壞時,以可附著且可分離方式經連接 器等連接可進行容易之輸出端部份更換,其有利地造成曝 I 光頭之較低維護成本。光纖3 1有時稱爲多模式光纖3 〇之 「輸出端部份」。 多模式光纖30及光纖31可爲任何分段指引型光纖、 光柵指引型光纖、及組合型光纖。例如,可使用 Mitsubishi Cable Industries,Ltd.製造之分段指引型光纖 。在依照本發明之最佳模式之一 ’多模式光纖3 〇及光纖 31爲分段指引型光纖;在多模式光纖30中,包覆直徑 =125微米,核心直徑=50微米,ΝΑ = 0·2,穿透率= 99.5% 或更大(輸出端表面塗層處);及在光纖31中,包覆直 -32- 200530754 徑=60微米,核心直徑=50微米,ΝΑ = 0·2。 紅外線區域之雷射光束一般隨光纖包覆直徑減小 加傳播損失。因此,適當之包覆直徑通常視雷射光束 長區域而界定。然而,波長越短,則傳播損失越小; ,在由GaN半導體雷射照射之波長爲40 5奈米之雷 束中,即使在使包覆厚度(包覆直徑-核心直徑)/2 般傳播波長爲800奈米之紅外線光束之包覆厚度之乾 時,或爲一般傳播波長爲1 . 5微米之通訊用紅外線光 包覆厚度之約1 /4時,傳播損失未顯著地增加。因此 覆直徑可小至6 0微米。 無需贅述,光纖31之直徑應不限於60微米。用 知纖維陣列雷射光源之光纖之包覆直徑爲1 25微米; 直徑越小,則焦點深度越深;因此,多模式光纖之包 徑較佳爲8 0微米或更小,更佳爲6 0微米或更小,仍 爲4 0微米或更小。另一方面,由於核心直徑適當地 少3至4微米,光纖31之包覆直徑較佳爲10微米或 〇 雷射模組64係由組合雷射光源或纖維陣列雷射 構成,如第2 9圖所示。組.合雷射光源係由配置且固 加熱區10上之多個(例如,七個)多模式或單模式 半導體雷射 LD1、LD2、LD3、LD4、LD5、LD6、與 ,準直透鏡 11、 12、 13、 14、 15、 16、與 17,收集 20,及多模式光纖30構成。無需贅述,半導體雷射 不限於七個。例如,關於包覆直徑=6 0微米,核心 而增 之波 例如 射光 爲一 1/2 束之 ,包 於習 包覆 覆直 更佳 爲至 更大 光源 定於 GaN LD7 透鏡 數量 直徑 200530754 =50奈米,ΝΑ = 0·2之多模式纖維,可輸入多達二十個半 ^ 導體雷射,因此可減少光纖數量同時得到曝光頭需要之光 量。(Λ) In the above formula (Α), the coefficient system is defined as follows: -29- 200530754-z: extending from a point on the aspheric surface of the height P (mm) on the optical axis to the aspheric convex tangent plane or the vertical optical axis plane Vertical length; P: distance from the optical axis (mm); K: conic coefficient; c: paraxial curvature (1 / r, r: paraxial curvature radius); ai: "i" th aspheric coefficient (i = 3 to 10). Fig. 26 shows the light quantity distribution of the illumination light obtained by one of the paired lenses shown in Tables 1 and 2. The abscissa indicates the distance from the optical axis, and the ordinate indicates ® the amount of light (%). Figure 25 shows the light amount distribution (Gaussian distribution) of the uncompensated illumination light. As is clear from Figs. 25 and 26, the compensation of the light amount distribution by the optical system compensation results in a substantially uniform light amount distribution that significantly exceeds that without compensation. Therefore, the uniform laser beam can achieve uniform exposure without reducing the optical utilization efficiency. -Optical irradiation device or laser light source-The optical irradiation device is appropriately selected depending on the application; examples thereof include extremely high pressure mercury lamps, xenon lamps, carbon arc lamps, halogen lamps, fluorescent tubes, LEDs, semiconductor lasers, and Other conventional laser light sources are also combinations of these devices. Of these devices, devices that can illuminate two or more types of light or laser are preferred. Examples of the light or laser beam radiated from the optical irradiation device or the laser light source include UV rays, visible light, X-rays, laser beams, and the like. Among them, the laser beam is better, and more preferably, it contains two or more types of laser beams (hereinafter sometimes referred to as “combined laser”). The wavelength of UV rays and visible light is preferably 300 to 1500 nm, more preferably 320 to 800 nm, and most preferably 330 to 650 nm. -30- 200530754 • The wavelength of the laser beam is preferably 200 to 1500 nm, more preferably 300 to 800 nm, still more preferably 330 to 500 nm, and most preferably 400 to 450 nm. As for a device for irradiating a combination laser, this device is preferably exemplified as including a plurality of laser irradiation devices, a multi-mode optical fiber, and a collection optical system that collects each laser beam and is connected to the multi-mode optical fiber. The device for irradiating a combination laser or fiber array laser light source is explained with reference to the following drawings. The B-fiber array laser light source 66 is equipped with a plurality of (for example, fourteen) laser modules 64, as shown in FIG. 27A. One end of each multi-mode optical fiber 30 is connected to each laser module 64. Connect the other end of each multi-mode fiber 30 to the fiber 31 with the same core diameter as the multi-mode fiber 30 and a smaller coating diameter than the multi-mode fiber 30. Specifically, as shown in FIG. 2B, the ends of the multi-mode optical fiber 31 at the opposite ends of the multi-mode optical fiber 30 are arranged into seven ends along the main scanning direction of the vertical sub-scanning direction, and the seven ends are arranged into Two columns, thus constituting the laser output section 6 8. The laser output portion 68 formed by the ends of the multi-mode optical fiber 31 is fixed by being inserted between two flat support plates 65, as shown in Fig. 27B. Preferably, in order to protect the output end surface, a transparent protective plate such as a glass plate is arranged on the output end surface of the multi-mode optical fiber 31. The output end surface of the multi-mode optical fiber 31 tends to carry dust and degrade due to its higher optical density; the above-mentioned protective plate can prevent dust from being deposited on the end surface and can prevent degradation. In this example, in order to arrange the optical fibers 31 with smaller cladding diameters into the array without gaps, stack the multimode optical fibers 30 in two contacts -31-200530754 _multimode fibers with larger cladding diameters 30, and the output end of the optical fiber 31 connected to the stacked multimode optical fiber 30 is inserted between the output ends of the two optical fibers 31 connected to the two multimode optical fibers 30 which are in contact with the larger cladding diameter. This optical fiber can be manufactured by concentrically connecting an optical fiber 31 having a length of 1 to 30 cm and a smaller coating diameter to a multi-mode optical fiber 30 having a larger coating diameter and a top end portion of the laser beam output side, for example, As shown in Figure 2-8. The two optical fibers are connected so that the input end surface of the optical fiber 31 is fused to the output end surface of the multi-mode optical fiber 30 so that the central axes of the two optical fibers are consistent. As mentioned above ®, the diameter of the core 3 1 a of the fiber 31 is the same as the diameter of the core 30 a of the multi-mode fiber 30. In addition, a shorter optical fiber manufactured by fusing a smaller-clad fiber to a shorter-length and larger-clad fiber can be connected to the output end of the multi-mode fiber through a ferrule, an optical connector, and the like. For example, when the optical fiber with a smaller coating diameter is partially damaged, it can be easily replaced by an output terminal in an attachable and detachable manner through a connector or the like, which advantageously results in lower maintenance costs of the exposed optical head . The optical fiber 31 is sometimes referred to as the "output end portion" of the multi-mode optical fiber 30. The multi-mode optical fiber 30 and the optical fiber 31 may be any of a segment-oriented optical fiber, a grating-oriented optical fiber, and a combination optical fiber. For example, a segmented guide fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In one of the best modes according to the present invention, the multi-mode optical fiber 30 and the optical fiber 31 are segment-directed optical fibers; in the multi-mode optical fiber 30, the cladding diameter = 125 micrometers, the core diameter = 50 micrometers, and NA = 0 · 2. Transmittance = 99.5% or more (at the surface coating of the output end); and in the optical fiber 31, cladding straight -32- 200530754 diameter = 60 microns, core diameter = 50 microns, NA = 0.2. Laser beams in the infrared region generally decrease with the fiber coating diameter and increase propagation loss. Therefore, the proper coating diameter is usually defined by the long area of the laser beam. However, the shorter the wavelength, the smaller the propagation loss; In a laser beam with a wavelength of 40 5 nm irradiated by a GaN semiconductor laser, even when the cladding thickness (cladding diameter-core diameter) is propagated / 2 When the coating thickness of an infrared light beam with a wavelength of 800 nm is dry, or when the thickness of the infrared light with a propagation wavelength of 1.5 micrometers is about 1/4 of the coating thickness, the propagation loss does not increase significantly. Therefore, the cover diameter can be as small as 60 microns. Needless to say, the diameter of the optical fiber 31 should not be limited to 60 microns. The covering diameter of the fiber using the known fiber array laser light source is 125 microns; the smaller the diameter, the deeper the focal depth; therefore, the covering diameter of the multi-mode fiber is preferably 80 microns or less, more preferably 6 0 microns or less, still 40 microns or less. On the other hand, since the core diameter is appropriately less than 3 to 4 micrometers, the covering diameter of the optical fiber 31 is preferably 10 micrometers or the laser module 64 is composed of a combined laser light source or a fiber array laser. As shown. Group. The combined laser light source is configured by a plurality of (eg, seven) multi-mode or single-mode semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, and collimating lens 11 on the heating zone 10 , 12, 13, 14, 15, 16, and 17, a collection of 20, and a multimode fiber 30. Needless to say, semiconductor lasers are not limited to seven. For example, regarding the coating diameter = 60 micrometers, the core increasing wave, such as a 1/2 beam, is better to cover the coating and straightening is better to a larger light source. The number of GaN LD7 lenses is set to 200530754 = 50. Nanometer, ΝΑ = 0 · 2 multi-mode fiber, can input up to 20 semi- ^ conductor lasers, so you can reduce the number of fibers and get the amount of light required by the exposure head.
GaN半導體雷射LD1至LD7具有常用準直波長,例 如,405奈米,及常用最大輸出’例如,對多模式雷射爲 1〇〇毫瓦及對單模式雷射爲30毫瓦。GaN半導體雷射 LD1至LD7可爲具有405奈米以外之準直波長者,只要是 在350至450奈米之波長內。 β 組合雷射光源係裝於具有上開口與其他光學元件之盒 形包裝40中,如第30及31圖所示。包裝40裝有關閉開 口用之包裝蓋41。在抽氣步驟及以包裝蓋41關閉包裝40 之開口後引入密封氣體產生由包裝40與包裝蓋41構成之 封閉空間或密封體積,而且組合雷射光源係以密封條件配 置。 將基座板4 2固定於包裝4 0底部;將加熱區1 0、支 撐收集透鏡20之收集透鏡保持器45、及支撐多模式光纖 ^ 30輸入端之纖維保持器46安裝於基座板42之上表面。 將多模式光纖3 0輸出端由提供於包裝40壁處之開口自包 裝抽出。 將準直透鏡保持器44附著至加熱區1 0側壁,因而支 撐準直透鏡1 1至1 7。在包裝40壁處提供開口,及將對 GaN半導體雷射LD1至LD7供應驅動電力之線路47導引 通過開口離開包裝。GaN semiconductor lasers LD1 to LD7 have commonly collimated wavelengths, such as 405 nm, and commonly used maximum output ', for example, 100 milliwatts for multi-mode lasers and 30 milliwatts for single-mode lasers. The GaN semiconductor lasers LD1 to LD7 may be those having a collimated wavelength other than 405 nm, as long as it is within a wavelength of 350 to 450 nm. The β-combined laser light source is housed in a box-shaped package 40 having an upper opening and other optical components, as shown in Figs. 30 and 31. The package 40 is provided with a package lid 41 for closing the opening. After the pumping step and closing of the opening of the package 40 with the package cover 41, the introduction of a sealed gas generates a closed space or a sealed volume composed of the package 40 and the package cover 41, and the combined laser light source is configured in a sealed condition. Fix the base plate 4 2 to the bottom of the package 40; install the heating zone 10, the collection lens holder 45 that supports the collection lens 20, and the fiber holder 46 that supports the multi-mode optical fiber 30 input end on the base plate 42 On the surface. The multi-mode optical fiber 30 output end is extracted from the package through the opening provided at the wall of the package 40. A collimating lens holder 44 is attached to the side wall of the heating zone 10, thereby supporting the collimating lenses 11 to 17. An opening is provided at the wall of the package 40, and a line 47 for supplying driving power to the GaN semiconductor lasers LD1 to LD7 is guided to leave the package through the opening.
在第31圖中,爲了不使圖式過度複雜,在多個GaN -34- 200530754 ' 半導體雷射中僅GaN半導體雷射LD7以參考標記顯 而且在多個準直器中僅準直透鏡1 7以參考標記顯示。 第32圖顯示準直透鏡11至17之附著部份之前 狀。各準直透鏡1 1至1 7係形成將含非球面圓形透鏡 光軸之區域處切成具多個平行面之長片之形狀。長形 透鏡可藉模塑法製造。準直透鏡1 1至1 7係按發射點 方向緊密地配置,使得伸長方向垂直GaN半導體 LD1至LD7之發射點排列。 ® 另一方面,至於GaN半導體雷射LD1至LD7, 用以下之雷射,其包括發射寬度爲2微米之活性層’ 在相對活性層爲平行及垂直方向之發散角度爲1 〇度;ί 度之情形發射各雷射光束Β1至Β7。GaN半導體雷射 至LD 7係配置使得發射位置排列成平行活性層之一行 因此,自各發射位置發射之雷射光束B1至B7 發散角度較大之方向與各準直透鏡之長度方向一致, 散角度較小之方向與各準直透鏡之寬度方向一致之情 ® 進入長形準直透鏡1 1至1 7。即,關於各準直透鏡1 17,寬度爲1.1毫米且長度爲4.6毫米,及對於進入 透鏡中之雷射光束B1.至B7,水平方向光束直徑爲〇· 米且垂直方向爲2.6毫米。至於各準直透鏡11至17 點長度Π=3毫米,NA = 0.6,配置透鏡節距=1.25毫米 形成將一部份含光軸且爲非球面之圓形透鏡切成 之形狀之收集透鏡20係安置使得長片在配置準直透i 至17之方向(即,水平方向)較長,而且在垂直方 示, 面形 在含 準直 排列 雷射 可使 而且 ^ 3 0 LD 1 〇 係在 及發 形, 1至 準直 9毫 ,焦 〇 長片 iii 向較 -35- 200530754 短。至於收集透鏡,焦點長度f2 = 23毫米,ΝΑ = 0·2。例如 ’收集透鏡20可藉由模塑樹脂或光學玻璃而製造。 此外’由於使用高照明纖維陣列雷射光束,其係在照 明D M D之照明裝置用組合雷射光源之光纖輸出端排列, 而可得呈較高輸出及較深焦點深度之圖案形成裝置。此外 ’各纖維陣列雷射光束之較高輸出可導致必要輸出所需之 纖維陣列雷射光束數量較少,及較低之圖案形成裝置成本 〇 ® 此外’光纖輸出端之包覆直徑小於輸入端之包覆直徑 ’因此’發射位置處之直徑更爲減小,造成較高之纖維陣 列雷射光源照明。結果,可得到具較深焦點深度之圖案形 成裝置。例如,即使是極高之解析度曝光亦可得充分之焦 點深度,使得光束直徑爲1微米或更小且解析度爲0 · 1微 米或更小,因而造成快速及精確之曝光。因此,此圖案形 成裝置適合需要高解析度之薄膜電晶體(TFT)曝光。 照明裝置不限於裝有多個組合雷射光源之纖維陣列雷 β 射光束;例如,可使用裝有纖維雷射光源之纖維陣列雷射 光源’及繊維雷射光源係由一*組自具~^個發射位置之半導 體雷射輸出雷射光束之陣列光纖構戒。 此外,至於具多個發射位置之照明裝置,可使用包括 配置於加熱區1 0 0上之多個(例如,七個)尖形半導體雷 射L D1至L D 7之雷射陣列,如第3 3圖所示。此外,已知 多孔雷射1 1 〇,其包括按特定方向配置之多個(例如,五 個)發射位置1 10a,如第34Α圖所示。在多孔雷射1 1〇 -36- 200530754 — 中,相較於排列尖形半導體雷射,發射位 準確性排列,因此可易於組合自各發射位 束。由於在數量增加時偏轉趨於在雷射產 孔雷射1 1 〇,發射位置11 0a之數量較佳爲 關於照明裝置,上述之多孔雷射1 1 ( 其係配置使得多孔雷射1 1 0按各尖端之靈 相同方向排列,如第3 4 B圖所示,可用於 組合雷射光源不限於組合多條自多個 B 發射之雷射光束之型式。例如,可使用包 ,三個)發射位置1 1 〇 a之尖形多孔雷射 光源,如第 21圖所示。此組合雷射光 110、多模式光纖130、及收集透鏡120。 110可由具4 05奈米之準直波長之GaN雷 在上示構造中,自多孔雷射110之 11 〇 a發射之各雷射光束B係由收集透鏡 多模式光纖1 3 0之核心1 3 0 a中。進入核4 ® 光束在光纖內部傳播且組合成一條雷射光 出。 雷射光束B對多模式光纖1 3 0之連 多孔雷射1 1 0之多個發射位置Π 0a排列 1 3 0之核心直徑大約相同之寬度,及使用 式光纖1 3 0之核心直徑大約相同之凸透鏡 直活性層之表面內將來自多孔雷射1 1 〇之 棒形透鏡而增強。 置可以較高尺寸 置發射之雷射光 生程序中產生多 五個或更少。 >,或多孔陣列, ^射位置1 1 0 a之 雷射光源。 尖形半導體雷射 括具多個(例如 1 1 〇之組合雷射 源裝有多孔雷射 例如,多孔雷射 射二極管構成。 各多個發射位置 1 2 0收集且進入 二、130a中之雷射 束然後自光纖輸 接效率可藉由將 成與多模式光纖 焦點長度與多模 ,亦使用僅在垂 輸出光束準直之 -37- 200530754 — 此外,如第3 5圖所示,可使用裝有雷射陣列140之 組合雷射光源,其係使用裝有多個(例如,三個)發射位 置之多孔雷射110,藉由將多個(例如,九個)多孔雷射 1 1 0以其間爲相同之間隙排列於加熱區Η 1上而形成。多 孔雷射1 1 0係按各尖端發射位置1 1 0a之相同方向排列及 固定。 此組合雷射光源裝有雷射陣列1 40、對應各多孔雷射 I 1 〇而配置之多個透鏡陣列1 1 4、配置於雷射陣列1 40與 ® 透鏡陣列1 1 4間之棒形透鏡1 1 3、多模式光纖1 3 0、與收 集透鏡1 2 0。透鏡陣列1 1 4裝有多個各對應多孔雷射1 1 〇 發射位置之微透鏡。 在上示構造中,自多個多孔雷射110之多個發射位置 II 〇a發射之雷射光束B係藉棒形透鏡113在特定方向收 集,然後藉微透鏡陣列1 1 4之各微透鏡平行化。平行化雷 射光束L係藉收集透鏡1 2 0收集,及輸入多模式光纖1 3 0 之核心1 3 0 a中。進入核心1 3 0 a中之雷射光束在光纖內部 ^ 傳播且組合成一條雷射光束然後自光纖輸出。 另一種組合雷射光源例示於以下。在此組合雷射光源 中,將光軸方向之橫切面爲L形之加熱區1 8 2裝設於長方 形加熱區180上,如第36A及36B圖所示,而且在兩個 加熱區之間形成包圍空間。在L形加熱區1 8 2之上表面上 ,其中排列多個(例如,五個)發射位置之多個(例如, 兩個)多孔雷射1 1 〇以其間爲相同之間隙按各尖形發射位 置排列方向之相同方向配置及固定。 -38- 200530754 * 在長方形加熱區1 8 0上提供凹 ,兩個)多孔雷射1 1 0配置於加熱 各多孔雷射1 1 〇中排列多個發射位 將發射位置安置於其中安置配置於 端發射位置表面之相同垂直表面處 在多孔雷射1 1 0之雷射光束輸 列1 84使得準直透鏡對應各尖端之 。在準直透鏡陣列1 8 4中,各準直 ® 光束呈現較寬發散角度之方向或快 透鏡之寬度方向與雷射光束呈現較 軸方向一致。將準直透鏡形成陣列 之空間效率,因此可增強組合雷射 可減少零件數量,有利地造成較低 在準直透鏡陣列1 8 4之雷射光 光纖130、及在多模式光纖130輸 其組合之收集透鏡1 2 0。 ^ #上示構造中,自配置於雷射 多孔雷射11 〇之各發射位置1 1 〇 a彳 藉準直透鏡陣列平行化’藉收集透 多模式光纖130之核心130a。進7 束在光纖內部傳播且組合成一條雷 〇 此組合雷射光源可藉由多孔雷 準直透鏡陣列)而產生較高輸出功 面部份;將多個(例如 區180之上表面上,在 置(例如,五個),及 加熱區182上之雷射尖 〇 出側,配置準直透鏡陣 ,發射位置1 10a而排列 透鏡之長度方向與雷射 軸方向一致,及各準直 小發散角度之方向或慢 之整合可增加雷射光束 光源之輸出電力,而且 之製造成本。 束輸出側,配置多模式 入端收集雷射光束且將 區 1 80,1 82上之多個 發射之各雷射光束B係 鏡1 2 0收集,然後進入 、核;L·、1 3 0 a中之雷射光 射光束然後自光纖輸出 射之多重排列(特別是 率光源。此組合雷射光 -39- 200530754 源可構成纖維陣列雷射光源及纖維束雷射光源,因此適合 用於纖維雷射光源而在本發明中構成圖案形成裝置之雷射 光源。 順便一提,雷射模組可藉由以外殼包圍各組合雷射光 源’及將多模式光纖1 3 0之輸出端拉出而構成。 在上述之解釋中,例示爲較高照明度之纖維陣列雷射 光源,其中組合雷射光源之多模式光纖之輸出端連接至另 一具有與多模式光纖相同之核心直徑且包覆直徑小於多模 式光纖之光纖;或者,例如,可利用包覆直徑爲125微米 、80微米、60微米等但輸出端不連接至另一光纖之多模 式光纖。 進一步解釋依照本發明之圖案形成方法。 如第29圖所示,在掃描器162之各曝光頭166中, 將自組成纖維陣列雷射光源6 6之組合雷射光源之G aN半 導體雷射LD1至LD7發射之各雷射光束Bl、B2、B3、B4 、B5、B6、與B7藉對應之準直透鏡11至17平行化。將 平行化雷射光束B 1至B 7藉收集透鏡2 0收集,及在多模 式光纖30之核心30a之輸入端表面處發射。 在此實例中,收集光學系統係由準直透鏡1 1至1 7與 收集透鏡2 0構成,而且組合光學系統係由收集光學系統 與多模式光纖30構成。即,藉收集透鏡20收集之雷射光 束B1至B7進入多模式光纖30之核心3〇a中且在光纖內 部傳播,組合成一條雷射光束B,然後自在多模式光纖3 〇 輸出端處連接之光纖3 1輸出。 -40- 200530754 在各雷射模組中,在雷射光束B 1至B 7與多模 纖30之結合效率爲0.85且GaN半導體雷射LD1至 之各輸出爲3 0毫瓦時,配置成陣列之各光纖可組成 180毫瓦(=30毫瓦X 〇·85 X 7)之組合雷射光束B。 ,在六個光纖3 1之陣列之雷射發射部份6 8處之輸出 1 瓦(=180 毫瓦 x6)。 纖維陣列光源之雷射發射部份6 8係排列使得較 明發射位置係沿主掃描方向排列。將來自半導體雷射 射光束連接至光纖之習知纖維雷射光源爲低輸出,因 無法達到所需之輸出,除非將許多個雷射排成陣列; 於組合雷射光源可產生較高之輸出,較低數量(例如 個)之組合雷射光源可產生所需之輸出。 例如,在其中連接半導體雷射與光纖之習知纖維 通常使用約3 0毫瓦輸出之半導體雷射,而且使用核 徑爲50微米、包覆直徑爲125微米、及數値開口;| 之多模式光纖作爲光纖。因此,爲了取得約1 W (瓦 輸出,48 (8 X 6)個多模式光纖爲必要的;由於發射 之面積爲0.62平方毫米(0.675毫米X 0.925毫米) 射發射部份6 8處之照明度爲1 · 6 X 1 〇6 (瓦/平方米) 每條光纖之照明度爲3 · 2 X 1 0 6 (瓦/平方米)。 相反地’在雷射發射裝置爲可發射組合雷射者時 條多模式光纖可產生約1瓦之輸出。由於雷射發射 68中發射區域之面積爲0.0081平方毫米(0.325毫 0 · 0 2 5毫米)’雷射發射部份6 8處之照明度爲1 2 3 :式光 LD7 ,輸出 因此 ί爲約 :高照 之雷 此, 而由 5 -- 中, 心直 I 0.2 :)之 區域 ,雷 ,及 ,六 部份 米 X xlO6 -41 - 200530754 ' (瓦/平方米),其相當於習知裝置照明度之約8 0倍。每 條光纖之照明度爲9 0 X 1 06 (瓦/平方米),其相當於習知 裝置照明度之約2 8倍。 習知曝光頭與本發明曝光頭之間之焦點深度差係參考 第3 7A及3 7B圖而解釋。例如,束形纖維雷射光源發射 區域之次掃描方向之曝光頭直徑爲〇·675毫米,及纖維陣 列雷射光源發射區域之次掃描方向之曝光頭直徑爲〇 . 〇 2 5 毫米。如第37Α圖所示,在習知曝光頭中,照明裝置或束 胃形纖維雷射光源1之發射區域較佳,因此,雷射束進入 DMD3之角度較大,造成較大之進入掃描表面5之雷射束 角度。因此’光束直徑在收集方向趨於增加,而在焦點方 向造成偏差。 另一方面,如第3 7 Β圖所示,本發明圖案形成裝置 中之曝光頭在次掃描方向具有較小之纖維陣列雷射光源 66發射區域直徑’因此’通過透鏡系統67進入DMD50 ^ 之雷射束角度較小,造成較小之進入掃描表面56之雷射 束角度’即’較大之焦點深度。在此實例中,發射區域在 次掃描方向之直徑爲先行技藝直徑之約3 〇倍,因此可得 大約對應有限繞射之焦點深度,其適合極小點之曝光。在 曝光頭所需之光量變大時,焦點深度之影響更爲顯著。在 此實例中,投射於曝光表面上之一個成像部份之尺寸爲 10微米X 10微米。DMD爲反射型空間光調變器;在第 3 7 Α及3 7 Β圖中’其以擴充圖顯示以解釋光學關係。 將W應曝光圖案之圖案資訊輸入連接至DMD50之控 -42- 200530754 、 制器(未示),及記錄於控制器內之快閃記憶體。圖案 * 訊爲以兩個數値(即,有或無點紀錄)表現組成像素之 成像部份濃度之資料。 將在表面上吸收圖案形成材料1 5 0之平台1 5 2藉驅 裝置(未示)沿導件1 5 8以固定速率自閘1 6 0上游輸送 下游。在平台1 5 2通過閘1 6 0下方時,在裝設於閘1 6 〇 偵測感應器1 6 4偵測到圖案形成材料丨5 〇尖端時,循序 按多行乘多行讀取快閃記憶體中記錄之圖案資訊,及基 B 資料處理部份讀取之圖案資訊對各曝光頭1 6 6產生控制 號。然後使DMD50之各微鏡基於產生之控制信號接受 曝光頭166之開關控制。 在將來自纖維陣列雷射光源66之雷射光束照射 D M D 5 0上時,在開情況下經D M D 5 0之微鏡反射之雷射 束藉透鏡系統54,58在圖案形成材料15〇之曝光表面 上成像。因此,使自纖維陣列雷射光源66發射之雷射 _ 束對各成像部份接受開關控制,及藉成像部份或曝光區 1 6 8 (其數量與用於D M D 5 0之成像部份大約相同)將圖 形成材料150曝光。此外,經由將圖案形成材料15〇以 疋速度連同平台152移動,使圖案形成材料15〇在平台 動方向之相反方向接受掃描器162之次掃描,而且各曝 頭166形成帶形曝光區域170。 [靥合物] 欲曝光之材料係適當地選擇而無特別之限制,只要 材料爲包括感光層之圖案形成材料。較佳爲,曝光係對 資 各 動 至 之 地 於 信 各 至 光 56 光 域 案 固 移 光 此 在 -43- 200530754 ^ 基板上包括圖案形成材料之層合物進行。 <圖案形成材料> 圖案形成材料可視應用適當地選擇而無特別之限制, 只要此材料在撐體上包括感光層。 感光層可適當地選自習知圖案形成材料而無特別之限 制;較佳爲感光層包括,例如,黏合劑、可聚合化合物、 光聚合引發劑、及其他成分(如果需要)。 層合之感光層數量可適當地選擇而無特別之限制;層 B 合數量可爲一層,或不少於兩層。 -黏合劑- 較佳爲,黏合劑在鹼性水溶液中可膨脹,更佳爲,|占 合劑溶於鹼性水溶液中。例如,在鹼性水溶液中可膨脹或 可溶解之黏合劑爲具有酸性基者。 酸性基可視應用適當地選擇而無特別之限制;其實例J 包括羧基、磺酸基、磷酸基等。這些基中,羧基較佳。 含羧基之黏合劑之實例包括含羧基之乙烯基共聚物、 聚胺基甲酸酯樹脂、聚醯胺酸樹脂、與改質環氧樹脂。其 中,由塗料溶劑中溶解度、鹼顯影劑中溶解度、合成能Λ 、調整膜性質之容易性等之觀點,含羧基之乙烯基共聚物 較佳。 含羧基之乙烯基共聚物可藉由共聚合至少(i)含羧_ 之乙烯基聚合物,及(ii)可與乙烯基單體共聚合之單體而 合成。 含羧基之乙烯基聚合物之實例包括(甲基)丙烯酸、 -44- 200530754 乙細基本甲酸、順丁烯一酸、順丁烯二酸單院酯、反丁烯 二酸、伊康酸、巴豆酸、桂皮酸、丙烯酸二聚物、含羥基 單體(如(甲基)丙烯酸2 -羥乙酯)與環形酐(如順丁烯 一酸酐)之加成物、駄酸酐、及環己院二碳酸酐、及ω _殘 基-聚己內酯單(甲基)丙烯酸酯。其中,由共聚合能力 、成本、溶解度等之觀點,(甲基)丙烯酸特佳。 此外’至於羧基之前驅體、可使用含酐之單體,如順 丁烯二酸酐、伊康酸酐與檸康酸酐。 ® 可共聚合之單體可視應用而適當地選擇;其實例包括 (甲基)丙烯酸酯、巴豆酸酯、乙烯酯、順丁烯二酸二酯 、反丁烯二酸二酯、伊康酸二酯、(甲基)丙烯醯胺、乙 烯醚、乙烯醇酯、苯乙烯、甲基丙烯腈;具經取代乙烯基 之雜環化合物,如乙烯基吡啶、乙烯基吡咯啶與乙烯基咔 唑;Ν -乙烯基甲醯胺、Ν -乙烯基乙醯胺、Ν -乙烯基咪唑、 乙烯基己內酯、2 -丙烯醯胺-2-甲基丙磺酸、磷酸單(2 -丙 烯氧基乙酯)、磷酸單(1-甲基-2-丙烯氧基乙酯)、及含 B hS基(如fee基甲酸醋基、脈基、礦酸胺基、酌基、與釀 亞胺基)之乙烯基單體。 (甲基)丙烯酸酯之實例包括(甲基)丙烯酸甲酯、 (甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基) 丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸 異丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸正己 酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸第三丁基環 己酯、(甲基)丙烯酸2 -乙基己酯、(甲基)丙烯酸第三 -45- 200530754 - 辛酯、(甲基)丙烯酸十二碳酯、(甲基)丙 > 酯、(甲基)丙烯酸乙醯氧基乙酯、(甲基) 、(甲基)丙烯酸2-羥乙酯、(甲基)丙烯| 乙酯、(甲基)丙烯酸2_乙氧基乙酯、(甲 2-(2-甲氧基乙氧基)乙酯、(甲基)丙烯酸 羥丙酯、二苯乙二酮(甲基)丙烯酸酯、二乙 (甲基)丙烯酸酯、二乙二醇一乙醚(甲基) 二乙二醇一苯醚(甲基)丙烯酸酯、三乙二醇 ® 基)丙烯酸酯、三乙二醇一乙醚(甲基)丙烯 二醇一甲醚(甲基)丙烯酸酯、聚乙二醇一乙 丙烯酸酯、(甲基)丙烯酸β -苯氧基乙氧基乙 氧基聚乙二醇(甲基)丙烯酸酯、(甲基)丙 酯、(甲基)丙烯酸二環戊烯氧基乙酯、(甲 三氟乙酯、(甲基)丙烯酸八氟戊酯、(甲基 氟辛酯、(甲基)丙烯酸三溴苯酯、與(甲基 _ 溴苯氧基乙酯。 巴豆酸酯之實例包括巴豆酸丁酯與巴豆酸 乙烯酯之實例包括乙酸乙烯酯、丙酸乙稀 烯酯、乙烯基甲氧基乙酸酯、與苯甲酸乙稀酯 順丁烯二酸二酯之實例包括順丁烯二酸二 烯二酸二乙酯與順丁烯二酸二丁酯。 反丁烯二酸二酯之實例包括反丁烯二酸二 烯二酸二乙酯與反丁烯二酸二丁酯。 伊康酸二酯之實例包括伊康酸二甲酯、伊 烯酸十八碳 丙烯酸苯酯 愛2-甲氧基 基)丙烯酸 3-苯氧基-2-二醇一甲醚 丙烯酸酯、 一甲醚(甲 酸酯、聚乙 醚(甲基) 酯、壬基苯 烯酸二環戊 基)丙烯酸 )丙烯酸全 )丙烯酸三 己酯。 酯、丁酸乙 〇 甲酯、順丁 甲酯、反丁 康酸二乙酯 -46- 200530754 ^ 與伊康酸二丁酯。 (甲基)丙烯醯胺之實例包括(甲基)丙烯醯胺 甲基(甲基)丙烯醯胺、N-乙基(甲基)丙烯醯胺、 基(甲基)丙烯醯胺、N -異丙基(甲基)丙烯醯胺、 丁基(甲基)丙烯酿胺、N-第三丁基(甲基)丙儲醯 N-環己基(甲基)丙烯醯胺、N-(2-甲氧基乙基)( )丙烯醯胺、N,N-二甲基(甲基)丙烯醯胺、N,N-二 (甲基)丙烯醯胺、N-苯基(甲基)丙烯醯胺、N-二 胃二酮(甲基)丙烯醯胺、(甲基)丙烯醯基嗎啉、與 酮丙烯醯胺。 苯乙烯之實例包括苯乙烯、甲基苯乙烯、二甲基 烯、三甲基苯乙烯、乙基苯乙烯、異丙基苯乙烯、丁 乙烯、羥基苯乙嫌、甲氧基苯乙烯、丁氧基苯乙烯、 氧基苯乙烯、氯苯乙烯、二氯苯乙烯、溴苯乙烯、氯 苯乙烯;具可藉酸物質去保護之保護基(如t-Boc) 基苯乙烯;苯甲酸乙烯基甲酯、與α -甲基苯乙烯。 ® 乙烯醚之實例包括甲基乙烯醚、丁基乙烯醚、己 烯醚、與甲氧基乙基乙烯醚。 合成含官能基之乙烯基單體之方法爲,例如,異 基與經基或胺基之加成反應;特別地例示爲含異氰酸 單體與含羥基化合物或含第一或第二胺基化合物間之 反應、及含羥基之單體或含第一或第二胺基之單體與 酸基間之加成反應。 、Ν-Ν-丙 Ν-正 胺、 甲基 乙基 苯乙 二丙 苯乙 基苯 乙醯 甲基 之羥 基乙 氰酸 基之 加成 單氰 -47- 200530754 含異氰酸基之單體之實例包括下式(1)至(3)表示之化In Fig. 31, in order not to complicate the pattern excessively, among the plurality of GaN-34-200530754 'semiconductor lasers, only the GaN semiconductor laser LD7 is shown with a reference mark and only the collimator lens 1 is used in the plurality of collimators. 7 is displayed with a reference mark. Fig. 32 shows the previous state of the attachment portions of the collimating lenses 11 to 17. Each of the collimating lenses 11 to 17 is formed into a shape in which a region including an optical axis of an aspherical circular lens is cut into a long piece having a plurality of parallel planes. Long lenses can be manufactured by molding. The collimating lenses 11 to 17 are closely arranged in the direction of the emission points so that the elongation direction is aligned perpendicular to the emission points of the GaN semiconductors LD1 to LD7. ® On the other hand, as for the GaN semiconductor lasers LD1 to LD7, the following lasers are used, which include an active layer with an emission width of 2 micrometers. The divergence angle is 10 degrees in parallel and perpendicular to the active layer; In this case, each of the laser beams B1 to B7 is emitted. The GaN semiconductor laser to LD 7 series configuration allows the emission positions to be arranged in a row of parallel active layers. Therefore, the direction of the larger divergence angle of the laser beams B1 to B7 emitted from each emission position is consistent with the length direction of each collimator lens, and the divergence angle. The smaller direction is consistent with the width direction of each collimating lens ® Enter the long collimating lens 1 1 to 17. That is, regarding each collimator lens 1 17, the width is 1.1 mm and the length is 4.6 mm, and for the laser beams B1. To B7 entering the lens, the horizontal beam diameter is 0 m and the vertical direction is 2.6 mm. As for the length of each collimator lens, 11 to 17 points, Π = 3mm, NA = 0.6, and the lens pitch is set to 1.25mm, a collection lens 20 is formed by cutting a part of a circular lens with an optical axis and an aspheric surface. The placement makes the long film longer in the direction of collimation through i to 17 (that is, the horizontal direction), and it is shown in the vertical direction. The shape of the laser beam with collimation arrangement can make ^ 3 0 LD 1 〇 And hair shape, 1 to collimated 9 millimeters, focus 0 long film iii direction is shorter than -35- 200530754. As for the collecting lens, the focal length f2 = 23 mm and NA = 0.2. For example, the 'collecting lens 20 can be manufactured by molding resin or optical glass. In addition, since a high-illumination fiber array laser beam is used, it is arranged at the optical fiber output end of a combined laser light source for illuminating a D M D lighting device, and a pattern forming device having a higher output and a deeper focal depth can be obtained. In addition, 'the higher output of each fiber array laser beam can result in a smaller number of fiber array laser beams required for the necessary output, and lower patterning device costs. Furthermore,' the output diameter of the fiber output end is smaller than the input end The cladding diameter 'thus' the diameter at the emission position is further reduced, resulting in a higher fiber array laser light source illumination. As a result, a pattern forming apparatus having a deeper focal depth can be obtained. For example, even very high-resolution exposures can achieve sufficient focal point depth, making the beam diameter 1 micron or less and the resolution 0 · 1 micron or less, resulting in fast and accurate exposure. Therefore, this pattern forming device is suitable for thin film transistor (TFT) exposure requiring high resolution. The lighting device is not limited to a fiber array laser β beam equipped with a plurality of combined laser light sources; for example, a fiber array laser light source equipped with a fiber laser light source can be used and the 繊 dimensional laser light source is provided by a group of * An array of optical fiber structures for semiconductor laser output laser beams at ^ emission positions. In addition, as for the lighting device having multiple emission positions, a laser array including a plurality of (eg, seven) pointed semiconductor lasers L D1 to LD 7 arranged on the heating zone 100 can be used, such as the third Figure 3 shows. In addition, a porous laser 1 10 is known, which includes a plurality of (for example, five) emission positions 1 10a arranged in a specific direction, as shown in FIG. 34A. In the porous laser 1 10-36- 200530754 — compared with the arrangement of pointed semiconductor lasers, the emission positions are accurately aligned, so it can be easily combined from each emission position beam. As the deflection tends to produce a hole laser 1 1 0 in the laser as the number increases, the number of emission positions 11 0a is preferably related to the lighting device. The above-mentioned porous laser 1 1 (which is configured such that the porous laser 1 1 0 Arranged in the same direction as the spirits of each tip, as shown in Figure 3 4 B, the combination of laser light sources is not limited to the combination of multiple laser beams emitted from multiple Bs. For example, a bag can be used, three) The pointed porous laser light source at the emission position 1 10a is shown in FIG. The combined laser light 110, the multi-mode optical fiber 130, and the collecting lens 120. 