WO2005124462A1 - Photosensitive composition, method for forming pattern, and permanent pattern - Google Patents

Photosensitive composition, method for forming pattern, and permanent pattern Download PDF

Info

Publication number
WO2005124462A1
WO2005124462A1 PCT/JP2005/010609 JP2005010609W WO2005124462A1 WO 2005124462 A1 WO2005124462 A1 WO 2005124462A1 JP 2005010609 W JP2005010609 W JP 2005010609W WO 2005124462 A1 WO2005124462 A1 WO 2005124462A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern forming
lens
photosensitive composition
pattern
Prior art date
Application number
PCT/JP2005/010609
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Iwasaki
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to JP2006514715A priority Critical patent/JPWO2005124462A1/en
Publication of WO2005124462A1 publication Critical patent/WO2005124462A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/035Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • Photosensitive composition pattern forming method and permanent pattern
  • the present invention provides a photosensitive material that is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, significantly improves the flexibility of a cured film, and is suitable for use in the production of flexible printed circuit boards.
  • the present invention relates to a hydrophilic composition, a pattern forming method and a permanent pattern. Background art
  • Patent Document 1 discloses a photocurable resin obtained by reacting a reaction product of a novolak type epoxy conjugate with an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic anhydride, There has been proposed a solder resist ink composition containing a polymerization initiator, a diluent, and an epoxy conjugate having two or more epoxy groups.
  • solder resist ink composition based on the novolak type epoxy resin has excellent heat resistance due to its structure, the cured film is hard and brittle. There is a disadvantage that adhesion is poor. Therefore, the use of the solder resist ink composition is limited to a rigid substrate such as a glass epoxy substrate, which does not require the flexibility of a cured film.
  • solder resist ink composition having flexibility.
  • a polycarboxylic acid resin having an unsaturated group which is a reaction product of a bisphenol A type epoxy resin, an unsaturated monocarboxylic acid, and succinic anhydride, a photopolymerization initiator, a diluent, and a curing agent
  • Patent Document 2 proposes a solder resist ink composition containing (see Patent Document 2).
  • photosensitive resin use of a polyurethane resin soluble in a dilute alkaline aqueous solution has been detected. Is being debated.
  • a photosensitive resin composition containing the agent (C) has been proposed (see Patent Document 3).
  • Patent Document 4 discloses a photosensitive photosensitive resin having a carboxyl group obtained by reacting a saturated or unsaturated polybasic acid anhydride with an esterified product of an epoxy conjugate and an unsaturated monocarboxylic acid ( A), a photosensitive polyamide resin having a carboxyl group and at least one photosensitive resin selected from a photosensitive polyamideimide resin having a carboxyl group (B), an elastomer (C), and an epoxy curing agent (D ) And a photosensitive resin composition containing a photopolymerization initiator (E).
  • Patent Document 1 Japanese Patent Publication No. 1-54390
  • Patent Document 2 JP-A-8-134390
  • Patent Document 3 JP-A-10-246958
  • Patent Document 4 JP-A-11-288087
  • the present invention is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, greatly improves the flexibility of a cured film, and is suitable for use in the production of flexible printed wiring boards.
  • An object of the present invention is to provide a photosensitive composition, a pattern forming method and a permanent pattern.
  • a photosensitive composition comprising at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent. . ⁇ 2> (A) Polyurethane resin having a carboxyl group is represented by a diisocyanate compound represented by the following structural formula (I) and a difference between the following structural formulas ( ⁇ ⁇ ) and ( ⁇ ) The photosensitive composition according to ⁇ 1>, wherein the photosensitive composition is reacted with
  • R 1 represents a divalent hydrocarbon group.
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group.
  • R 3 to R 5 may be the same or different, and represent a divalent hydrocarbon group.
  • Ar represents a trivalent aromatic hydrocarbon group. ! ⁇ To and Ar may be further substituted by a substituent.
  • R 2 , R 3 , R 4 and R 5 may form a ring by connecting two or three adjacent groups.
  • the (D) thermal crosslinking agent is selected from an epoxy resin compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative.
  • the photosensitive composition according to any one of ⁇ 1> to ⁇ 3>, which is at least one kind.
  • ⁇ 5> The method according to ⁇ 1> to ⁇ 4>, which is used for manufacturing a flexible printed circuit board.
  • V the photosensitive composition described in any of the above.
  • ⁇ 6> The photosensitive composition according to any one of ⁇ 1> to ⁇ 5>, is applied to a surface of a substrate, dried to form a photosensitive layer, exposed, and developed. This is a pattern forming method.
  • the photosensitive layer modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means
  • the pattern forming method according to ⁇ 6> wherein the pattern is exposed by light passing through a microlens array in which microlenses having an aspheric surface capable of correcting aberration due to surface distortion are arranged.
  • the photosensitive layer modulates the light from the light irradiating unit by the light modulating unit having n pixel units that receive and emit the light from the light irradiating unit, and ⁇ 6>
  • the pattern forming method according to ⁇ 6> wherein the light is exposed to light having passed through a microlens array in which microlenses having lens opening shapes are arranged without allowing light from the part to enter.
  • Microlens force The pattern forming method according to ⁇ 8>, wherein the pattern forming method has an aspheric surface capable of correcting aberration due to distortion of an emission surface in a picture element portion.
  • ⁇ 12> Lens opening shape force
  • the light modulating means can control any of the n less than n picture elements arranged continuously from among the n picture elements according to the pattern information. 12>
  • ⁇ 14> The pattern forming method according to any one of ⁇ 7> to ⁇ 13>, wherein the light modulating means is a spatial light modulating element.
  • the light irradiating means includes a plurality of lasers, a multi-mode optical fiber, and a collective optical system for condensing each of the plurality of laser beams irradiated and for coupling the laser beam to the multi-mode optical fiber.
  • the pattern forming method according to any one of the above ⁇ 7> to ⁇ 15>.
  • ⁇ 17> The pattern forming method according to ⁇ 16>, wherein the wavelength of the laser beam is 395 to 415 nm.
  • ⁇ 18> A permanent pattern formed by the pattern forming method according to any one of ⁇ 6> to ⁇ 17>.
  • the photosensitive composition of the present invention contains at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent.
  • the (A) polyurethane resin having a carboxyl group is produced by reacting a diisocyanate conjugate having a specific structure with a diol conjugate having a specific structure.
  • a photosensitive composition excellent in dilute alkali developability is obtained, and the cured film has excellent flexibility, adhesion, solder heat resistance, folding resistance, and pressure tacker resistance, and is suitable for flexible wiring printing. It is suitable for manufacturing substrates.
  • the conventional problems can be solved, and the developability, solder heat resistance, folding resistance, and pressure tacker resistance are excellent, the flexibility of the cured film is greatly improved, and the flexible print is achieved.
  • the present invention can provide a photosensitive composition, a pattern forming method, and a permanent pattern which are suitably used for manufacturing a wiring board.
  • FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 2A is an example of an explanatory diagram for explaining the operation of a DMD.
  • FIG. 2B is an example of an explanatory diagram for explaining the DMD operation similar to FIG. 2A.
  • FIG. 3A is an example of a plan view showing a comparison of the arrangement of exposure beams and scanning lines when a DMD is not arranged in an inclined manner and when a DMD is arranged in an inclined manner.
  • FIG. 3B shows a case where the same DMD as in FIG.
  • FIG. 4 is an example of a plan view showing the arrangement of exposure beams and scanning lines in comparison.
  • FIG. 4A is an example of a diagram showing an example of a DMD use area.
  • FIG. 4B is an example of a diagram showing an example of a DMD use area similar to FIG. 4A.
  • FIG. 5 is an example of a plan view for explaining an exposure method for exposing a pattern forming material in one scan by a scanner.
  • FIG. 6A is an example of a plan view for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner.
  • FIG. 6B is an example of a plan view for explaining an exposure method for exposing the pattern forming material by a plurality of scans by the same scanner as in FIG. 6A.
  • FIG. 7 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 8 is an example of a schematic perspective view showing a configuration of a scanner of the pattern forming apparatus.
  • FIG. 9A is an example of a plan view showing an exposed area formed on a pattern forming material.
  • FIG. 9B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
  • FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including a light modulation unit.
  • FIG. 11 is an example of a cross-sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG.
  • FIG. 12 is an example of a controller that controls DMD based on pattern information.
  • FIG. 13A is an example of a cross-sectional view along an optical axis showing a configuration of another exposure head having a different coupling optical system.
  • FIG. 13B is an example of a plan view showing a light image projected on a surface to be exposed when a microlens array or the like is not used.
  • FIG. 13C is an example of a plan view showing a light image projected on a surface to be exposed when a microlens array or the like is used.
  • FIG. 14 is an example of a diagram showing, by contour lines, distortion of a reflecting surface of a micro mirror constituting a DMD.
  • FIG. 15A is an example of a graph showing distortion of a reflecting surface of the micromirror in two diagonal directions of the mirror.
  • FIG. 15B is an example of a graph showing the same distortion of the reflecting surface of the micro mirror as in FIG. 15A in two diagonal directions of the mirror.
  • FIG. 16A is an example of a front view of a microlens array used in a pattern forming apparatus.
  • FIG. 16B is an example of a side view of the microlens array used in the pattern forming apparatus.
  • FIG. 17A is an example of a front view of microlenses constituting a microlens array.
  • FIG. 17B is an example of a side view of a micro lens constituting a micro lens array.
  • FIG. 18A is an example of a schematic diagram showing a light condensing state by a microlens in one section.
  • FIG. 18B is an example of a schematic diagram showing a light condensing state by a microlens in one section.
  • FIG. 19A is an example of a diagram showing a result of simulating a beam diameter near a condensing position of a microlens of the present invention.
  • FIG. 19B is an example of a diagram showing the same simulation result as FIG. 19B at another position.
  • FIG. 19C is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
  • FIG. 19D is an example of a diagram showing the same simulation result as FIG. 19A at another position.
  • FIG. 20A is an example of a diagram showing a result of simulating a beam diameter near a condensing position of a microlens in a conventional pattern forming method.
  • FIG. 20B is an example of a view showing the same simulation result as FIG. 20A at another position.
  • FIG. 20C is an example of a view showing the same simulation result as FIG. 20A at another position.
  • FIG. 20D is an example of a diagram showing the same simulation result as FIG. 20A at another position.
  • FIG. 21 is an example of a plan view showing another configuration of the multiplexed laser light source.
  • FIG. 22A is an example of a front view of microlenses constituting a microlens array.
  • FIG. 22B is an example of a side view of a micro lens constituting a micro lens array.
  • FIG. 23A is an example of a schematic diagram showing the state of light condensing by the microlenses of FIGS. 22A and 22B in one cross section.
  • FIG. 23B is an example of a schematic diagram showing an example of a cross section different from the example of FIG. 23A.