110 can be a GaN laser with a collimation wavelength of 4 05 nanometers in the structure shown above. Each laser beam B emitted from a porous laser 110 11a is made of a collection lens multimode fiber 1 3 0 core 1 3 0 a in. Entering the nuclear 4 ® beam propagates inside the fiber and combines into a laser light. The laser beam B is connected to the multi-mode fiber 1 3 0. The multiple emission positions of the porous laser 1 1 0 are the same as the core diameter of the 1 3 0 and the core diameter of the used fiber 1 3 0 is about the same. The surface of the straight active layer of the convex lens will be enhanced by a rod lens from a porous laser 110. The laser light emitted by the device can be set at a higher size to generate five or less in the generation process. >, or a porous array, a laser light source at a radiation position 1 1 0 a. The pointed semiconductor laser includes a combination of multiple (for example, 1 1 0) laser sources with a porous laser, for example, a porous laser diode. Each of the multiple emission positions 1 2 0 collects and enters the lightning in two 130a. The beam can then be transmitted from the fiber by using the multi-mode fiber focal length and multi-mode. It is also used to collimate only the vertical output beam. -37- 200530754 — In addition, as shown in Figure 3 and 5 A combined laser light source having a laser array 140 uses a porous laser 110 equipped with multiple (for example, three) emission positions by combining multiple (for example, nine) porous lasers 1 1 0 to The same gap is formed on the heating zone Η 1. The porous laser 1 10 is arranged and fixed in the same direction as the emission position 1 1 0a of each tip. This combined laser light source is equipped with a laser array 1 40, Multiple lens arrays 1 1 4 arranged for each porous laser I 1 0, rod lenses 1 1 3 arranged between laser array 1 40 and ® lens array 1 1 4 and multi-mode optical fibers 1 3 0, and Collecting lens 1 2 0. The lens array 1 1 4 is equipped with a plurality of corresponding porous mines. In the structure shown above, the laser beams B emitted from the multiple emission positions II 〇a of the multiple porous lasers 110 are collected in a specific direction by the rod lens 113 and then borrowed. The microlenses of the microlens array 1 1 4 are parallelized. The parallel laser beam L is collected by the collection lens 1 2 0 and input into the core 1 3 0 a of the multi-mode optical fiber 1 3 0. Enter the core 1 3 0 a The medium laser beam propagates inside the fiber ^ and combines into a laser beam and then outputs from the fiber. An example of another combined laser light source is shown below. In this combined laser light source, the cross-section in the direction of the optical axis is L-shaped The heating zone 1 8 2 is installed on the rectangular heating zone 180, as shown in FIGS. 36A and 36B, and an enclosing space is formed between the two heating zones. On the upper surface of the L-shaped heating zone 1 8 2, where A plurality (for example, two) of multiple (for example, two) porous lasers 1 1 10 arranged in a plurality of (for example, five) emission positions are arranged and fixed in the same direction as the arrangement direction of each pointed emission position with the same gap therebetween. 200530754 * Provide recess on rectangular heating zone 1 8 0 Two) Porous lasers 1 1 0 are arranged to heat multiple porous lasers 1 1 0. A plurality of emission sites are arranged. The emission positions are arranged therein, and the same vertical surface disposed on the surface of the end emission positions is positioned on the porous lasers 1 1 0. The laser beam input 184 makes the collimating lens correspond to each tip. In the collimating lens array 184, the direction of each collimated ® beam showing a wider divergence angle or the width direction of the fast lens is the same as that of the laser beam. The space efficiency of forming the collimating lens array can increase the combined laser and reduce the number of parts, which advantageously results in a lower laser fiber 130 in the collimating lens array 1 84 and a combination of the multimode fiber 130 Collect lens 1 2 0. ^ #In the structure shown above, self-arranged at each emission position of the laser porous laser 11 〇 1 1 〇 a 平行 Parallelized by collimating lens array ′ The core 130 a of the multi-mode optical fiber 130 is collected through. The 7 beams propagate inside the fiber and are combined into a single laser. This combined laser light source can produce a high output power surface portion through a porous laser collimating lens array; multiple (for example, on the upper surface of area 180, A collimator lens array is arranged on (for example, five) and the laser tip on the heating area 182, the emission position is 1 10a, and the length direction of the array lens is consistent with the laser axis direction, and each collimation is small. The divergence of the direction of the divergence angle or the slow integration can increase the output power of the laser beam source, and the manufacturing cost. On the beam output side, a multi-mode input is configured to collect the laser beam and emit multiple beams on the area 1 80, 1 82. Each laser beam B is collected by a series of mirrors 1 2 0 and then entered into the nucleus; multiple arrangements of the laser beams in L ·, 1 3 0 a are then emitted from the optical fiber output (especially the rate light source. This combined laser beam -39 -200530754 source can constitute fiber array laser light source and fiber bundle laser light source, so it is suitable for fiber laser light source and constitutes the laser light source of the patterning device in the present invention. Incidentally, the laser module can be used by To shell It is constituted by surrounding each combined laser light source 'and pulling out the output end of the multi-mode optical fiber 130. In the above explanation, the fiber array laser light source with higher illumination is exemplified, among which the multi-mode of the combined laser light source The output end of the optical fiber is connected to another optical fiber with the same core diameter as the multimode optical fiber and the cladding diameter is smaller than the multimode optical fiber; or, for example, a cladding diameter of 125 microns, 80 microns, 60 microns, etc. can be used but the output A multi-mode optical fiber that is not connected to another optical fiber. The pattern forming method according to the present invention is further explained. As shown in FIG. 29, in each of the exposure heads 166 of the scanner 162, a self-constituting fiber array laser light source 6 6 The laser beams Bl, B2, B3, B4, B5, B6, and B7 corresponding to the collimating lenses 11 to 17 emitted by the G aN semiconductor lasers LD1 to LD7 of the combined laser light source are parallelized. The light beams B 1 to B 7 are collected by the collecting lens 20 and are emitted at the input end surface of the core 30 a of the multi-mode optical fiber 30. In this example, the collecting optical system is composed of collimating lenses 11 to 17 and a collecting lens 2 0 constitutes, and The combined optical system is composed of a collection optical system and a multi-mode optical fiber 30. That is, the laser beams B1 to B7 collected by the collection lens 20 enter the core 30a of the multi-mode optical fiber 30 and propagate inside the optical fiber to form a laser. Beam B is then output from fiber 3 1 connected at the output end of multimode fiber 30. -40- 200530754 In each laser module, the combined efficiency of laser beams B 1 to B 7 and multimode fiber 30 It is 0.85 and each output of the GaN semiconductor laser LD1 to 30 milliwatts. Each optical fiber arranged in an array can form a combined laser beam B of 180 milliwatts (= 30 milliwatts X 0.85 X 7). The output of the laser emitting part 6 of the array of six optical fibers 31 is 1 watt (= 180 mW x 6). The laser emitting part of the fiber array light source is arranged in a 6-8 series so that the clearer emission positions are aligned in the main scanning direction. The conventional fiber laser light source that connects a semiconductor laser beam to an optical fiber has a low output, because the required output cannot be achieved, unless many lasers are arranged in an array; a combined laser light source can produce a higher output , A lower number (for example) of combined laser light sources can produce the required output. For example, a conventional fiber in which a semiconductor laser and an optical fiber are connected generally uses a semiconductor laser with an output of about 30 milliwatts, and uses a core diameter of 50 micrometers, a coating diameter of 125 micrometers, and several chirp openings; Mode fiber is used as the fiber. Therefore, in order to obtain about 1 W (Watt output, 48 (8 X 6) multi-mode optical fibers are necessary; since the area of the emission is 0.62 square millimeters (0.675 mm X 0.925 mm), the illuminance of the emission section is 68. 1 · 6 X 1 〇6 (W / m 2) Illumination of each fiber is 3 · 2 X 1 0 6 (W / m 2). Conversely, the laser emitting device is a launchable combination laser Timeline multi-mode fiber can produce an output of about 1 watt. Since the area of the emission area in the laser emission 68 is 0.0081 square millimeters (0.325 millimeters 0 · 0 2 5 mm), the illuminance of the laser emission section 68 is 1 2 3: The type of light LD7, so the output is 约: Gao Zhaozhi Lei here, and the area from 5-middle, straight I 0.2 :), thunder, and, six-part meter X xlO6 -41-200530754 ' (Watts per square meter), which is equivalent to about 80 times the brightness of conventional devices. The illuminance of each optical fiber is 90 X 1 06 (W / m 2), which is equivalent to about 28 times the illuminance of conventional devices. The difference in the depth of focus between the conventional exposure head and the exposure head of the present invention is explained with reference to FIGS. 37A and 37B. For example, the diameter of the exposure head in the sub-scanning direction of the emission area of the beam-shaped fiber laser light source is 0.675 mm, and the diameter of the exposure head in the sub-scanning direction of the emission area of the fiber array laser light source is 0.25 mm. As shown in FIG. 37A, in the conventional exposure head, the emission area of the illumination device or the beam-shaped fiber laser light source 1 is better. Therefore, the angle of the laser beam entering the DMD 3 is larger, causing a larger entrance to the scanning surface. Laser beam angle of 5. Therefore, the 'beam diameter' tends to increase in the collection direction and cause deviation in the focus direction. On the other hand, as shown in FIG. 37B, the exposure head in the pattern forming device of the present invention has a smaller fiber array laser light source 66 emitting area diameter in the sub-scanning direction, and therefore enters DMD50 through the lens system 67. The smaller laser beam angle results in a smaller laser beam angle 'that is' a greater focal depth that enters the scanning surface 56. In this example, the diameter of the emission area in the sub-scanning direction is about 30 times the diameter of the prior art. Therefore, the focal depth corresponding to the limited diffraction can be obtained, which is suitable for the exposure of extremely small points. As the amount of light required by the exposure head becomes larger, the effect of the depth of focus becomes more significant. In this example, the size of an imaging portion projected on the exposed surface is 10 micrometers by 10 micrometers. The DMD is a reflective spatial light modulator; it is shown in the enlarged views in Figures 37A and 37B to explain the optical relationship. Connect the pattern information input of the W exposure pattern to the control of the DMD50 -42- 200530754, controller (not shown), and flash memory recorded in the controller. The pattern * information is the data representing the density of the imaging part of the constituent pixels in two numbers (ie, with or without a dot record). The platform 15 for absorbing pattern forming material 15 2 on the surface is borrowed by a device (not shown) along the guide member 15 8 at a fixed rate from the upstream of the gate 16 downstream. When the platform 15 2 passes under the gate 160, and when the pattern-forming material is detected at the gate 16 〇 detection sensor 16 4, the reading is sequentially performed in multiple lines by multiple lines. The pattern information recorded in the flash memory and the pattern information read by the base B data processing section generate a control number for each exposure head 1 6 6. Then, each micromirror of the DMD 50 is controlled by the switch of the exposure head 166 based on the generated control signal. When the laser beam from the fiber array laser light source 66 is irradiated on the DMD 50, the laser beam reflected by the micromirror of the DMD 50 in the on state is exposed by the lens system 54, 58 on the pattern forming material 15 Imaging on the surface. Therefore, the laser beam emitted from the fiber array laser light source 66 is controlled by each of the imaging parts, and the number of imaging parts or exposure areas 1 6 8 (the number is about the same as that used for the DMD 50 0 imaging part). The same) exposes the pattern forming material 150. In addition, by moving the patterning material 150 at a speed of 疋 with the stage 152, the patterning material 150 is scanned by the scanner 162 in the direction opposite to the direction of the stage movement, and each exposure head 166 forms a strip-shaped exposure area 170. [Adduct] The material to be exposed is appropriately selected without particular limitation as long as the material is a pattern forming material including a photosensitive layer. Preferably, the exposure is performed on a place where light is moved to the light area of the light area of the light area, and the light is fixed to the light area. This layer is a -43- 200530754 ^ substrate including a pattern forming material. < Pattern-forming material > The pattern-forming material may be appropriately selected depending on the application without particular limitation as long as this material includes a photosensitive layer on the support. The photosensitive layer may be appropriately selected from conventional pattern-forming materials without particular limitation; it is preferable that the photosensitive layer includes, for example, a binder, a polymerizable compound, a photopolymerization initiator, and other ingredients (if necessary). The number of laminated photosensitive layers may be appropriately selected without particular limitation; the number of laminated B layers may be one layer, or not less than two layers. -Binder- Preferably, the binder is swellable in an alkaline aqueous solution, and more preferably, the | binder is soluble in the alkaline aqueous solution. For example, a binder that is swellable or soluble in an alkaline aqueous solution is one having an acidic group. The acidic group is appropriately selected depending on the application without particular limitation; Examples J thereof include a carboxyl group, a sulfonic acid group, a phosphate group, and the like. Among these groups, a carboxyl group is preferred. Examples of the carboxyl group-containing adhesive include a carboxyl group-containing vinyl copolymer, a polyurethane resin, a polyamic acid resin, and a modified epoxy resin. Among these, carboxyl group-containing vinyl copolymers are preferred from the viewpoints of solubility in coating solvents, solubility in alkaline developers, synthetic energy Λ, and ease of adjusting film properties. A carboxyl-containing vinyl copolymer can be synthesized by copolymerizing at least (i) a carboxyl-containing vinyl polymer, and (ii) a monomer copolymerizable with a vinyl monomer. Examples of carboxyl group-containing vinyl polymers include (meth) acrylic acid, -44-200530754 ethyl basic acid, maleic acid, maleic acid monoester, fumaric acid, itaconic acid, Addition of crotonic acid, cinnamic acid, acrylic acid dimer, hydroxyl-containing monomer (such as 2-hydroxyethyl (meth) acrylate) and cyclic anhydride (such as maleic anhydride), acetic anhydride, and cyclohexyl Dicarboxylic acid anhydride and ω_residue-polycaprolactone mono (meth) acrylate. Among them, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerization ability, cost, and solubility. In addition, as for the carboxyl precursor, anhydride-containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride can be used. ® copolymerizable monomers are appropriately selected depending on the application; examples include (meth) acrylates, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid Diesters, (meth) acrylamide, vinyl ethers, vinyl alcohol esters, styrene, methacrylonitrile; heterocyclic compounds with substituted vinyl groups, such as vinylpyridine, vinylpyridine, and vinylcarbazole ; N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, 2-acrylamido-2-methylpropanesulfonic acid, phosphoric acid mono (2-propenyloxy) Ethyl ester), mono (1-methyl-2-propenyloxyethyl) phosphate, and B hS groups (such as fee-based formate, venyl, mineral amine, discretionary, and imine) Based) vinyl monomer. Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate Ester, isobutyl (meth) acrylate, third butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, third butyl cyclohexyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, tertiary -45-2005-30754 (meth) acrylate-octyl ester, dodecyl (meth) acrylate, (meth) propyl > ester, (methyl ) Acetyloxyethyl acrylate, (meth), 2-hydroxyethyl (meth) acrylate, (meth) propylene | ethyl, 2-ethoxyethyl (meth) acrylate, (methyl 2 -(2-methoxyethoxy) ethyl ester, hydroxypropyl (meth) acrylate, diphenylethylene diketone (meth) acrylate, diethylene (meth) acrylate, diethylene glycol monoethyl ether (Meth) diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol®-based) acrylate, triethylene glycol monoethyl ether (methyl) Propylene glycol monomethyl ether (meth) acrylate, polyethylene glycol monoethyl acrylate, (meth) acrylic acid β-phenoxyethoxyethoxy polyethylene glycol (meth) acrylate, ( (Meth) propyl, dicyclopentenyloxyethyl (meth) acrylate, (methyltrifluoroethyl, octafluoropentyl (meth) acrylate, (methylfluorooctyl), (meth) acrylate Bromophenyl, and (methyl-bromophenoxyethyl.) Examples of crotonic acid esters include butyl crotonic acid and vinyl crotonic acid. Examples include vinyl acetate, vinyl propionate, vinyl methoxy Examples of acetate, maleic acid diester with ethyl benzoate include diethyl maleate and dibutyl maleate. Examples of maleate Examples include diethyl fumarate, diethyl fumarate and dibutyl fumarate. Examples of Iconate diesters include dimethyl iconate, phenyl octadecanoate, etc. -Methoxy) acrylic acid 3-phenoxy-2-diol monomethyl ether acrylate, monomethyl ether (formate, polyether (methyl) ester, nonyl Acid cyclopentyl two benzene) acrylic acid) acrylic per) acrylate, hexyl acrylate. Esters, ethyl methyl butyrate, maleic acid methyl ester, diethyl fumarate -46- 200530754 ^ and dibutyl iconate. Examples of (meth) acrylamide include (meth) acrylamide, methyl (meth) acrylamide, N-ethyl (meth) acrylamide, meth (meth) acrylamide, N- Isopropyl (meth) acrylamide, butyl (meth) acrylamine, N-tertiary butyl (meth) propane, N-cyclohexyl (meth) acrylamine, N- (2 -Methoxyethyl) () acrylamide, N, N-dimethyl (meth) acrylamide, N, N-di (meth) acrylamide, N-phenyl (meth) acryl Ammonium, N-digastric diketone (meth) acrylamide, (meth) acrylfluorenylmorpholine, and ketoacrylamide. Examples of styrene include styrene, methylstyrene, dimethylene, trimethylstyrene, ethylstyrene, isopropylstyrene, butylene, hydroxystyrene, methoxystyrene, butadiene Oxystyrene, oxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, chlorostyrene; protective groups (such as t-Boc) based styrene that can be protected by acid substances; vinyl benzoate Methyl ester, and α-methylstyrene. Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexene ether, and methoxyethyl vinyl ether. A method for synthesizing a functional group-containing vinyl monomer is, for example, addition reaction of an iso group with a mesogen or an amine group; specifically exemplified are an isocyanate-containing monomer and a hydroxyl-containing compound or a first or second amine Reaction between radical compounds, and addition reaction between monomers containing hydroxyl groups or monomers containing first or second amine groups and acid groups. Addition of N-N-propyl N-n-amine, methyl ethyl phenethyl dipropyl phenethyl acetophenone methyl hydroxyl cyanocyanate monocyano-47- 200530754 monomer containing isocyanate Examples include transformations represented by the following formulas (1) to (3)
HR1 C=C一C〇一NCO 式(2) i ΗHR1 C = C-C〇-NCO Formula (2) i Η
NCO 式⑶ 在上式(1)至(3)中,R1表示氫原子或甲基。 上述單異氰酸基之實例包括異氰酸環己酯、異氰酸正 丁酯、甲苯異氰酸酯、二苯乙二酮異氰酸酯、與異氰酸苯 含羥基之單體之實例包括由下式(4)至(12)表示之化合NCO formula (3) In the above formulae (1) to (3), R1 represents a hydrogen atom or a methyl group. Examples of the above-mentioned monoisocyanate include cyclohexyl isocyanate, n-butyl isocyanate, toluene isocyanate, diphenylethylene diketone isocyanate, and examples of monomers containing a hydroxyl group with benzene isocyanate include the following formula ( 4) The combination represented by (12)
物0Thing 0
式⑷ -48- 200530754Style ⑷ -48- 200530754
〇 -Η 式(5)〇 -Η Formula (5)
Ri 式⑹ 式⑺ 式(8) 式(9) 式⑽Type ⑹ Type ⑺ Type (8) Type (9) Type ⑽
OH 式(11)OH type (11)
式(12) 在上式(4)至(12)中,R1表示氫原子或甲基,及”η”表 示一或更大之整數。 -49- 200530754 S羥基化合物之實例包括醇類,如甲醇、乙醇、 醇、異丙醇、正丁醇、第二丁醇 第 正丙 丁醇、正己醇、h 乙基己醇:正癸醇1十二碳醇、正十八碳醇、環戊醇、 己、一本乙〜酮醇、與苯基乙醇;酚類,如酚、甲酚 、與奈g分’另外含經取代基之化合物之實例包括氟乙醇、 二氟乙醇、甲氧基乙醆、苯氧基乙醇、氯酚、二氯酚、甲 氧基酚、與乙醯氧基酌。Formula (12) In the above formulae (4) to (12), R1 represents a hydrogen atom or a methyl group, and "η" represents an integer of one or more. -49- 200530754 Examples of S hydroxyl compounds include alcohols such as methanol, ethanol, alcohol, isopropanol, n-butanol, second butanol, n-propanol, n-hexanol, h ethylhexanol: n-decanol 1 Dodecyl alcohol, n-octadecyl alcohol, cyclopentyl alcohol, hexyl, ethyl ketone alcohol, and phenyl ethanol; phenols, such as phenol, cresol, and naphthalene, and compounds containing additional substituents Examples include fluoroethanol, difluoroethanol, methoxyacetamidine, phenoxyethanol, chlorophenol, dichlorophenol, methoxyphenol, and ethoxylate.