  • FIG. 24A is an example of an explanatory diagram showing the concept of correction by a light amount distribution correction optical system.
  • FIG. 24B is an example of an explanatory diagram showing the concept of correction by the light amount distribution correction optical system.
  • FIG. 24C is an example of an explanatory diagram illustrating the concept of correction by the light amount distribution correction optical system.
  • FIG. 25 is an example of a graph showing a light quantity distribution when the light irradiation means has a Gaussian distribution and does not correct the light quantity distribution.
  • FIG. 26 is an example of a graph showing a light quantity distribution after correction by a light quantity distribution correction optical system.
  • FIG. 27A is a perspective view showing a configuration of a fiber array light source.
  • FIG. 27A (B) is an example of a partially enlarged view of FIG. 27 (A)
  • FIG. 27A (C) and FIG. () Is an example of a plan view showing an arrangement of light emitting points in the laser emitting section.
  • FIG. 27B is an example of a front view showing an arrangement of light emitting points in a laser emitting section of the fiber array light source.
  • FIG. 28 is an example of a diagram showing a configuration of a multimode optical fiber.
  • FIG. 29 is an example of a plan view showing a configuration of a multiplexed laser light source.
  • FIG. 30 is an example of a plan view showing a configuration of a laser module.
  • FIG. 31 is an example of a side view showing a configuration of the laser module shown in FIG. 30.
  • FIG. 32 is a partial side view showing the configuration of the laser module shown in FIG. 30.
  • FIG. 33 is an example of a perspective view showing a configuration of a laser array.
  • FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser.
  • FIG. 34B is an example of a perspective view of a multi-cavity laser ray in which the multi-cavity lasers shown in FIG. 34A are arranged in an array.
  • FIG. 35 is an example of a plan view showing another configuration of the multiplexed laser light source.
  • FIG. 36A is an example of a plan view showing another configuration of the multiplexed laser light source.
  • FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 36A.
  • FIG. 37A shows the depth of focus of a conventional exposure apparatus and the pattern forming method of the present invention.
  • FIG. 4 is an example of a cross-sectional view along an optical axis showing a difference from a depth of focus by a (pattern forming apparatus).
  • FIG. 37B is an example of a cross-sectional view along the optical axis showing a difference between the depth of focus of the conventional exposure apparatus and the depth of focus of the pattern forming method (pattern forming apparatus) of the present invention.
  • FIG. 38A is a front view showing another example of the microlenses forming the macroarray.
  • FIG. 38B is a side view showing another example of the microlenses forming the macroarray.
  • FIG. 39A is an example of a front view of a micro lens constituting a macro array.
  • FIG. 39B is an example of a side view of a micro lens forming a macro array.
  • FIG. 40 is a graph showing an example of a spherical lens shape.
  • FIG. 41 is a graph showing another example of the lens surface shape.
  • FIG. 42 is a perspective view showing another example of the microlens array.
  • FIG. 43 is a plan view showing another example of the microlens array.
  • FIG. 44 is a plan view showing another example of the microlens array.
  • FIG. 45A is a longitudinal sectional view showing another example of the microlens array.
  • FIG. 45B is a longitudinal sectional view showing another example of the microlens array.
  • FIG. 45C is a longitudinal sectional view showing another example of the microlens array. BEST MODE FOR CARRYING OUT THE INVENTION
  • the photosensitive composition of the present invention comprises at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent. It contains other components as necessary.
  • the polyurethane resin having a carboxyl group is not particularly limited and can be appropriately selected depending on the purpose.
  • a diisocyanate compound represented by the following structural formula (I) may be selected from the following. Those obtained by reacting the diol conjugate represented by the structural formula (II) and the formula (II) below are preferred.
  • R 1 represents a divalent hydrocarbon group, for example, a divalent aliphatic hydrocarbon group or a divalent aromatic hydrocarbon group.
  • a divalent aliphatic hydrocarbon group an anoalkylene group is preferable, and examples thereof include ethylene, propylene, butylene, and amylene. And hexylene.
  • an arylene group obtained by removing one hydrogen atom from an aryl group is preferable, and examples thereof include a phenylene group.
  • R 1 may have another functional group that does not react with the isocyanate group, for example, an ester group, a urethane group, an amide group, a ureide group, and the like. These may be further substituted by a substituent.
  • substituents examples include a hydroxyl group, a halogen atom, a nitro group, a carboxyl group, a cyano group, an alkyl group, an aryl group and a heterocyclic group.
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include any of an alkyl group, an aralkyl group, an aryl group, an alkoxy group, and an aryloxy group, and these may be further substituted with a substituent.
  • the alkyl group preferably has 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, n-hexyl Group, isohexyl group, n-heptyl group, n-octyl group, isooctyl group and the like.
  • the aralkyl group is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a benzyl group, a phenyl group, and a propyl group.
  • the aryl group is not particularly limited and may be appropriately selected depending on the purpose.Preferred are those having 6 to 15 carbon atoms, for example, a phenyl group, a tolyl group, a xylyl group, a biphenyl group, Examples include a naphthyl group, an anthryl group and a phenanthryl group.
  • the alkoxy group preferably has 1 to L0 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a propoxy group and a butoxy group.
  • R 3 to R 5 may be the same or different and represent a divalent hydrocarbon group.
  • the divalent hydrocarbon group those similar to the aforementioned R 1 can be used, and an alkylene group having 1 to 20 carbon atoms and an arylene group having 6 to 15 carbon atoms are preferable.
  • Ar represents a trivalent aromatic hydrocarbon group, and examples thereof include an aryl group obtained by removing two hydrogen atoms. ! ⁇ ⁇ And eight! : May be further substituted by a substituent.
  • R 2 , R 3 , R 4 and R 5 may be linked together to form a ring. Examples of the ring include an aromatic ring, an aliphatic ring, and a heterocyclic ring.
  • diisocyanate conjugate represented by the structural formula (I) include, for example, dimer of 2,4-tolylene diisocyanate and 2,4 tolylene diisocyanate 2,6 Tolylene diisocyanate, p-xylylene diisocyanate, meta-xylylene diisocyanate, 4,4, diphenylmethane diisocyanate, 1,5 naphthylene diisocyanate, 3,3'-dimension Aromatic diisocyanate conjugates such as chirpypyru-leu 4,4, diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate, etc.
  • Aliphatic diisocyanate conjugation product isophorone diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), methylcyclohexane-1,4 (or 2 Alicyclic diisocyanate conjugates such as diisocyanate and 1,3- (isocyanatemethyl) cyclohexane; adducts of 1,3 butylene glycol with 1 mol and tolylene diisocyanate with 2 mol;
  • a diisocyanate conjugate which is a reaction product of a diol compound and a diisocyanate conjugate is exemplified. These may be used alone or in combination of two or more.
  • Examples of the diol compound having a carboxyl group represented by the structural formula ( ⁇ ) or the structural formula ( ⁇ ) include 3,5 dihydroxybenzoic acid, 2,2 bis (hydroxymethyl) propionic acid, 2 2,2 bis (hydroxyethyl) propionic acid, 2,2 bis (3 hydroxypropyl) propionic acid, 2,2 bis (hydroxymethyl) acetic acid, bis (4-hydroxyphenyl) acetic acid, 4,4 bis (4- (Hydroxyphenyl) pentanoic acid, tartaric acid and the like. One of these may be used alone, or two or more of them may not be used in combination.
  • the polyurethane resin is a diisocyanate compound represented by the structural formula (I), and a carboxyl represented by the structural formula ( ⁇ ) or the structural formula (III) It may be formed from two or more kinds of diol compounds having a group.
  • the diol compound may have a substituent that does not have a carboxyl group and does not react with another isocyanate compound.
  • the diol compound for example, ethylene glycol, diethylene dali Cornole, triethylene glycolone tetraethylene dalicol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentinole glycol, 1,3 butylene glycol, 1,6 hexanediol, 2-butene 1,4 diol, 2, 2 , 4 Trimethyl-1,3 pentanediol, 1,4 bis ⁇ -hydroxyethoxycyclohexane, cyclohexanedimethanol, tricyclodecanedimethanol, hydrogenated bisphenol ⁇ , hydrogenated bisphenol F, ethylene oxide of bisphenol A Adducts, bisphenol A kneaded with propylene oxide, bisphenol F with kneaded ethylene oxide, bisphenol F with kneaded
  • the polyurethane resin can be synthesized by heating the diisocyanate compound and the diol compound in an aprotic solvent, adding a known catalyst having an activity in accordance with the respective reactivity, and heating.
  • the molar ratio of the diisocyanate compound and the diolide compound is preferably 0.8: 1 to 1.2: 1.
  • the polyurethane resin is finally treated in a form in which the isocyanate group does not remain by treating with an alcohol or an amine.
  • the acid value of the components of the polyurethane ⁇ is more preferably more preferably tool 90 ⁇ 170mgKOHZg force s is 80 ⁇ 300mgKOHZg is preferred instrument 80 ⁇ 180mgKOH / g, particularly preferably 100 ⁇ 1 60mgKOHZg. If the acid value is less than 80 mgKOHZg, the obtained photosensitive composition may not exhibit excellent alkali developability. If the acid value exceeds 300 mgKOH / g, the shape of the pattern from the obtained photosensitive composition may deteriorate. However, high resolution may not be obtained.
  • the acid value is determined by converting a certain amount of polyurethane carboxylic acid to, for example, methoxypropanoic acid. Dissolved in a solvent such as sodium chloride, and titrated with a potassium hydroxide aqueous solution having a known titer. The concentration can be calculated from the neutralization amount.
  • the weight average molecular weight (Mw) of the polyurethane resin having a carboxyl group is preferably 1000 or more, more preferably 5000 to 100,000.
  • the content of the polyurethane resin having a carboxyl group is preferably from 50 to 99.5% by mass, more preferably from 55 to 95% by mass, based on the photosensitive composition. If the content of the polyurethane resin is less than 50% by mass, the objects and effects of the present invention may not be achieved. If the content is too large, the amount of the polymerizable compound relatively decreases. In addition, the alkali developer resistance of the exposed portion, the mechanical strength of the cured film, and the solder heat resistance may deteriorate.
  • the photosensitive composition of the present invention may further contain, if necessary, other resin in an amount of 50% by mass or less based on the polyurethane resin.
  • other resin include polyamide resin, epoxy resin, polyacetal resin, acrylic resin, methacrylic resin, polystyrene resin, and novolac-type phenol resin.
  • the polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the polymerizable compound has at least one, preferably two or more addition-polymerizable groups in the molecule, and has a boiling point of at least one.
  • a compound having a pressure of 100 ° C. or higher is preferred.
  • at least one selected from a monomer having a (meth) acrylic group is preferred.