上述含弟一或第=胺基之單體之實例包括乙烯基二苯 乙二酮胺。 含第一或第二胺基化合物之實例包括烷基胺,如甲胺 、乙胺、正丙胺、異丙胺、正丁胺、第二丁胺、第Ξ 丁胺 、己胺、2 -乙基己胺、癸胺、十二碳胺、十八碳胺、二甲 胺、一乙胺、一丁胺、與二辛胺;環形烷基胺,如環戊胺 與環己胺;芳院基胺,如二苯乙二酮胺與苯乙胺;芳基胺 ’如苯胺、甲苯胺、二甲苯胺、與萘胺;其組合’如N-甲基-N-二苯乙二酮胺;及含經取代基之胺,如三氟乙胺 、六氟異丙胺、甲氧基苯胺、與甲氧基丙胺。 上述以外之共可共聚合單體之實例包括(甲基)丙烯 酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、二 苯乙一酮(甲基)丙烯酸酯、(甲基)丙烯酸2 -乙基己酯 、苯乙烯、氯苯乙烯 '溴苯乙烯、與羥基苯乙烯。 上示可共聚合單體可單獨或組合使用。 上述乙烯基共聚物可藉由依照習知方法將適當單體共 聚合而製備;例如,可使用溶液聚合法,其將單體溶於適 -50- 200530754 _ 當溶劑中,加入自由基聚合引發劑,因而造成溶劑中聚合 ;或者可使用所謂之乳液聚合法,其在單體分散於水性溶 劑中之條件下聚合單體。 用於溶液聚合法之溶劑可視單體、所得共聚物之溶解 度等而適當地選擇;此溶劑之實例包括甲醇、乙醇、丙醇 、異丙醇、1-甲氧基-2-丙醇、丙酮、甲乙酮、甲基異丁基 酮、乙酸甲氧基丙酯、乳酸乙酯、乙酸乙酯、乙腈、四氫 呋喃、二甲基甲醯胺、氯仿、與甲苯。這些溶劑可單獨或 •組合使用。 上述自由基聚合引發劑可適當地選擇而無特別之限制 ;其實例包括偶氮化合物,如 2,2’-偶氮貳(異丁腈) (AIBN)與2,2’-偶氮貳(2,4’_二甲基戊膪);過氧化物, 如過氧化苯甲醯基;過硫酸鹽,如過硫酸鉀與過硫酸銨。 上述乙烯基共聚物中之具羧基可共聚合化合物之含量 可適當地選擇而無特別之限制;較佳爲,此含量爲5至 50莫耳%,更佳爲10至40莫耳%,而且仍更佳爲15至 3 5莫耳%。 在此含量少於5莫耳%時,驗溶液中顯影力可能不足 ,及在此含量超過50莫耳%時,硬化部份或成像部份對 抗顯影液體之耐久力不足。 上述具羧基黏合劑之分子量可適當地選擇而無特別之 限制;較佳爲,重量平均分子量爲2000至300000,更佳 爲 4000 至 150000° 在此重量平均分子量小於2000時,膜強度易爲不足 -51 - 200530754 ,而且製程趨於不安定,及在此重量平均 3 0 0 0 0 0時,顯影力趨於降低。 上述具羧基黏合劑可單獨或組合使用。至 種黏合劑之組合,此組合可例示爲二或更多種 物成分之黏合劑、二或更多種具不同重量平均 合劑、及二或更多種具不同分散程度之黏合劑 在上述具羧基黏合劑中,一部份或所有之 性物質中和。此外,此黏合劑可組合選自聚醋 ® 胺樹脂、聚胺基甲酸酯樹脂、環氧樹脂、聚乙 明膠等之不同型式樹脂。 此外,上述具羧基黏合劑可爲日本專利第 專利所述之溶於鹼性水溶液之樹脂。 此黏合劑在上述感光層中之含量可適當地 別之限制;較佳爲此含量爲1 0至90質量% 至80質量%,而且仍更佳爲40至80質量%。 在此含量小於1 〇質量%時,鹼溶液中顯 ¥ 成印刷線路板用基板(如銅層合板)之黏著性 ,及在此含量超過9 0質量%時,硬化膜或拉 期間安定性或強度可能不足。黏合劑之含量可 含量與視需要組合之其他聚合物黏合劑含量之 黏合劑之酸値可視應用而適當地選擇;較 爲70至2 5 0毫克KOH/克,更佳爲90至200 ] ,仍更佳爲100至180毫克KOH/克。 在此酸値小於70毫克KOH/克時,顯影力 分子量超過 :於二或更多 :具不同共聚 f分子量之黏 〇 ,羧基可經鹼 樹脂、聚酿 烯醇樹脂、 2873889 號 選擇而無特 ,更佳爲2 0 影力或對形 質趨於降低 輻膜之顯影 視爲黏合劑 全部含量。 佳爲此酸値 藝克KOH/克 可能不足’ -52- 200530754 — 解析性質可能不良,或無法精確地形成永久圖案,如線路 圖案,及在此酸値超過2 5 0毫克KOH/克時,圖案對抗顯 影劑之耐久力及/或圖案之黏著性質趨於降解,因此無法 精確地形成永久圖案,如線路圖案。 <可聚合化合物> 可聚合化合物可適當地選擇而無特別之限制;較佳爲 ,可聚合化合物爲含胺基甲酸酯基及/或芳基之單體或寡 聚物;較佳爲,可聚合化合物含二或更多型之可聚合基。 B 可聚合基之實例包括乙烯不飽和鍵,如(甲基)丙烯 醯基、(甲基)丙烯醯胺基、苯乙烯基、乙烯基(例如, 乙烯酯、乙烯醚)、與烯丙基(例如,烯丙醚、烯丙酯) ;及可聚合環形醚,如環氧基與氧雜丁烷基。其中,乙烯 不飽和鍵較佳。 -含胺基甲酸酯基之單體- 上述含胺基甲酸酯基之單體可適當地選擇而無特別之 限制;其實例包括日本專利申請案公告(JP-B)第48-4 1 708 ® 號、日本專利申請案公告(JP-Α)第5 1 -3 7 1 93號、JP-B第 5-50737 、 7-7208 號、及 JP-A 第 2001-154346 、 2001- 3 5 6476號;特別地,可例示爲分子中具有二或更多個異 氰酸基之多異氰酸基化合物與分子中具有羥基之乙烯基單 體之加成物。 上述分子中具有二或更多個異氰酸基之多異氰酸基化 合物包括二異氰酸酯,如二異氰酸伸己酯、二異氰酸三甲 基伸己酯、異佛爾酮二異氰酸酯、二甲苯二異氰酸酯、甲 -53- 200530754 苯二異氰酸酯、二異氰酸伸苯酯、降萡烯二 異氰酸二苯酯、二苯基甲烷二異氰酸酯 3,3’-二甲基-4,4’-二苯酯;這些二異氰酸酯 之多加成產物,其中多加成產物各端爲異氰 ,如二異氰酸酯或異三聚氰酸酯之甲脲;得 與多官能基醇(如三羥甲基丙烷、異戊四醇 官能基醇與環氧乙烷加成物之加成物。 上述分子中具有羥基之乙烯基單體包括 ® 酸2-羥乙酯、(甲基)丙烯酸2-羥丙酯、 酸4-羥丁酯、二乙二醇單(甲基)丙烯酸酯 (甲基)丙烯酸酯、四乙二醇單(甲基)丙 二醇單(甲基)丙烯酸酯、聚乙二醇單(甲 、二丙二醇單(甲基)丙烯酸酯、三丙二醇 烯酸酯、四丙二醇單(甲基)丙烯酸酯、八 基)丙烯酸酯、聚丙二醇單(甲基)丙烯酸 單(甲基)丙烯酸酯、三丁二醇單(甲基) 丁二醇單(甲基)丙烯酸酯、八丁二醇單( 酯、聚丁二醇單(甲基)丙烯酸酯、三羥甲 )丙烯酸酯、與異戊四醇(甲基)丙烯酸酯 烯基單體可例示爲在具不同環氧烷之二醇分 環氧乙烷與環氧丙烷之無規或嵌段共聚物) 基)丙烯酸酯成分者。 上述含胺基甲酸酯基之單體之實例包括 酸基環之化合物,如異三聚氰酸三(甲基) 異氰酸酯、二 、與二異氰酸 與二官能基醇 酸基;Η聚物 自二異氰酸酯 與甘油)或多 (甲基)丙烯 (甲基)丙烯 、三乙二醇單 烯酸酯、八乙 基)丙;(¾酸酯 單(甲基)丙 丙二醇單(甲 酯、二丁二醇 丙烯酸酯、四 甲基)丙烯酸 基丙烷(甲基 。此外,此乙 子(例如,如 一端具有(甲 具有異三聚氰 丙烯醯氧基乙 -54- 200530754 酉曰 '二(甲基)丙烯酸化異三聚氰酸酯、與經環氧乙烷修 改之二聚氰酸之三(甲基)丙烯酸酯。其中,式(i 3 )或式 (1 4)表示之化合物較佳;由拉輻性質之觀點,特佳爲包栝 至少式(1 4)表示之化合物。這些化合物可單獨或組合使用Examples of the above-mentioned mono- or amine-containing monomers include vinyl diphenylethylene diketamine. Examples of the first or second amine-containing compound include alkylamines such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, second butylamine, thallium butylamine, hexylamine, 2-ethyl Hexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, monoethylamine, monobutylamine, and dioctylamine; cyclic alkylamines, such as cyclopentylamine and cyclohexylamine; aromatic compounds Amines, such as diphenylethylenedione amine and phenethylamine; arylamines, such as aniline, toluidine, xylylamine, and naphthylamine; combinations thereof, such as N-methyl-N-diphenylethylenedione amine; And substituted amines, such as trifluoroethylamine, hexafluoroisopropylamine, methoxyaniline, and methoxypropylamine. Examples of the copolymerizable monomer other than the above include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, diphenone (meth) acrylate, (meth) ) 2-ethylhexyl acrylate, styrene, chlorostyrene 'bromostyrene, and hydroxystyrene. The above copolymerizable monomers can be used alone or in combination. The above-mentioned vinyl copolymer can be prepared by copolymerizing appropriate monomers according to a conventional method; for example, a solution polymerization method can be used, which dissolves the monomers in an appropriate -50-200530754 Agent, thereby causing polymerization in a solvent; or a so-called emulsion polymerization method, which polymerizes the monomers under conditions in which the monomers are dispersed in an aqueous solvent, may be used. The solvent used in the solution polymerization method is appropriately selected depending on the solubility of the monomer, the obtained copolymer, and the like; examples of this solvent include methanol, ethanol, propanol, isopropanol, 1-methoxy-2-propanol, acetone , Methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, ethyl lactate, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, chloroform, and toluene. These solvents can be used individually or in combination. The above-mentioned radical polymerization initiator can be appropriately selected without particular limitation; examples thereof include azo compounds such as 2,2'-azofluorene (isobutyronitrile) (AIBN) and 2,2'-azofluorene ( 2,4'_dimethylpentamidine); peroxides, such as benzamyl peroxide; persulfates, such as potassium persulfate and ammonium persulfate. The content of the carboxyl copolymerizable compound in the above-mentioned vinyl copolymer may be appropriately selected without particular limitation; preferably, the content is 5 to 50 mol%, more preferably 10 to 40 mol%, and Still more preferably 15 to 35 mole%. When the content is less than 5 mol%, the developing power in the test solution may be insufficient, and when the content exceeds 50 mol%, the durability of the hardened portion or the imaging portion to the anti-developing liquid is insufficient. The molecular weight of the above carboxyl-containing adhesive can be appropriately selected without particular limitation; preferably, the weight average molecular weight is 2000 to 300,000, more preferably 4,000 to 150,000 °. When the weight average molecular weight is less than 2000, the film strength is likely to be insufficient. -51-200530754, and the process tends to be unstable, and at an average weight of 3 0 0 0 0, the developing power tends to decrease. The above carboxyl-containing adhesives can be used alone or in combination. This kind of combination of adhesives can be exemplified as two or more adhesives, two or more adhesives with different weight averages, and two or more adhesives with different degrees of dispersion in the aforementioned In carboxyl adhesives, some or all of the sexual substances are neutralized. In addition, this adhesive can be combined with different types of resins selected from the group of polyester resins, polyurethane resins, epoxy resins, and polyethylene gelatin. In addition, the aforementioned carboxyl-containing adhesive may be a resin soluble in an alkaline aqueous solution as described in Japanese Patent No. The content of the adhesive in the above-mentioned photosensitive layer may be appropriately restricted; the content is preferably 10 to 90% by mass to 80% by mass, and still more preferably 40 to 80% by mass. When the content is less than 10% by mass, the adhesion of the printed circuit board substrate (such as a copper laminate) in the alkali solution is significant, and when the content exceeds 90% by mass, the stability of the hardened film or the stretching period or Strength may be insufficient. The content of the binder may be appropriately selected according to the application, and the acid content of the binder may be appropriately combined with the content of other polymer binders as required; more preferably 70 to 250 mg KOH / g, more preferably 90 to 200], Still more preferred is 100 to 180 mg KOH / g. When the acid content is less than 70 mg KOH / g, the molecular weight of the developing force exceeds: two or more: viscosity with different copolymer f molecular weights. The carboxyl group can be selected by alkali resin, polyenol resin, No. 2873889 without special , More preferably, the 20 influence or the development of the shape tends to reduce the development of the radiation film is regarded as the total content of the adhesive. For this reason, acid KOH / g may be insufficient '-52- 200530754 — the analytical properties may be poor, or permanent patterns may not be accurately formed, such as circuit patterns, and when the acid is more than 250 mg KOH / g, The durability of the pattern against the developer and / or the adhesion property of the pattern tends to degrade, so it is impossible to form a permanent pattern accurately, such as a circuit pattern. < Polymerizable compound > The polymerizable compound may be appropriately selected without particular limitation; preferably, the polymerizable compound is a urethane-containing and / or aryl-containing monomer or oligomer; preferably For example, the polymerizable compound contains two or more types of polymerizable groups. Examples of the polymerizable group include ethylenically unsaturated bonds such as (meth) acrylfluorenyl, (meth) acrylfluorenyl, styryl, vinyl (eg, vinyl ester, vinyl ether), and allyl (Eg, allyl ether, allyl ester); and polymerizable cyclic ethers, such as epoxy and oxabutane. Of these, ethylene unsaturated bonds are preferred. -Urethane group-containing monomer-The above urethane group-containing monomer may be appropriately selected without particular limitation; examples thereof include Japanese Patent Application Publication (JP-B) No. 48-4 No. 1 708 ®, Japanese Patent Application Publication (JP-A) No. 5 1 -3 7 1 93, JP-B Nos. 5-50737, 7-7208, and JP-A Nos. 2001-154346, 2001- 3 No. 6476; in particular, it can be exemplified as an adduct of a polyisocyanate compound having two or more isocyanate groups in the molecule and a vinyl monomer having a hydroxyl group in the molecule. The polyisocyanate compound having two or more isocyanate groups in the above molecule includes diisocyanates such as dihexyl diisocyanate, trimethyl dihexyl diisocyanate, isophorone diisocyanate , Xylene diisocyanate, methyl-53-200530754 benzene diisocyanate, phenylene diisocyanate, norbornene diisocyanate, diphenylmethane diisocyanate 3,3'-dimethyl-4 , 4'-diphenyl esters; polyaddition products of these diisocyanates, wherein the polyaddition products are isocyanate at each end, such as diurea or isocyanurate methylurea; obtained with polyfunctional alcohols (such as trihydroxy Addition of methylpropane, isopentyl alcohol functional alcohol and ethylene oxide adduct. Vinyl monomers with hydroxyl groups in the above molecules include ® acid 2-hydroxyethyl ester, (meth) acrylic acid 2- Hydroxypropyl ester, 4-hydroxybutyl acid, diethylene glycol mono (meth) acrylate (meth) acrylate, tetraethylene glycol mono (meth) propylene glycol mono (meth) acrylate, polyethylene glycol Alcohol mono (methyl, dipropylene glycol mono (meth) acrylate, tripropylene glycol enoate, tetrapropylene glycol mono Meth) acrylate, octayl) acrylate, polypropylene glycol mono (meth) acrylate mono (meth) acrylate, tributylene glycol mono (meth) butylene glycol mono (meth) acrylate, octabutane Alcohol mono (ester, polybutylene glycol mono (meth) acrylate, trimethylol) acrylate, and isopentyl alcohol (meth) acrylate alkenyl monomers can be exemplified as two different alkylene oxides. Random or block copolymers of alcohol and propylene oxide) groups) acrylic ester component. Examples of the above-mentioned urethane group-containing monomers include compounds having an acidic ring, such as tri (methyl) isocyanurate, diisocyanate, diisocyanate, and difunctional alkyd acid groups; From diisocyanate and glycerol) or poly (meth) propylene (meth) propylene, triethylene glycol monoenoate, octaethyl) propane; (¾ester mono (methyl) propylene glycol mono (methyl ester) , Dibutylene glycol acrylate, tetramethacrylic acid propane (methyl. In addition, this ethyl (for example, if one end has (a with isocyanuric acid ethoxy ethoxy-54- 200530754) (Meth) acrylated isotricyanate, and tris (meth) acrylate of diethylene cyanide modified with ethylene oxide, wherein the compound represented by formula (i 3) or formula (1 4) From the viewpoint of radiating properties, it is particularly preferred to include compounds represented by at least formula (14). These compounds may be used alone or in combination.
式(13)Equation (13)
式(14) 在式(13)及(Μ)中,R1至R3各表示氫原子或甲基; \至X3表示環氧烷基,其可爲彼此相同或不同。 環氧烷基之實例包括環氧乙烷基、環氧丙烷基、環氧 丁烷基、環氧戊烷基、環氧己烷基、與其無規或嵌段組合 基。其中,環氧乙烷基、環氧丙烷基、環氧丁烷基、與其 % 組合較佳;及環氧乙烷基與環氧丙烷基更佳。 在式(13)及(14)中,ml至m3各表示1至60之整數 ,較佳爲2至30,更佳爲4至15。 在式(13)及(14)中,各Y1與Y2表示具有2至30個碳 原子之二價有機基,如伸烷基、伸芳基、伸烯基、伸炔基 、羰基(-CO-)、氧原子、硫原子、亞胺基(-NH-)、其中亞 胺基上之氫原子經單價烴基取代之經取代亞胺基、磺醯基 (-S02-)、及其組合;其中,伸烷基、伸芳基及其組合較佳 -55- 200530754 上述伸烷基可爲分令$ ^ & ^ _形結構;伸烷基之實例包括 亞甲基、伸乙基、伸丙其 /cfa 土、伸異丙基、伸丁基、異伸丁基Formula (14) In Formulas (13) and (M), R1 to R3 each represent a hydrogen atom or a methyl group; \ to X3 represent epoxy alkyl groups, which may be the same or different from each other. Examples of the alkylene oxide group include ethylene oxide group, propylene oxide group, butylene oxide group, pentyl oxide group, hexane oxide group, and a random or block combination thereof. Among them, ethylene oxide group, propylene oxide group, butylene oxide group, and combinations thereof are preferred; and ethylene oxide group and propylene oxide group are more preferable. In the formulae (13) and (14), ml to m3 each represent an integer of 1 to 60, preferably 2 to 30, and more preferably 4 to 15. In formulae (13) and (14), each of Y1 and Y2 represents a divalent organic group having 2 to 30 carbon atoms, such as an alkylene group, an alkylene group, an alkylene group, an alkylene group, and a carbonyl group (-CO -), An oxygen atom, a sulfur atom, an imine group (-NH-), a substituted imine group in which a hydrogen atom on the imine group is replaced by a monovalent hydrocarbon group, a sulfonyl group (-S02-), and combinations thereof; Among them, the alkylene group, the alkylene group, and a combination thereof are preferably -55- 200530754 The above alkylene group may have a split-shape structure. Examples of the alkylene group include a methylene group, an alkylene group, and an alkylene group. Propyl / cfa, isopropyl, isobutyl, isobutyl
、伸戊基、伸新戊基、伸pI wd基、三甲基伸己基、環伸己基 、伸庚基、伸辛基、其細 -*伸己基、伸壬基、伸癸基、伸 •ch5, Pendyl, pendyl, pendyl, trimethylhexyl, cyclohexyl, heptyl, octyl, its fine- * hexyl, hexanonyl, hexadecyl, hexadecyl ch5
-CH-CH
CH2- 一 CH,CH2- a CH,
CHc CH, 〇2仆 十一碳基、伸十八碳基、及下式表示之基。CHc CH, 〇2 is eleven carbon base, eighteen carbon base, and the base represented by the following formula.
伸方基可經烴基取代;伸芳基之實例包括伸苯基、伸 甲苯基、二伸苯基、伸萘基、及以下之基。 上述組合之基例示爲伸二甲苯基。 上述伸院基、伸芳基及其組合可另外含經取代基;經 取代基之實例包括鹵素原子,如氟原子、氯原子、溴原子 、與碘原子;芳基;烷氧基,如甲氧基、乙氧基與2_乙氧 基乙氧基;芳氧基,如苯氧基·,醯基,如乙醯基與丙醯基 ;醯氧基,如乙醯氧基與丁醯氧基;烷氧基羰基,如甲氧 基鑛基與乙氧基鑛基;及芳氧基鑛基,如苯氧基幾基。 在式(13)及(14)中,”n”表示3至6之整數,由可用於 合成可聚合單體之進料之觀點,較佳爲”η”表示3、4或6 在式(13)及(14)中,” η”表示3至6之整數;Ζ表示 η”價(η = 3至6)之連接基,Ζ之實例包括以下之基。 fExtenders may be substituted with a hydrocarbon group; examples of Extenders include Extenders, Extenders, Di-Extenders, Extenders, and the following groups. An example of the above combination is exemplified by xylylene. The above-mentioned radicals, aryls, and combinations thereof may further contain a substituent; examples of the substituent include a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; an aryl group; Ethoxy, ethoxy and 2-ethoxyethoxy; aryloxy, such as phenoxy, fluorenyl, such as ethenyl and propionyl; ethoxy, such as ethoxy and butyl Oxy; alkoxycarbonyl, such as methoxy and ethoxy; and aryloxy, such as phenoxy. In the formulae (13) and (14), "n" represents an integer of 3 to 6, and from the viewpoint of a feed that can be used to synthesize a polymerizable monomer, preferably "η" represents 3, 4 or 6 in the formula ( In 13) and (14), "η" represents an integer of 3 to 6; Z represents a linking group of η "valence (η = 3 to 6). Examples of Z include the following groups. F
-56- 200530754 ' 在上式中,Χ4表示環氧烷;m4表示1至20之整數 ;表示3至6之整數;及A表示具有,,η”價(n = 3至6 )之有機基。 上述有機基A之實例包括η價脂族基、η價芳族基、 及這些基與伸烷基、伸芳基、伸烯基、伸炔基、羰基、氧 原子、硫原子、亞胺基、其中亞胺基上之氫原子經單價烴 基取代之經取代亞胺基、與磺醯基(_ S Ο 2 -)之組合;更佳爲 η價脂族基、η價芳族基、及這些基與伸烷基、伸芳基或 ® 氧原子之組合;特佳爲η價脂族基、及η價脂族基與伸烷 基或氧原子之組合。 上述有機基中Α之碳原子數量較佳爲1至100個, 更佳爲1至50個,而且最佳爲3至3〇個。 上述η價脂族基可爲分支或環形結構。脂族基中之碳 原子數量較佳爲1至30個,更佳爲1至20個,而且最佳 爲3至1 0個。 上述η價芳族基中之碳原子數量較佳爲6至100個, ® 更佳爲6至5〇個,而且最佳爲6至3〇個。 η價脂族基與η價芳族基可另外含經取代基;經取代 基之實例包括羥基,鹵素原子,如氟原子、氯原子、溴原 子、與碘原子;芳基;烷氧基,如甲氧基、乙氧基與2-乙 氧基乙氧基;芳氧基,如苯氧基;醯基,如乙醯基與丙醯 基;醯氧基’如乙醯氧基與丁醯氧基;烷氧基羰基,如甲 氧基羰基與乙氧基羰基;及芳氧基羰基’如苯氧基羰基。 上述伸烷基可爲分支或環形結構。伸烷基中之碳原子 -57- 200530754 數量較佳爲1至18個,而且更佳爲1至10個。 上述伸芳基可進一步經烴基取代。伸芳基中之碳原子 數量較佳爲6至1 8個,而且更佳爲6至1 0個。 經取代亞胺基中烴基之碳原子數量較佳爲1至1 8個 ,而且更佳爲1至10個。 上述有機基A之較佳實例如下。-56- 200530754 'In the above formula, X4 represents an alkylene oxide; m4 represents an integer from 1 to 20; represents an integer from 3 to 6; and A represents an organic group having a valence of η "(n = 3 to 6). Examples of the above-mentioned organic group A include an η-valent aliphatic group, an η-valent aromatic group, and these groups and an alkylene group, an alkylene group, an alkylene group, an alkylene group, a carbonyl group, an oxygen atom, a sulfur atom, and an imine. Group, a substituted imine group in which a hydrogen atom on the imino group is replaced by a monovalent hydrocarbon group, and a combination with a sulfofluorenyl group (_S Ο 2-); more preferably an η-valent aliphatic group, an η-valent aromatic group, And combinations of these groups with alkylene, aryl, or ® oxygen atoms; particularly preferred are η-valent aliphatic groups, and combinations of η-valent aliphatic groups and alkylene or oxygen atoms. Carbon of A in the above-mentioned organic groups The number of atoms is preferably from 1 to 100, more preferably from 1 to 50, and most preferably from 3 to 30. The above η-valent aliphatic group may have a branched or ring structure. The number of carbon atoms in the aliphatic group is larger than The number is preferably from 1 to 30, more preferably from 1 to 20, and most preferably from 3 to 10. The number of carbon atoms in the above η-valent aromatic group is preferably from 6 to 100, and more preferably from 6 to 50, and The number is preferably 6 to 30. The η-valent aliphatic group and the η-valent aromatic group may further contain a substituent; examples of the substituent include a hydroxyl group, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and iodine Atoms; aryl groups; alkoxy groups, such as methoxy, ethoxy, and 2-ethoxyethoxy; aryloxy groups, such as phenoxy; fluorenyl groups, such as ethenyl and propionyl; fluorene Groups such as ethoxyl and butyryloxy; alkoxycarbonyls such as methoxycarbonyl and ethoxycarbonyl; and aryloxycarbonyls such as phenoxycarbonyl. The above alkylene groups may be branched or cyclic Structure. The number of carbon atoms -57-200530754 in the alkylene group is preferably from 1 to 18, and more preferably from 1 to 10. The above alkylene group may be further substituted with a hydrocarbon group. The number of carbon atoms in the alkylene group is larger than that in the alkylene group. It is preferably 6 to 18, and more preferably 6 to 10. The number of carbon atoms of the hydrocarbon group in the substituted imine group is preferably 1 to 18, and more preferably 1 to 10. The above organic group A preferred example of A is as follows.
—严2 —CH2—G—CHg—CH3 —CH2 一<pH2 -CH2 3H2—e—CH3 —CH2-e—CH2Br —ch2 —ch2 CH2—CH—CH2 CH3—CH2-CH2-CH—CH—CH2 -ch2 一CH£~G—H 一CH2 一?h2 —CH —占H2—Yan 2 —CH2—G—CHg—CH3 —CH2— < pH2 -CH2 3H2—e—CH3 —CH2-e—CH2Br —ch2 —ch2 CH2—CH—CH2 CH3—CH2-CH2-CH—CH-CH2 -ch2 One CH £ ~ G—H One CH2 One? h2 —CH —H2
1^2- I CH2*~CH2~CH2—GH一CHg "〇Η2ΧΓ~ WLUn-k CH「CH2-CH2-CH2 一 -ch2 V- CH3-CH2—^—CH2"_〇~~CH2—3~CHg - CH3 ~ch2 一严2 〒H2— CH2一C—CHg—O—CH2—0一CH2 —ch2 ch2—1 ^ 2- I CH2 * ~ CH2 ~ CH2—GH-CHg " 〇Η2ΧΓ ~ WLUn-k CH 「CH2-CH2-CH2 a-ch2 V- CH3-CH2 — ^-CH2 " _〇 ~~ CH2-3 ~ CHg-CH3 ~ ch2 One strict 2 〒H2— CH2—C—CHg—O—CH2—0—CH2 —ch2 ch2—
式(13)及(14)表示之化合物特別地例示爲下式(15)至 (37)。 -58- 200530754The compounds represented by the formulae (13) and (14) are specifically exemplified by the following formulae (15) to (37). -58- 200530754
〇〇
ΟΟ
式(18) 式(19)Equation (18) Equation (19)
式(21) -59- 200530754 R 〇Formula (21) -59- 200530754 R 〇
丨2)6—NHCOO 入广CONH—(CH2)e—义入义—(GH丨丨 2) 6—NHCOO 入 广 CONH— (CH2) e—meaning enter meaning— (GH 丨
(iH2)e-NHCOO Ο Ϊ 式(22)(iH2) e-NHCOO 〇 式 Formula (22)
式(25)Equation (25)
-60- 200530754-60- 200530754
式(30) -61 - 200530754Formula (30) -61-200530754
式(32)Equation (32)
-62- 200530754-62- 200530754
至60之整數;”1”表示1至20之整數;及R表示氫原子 φ或甲基。 -含芳基之單體_ 上述含芳基之單體可適當地選擇,只要此單體含芳基 ;含芳基之單體之實例包括至少一種含芳基之多價醇化合 物、多價胺化合物及多價胺基醇化合物與至少一種不飽和 羧酸之酯與醯胺。 含芳基之多價醇化合物、多價胺化合物及多價胺基醇 化合物之實例包括聚氧化苯乙烯、二甲苯二醇、二(β -羥 基乙氧基)苯、1,5-二羥基-1,2,3,4 -四氫萘、2,2 -二苯基- -63- 200530754 1,3 -丙二醇、羥基苄醇、羥乙基間苯二酚、b苯基-i,2 -乙 二醇、2,3,5,6-四甲基對二甲苯-〇c,oc’-二醇、i,i,4,4-四苯 基-1,4-丁 二醇、1,1,4,4-四苯基-2-丁 -1,4-二醇、,_聯 _ 2 -萘酚、二羥基酚、1,1’-亞甲基二-2-萘酚、i,2,4 -苯三醇 、聯酚、2,2,-貳(4 -羥基苯基)丁烷、1,1-貳(4 -羥基苯 基)環己烷、貳(羥基苯基)甲烷、兒茶酚、4 -氯間苯二 酚、氫醌、羥基苄醇、甲基氫醌、亞甲基-2,4,6 -三羥基苯 甲酸酯、氟葡萄糖醇、五倍子酚、間苯二酚、a- ( 1-胺基 乙基)對羥基苄醇、與3 -胺基-4 -羥基苯基珮。 此外,二甲苯貳(甲基)丙烯醯胺;酚醛淸漆環氧樹 脂或環氧丙基化合物(如聯酚Α二環氧丙醚)與α,卜不飽 和羧酸之加成物;得自如酞酸與1,2,4-苯三甲酸之酸及含 羥基之乙烯基單體之酯化合物;酞酸二烯丙酯、1,2,4-苯 三甲酸三烯丙酯、苯磺酸二烯丙酯;作爲可聚合單體之可 陽離子聚合一乙稀醚,如聯酣A ;環氧化合物,如酣醒淸An integer from 1 to 60; "1" represents an integer from 1 to 20; and R represents a hydrogen atom φ or a methyl group. -Aryl-containing monomer_ The above-mentioned aryl-containing monomer may be appropriately selected as long as the monomer contains an aryl group; examples of the aryl-containing monomer include at least one aryl-containing polyvalent alcohol compound, polyvalent Esters and amines of amine compounds and polyvalent amino alcohol compounds with at least one unsaturated carboxylic acid. Examples of the aryl group-containing polyvalent alcohol compound, polyvalent amine compound, and polyvalent amino alcohol compound include polystyrene oxide, xylene glycol, bis (β-hydroxyethoxy) benzene, 1,5-dihydroxy 1,2,3,4-tetrahydronaphthalene, 2,2-diphenyl- -63- 200530754 1,3-propanediol, hydroxybenzyl alcohol, hydroxyethylresorcinol, bphenyl-i, 2 -Ethylene glycol, 2,3,5,6-tetramethyl-p-xylene-OC, oc'-diol, i, i, 4,4-tetraphenyl-1,4-butanediol, 1 , 1,4,4-tetraphenyl-2-butane-1,4-diol,, -bi-naphthol, dihydroxyphenol, 1,1'-methylenebis-2-naphthol, i, 2,4-triol, biphenol, 2,2, -fluorene (4-hydroxyphenyl) butane, 1,1-fluorene (4-hydroxyphenyl) cyclohexane, fluorene (hydroxyphenyl) ) Methane, catechol, 4-chlororesorcinol, hydroquinone, hydroxybenzyl alcohol, methylhydroquinone, methylene-2,4,6-trihydroxybenzoate, fluoroglucosyl alcohol, gallicol , Resorcinol, a- (1-aminoethyl) -p-hydroxybenzyl alcohol, and 3-amino-4-hydroxyphenylphosphonium. In addition, xylene fluorene (meth) acrylamide; adducts of phenolic lacquer epoxy resin or epoxy propyl compounds (such as biphenol A diglycidyl ether) and α, Bu unsaturated carboxylic acid; Ester compounds of phthalic acid with 1,2,4-benzenetricarboxylic acid and hydroxyl-containing vinyl monomers; diallyl phthalate, triallyl 1,2,4-benzenetricarboxylic acid, benzenesulfonic acid Diallyl acid; cationic polymerizable monoethyl ether as polymerizable monomer, such as hydrazone A; epoxy compounds, such as hydrazone
漆環氧樹脂與聯酣A二環氧丙醚;乙綠酯,如酞酸二乙燒 酯、對酞酸二乙烯酯、與二乙烯基苯-丨,3 _二磺酸酯;及苯 乙細化e物,如一乙烯基苯、對儲丙基苯乙燒、與對異丙 烯苯乙燒 其中’下式(38)表示之化合物較佳。 =^R4 / \ R5 -Ar2-^-X3^—〇〇〇 式(38) m6 在上式(3 8)中,汉4與R5各表示氫原子或烷基。 在上式〇8)中,Xs與Xfi各表示環氧烷基,此環氧烷 可爲一種或二或多種。環氧烷基之實例包括環氧乙烷基 環氧丙烷基、環氧丁烷基、環氧戊烷基、環氧己烷基、 -64- 200530754 與其無規或嵌段之組合基。其中,環氧乙烷基、環氧丙火完 基、環氧丁烷基、與其組合基較佳;及環氧乙烷基與環氧 丙烷基更佳。 在式(38)中,m5與m6各表示1至60,較佳爲2至 30,更佳爲4至15之整數。 在式(3 8)中,T表示二價連接基,如亞甲基、伸乙基 、MeCMe、CF3CCF3、CO、S02 〇Lacquer epoxy resin and difluoride A dipropylene oxide ether; ethyl green esters, such as diethyl phthalate, divinyl terephthalate, and divinylbenzene, 3-disulfonate; and benzene E-refined substances, such as monovinylbenzene, p-propylstyrene, and p-isopropene styrene, among which compounds represented by the following formula (38) are preferred. = ^ R4 / \ R5 -Ar2-^-X3 ^ -〇〇〇 Formula (38) m6 In the above formula (38), Han 4 and R5 each represent a hydrogen atom or an alkyl group. In the above formula 08), Xs and Xfi each represent an alkylene oxide group, and the alkylene oxide may be one kind or two or more kinds. Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, an pentyl oxide group, a hexane oxide group, -64-200530754 and a random or block combination thereof. Among them, ethylene oxide group, propylene oxide flame retardant group, butylene oxide group, and combinations thereof are preferred; and ethylene oxide group and propylene oxide group are more preferable. In formula (38), m5 and m6 each represent 1 to 60, preferably 2 to 30, and more preferably an integer of 4 to 15. In formula (38), T represents a divalent linking group, such as methylene, ethylidene, MeCMe, CF3CCF3, CO, S02.