  • the monomer having a (meth) acrylic group is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) atarylate and polypropylene glycol mono (meth) ataliate. Monofunctional acrylates and monofunctional methacrylates such as phenoxyshethyl (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolethane triatalylate, and trimethylolpropane triaryl.
  • trimethylolpropane tri (meth) atalylate pentaerythritol tetra (meth) atalylate, dipentaerythritolhexa (meth) atalylate, and dipentaerythritol penta (meth) atalylate are particularly preferred.
  • the solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration in developability and a decrease in exposure sensitivity may occur. If the content exceeds 50% by mass, the tackiness of the photosensitive layer may become too strong. Yes, not preferred.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators, which are not particularly limited, as long as the photopolymerization initiator has an ability to initiate polymerization of the polymerizable compound. Those having photosensitivity to visible light produce some action with the preferred photo-excited sensitizer and may be an activator that generates an active radical. It may be an initiator that initiates. It is preferable that the photopolymerization initiator contains at least one component having a molecular extinction coefficient of at least about 50 in the range of about 300 to 800 nm (more preferably, 330 to 500 nm).
  • photopolymerization initiator examples include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.), phosphine oxides, and hexyl pyridines.
  • halogenated hydrocarbon derivatives for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.
  • phosphine oxides examples include hexyl pyridines.
  • halogenated hydrocarbon compound having a triazine skeleton examples include, for example, those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), and British Patent No. 138 8492.
  • the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5 Triazine, 2 — (4 chlorophenyl) — 4, 6 bis (trichloromethyl) — 1, 3, 5 triazine, 2- (4 tolyl) — 4, 6 bis (trichloromethyl) — 1, 3, 5 triazine, 2- (4-methoxyphenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2,4 dichlorophenol) -4,6 bis (trichloromethyl) -1, 3,5 triazine, 2,4,6 tris (trichloromethyl) -1,3,5 triazine, 2-methyl-4,6 bis (trichloromethyl) -1,
  • Examples of the compounds described in the above-mentioned British Patent No. 1388492 include 2-styryl
  • Examples of the compound described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6bis (trichloromethyl) -1,3,5 triazine, (4-ethoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2 ethoxyxetil) -naphtho-1-yl] -4, 6 Bis (trichloromethyl) 1 , 3,5 triazine, 2- (4,7 dimethoxy-1-naphthol 1-yl) 4,6 bis (trichloromethyl) —1,3,5 triazine, and 2- (acenaphth-5-yl) — 4,6 bis (trichloromethyl) -1,3,5 triazine and the like.
  • Examples of the compound described in the specification of German Patent 3337024 include 2- (4-styrenolefenedinole) 4,6, bis (trichloromethinole) -1,3,5 triazine, 2- (4- (4-Methoxystyryl) phenol) -4,6 Bis (trichloromethyl) -1,3,5 triazine, 2- (1—Naphthylbi-lenfene) -14,6 Bis (trichloromethyl) 1,3 , 5 triazine, 2 chlorostyryl-1,4-bis (trichloromethyl) 1,3,5 triazine, 2— (4 thiophene-1 2-bi-enephenyl) -1,4,6 bis (trichloromethyl) 1, 3,5—triazine, 2— (4 thiophene-3 bi-phenylene) -1,4,6 bis (trichloromethyl) 1-1,3,5 triazine, 2— (4 furan-12-biphenylene) 1,4,6
  • the conjugate described in FC Schaefer et al. In J. Org. Chem .; 29, 1527 (1964) includes, for example, 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2,4,6 tris (tribromomethyl) -1,3,5 triazine, 2,4,6 tris (dibromomethyl) 1,3,5 triazine, 2 amino-4-methyl-6 tri (bromomethyl) — 1,3,5 triazine and 2-methoxy-14-methyl-6 trichloromethyl-1,3,5 triazine.
  • Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-phenyl) -4,6bis (trichloromethyl) -1,3,5 triazine, 2— (4—Naphthyl 1-etulfuru-ru 4,6 Bis (trichloromethyl) 1,3,5 triazine, 2— (4— (4 trilueturyl) phenyl) — 4,6 Bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethyrufur) 4,6-bis (trimethylmethyl) 1,3,5 triazine, 2- (4- (4-isopropylphenyl) 4,6 Bis (trichloromethyl) 1,3,5 Triazine, 2— (4— (4ethyl) -leuture) fer) -1,4,6 Bis (trichloromethyl) 1,3 , 5 triazine and the like.
  • Examples of the compound described in JP-A-5-281728 include 2- (4 trifluoromethylphenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6-difluorophenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2,6 dichlorophenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine And 2- (2,6 dibromophenyl) -1,4,6 bis (trichloromethyl) 1,3,5 triazine.
  • JP-A-5-34920 include, for example, 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbolmethylamino) -3-bromophenol.
  • Examples of the compound described in the above-mentioned US Patent No. 4212976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl-1,3,4-oxadiazole, 2 trichloromethyl 1-5— (4-chlorophenol) -1,3,4-oxadiazole, 2 trichloromethyl-15- (1-naphthyl) 1,3,4-oxadiazole, 2 trichloromethyl—5— (2naphthyl) —1,3,4-oxadiazole, 2 trimethyl-methyl-5-phenyl 1,3,4-oxadiazole, 2-trimethylmethyl—5- (2 naphthyl) -1,3,4-oxadiazole; 2 trichloromethyl— 5—styryl—1,3,4-oxadiazole, 2 trichloromethyl—5— (4 chlorstyryl) —1,3,4-oxadiazole, 2
  • Examples of the oxime derivative include 3 benzoyloximinobutane 2 on, 3 acetoximiniobutane 2 on, 3 propionyloxy iminobutane 2 on,
  • polyhalogen compounds such as athalidine derivatives (eg, 9-phenylazine, 1,7-bis (9,9, -atalyzyl) heptane), N-phenylglycine, etc.
  • ketone compound examples include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, and 4-chlorobenzophenone.
  • 4-bromobenzophenone, 2-canoleboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarbonic acid or its tetramethyl ester 4,4,1-bis (dialkylamino) benzophenones (for example, 4 4,4-bis (dimethylamino) benzophenone, 4,4,1-bisdicyclohexylamino) benzophenone, 4,4,1-bis (getylamino) benzophenone, 4,4,1-bis (dihydroxyethylamino) benzophenone, 4- Methoxy-1 4'-dimethylaminobenzophenone, 4 , 4'-Dimethoxybenzophenone, 4-dimethylaminobenz
  • the sensitizer can be appropriately selected according to visible light, ultraviolet light, or visible light laser as a light irradiation means described later.
  • the sensitizer is excited by an active energy ray and interacts with another substance (eg, a radical generator, an acid generator, etc.) (eg, energy transfer, electron transfer, etc.) to generate radicals or radicals. It is possible to generate useful groups such as acids.
  • a radical generator e.g., a radical generator, an acid generator, etc.
  • an acid generator e.g., energy transfer, electron transfer, etc.
  • the sensitizer can be appropriately selected from known sensitizers that are not particularly limited, and examples thereof include known polynuclear aromatics (eg, pyrene, perylene, and triphenylene).
  • Xanthenes eg, fluorescein, eosin, erythricular synth, rhodamine B, rose bengal
  • cyanines eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine
  • merocyanines eg, merocyanine, carbomerocyanine
  • Thiazines for example, thionine, methylene blue, toluidine blue
  • athalidines for example, ataridine orange, chloroflavin, acriflavin
  • anthraquinones for example, anthraquinone
  • squariums for example, squarium
  • ataridones for example, , Ataridon, black Ataridone, N
  • Examples of the combination of the photopolymerization initiator and the sensitizer include an electron transfer type initiator described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye , (2) And electron-accepting initiators and sensitizing dyes, (3) electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiators)].
  • the content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on all components in the photosensitive composition. Particularly preferred is 2 to 10% by mass. If the content is less than 0.05% by mass, the sensitivity to active energy rays will decrease, the exposure process will take time, and productivity may decrease. In some cases, the sensitizer may precipitate from the photosensitive layer.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the photopolymerization initiator include the phosphine oxides, the ⁇ -aminoalkyl ketones, and the halogenated carbonization having the triazine skeleton, which can correspond to a laser beam having a wavelength of 405 nm in exposure described below.
  • the photopolymerization initiator include a composite photoinitiator in which a hydrogen compound is combined with an amine conjugate described below as a sensitizer, a hexaarylbiimidazole compound, or titanocene.
  • the content of the photopolymerization initiator in the photosensitive composition is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, and from 0.5 to 15% by mass. Is particularly preferred.
  • the thermal cross-linking agent is not particularly limited and can be appropriately selected depending on the purpose.
  • the thermal cross-linking agent may be developed.
  • an epoxy resin conjugate, an oxetane conjugate, a polyisocyanate conjugate, or a polyisocyanate conjugate may be reacted with a blocking agent within a range that does not adversely affect the properties.
  • a blocking agent within a range that does not adversely affect the properties.
  • at least one selected from the group consisting of a compound and a melamine derivative may be used.
  • epoxy resin compound for example, a bixylenol type or biphenol type epoxy resin (“# 4000, manufactured by Japan Epoxy Resin Co., Ltd.”) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton and the like (“TEPIC, manufactured by Nissan Chemical Industries, Ltd.”, “Araldite PT810, manufactured by Ciba-Sushi Noreti Chemical Canolezu, etc.”), bisphenol A type epoxy resin, novolak type epoxy resin, bisphenol F type epoxy resin, water Bisphenol A type epoxy resin, glycidinoleamine type epoxy resin, hydantoi Epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenyl methane epoxy resin, bisphenol S epoxy resin, bisphenol A novolak epoxy resin, tetrafluoro- ethane epoxy resin, Glycidyl phthalate resin, tetraglycidyl xylenolethane resin, and naphthalene group-containing epoxy resin (“TEPI
  • Examples of the oxetanei conjugate include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1,2 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methylatarylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers Oxetane group, novolak resin, poly (p-hydroxystyrene), cardo-type bisphenol, calixa
  • thermosetting any compound capable of accelerating the thermosetting other than the above, which is not particularly limited, as long as it can promote the reaction of these with the carboxyl group. You can use it.
  • the solid content of the epoxy resin, the oxetane conjugate, and the compound capable of promoting thermal curing of the epoxy resin and the carboxylic acid with the carboxylic acid in the solid content of the photosensitive composition is usually 0.01 to 15% by mass. Puru.
  • a polyisocyanate conjugate described in JP-A-5-9407 can be used, and the polyisocyanate conjugate has at least two isocyanate groups. May be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing Specifically, a mixture of 1,3 phenylenediisocyanate and 1,4 phenylenediisocyanate, 2,4 and 2,6 toluene diisocyanate, 1,3 and 1,4 xylylene diisocyanate Bifunctional isocyanates such as bis (4 isocyanate phenyl) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; A polyfunctional alcohol of a bifunctional isocyanate with trimethylolpropane, pentalithol, glycer
  • Cyclic trimers such as xamethylene 1,6 diisocyanate and its derivatives; It is. Further, for the purpose of improving the storage stability of the photosensitive composition of the present invention, a compound obtained by reacting a blocking agent with an isocyanate group of the above polyisocyanate and its derivative may be used.
  • isocyanate group blocking agent examples include alcohols such as isopropanol and tert.-butanol; ⁇ - ratatams such as kyprolatatam; phenol, cresol, ⁇ -tert.-butynolephenole, p-sec.—butino Phenols, p-sec.—aminophenols, phenols such as p-octylphenol and p-norphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridin and 8-hydroxyquinoline; dialkyl Active methylene conjugates such as malonate, methylethyl ketoxime, acetylacetone, alkyl acetoacetate oxime, acetoxime and cyclohexanone oxime; In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in a molecule described in JP-A-6-295060 can be used.
  • a melamine derivative can be used as the thermal crosslinking agent.
  • the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, or the like). These may be used alone or in combination of two or more.
  • hexamethylated methylol melamine is particularly preferred because alkylated methylol melamine is preferred in that storage stability is good and the surface hardness of the photosensitive layer is effective in improving the film strength itself of the cured film. .
  • the solid content of the thermal crosslinking agent in the solid content of the photosensitive composition is preferably 1 to 40% by mass, more preferably 3 to 20% by mass. If the solid content is less than 1% by mass, no improvement in film strength of the cured film is observed, and if it exceeds 40% by mass, developability and exposure sensitivity may decrease.
  • the other components include a thermal polymerization inhibitor, a plasticizer, a coloring agent (colored pigment or dye), an extender pigment, and the like, and further, an adhesion promoter to the substrate surface and other auxiliary agents.
  • Agents e.g., conductive particles, fillers, defoamers, flame retardants, leveling agents, Promoters, antioxidants, fragrances, surface tension adjusters, chain transfer agents, etc..
  • the thermal polymerization inhibitor may be added to prevent thermal polymerization or polymerization with time of the polymerizable compound.
  • thermal polymerization inhibitor examples include 4-methoxyphenol, hydroquinone, alkyl- or aryl-substituted hydroquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-12-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6-di-t-butyl-4 cresol, 2,2-methylenebis (4-methyl-6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, a reaction product of copper and an organic chelating agent, methyl salicylate, and phenothiazine, a nitrosoy conjugate, and a chelate of A1 and a chels.
  • the content of the thermal polymerization inhibitor is preferably from 0.001 to 5% by mass, more preferably from 0.005 to 2% by mass, based on the polymerizable compound. % By weight is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may decrease, and if it exceeds 5% by mass, the sensitivity to active energy rays may decrease.
  • the color pigment may be appropriately selected depending on the purpose, for which there is no particular limitation. For example, Victor! J Pure Blue BO (CI 42595), Auramine (CI 41000), and Fat'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11') Huaster 'Pink B Supra (CI Pigment' Red 81 ') Monastral' First 'Blue (CI Pigment' Blue 15 '), Monolight 'First' Black B (CI Pigment 'Black 1'), Carbon, CI Pigment 'Red 97, C.
  • Victor! J Pure Blue BO CI 42595
  • Auramine CI 41000
  • the solid content of the coloring composition in the solid content of the photosensitive composition can be determined in consideration of the exposure sensitivity and the resolution of the photosensitive layer at the time of forming a permanent pattern. Power that varies depending on type of paint Generally 0.05-: LO mass% is preferred 0.1-5 mass% force is more preferred.
  • the photosensitive composition if necessary, for the purpose of improving the surface hardness of the permanent pattern, or reducing the coefficient of linear expansion, or for reducing the dielectric constant or dielectric loss tangent of the cured film itself.
  • inorganic pigments and organic fine particles can be added.
  • the inorganic pigment can be appropriately selected from known inorganic pigments having no particular restrictions.
  • examples thereof include kaolin, barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, fumed silica, and silica.
  • examples include fixed silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and myriki.
  • the average particle size of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. When the average particle diameter is 10 m or more, the resolution may be deteriorated due to light scattering.
  • the organic fine particles are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Spherical porous fine particles made of silica or crosslinked resin having an average particle size of 1 to 5 / ⁇ and an oil absorption of about 100 to 200 m 2 Zg can be used.
  • the addition amount of the extender is preferably 5 to 60% by mass. If the addition amount is less than 5% by mass, the coefficient of linear expansion may not be sufficiently reduced, and may exceed 60% by mass.
  • the film quality of the cured film becomes brittle, and when a wiring is formed using a permanent pattern, the function of the wiring as a protective film is impaired. It may be.
  • a known adhesion promoter can be used for each layer.
  • Preferred examples of the adhesion promoter include the adhesion promoters described in JP-A-5-11439, JP-A-5-341532, JP-A-6-43638, and the like. . Specifically, benzimidazole, benzoxazole, benzthiazole, 2 mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3 morpholinomethyl-1 phenyletriazole-2 thione, 3 morpholino Methyl 5 phenyl oxaziazole 2 thione, 5 amino-3 morpholinomethyl thiadiazole 2 thione, and 2 mercapto 5 methyl thiothiadiazole, triazole, tetrazole, benzotriazole, carboxy benzotriazole, benzotriazole containing amino group, silane coupling agent, etc. No.
  • the content of the adhesion promoter is preferably from 0.001% by mass to 20% by mass, more preferably from 0.01% to 10% by mass, based on all components in the photosensitive composition. 0.1 mass% to 5 mass% is particularly preferred.
  • the photosensitive composition of the present invention is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, and significantly improves the flexibility of a cured film. For this reason, printed wiring boards (multilayer wiring boards, build-up wiring boards, etc.), display materials such as color filters and pillars, ribs, spacers, partitions, etc., and permanent patterns such as holograms, micromachines, and proofs are formed. It can be widely used for applications, and in particular, can be suitably used for the photosensitive composition, the permanent pattern and the method for forming the same of the present invention.
  • the photosensitive layer is formed by the photosensitive composition of the present invention.
  • the photosensitive layer receives at least the light of the light irradiating means in an exposure step described later.
  • a light modulating means having n picture element portions for emitting and emitting light
  • a micro-sphere having an aspheric surface capable of correcting an aberration due to distortion of an emission surface in the picture element portion.
  • the thickness of the photosensitive layer can be appropriately selected depending on the particular purpose, but is, for example, preferably 3 to: LOO m force, and more preferably 5 to 70 m.
  • a photosensitive composition solution is prepared by dissolving, emulsifying, or dispersing the photosensitive composition of the present invention in water or a solvent on a substrate. Is directly applied and dried to laminate.
  • the solvent of the photosensitive composition solution can be appropriately selected depending on the purpose without particular limitation. Examples thereof include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-butanol.
  • Alcohols such as hexanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and diisobutyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate Esters such as ethyl, benzoate, and methoxypropyl acetate; Aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene; Carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, chloride C, such as methylene and monochrome benzene Genated hydrocarbons; ethers such as tetrahydrofuran, getyl ether, ethylene glycolone monomethinoleate, ethylene
  • the coating method can be appropriately selected depending on the purpose without particular limitation.
  • the drying conditions vary depending on each component, type of solvent, usage ratio, and the like, It is usually at a temperature of 60 to 110 ° C for about 30 seconds to 15 minutes.
  • the permanent pattern of the present invention is obtained by the pattern forming method of the present invention.
  • the photosensitive composition of the present invention is applied to the surface of a substrate, dried to form a photosensitive layer, exposed, and developed.
  • the photosensitive composition can be applied to a flexible substrate, and can be exposed by a roll-to-roll process, thereby improving productivity. Improve dramatically.
  • the substrate is not particularly limited, and may be appropriately selected from known materials having high surface smoothness and those having a surface with unevenness.
  • a plate-like substrate is preferable.
  • the force includes a substrate for forming a flexible printed wiring board (eg, a copper-clad laminate), a glass plate (eg, a soda glass plate), a synthetic resin film, paper, a metal plate, and the like.
  • the printed wiring board forming substrate has already been formed with wiring because it enables high-density mounting of semiconductors and the like on multilayer wiring boards and build-up wiring boards, which are preferred by flexible printed wiring board forming substrates. It is particularly preferred that
  • the substrate is exposed to light, as will be described later, on the photosensitive layer in the laminate in which the photosensitive layer of the photosensitive composition is formed on the substrate, thereby curing the exposed region.
  • a permanent pattern can be formed by development described later.
  • the method of forming the laminate may be appropriately selected depending on the purpose, and the method is not particularly limited. Is preferred.
  • the method of coating and drying can be appropriately selected depending on the particular purpose without limitation.
  • the method of forming a photosensitive layer in the photosensitive composition may include the method of forming a photosensitive layer.
  • drying can be performed in the same manner as in the application and drying. Examples include a method of applying the optical composition solution using a spin coater, a slit spin coater, a roll coater, a die coater, a curtain coater, or the like.
  • the light from the light irradiating unit is modulated by a light modulating unit having at least n pixel units that receive and emit light of at least the power of the light irradiating unit.
  • a light modulating unit having at least n pixel units that receive and emit light of at least the power of the light irradiating unit.
  • Light passing through a microlens array having a microlens having an aspheric surface capable of correcting aberration due to distortion or light from a peripheral portion of the picture element portion is not incident.
  • This is a step of exposing the photosensitive layer formed in the photosensitive layer forming step by light passing through a microlens array in which lenses are arranged.
  • the light from the light irradiating unit is modulated by a light modulating unit having at least n pixel units that receive and emit light with the power of the light irradiating unit.
  • a light modulating unit having at least n pixel units that receive and emit light with the power of the light irradiating unit.
  • Exposing the photosensitive layer formed in the photosensitive layer forming step by light passing through a microlens array having microlenses arranged therein.
  • the light emitted from the light irradiation means can be appropriately selected depending on the purpose without particular limitation.
  • a photopolymerization initiator or a sensitizer is activated.
  • Suitable examples include electromagnetic waves, ultraviolet to visible light, electron beams, X-rays, and laser beams. Of these, laser beams that can perform on / off control of light in a short time and easily control light interference are preferable.
  • the wavelength of the ultraviolet light and visible light can be appropriately selected depending on the particular purpose, but 330-65 Onm is preferable for the purpose of shortening the exposure time of the photosensitive composition. It is more preferably at 395-415 nm, and particularly preferably at 405 nm.
  • the method of irradiating the light by the light irradiating means can be appropriately selected depending on the particular purpose, for example, a high-pressure mercury lamp, a xenon lamp, a carbon arc lamp, a halogen lamp, a cold cathode tube for a copying machine, an LED. Irradiation with a known light source such as a semiconductor laser. Method.