在式(38)中,Ar1與Ar2各表示可含經取代基之任何 基·’ Αι:1與Ar2之實例包括伸苯基與伸萘基; 之實例包括烷基、芳基、芳烷基、鹵素原子、 其組合。 及經取代基 烷氧基、及In formula (38), Ar1 and Ar2 each represent any group which may contain a substituted group. Examples of Al: 1 and Ar2 include phenylene and naphthyl; examples include alkyl, aryl, aralkyl , Halogen atom, combinations thereof. And substituted alkoxy groups, and
上述含芳基之單體之實例包括2,2_Λ[4_(3_(甲基 )丙烯氧基-2-羥丙基)苯基]丙烷、2,2_貳[4_ ((甲基) 丙烯醯氧基乙氧基)苯基]丙烷;其中取代一個酚系綦 之乙氧基數量爲20個之2,2_威[4_ ((甲基)丙稀職 氧基乙氧基)苯基]丙院,如2,2.戴[4_ ((甲基)丙稀酸 氧基二乙氧基)苯基]丙院、2,2瀆[4-((甲基)丙嫌酸 氧基四乙氧基)苯基]丙院、2,2礞[4_((甲基)丙稀職 氧基五乙氧基)苯基]丙院、2,2_戴[4_((甲基)丙嫌酸 興基十乙氧基)苯基]丙院、22-ϊΓ「Λ r ,貳[4_((甲基)丙烯醯 氧基十五乙氧基)苯基]丙燒;22 2,2-貳[4_ ((甲基)丙烯 醯氧基丙氧基)苯基]丙烷、其中取代—個酚系〇h基之乙 氧土數里爲2至20個之2’2’ [4-((甲基)丙烯醯氧_ 丙氧基)苯基]丙院,如2,2,4·((甲基)㈣酿氧基 -65- 200530754 二丙氧基)苯基]丙烷、2,2 -貳[4-((甲基)丙烯醯氧基 四丙氧基)苯基]丙烷、2,2 -貳[4-((甲基)丙烯醯氧基 五丙氧基)苯基]丙烷、2,2 -貳[4-((甲基)丙烯醯氧基 十丙氧基)苯基]丙烷、2,2 -貳[4-((甲基)丙烯醯氧基 十五丙氧基)苯基]丙烷;在一個分子中具聚環氧乙烷主 幹與聚環氧丙烷主幹作爲醚位置之化合物,如國際公告第 WO 0 1 /9 8 8 3 2號專利所述之化合物及市售產品ΒΡΕ-2〇0、 BPE- 5 0 0 與 BPE-1000 (Shin-nakamura Chemical Co·);及 具聚環氧乙烷主幹與聚環氧丙烷主幹之可聚合化合物。在 這些化合物中,由聯酚A所得之位置可改成由聯酚F、聯 酚S等所得之位置。 具聚環氧乙烷主幹與聚環氧丙烷主幹之可聚合化合物 包括聯酚與環氧乙烷或環氧丙烷之加成物、及在末端具羥 基之化合物,其中此化合物係如多加成產物而形成,而且 此化合物具有異氰酸基與可聚合基,如2 -異氰酸酯(甲基 )丙烯酸乙酯、與α,α-二甲基乙烯基二苯乙二酮異氰酸酯 等。 -其他之可聚合單體- 在依照本發明之圖案形成方法中,在不使圖案形成材 料之性質之範圍內’可一起使用上述具胺基甲酸酯基或芳 基之單體以外之可聚合單體。 具胺基甲酸酯基或芳環之單體以外之單體之實例包括 不飽和羧酸(如丙烯酸、甲基丙烯酸、伊康酸、巴豆酸、 與異巴豆酸)與脂族多價醇之酯、及不飽和羧酸與多價胺 -66 - 200530754 之醯 )丙 個乙 (甲 二醇 、十 基) )丙 二( 十二 烯酸 經環 丙烷 酸酯 基乙 酸酯 甲基 二醇 酸酯 基) 四( 二異 烯酸 胺。 上述不 烯酸酯 烯基之 基)丙 二(甲 二乙二 丙烯酸 烯酸酯 甲基) 丙二醇 酯、經 氧丙烷 三(甲 、三羥 烷三( 、1,4-)丙烯 飽和羧酸與脂族多 ,乙二醇二(甲基 聚乙二醇二(甲基 烯酸酯、三乙二醇 價醇之 )丙烯 )丙烯 二(甲 乙二醇 醇二(甲基)丙烯酸酯、 基)丙烯酸酯、九 酯之實例包括(甲基 酸酯,具有2至18 酸酯,如二乙二醇二 基)丙烯酸酯、四乙 二(甲基)丙烯酸酯 與十四乙二醇二(甲 酉旨,具有2至18個两烯 ’如二丙二醇二(甲基) 丙烯酸酯、四丙二醇二( 二(甲基)丙烯酸酯;新 環氧乙烷修改新戊二醇二 修改新戊二醇二(甲基) 基)丙烯酸酯、三羥甲基 甲基丙烷三(甲基)丙烯 甲基)丙烯酸酯、1,3 -丙 丁二醇二(甲基)丙烯酸 酸酯、己二醇二(甲基) 醇 (甲基 丙烯酸酯、三丙二醇 甲基)丙烯酸酯、與 戊二醇二(甲基)丙 (甲基)丙烯酸酯、 丙烯酸酯、三羥甲基 丙烷二(甲基)丙烯 醯氧基丙醚、三羥甲 二醇二(甲基)丙烯 酯、1,6 -己二醇二( 丙烯酸酯、1,4 -環己 二(甲基)丙烯酸酯、H4-丁三醇三(甲基)丙烯 、1,5 -戊二醇二(甲基)丙烯酸酯、異戊四醇二(甲 丙嫌酸酯、異戊四醇三(甲基)丙烯酸酯、異戊四醇 甲基)丙烯酸酯、二異戊四醇五(甲基)丙烯酸酯、 戊四醇六(甲基)丙烯酸酯、葡萄糖醇三(甲基)丙 酯、葡萄糖醇四(甲基)丙烯酸酯、葡萄糖醇五(甲 -67- 200530754 基)丙烯酸酯、葡萄糖醇六(甲基)丙烯酸酯、二羥甲基 二環戊烷二(甲基)丙烯酸酯、三環癸烷二(甲基)丙烯 酸酯、經新戊二醇修改三羥甲基丙烷二(甲基)丙烯酸酯 ;具有乙二醇鏈與丙二醇鏈至少之一之烷二醇鏈之二(甲 基)丙烯酸酯,如國際專利第W Ο 0 1 / 9 8 8 3 2號所述之化合 物;附加環氧乙烷與環氧丙烷至少之一之三羥甲基丙烷之 三(甲基)丙烯酸酯;聚丁二醇二(甲基)丙烯酸酯、甘 油二(甲基)丙烯酸酯、甘油三(甲基)丙烯酸酯、與二 甲苯酚二(甲基)丙烯酸酯。 上述之(甲基)丙嫌酸酯中,就可得容易性而言,較 佳爲乙二醇二(甲基)丙烯酸酯 '聚乙二醇二(甲基)丙 嫌酸酯、丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基 )丙烯酸酯、具有乙二醇鏈與丙二醇鏈至少之一之烷二醇 鏈之一(甲基)丙燒酸酯、三經甲基丙院三(甲基)丙燒 酸酯、異戊四醇四(甲基)丙烯酸酯、異戊四醇三丙烯酸 酯、異戊四醇二(甲基)两_酸酯、二異戊四醇五(甲基 )丙烯酸酯、二異戊四醇六(甲基)丙烯酸酯、甘油三( 甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、丨,3 _丙二醇 二(甲基)丙烯酸酯、1,2,4-丁三醇三(甲基)丙烯酸酯 、i,4 -環己二醇二(甲基)丙燒酸酯、1,5 -戊二醇二(甲 基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、與附加環 氧乙院之三經甲基丙院之二(甲基)丙嫌酸酯。 上述伊康酸與脂族多價醇化合物之酯(即,伊康酸酯 )之實例包括包括乙二醇二伊康酸酯、丙二醇二伊康酸酯 -68- 200530754 - 、1,3-丁二醇二伊康酸酯、1,4-丁二醇二伊康酸酯、 醇二伊康酸酯、異戊四醇二伊康酸酯、與葡萄糖醇四 酸酯。 上述巴豆酸與脂族多價醇化合物之酯(即,巴豆 )之實例包括包括乙二醇二巴豆酸酯、丁二醇二巴豆 、異戊四醇二巴豆酸酯、與葡萄糖醇四巴豆酸酯。 上述異巴豆酸與脂族多價醇化合物之酯(即,巴 酯)之實例包括包括乙二醇二異巴豆酸酯、異戊四醇 ® 巴豆酸酯、與葡萄糖醇四異巴豆酸酯。 上述順丁烯二酸與脂族多價醇化合物之酯(即, 烯二酸酯)之實例包括包括乙二醇二順丁烯二酸酯、 二醇二順丁烯二酸酯、異戊四醇二順丁烯二酸酯、與 糖醇四順丁烯二酸酯。 上述衍生自多價胺化合物與不飽和羧酸之醯胺之 包括亞甲基貳(甲基)丙烯醯胺、伸乙基貳(甲基) 醯胺、1,6-伸己基貳(甲基)丙烯醯胺、伸辛基貳( $ )丙烯醯胺、二伸乙三胺参(甲基)丙烯醯胺、與二 三胺貳(甲基)丙烯醯胺。 至於上述之可聚合單體’可另外例示以下之化合 藉由將α,β-不飽和羧酸加入含環氧丙基化合物而得之 物,如丁二醇-1,4 -二環氧丙醚、環己基二甲醇環氧丙 乙二醇二環氧丙醚、二乙二醇二環氧丙醚、二丙二醇 氧丙醚、己二醇二環氧丙醚、三經甲基丙烷三環氧丙 異戊四醇四環氧丙醚、與甘油三環氧丙醚;JP-A第 伊康 酸酯 酸酯 豆酸 二異 順丁 三乙 葡萄 實例 丙烯 甲基 伸乙 物: 化合 醚、 —^ 醚、 48- -69- 200530754 64183號及JP-B第49-43191與52-30490號專利所述之聚 酯丙烯酸酯與聚酯(甲基)丙烯酸酯寡聚物;多官能基丙 烯酸酯或甲基丙烯酸酯,如得自甲基丙烯酸環氧化合物( 如丁二醇-1,4-二環氧丙醚、環己基二甲醇環氧丙醚、二乙 二醇二環氧丙醚、二丙二醇二環氧丙醚、己二醇二環氧丙 醚、三羥甲基丙烷三環氧丙醚、異戊四醇四環氧丙醚、與 甘油三環氧丙醚)間反應之環氧基丙烯酸酯;敘述於 Journal of Adhesion Society of Japan ’ 第 20 卷,第 7 期 ,第300-308頁(1984)之光可固化單體與寡聚物;烯丙酯 ,如酞酸二烯丙酯、己二酸二烯丙酯與丙二酸二烯丙酯; 二烯丙基醯胺,如二烯丙基乙醯胺;可陽離子聚合二乙烯 醚,如丁二醇-1,4 -二乙烯醚、環己基二甲醇二乙烯醚、乙 二醇二乙烯醚、二乙二醇二乙烯醚、二丙二醇二乙烯醚、 己二醇二乙烯醚、三羥甲基丙烷三乙烯醚、異戊四醇四乙 烯醚、與甘油乙烯醚;環氧化合物’如丁二醇-1,4-二環氧 丙醚、環己基二甲醇環氧丙醚、乙二醇二環氧丙醚、二乙 二醇二環氧丙醚、二丙二醇二環氧丙醚、己二醇二環氧丙 醚、三羥甲基丙烷三環氧丙醚、異戊四醇四環氧丙醚、與 甘油三環氧丙醚;環氧丁烷’如1,4-貳[(3-乙基-3-環氧 丁基甲氧基)甲基]苯及國際公告第W0 01/22165號專利 所述者;具有二或更多種不同型式之乙烯不飽和雙鍵之化 合物,如Ν-β -經乙基-β -甲基丙綠醯胺乙基丙稀酸酯、 Ν,Ν-貳(β-甲基丙烯氧基乙基)丙嫌醯胺、丙烯基甲基丙 烯酸酯。 -70- 200530754 ' 上述乙烯酯之實例包括琥珀酸乙烯酯與己二酸乙烯酯 〇 這些多官能基單體或寡聚物可單獨或組合使用。 上述之可聚合單體可組合分子中具有一個可聚合基之 可聚合化合物,即,單官能基單體。 單官能基單體之實例包括例示爲上述黏合劑之原料之 化合物,二元單官能基單體,如單(甲基)丙烯醯氧基烷 酯、單羥基烷酯、與γ-氯-β-羥丙基-β’-甲基丙烯醯氧基乙 _ 基鄰酸酯,及JP-A第06-236031號、JP-B第2744643與 2 5480 1 6號、及國際專利第WO 〇〇/5 25 29號專利所述之化 合物。 較佳爲,可聚合化合物在感光層中之含量爲5至90 質量%,更佳爲15至60質量%,而且仍更佳爲20至50 質量%。 在此含量小於5質量%時,拉輻膜強度可能降低,及 _ 在此含量超過90質量%時,儲存期間之邊緣融合不足且 可能誘發滲出之困擾。 上述分子中具有二或更多個可聚合基之多官能基單體 之含量較佳爲5至1 0 0質量%,更佳爲2 0至1 0 0質量% ’ 仍更佳爲40至1〇〇質量%。 <光聚合引發劑> 光聚合引發劑可適當地選自習知者而無特別之限制’ 只要其具有引發聚合之性質;較佳爲對紫外線至可見光呈 感光性之引發劑。視單體種類而定,引發劑可爲由於光激 -71 - 200530754 ^ 發感光劑效應而產生自由基之活性物質,或引發陽離子聚 ^ 合之物質。 較佳爲,光聚合引發劑含至少一種在約3 0 0至8 0 0奈 米,更佳爲約3 0 0至5 0 0奈米之範圍之分子消光係數爲約 50 M·1公分_1之成分。 光引發劑之實例包括鹵化烴衍生物(如具三畊主幹或 噚二唑主幹者)、六芳基二咪唑、肟衍生物、有機過氧化 物、硫化合物、酮化合物、芳族鏺鹽、醯基膦氧化物、及 ® 金屬錯合物。這些化合物中,由感光層敏感度、自我安定 性、感光層與印刷線路板用基板間黏著力之觀點,具三畊 主幹之鹵化烴衍生物、肟衍生物、酮化合物、與六芳基二 咪唑化合物較佳。 六芳基二咪唑化合物之實例包括2,2’ -貳(2 -氯苯基 )-4,4’,5,5’-四苯基二咪唑、2,2’-貳(鄰氟苯基)_ 4,4’,5,5’-四苯基二咪唑、2,2’-貳(鄰溴苯基)-4,4’,5,5’-四苯基二咪唑、2,2、貳(2,4-二氯苯基)-4,4’,5,5’·四苯 ^ 基二咪唑、2,2,-貳(2-氯苯基)-4,4’,5,5’-四(3-甲氧基 苯基)二咪唑、2,2’-貳(2-氯苯基)-4,4’,5,5’-四(4-甲 氧基苯基)一·味卩坐、2,2’-戴(4 -甲氧基本基)-4,4,5,5 -四苯基二咪唑、2,2、貳(2,4 -二氯苯基)-4,4’,5,5’ -四苯 基二咪唑、2,2,-貳(2-硝基苯基)-4,4,,5,5’-四苯基二咪 唑、2,2,-貳(2 -甲基苯基)-4,4,,5,5,-四苯基二咪唑、 2,2,-貳(2-三氟甲基苯基)-4,4,,5,5、四苯基二咪唑、及 國際公告第WO 00/5 2 5 2 9號專利所述之化合物。 -72- 200530754 ' 上述六芳基二咪唑可易於藉由,例如,Bulletin of the Chemical Society of Japan,33,5 6 5 (1960)及 Journal of Organic Chemistry,36,[16],2262 (1971)所述之方法製 造。 具三畊主幹之鹵化烴衍生物之實例包括 Wakabayasi 之 Bulletin of the Chemical Society of Japan,42,2924 ( 1 969);英國專利第 1 3 8 8 492 號;JP-A 第 5 3 - 1 3 3 42 8 號專 利;德國專利第 3 3 3 7024 號;F.C. Schaefer等人之 _ Journal of Organic Chemistry,29,1 527 ( 1 964); JP-A 第 62-58241、5-281728、與5-34920號專利;及美國專利第 4 2 1 2 9 7 6號所述之化合物。 上述 W akab ay a s i 之 Bulletin of the Chemical Society of Japan,42,2924(1969)所述之化合物之實例包括2-苯基 -4,6-貳(三氯甲基)-1,3,5-三畊、2-(4-氯苯基)-4,6-貳 (三氯甲基)-1,3,5-三畊、2-(4-甲苯基)-4,6-貳(三氯 甲基)-1,3,5-三畊、2-(4-甲氧基苯基)-4,6-貳(三氯甲 ^ 基)-l,3,5-三畊、2-(2,4-二氯苯基)-4,6-貳(三氯甲基 )-1,3,5-三畊、2,4,6-参(三氯甲基)-1,3,5-三畊、2 -甲 基-4,6-貳(三氯甲基)-1,3,5-三畊、2-正壬基_4,6-貳(三 氯甲基)-1,3,5-三畊、與2-(〇6,《,0-三氯乙基)-4,6-貳( 三氯甲基)-1,3,5-三畊。 上述英國專利第1 3 8 8 4 9 2號所述之化合物之實例包括 2-苯乙條基-4,6-戴(三氯甲基)-1,3,5-二哄、2- (4 -甲基 苯乙烯基)-4,6-貳(三氯甲基)-1,3,5-三畊、2-(4-甲氧 -73- 200530754 * 基苯乙烯基)-4,6-貳(三氯甲基)-1,3,5-三阱、與2-(4- 甲氧基苯乙烯基)-4-胺基-6-三氯甲基-1,3,5-三畊。 上述J P - A第5 3 - 1 3 3 4 2 8號專利所述之化合物之實例 包括 2- (4 -甲氧基萘醯-1-基)-4,6 -貳三氯甲基-1,3,5 -三 哄、2- (4-乙氧基萘醯-1-基)-4,6-貳三氯甲基_1,3,5-三畊 、2-[4-(2 -乙氧基乙基)萘醯-1-基]-4,6-貳三氯甲基-l,3,5-三畊、2-(4,7-二甲氧基萘醯-卜基)-4,6-貳三氯甲 基-1,3,5-三畊、與 2-(乙烷合萘醯-5-基)-4,6-貳三氯甲 •基-1,3,5 -三畊。 上述德國專利第3 3 3 7 024號所述之化合物之實例包括 2-(4-苯乙烯基苯基)-4,6-貳(三氯甲基)-1,3,5-三畊、 2-(4-(4-甲氧基苯乙烯基)苯基)-4,6-貳(三氯甲基)_ 1,3,5-三哄、2-(1-萘基伸乙烯基苯基)-4,6-貳(三氯甲 基)-1,3,5-三畊、2-氯苯乙烯基苯基-4,6-貳(三氯甲基) -1,3,5-三畊、2- (4-噻吩-2-伸乙烯基苯基)-4,6-貳(三氯 甲基)-1,3,5-三畊、2- (4-噻吩-3-伸乙烯基苯基)-4,6-貳 ^ (三氯甲基)-1,3,5-三阱、2-(4-呋喃-2-伸乙烯基苯基) -4,6·貳(三氯甲基)-1,3,5-三畊、與(4-苯并呋喃-2-伸 乙烯基苯基)_4,6-貳(三氯甲基)-1,3,5-三畊。 上述 F · C · S chae fer 等人之 J 〇ur na 1 o f Ο r gani c Chemistry,29,1 5 27 ( 1 964)所述之化合物之實例包括2-甲 基-4,6-貳(三溴甲基)-1,3,5-三畊、2,4,6-参(三溴甲基 )-1,3,5-三畊、2,4,6-参(二溴甲基)-1,3,5-三畊、2-胺 基-4-甲基-6-三溴甲基-1,3,5-三阱、與2 -甲氧基-4-甲基- 6- -74- 200530754 ' 三氯甲基-1,3,5-三哄。 上述JP-A第6 2 - 5 8 24 1號專利所述之化合物之實例包 括2-(4-苯基乙基苯基)-4,6-貳(三氯甲基)-1,3,5-三畊 、2-(4-萘基-1-乙炔基苯基)-4,6-貳(三氯甲基)-1,3,5-三畊、2-(4-(4-三乙炔基)苯基)-4,6-貳(三氯甲基)-1,3,5-三畊、2-(4-(4-甲氧基苯基)乙炔基苯基)-4,6-貳(三氯甲基)-1,3,5-三畊、2-(4-(4-異丙基苯基乙炔 基)苯基)-4,6-貳(三氯甲基)-1,3,5-三哄、與2-(4-( ® 4-乙基苯基乙炔基)苯基)-4,6-貳(三氯甲基)-1,3,5_三 哄。 上述JP-A第5 -2 8 1 7 2 8號專利所述之化合物之實例包 括2-(4-三氟甲基苯基)-4,6-貳(三氯甲基)-1,3,5-三畊 、2-(2,6-二氟苯基)-4,6-貳(三氯甲基)-1,3,5-三哄、 2-(2,6-二氯苯基)-4,6-貳(三氯甲基)-1,3,5-三哄、與 2-(2,6-二溴苯基)-4,6-貳(三氯甲基)-1,3,5-三_。 上述JP-A第5 - 3 492 0號專利所述之化合物之實例包 ® 括 2,4-貳(三氯甲基)-6-[4- ( N,N-二乙氧基羰基曱胺基 )-3-溴苯基]-1,3,5-三畊、美國專利第42 3 9 8 5 0號專利所 述之三鹵甲基-s-三畊化合物、及2,4,6-参(三氯甲基)-s-三哄、與2-(4-氯苯基)-4,6-参(三氯甲基)-s-三畊。 上述美國專利第42 1 2976號所述之化合物之實例包括 具有噚二唑主幹之化合物,如2-三氯甲基-5-苯基-1,3,4-噚二唑、2 -三氯甲基-5- (4 -氯苯基)-1,3,4 -噚二唑、2 -三 氯甲基- 5-( 1-萘基)-1,3,4-噚二唑、2-三氯甲基-5- (2-萘 -75- 200530754 基)-1,3,4-噚二唑、2-三溴甲基-5-苯基-1,3,4-噚二唑、2-三溴甲基-5-( 2 -萘基)-1,3,4-噚二唑、2 -三氯甲基-5-苯 乙烯基-1,3,4 -噚二唑、2 -三氯甲基-5- (4 -氯苯乙烯基)-1,3,4-噚二唑、2-三氯甲基_5-(4-甲氧基苯乙烯基)-1,3,4-噚二唑、2-三氯甲基-5-(1-萘基)-1,3,4-噚二唑、 2-三氯甲基-5- (4-正丁基苯乙烯基)-1,3,4-噚二唑、與2-三溴甲基-5-苯乙烯基-1,3,4-噚二唑。 上述衍生物之實例包括下式(3 9)至(72)所示之化合物 200530754Examples of the above-mentioned aryl-containing monomer include 2,2_Λ [4_ (3_ (meth) propenyloxy-2-hydroxypropyl) phenyl] propane, 2,2_ 贰 [4 _ ((meth) propene 醯Oxyethoxy) phenyl] propane; in which the number of ethoxy groups substituted for a phenolic fluorene is 20 of 2,2_wei [4_ (((methyl) propyloxyethoxy) phenyl)]] , Such as 2,2. Dai [4_ ((meth) acrylic acid oxydiethoxy) phenyl] acetone, 2,2 [[(((methyl) propionic acid oxytethoxylate) Phenyl] phenyl] propionate, 2,2 礞 [4 _ ((methyl) propanyloxypentaethoxy) phenyl] propionate, 2,2_dai [4 _ ((methyl) propionic acid Xingyl decaethoxy) phenyl] propionate, 22-ϊΓ "Λ r, 贰 [4-(((meth) propenyloxypentadecylethoxy) phenyl] propene] propionate; 22 2,2- 贰[4_ ((Meth) acryloxypropoxy) phenyl] propane, 2'2 'in the number of substituted ethoxylates of one phenolic OH group is 2 to 20 [4-(( (Meth) acrylic acid_propoxy) phenyl] propane, such as 2,2,4 · ((meth) fluorenyloxy-65- 200530754 dipropoxy) phenyl] propane, 2,2 -贰 [4-((meth) acrylic alkoxytetrapropoxy) phenyl] propane, 2 2,2-[[(Meth) propenyloxypentapropoxy) phenyl] propane, 2,2-[[(Meth) propenyloxypentadecyloxy) phenyl] ] Propane, 2,2-pyrene [4-((meth) propenyloxypentadecyloxy) phenyl] propane; with polyethylene oxide backbone and polypropylene oxide backbone as ethers in one molecule Compounds at the position, such as those described in International Publication No. WO 0 1/9 8 8 3 2 and commercially available products BPE-2-0, BPE-5 0 0 and BPE-1000 (Shin-nakamura Chemical Co ·) ; And polymerizable compounds with polyethylene oxide backbone and polypropylene oxide backbone. In these compounds, the position obtained from biphenol A can be changed to the position obtained from biphenol F, biphenol S, etc. Polymerizable compounds of ethylene oxide backbone and polypropylene oxide backbone include adducts of biphenol and ethylene oxide or propylene oxide, and compounds having a hydroxyl group at the terminal, where the compound is formed as a multi-addition product In addition, this compound has isocyanate and polymerizable groups, such as ethyl 2-isocyanate (meth) acrylate, and α, α-dimethylvinyl diphenylethylene diketone isocyanate. Ester, etc.-Other polymerizable monomers-In the pattern forming method according to the present invention, the above-mentioned monomers having a urethane group or an aryl group can be used together within a range that does not make the characteristics of the pattern forming material. Polymerizable monomers other than. Examples of monomers other than monomers having a urethane group or an aromatic ring include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, and isocrotonic acid. ) Esters with aliphatic polyvalent alcohols, and unsaturated carboxylic acids and polyvalent amines-66-200530754 (i) Propylene glycol (methyl glycol, decayl)) Propane (dodecenoic acid via cyclopropaneate) Acetate methyl glycolate) Tetrakis (diisoenolate). The aforementioned non-alkenoyl alkenyl group) propylene di (methylene diacrylate diacrylate) propylene glycol ester, oxypropane tris (methyl, triolane tri (, 1,4-) propylene saturated carboxylic acid and Mostly aliphatic, ethylene glycol bis (methyl polyethylene glycol bis (methacrylate, triethylene glycol) propylene) propylene di (methyl glycol alcohol di (meth) acrylate, radical) Examples of acrylates and nonadesters include (methacrylic acid esters having 2 to 18 acid esters such as diethylene glycol diyl) acrylate, tetraethylene di (meth) acrylate, and tetradecyl ethylene glycol di (methyl Purpose, with 2 to 18 diene's such as dipropylene glycol di (meth) acrylate, tetrapropylene glycol di (di (meth) acrylate; new ethylene oxide modified neopentyl glycol di modified neopentyl glycol Di (meth) yl) acrylate, trimethylolmethylpropane tri (meth) propylene meth) acrylate, 1,3-butanediol di (meth) acrylate, hexanediol di ( Methyl) alcohols (methacrylates, tripropylene glycol meth) acrylates, and pentanediol di (methyl) (Meth) acrylate, acrylate, trimethylolpropane di (meth) acryloxypropyl ether, trimethylol glycol di (meth) acrylate, 1,6-hexanediol di (acrylic acid) Ester, 1,4-cyclohexanedi (meth) acrylate, H4-butanetriol tri (meth) propylene, 1,5-pentanediol di (meth) acrylate, isopentaerythritol di (methyl) Propionic acid ester, isopentaerythritol tri (meth) acrylate, isopentaerythritol meth) acrylate, diisopentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate , Glucitol tri (meth) propyl, Glucitol tetra (meth) acrylate, Glucitol penta (methyl-67-200530754) acrylate, Glucitol hexa (meth) acrylate, Dimethyloldi Cyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, trimethylolpropane di (meth) acrylate modified by neopentyl glycol; has ethylene glycol chain and propylene glycol chain At least one di (meth) acrylate of an alkanediol chain, as described in International Patent No. W 0 0 1/9 8 8 3 2 Compounds; tris (meth) acrylate with trimethylolpropane added to at least one of ethylene oxide and propylene oxide; polybutylene glycol di (meth) acrylate, glycerol di (meth) acrylate, Glycerin tri (meth) acrylate and xylenol di (meth) acrylate. Among the (meth) propionic acid esters mentioned above, ethylene glycol di (methyl) is preferred in terms of availability. Base) acrylate 'polyethylene glycol di (meth) propionate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, having at least one of ethylene glycol chain and propylene glycol chain One (meth) propionic acid ester of alkanediol chain, three (meth) propionic acid trimethyl ester, isopropyltetraol tetra (meth) acrylate, isoprene tetraacrylate , Isopentaerythritol di (meth) bis-ester, diisopentaerythritol penta (meth) acrylate, diisopentaerythritol hexa (meth) acrylate, glycerol tri (meth) acrylate, Glycerol di (meth) acrylate, 丨, 3 _ propylene glycol di (meth) acrylate, 1,2,4-butanetriol (Meth) acrylate, i, 4-cyclohexanediol di (meth) propionate, 1,5-pentanediol di (meth) acrylate, neopentyl glycol di (meth) acrylic acid Ester, and the second (meth) propionic acid ester of the third acrylic resin with methyl epoxy resin. Examples of the above-mentioned esters of Ikonic acid and aliphatic polyvalent alcohol compounds (ie, Ikonate) include ethylene glycol diIconate, propylene glycol diIconate -68- 200530754-, 1,3- Butanediol di-econate, 1,4-butanediol di-econate, alcohol di-econate, isopentaerythritol di-econate, and glucose alcohol tetra-ester. Examples of the above-mentioned esters of crotonic acid and an aliphatic polyvalent alcohol compound (ie, croton) include ethylene glycol dicrotonate, butanediol dicroton, isopentaerythritol dicrotonate, and glucositol tetracrotonate ester. Examples of the above-mentioned esters of isocrotonic acid and an aliphatic polyvalent alcohol compound (ie, crotyl esters) include ethylene glycol diisocrotonate, isopentyl tetraol ® crotonate, and glucosyl tetraisocrotonate. Examples of the above-mentioned esters of maleic acid and an aliphatic polyvalent alcohol compound (ie, adipic acid esters) include ethylene glycol dimaleic acid ester, glycol dimaleic acid ester, isoprene Tetraol dimaleate, and sugar alcohol tetramaleate. The above-mentioned amines derived from polyvalent amine compounds and unsaturated carboxylic acids include methylene fluorene (meth) acryl fluorene, ethyl fluorene (methyl) fluorene, 1,6-hexyl fluorene (methyl ) Acrylamide, octylamine ($) acrylamide, diethylene glycol trisamine (meth) acrylamide, and ditriamine (meth) acrylamide. As for the above-mentioned polymerizable monomers, the following compounds may be additionally exemplified by adding an α, β-unsaturated carboxylic acid to an epoxy-group-containing compound, such as butanediol-1,4-dipropylene oxide Ether, cyclohexyl dimethanol propylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol oxypropyl ether, hexanediol diglycidyl ether, tricyclic methylpropane tricyclic ring Propylene isoprene tetraol glycidyl ether and glycerol triglycidyl ether; JP-A Diconic acid esters of diisocis-butyric acid diisobutyrate Sodium propylene methyl ethylene: Compound ether, — ^ Ether, polyester acrylate and polyester (meth) acrylate oligomers as described in the patents of 48- -69- 200530754 64183 and JP-B Nos. 49-43191 and 52-30490; polyfunctional acrylic acid Esters or methacrylates, such as those obtained from methacrylic epoxy compounds (such as butanediol-1,4-diglycidyl ether, cyclohexyl dimethanol glycidyl ether, diethylene glycol diglycidyl ether , Dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, isopentaerythritol tetraglycidyl ether, and tricyclic glycerol Propyl ether) epoxy acrylate; photocurable monomers and oligomers described in Journal of Adhesion Society of Japan 'Vol. 20, No. 7, pp. 300-308 (1984); allyl Esters, such as diallyl phthalate, diallyl adipate, and diallyl malonate; diallylamine, such as diallylacetamide; cationically polymerizable divinyl ether, such as Butanediol-1,4-divinyl ether, cyclohexyl dimethanol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, dipropylene glycol divinyl ether, hexanediol divinyl ether, trihydroxy Methylpropane trivinyl ether, isoprene tetraethylene ether, and glyceryl vinyl ether; epoxy compounds such as butanediol-1,4-diglycidyl ether, cyclohexyl dimethanol glycidyl ether, ethylene glycol Alcohol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, isoprene tetraol Glycidyl ether, and glycerin triglycidyl ether; butylene oxide 'such as 1,4-fluorene [(3-ethyl-3-epoxybutylmethoxy) methyl] benzene and International Bulletin No. W 01 / 22165; compounds with two or more different types of ethylenically unsaturated double bonds, such as Ν-β-ethyl-β-methylpropionamine ethylpropionate, Ν , N-fluorene (β-methacryloxyethyl) propanamide, allyl methacrylate. -70- 200530754 'Examples of the above vinyl esters include vinyl succinate and vinyl adipate. These polyfunctional monomers or oligomers can be used alone or in combination. The above polymerizable monomers can be combined with a polymerizable compound having one polymerizable group in the molecule, that is, a monofunctional monomer. Examples of the monofunctional monomer include a compound exemplified as a raw material of the above-mentioned adhesive, a binary monofunctional monomer, such as a mono (meth) acrylic alkoxyalkyl ester, a monohydroxy alkyl ester, and γ-chloro-β -Hydroxypropyl-β'-methacryloxyethyl-o-orthoester, and JP-A Nos. 06-236031, JP-B Nos. 2746443 and 2 5480 16 and International Patent No. WO 00 / 5 25 The compound described in the 29 patent. The content of the polymerizable compound in the photosensitive layer is preferably 5 to 90% by mass, more preferably 15 to 60% by mass, and still more preferably 20 to 50% by mass. When the content is less than 5% by mass, the tensile strength of the stretched film may decrease, and when the content exceeds 90% by mass, the edge fusion during storage is insufficient and the problem of exudation may be induced. The content of the polyfunctional monomer having two or more polymerizable groups in the above-mentioned molecule is preferably 5 to 100% by mass, more preferably 20 to 100% by mass, and still more preferably 40 to 1 〇〇 %。 Mass%. < Photopolymerization initiator > The photopolymerization initiator may be appropriately selected from those skilled in the art without particular limitation 'as long as it has the property of initiating polymerization; an initiator which is photosensitive to ultraviolet to visible light is preferred. Depending on the type of monomer, the initiator can be an active substance that generates free radicals due to the photosensitizer effect, or a substance that initiates cationic polymerization. Preferably, the photopolymerization initiator contains at least one molecular extinction coefficient in the range of about 300 to 800 nanometers, more preferably about 300 to 500 nanometers, which is about 50 M · 1 cm. Ingredients of 1. Examples of the photoinitiator include halogenated hydrocarbon derivatives (such as those with a three-stemmed trunk or an oxadiazole trunk), hexaaryl diimidazole, oxime derivatives, organic peroxides, sulfur compounds, ketone compounds, aromatic sulfonium salts, Fluorenylphosphine oxide, and ® metal complex. Among these compounds, from the viewpoints of the sensitivity of the photosensitive layer, self-stability, and the adhesion between the photosensitive layer and the substrate for printed wiring boards, halogenated hydrocarbon derivatives, oxime derivatives, ketone compounds, and hexaaryldiamines with a three-stemmed backbone are available. Imidazole compounds are preferred. Examples of hexaaryldiimidazole compounds include 2,2'-fluorene (2-chlorophenyl) -4,4 ', 5,5'-tetraphenyldiimidazole, 2,2'-fluorene (o-fluorophenyl) ) _ 4,4 ', 5,5'-tetraphenyldiimidazole, 2,2'-fluorene (o-bromophenyl) -4,4', 5,5'-tetraphenyldiimidazole, 2,2 , Fluorene (2,4-dichlorophenyl) -4,4 ', 5,5' · tetraphenyl ^ imidazole, 2,2, -fluorene (2-chlorophenyl) -4,4 ', 5 , 5'-tetra (3-methoxyphenyl) diimidazole, 2,2'-fluorene (2-chlorophenyl) -4,4 ', 5,5'-tetra (4-methoxyphenyl) ) I. miso-sat, 2,2'-dai (4-methoxybenzyl) -4,4,5,5-tetraphenyldiimidazole, 2,2, hydrazone (2,4-dichlorophenyl) ) -4,4 ', 5,5'-tetraphenyldiimidazole, 2,2, -fluorene (2-nitrophenyl) -4,4,5,5'-tetraphenyldiimidazole, 2 , 2, -fluorene (2-methylphenyl) -4,4,5,5,5-tetraphenyldiimidazole, 2,2, -fluorene (2-trifluoromethylphenyl) -4,4 , 5,5, tetraphenyldiimidazole, and compounds described in International Publication No. WO 00/5 2 5 2 9 patent. -72- 200530754 'The above hexaaryldiimidazole can be easily used, for example, Bulletin of the Chemical Society of Japan, 33, 5 6 5 (1960) and Journal of Organic Chemistry, 36, [16], 2262 (1971) Manufactured by the method described. Examples of halogenated hydrocarbon derivatives with a three-till trunk include Bulletin of the Chemical Society of Japan, Wakabayasi, 42, 2924 (1 969); British Patent No. 1 3 8 8 492; JP-A No. 5 3-1 3 3 Patent No. 42 8; German Patent No. 3 3 7024; Journal of Organic Chemistry by FC Schaefer et al., 29, 1 527 (1 964); JP-A Nos. 62-58241, 5-281728, and 5-34920 Patent No .; and the compound described in US Patent No. 4 2 1 2 976. Examples of the compound described in the above-mentioned Bulletin of the Chemical Society of Japan, 42, 2924 (1969) of Wakab ay asi include 2-phenyl-4,6-fluorene (trichloromethyl) -1,3,5- Sangen, 2- (4-chlorophenyl) -4,6-hydrazone (trichloromethyl) -1,3,5-trigen, 2- (4-tolyl) -4,6-hydrazone (tri (Chloromethyl) -1,3,5-trigon, 2- (4-methoxyphenyl) -4,6-hydrazone (trichloromethyl ^)-l, 3,5-trigon, 2- (2,4-dichlorophenyl) -4,6-hydrazone (trichloromethyl) -1,3,5-trigon, 2,4,6-ginseno (trichloromethyl) -1,3, 5-trigon, 2-methyl-4,6-fluorene (trichloromethyl) -1,3,5-trigon, 2-n-nonyl_4,6-fluorene (trichloromethyl) -1 , 3,5-three-cultivation, and 2- (〇6, <<, 0-trichloroethyl) -4,6-hydrazone (trichloromethyl) -1,3,5-three-cultivation. Examples of the compounds described in the aforementioned British Patent No. 1 3 8 8 4 9 2 include 2-phenethyltertyl-4,6-dai (trichloromethyl) -1,3,5-dioxane, 2- ( 4 -methylstyryl) -4,6-fluorene (trichloromethyl) -1,3,5-Sanken, 2- (4-methoxy-73- 200530754 * ylstyryl) -4, 6-fluorene (trichloromethyl) -1,3,5-triple, and 2- (4-methoxystyryl) -4-amino-6-trichloromethyl-1,3,5 -Sangen. Examples of the compounds described in the aforementioned JP-A No. 5 3-1 3 3 4 2 8 patent include 2- (4-methoxynaphthalene-1-yl) -4,6-fluorenetrichloromethyl-1 , 3,5 -trioxine, 2- (4-ethoxynaphthalene-1-yl) -4,6-fluorenetrichloromethyl_1,3,5-trigon, 2- [4- (2 -Ethoxyethyl) naphthalene-1-yl] -4,6-fluorenetrichloromethyl-l, 3,5-trigenol, 2- (4,7-dimethoxynaphthylfluorene-butyl) ) -4,6-fluorenetrichloromethyl-1,3,5-trigonol, and 2- (ethanenaphthacene-5-yl) -4,6-fluorenetrichloromethyl-1,3 , 5-three farming. Examples of the compounds described in the aforementioned German Patent No. 3 3 3 7 024 include 2- (4-styrylphenyl) -4,6-fluorene (trichloromethyl) -1,3,5-trigon, 2- (4- (4-methoxystyryl) phenyl) -4,6-fluorene (trichloromethyl) _ 1,3,5-triazine, 2- (1-naphthyl vinylene benzene Yl) -4,6-fluorene (trichloromethyl) -1,3,5-trigon, 2-chlorostyrylphenyl-4,6-fluorene (trichloromethyl) -1,3,5 -Sangen, 2- (4-thiophen-2-vinylphenyl) -4,6-fluorene (trichloromethyl) -1,3,5-trigen, 2- (4-thiophen-3- Vinylphenyl) -4,6- 贰 ^ (trichloromethyl) -1,3,5-Tri well, 2- (4-furan-2-vinylphenyl) -4,6 · 贰(Trichloromethyl) -1,3,5-Sangen, and (4-benzofuran-2-vinylphenyl) _4,6-fluorene (trichloromethyl) -1,3,5- Three farms. Examples of the compounds described in the above F.C.Schaefer et al. Journa 1 of Ο r gani c Chemistry, 29, 1 27 (1 964) include 2-methyl-4,6-fluorene ( Tribromomethyl) -1,3,5-Sanka, 2,4,6-san (tribromomethyl) -1,3,5-sanka, 2,4,6-san (Dibromomethyl) ) -1,3,5-trigeno, 2-amino-4-methyl-6-tribromomethyl-1,3,5-tribo, and 2-methoxy-4-methyl-6 --74- 200530754 'Trichloromethyl-1,3,5-trioxine. Examples of the compounds described in the aforementioned JP-A No. 6 2-5 8 24 1 include 2- (4-phenylethylphenyl) -4,6-fluorene (trichloromethyl) -1,3, 5-trigon, 2- (4-naphthyl-1-ethynylphenyl) -4,6-fluorene (trichloromethyl) -1,3,5-trigon, 2- (4- (4- Triethynyl) phenyl) -4,6-fluorene (trichloromethyl) -1,3,5-Sanken, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4 , 6-fluorene (trichloromethyl) -1,3,5-Sanken, 2- (4- (4-isopropylphenylethynyl) phenyl) -4,6-fluorene (trichloromethyl ) -1,3,5-trioxine, and 2- (4- (® 4-ethylphenylethynyl) phenyl) -4,6-fluorene (trichloromethyl) -1,3,5_ Coax three. Examples of the compounds described in the aforementioned JP-A No. 5 -2 8 1 7 2 8 patent include 2- (4-trifluoromethylphenyl) -4,6-fluorene (trichloromethyl) -1,3 , 5-Sanken, 2- (2,6-difluorophenyl) -4,6-fluorene (trichloromethyl) -1,3,5-trioxane, 2- (2,6-dichlorobenzene) ) -4,6-fluorene (trichloromethyl) -1,3,5-trioxo, and 2- (2,6-dibromophenyl) -4,6-fluorene (trichloromethyl)- 1,3,5-three_. Examples of the compounds described in the above-mentioned JP-A No. 5-3,492,0 include 2,4-fluorene (trichloromethyl) -6- [4- (N, N-diethoxycarbonylamidoamine) -Bromo) -3-bromophenyl] -1,3,5-Sanken, trihalomethyl-s-Sanken compounds described in U.S. Patent No. 42 3 9 8 50, and 2,4,6 -Ginseng (trichloromethyl) -s-trioxine, and 2- (4-chlorophenyl) -4,6-ginseng (trichloromethyl) -s-sanken. Examples of the compounds described in the aforementioned U.S. Patent No. 42 1 2976 include compounds having an oxadiazole backbone such as 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2-trichloro Methyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2 -Trichloromethyl-5- (2-naphthalene-75-200530754yl) -1,3,4-fluorenediazole, 2-tribromomethyl-5-phenyl-1,3,4-fluorenediazole , 2-tribromomethyl-5- (2-naphthyl) -1,3,4-fluorenediazole, 2-trichloromethyl-5-styryl-1,3,4-fluorenediazole, 2-trichloromethyl-5- (4-chlorostyryl) -1,3,4-fluorenediazole, 2-trichloromethyl-5- (4-methoxystyryl) -1, 3,4-fluorenediazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-fluorenediazole, 2-trichloromethyl-5- (4-n-butylbenzene Vinyl) -1,3,4-fluorenediazole and 2-tribromomethyl-5-styryl-1,3,4-fluorenediazole. Examples of the above-mentioned derivatives include compounds represented by the following formulae (3 9) to (72) 200530754