  • a laser beam in which two or more lights are combined may be referred to as a “combined laser beam”. Is particularly preferred.
  • the method of irradiating the multiplexed laser beam can be appropriately selected depending on the particular purpose.
  • a plurality of laser light sources, a multi-mode optical fiber, and a laser radiated from the plurality of laser light sources are used.
  • any method may be used as long as it is a method of modulating light by n light-modulating means having n picture elements for receiving and emitting light from the light irradiating means.
  • the restriction can be appropriately selected depending on the purpose to be relaxed.However, a method of controlling any of less than n successively arranged picture elements out of n picture elements according to the pattern information is used. It is preferably listed.
  • the number (n) of the picture element portions can be appropriately selected depending on the particular purpose, but is preferably 2 or more.
  • the arrangement of the picture element portions in the light modulating means can be appropriately selected according to the purpose to which there is no particular limitation.
  • the arrangement of the picture element portions is preferably arranged in a two-dimensional grid. Is more preferred,.
  • the method of modulating the light can be appropriately selected depending on the particular purpose, but a method using a spatial light modulating element as the light modulating means is preferably exemplified as the spatial light modulating element.
  • a method using a spatial light modulating element as the light modulating means is preferably exemplified as the spatial light modulating element.
  • DMD digital “Micro Mirror Device”
  • MEMS Micro Electro Mechanical Systems
  • SLM Micro Electro Mechanical Systems
  • PZT element An optical element that modulates transmitted light by an electro-optic effect
  • FLC liquid crystal optical shutter
  • the light modulated by the modulating means is a microlens array in which microlenses having an aspheric surface capable of correcting aberration due to distortion of an emission surface in the picture element portion, or A lens that does not allow light from the periphery of the picture element to enter
  • the light can pass through a microlens array in which microlenses having an opening shape are arranged.
  • the microlenses arranged in the microlens array are not particularly limited.For example, those having an aspherical surface are preferred, and the aspherical surface is more preferably a microlens having a toric surface! / ,.
  • the light modulated by the modulating means is passed through an aperture array, a coupling optical system, another optical system appropriately selected, or the like.
  • the method of exposing the photosensitive layer can be appropriately selected depending on the purpose without particular limitation. Examples thereof include digital exposure and analog exposure, and digital exposure is preferable. is there.
  • the method of the digital exposure can be appropriately selected depending on the purpose without particular limitation. For example, using a laser beam modulated according to a control signal generated based on predetermined pattern information. Preferably, it is performed.
  • the method of exposing the photosensitive layer is not particularly limited and may be appropriately selected depending on the intended purpose. It is particularly preferable to use together with the digital micromirror device (DMD), which is preferably performed while relatively moving the photosensitive layer and the photosensitive layer.
  • DMD digital micromirror device
  • the exposure may be performed in an inert gas atmosphere.
  • the method of exposing the photosensitive layer formed in the photosensitive layer forming step can be appropriately selected depending on the purpose without particular limitation.
  • an inert gas is directly blown onto the surface of the photosensitive layer.
  • the exposure space as a sealed space and introduce an inert gas into the sealed space under reduced pressure.
  • the inert gas can be appropriately selected depending on the purpose without particular limitation as long as the polymerization reaction of the photosensitive layer can be prevented from being inhibited by the influence of oxygen.
  • Examples include nitrogen, helium, and anoregon.
  • FIG. 7 is a schematic perspective view showing the appearance of a pattern forming apparatus suitably used in the pattern forming method of the present invention.
  • the pattern forming apparatus including the light modulating means adsorbs a sheet-like pattern forming material 150 on the upper surface of a thick plate-like mounting table 156 supported by four legs 154.
  • the stage 152 is provided with a flat plate-shaped stage 152 for holding the stage.
  • the stage 152 is arranged so that its longitudinal direction is directed to the stage moving direction, and is supported so as to be able to reciprocate by a guide 158 formed on the upper surface of the mounting table 156.
  • the pattern forming apparatus has a driving device (not shown) for driving the stage 152 along the guide 158.
  • a downward C-shaped gate 160 is provided so as to straddle the movement path of the stage 152.
  • Each end of the gate 160 is fixed to both side surfaces at the center in the longitudinal direction of the mounting base 156.
  • a scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the leading and trailing ends of the pattern forming material 150 are provided on the other side. Is provided.
  • the scanner 162 and the detection sensor 164 are attached to the gate 160, respectively, and are fixed above the moving path of the stage 152. Note that the scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
  • FIG. 8 is a schematic perspective view showing the configuration of the scanner.
  • FIG. 9A is a plan view showing an exposed area formed on the photosensitive layer
  • FIG. 9B is a view showing an arrangement of exposure areas by an exposure head.
  • the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (for example, 3 rows and 5 columns). .
  • four exposure heads 166 are arranged on the third line in relation to the width of the pattern forming material 150.
  • the exposure area 168 of the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Therefore, with the movement of the stage 152, a strip-shaped exposed region 170 is formed on the pattern forming material 150 for each exposure head 166.
  • the exposure area 168 When the exposure area of each exposure head arranged in the m-th row and the n-th column is indicated, the exposure area 168
  • each of the exposure heads in each row arranged in a line so that the strip-shaped exposed areas 170 are arranged without gaps in a direction orthogonal to the sub-scanning direction is provided. They are arranged at predetermined intervals (a natural number times the long side of the exposure area, twice in this example) in the arrangement direction. Therefore, the exposure between the exposure area 168 of the first row and the exposure area 168 cannot be performed.
  • Area is to be exposed by the exposure area 168 on the second row and the exposure area 168 on the third row.
  • FIG. 10 is a perspective view showing a schematic configuration of the exposure head.
  • the light modulating means that modulates light according to (a spatial light modulating element that modulates each pixel)
  • DMD Digital micromirror device 50 manufactured by Instrumentmen Co., Ltd. and a light emitting side (light emitting point) of an optical fiber arranged on the light incident side of DMD50.
  • Exposure area 168 Fiber array light source 66 as light irradiating means 66 with laser emitting unit 68 arranged in a line along the direction corresponding to the long side direction of laser and laser light emitted from fiber array light source 66
  • a lens system 67 that focuses the laser beam on the DMD, a mirror 69 that reflects the laser beam transmitted through the lens system 67 toward the DMD 50, and an image of the laser beam B reflected by the DMD 50 on the pattern forming material 150.
  • an imaging optical system 51 In FIG. 10, the lens system 67 is schematically illustrated.
  • FIG. 12 shows a controller that controls DMD based on pattern information.
  • the DMD 50 is connected to a controller 302 having a data processing unit, a mirror drive control unit, and the like, as shown in FIG.
  • the data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the area to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information.
  • the area to be controlled will be described later.
  • the mirror drive control unit controls the angle of the reflection surface of each micro mirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. Control.
  • FIG. 1 is a partially enlarged view showing the configuration of a digital 'micromirror' device (DMD) as the light modulating means.
  • DMD digital 'micromirror' device
  • DMD50 is an SRAM cell (memory cell) above 60, each of which has a large number (for example, 1024 x 768) of small mirrors (micromirrors) constituting picture elements (pixels)
  • Reference numeral 62 denotes a mirror device arranged in a lattice.
  • a micromirror 62 supported by a pillar is provided at the top, and a material having a high reflectance such as an aluminum is deposited on the surface of the micromirror 62.
  • the reflectance of the micromirror 62 is 90% or more, and the arrangement pitch is 13. as an example in both the vertical and horizontal directions.
  • CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed via a support including a hinge and a yoke, and the entire structure is monolithically configured. ing.
  • FIGS. 2A and 2B are diagrams illustrating the operation of the DMD.
  • FIG. 2A shows a state in which the micromirror 62 is turned on and tilted to + ⁇ degrees
  • FIG. 2A shows a state in which the micromirror 62 is turned off and tilts to ⁇ degrees.
  • the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62.
  • FIG. 1 shows an example of a state in which the micromirror 62 is controlled to + ⁇ degrees or ⁇ degrees.
  • the ON / OFF control of each micromirror 62 is performed by the controller 302 connected to the DMD 50.
  • a light absorber (not shown) is arranged in the direction in which the laser beam reflected by the off-state micromirror 62 travels.
  • DMD 50 is preferably arranged to be slightly inclined such that its short side forms a predetermined angle 0 (for example, 0.1 ° to 5 °) with the sub-scanning direction.
  • Figure 3 ⁇ shows the reflected light image (exposure window) of each micromirror when the DMD50 is not tilted.
  • FIG. 3B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
  • the DMD 50 has a large number of micromirrors (for example, 1,024) arranged in the longitudinal direction, and a large number of micromirrors arranged in the short direction (for example, 756 threads).
  • a large number of micromirrors for example, 1,024
  • a large number of micromirrors arranged in the short direction for example, 756 threads.
  • the pitch of the scanning locus (scanning line) of the exposure beam 53 by each micromirror P force The scanning line pitch when the DMD50 is not inclined
  • the scanning width w is almost the same.
  • high-speed modulation a method of increasing the modulation speed in the light modulation means (hereinafter referred to as “high-speed modulation”) will be described.
  • the laser light B When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the no-turn forming material 150 has substantially the same number of pixels as the number of pixels used by the DMD 50. Exposure is performed in pixel units (exposure area 168). Further, by moving the pattern forming material 150 at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in a direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure head 166 is provided for each exposure head 166. The completed area 170 is formed.
  • the modulation speed per line is determined in proportion to the number of picture elements used.
  • the modulation speed per line increases.
  • the DMD50 has a micromirror array in which 1024 micromirrors are arranged in the main scanning direction, and 768 sets are arranged in the subscanning direction.
  • the force controller 302 controls only a part of micromirror arrays (for example, 1024 x 256 arrays). Is controlled to drive.
  • FIGS. 4A and 4B are diagrams showing areas where the DMD is used.
  • the DMD can be used by using an array of micromirrors arranged in the center of the DMD50.As shown in FIG.4B, it is arranged at the end of the DMD50. An array of micromirrors may be used. Further, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed according to the situation, such as using a micromirror array having no defect.
  • modulation can be performed twice as fast per line as compared to the case where all 768 sets are used.
  • modulation can be performed three times faster per line than when all 768 sets are used.
  • a micro mirror array force in which 1,024 micro mirrors are arranged in the main scanning direction is provided with a DMD in which 768 yarns are arranged in the sub scanning direction.
  • the control signal is applied to each of the substrates on which the length in the direction corresponding to the force predetermined direction is longer than the length in the direction intersecting the predetermined direction.
  • the entire surface of the pattern forming material 150 may be exposed by one scanning in the X direction by the scanner 162.
  • the scanner 162 is moved by one step in the Y direction, and is scanned in the X direction. For example, the scanning and the movement may be repeated so that the entire surface of the pattern forming material 150 is exposed in a plurality of scans.