CH3〇hQ> N CH3CH3 JJ--N CH3 ch3CH3〇hQ > N CH3CH3 JJ--N CH3 ch3
式(39) 式(40)Equation (39) Equation (40)
PC4H9 CH3S-^)PC4H9 CH3S- ^)
式(41) 式(42)Equation (41) Equation (42)
ch3o-<P> Ρ〇ι2Η25ch3o- < P > Ρ〇ι2Η25
式(43) pC2H4〇C2H4OCH3 ch3s-<Q>Formula (43) pC2H4〇C2H4OCH3 ch3s- < Q >
ch3s-<P>ch3s- < P >
och2 N IIoch2 N II
oo2CH3oo2CH3
式(45) 式(46)Equation (45) Equation (46)
pCH2C02CH3式(47) ch3s pCH2C02C2H5 N y_, II / \ -JJ__κι r\ 式(48) ch3sH〇> pCH2C02C4H9pCH2C02CH3 Formula (47) ch3s pCH2C02C2H5 N y_, II / \ -JJ__κι r \ Formula (48) ch3sH〇 > pCH2C02C4H9
式(49) -77- 200530754 pC2H4C02C2H5ch3s-<P>-UnMd 式(50)Equation (49) -77- 200530754 pC2H4C02C2H5ch3s- < P > -UnMd Equation (50)
CH3SCH3S
OCHOCH
3 och2co2ch2 N 厂11 κ·厂 式(51) 式(52)3 och2co2ch2 N Plant 11 κ · Factory Type (51) Type (52)
式(55)Equation (55)
式(57) -78- 200530754(57) -78- 200530754
式(58) Ο \r=N—〇—C—C2H5 t=\ \ 式(60) 〇—C^~CH3Formula (58) 〇 \ r = N—〇—C—C2H5 t = \ \ Formula (60) 〇—C ^ ~ CH3
A 式(59)Type A (59)
N—0一 S〇2N-0-0 S〇2
ch3 式(64)ch3 type (64)
弍(65) -79- 200530754弍 (65) -79- 200530754
式(70) P"CH3C6H4(70) P " CH3C6H4
R 式 (71) η-〇3Η7 式 (72) p-CH3C6H4 上述酮化合物之實例包括二苯基酮、2-甲基二苯基酮 3 -甲基二苯基酮、4 -甲基二苯基酮、4 -甲氧基二苯基酮 2-氯二苯基酮、4-氯二苯基酮、4-溴二苯基酮、2-羧基 -80- 200530754 ^ 二苯基酮、2-乙氧基羰基二苯基酮、二苯基酮四羧酸與其 四甲酯、4-甲氧基- 4’-二甲胺基二苯基酮、4,4’-二甲氧基 二苯基酮、4-二甲胺基二苯基酮、4-二甲胺基苯乙酮、蒽 醌、2-第三丁基蒽醌、2-甲基蒽醌、菲醌、卩[1|酮、2-氯硫 口山酮、2,4 -二甲基硫岫酮、2,4 -二乙基硫Plij酮、莽、吖啶 酮、安息香;安息香醚,如安息香甲醚、安息香乙醚、安 息香丙醚、安息香異丙醚、與安息香苯醚;苄基二甲基縮 酮、吖啶酮、氯吖啶酮、N-甲基吖啶酮、N-丁基吖啶酮、 •與N-丁基氯吖啶酮。 金屬錯合物之實例包括貳(η5-2,4-環戊二烯-1-基)-貳(2,6-二氟·3-(1Η-吡咯-1-基)苯基)鈦、η5-環戊二 烯基-η6-異丙苯基鐵(1+)-六氟磷酸基(1-)、及JP-A第53-133 42 8號、JP-B第57-1819與5 7-6096號專利、及美國 專利第3 6 1 5 4 5 5號所述之化合物。 至於上述以外之光聚合引發劑,進一步例示以下之物 質:吖啶衍生物,如 9-苯基吖啶與1,7-貳(9,9’-吖啶基 ^ )庚烷;聚鹵化化合物,如四溴化碳、苯基三溴楓、與苯 基三氯甲酮;薰草素,如3-(2 -苯并呋喃醯基)-7 -二乙 胺基薰草素、3-(2 -苯并呋喃醯基)-7-(1-吡咯啶基)二 乙胺基薰草素、3 -苯并呋喃醯基-7-二乙胺基薰草素、3-( 2 -甲氧基苯甲醯基)-7 -二乙胺基薰草素、3- (4 -二甲胺基 苯甲醯基)-7-二乙胺基薰草素、3,3’-羰基貳(5,7-二正丙 氧基薰草素)、3,3’-羰基貳(7-二乙胺基薰草素)、3-苯 甲醯基甲氧基薰草素、3-(2 -呋喃醯基)-7 -二乙胺基薰草 -81 - 200530754 素、3- (4-二乙胺基桂皮醯基)-7-二乙胺基薰草素、7-甲 ‘ 氧基-3- (3-吡啶基羰基)薰草素、3-苯甲醯基-5,7-二丙氧 基薰草素、與 7-苯并三唑-2-基薰草素,及 JP-A第 5- 1 9475、7-27 1 028、2002-3 63206、2002-3 63207、2002-3 6 3 2 0 8、與2 002 - 3 63 2 09號專利所述之薰草素化合物;胺 ,如4-二甲胺基苯甲酸乙酯、4-二甲胺基苯甲酸正丁酯、 4-二甲胺基苯甲酸苯乙酯、2-酞醯亞胺4-二甲胺基苯甲酸 酯、4-二甲胺基苯甲酸2-甲基丙烯醯氧基乙酯、伸戊基貳 ^ ( 4-二甲胺基苯甲酸酯)、3-二甲胺基苯甲酸苯乙酯、伸 戊酯、4-二甲胺基苯甲醛、2-氯-4-二甲胺基苯甲醛、4-二 甲胺基苄醇、((4-二甲胺基苯甲醯基)乙酸乙酯、4-哌 啶苯乙酮、4-二甲胺基安息香、N,N-二甲基-4 -甲苯胺、 N,N-二乙基-3-乙氧苯胺、三苄胺、二苄基苯基胺、N-甲 基苯基苄胺、4-溴_N,N-二乙基苯胺、與三-十二碳胺; 胺基螢光黃母體,如ODB與ODBII;無色結晶紫;醯基 膦氧化物,如貳(2,4,6-三甲基苯甲醯基)苯基膦氧化物 ® 、貳(2,6-二甲基苯甲醯基)_2,4,4-三甲基戊基苯基膦氧 化物、與 LucirinTPO。 此外,至於其他光聚合引發劑,例示爲以下之物質·· 美國專利第2367660號所述之相鄰聚縮酮基化合物;美國 專利第 2448 8〗8號所述之酮醇醚化合物;美國專利第 2 7 2 2 5 1 2號所述之經α-烴取代芳族酮醇化合物;美國專利 第3046127與2951758號所述之多核醌化合物;JP-A第 2002-229 1 94號專利所述之各種物質,如有機硼化合物、 -82 - 200530754 自由基產生劑、三芳毓鹽(例如,具六氟銻或六氟磷酸基 ^ 之鹽)、_鹽(例如,(苯基苯硫基)二苯毓(有效之陽 離子聚合引發劑)),及國際公告第WO 0 1 /7 1 42 8號專利 所述之鏺化合物。 這些光聚合引發劑可單獨或組合使用。二或更多種光 聚合引發劑之組合可爲,例如,美國專利第3 5 4 9 3 6 7號所 述之六芳基二咪唑化合物與胺基酮之組合;JP-B第5卜 485 1 6號所述之苯并噻唑與三鹵甲基-s-三哄化合物之組合 ^ ;芳族酮化合物(如氧硫_)與氫予體物質(如含二烷胺 基化合物或酚化合物)之組合;六芳基二咪唑化合物與二 茂鐵之組合;及薰草素、二茂鐵與苯基甘胺酸之組合。 此光聚合引發劑在感光層中之含量較佳爲0.1至30 質量%,更佳爲0.5至20質量%,而且仍更佳爲0.5至15 質量%。 <其他成分> 至於其他成分,例示爲感光劑、熱聚合引發劑、塑性 ^ 劑、著色劑、與色料;此外,其他輔劑可一起使用,如基 板表面黏著促進劑、顏料、導電顆粒、塡料、消泡劑、阻 燃劑、調平劑、剝除促進劑、抗氧化劑、香料、熱交聯劑 、表面張力調整劑、鏈轉移劑等。藉由適當地倂入這些成 分,可得到圖案形成材料之所需性質,如時間安定性、照 相性質、顯影性質、膜性質等。 -感光劑- 感光劑可適當地選自習知物質而無特別之限制;感光 -83- 200530754 * 劑之實例包括多核芳族,如芘、北與三聯苯;p山唱類,如 螢光黃、曙紅、赤藻辛、玫瑰紅B、與玫瑰紅;花青類, 如靛羰花青、噻羰花青與噚羰花青;部份花青類,如部份 花青與鑛部份化青,噻哄類,如嗤嚷、亞甲基藍與甲苯胺 藍;ΡΥ Π定類’如〇Υ Π定橙、氯黃素與ργ [[定磺素;|醌類,如 蒽醌;史卡啉類,如史卡啉;吖啶酮類,如吖啶酮、氯吖 啶酮、N -甲基吖啶酮、N -丁基吖啶酮、N -丁基氯吖啶酮; 薰草素類,如 3-(2 -苯并呋喃醯基)-7 -二乙胺基薰草素 ® 、3-(2 -苯并呋喃醯基)-7-(1-吡咯啶基)薰草素、3_苯 并呋喃醯基-7-二乙胺基薰草素、3- (2-甲氧基苯甲醯基) -7-二乙胺基薰草素、3- (4-二甲胺基苯甲醯基)_7_二乙 胺基薰草素、3,3’-羰基貳(5,7-二正丙氧基薰草素)、3-苯甲醯基-7-甲氧基薰草素、3- (2-呋喃醯基)-7-二乙胺 基薰草素、3- (4-二乙胺基桂皮醯基)-7-二乙胺基薰草素 、7-甲氧基- 3-(3-吡啶基羰基)薰草素、3-苯甲醯基-5,7-二丙氧基薰草素、及 JP-A 第 5 - 1 9475、7-27 1 028、2002-363206 > 2002-363207 、 2002-363208 、與 2002-363209 號 專利所述之薰草素化合物。 至於光聚合引發劑與感光劑之組合,涉及電子轉移之 引發機構可例示爲如(1)電子予體引發劑與感光劑染料, (2)電子受體引發劑與感光劑染料,及(3)電子予體引發劑 與電子受體引發劑與感光劑染料(三元機構)之組合,如 JP-A第2001-305734號專利所述。 感光劑之含量以感光性樹脂之全部組成物計較佳爲 -84- 200530754 ’ 0·05至30質量%,更佳爲0.1至20質量? 至1 0質量%。 在此含量小於〇 · 〇 5質量%時,對活性 度可能降低,曝光程序可能需要較長之時 趨於下降,及在此含量超過3 〇質量%時 期間可能自感光性染料沈澱。 -熱聚合抑制劑- 爲了防止由於較高之溫度或隨時間造 ®合抑制劑可有效地加入感光層中。 熱聚合抑制劑之實例包括4-甲氧基j 基或芳基取代氫醌、第三丁基兒茶酚、五 二苯基酮、4-甲氧基-2_羥基二苯基酮、氯 哄、氯醌、萘胺、β_萘胺、2,6_二第三了 2,2,-亞甲基-貳(4-甲基-6-第三丁基酚) 、二硝基苯、苦味酸、4 -甲苯胺、亞甲基 合劑之反應產物、柳酸甲酯、亞硝基化合 ® 物與Α1之螯合化合物等。 熱聚合抑制劑之含量以感光層中之可 佳爲0.001至5質量%,更佳爲0.005至2 更佳爲0 · 0 1至1質量%。在此含量小於0 儲存安定性可能不足,及在此含量超過5 性能量射線之敏感度可能降低。 -塑性劑- 爲了調整膜性質,即,感光層之撓性 /〇,仍更佳爲0.2 能量射線之敏感 間,而且生產力 ,感光劑在保存 成之聚合,熱聚 紛、氫醌、經烷 倍子酚、2-羥基 化亞銅、苯并噻 ‘基-4-甲苯酚、 、吡啶、硝基苯 藍、銅與有機鉗 物、亞硝基化合 聚合化合物計較 質量%,而且仍 .001質量%時, 質量%時,對活 ,可倂入上述塑 -85- 200530754 , 性劑。 塑性劑之實例包括酞酸酯類,如酞酸二甲酯、酞酸二 丁酯、酞酸二異丁酯、酞酸二庚酯、酞酸二辛酯、酞酸二 環己酯、酞酸二-十三碳酯、酞酸丁基苄酯、酞酸二異癸 酯、酞酸二苯酯、酞酸二烯丙酯、與酞酸辛基辛酯;二醇 酯類,如三乙二醇二乙酸酯、四乙二醇二乙酸酯、二甲二 醇酞酸酯、乙基羥乙酸乙基酞酯、乙基羥乙酸甲基酞酯、 丁基羥乙酸丁基酞酯、三乙二醇二辛酸酯;磷酸酯類,如 ^ 磷酸三甲苯酯與磷酸三苯酯;醯胺類,如4-甲苯楓醯胺、 苯楓醯胺、N-正丁碾醯胺、與N-正乙醯胺;脂族二元酸 酯類,如己二酸二異丁酯、己二酸二辛酯、癸二酸二甲酯 、癸二酸二丁酯、癸二酸二辛酯、與順丁烯二酸二丁酯; 檸檬酸三乙酯、檸檬酸三丁酯、甘油三乙酸酯、月桂酸丁 酯、4,5-二環氧基環己-1,2-二羧酸二辛酯;及二醇類,如 聚乙二醇與聚丙二醇。 上述塑性劑之含量較佳爲0.1至5 0質量%,更佳爲 ® 0.5至4〇質量%,而且仍更佳爲1至3〇質量%。 -著色劑- 調色劑可用以對上述感光層在曝光後提供可見影像或 提供顯影性質。 調色劑之實例包括胺基三芳基甲烷類,如参(4-二甲 胺基苯基)甲烷(無色結晶紫)、参(4-二乙胺基苯基) 甲烷、参(4-二甲胺基-2-甲基苯基)甲烷、参(4-二乙胺 基-2-甲基苯基)甲烷、参(4_二丁胺基苯基)-[4- (2-氰 -86- 200530754 _ 基乙基)甲胺基苯基]甲烷、與参(4-二丙 烷;胺基D山喝類,如3,6-貳(二乙胺基)_ 3 -胺基-6-二甲胺基-2-甲基-9-(鄰氯苯基) 口山喔類,如3,6-貳(二乙胺基)-9- ( 2-乙氧 硫卩山唱與3,6-貳(二甲胺基)硫_喝;胺3 啶類,如 3,6 -貳(二乙胺基)-9,10 -二氫-3,6 -貳(二乙胺基)-9,10 -二氫-9-甲基吖啶 類,如 3,7-貳(二乙胺基)啡噚哄;胺基 _ 3,7 -貳(二乙胺基)啡噻畊;胺基二氫啡畊 (二乙胺基)-5-己基-5, 10-二氫啡哄;胺基 如貳(4-二甲胺基苯基)苯胺基甲烷;胺基 如4-胺基-4’-二甲胺基苯基甲烷與4-胺基-α 皮酸甲酯;肼類,如1- ( 2-萘基)苯基 二氫蒽醌類,如1,4 -二(乙胺基)-2,3 -二氫 苯胺類,如Ν,Ν-二乙基對苯乙基苯胺;含鹼 色染料之醯基衍生物,如10-乙醯基-3,7-貳 ® 啡噻畊;不具可氧化氫且可氧化成有色化合 合物’如参(4· - —^乙胺基-2-甲苯基)乙氧基 白染料;如美國專利第3042515與304 2 517 化成有色形式之有機胺類,如 4,4’-乙二j N,N-二甲基苯胺、4,4’-亞甲二胺三苯胺、# 唑。這些著色劑中,如無色結晶紫之三芳基 此外,已知上述著色劑可組合鹵化化合 合物產生顏色。 胺基苯基)甲 -9 -苯基Pill喔與 口山唱;胺基硫 基羰基苯基) S -9,10-二氫吖 9-苯基吖啶與 :胺基啡噚畊 啡噻畊類,如 類,如 3,7-貳 苯基甲烷類, 氫桂皮酸類, ,β -二氰基氫桂 肼;胺基-2,3-蒽醌;苯乙基 ί性ΝΗ基之無 (二甲胺基) 物之似無色化 羰基甲烷;靛 號所述之可氧 按、二苯胺、 | Ν -乙醯基咔 甲烷特佳。 物以自無色化 -87- 200530754 - 此鹵化化合物之實例包括鹵化烴類,如四溴化碳、碘 仿、溴乙烯、二溴甲烷、溴戊烷、溴異戊烷、碘戊烷、溴 異丁烯、碘丁烷、二苯基甲基溴、六氯甲烷、1,2-二溴乙 烷、1,1,2,2-四溴乙烷、1,2-二溴-1,1,2-三氯乙烷、1,2,3-三溴丙烷、1-溴-4-氯丁烷、1,2,3,4-四溴丁烷、四氯環丙 烯、六氯環戊二烯、二溴環己烷、與1,1,1_三氯-2,2-貳( 4-氯苯基)乙烷;鹵化醇化合物,如2,2,2-三氯乙醇、三 溴乙醇、1,3-二氯-2-丙醇、1,1,1-三氯-2-丙醇、二(碘伸 ® 乙基)胺基異丙醇、三溴第三丁醇、與2,2,3-三氯丁 -1,4-二醇;鹵化羰基化合物,如1,1_二氯丙酮、1,3-二氯丙酮 、六氯丙酮、六溴丙酮、1,1,3,3-四氯丙酮、1,1,1-三氯丙 酮、3,4-二溴-2-丁酮、與1,4-二氯-2-丁酮-二溴環己酮; 鹵化醚化合物,如2-溴乙基甲醚、2-溴乙基乙醚、二(2-溴乙基)醚、與1,2 -二氯乙基乙醚;鹵化酯化合物,如乙 酸溴乙酯、三氯乙酸乙酯、三氯乙酸三氯乙酯、丙烯酸 2,3-二溴丙酯之同元與共聚物、二溴丙酸三氯乙酯、與 1 α,β-二氯丙烯酸乙酯;鹵化醯胺化合物,如氯乙醯胺、溴 乙醯胺、二氯乙醯胺、三氯乙醯胺、三溴乙醯胺、三氯乙 基三氯乙醯胺、2-溴異丙醯胺、2,2,2-三氯丙醯胺、Ν-氯 琥珀醯胺、與Ν-溴琥珀醯胺;含硫及/或磷原子之化合物 ,如三溴甲基苯基楓、4-硝基苯基三溴甲基楓、4-氯苯基 三溴甲基碾、磷酸参(2,3-二溴丙酯)、與2,4-貳(三溴 甲基)-6 -苯基三唑。 在有機鹵化化合物中,較佳爲含二或更多個鹵素原子 -88- 200530754 * 附著於一個碳原子者,更佳爲含三個鹵素原子附著於一個 碳原子者。有機鹵化化合物可單獨或組合使用。這些鹵化 化合物中,三溴甲基苯基珮與2,4-貳(三溴甲基)-6 -苯 基三唑較佳。 著色劑之含量以感光層中總成分計較佳爲0.0 1至2 0 質量%,更佳爲〇 · 〇 5至1 0質量%,而且仍更佳爲〇 · 1至5 質量%。此鹵化化合物之含量以感光層中總成分計較佳爲 0.001至5質量%,更佳爲0.005至1質量。/0。 •-染料- 爲了增加顏色以易於處理或增強儲存安定性,可將染 料倂入上述感光層中。 染料之實例包括亮綠、曙紅、乙基紫、赤藻辛B、甲 基綠、結晶紫、鹼性品紅、酚酞、1,3 -二苯基三畊、茜素 紅S、瑞香酞、甲基紫2B、喹那啶紅、玫瑰紅、間胺黃、 瑞香硫酞、二甲苯藍、甲基橙、橙IV、二苯基硫咔肼、 2,7-二氯螢光黃、對甲基紅、剛果紅、苯紫紅素4B、α-萘 ^ 基紅、尼羅河藍2Β、尼羅河藍 A、phenacetarin、甲基紫 、孑L 雀綠、對品紅、油藍 #603 ( Orient Chemical Industry Co.,Ltd.製造)、玫瑰紅B、玫瑰紅6G、與維多利亞純藍 ΒΟΗ。這些染料中,較佳爲陽離子染料,如孔雀綠之草酸 鹽與孔雀綠之硫酸鹽。陽離子染料之陰離子對可爲有機或 無機酸之殘基,如溴酸、碘酸、硫酸、磷酸、草酸、甲磺 酸、與甲苯磺酸。 染料之含量以感光層中總成分計較佳爲〇 · 〇 〇 1至1 〇 -89 - 200530754 ^ 質量%,更佳爲〇 · 〇 1至5質量%,而且仍更佳爲0. 1至2 質量%。 -黏附促進劑- 爲了增強層間或圖案形成材料與基板間之黏附性,可 使用所謂之黏附促進劑。 上述黏附促進劑之實例包括 JP-A第 5- 1 1 43 9、5-3 4 1 5 3 2與6-43 6 3 8號專利所述者;黏附促進劑之指定實例 包括苯并咪唑、苯并噚唑、苯并噻唑、2 -毓基苯并咪唑、 ® 2-锍基苯并噚唑、2-锍基苯并噻唑、3-嗎啉基甲基-1-苯基 三唑-2 -酮、3 -嗎啉基甲基-5 -噚二唑-2 -酮、5 -胺基-3 -嗎啉 基甲基噻二唑-2-酮、2 -酼基-5-甲硫基噻二唑、三唑、四 唑、苯并三唑、羧基苯并三唑、含胺基苯并三唑、及矽烷 偶合劑。 黏附促進劑之含量以感光層中總成分計較佳爲0.001 至20質量%,更佳爲0.01至10質量%,而且仍更佳爲 〇 . 1至5質量%。 如 J. Curser 之 ’’Light Sensitive Systems’’,第 5 章所 述,感光層可含有機硫化合物、過氧化物、氧化還原化合 物、偶氮或重氮化合物、光還原染料、或有機鹵素化合物 〇 有機硫化合物之實例包括二硫化二正丁基、二硫化二 苄基、2-锍基苯并噻唑、2-锍基苯并噚唑、噻吩、三氯甲 磺酸乙酯、與2-锍基苯并咪唑。 過氧化物之實例包括過氧化二正丁基、過氧化苯甲醯 •90- 200530754 * 基與過氧化甲乙酮。 上述氧化還原化合物爲過氧化物與還原劑之組合, 過硫酸離子與亞鐵離子、過氧化物與鐵離子等。 上述偶氮或重氮化合物之實例包括重氮鹽,如α,ι 偶氮貳異丁腈、2-偶氮貳-2-甲基丁腈、與4-胺基二苯 胺。 上述光還原染料之實例包括玫瑰紅、赤藻辛、曙紅 吖啶黃素、核黃素、與噻嚀。 •-界面活性劑- 爲了改良在製造本發明圖案形成材料時產生之表面 均勻性可使用習知界面活性劑。 界面活性劑可適當地選自陰離子界面活性劑、陽離 界面活性劑、非離子界面活性劑、兩性界面活性劑、含 界面活性劑等。 界面活性劑之含量以感光樹脂組成物之固體含量計 佳爲0.001至10質量%。在此含量小於0.001質量%時 ® 改良不均勻性之效果可能不足,及在此含量超過1 〇質 %時,黏附力可能退化。 此外,至於界面活性劑,含氟之聚合物界面活性劑 較佳地例示爲含40質量%或更多之氟原子’具有3至 個碳原子之碳鏈,及具有含脂族(其中鍵結至終端至第 個碳原子之氫原子經氟原子取代)之丙烯酸基或甲基丙 酸基之共聚成分。 感光層厚度可適當地選擇而無特別之限制;較佳爲 不 子 氟 較 量 可 2 0 烯 -91 - 200530754 * 此厚度爲1至100微米,更佳爲2至5〇微米,而 佳爲4至3 0微米。 [圖案形成材料之製造] 本發明之圖案形成材料可如下製造。首先,藉 述各種成分或材料在水或溶劑中溶解、乳化或分散 備感光樹脂組成物之溶液。 感光樹脂組成物溶液之溶劑可視應用而適當地 此溶劑之實例包括醇類,如乙醇、甲醇、正丙醇、 ® 、正丁醇、第二丁醇、正己醇;酮類,如丙酮、甲 甲基異丁基酮、環己酮、與二異丁酮;酯類,如乙 、乙酸丁酯、乙酸正戊酯、硫酸甲酯、丙酸乙酯、 甲酯、苯甲酸乙酯、與乙酸甲氧基丙酯;芳族烴類 苯、二甲苯、苯、與乙苯;鹵化烴類,如四氯化碳 乙烯、氯仿、三氯乙烷、二氯甲烷、單氯苯 ,如四氫呋喃、二乙醚、乙二醇一甲醚、乙二醇一 與 1-甲氧基-2-丙醇;二甲基甲醯胺、二甲基乙醯 ® 甲基亞楓、與環丁碾。其可單獨或組合使用。此外 習知界面活性劑加入此溶劑。 將感光樹脂組成物之溶液塗覆於撐體上且乾燥 光層,如此可製造圖案形成材料。 用於塗覆感光樹脂組成物之方法可視應用而適 擇;塗覆方法之實例包括噴灑法、輥塗法、轉動塗 縫塗法、擠塗法、簾塗法、模塗法、凹版塗覆法、 覆法、及刀塗法。 且仍更 由將上 ,而製 擇, 異丙醇 乙酮、 酸乙酯 酞酸二 ,如甲 、三氯 ;醚類 乙醚、 胺、二 ,可將 形成感 當地選 覆法、 線棒塗 -92- 200530754 — 塗覆方法之乾燥條件通常係視各種成分、溶劑物種、 及溶劑量而定;溫度一般爲6 0至丨丨〇它及時間爲3 〇秒至 1 5分鐘。 <<撐體及保護膜>> 撐體可視應用而適當地選擇;較佳爲,撐體對感光層 呈現剝除力,及撐體爲高透明性且具有高表面平坦性。 較佳爲’撐體係由透明合成樹脂形成;合成樹脂之實 例包括聚對酞酸伸乙酯、聚萘甲酸伸乙酯、三乙醯纖維素 ® 、二乙醯纖維素、聚甲基丙烯酸烷酯、聚甲基丙烯酸酯共 聚物、聚氯乙烯、聚乙烯醇、聚碳酸酯、聚苯乙烯、賽络 凡、聚氯亞乙烯共聚物、聚醯胺、聚醯亞胺、氯乙烯-乙 酸乙嫌酯共聚物、聚四氟乙嫌、聚三氟乙燦、纖維素膜、 與耐綸膜;這些樹脂中,聚對酞酸伸乙酯特佳。這些樹脂 可單獨或組合使用。 撐體厚度可視應用而適當地選擇;較佳爲,厚度爲2 至150微米,更佳爲5至100微米,而且仍更佳爲8至 50微米。 撐體之形狀可視應用而適當地選擇;較佳爲此形狀爲 長形。例如,長形撐體之長度係選自10至20000米。 在圖案形成材料中,可將保護膜提供於感光層上。保 護膜之材料可爲關於上述撐體所例示者,而且亦可爲紙、 聚乙烯、層合聚丙烯之紙等。這些材料中,聚乙烯膜與聚 丙烯膜較佳。 保護膜之厚度可適當地選擇而無特別之限制;較佳爲 -93- 200530754 ^ ,此厚度爲5至100微米,更佳爲8至50微米,而且仍 更佳爲10至30微米。 在保護膜之應用中,較佳爲,感光層與撐體間之黏著 強度A及感光層與保護膜間之黏著強度B表示以下關係 :黏者強度A >黏著強度B。 撐體與保護膜之組合,即,(撐體/保護膜),例示 爲(聚對酞酸伸乙酯/聚丙烯)、(聚氯乙烯/賽珞凡)、 (聚醯亞胺/聚丙烯)、及(聚對酞酸伸乙酯/聚對酞酸伸 ® 乙酯)。此外,撐體及/或保護膜之表面處理可造成上述 之黏著強度關係。撐體之表面處理可用於增強對感光層之 黏著強度;表面處理之實例包括底塗層沈積、電暈放電處 理、火燄處理、UV射線處理、RF曝光處理、輝光放電處 理、活性電漿處理、及雷射光束處理。 撐體與保護膜間之靜磨擦係數較佳爲0.3至1.4,更 佳爲〇 · 5至1 . 2。 $ 在靜磨擦係數小於〇 · 3時,由於過高之滑動性,捲繞 位移通常可產生捆組態,及在靜磨擦係數超過1 . 4時,將 材料捲成捆組態變困難。 較佳爲,將圖案形成材料捲繞在圓筒捲核上,及以長 形捆組態儲存。長形圖案形成材料之長度可適當地選擇而 無特別之限制,例如,此長度爲1 0至2 0 0 0 0米。此外, 爲了易於在使用時處理,圖案形成材料可接受切痕處理, 而且每1 0 〇至1 〇 〇 〇米可如捆組態而提供。較佳爲,將圖 案形成材料捲繞使得撐體存在於捆組態之最外層。此外, -94 - 200530754 可將圖案形成材料切成片組態。在儲存時,特佳爲 形成材料之末端表面處提供具乾燥劑之防水隔離器 了防止邊緣融合,包裝係藉較高防水性材料實行。 爲了控制保護膜與感光層間之黏著性質,保護 受表面處理。表面處理係藉由,例如,在保護膜表 供聚合物(如聚有機矽氧烷、氟化聚烯烴、聚氟乙 聚乙烯醇)之底塗層而實行。底塗層可藉由將聚合 塗覆於保護膜表面上,然後將塗層在30至150 °C ® 是50至120 °C,乾燥1至30分鐘而形成。除了感 撐體、與保護膜,可提供其他層,如剝除層、黏著 學吸收層、與表面保護層。 <基板> 基板可適當地選自市售材料,除了高光滑表面 爲不均勻表面。較佳爲,此基板爲板形;特別地, 係選自如印刷線路板(例如,鍍銅板)、玻璃板( $鈉玻璃)、合成樹脂膜、紙、與金屬板之材料。 基板係使得圖案形成材料之感光層在基板上複 固化層合物而使用。在此構造中,圖案可藉顯影步 ’例如,經由將層合物上圖案形成材料之感光層曝 而將曝光區域硬化。 本發明之圖案形成材料可應用於印刷線路板、 :顯示構件,如管形構件、肋形構件、分隔件、與 件;全息圖、微機械、與試樣片。此圖案形成材料 用於依照本發明之圖案形成方法。 在圖案 ,及爲 膜可接 面上提 烯、與 物液體 ,特別 光層、 層、光 ,其可 此基板 例如, 製形成 驟形成 光,因 濾色器 分配構 亦可應 -95 - 200530754 ' [其他步驟] 藉由應用習知形成圖案用步驟而可適當地進行其他步 驟,如顯影步驟、蝕刻步驟、與電鍍步驟。這些步驟可單 獨或組合使用。 在顯影步驟中,將圖案形成材料之感光層曝光’將光 導層之曝光區域硬化,然後將未硬化區域去除,因而產生 圖案。 去除未硬化區域之方法可適當地選擇而無特別之限制 ® ;例如,未硬化區域可藉顯影劑去除。 顯影劑可視應用而適當地選擇;顯影劑之實例包括鹼 性水溶液、水性顯影液體與有機溶劑;其中,弱鹼性水溶 液較佳。弱鹼性水溶液之鹼性成分例示爲氫氧化鋰、氫氧 化鈉、氫氧化鉀、碳酸鋰、碳酸鈉、碳酸鉀、碳酸氫鋰、 碳酸氫鈉、碳酸氫鉀、磷酸鈉、磷酸鉀、焦磷酸鈉、焦磷 酸鉀、與硼砂。 較佳爲,弱鹼性水溶液呈現約8至1 2,更佳爲約9 ^ 至1 1之pH。此溶液之實例爲濃度爲0·1至5質量%之碳 酸鈉與碳酸鉀水溶液。顯影劑溫度可視顯影劑之顯影力而 適當地選擇;例如,顯影劑溫度爲約25至40 °C。 此顯影劑可組合界面活性劑、消泡劑;有機鹼,如乙 二胺、乙醇胺、氫氧化四亞甲銨、二伸乙三胺、三伸乙五 胺、嗎啉、與三乙醇胺;促進顯影之有機溶劑,如醇類、 酮類、酯類、醚類、醯胺類、與內酯。上述顯影劑可爲選 自水溶液、鹼性水溶液、水溶液與有機溶劑之組合溶液之 -96- 200530754 ^ 水性顯影劑,或有機顯影劑。 蝕刻可藉適當地選自習知蝕刻方法之方法進行。 蝕刻方法中之鈾刻液體可視應用而適當地選擇;在上 述金屬層係由銅形成時,例示爲鈾刻液體用氯化銅溶液、 氯化鐵溶液、鹼性蝕刻溶液、與過氧化氫溶液;其中,就 蝕刻因素而言,氯化鐵溶液較佳。 圖案形成材料之蝕刻處理及去除可在基板上形成永久 圖案。永久圖案可視應用而適當地選擇;例如,此圖案爲 B線路。 電鍍步驟可藉選自習知電鍍處理方法之方法實行。 電鍍處理之實例包括鍍銅,如硫酸銅電鍍及焦磷酸銅 電鍍,焊鍍,如高輝光焊鍍,鍍鎳,如瓦特浴(硫酸鎳-氯化鎳)電鍍與胺磺酸鎳電鍍,及鍍金,如硬鍍金與軟鍍 金。 永久圖案可藉由在電鍍步驟中實行電鍍處理,繼而去 除圖案形成材料,及對不必要部份之選用蝕刻處理而形成 在依照本發明之圖案形成方法中,永久圖案可藉由抑 制形成於圖案形成材料上之影像扭曲而精確地及有效地形 成’因此’此圖案形成方法可成功地應用於各種需要高精 確曝光之圖案,特別是高精確線路圖案。 [製造印刷線路板之方法] 依照本發明之圖案形成方法可成功地應用於印刷線路 板製造’特別是具有穿孔或通路孔之印刷線路板。基於依 -97- 200530754 — 照本發明之圖案形成方法製造印刷線路板之方法解釋於下 〇 在製造具有穿孔及/或通路孔之印刷線路板之方法中 ,圖案可藉由(i)將圖案形成材料層合於具孔之印刷線路板 基板上,使得感光層面對基板,因而形成層合體,(Π)將 光自層合體基板相反側照射於用於形成線路圖案與孔之區 域上,因而將感光層硬化,(iii)自層合體去除圖案形成材 料撐體,及(iv)將層合體之感光層顯影以去除層合體之未 •硬化部份而形成。 順便一提,(iii)之去除撐體可在(i)與(Π)之間而非上 述(ii)與(iv)之間進行。 因此,使用所形成之圖案,藉習知消除性或添加性方 法(例如,半添加性或全添加性方法)將印刷線路板基板 蝕刻處理或電鍍處理可製造印刷線路板。這些方法中,爲 了藉工業上有利之拉輻形成印刷線路板,消除性方法較佳 。在此處理後,將殘留在印刷線路板基板上之硬化樹脂剝 ^ 除,或在半添加性方法之情形在剝除後將銅薄膜鈾刻,然 後得到意圖之印刷線路板。在多層印刷線路板之情形,可 應用類似此印刷線路板之方法。 藉圖案形成材料製造具有穿孔之印刷線路板之方法解 釋於以下。 首先製備其中基板表面覆有金屬電鍍層之印刷線路板 基板。印刷線路板基板可爲銅層合層基板、藉由在絕緣基 板(如玻璃或環氧樹脂)上形成鍍銅層而製造之基板、或 -98- 200530754 層合於這些基板上且形成鍍銅層之基板。 在保護層存在於圖案形成材料上之情形,將保護層剝 除,及藉壓力輥使圖案形成材料之感光層接觸黏結至印刷 線路板表面作爲層合程序,因而可得含印刷線路板基板與 上述層合體之層合體。 圖案形成材料之層合溫度可適當地選擇而無特別之限 制;此溫度可爲大約室溫,如1 5至3 0 °c,或較高溫,如 30至180°C,較佳爲其爲實質上溫暖溫度,如60至140 • °C。 接觸黏結之輥壓力可適當地選擇而無特別之限制;較 佳爲此壓力爲0.1至1 MPa;接觸黏結之速度可適當地選 擇而無特別之限制,較佳爲此速度爲1至3米/秒。 印刷線路板基板可在接觸黏結前預熱;及此基板可在 低壓下層合。 層合體可藉由將圖案形成材料層合於印刷線路板基板 上而形成;或者,藉由將圖案形成材料用感光樹脂組成物 ^溶液直接塗覆於印刷線路板基板上,繼而將溶液乾燥,因 而將感光層層合於印刷線路板基板上而形成。 然後將雷射光束自層合體基板相反側照射於感光層上 ,因而將感光層硬化。在此情形,視撐體透明性降低之需 求而定,在剝除撐體後實行照射。 在雷射照射後撐體存在於撐體上之情形,將撐體自層 合體剝除作爲撐體剝除步驟。 將印刷線路板基板上感光層之未硬化區域藉適當顯影 -99- 200530754 ~ 劑顯影溶解,形成含用於形成線路圖案之硬化層與用於保 護穿孔金屬層之硬化層之圖案,及在印刷線路板基板表面 處使金屬層曝光,作爲顯影步驟。 促進硬化反應之額外處理,例如,可視情況地藉後加 熱或後曝光實行。顯影可爲上述之濕法或乾顯影法。 然後藉蝕刻液體將在印刷線路板基板表面上曝光之金 屬層溶解作爲蝕刻程序。將穿孔之開口以硬化樹脂或拉輻 膜覆蓋,因此,蝕刻液體不滲入穿孔中而腐蝕穿孔內之金 ® 屬電鍍,及金屬電鍍可維持指定形狀,如此可在印刷線路 板基板上形成線路圖案。 蝕刻液體可視應用而適當地選擇;在以銅形成上述金 屬層時,蝕刻液體可例示爲氯化銅溶液、氯化鐵溶液、鹼 性蝕刻溶液、與過氧化氫溶液;其中,就蝕刻因素而言, 氯化鐵溶液較佳。 然後,例如,藉強鹼水溶液將硬化層自印刷線路板基 I 板去除,作爲硬化材料去除步驟。 # 強鹼水溶液之鹼性成分可適當地選擇而無特別之限制 ,鹼性成分之實例包括氫氧化鈉與氫氧化鉀。強鹼水溶液 之pH可爲,例如,約1 2至14,較佳爲約1 3至14。強鹼 水溶液可爲濃度爲1至1 〇質量%之氫氧化鈉或氫氧化鉀 .水溶液。 印刷線路板可爲多層構造。順便一提,上述之圖案形 成材料可應用於電鍍程序而非上述之蝕刻程序。電鍍方法 可爲鍍銅,如硫酸銅電鍍與焦磷酸銅電鍍,焊鍍’如高輝 -100- 200530754 光焊鍍,鍍鎳,如瓦特浴(硫酸鎳-氯化鎳)電鍍與胺磺 酸鎳電鑛,及鍍金,如硬鍍金與軟鍍金。 本發明參考下示實例而更詳細地描述,但是其不限制 本發明。所有之份均爲重量份,除非另有指示。 (實例1 ) -圖案形成材料之製造- 將含以下成分之感光樹脂組成物之溶液塗覆於作爲撐 體之20微米厚聚對酞酸伸乙酯膜上,及將塗覆溶液乾燥 而形成15微米厚感光層,因而製備圖案形成材料。 [感光樹脂組成物溶液之成分] -甲基丙烯酸甲酯/丙烯酸2-乙基己酯/甲基丙烯酸;酯/甲基丙烯酸之共聚物 15份 (質量比:50/20/7/23,重量平均分子量;90000,酸値:150) -下式(73)表示之可聚合單體 7.0份 -二異氰酸伸己酯與四環氧乙烷單甲基丙烯酸之加 成物(質量比:1/2) 7.0份 -N-甲基吖啶酮 0.11 份 -2,2-貳(鄰氯苯基)-4,4’,5,5’.苯基二咪唑 2.17 份 -2-锍基苯并咪唑 0.23 份 -孔雀綠草酸鹽 0.02 份 -無色結晶紫 0.26 份 -甲乙酮 40份 -1-甲氧基-2-丙醇 20份 -101 - 200530754 h2c=c-c。斧 ch2ch2^j>h^^-令H2CH2_〇hC〇— 式(73) 其中,在式(73)中,m + n=10。式(7 3)表示之化合物包括於 上述式(3 8)表示之化合物中。 將作爲保護膜之20微米厚聚乙烯膜層合於圖案形成 材料之感光層上。然後製備已拋光、淸洗及乾燥之銅層合 φ 板(無穿孔,銅厚度:1 2微米)作爲基板。在藉層合機 (Taisei-Laminator Co.製造之 8B-720-PH 型)剝除圖案形 成材料之保護膜時,將感光層接觸黏結至銅層合板,以使 感光層與銅層合板接觸,因而得到依序包括銅層合板、感 光層、與作爲撐體之聚對酞酸伸乙酯之層合體。 接觸黏結條件爲接觸黏結輥溫度:1 0 5 °C,接觸黏結 輥壓力:0.3 MPa,及層合速率:1米/分鐘。 對所得層合體評估解析度、曝光速率及蝕刻性質。結 0 果示於表3。 <解析度> (1 )測量最短顯影時間之方法 將作爲撐體之聚對酞酸伸乙酯膜自層合體剝除,然後 將濃度爲1質量%之碳酸鈉水溶液以3 0 °C及0 . 1 5 Μ P a噴 灑至銅層合板上感光層之全部表面上。測量自開始噴灑至 溶解銅層合板上感光層之時間,及將此時間定義爲最短顯 影時間。結果’最短顯影時間爲1 0秒。 (2)敏感度測量 •102- 200530754 • 將雷射光束照射至層合體之圖案形成材料之感光層, 其中將雷射光束之光學能量由0.1毫焦/平方公分暗2 1/2 倍增量改變至1 〇 〇毫焦/平方公分,藉後述之圖案形成裝 置將將雷射光束自聚對酞酸伸乙酯膜側照射,因而將一部 份之感光層硬化。 在室溫靜置1 〇分鐘後,將作爲撐體之聚對酞酸伸乙 酯膜自層合體剝除,然後將濃度爲1質量%之碳酸鈉水溶 液以30°C及〇·15 MPa噴灑在銅層合板上感光層之全部表 ® 面上於上述(1)所得最短顯影時間兩倍之時間,因而將未 硬化部份去除,及測量殘留硬化層之厚度。然後藉由繪製 照射光量與硬化層厚度之間之關係而製備敏感度曲線。由 所得之敏感度曲線測定達1 5微米之硬化區域厚度之光學 能量,及將此光學能量定義爲將感光層硬化所需之光學能 量。 結果,將感光層硬化所需之光學能量爲3毫焦/平方 公分。 <<圖案形成裝置>:> 使用之圖案形成裝置包括第27 A至32圖所示組合雷 射光源作爲雷射光源;DMD .50作爲雷射調變器,其中在 第4圖所示之主掃描方向將1 024個微鏡排成陣列,在次 掃描方向排列7 6 8組陣列’及在這些微鏡中可驅動丨〇 2 4 列X 256行;其中將微透鏡474(其一個表面爲第13圖所 示之複曲面)排成陣列之微透鏡陣列4 7 2 ;及使雷躬*通過 微透鏡陣列在圖案形成材料上成像之光學系統4 8 0,4 8 2。 -103- 200530754 * 微透鏡之複曲面如下。爲了補償作爲成像部份之微透 鏡4 7 4之輸出表面扭曲,測量輸出表面處之扭曲,及結果 示於第1 4圖。在第1 4圖中,等高線表示相同反射性表面 局度’告局線自卩距爲5奈米。在弟14圖中,X與γ方向 爲微透鏡62之兩條對角線,微透鏡62可圍繞γ方向延伸 之轉動軸轉動。在第15A及15B圖中,微透鏡62之高度 位移示爲各沿X與Y方向。 如第14、15A及15B圖所示,在微透鏡62之反射性 ® 表面處存在扭曲。相對微鏡之中央部份,在一個對角方向 (即,Y方向)之扭曲大於另一對角方向。因此,雷射光 束B之形狀應在通過微透鏡陣列5 5之微透鏡5 5 a之收集 位置處扭曲。 第16A及16B圖詳細顯示全部微透鏡陣列55之前面 形狀及側面形狀,而且亦以微米(mm)單位顯示各部份之大 小。DMD 50中1 024行X 2 5 6列之微透鏡62係如前關於 第4圖所解釋而驅動;微透鏡陣列5 5係使得在寬度方向 將1 024個微透鏡55a排列形成一列,及在長度方向排列 2 5 6列而對應地構成。在第1 6 A圖中,各微透鏡5 5 a之位 置在寬度方向以”j”及在長度方向以”k”表示。 第17A及17B圖各顯示微透鏡陣列55之一個微透鏡 55a之前面形狀及側面形狀。第17A圖亦顯示微透鏡55a 之等高線。微透鏡5 5 a之各末端表面爲非球面以補償由於 微鏡6 2之反射性表面扭曲造成之像差。特別地,微透鏡 55a爲複曲面;光學X方向之曲率半徑Rx爲- 0.125毫米 -104- 200530754 ' ,及光學Y方向之曲率半徑Ry爲- 0.1毫米。 因此,平行X與Y方向橫切面內之雷射光束B之收 集情況大約各如第1 8 A及1 8B圖所示。即,比較χ與γ 方向’ Y方向Z微透鏡55a之曲率半徑較短且焦點長度亦 較短。 桌19A、19B、19C、及19D圖顯示在上示形狀中, 接近微透鏡55 a焦點之光束直徑之模擬。爲了參考,第 ,20A、20B、20C、& 20D 圖顯$ bRm ㈣之微透 鏡之模擬。圖中之”z”値示爲微透鏡55a焦點方向之評估 位置距微透鏡5 5 a之雷射光束照射表面之距離。 此模擬中之微透鏡55a表面形狀可藉以下方程式計算 C;Z2,+ C;72 l + SQRT^^C^X1 -Cy2Y2) 在上式中,Cx表示X方向之曲率半徑(=1/Rx),Cy 表示Y方向之曲率半徑(=1/Ry),X表示在χ方向距光軸 β 〇之距離,Υ表示在Υ方向距光軸〇之距離。 由第19Α至19D圖與第2〇Α至20D圖之比較明顯可 知,使用複曲面作爲微透鏡5 5 a (其在平行γ方向之橫切 面具有較平行X方向之橫切面短之焦點長度)之依照本發 明之圖案形成方法可降低接近收集位置之光束形狀應變。 結果’可在圖案形成材料1 5 0上將影像以較高淸晰度且無 應變而曝光。此外,顯然第19A至19D圖所示之本發明 模式可產生較寬之具較小光束直徑之區域,即,較長之焦 -105- 200530754 k 點深度。 此外’配置於接近微透鏡陣列5 5之收集位置之開口 陣列5 9係構成使得各開口 5 9 a僅接收通過對應微透鏡5 5 a 之雷射光束。即,開口陣列5 9可提供確保可防止光自相 鄰開口 5 5 a入射且可增加消光比例之各開口。 (3)解析度測量 以如上述(1 )測量最短顯影時間之方法之相同條件製 1 備層合體,而且在2 3 °C及5 5 %相對濕度之周圍條件中靜 置10分鐘。在所得層合體之作爲撐體之聚對酞酸伸乙酯 膜上,藉上述圖案形成裝置按以下條件進行線圖案曝光: 線/間隙=1/1,線寬:10至50微米,線增量:5微米/線。 將光學曝光量調整至將在上述(2)敏感度測量中所得感光 層硬化所需之光學能量,將作爲撐體之聚對酞酸伸乙酯膜 自層合體剝除,然後將濃度爲1質量%之碳酸鈉水溶液以 30°C及0.15 MPa噴灑在銅層合板上感光層之全部表面上 於上述(1 )所得最短顯影時間兩倍之時間,因而將未硬化 部份去除。藉光學顯微鏡觀察所得具硬化樹脂圖案之銅層 合板;及測定不存在線異常(如阻塞、變形等)之最窄線 寬,然後將最窄線寬定義爲解析度。即,此値越小表示解 析度越佳。 <曝光速率> 藉上述圖案形成方法而改變曝光雷射及感光層之相對 轉移速率,如此測量形成一般圖案之速度。曝光係自層合 -106- 200530754 體之圖案形成材料感光層上之聚對酞酸伸乙酯膜側進行。 較局之曝光速率可較有效地形成圖案。 <蝕刻性質> f吏$胃有在上述(3)解析度測量中所形成圖案之層合 體實行鈾刻處理,使得將氯化鐵蝕刻劑(含氯化鐵之蝕刻 溶液’ 4 0波美度,溶液溫度:4 0 °C )以〇 · 2 5 Μ P a噴灑 在裸銅層合體表面上36秒,將無硬化層之裸銅層溶解。 然後藉由噴灑2質量%之氫氧化鈉水溶液而將圖案去除, 因而製備具有銅層線路圖案成爲永久圖案之印刷線路板。 藉光學顯微鏡觀察所得線路圖案,及測定線路圖案之最窄 線寬。最窄線寬越小表示線路圖案越精確且蝕刻性質越佳 (實例2 ) 以如實例1之相同方式製造圖案形成材料,除了將感 光樹脂組成物溶液之二異氰酸伸乙酯與四環氧乙烷單甲基 丙烯酸酯之加成物(莫耳比:1/2)改成下述式(74)表示之 化合物。 對製造之圖案形成材料進行解析度、曝光速率與蝕刻 性質之評估。結果示於表3。 最短顯影時間爲1 0秒,及將感光層硬化所需之光學 目g里爲3毫焦/平方公分。式(74)表示之化合物包括於上述 式(24)表不之化合物中。 、_ (?H2)6 侧 coo(ch2ch2o)8-co CO(OCH2CH2)eOCOHN-(CH^\NV(^^^ 式(74) -107- 200530754 ‘ (實例3 ) 以如實例1之相同方式製造圖案形成材料,除了將感 光樹脂組成物溶液之二異氰酸伸乙酯與四環氧乙院單甲基 丙烯酸酯之加成物(莫耳比:1 / 2 )改成下述式(7 5 )表示之 化合物。 對製造之圖案形成材料進行解析度、曝光速率與蝕刻 性質之評估。結果示於表3。 最短顯影時間爲1 〇秒,及將感光層硬化所需之光學 能量爲3晕:焦/平方公分。式(75)表示之化合物包括於上述 式(22)表示之化合物中。R Formula (71) η-〇3Η7 Formula (72) p-CH3C6H4 Examples of the above ketone compounds include diphenyl ketone, 2-methyldiphenyl ketone 3-methyldiphenyl ketone, 4-methyldiphenyl Ketone, 4-methoxydiphenyl ketone 2-chlorodiphenyl ketone, 4-chlorodiphenyl ketone, 4-bromodiphenyl ketone, 2-carboxy-80- 200530754 ^ diphenyl ketone, 2 -Ethoxycarbonyldiphenyl ketone, diphenylketone tetracarboxylic acid and its tetramethyl ester, 4-methoxy-4'-dimethylaminodiphenyl ketone, 4,4'-dimethoxydi Phenyl ketone, 4-dimethylaminodiphenyl ketone, 4-dimethylaminoacetophenone, anthraquinone, 2-tert-butylanthraquinone, 2-methylanthraquinone, phenanthrenequinone, fluorene [1 | Ketone, 2-chlorothioxanthinone, 2,4-dimethylthiocarbone, 2,4-diethylthio Plij ketone, mango, acridone, benzoin; benzoin ether, such as benzoin methyl ether, benzoin Diethyl ether, benzoin propyl ether, benzoin isopropyl ether, and benzoin phenyl ether; benzyldimethylketal, acridone, chloroacridone, N-methylacridone, N-butylacridone, • With N-butylchloroacridone. Examples of metal complexes include fluorene (η5-2,4-cyclopentadien-1-yl) -fluorene (2,6-difluoro · 3- (1fluorene-pyrrole-1-yl) phenyl) titanium, η5-cyclopentadienyl-η6-cumyl iron (1 +)-hexafluorophosphate (1-), and JP-A 53-133 42 8, JP-B 57-1819 and 5 Compounds described in US Patent No. 7-6096, and US Patent No. 3 6 1 5 4 5 5. As for the photopolymerization initiator other than the above, the following are further exemplified: acridine derivatives such as 9-phenylacridine and 1,7-fluorene (9,9'-acridyl ^) heptane; polyhalogenated compounds , Such as carbon tetrabromide, phenyltribromo maple, and phenyltrichloromethanone; lavender, such as 3- (2-benzofuranyl) -7-diethylamine lavender, 3- (2-Benzofuranosyl) -7- (1-pyrrolidinyl) diethylamino-vanacin, 3-Benzofuranyl-7-diethylamino-vanacin, 3- (2- Methoxybenzyl) -7-diethylamino-Lavannin, 3- (4-dimethylaminobenzyl) -7-Diethylamino-Lavannin, 3,3'-carbonyl Samarium (5,7-di-n-propoxy humor), 3,3'-carbonyl hydrazone (7-diethylamino lavender), 3-benzyl methoxy lavender, 3- (2-furanyl) -7-diethylamino-lavender-81-200530754, 3- (4-diethylaminocinnamonyl) -7-diethylamino-lavender, 7-methyl ' Oxy-3- (3-pyridylcarbonyl) humulin, 3-benzylidene-5,7-dipropoxyhumulin, and 7-benzotriazol-2-ylhumulin, And JP-A Nos. 5- 1 9475, 7-27 1 028, 2002-3 63 206, 2002-3 63207, 2002-3 6 3 2 0 8, and 2 002-3 63 2 09 humectin compounds; amines, such as 4-dimethylaminobenzoic acid ethyl ester, 4- N-butyl dimethylaminobenzoate, phenethyl 4-dimethylaminobenzoate, 2-phthalimide 4-dimethylaminobenzoate, 2-methyl 4-dimethylaminobenzoate Propylene ethoxylate, pentyl hydrazone ^ (4-dimethylamino benzoate), phenethyl 3-dimethylamino benzoate, pentyl ester, 4-dimethylamino benzaldehyde , 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ((4-dimethylaminobenzyl) acetate) ethyl acetate, 4-piperidineacetophenone, 4- Dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N, N-diethyl-3-ethoxyaniline, tribenzylamine, dibenzylphenylamine, N-methylphenyl Benzylamine, 4-bromo_N, N-diethylaniline, and tri-dodecylamine; amino fluorescent yellow precursors, such as ODB and ODBII; colorless crystal violet; fluorenyl phosphine oxides, such as fluorene (2 , 4,6-trimethylbenzylidene) phenylphosphine oxide, 贰 (2,6-dimethylbenzylidene) _2,4,4-trimethylpentylphenylphosphine oxide , And LucirinTPO. In addition, as for other photopolymerization initiators, the following are exemplified as follows: · Adjacent polyketal compounds described in US Patent No. 2367660; ketol ether compounds described in US Patent No. 2448 8〗 8; US patents Alpha-hydrocarbon substituted aromatic keto alcohol compounds described in No. 2 7 2 2 5 1 2; polynuclear quinone compounds described in U.S. Pat. Nos. 3046127 and 2951758; JP-A No. 2002-229 1 94 Various substances, such as organic boron compounds, -82-200530754 free radical generators, triaryl salts (for example, salts with hexafluoroantimony or hexafluorophosphate ^), _ salts (for example, (phenylphenylthio) Diphenylene (effective cationic polymerization initiator)), and the amidine compounds described in International Publication No. WO 0 1/7 1 42 8 patent. These photopolymerization initiators can be used alone or in combination. The combination of two or more photopolymerization initiators may be, for example, a combination of a hexaaryl diimidazole compound and an amino ketone described in US Patent No. 3 5 4 9 3 6 7; JP-B No. 5 485 16 Combination of benzothiazole and trihalomethyl-s-triazine compound as described in No. 6; aromatic ketone compound (such as oxysulfur) and hydrogen donor substance (such as dialkylamine-based compound or phenol compound ); A combination of a hexaaryl diimidazole compound and a ferrocene; and a combination of humorin, ferrocene, and phenylglycine. The content of this photopolymerization initiator in the photosensitive layer is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and still more preferably 0.5 to 15% by mass. < Other ingredients > As for other ingredients, examples are sensitizers, thermal polymerization initiators, plasticizers, colorants, and colorants; in addition, other auxiliary agents can be used together, such as substrate surface adhesion promoters, pigments, and conductive materials. Granules, pastes, defoamers, flame retardants, leveling agents, stripping accelerators, antioxidants, perfumes, thermal crosslinkers, surface tension modifiers, chain transfer agents, etc. By properly incorporating these components, desired properties of the pattern forming material, such as time stability, photographic properties, developing properties, film properties, and the like can be obtained. -Photosensitizer- The photosensitizer can be appropriately selected from conventional substances without particular limitation; Photosensitizer-83- 200530754 * Examples of the agent include polynuclear aromatics such as osmium, northern and terphenyl; p-types such as fluorescent yellow , Eosin, erythrosin, rose red B, and rose red; anthocyanins, such as indigo cyanine, thiocarbonyl cyanine, and oxanthine cyanine; some anthocyanins, such as some anthocyanins and mineral Fractionated green, thiothiazines, such as osmium, methylene blue, and toluidine blue; Py, 定, 定, 定, 定, orange, chloroflavin, and ργ [[dingsulfonin; | quinones, such as anthraquinone; history Cardinals, such as skaline; Acridinones, such as acridone, chloroacridone, N-methylacridone, N-butylacridone, N-butylchloroacridone; Oxylides, such as 3- (2-benzofuranyl) -7-diethylamine lavender®, 3- (2-benzofuranyl) -7- (1-pyrrolidinyl) Oxalin, 3_benzofuranyl-7-diethylamine humulin, 3- (2-methoxybenzyl) -7-diethylamino humin, 3- (4- Dimethylamino benzamidine) _7_Diethylamino lavender, 3,3'-carbonyl fluorene (5,7-di-n-propoxy lavender) 3-Benzylfluorenyl-7-methoxyvannyl, 3- (2-furanfluorenyl) -7-diethylaminovannin, 3- (4-diethylaminocinnamonyl)- 7-diethylamino humulin, 7-methoxy-3 (3-pyridylcarbonyl) humulin, 3-benzyl-5,7-dipropoxy humin, and JP -A No. 5-1 9475, 7-27 1 028, 2002-363206 > 2002-363207, 2002-363208, and humectin compounds described in 2002-363209. As for the combination of a photopolymerization initiator and a photosensitizer, an initiation mechanism involving electron transfer can be exemplified as (1) an electron pre-initiator and a photosensitizer dye, (2) an electron acceptor initiator and a photosensitizer dye, and (3 ) The combination of an electron donor initiator and an electron acceptor initiator with a photosensitizer dye (ternary structure), as described in JP-A No. 2001-305734. The content of the photosensitizer is preferably -84- 200530754 ′ 0.05 to 30% by mass, and more preferably 0.1 to 20% by mass based on the entire composition of the photosensitive resin. To 10% by mass. When the content is less than 0.05% by mass, the activity may be decreased, the exposure procedure may take a longer time and tend to decrease, and when the content exceeds 30% by mass, it may precipitate from the photosensitive dye. -Thermal Polymerization Inhibitor-In order to prevent the polymerization inhibitor from being added to the photosensitive layer due to higher temperature or over time. Examples of thermal polymerization inhibitors include 4-methoxyj-based or aryl-substituted hydroquinone, third butyl catechol, pentadiphenyl ketone, 4-methoxy-2-hydroxydiphenyl ketone, chlorine Cox, chloroquinone, naphthylamine, β-naphthylamine, 2,6-di-methylene 2,2, -methylene-fluorene (4-methyl-6-tert-butylphenol), dinitrobenzene , Picric acid, 4-toluidine, reaction products of methylene mixture, methyl salicylate, chelating compounds of nitrosyl compounds and A1, etc. The content of the thermal polymerization inhibitor is preferably from 0.001 to 5% by mass, more preferably from 0.005 to 2 and even more preferably from 0.1 to 1% by mass in the photosensitive layer. When the content is less than 0, storage stability may be insufficient, and when the content exceeds 5, the sensitivity of sexual energy rays may be reduced. -Plasticizer- In order to adjust the film properties, that is, the flexibility of the photosensitive layer / 0, it is still better to be 0.2 sensitive to the energy ray, and the productivity is, the polymerization of the photosensitive agent during storage, thermal polymerization, hydroquinone, Magnesol, 2-hydroxylated cuprous acid, benzothia'yl-4-cresol, pyridine, nitrobenzene blue, copper and organic clamps, and nitroso compound polymer compounds are calculated in mass%, and still .001 At mass%, at mass%, it can be mixed with plastic-85-200530754, sex agent. Examples of the plasticizer include phthalates such as dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, phthalate Di-tridecyl acid, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diallyl phthalate, and octyl octyl phthalate; glycol esters such as triethyl Diethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl glycol phthalate, ethyl glycolate, ethyl glycolate, butyl glycolate, butyl glycolate , Triethylene glycol dicaprylate; phosphate esters, such as ^ tricresyl phosphate and triphenyl phosphate; amidoamines, such as 4-toluidineamine, benzylamine, N-n-butylammonamine And N-n-acetamidine; aliphatic dibasic acid esters, such as diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sebacate, sebacic acid Dioctyl ester and dibutyl maleate; triethyl citrate, tributyl citrate, triacetin, butyl laurate, 4,5-diepoxycyclohexyl-1, Dioctyl 2-dicarboxylate; and glycols such as polyethylene glycol and polypropylene glycol . The content of the aforementioned plasticizer is preferably from 0.1 to 50% by mass, more preferably from 0.5 to 40% by mass, and still more preferably from 1 to 30% by mass. -Colorant- The toner may be used to provide a visible image or provide developing properties to the above-mentioned photosensitive layer after exposure. Examples of the toner include amine triaryl methanes, such as ginseng (4-dimethylaminophenyl) methane (colorless crystal violet), ginseng (4-diethylaminophenyl) methane, ginseng (4-di Methylamino-2-methylphenyl) methane, ginseng (4-diethylamino-2-methylphenyl) methane, ginseng (4-dibutylaminophenyl)-[4- (2-cyano -86- 200530754 _ylethyl) methylaminophenyl] methane, and ginseng (4-dipropane; amine group D, such as 3,6-fluorene (diethylamino) _ 3 -amino group- 6-Dimethylamino-2-methyl-9- (o-chlorophenyl) koushans, such as 3,6-fluorene (diethylamino) -9- (2-ethoxythiosulfan 3,6-fluorenyl (dimethylamino) sulfur-drinking; amines 3 pyridines, such as 3,6--fluoren (diethylamino) -9,10-dihydro-3,6-fluoren (diethylamino) ) -9,10-dihydro-9-methylacridines, such as 3,7-fluorene (diethylamino) morphine; amine group 3,7-fluorene (diethylamino) morphine ; Aminodihydrogen (diethylamino) -5-hexyl-5, 10-dihydrophenone; Amine such as amidine (4-dimethylaminophenyl) aniline methane; Amine such as 4- Amino-4'-dimethylaminophenylmethane and 4-amino-α methyl picate; hydrazines, Such as 1- (2-naphthyl) phenyldihydroanthraquinones, such as 1,4-bis (ethylamino) -2,3-dihydroaniline, such as Ν, Ν-diethyl-p-phenylethyl Aniline; fluorenyl derivatives containing basic dyes, such as 10-ethylfluorenyl-3,7-fluorene® phenothiazone; no hydrogen oxidizable and oxidizable to colored compounds' such as reference (4 ·-— ^ Ethylamino-2-tolyl) ethoxy white dyes; such as U.S. Patent Nos. 3042515 and 304 2 517 which are converted into colored forms of organic amines, such as 4,4'-ethylenedi j N, N-dimethylaniline, 4,4'-methylenediamine triphenylamine, #azole. Among these colorants, such as the colorless crystal violet triaryl group, it is known that the above colorants can be combined with halogenated compounds to produce color. Aminophenyl) 9-Phenyl Pill and Kou Shan Chang; Aminothiocarbonylphenyl) S -9,10-dihydroacrylic 9-phenylacridine and: Aminophylline thiophene, such as, such as 3,7-fluorenylmethanes, hydrocinnamic acids, β-dicyanohydrocinnazine; amine-2,3-anthraquinone; phenylethyl nitro group free (dimethylamino) compounds It looks like colorless carbonyl methane; Oxygen, diphenylamine, | Ν -Acetylcarbamate is particularly good. From colorless -87- 200530754-Examples of this halogenated compound include halogenated hydrocarbons such as carbon tetrabromide, iodoform, ethylene bromide, dibromomethane, bromopentane, bromoisopentane, iodopentane, bromoisobutene , Iodobutane, diphenylmethyl bromide, hexachloromethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,1,2 -Trichloroethane, 1,2,3-tribromopropane, 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene , Dibromocyclohexane, and 1,1,1_trichloro-2,2-fluorene (4-chlorophenyl) ethane; halogenated alcohol compounds, such as 2,2,2-trichloroethanol, tribromoethanol , 1,3-dichloro-2-propanol, 1,1,1-trichloro-2-propanol, bis (iododecylethyl) aminoisopropanol, tribromotributanol, and 2 , 2,3-trichlorobutane-1,4-diol; halogenated carbonyl compounds such as 1,1-dichloroacetone, 1,3-dichloroacetone, hexachloroacetone, hexabromoacetone, 1,1,3 1,3-tetrachloroacetone, 1,1,1-trichloroacetone, 3,4-dibromo-2-butanone, and 1,4-dichloro-2-butanone-dibromocyclohexanone; halogenated ethers Compounds such as 2-bromoethyl methyl ether, 2-bromoethyl ether Di (2-bromoethyl) ether and 1,2-dichloroethyl ether; halogenated ester compounds, such as ethyl bromoacetate, ethyl trichloroacetate, trichloroethyl trichloroacetate, and acrylic acid 2,3- Isomeric and copolymers of dibromopropyl ester, trichloroethyl dibromopropionate, and ethyl 1 α, β-dichloroacrylate; halogenated amine compounds, such as acetochlor, bromoacetamide, and dichloride Acetylamine, trichloroacetamide, tribromoacetamide, trichloroethyltrichloroacetamide, 2-bromoisopropylamine, 2,2,2-trichloropropanamide, N-chloroamber Amidine, and N-bromosuccinamine; compounds containing sulfur and / or phosphorus atoms, such as tribromomethylphenyl maple, 4-nitrophenyltribromomethyl maple, 4-chlorophenyltribromomethyl Base mill, ginseng phosphate (2,3-dibromopropyl), and 2,4-fluorene (tribromomethyl) -6-phenyltriazole. Among the organic halogenated compounds, those containing two or more halogen atoms -88- 200530754 * are preferably attached to one carbon atom, more preferably those having three halogen atoms are attached to one carbon atom. The organic halogenated compounds may be used alone or in combination. Of these halogenated compounds, tribromomethylphenylsulfonium and 2,4-fluoren (tribromomethyl) -6-phenyltriazole are preferred. The content of the colorant is preferably from 0.01 to 20% by mass, more preferably from 0.5 to 10% by mass, and still more preferably from 0.1 to 5% by mass based on the total components in the photosensitive layer. The content of the halogenated compound is preferably 0.001 to 5 mass%, more preferably 0.005 to 1 mass based on the total components in the photosensitive layer. / 0. • -Dye-To increase color for easy handling or to enhance storage stability, dyes can be incorporated into the above-mentioned photosensitive layer. Examples of dyes include bright green, eosin, ethyl violet, erythromycin B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3-diphenyl triphenol, alizarin red S, and ruephthalide , Methyl violet 2B, quinacridine red, rose red, m-amine yellow, stomathiophthalein, xylene blue, methyl orange, orange IV, diphenylthiocarbazide, 2,7-dichlorofluorescent yellow, P-methyl red, Congo red, phenylviolin 4B, α-naphthyl red, Nile Blue 2B, Nile Blue A, phenacetarin, methyl violet, cypress L, fin green, para magenta, oil blue # 603 (Orient Chemical Industry Co., Ltd.), Rose Red B, Rose Red 6G, and Victoria Pure Blue Beta. Among these dyes, cationic dyes such as malachite green oxalate and malachite green sulfate are preferred. Anionic pairs of cationic dyes can be residues of organic or inorganic acids such as bromic acid, iodic acid, sulfuric acid, phosphoric acid, oxalic acid, methanesulfonic acid, and toluenesulfonic acid. The content of the dye based on the total components in the photosensitive layer is preferably from 0.001 to 10-89-200530754 ^ mass%, more preferably from 0.001 to 5 mass%, and still more preferably from 0.1 to 2 quality%. -Adhesion promoter- In order to enhance the adhesion between the layers or the pattern forming material and the substrate, a so-called adhesion promoter can be used. Examples of the above-mentioned adhesion promoters include those described in JP-A Nos. 5- 1 1 43 9, 5-3 4 1 5 3 2 and 6-43 6 3 8; specified examples of the adhesion promoter include benzimidazole, Benzoxazole, benzothiazole, 2-fluorenylbenzimidazole, ® 2-fluorenylbenzoxazole, 2-fluorenylbenzothiazole, 3-morpholinylmethyl-1-phenyltriazole- 2-keto, 3-morpholinylmethyl-5 -fluorenediazole-2 -one, 5-amino-3 -morpholinylmethylthiadiazol-2-one, 2-fluorenyl-5-methyl Thiothiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole, amine-containing benzotriazole, and silane coupling agent. The content of the adhesion promoter is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, and still more preferably 0.1 to 5% by mass based on the total components in the photosensitive layer. As described in "Light Sensitive Systems" by J. Curser, Chapter 5, the photosensitive layer may contain organic sulfur compounds, peroxides, redox compounds, azo or diazo compounds, photoreductive dyes, or organic halogen compounds. Examples of organic sulfur compounds include di-n-butyl disulfide, dibenzyl disulfide, 2-fluorenylbenzothiazole, 2-fluorenylbenzoxazole, thiophene, ethyl trichloromethanesulfonate, and 2- Fluorenyl benzimidazole. Examples of peroxides include di-n-butyl peroxide, benzamidine peroxide • 90-200530754 * and methyl ethyl ketone peroxide. The redox compound is a combination of peroxide and reducing agent, persulfate ion and ferrous ion, peroxide and iron ion, and the like. Examples of the above-mentioned azo or diazo compound include diazo salts such as α, ιazoazoisobutyronitrile, 2-azoamidin-2-methylbutyronitrile, and 4-aminodiphenylamine. Examples of the above-mentioned photoreductive dyes include rose red, erythromycin, eosin, acridine xanthophyll, riboflavin, and thiazepine. • -Surfactant- In order to improve the surface uniformity produced in the production of the pattern forming material of the present invention, a conventional surfactant can be used. The surfactant can be appropriately selected from an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, a surfactant-containing agent, and the like. The content of the surfactant is preferably 0.001 to 10% by mass based on the solid content of the photosensitive resin composition. When the content is less than 0.001% by mass, the effect of improving unevenness may be insufficient, and when the content exceeds 10% by mass, the adhesion may be deteriorated. In addition, as for the surfactant, the fluorine-containing polymer surfactant is preferably exemplified as having 40 mass% or more of fluorine atoms' having a carbon chain of 3 to carbon atoms, and having an aliphatic (wherein A hydrogen atom to the terminal to the first carbon atom is substituted with a fluorine atom) an acrylic or methacrylic acid copolymer. The thickness of the photosensitive layer can be appropriately selected without particular limitation; preferably, the fluorine content may be 20 ene-91-200530754 * This thickness is 1 to 100 microns, more preferably 2 to 50 microns, and even more preferably 4 Up to 30 microns. [Manufacture of pattern forming material] The pattern forming material of the present invention can be produced as follows. First, a solution of a photosensitive resin composition is prepared by dissolving, emulsifying, or dispersing various components or materials in water or a solvent. The solvent of the photosensitive resin composition solution can be appropriately used depending on the application. Examples of the solvent include alcohols such as ethanol, methanol, n-propanol, ®, n-butanol, second butanol, and n-hexanol; ketones such as acetone, methyl alcohol Methyl isobutyl ketone, cyclohexanone, and diisobutyl ketone; esters such as ethyl, butyl acetate, n-pentyl acetate, methyl sulfate, ethyl propionate, methyl ester, ethyl benzoate, and Methoxypropyl acetate; aromatic hydrocarbons benzene, xylene, benzene, and ethylbenzene; halogenated hydrocarbons, such as carbon tetrachloride, ethylene, chloroform, trichloroethane, methylene chloride, and monochlorobenzene, such as tetrahydrofuran , Diethyl ether, ethylene glycol monomethyl ether, ethylene glycol mono and 1-methoxy-2-propanol; dimethylformamide, dimethylacetamidine® methylmethylene maple, and cyclobutadiene. They can be used individually or in combination. In addition, it is conventional to add a surfactant to this solvent. A pattern-forming material can be manufactured by applying a solution of the photosensitive resin composition on a support and drying the light layer. The method for coating the photosensitive resin composition may be selected depending on the application; examples of the coating method include a spray method, a roll coating method, a rotary coating method, an extrusion coating method, a curtain coating method, a die coating method, and a gravure coating method. Method, coating method, and knife coating method. And still more from the top, and the choice, isopropyl alcohol ethyl ketone, acid ethyl phthalic acid di, such as methyl, trichloro; ether ether, amine, di, can be formed by selective coating method, wire rod coating -92- 200530754 — The drying conditions of the coating method usually depend on various ingredients, solvent species, and the amount of solvent; the temperature is generally 60 to 丨 丨 〇 and the time is 30 seconds to 15 minutes. < < Support and protective film > The support is appropriately selected depending on the application; preferably, the support exhibits a peeling force to the photosensitive layer, and the support is highly transparent and has a high surface flatness. It is preferred that the support system is formed of a transparent synthetic resin; examples of the synthetic resin include polyethylene terephthalate, polyethylene naphthalate, triethylcellulose®, diethylcellulose, polyalkylmethacrylate Ester, Polymethacrylate Copolymer, Polyvinyl Chloride, Polyvinyl Alcohol, Polycarbonate, Polystyrene, Xerofan, Polyvinyl Chloride Copolymer, Polyamide, Polyimide, Vinyl Chloride-Acetic Acid Polyethylene terephthalate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose film, and nylon film; among these resins, polyethylene terephthalate is particularly good. These resins can be used alone or in combination. The thickness of the support can be appropriately selected depending on the application; preferably, the thickness is 2 to 150 microns, more preferably 5 to 100 microns, and still more preferably 8 to 50 microns. The shape of the support body is appropriately selected depending on the application; preferably, the shape is an elongate shape. For example, the length of the elongated support is selected from 10 to 20,000 meters. In the pattern forming material, a protective film may be provided on the photosensitive layer. The material of the protective film may be exemplified with respect to the above-mentioned support, and may also be paper, polyethylene, polypropylene laminated paper, or the like. Of these materials, polyethylene films and polypropylene films are preferred. The thickness of the protective film can be appropriately selected without particular limitation; preferably -93-200530754 ^, the thickness is 5 to 100 microns, more preferably 8 to 50 microns, and still more preferably 10 to 30 microns. In the application of the protective film, it is preferable that the adhesive strength A between the photosensitive layer and the support and the adhesive strength B between the photosensitive layer and the protective film indicate the following relationship: the adhesive strength A > the adhesive strength B. The combination of a support and a protective film, that is, (support / protective film), exemplified as (polyethylene terephthalate / polypropylene), (polyvinyl chloride / saifan), (polyimide / poly Acrylic), and (Polyethylene terephthalate / Polyethylene terephthalate). In addition, the surface treatment of the support and / or the protective film can cause the above-mentioned adhesion strength relationship. The surface treatment of the support can be used to enhance the adhesion strength to the photosensitive layer; examples of surface treatments include undercoating deposition, corona discharge treatment, flame treatment, UV ray treatment, RF exposure treatment, glow discharge treatment, activated plasma treatment, And laser beam processing. The static friction coefficient between the support and the protective film is preferably 0.3 to 1.4, and more preferably 0.5 to 1.2. $ When the static friction coefficient is less than 0.3, due to too high sliding properties, the winding displacement can usually produce a bundle configuration, and when the static friction coefficient exceeds 1.4, it becomes difficult to roll the material into a bundle configuration. Preferably, the pattern forming material is wound around a cylindrical roll core and stored in a long bundle configuration. The length of the elongated pattern-forming material can be appropriately selected without particular limitation, and for example, the length is 10 to 2000 meters. In addition, for ease of handling at the time of use, the pattern forming material can be subjected to a notch treatment, and can be provided as a bundle configuration every 100 to 100 meters. Preferably, the pattern-forming material is wound so that the support body exists in the outermost layer of the bundle configuration. In addition, -94-200530754 cuts the patterning material into pieces. During storage, Extraordinarily provides a waterproof isolator with a desiccant at the end surface of the forming material to prevent edge fusion. Packaging is carried out with a higher waterproof material. In order to control the adhesive property between the protective film and the photosensitive layer, the surface is protected by protection. The surface treatment is performed, for example, by providing a primer layer of a polymer (such as polyorganosiloxane, fluorinated polyolefin, polyvinyl fluoride) on the surface of the protective film. The undercoat layer can be formed by polymerizing the surface of the protective film, and then drying the coating at 30 to 150 ° C ® and 50 to 120 ° C for 1 to 30 minutes. In addition to the support and the protective film, other layers such as a peeling layer, an adhesive absorption layer, and a surface protective layer can be provided. < Substrate > The substrate may be appropriately selected from commercially available materials, except that the highly smooth surface is an uneven surface. Preferably, the substrate is plate-shaped; in particular, it is selected from materials such as a printed wiring board (for example, a copper-plated plate), a glass plate (sodium glass), a synthetic resin film, paper, and a metal plate. The substrate is used by laminating the photosensitive layer of the pattern forming material on the substrate. In this configuration, the pattern may be subjected to a development step, for example, by exposing the photosensitive layer of the pattern forming material on the laminate to harden the exposed area. The pattern forming material of the present invention can be applied to a printed wiring board, a display member such as a tubular member, a rib member, a separator, and a piece; a hologram, a micromachine, and a sample piece. This pattern forming material is used in a pattern forming method according to the present invention. In the pattern, and for the surface of the film, ene, liquids, especially light layers, layers, and light, can be formed on the substrate, for example, to form sudden light, because the color filter distribution structure can also be -95-200530754. '[Other steps] Other steps, such as a development step, an etching step, and a plating step, may be appropriately performed by applying a conventional pattern forming step. These steps can be used alone or in combination. In the developing step, the photosensitive layer of the pattern forming material is exposed 'to harden the exposed area of the photoconductive layer, and then the unhardened area is removed, thereby producing a pattern. The method of removing the unhardened area can be appropriately selected without particular limitation ®; for example, the unhardened area can be removed by a developer. The developer is appropriately selected depending on the application; examples of the developer include an alkaline aqueous solution, an aqueous developing liquid, and an organic solvent; among them, a weakly alkaline aqueous solution is preferred. The basic components of the weakly alkaline aqueous solution are exemplified by lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, potassium phosphate, coke Sodium phosphate, potassium pyrophosphate, and borax. Preferably, the weakly alkaline aqueous solution exhibits a pH of about 8 to 12, and more preferably about 9 ^ to 11. An example of this solution is an aqueous solution of sodium carbonate and potassium carbonate at a concentration of 0.1 to 5% by mass. The developer temperature may be appropriately selected depending on the developing power of the developer; for example, the developer temperature is about 25 to 40 ° C. This developer can be combined with surfactants and defoamers; organic bases, such as ethylenediamine, ethanolamine, tetramethylene ammonium hydroxide, diethylenetriamine, triethyleneethylenepentamine, morpholine, and triethanolamine; promote Organic solvents for development, such as alcohols, ketones, esters, ethers, amidines, and lactones. The above-mentioned developer may be an aqueous developer selected from the group consisting of an aqueous solution, an alkaline aqueous solution, and a combination solution of an aqueous solution and an organic solvent, or an organic developer. Etching can be performed by a method appropriately selected from conventional etching methods. The uranium etching liquid in the etching method is appropriately selected depending on the application; when the metal layer is formed of copper, it is exemplified by a copper chloride solution for uranium etching liquid, a ferric chloride solution, an alkaline etching solution, and a hydrogen peroxide solution. Among them, in terms of etching factors, a ferric chloride solution is preferred. The patterning material is etched and removed to form a permanent pattern on the substrate. The permanent pattern is appropriately selected depending on the application; for example, the pattern is a B-line. The electroplating step can be performed by a method selected from conventional electroplating treatment methods. Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, welding plating such as high-gloss welding plating, nickel plating such as watt bath (nickel sulfate-nickel chloride) plating and nickel sulfamate plating, and Gold plating, such as hard gold plating and soft gold plating. The permanent pattern can be formed by performing an electroplating process in the electroplating step, and then removing the pattern forming material, and using an optional etching process for unnecessary portions. In the pattern forming method according to the present invention, the permanent pattern can be prevented from being formed on the pattern. The image on the forming material is distorted to accurately and efficiently form 'so' this pattern forming method can be successfully applied to various patterns requiring high-precision exposure, especially high-precision line patterns. [Method of manufacturing printed wiring board] The pattern forming method according to the present invention can be successfully applied to the manufacture of printed wiring boards', especially printed wiring boards having perforations or via holes. Based on -97- 200530754 — The method of manufacturing a printed wiring board according to the pattern forming method of the present invention is explained below. In the method of manufacturing a printed wiring board having perforations and / or via holes, the pattern may be formed by (i) The forming material is laminated on the printed circuit board substrate with holes so that the photosensitive layer faces the substrate, thereby forming a laminate. (Π) irradiating light from the opposite side of the laminate substrate to the area for forming a circuit pattern and holes, Therefore, the photosensitive layer is hardened, (iii) the pattern-forming material support is removed from the laminate, and (iv) the photosensitive layer of the laminate is developed to remove the uncured portion of the laminate. Incidentally, the removal of the support in (iii) may be performed between (i) and (Π) instead of (ii) and (iv) above. Therefore, using the formed pattern, the printed wiring board can be manufactured by etching or plating the printed wiring board substrate by a conventional elimination or additive method (for example, a semi-additive or full additive method). Of these methods, in order to form a printed wiring board by industrially advantageous pultruding, a eliminating method is preferred. After this treatment, the hardened resin remaining on the printed circuit board substrate is stripped, or in the case of a semi-additive method, the copper thin film is etched after stripping, and then the intended printed wiring board is obtained. In the case of a multilayer printed wiring board, a method similar to this printed wiring board can be applied. A method of manufacturing a printed wiring board having a perforation by using a pattern forming material is explained below. First, a printed wiring board substrate in which the surface of the substrate is coated with a metal plating layer is prepared. The printed circuit board substrate may be a copper laminated layer substrate, a substrate manufactured by forming a copper plating layer on an insulating substrate (such as glass or epoxy resin), or -98- 200530754 laminated on these substrates to form copper plating Layer of substrate. In the case where the protective layer exists on the pattern forming material, the protective layer is peeled off, and the photosensitive layer of the pattern forming material is contacted and bonded to the surface of the printed circuit board as a lamination process by a pressure roller, so that the printed circuit board substrate and the printed circuit board can be obtained. A laminate of the above-mentioned laminate. The lamination temperature of the pattern forming material may be appropriately selected without particular limitation; this temperature may be about room temperature, such as 15 to 30 ° C, or a higher temperature, such as 30 to 180 ° C, and is preferably Substantially warm temperatures, such as 60 to 140 ° C. The pressure of the contact-bonding roller can be appropriately selected without particular limitation; preferably, the pressure is 0.1 to 1 MPa; the speed of the contact-bonding can be appropriately selected without specific limitation, and the speed is preferably 1 to 3 meters. /second. The printed circuit board substrate can be preheated before contact bonding; and the substrate can be laminated under low pressure. The laminated body can be formed by laminating a patterning material on a printed wiring board substrate; or, by directly coating the patterning material with a photosensitive resin composition ^ solution on the printed wiring board substrate, and then drying the solution, Therefore, a photosensitive layer is formed by laminating a printed wiring board substrate. Then, the laser beam is irradiated onto the photosensitive layer from the opposite side of the laminated substrate, so that the photosensitive layer is hardened. In this case, the irradiation is performed after the support is stripped, depending on the need for reduced transparency of the support. In the case where the supporter is present on the supporter after the laser irradiation, the supporter is peeled from the laminate as the supporter peeling step. The uncured area of the photosensitive layer on the printed circuit board substrate is developed and dissolved by appropriate development-99-200530754 ~ agent to form a pattern containing a hardened layer for forming a circuit pattern and a hardened layer for protecting a perforated metal layer, and printing The metal layer is exposed at the surface of the circuit board substrate as a development step. Additional processing to promote the hardening reaction, for example, may be performed by post heating or post exposure as appropriate. The development may be a wet method or a dry development method described above. An etching liquid is then used to dissolve the exposed metal layer on the surface of the printed circuit board substrate as an etching procedure. The opening of the perforation is covered with hardened resin or radiating film. Therefore, the etching liquid does not penetrate into the perforation and corrodes the gold in the perforation. Metal plating and metal plating can maintain the specified shape, so that a circuit pattern can be formed on the printed circuit board substrate. . The etching liquid may be appropriately selected depending on the application; when the metal layer is formed of copper, the etching liquid may be exemplified by a copper chloride solution, a ferric chloride solution, an alkaline etching solution, and a hydrogen peroxide solution; In other words, a ferric chloride solution is preferred. Then, for example, the hardened layer is removed from the printed circuit board base I board by a strong alkaline aqueous solution as a hardened material removing step. # The alkali component of the strong alkaline aqueous solution can be appropriately selected without particular limitation, and examples of the alkali component include sodium hydroxide and potassium hydroxide. The pH of the strong alkaline aqueous solution may be, for example, about 12 to 14, preferably about 13 to 14. The strong alkali aqueous solution may be a sodium hydroxide or potassium hydroxide aqueous solution having a concentration of 1 to 10% by mass. The printed wiring board may have a multilayer structure. Incidentally, the above-mentioned pattern forming material can be applied to a plating process instead of the above-mentioned etching process. The plating method can be copper plating, such as copper sulfate plating and copper pyrophosphate plating, welding plating such as Gaohui-100-200530754 light welding plating, nickel plating, such as Watt bath (nickel sulfate-nickel chloride) plating and nickel sulfamate Electric ore, and gold plating, such as hard gold plating and soft gold plating. The present invention is described in more detail with reference to the examples shown below, but it does not limit the invention. All parts are by weight unless otherwise indicated. (Example 1)-Manufacture of pattern forming material-A solution of a photosensitive resin composition containing the following components was applied to a 20-micron-thick polyethylene terephthalate film as a support, and the coating solution was dried to form A 15-micron-thick photosensitive layer was prepared as a patterning material. [Components of the photosensitive resin composition solution]-15 parts of methyl methacrylate / 2-ethylhexyl acrylate / methacrylic acid; ester / methacrylic acid copolymer (mass ratio: 50/20/7/23, Weight average molecular weight; 90,000, acid hydrazone: 150)-7.0 parts of polymerizable monomer represented by the following formula (73)-adduct of dihexyl diisocyanate and tetraethylene oxide monomethacrylic acid (mass ratio : 1/2) 7.0 parts -N-methylacridone 0.11 parts -2,2-fluorene (o-chlorophenyl) -4,4 ', 5,5'. Phenyldiimidazole 2.17 parts 2-fluorene 0.23 parts of benzimidazole-0.02 parts of malachite green salt-0.26 parts of colorless crystal violet-40 parts of methyl ethyl ketone-1 -methoxy-2-propanol 20 parts -101-200530754 h2c = cc. Axe ch2ch2 ^ j > h ^^-Let H2CH2_〇hC〇-Formula (73) wherein, in Formula (73), m + n = 10. The compound represented by the formula (7 3) is included in the compound represented by the above formula (38). A 20-micron-thick polyethylene film as a protective film was laminated on the photosensitive layer of the pattern forming material. A polished, laundered and dried copper laminated φ plate (without perforations, copper thickness: 12 microns) was then prepared as a substrate. When using a laminator (8B-720-PH type manufactured by Taisei-Laminator Co.) to peel off the protective film of the pattern forming material, the photosensitive layer is contact-bonded to the copper laminate to make the photosensitive layer contact the copper laminate. Thus, a laminate including a copper laminate, a photosensitive layer, and polyethylene terephthalate as a support in this order was obtained. The contact bonding conditions were contact bonding roll temperature: 105 ° C, contact bonding roll pressure: 0.3 MPa, and lamination rate: 1 m / min. The obtained laminate was evaluated for resolution, exposure rate, and etching properties. The results are shown in Table 3. < Resolution > (1) Method for measuring the shortest developing time The polyethylene terephthalate film as a support was peeled from the laminate, and then a sodium carbonate aqueous solution having a concentration of 1% by mass was removed at 30 ° C. And 0.15 MPa was sprayed on the entire surface of the photosensitive layer on the copper laminate. The time from the start of spraying to the dissolving layer on the copper laminate was measured, and this time was defined as the shortest developing time. As a result, the minimum development time was 10 seconds. (2) Sensitivity measurement • 102- 200530754 • The laser beam is irradiated to the photosensitive layer of the patterning material of the laminate, in which the optical energy of the laser beam is changed from 0.1 mJ / cm 2 dark 2 1/2 times in increments To 100 mJ / cm², a laser beam is irradiated from the polyethylene terephthalate film side by a pattern forming device described later, and a part of the photosensitive layer is hardened. After standing at room temperature for 10 minutes, the polyethylene terephthalate film as a support was peeled from the laminate, and then a sodium carbonate aqueous solution having a concentration of 1% by mass was sprayed at 30 ° C and 0.15 MPa. On the entire surface of the photosensitive layer on the copper laminate, the minimum development time obtained in (1) above was twice the minimum development time, so the unhardened portion was removed and the thickness of the remaining hardened layer was measured. A sensitivity curve is then prepared by plotting the relationship between the amount of irradiated light and the thickness of the hardened layer. From the obtained sensitivity curve, the optical energy of the thickness of the hardened region of 15 m was determined, and this optical energy was defined as the optical energy required to harden the photosensitive layer. As a result, the optical energy required to harden the photosensitive layer was 3 mJ / cm. < < Pattern-forming device >: > The pattern-forming device used includes the combined laser light source shown in Figs. 27A to 32 as the laser light source; DMD .50 as the laser modulator, which is shown in Fig. 4 In the main scanning direction, 1,024 micromirrors are arranged in an array, and in the sub-scanning direction, 7 6 8 groups of arrays are arranged. In these micromirrors, it can be driven. 〇 2 4 columns X 256 rows; The surface is a toric surface as shown in FIG. 13). The micro lens array 4 72 arranged in an array; and the optical system 4 8 0, 4 8 2 that makes Lei Bow * image on the pattern forming material through the micro lens array. -103- 200530754 * The toric surface of the micro lens is as follows. In order to compensate the distortion of the output surface of the micro lens 4 7 4 as the imaging part, the distortion at the output surface is measured, and the results are shown in FIG. 14. In Fig. 14, the contour lines indicate the same reflective surface locality. The local distance of the local line is 5 nm. In Fig. 14, the X and γ directions are two diagonal lines of the microlens 62, and the microlens 62 can rotate about a rotation axis extending in the γ direction. In Figs. 15A and 15B, the height displacements of the microlenses 62 are shown in the X and Y directions, respectively. As shown in Figures 14, 15A, and 15B, there is distortion at the reflective ® surface of the microlens 62. Relative to the central portion of the micromirror, the distortion in one diagonal direction (ie, the Y direction) is greater than the other diagonal direction. Therefore, the shape of the laser beam B should be distorted at the collection position of the microlenses 55a passing through the microlens array 55. Figures 16A and 16B show the front and side shapes of all microlens arrays 55 in detail, and also show the size of each part in micrometer (mm) units. In DMD 50, the microlenses 62 of 1 024 rows X 2 5 6 columns are driven as explained above with reference to FIG. 4; the microlens array 5 5 enables 1 024 microlenses 55a to be arranged in a row in the width direction, and The longitudinal direction is arranged in 2 5 6 rows and is correspondingly constituted. In Fig. 16A, the position of each microlens 5 5 a is indicated by "j" in the width direction and "k" in the length direction. 17A and 17B each show a front shape and a side shape of one micro lens 55a of the micro lens array 55. FIG. 17A also shows the contours of the microlenses 55a. The end surfaces of the microlenses 5 5 a are aspheric to compensate for aberrations caused by the distortion of the reflective surface of the microlenses 62. In particular, the microlens 55a is a toric surface; the radius of curvature Rx in the optical X direction is -0.125 mm -104-200530754 ', and the radius of curvature Ry in the optical Y direction is -0.1 mm. Therefore, the collection of the laser beams B in the cross-sections parallel to the X and Y directions is approximately as shown in Figs. 18A and 18B. In other words, the χ and γ directions' Y-direction Z microlenses 55a have a shorter radius of curvature and a shorter focal length. Tables 19A, 19B, 19C, and 19D show simulations of the beam diameters near the focal point of the micro lens 55a in the shape shown above. For reference, the 20A, 20B, 20C, & 20D graphs show the simulation of a micro-lens of $ bRm. "Z" in the figure indicates the distance of the evaluation position of the focal direction of the microlens 55a from the laser beam irradiation surface of the microlens 55a. The surface shape of the micro lens 55a in this simulation can be calculated by the following equation: C; Z2, + C; 72 l + SQRT ^^ C ^ X1 -Cy2Y2) In the above formula, Cx represents the radius of curvature in the X direction (= 1 / Rx ), Cy represents the radius of curvature (= 1 / Ry) in the Y direction, X represents the distance from the optical axis β 0 in the χ direction, and Υ represents the distance from the optical axis 0 in the Υ direction. From the comparison of the 19A to 19D images and the 20A to 20D images, it is clear that toric surfaces are used as the microlenses 5 5 a (the cross section in the parallel γ direction has a shorter focal length than the cross section in the parallel X direction) The pattern forming method according to the present invention can reduce the beam shape strain near the collection position. As a result, the image can be exposed on the pattern forming material 150 with high definition and no strain. In addition, it is clear that the mode of the present invention shown in Figures 19A to 19D can produce a wider area with a smaller beam diameter, that is, a longer focal length -105- 200530754 k-point depth. In addition, the openings 5 9 arranged near the collection position of the micro lens array 55 are configured so that each of the openings 5 9 a receives only the laser beam passing through the corresponding micro lens 5 5 a. That is, the opening array 5 9 can provide openings that can ensure that light is prevented from entering from the adjacent opening 5 5 a and that the extinction ratio can be increased. (3) Resolution measurement A laminate was prepared under the same conditions as the method for measuring the shortest developing time as described in (1) above, and it was left to stand for 10 minutes in a surrounding condition of 2 ° C and 55% relative humidity. On the obtained laminated body, a polyethylene terephthalate film as a support, a line pattern exposure was performed according to the following conditions by using the above pattern forming device: line / gap = 1/1, line width: 10 to 50 microns, line increase Amount: 5 microns / line. The optical exposure was adjusted to the optical energy required to harden the photosensitive layer obtained in the above (2) sensitivity measurement, and the polyethylene terephthalate film as a support was peeled from the laminate, and then the concentration was 1 The mass% sodium carbonate aqueous solution was sprayed on the entire surface of the photosensitive layer on the copper laminate at 30 ° C. and 0.15 MPa, and the shortest developing time obtained in the above (1) was twice as long as the unhardened portion was removed. Observe the copper laminate with hardened resin pattern by optical microscope; and determine the narrowest line width without line anomalies (such as blocking, deformation, etc.), and then define the narrowest line width as the resolution. That is, the smaller this threshold is, the better the resolution is. < Exposure rate > By the above pattern forming method, the relative transfer rates of the exposure laser and the photosensitive layer were changed, and thus the speed of forming a general pattern was measured. The exposure was performed from the side of the poly (ethylene terephthalate) film on the photosensitive layer of the pattern forming material of the laminated -106- 200530754 body. Patterns can be formed more efficiently with a lower exposure rate. < Etching properties > The laminate having a pattern formed in the above-mentioned (3) resolution measurement is etched with uranium, so that an iron chloride etchant (an iron chloride-containing etching solution '4 0 wave Mido, solution temperature: 40 ° C) sprayed on the surface of the bare copper laminate for 36 seconds at 0.25 MPa to dissolve the bare copper layer without hardened layer. Then, the pattern was removed by spraying a 2% by mass sodium hydroxide aqueous solution, thereby preparing a printed wiring board having a copper layer circuit pattern as a permanent pattern. Observe the obtained line pattern with an optical microscope and determine the narrowest line width of the line pattern. The smaller the narrowest line width, the more accurate the line pattern and the better the etching properties (Example 2). The pattern forming material was manufactured in the same manner as in Example 1, except that the diisocyanate of tetraisocyanate and the tetracyclic ring of the photosensitive resin composition solution were produced. The addition product of oxyethane monomethacrylate (Molar ratio: 1/2) was changed to a compound represented by the following formula (74). The patterning materials manufactured were evaluated for resolution, exposure rate, and etching properties. The results are shown in Table 3. The shortest developing time is 10 seconds, and the optical mesh g required for curing the photosensitive layer is 3 mJ / cm². The compound represented by the formula (74) is included in the compounds represented by the above formula (24). , _ (? H2) 6 side coo (ch2ch2o) 8-co CO (OCH2CH2) eOCOHN- (CH ^ \ NV (^^^ Formula (74) -107- 200530754) (Example 3) In the same manner as in Example 1 To produce a pattern forming material, in addition to changing the addition product of ethylene diisocyanate and ethylene oxide monomethacrylate (mole ratio: 1/2) of the photosensitive resin composition solution to the following formula ( The compound represented by 7 5). The resolution, exposure rate, and etching properties of the manufactured patterning material were evaluated. The results are shown in Table 3. The minimum development time was 10 seconds, and the optical energy required to harden the photosensitive layer was 3 Halo: Coke / cm 2. The compound represented by the formula (75) is included in the compound represented by the formula (22).