  • the exposure is performed on a partial region of the photosensitive layer, whereby the partial region is cured.
  • a developing step described below an uncured region other than the cured partial region is exposed. The area is removed and a pattern is formed.
  • FIG. 11 shows the details of the configuration of the exposure head in FIG. 10 in the multiple scanning direction along the optical axis.
  • the lens system 67 is a condenser lens 71 that collects laser light B as illumination light emitted from the fiber array light source 66, and is inserted into the optical path of the light passing through the condenser lens 71.
  • a rod-shaped optical integrator (hereinafter, referred to as a rod integrator) 72 and an imaging lens 74 arranged in front of the rod integrator 72, that is, on the mirror 69 side are provided.
  • the condenser lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to be incident on the DMD 50 as a light flux close to parallel light and having a uniform intensity in a beam cross section.
  • TIR prism 70 Laser light B emitted from lens system 67 is reflected by mirror 69 and applied to DMD 50 via TIR (total reflection) prism 70. In FIG. 10, the TIR prism 70 is omitted.
  • the imaging optical system 51 includes a first imaging optical system including lens systems 52 and 54, a second imaging optical system including lens systems 57 and 58, and A microlens array 55 inserted between the image optics and an aperture array 59 are provided.
  • the microlens array 55 is formed by arranging a large number of microlenses 55a corresponding to each picture element of the DMD 50 in a two-dimensional manner. In this example, as described later, only 1024 ⁇ 256 columns of the micromirrors of 1024 ⁇ 768 columns of the DMD50 are driven, and accordingly, the microlenses 55a are arranged in 1024 ⁇ 256 columns. .
  • the arrangement pitch of the microlenses 55a is 41 ⁇ m in both the vertical and horizontal directions.
  • the focal length of the micro lens 55a is 0.19 mm, and the NA (numerical aperture) is 0.11.
  • the micro lens 55a is formed from optical glass BK7.
  • the beam diameter of the laser beam B at the position of each micro lens 55a is 41 ⁇ m
  • each aperture 59a a large number of apertures (openings) 59a corresponding to each micro lens 55a of the micro lens array 55 are formed.
  • the diameter of each aperture 59a is 10 / zm.
  • the first imaging optical system magnifies the image obtained by the DMD 50 three-fold and places it on the microlens array 55. Form an image.
  • the second imaging optical system magnifies the image passing through the microlens array 55 by 1.6 times to form an image on the pattern forming material 150 and project it.
  • the image is magnified 4.8 times by the DMD 50 and is formed and projected on the pattern forming material 150.
  • a prism pair 73 is provided between the second imaging optical system and the pattern forming material 150, and the prism pair 73 is moved up and down in FIG.
  • the focus of the image on material 150 is now adjustable.
  • the pattern forming material 150 is sub-scanned in the direction of arrow F.
  • FIG. 13A is a cross-sectional view along the optical axis showing the configuration of the exposure head.
  • the exposure head includes light irradiation means 144 for irradiating the DMD 50 with laser light, lens systems (imaging optical systems) 454 and 458 for enlarging and forming an image of the laser light reflected by the DMD 50.
  • a microlens array 472 in which a large number of microlenses 474 are arranged corresponding to each picture element portion of the DMD 50, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, an aperture Lens systems (imaging optical systems) 480 and 482 for imaging the laser light passing through the surface 56 to be exposed.
  • FIG. 14 is a view showing the result of measuring the flatness of the reflecting surface of the micro mirror 62 included in the DMD 50.
  • FIG. 14 the same height position of the reflection surface is connected by a contour line, and the pitch of the contour line is 5 nm.
  • the X direction and the y direction are two diagonal directions of the micromirror 62, and the micromirror 62 rotates about the rotation axis extending in the y direction as described above.
  • FIGS. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the X direction and the y direction in FIG. 14, respectively.
  • FIGS. 16A and 16B are diagrams showing the front shape and the side shape of the entire microlens array 55, respectively.
  • the microlens array 55 is configured by arranging 1024 rows of microlenses 55a horizontally and 256 rows of vertical microlenses 55a corresponding to the micromirrors 62 of the DMD 50.
  • the dimension of the long side is 50mm, and the dimension of the short side is 20mm.
  • the arrangement order of the microlenses 55a is indicated by j in the horizontal direction and by k in the vertical direction.
  • FIGS. 17A and 17B are diagrams showing the front shape and the side shape of the microlenses constituting the microlens array. Note that FIG. 17A also shows contour lines of the microlenses 55a.
  • the end surface on the light emission side of the microlens 55a has an aspherical shape for correcting aberration due to distortion of the reflecting surface of the micromirror-62.
  • the aspherical microlens 55a is a toric lens having a radius of curvature Rx in the X direction of -0.125 mm and a radius of curvature Ry in the y direction of -0.1 mm.
  • FIG. 18 is a schematic diagram showing the light condensing state by the microlens in one section A and another section B.
  • a toric lens having an aspherical end surface on the light emission side is used, so that the laser light in a cross section parallel to the X direction and the y direction is used.
  • the radius of curvature of the microlens 55a is smaller in the latter cross section, and the focal length is longer. Be shorter.
  • the shape of the micro lens 55a may be a secondary aspherical shape or a higher order (fourth order, sixth order, etc. aspherical shape.
  • the higher order aspherical surface may be used).
  • FIGS. 39A and 39B show a micro lens 55a "showing a front shape and a side shape with contour lines, respectively, in which the curvatures in the X direction and the y direction are equal to each other, and the curvature is the center of the spherical lens curvature Cy.
  • the spherical lens shape which is the basis of the lens shape of the micro lens 55a is calculated by, for example, the following formula (Equation 1). (Position in the direction of the optical axis) is used.
  • the curvature Cy of the spherical lens shape is corrected according to the following formula (Equation 2) according to the distance h of the lens center force to obtain the lens shape of the micro lens 55a ′′.
  • a micro lens array is formed from a micro lens having one of two light passing end surfaces as a spherical surface and the other as a cylindrical surface. It is also possible to configure.
  • FIGS. 19A, 19B, 19C, 19D, and 19D are diagrams showing the results of computer simulation of the beam diameter near the converging position (focal position) of the microlens 55a.
  • the surface shape of the micro lens 55a used in the simulation is calculated by the following formula.
  • the microlens 55a is set to have a focal length in a cross section parallel to the y direction.
  • the distortion of the beam shape near the focusing position is suppressed. Therefore, a higher definition image without distortion can be exposed to the pattern forming material 150.
  • the aperture array 59 is arranged near the converging position of the microlens array 55.
  • Each of the apertures 59a provided in the aperture array 59 receives only the light that has passed through the corresponding microlens 55a. Therefore, the light from the adjacent microlens 55a that does not correspond to the one aperture 59a corresponding to the one microlens 55a is prevented from entering, and the extinction ratio can be increased.
  • the diameter of the aperture 59a is reduced to some extent, the effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a is obtained, and the force is blocked by the aperture array 59.
  • the amount of light to be used increases, and the light use efficiency decreases.
  • the micro lens 55a into the aspherical shape, the light is prevented from being blocked, and the light use efficiency is kept high.
  • the microlens array 55 and the aperture array 59 correct aberration caused by distortion of the reflection surface of the micromirror 62 constituting the DMD 50.
  • the present invention uses a spatial light modulator other than the DMD. Also in the pattern forming method described above, when distortion is present on the surface of the picture element portion of the spatial light modulator, the present invention is applied to correct the aberration due to the distortion and prevent the beam shape from being distorted. It is possible.
  • a microphone aperture lens 55a which is a toric lens having different curvatures in the X and y directions optically corresponding to the two diagonal directions of the micromirror 62 is applied.
  • the front and side shapes with contour lines respectively correspond to the two sides of the rectangular micromirror 62.
  • the microlens 55a which is also a toric lens having different curvatures in the direction and the yy direction, is also applicable.
  • the imaging optical system includes lenses 480 and 482, and the light passing through the aperture array 59 is imaged on the exposure surface 56 by the imaging optical system.
  • the pattern forming apparatus is magnified several times by the magnifying lenses 454 and 458 of the laser beam lens system reflected by the DMD 50 and projected onto the exposed surface 56, the entire image is formed. The area becomes wider. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected on the exposure surface 56 is reduced. The size becomes large according to the size of the exposure area 468, and the MTF (Modulation Transfer Function) characteristic indicating the sharpness of the exposure area 468 decreases.
  • MTF Modulation Transfer Function
  • the pattern forming apparatus since the pattern forming apparatus includes the microlens array 472 and the aperture array 476, the laser light reflected by the DMD 50 is reflected by each microlens of the microlens array 472 to correspond to each pixel of the DMD 50. It is collected. As a result, as shown in FIG. 13C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, lO ⁇ mXlO ⁇ m). High-definition exposure can be performed while preventing a decrease in MTF characteristics. It is to be noted that the exposure area 468 is inclined because the DMD 50 is inclined and arranged to eliminate the gap between the picture elements.
  • the beam can be shaped by the aperture array so that the spot size on the surface 56 to be exposed becomes a constant size.
  • the beam By passing the light through an aperture array provided corresponding to the picture elements, crosstalk between adjacent picture elements can be prevented.
  • the angle of the light beam incident from the lens 458 to each microlens of the microlens array 472 becomes small, so that a part of the light beam of the adjacent picture element enters. Can be prevented. That is, a high extinction ratio can be realized.
  • 22A and 22B are diagrams showing a front shape and a side shape of another microlens array.
  • each microlens has a refractive index distribution for correcting aberration caused by distortion of the reflection surface of the micromirror 62.
  • the outer shape of the other microlens 155a is a parallel plate. The x and y directions in the figure are as described above.
  • FIG. 23 is a schematic diagram showing a state of focusing of the laser beam B in a cross section parallel to the X direction and the y direction by the microlens 155a of FIG.
  • the microlens 155a has a refractive index distribution that gradually increases as the optical axis O force moves outward, and the broken line shown in the microlens 155a in FIG. The position at which the refractive index changes at a predetermined equal pitch of the optical axis O force is shown. As shown in the figure, comparing the cross section parallel to the X direction and the cross section parallel to the y direction, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is shorter. Become. Even when a microlens array composed of such a refractive index distribution type lens is used, the same effect as when the microlens array 55 is used can be obtained.
  • the refractive index distribution is given together, and the distortion of the reflecting surface of the micro mirror 62 is determined by both the surface shape and the refractive index distribution. It is also possible to correct aberrations caused by only the light.
  • the microlens array of this example does not allow light from the periphery of the picture element portion to enter. ⁇ ⁇ ⁇ ⁇ Micro lenses having a lens opening shape are arranged.
  • a force that has a distortion on the reflection surface of the micromirror 62 of the DMD 50 The amount of change in the distortion gradually increases as the central force of the micromirror 62 also moves toward the periphery. It has a tendency to increase.
  • the above-mentioned tendency that the amount of change in the distortion of the peripheral portion in one diagonal direction (y direction) of the micromirror 62 is larger than that in the other diagonal direction (the direction of X) becomes more remarkable. ing.
  • the microlens array of this example is applied to address the above-described problem.
  • the microlenses 255a arranged in an array have a circular lens opening. Therefore, as described above, the laser beam B reflected at the periphery of the reflection surface of the microphone opening mirror 62 having a large distortion, particularly at the four corners, is not condensed by the micro lens 255a, and the condensed laser beam B is condensed. Distortion of the shape at the position can be prevented. Therefore, a higher-definition image without distortion can be exposed to the pattern forming material 150.
  • a transparent member 255b which is usually formed integrally with the microlens 255a holding the microlens 255a
  • a light-shielding mask 255c is formed on the surface opposite to the surface on which the microlenses 255a are formed, so as to fill the regions outside the lens openings of the plurality of microlenses 255a that are separated from each other.
  • the opening shape of the microlens is not limited to the circular shape described above.
  • a microlens 455a having an elliptical opening is arranged in parallel.
  • the lens array 455 and polygons as shown in Figure 44 A micro-aperture lens array 555 in which a plurality of microlenses 555a each having a shape (square in the illustrated example) are arranged in parallel may be applied.
  • the microlenses 455a and 555a are formed by cutting a part of a normal axisymmetric spherical lens into a circle or a polygon, and have the same light condensing function as a normal axisymmetric spherical lens.
  • the microlens array 655 shown in FIG.A has a plurality of microlenses 655a similar to the microlenses 55a, 455a, and 555a closely contacting each other on the surface of the transparent member 655b on the side where the laser light B is emitted.
  • a mask 655c similar to the above-mentioned mask 255c is formed on the surface on the side where the laser light B enters, which is arranged in parallel.
  • the mask 255c in FIG. 42 is formed outside the lens opening, whereas the mask 655c is provided inside the lens opening.
  • microlenses 755a spaced apart from each other on the surface of the transparent member 455b on which the laser beam B is emitted, and a mask 755c is provided between the microlenses 755a. Is formed.
  • a plurality of microlenses 855a are arranged side by side on the surface of the transparent member 855b on the side from which the laser beam B is emitted, in a state of being in contact with each other.
  • the mask 855c is formed.
  • the masks 655c, 755c, and 855c all have a circular opening similarly to the above-described mask 255c, so that the opening of the microlens is defined to be circular.
  • the configuration includes an aspherical lens that corrects the aberration due to the distortion of the surface of the microphone aperture mirror 62 like the above-described microlens 55a shown in FIG. 17 and the above aberration like the microphone aperture lens 155a shown in FIG. It is also possible to employ the present invention together with a lens having a refractive index distribution that corrects the following. By doing so, the effect of preventing the exposure image from being distorted due to the distortion of the reflecting surface of the micromirror 62 is synergistically enhanced.
  • the micro lens 855a is It has an aspherical shape and a refractive index distribution as described above. Then, for example, the imaging position force of the first imaging optical system such as the lens systems 52 and 54 shown in FIG.
  • the pattern forming material 150 is set to the closed surface, the light use efficiency is particularly high, and the pattern forming material 150 can be exposed to light of higher intensity. That is, at this time, the first image-forming optical system refracts light so that stray light due to distortion of the reflecting surface of the micromirror 62 is focused at one point at the image-forming position of the optical system. If the mask 855c is formed at the same time, light other than stray light will not be blocked, and the light use efficiency will be improved.
  • a light amount distribution correction optical system including a pair of combination lenses which can be used in combination with another optical system appropriately selected from known optical systems, is used. No.
  • the light amount distribution correction optical system changes the light beam width at each emission position such that the ratio of the light beam width of the peripheral portion to the light beam width of the central portion near the optical axis is smaller on the emission side than on the incidence side.
  • FIG. 24 is an explanatory diagram showing the concept of correction by the light amount distribution correction optical system.
  • FIG. 24A a case will be described where the entire light beam width (total light beam width) H 0, HI is the same between the incident light beam and the outgoing light beam.
  • portions indicated by reference numerals 51 and 52 virtually represent the incident surface and the outgoing surface in the light amount distribution correcting optical system.
  • the light amount distribution correction optical system enlarges the light beam width hO for the central light beam with respect to the light beams having the same light beam width hO, hi on the incident side, and conversely, increases the light beam width for the peripheral light beam.
  • the light beam width hi is reduced. That is, the width hlO of the emitted light beam in the central portion and the width hll of the emitted light beam in the peripheral portion are set to satisfy hll ⁇ hlO.
  • the light beam in the central portion which normally has a large light amount distribution, can be used for the peripheral portion where the light amount is insufficient.
  • the light amount distribution on the irradiated surface is made substantially uniform without lowering the usage efficiency.
  • the degree of uniformity is set so that, for example, the light amount unevenness within the effective area is within 30%, preferably within 20%.
  • FIG. 24B shows a case where the entire light beam width H0 on the incident side is “reduced” to the width H2 and emitted (H0
  • the light amount distribution correction optical system increases the light beam width h0, hi on the incident side, the light beam width hlO in the central portion on the output side becomes larger than that on the peripheral portion, Conversely, the luminous flux width hi 1 at the periphery is made smaller than that at the center.
  • the reduction rate of the luminous flux the reduction rate for the incident light flux in the central portion is made smaller than that in the peripheral portion, and the reduction rate for the incident light flux in the peripheral portion is made larger than that in the central portion.
  • Fig. 24C shows a case where the entire light beam width H0 on the incident side is "enlarged” to a width H3 and emitted (H0 to H3).
  • the light amount distribution correction optical system increases the light beam width h0, hi on the incident side, the light beam width hlO in the central portion on the output side becomes larger than that on the peripheral portion, Conversely, the luminous flux width hi 1 at the periphery is made smaller than that at the center.
  • the effect is such that the magnification of the incident light at the center is made larger than that of the peripheral part, and the magnification of the incident light at the periphery is made smaller than that of the center.
  • the light amount distribution correction optical system changes the light beam width at each emission position, and outputs the ratio of the light beam width of the peripheral portion to the light beam width of the central portion near the optical axis Z1 as compared with the incident side. Since the light emission side is made smaller, the light flux having the same light flux width on the incident side becomes larger on the emission side at the center than on the periphery, and the light flux width on the periphery becomes It is smaller than the center. As a result, the light flux in the central portion can be utilized in the peripheral portion, and a light beam cross section having a substantially uniform light amount distribution can be formed without reducing the light use efficiency of the entire optical system.
  • This example shows lens data in the case where the light quantity distribution in the cross section of the emitted light beam is a Gaussian distribution, such as when the light irradiation means is a laser array light source.
  • the light quantity distribution of the light beam emitted from the optical fin becomes a Gaussian distribution.
  • the pattern forming method of the present invention can be applied to such a case.
  • it can be applied to the case where the core diameter of the multimode fiber is reduced and it approaches the configuration of a single mode optical fiber, etc. It is.
  • Table 1 below shows the basic lens data.
  • the pair of combination lenses is composed of two rotationally symmetric aspheric lenses. If the surface on the light incident side of the first lens arranged on the light incident side is the first surface and the surface on the light emitting side is the second surface, the first surface has an aspherical shape. Further, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface, and the surface on the light emitting side is the fourth surface, the fourth surface has an aspherical shape.
  • the unit of the surface spacing di value is millimeter (mm).
  • the refractive index Ni indicates the value of the refractive index of the optical element having the i-th surface at a wavelength of 405 nm.
  • Table 2 below shows the aspherical surface data of the first and fourth surfaces.
  • each coefficient is defined as follows.
  • FIG. 26 shows a light amount distribution of illumination light obtained by the pair of combination lenses shown in Tables 1 and 2.
  • the horizontal axis indicates the coordinates of the optical axis force and the vertical axis indicates the light amount ratio (%).
  • FIG. 25 shows the light amount distribution (Gaussian distribution) of the illumination light when the force is not corrected.
  • FIG. 27A (A) is a perspective view showing a configuration of a fiber array light source
  • FIG.27A (B) is a partially enlarged view of (A)
  • FIGS.27A (C) and (D) are laser emission sections.
  • FIG. 3 is a plan view showing an array of light emitting points in FIG.
  • FIG. 27B is a front view showing an arrangement of light emitting points in a laser emitting portion of the fiber array light source.
  • the fiber array light source 66 includes a plurality (for example, 14) of laser modules 64, and one end of the multi-mode optical fiber 30 is coupled to each of the laser modules 64.
  • An optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a smaller cladding diameter than the multimode optical fiber 30 is coupled to the other end of the multimode optical fiber 30.
  • the end of the multi-mode optical fiber 31 on the side opposite to the optical fiber 30 is arranged in seven rows along the main scanning direction orthogonal to the sub-scanning direction.
  • An emission section 68 is configured.
  • the laser emitting section 68 is sandwiched and fixed between two support plates 65 having flat surfaces. Further, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection thereof.
  • the light emitting end face of the multi-mode optical fiber 31 is easily collected and deteriorated due to the high light density.However, the provision of the protective plate as described above prevents dust from adhering to the end face and reduces the deterioration. Delay be able to.
  • a multi-mode optical fiber is provided between two adjacent multimode optical fibers 30 at a portion having a large clad diameter.
  • the output end of the optical fiber 31 coupled to the stacked multi-mode optical fiber 30 is connected to two adjacent multi-mode optical fibers 30 at the portion where the cladding diameter is large. It is arranged so as to be sandwiched between two emission ends.
  • such an optical fiber has an optical fiber having a length of l to 30 cm and a small clad diameter at the tip of the multimode optical fiber 30 having a large clad diameter on the laser light emission side. This can be obtained by coaxially coupling the optical fibers 31.
  • the two optical fibers are fused and bonded to the output end face of the multimode optical fiber 30 such that the central axes of the two optical fibers coincide with each other.
  • the diameter of the core 3 la of the optical fiber 31 is the same as the diameter of the core 30 a of the multimode optical fiber 30.
  • a short optical fiber obtained by fusing an optical fiber having a short length and a large cladding diameter with a cladding diameter and an optical fiber is connected to the output end of the multi-mode optical fiber 30 via a ferrule optical connector or the like. May be combined.
  • the detachable connection using a connector or the like makes it easy to replace the tip when the diameter of the clad fiber or the optical fiber is broken, thereby reducing the cost required for the maintenance of the exposure head.
  • the optical fiber 31 may be referred to as the emission end of the multimode optical fiber 30.
  • the multimode optical fiber 30 and the optical fiber 31 may be any of a step index optical fiber, a graded index optical fiber, and a composite optical fiber.
  • a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used.