Et—C^CH2〇CH2CH2OCONH-(CH2)6-NHCOO-(CH2CH2〇)8C(y>===:=2 ) 式(75) (實例4 ) 以如實例1之相同方式製造圖案形成材料,除了將甲 基丙烯酸甲酯/丙烯酸2 -乙基己酯/甲基丙烯酸苄酯/甲基 丙烯酸之共聚物(質量比:5 0/20/7/23,重量平均分子量 鲁;90000,酸値:150)改成甲基丙烯酸甲酯/苯乙烯/甲基 丙烯酸苄酯/甲基丙烯酸之共聚物(質量比:8/30/37/25, 重量平均分子量;60000,酸値:163)。 對製造之圖案形成材料進行解析度、曝光速率與蝕刻 性質之評估。結果不於表3。 最短顯影時間爲1 0秒,及將感光層硬化所需之光學 能量爲3毫焦/平方公分。 (比較例1 ) 以如實例1之相同方式進行解析度、曝光速率與蝕刻 -108 - 200530754 性質之評估,除了不使用實例1之圖案形成裝置之微透鏡 陣列。結果示於表3。 最短顯影時間爲1 〇秒’及將感光層硬化所需之光學 能量爲3毫焦/平方公分。 (比較例2 ) 以如實例1之相同方式進行解析度、曝光速率與蝕刻 性質之評估,除了不使用實例1之圖案形成裝置之微透鏡 陣列,及DMD之所有微鏡(1〇24 X 7 6 8個)均在控制下 ’驅動。結果示於表3。 最短顯影時間爲1 〇秒,及將感光層硬化所需之光學 能量爲3毫焦/平方公分。 表3 解析度(μιη) 蝕刻性質㈣ 曝光速率(mm/sec) 實例1 15 25 40 實例2 15 25 40 實例3 15 25 40 實例4 15 25 40 比較例1 25 35 20 比較例2 25 35 13 表3之結果證明,實例1至4之線路圖案顯著地較比 較例1及2精確,而且實例1至4之曝光速率高於比較例 1及2,造成有效之線路圖案形成。 在依照本發明之圖案形成方法中,可形成具有高精細 度與精確度,及由於抑制在圖案形成材料上形成之影像變 形而造成之充分效率之永久圖案,因此依照本發明之圖案 形成方法可應用於各種需要高精確曝光之圖案形成,特別 是具高準確度之線路圖案。 -109- 200530754 【圖式簡單說明】 第1圖爲例示地顯示數位微鏡裝置(D M D )構造之部份 放大圖。 第2Α圖爲例示地解釋DMD動作之圖。 第2Β圖爲例示地解釋DMD動作之圖。 第3Α圖爲顯示在不包括DMD之情形之曝光光束與掃 描線之例示平面圖。 弟3Β圖爲顯不在包括DMD之情形之曝光光束與掃描 Β 線之例示平面圖。 第4Α圖爲顯示DMD可用區域之例示圖。 第4Β圖爲顯示另一 DMD可用區域之例示圖。 第5圖爲解釋以掃描器之單次掃描將感光層曝光之方 式之例示平面圖。 第6Α圖爲解釋以掃描器之多次掃描將感光層曝光之 方式之例示平面圖。 _ 第6Β圖爲解釋以掃描器之多次掃描將感光層曝光之 方式之另一例示平面圖。 桌7圖爲例不地顯示圖案形成裝置之略示正視圖。 弟8圖爲例不地顯不.圖案形成裝置之掃描構造之略不 正視圖。 第9A圖爲顯示在感光層上形成之曝光區域之例示平 面圖。 第9B圖爲顯示藉各曝光頭曝光之區域之例示平面圖 -110- 200530754 ' 第10圖爲例示地顯示含雷射調變器之曝光頭之略示正 視圖。 第11圖爲顯示第10圖所示曝光頭構造在沿光軸之次 掃描方向之例示橫切面。 第1 2圖顯示基於圖案資訊控制DMD之例示控制器。 第13A圖爲顯示在其他收集光學系統中之另一曝光頭 構造沿光軸之例示橫切面。 第13B圖爲顯示在未使用微透鏡時投射至曝光表面上 •之光學影像之例示平面圖。 第13C圖爲顯示在使用微透鏡時投射至曝光表面上之 光學影像之例示平面圖。 第14圖爲藉等高線顯示組成DMD之微鏡之反射性表 面扭曲之例示圖。 第15A圖爲顯示微鏡沿X方向之高度位移之例示圖表 〇 0 第1 5 B圖爲顯示微鏡沿Y方向之高度位移之例示圖表 〇 第1 6 A圖爲顯示用於圖案形成裝置之微透鏡陣列之例 示前視圖。 第1 6B圖爲顯示用於圖案形成裝置之微透鏡陣列之例 示側視圖。 第1 7 A圖爲顯示微透鏡陣列之微透鏡之例示前視圖。 第1 7B圖爲顯示微透鏡陣列之微透鏡之例示側視圖。 第1 8 A圖爲以微透鏡橫切面略示地顯示雷射收集情況 -111 - 200530754 之例示圖。 第1 8 B圖爲以另一微透鏡橫切面略示地顯示雷射收集 情況之例示圖。 第19A圖爲顯示依照本發明接近微透鏡焦點處光束直 徑之模擬之例示圖。 第1 9 B圖爲顯不類似第1 9 A圖依照本發明關於其他位 置之另一*模擬之例不圖。 第1 9 C圖爲顯不類似第1 9 A圖依照本發明關於其他位 ’置之又-模擬之例示圖。 第1 9 D圖爲顯示類似第1 9 A圖依照本發明關於其他位 置之又一模擬之例示圖。 第20A圖爲顯示在習知圖案形成方法中接近微透鏡焦 點處光束直徑之模擬之例示圖。 第2 0 B圖爲顯示類似第2 〇 a圖關於其他位置之另一模 擬之例示圖。 第20C圖爲顯示類似第20A圖關於其他位置之又一模 擬之例示圖。 第2 0D圖爲顯示類似第2〇A圖關於其他位置之又一模 擬之例示圖。 第2 1圖爲顯示組合雷射光源之另一構造之例示平面圖 〇 第22A圖爲顯示微透鏡陣列之微透鏡之例示前視圖。 第22B圖爲顯示微透鏡陣列之微透鏡之例示側視圖。 第23A圖爲以第22B圖所示微透鏡之橫切面略示地顯 -112- 200530754 ^ 示雷射收集情況之例示圖。 第23B圖爲以第22B圖所示微透鏡之另一橫切面略示 地顯示雷射收集情況之例示圖。 第24A圖爲解釋光量分布補償之光學系統之補償槪念 之例示圖。 第24B圖爲解釋光量分布補償之光學系統之補償槪念 之另一例示圖。 第24C圖爲解釋光量分布補償之光學系統之補償槪念 •之另-例示圖。 第25圖爲顯示無光量補償之高斯分布之光量分布之例 示圖表。 第26圖爲顯示藉光量分布補償之光學系統之經補償光 量分布之例不圖表。 第27A (A)圖爲顯示纖維陣列雷射光源組成之例示正 視圖。 第27A (B)圖爲第27A (A)圖之部份放大圖。 第27A (C)圖爲顯示雷射輸出發射位置之排列之例示 平面圖。 .第27 A (D)圖爲顯示雷射發射位置之另一排列之例示 平面圖。 第27B圖爲顯示纖維陣列雷射光源中雷射發射位置之 排列之例示前視圖。 第2 8圖爲顯示多模式光纖構造之例示圖。 第29圖爲顯示組合雷射光源構造之例示平面圖。 -113- 200530754 * 第3 0圖爲顯示雷射模組構造之例示平面圖。 第3 1圖爲顯示第3 0圖所示雷射模組構造之例示側視 圖。 第3 2圖爲顯示第3 0圖所示雷射模組構造之部份側視 圖。 第3 3圖爲顯示雷射陣列構造之例示正視圖。 第3 4 A圖爲顯示多孔雷射構造之例示正視圖。 第3 4 B圖爲顯示多孔雷射陣列之例示正視圖,其中第 3 4 A圖所示多孔雷射係排列成陣列。 第3 5圖爲顯示組合雷射光源之另一構造之例示平面圖 〇 第36A圖爲顯示組合雷射光源之又一構造之例示平面 圖。 第3 6 B圖爲第3 6 A圖沿光軸之例示橫切面。 第37A圖爲曝光裝置之例示橫切面,其顯示先行技藝 0 圖案形成方法之焦點深度。 第3 7 B圖爲曝光裝置之例示橫切面,其顯示依照本發 明圖案形成方法之焦點深度。 【主要元件符號說明】 10 加 熱 區 11-17 準 直 透 鏡 20 收 集 透 鏡 30 多 模 式 光纖 3 0a 核 心 -114· 200530754Et—C ^ CH2〇CH2CH2OCONH- (CH2) 6-NHCOO- (CH2CH2〇) 8C (y > ===: = 2) Formula (75) (Example 4) A pattern forming material was manufactured in the same manner as in Example 1, Except for the copolymer of methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid (mass ratio: 50/20/7/23, weight average molecular weight Lu; 90,000, acid : 150) into a copolymer of methyl methacrylate / styrene / benzyl methacrylate / methacrylic acid (mass ratio: 8/30/37/25, weight average molecular weight; 60,000, acid hydrazone: 163). The patterning materials manufactured were evaluated for resolution, exposure rate, and etching properties. The results are not in Table 3. The minimum development time is 10 seconds, and the optical energy required to harden the photosensitive layer is 3 mJ / cm². (Comparative Example 1) Evaluation of the properties of resolution, exposure rate, and etching -108-200530754 was performed in the same manner as in Example 1, except that the microlens array of the patterning device of Example 1 was not used. The results are shown in Table 3. The shortest development time is 10 seconds' and the optical energy required to harden the photosensitive layer is 3 mJ / cm². (Comparative Example 2) Evaluation of resolution, exposure rate, and etching properties were performed in the same manner as in Example 1, except that the microlens array without the patterning device of Example 1 and all the micromirrors (1024 X 7) of the DMD were used. 6 8) are all driven under control. The results are shown in Table 3. The minimum development time was 10 seconds, and the optical energy required to harden the photosensitive layer was 3 mJ / cm². Table 3 Resolution (μιη) Etching properties ㈣ Exposure rate (mm / sec) Example 1 15 25 40 Example 2 15 25 40 Example 3 15 25 40 Example 4 15 25 40 Comparative example 1 25 35 20 Comparative example 25 35 13 Table The results of 3 prove that the wiring patterns of Examples 1 to 4 are significantly more accurate than those of Comparative Examples 1 and 2, and that the exposure rates of Examples 1 to 4 are higher than those of Comparative Examples 1 and 2, resulting in effective wiring pattern formation. In the pattern forming method according to the present invention, it is possible to form a permanent pattern having a high degree of precision and accuracy, and a sufficient efficiency caused by suppressing the deformation of an image formed on the pattern forming material. It is used in various pattern formations that require high-precision exposure, especially circuit patterns with high accuracy. -109- 200530754 [Brief description of the drawings] Figure 1 is an enlarged view showing a part of the structure of the digital micromirror device (DMD) as an example. FIG. 2A is a diagram for explaining the operation of the DMD by way of example. Fig. 2B is a diagram for explaining the operation of the DMD by way of example. Fig. 3A is an exemplary plan view showing the exposure beam and scanning lines in a case where DMD is not included. Figure 3B is an exemplary plan view showing the exposure beam and scanning line B in the case where DMD is included. FIG. 4A is an illustration showing an available area of the DMD. Figure 4B is an illustration showing another DMD available area. Fig. 5 is an exemplary plan view explaining a method of exposing a photosensitive layer in a single scan of a scanner. Fig. 6A is an exemplary plan view explaining the manner in which the photosensitive layer is exposed by multiple scans of the scanner. _ Fig. 6B is another exemplary plan view explaining the manner in which the photosensitive layer is exposed by multiple scans of the scanner. Table 7 is a schematic front view showing a pattern forming device as an example. The figure 8 is not shown as an example. The scanning structure of the patterning device is a slightly irregular view. Fig. 9A is an exemplary plan view showing an exposed area formed on a photosensitive layer. Fig. 9B is an exemplary plan view showing an area exposed by each exposure head -110- 200530754 'Fig. 10 is a schematic front view showing an exposure head including a laser modulator as an example. Fig. 11 is an exemplary cross section showing the structure of the exposure head shown in Fig. 10 in the sub-scanning direction along the optical axis. Figure 12 shows an example controller that controls DMD based on pattern information. Fig. 13A is an exemplary cross section showing the configuration of another exposure head in another collecting optical system along the optical axis. Fig. 13B is an exemplary plan view showing an optical image projected onto an exposed surface when a microlens is not used. Fig. 13C is an exemplary plan view showing an optical image projected onto an exposed surface when a microlens is used. Fig. 14 is an illustration showing the distortion of the reflective surface of the micromirrors constituting the DMD by contour lines. Fig. 15A is an exemplary graph showing the height displacement of the micromirror in the X direction. 0 Fig. 15B is an exemplary graph showing the height displacement of the micromirror in the Y direction. Fig. 16A is a graph illustrating the use of a pattern forming device. An example of a microlens array is a front view. Figure 16B is an exemplary side view showing a microlens array used in a patterning device. Figure 17A is an exemplified front view showing a microlens of a microlens array. FIG. 17B is an exemplary side view showing a microlens of a microlens array. Figure 18 A is an illustration showing the laser collection in a micro-lens cross section -111-200530754. Fig. 18B is an example diagram showing the laser collection situation with another microlens cross section. Fig. 19A is an exemplary diagram showing a simulation of a beam diameter at a focal point of a microlens according to the present invention. Fig. 19B is a diagram showing another example of the simulation of other positions according to the present invention, which is similar to Fig. 19A. Fig. 19C is an illustration showing the similarity to Fig. 19A in accordance with the present invention with respect to other bit-by-simulation. Fig. 19D is an illustration showing another simulation similar to Fig. 19A regarding other positions according to the present invention. Fig. 20A is a diagram showing an example of simulation of a beam diameter near a focal point of a microlens in a conventional pattern forming method. Figure 20B is an illustration showing another simulation similar to Figure 20a for other locations. Figure 20C is an illustration showing another simulation similar to Figure 20A for other locations. Figure 20D is an illustration showing another simulation similar to Figure 20A for other locations. Fig. 21 is an exemplary plan view showing another structure of a combined laser light source. Fig. 22A is an exemplary front view showing a microlens of a microlens array. Fig. 22B is an exemplary side view showing a microlens of a microlens array. Fig. 23A is a schematic view showing the collection situation of the microlens as shown in Fig. 22B -112- 200530754 ^ Fig. 23B is an example diagram showing the laser collection situation with another cross section of the microlens shown in Fig. 22B. Fig. 24A is a diagram illustrating an example of a compensation concept of an optical system for light amount distribution compensation. Fig. 24B is another diagram explaining the compensation concept of the optical system for the compensation of the light amount distribution. Fig. 24C is a diagram illustrating the compensation concept of the optical system for compensation of light amount distribution. Fig. 25 is a diagram showing an example of a light amount distribution of a Gaussian distribution without light amount compensation. Fig. 26 is a diagram showing an example of the compensated light quantity distribution of the optical system compensated by the light quantity distribution. Figure 27A (A) is an exemplary front view showing the composition of a fiber array laser light source. Figure 27A (B) is an enlarged view of part of Figure 27A (A). Figure 27A (C) is an exemplary plan view showing the arrangement of the laser output emission positions. Figure 27 A (D) is a plan view illustrating another arrangement of laser emission positions. Figure 27B is an exemplary front view showing the arrangement of laser emission positions in a fiber array laser light source. Fig. 28 is an illustration showing the structure of a multi-mode optical fiber. Fig. 29 is an exemplary plan view showing the structure of a combined laser light source. -113- 200530754 * Figure 30 is an exemplary plan view showing the structure of a laser module. Fig. 31 is a side view showing an example of the structure of the laser module shown in Fig. 30. Figure 32 is a side view showing part of the structure of the laser module shown in Figure 30. Figure 33 is an exemplary front view showing the structure of the laser array. Figure 3 4 A is an exemplary front view showing a porous laser structure. Fig. 34B is an exemplary front view showing a porous laser array, and the porous laser system shown in Fig. 34A is arranged in an array. Fig. 35 is an exemplary plan view showing another structure of the combined laser light source. Fig. 36A is an exemplary plan view showing another structure of the combined laser light source. Figure 3 6B is an example cross-section of Figure 3 6 A along the optical axis. Fig. 37A is an exemplary cross-section of an exposure device, showing the depth of focus of the prior art 0 pattern forming method. Figure 3 7B is an exemplary cross section of an exposure device showing the depth of focus according to the pattern forming method of the present invention. [Description of main component symbols] 10 heating zone 11-17 collimating lens 20 collecting lens 30 multi-mode fiber 3 0a core -114 · 200530754
3 1 光 纖 3 1a 核 心 40 包 裝 4 1 包 裝 蓋 42 基 座 板 44 準 直 透 鏡 保 持 器 45 收 集 透 δ見 保 持 器 46 纖 維 保 持 器 47 線 路 50 數 位 微 鏡 裝 置 5 1 成 像 系 統 52 透 鏡 系 統 5 3 曝 光 光 束 54 透 鏡 系 統 55 微 透 鏡 陣 列 55a 微 透 鏡 56 掃 描 表 面 5 8 透 鏡 系 統 59 開 □ 陣 列 59a 開 P 60 儲 存 單 元 62 微 鏡 64 雷 射 模 組 65 平 坦 支 撐 板 66 纖 維 陣 列 雷 射 光源 -115- 2005307543 1 Optical fiber 3 1a Core 40 Packaging 4 1 Packaging cover 42 Base plate 44 Collimation lens holder 45 Collecting see-through holder 46 Fiber holder 47 Line 50 Digital micromirror device 5 1 Imaging system 52 Lens system 5 3 Exposure Light beam 54 Lens system 55 Micro lens array 55a Micro lens 56 Scanning surface 5 8 Lens system 59 On □ Array 59a On P 60 Storage unit 62 Micro mirror 64 Laser module 65 Flat support plate 66 Fiber array laser light source-115- 200530754
67 透 鏡 系 統 68 雷 射 發 射 部 份 69 鏡 70 全 內 反 射 稜 鏡 7 1 收 集 透 鏡 7 2 棒 整 合 器 73 稜 鏡 對 74 成 像 透 鏡 100 加 熱 區 110 多 孔 雷 射 1 10a 發 射 位 置 111 加 熱 區 113 棒 形 透 鏡 114 透 鏡 陣 列 120 收 集 透 鏡 130 多 模 式 光 纖 130a 核 心 140 雷 射 陣 列 144 雷 射 光 源 150 圖 案 形 成 材 料 152 平 台 1 54 腳 155a 微 透 鏡 1 56 工 作 台 15 8 導 件 -116- 200530754 1 60 閘 1 62 掃 1 64 偵 1 66 曝 168 曝 1 70 曝 1 80 加 1 82 加 1 84 準 454 放 45 8 放 468 曝 472 微 474 微 476 開 478 開 480 成 482 成 B 雷 B 1 -B7 雷 BS 光67 Lens system 68 Laser emission part 69 Mirror 70 Total internal reflection 稜鏡 7 1 Collecting lens 7 2 Rod integrator 73 稜鏡 pair 74 Imaging lens 100 Heating zone 110 Porous laser 1 10a Emission location 111 Heating zone 113 Rod shape Lens 114 Lens array 120 Collection lens 130 Multi-mode fiber 130a Core 140 Laser array 144 Laser light source 150 Patterning material 152 Platform 1 54 feet 155a Micro lens 1 56 Workbench 15 8 Guide-116- 200530754 1 60 Gate 1 62 Sweep 1 64 Detect 1 66 Expose 168 Expose 1 70 Expose 1 80 Plus 1 82 Plus 1 84 Standard 454 Put 45 8 Put 468 Expose 472 Micro 474 Micro 476 Open 478 Open 480 into 482 into B mine B 1 -B7 mine BS light
描器 測感應器 光頭 光區域 光區域 熱區 熱區 直透鏡陣列 大透鏡 大透鏡 光區域 透鏡陣列 透鏡 口陣歹ij □ 像系統 像系統 射光束 射光束 束點 LD1-LD7 GaN半導體雷射Scanner Measuring Sensor Optical Head Light Area Light Area Hot Area Hot Area Straight Lens Array Large Lens Large Lens Light Area Lens Array Lens Array 歹 ij □ Image System Image System Beam Beam Beam Spot LD1-LD7 GaN Semiconductor Laser
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004035792 | 2004-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200530754A true TW200530754A (en) | 2005-09-16 |
Family
ID=34857699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94103896A TW200530754A (en) | 2004-02-12 | 2005-02-05 | Pattern forming process |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20060111692A (en) |
CN (1) | CN100433254C (en) |
TW (1) | TW200530754A (en) |
WO (1) | WO2005078776A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008538011A (en) * | 2005-03-25 | 2008-10-02 | フジフィルム・エレクトロニック・マテリアルズ・ユーエスエイ・インコーポレイテッド | Pretreatment composition |
JP2007078894A (en) * | 2005-09-12 | 2007-03-29 | Fujifilm Corp | Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus, and pattern forming method |
EP2196855A1 (en) * | 2008-12-10 | 2010-06-16 | CST GmbH | Exposure head and method for producing printing plates |
KR102173148B1 (en) * | 2015-02-04 | 2020-11-02 | 동우 화인켐 주식회사 | Photosensitive resin comopsition, photocurable pattern formed from the same and image display comprising the pattern |
US11537051B2 (en) * | 2017-03-16 | 2022-12-27 | Nikon Corporation | Control apparatus and control method, exposure apparatus and exposure method, device manufacturing method, data generating method and program |
CN110196531B (en) * | 2019-06-03 | 2020-12-11 | 珠海市能动科技光学产业有限公司 | Dry film photoresist |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0991959B1 (en) * | 1996-02-28 | 2004-06-23 | Kenneth C. Johnson | Microlens scanner for microlithography and wide-field confocal microscopy |
JP2003276247A (en) * | 2002-03-26 | 2003-09-30 | Oki Data Corp | Optical printing head, production method therefor and imaging apparatus |
JP4731787B2 (en) * | 2002-04-10 | 2011-07-27 | 富士フイルム株式会社 | Exposure head and exposure apparatus |
EP1369731A3 (en) * | 2002-06-07 | 2008-02-13 | FUJIFILM Corporation | Exposure head and exposure apparatus |
US7088353B2 (en) * | 2002-07-10 | 2006-08-08 | Fuji Photo Film Co., Ltd. | Display device |
US7110082B2 (en) * | 2003-06-24 | 2006-09-19 | Asml Holding N.V. | Optical system for maskless lithography |
-
2005
- 2005-02-04 CN CNB2005800045976A patent/CN100433254C/en not_active Expired - Fee Related
- 2005-02-04 KR KR1020067016094A patent/KR20060111692A/en not_active Application Discontinuation
- 2005-02-05 TW TW94103896A patent/TW200530754A/en unknown
- 2005-02-07 WO PCT/JP2005/002112 patent/WO2005078776A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2005078776A1 (en) | 2005-08-25 |
CN100433254C (en) | 2008-11-12 |
KR20060111692A (en) | 2006-10-27 |
CN1918696A (en) | 2007-02-21 |
WO2005078776A8 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101411346B1 (en) | Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and method of pattern formation | |
CN1950750B (en) | Pattern forming material, pattern forming apparatus and pattern forming method | |
TWI375127B (en) | Pattern-forming material, pattern-forming device and pattern-forming method | |
TWI400563B (en) | Pattern-forming composition, pattern-forming material, pattern-forming device, and pattern-forming method | |
KR101516613B1 (en) | Material for pattern formation, apparatus for pattern formation, and method for pattern formation | |
WO2005116774A1 (en) | Pattern formation method | |
WO2006059534A1 (en) | Pattern forming material and pattern forming method | |
TW200530754A (en) | Pattern forming process | |
JP2006154740A (en) | Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and method of pattern formation | |
JP2006227223A (en) | Composition for pattern formation, pattern forming material, and pattern forming method | |
TWI385481B (en) | Photosensitive solder resist composition, photosensitive solder resist film, pattern and method for forming the same | |
WO2005124462A1 (en) | Photosensitive composition, method for forming pattern, and permanent pattern | |
JP2006243680A (en) | Pattern forming process | |
JP2007093796A (en) | Pattern forming material, pattern forming apparatus and pattern forming method | |
JP2005258431A (en) | Pattern forming process | |
CN100478785C (en) | Pattern forming method | |
JP2007078893A (en) | Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method | |
KR20070017039A (en) | Photosensitive composition, color filter and manufacturing method thereof, liquid crystal display device | |
JP2007025176A (en) | Pattern forming material, pattern forming apparatus, and method for forming permanent pattern | |
JP4916141B2 (en) | Color filter forming material, color filter manufacturing method, color filter, and liquid crystal display device | |
JP2006208734A (en) | Pattern forming method | |
JP4546276B2 (en) | Pattern forming material, pattern forming apparatus and pattern forming method | |
JP2006308980A (en) | Pattern forming material and method, and pattern | |
JP2006293039A (en) | Pattern forming material, pattern forming apparatus and pattern forming method | |
JP2006308701A (en) | Pattern forming material, pattern forming apparatus and pattern forming method |