  • the propagation loss increases when the cladding diameter of the optical fiber is reduced. For this reason, a suitable clad diameter is determined according to the wavelength band of the laser light. Yes. However, as the wavelength becomes shorter, the propagation loss decreases as the wavelength becomes shorter.
  • the cladding thickness ⁇ (cladding diameter-core diameter) Z2 ⁇ is reduced to 800 nm in the wavelength band. About 1Z2 when transmitting infrared light, 1.
  • the clad diameter can be reduced to 60 m.
  • the clad diameter of the optical fiber 31 is not limited to 60 ⁇ m. Conventional fiber arrays
  • the cladding diameter of the optical fiber used for the light source is 125 m.
  • the cladding diameter of the multimode optical fiber is preferably 80 m or less. m or less is more preferable 40 m or less is further preferable.
  • the cladding diameter of the optical fiber 31 is preferably 10 ⁇ m or more.
  • the laser module 64 is composed of a multiplex laser light source (fiber array light source) shown in FIG.
  • the multiplexed laser light source includes a plurality (for example, seven) of chip-shaped lateral multi-mode or single-mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6 fixed on the heat block 10.
  • And LD7, and GaN-based semiconductor lasers LD1 to: Collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of LD7, one condenser lens 20, and 1 And a multi-mode optical fiber 30.
  • the number of semiconductor lasers is not limited to seven.
  • the light quantity can be realized and the number of optical fibers can be further reduced.
  • the GaN-based semiconductor lasers LD1 to LD7 have a common oscillation wavelength (for example, 405 nm) and a maximum output (for example, 100 mW for a multi-mode laser and 30 mW for a single-mode laser). Note that, as the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than 405 nm in the wavelength range of 350 nm to 450 nm may be used.
  • the combined laser light source is housed together with other optical elements in a box-shaped package 40 having an open top.
  • Package 40 has its opening It is equipped with a package lid 41 that is created so as to be closed.
  • the sealing gas is introduced after the degassing process, and the opening of the package 40 is closed with the package lid 41 to form the package 40 and the package lid 41.
  • the combined laser light source is hermetically sealed in a closed space (sealed space).
  • a base plate 42 is fixed to the bottom surface of the package 40.
  • the heat block 10 On the top surface of the base plate 42, the heat block 10, the condenser lens holder 45 holding the condenser lens 20, and the multi-mode light
  • a fiber holder 46 for holding the input end of the fiber 30 is attached.
  • the emission end of the multimode optical fiber 30 is drawn out of the package from an opening formed in the wall surface of the knockout 40.
  • a collimator lens holder 44 is attached to the side surface of the heat block 10, and holds the collimator lenses 11 to 17.
  • An opening is formed in the lateral wall surface of the package 40, and a wiring 47 for supplying a drive current to the GaN semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
  • FIG. 31 in order to avoid complication of the figure, only the GaN semiconductor laser LD7 among the plurality of GaN semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses is numbered. Only numbered.
  • FIG. 32 shows a front shape of a mounting portion of the collimator lenses 11 to 17.
  • Each of the collimator lenses 11 to 17 is formed in a shape in which a region including an optical axis of a circular lens having an aspherical surface is cut into an elongated shape in a parallel plane.
  • the elongated collimator lens can be formed, for example, by molding resin or optical glass.
  • the collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emission points of the GaN-based semiconductor lasers LD1 to LD7 (the horizontal direction in FIG. 32).
  • each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having an emission width of 2 m, and has a divergence angle of, for example, 10 ° or 30 ° in a direction parallel or perpendicular to the active layer.
  • Lasers that emit laser beams B1 to B7 are used!
  • These GaN-based semiconductor lasers LD1 to LD7 are arranged such that light emitting points are arranged in a line in a direction parallel to the active layer.
  • Each of the emitted laser beams B1 to B7 has a larger divergence angle with respect to each of the elongated collimator lenses 11 to 17 as described above.
  • each of the collimator lenses 11 to 17 is 1.lmm and the length is 4.6mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident on them are 0.9mm and 2. 6 mm.
  • the condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspheric surface into a long and narrow plane with a parallel plane, and arranging the collimator lenses 11 to 17 in a direction perpendicular to the direction in which the collimator lenses 11 to 17 are long in the horizontal direction. It is formed in a short shape.
  • the condenser lens 20 is also formed by molding resin or optical glass, for example.
  • the fiber array light source uses a high-brightness fiber array light source in which the emitting ends of the optical fibers of the multiplexed laser light source are arranged in an array as the light irradiation means for illuminating the DMD. And a pattern forming apparatus having a deep depth of focus can be realized. Further, since the output of each fiber array light source is increased, the number of fiber array light sources necessary to obtain a desired output is reduced, and the cost of the pattern forming apparatus is reduced. Since the diameter is smaller than the diameter of the cladding at the incident end, the diameter of the light emitting section is smaller, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized.
  • TFT thin film transistor
  • the light irradiation means is not limited to a fiber array light source provided with a plurality of the multiplexed laser light sources.
  • a single semiconductor laser having one light emitting point may be used.
  • a fiber array light source in which a fiber light source having one optical fiber for emitting light is arrayed.
  • As light irradiation means having a plurality of light emitting points for example, as shown in FIG. 33, a plurality (for example, seven) of chip-shaped semiconductor lasers LD1 to LD7 are arranged on a heat block 100. Laser arrays can be used. It is also possible to use a chip-shaped multi-cavity laser 110 shown in FIG.
  • the light emitting points 110a can be arranged with higher positional accuracy than in the case of arranging chip-shaped semiconductor lasers, so that the laser beams emitted from each light emitting point can be easily combined.
  • the radius of the multicavity laser 110 is easily generated during laser manufacturing. Therefore, it is preferable that the number of the light emitting points 110a be five or less.
  • the multi-cavity laser 110 and a plurality of multi-cavity lasers 110 are arranged on the heat block 100 according to the arrangement direction of the light emitting points 11 Oa of each chip.
  • Multi-cavity laser rays arranged in the same direction can be used as a laser light source.
  • the multiplexed laser light source is not limited to one that multiplexes laser light emitted from a plurality of chip-shaped semiconductor lasers.
  • a multiplexed laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (eg, three) light emitting points 110a can be used.
  • This multiplexed laser light source includes a multi-cavity laser 110, one multi-mode optical fiber 130, and a condenser lens 120.
  • the multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
  • each of the laser beams B emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is condensed by the condensing lens 120, and is condensed on the core 130a of the multi-mode optical fiber 130. Incident.
  • the laser light incident on the core 130a propagates in the optical fiber, is multiplexed into one light, and is emitted.
  • a plurality of light emitting points 110a of the multi-cavity laser 110 are juxtaposed within a width substantially equal to the core diameter of the multi-mode optical fin 130, and a condensing lens 120 of the multi-mode optical fiber 130 is provided.
  • a multicavity laser 110 having a plurality of (for example, three) light emitting points is used, and a plurality of (for example, nine) multicavities are provided on the heat block 111.
  • a combined laser light source including a laser array 140 in which the bit lasers 110 are arranged at equal intervals from each other can be used.
  • the plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
  • the multiplexed laser light source is provided with a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and a laser array 140 and a plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multi-mode optical fiber 130, and a condenser lens 120.
  • the lens array 114 includes a plurality of micro lenses corresponding to the light emitting points of the multi-cavity laser 110.
  • each of the laser beams B emitted from the plurality of light emitting points 110a of the plurality of multicavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then the lens array 114 Are collimated by the respective microlenses.
  • the collimated laser beam L is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130.
  • the laser light incident on the core 130a propagates in the optical fiber, is multiplexed into one light, and is emitted.
  • a heat block 182 having a cross section in the optical axis direction is mounted on a substantially rectangular heat block 180.
  • a storage space is formed between the heat blocks.
  • a plurality (for example, two) of multi-cavity lasers 110 in which a plurality of light-emitting points (for example, five) are arranged in an array are provided. Are arranged at equal intervals in the same direction as the arrangement direction and are fixed.
  • a recess is formed in the substantially rectangular heat block 180, and a plurality of light emitting points (for example, five) are arranged in an array (for example, five) on the space-side upper surface of the heat block 180.
  • Two) of the multi-cavity lasers 110 such that the light emitting points are located on the same vertical plane as the light emitting points of the laser chips disposed on the upper surface of the heat block 182.
  • a collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting point 110a of each chip is arranged on the laser light emitting side of the multi-cavity laser 110.
  • the length direction of each collimating lens and the divergence angle of the laser beam are large and the direction (fast axis direction) coincides, and the width direction of each collimating lens has a small divergence angle and the direction (slow axis). Direction).
  • the space utilization efficiency of the laser light is improved, the output of the multiplexed laser light source is increased, and the number of components is reduced and the cost is reduced. Can be.
  • one multi-mode optical fiber 130 is provided on the laser light emitting side of the collimating lens array 184, and a concentrator for condensing and combining the laser beam at the incident end of the multi-mode optical fiber 130.
  • the optical lens 120 is disposed.
  • each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multicavity lasers 110 disposed on the laser blocks 180 and 182 is converted into a parallel light by the collimating lens array 184.
  • the light is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130.
  • the laser light incident on the core 130a propagates in the optical fiber, is multiplexed into one light, and is emitted.
  • the multiplexed laser light source can achieve particularly high output by the multi-stage arrangement of multi-cavity lasers and the array of collimating lenses.
  • a fiber array light source or a bundle fiber light source having higher brightness can be formed, and therefore, it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.
  • each of the multiplexed laser light sources is housed in a casing and the emission end of the multi-mode optical fiber 130 is drawn out of the casing.
  • another optical fiber having the same core diameter as that of the multimode optical fiber and a smaller cladding diameter than the multimode optical fiber is coupled to the emission end of the multimode optical fiber of the multiplexed laser light source to form a fiber array.
  • the example of increasing the brightness of the light source has been described.For example, a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 ⁇ m, etc. is used without coupling another optical fiber to the output end. Is also good.
  • the GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 emit laser beams Bl, B2, B3,
  • Each of B4, B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17.
  • the parallelized laser beams B1 to B7 are condensed by the converging lens 20, and converge on the incident end face of the core 30a of the multimode optical fiber 30.
  • the condensing optical system includes collimator lenses 11 to 17 and condensing lens 20. Further, the converging optical system and the multi-mode optical fiber 30 constitute a multiplexing optical system.
  • the laser beams B1 to B7 focused by the condenser lens 20 as described above are incident on the core 30a of the multi-mode optical fiber 30, propagate through the optical fiber, and are combined into one laser beam B.
  • each laser module when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and the output of each of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, an array is formed.
  • the laser emitting section 68 of the fiber array light source 66 high-luminance light emitting points are arranged in a line along the main scanning direction.
  • Conventional fiber light sources that combine laser light from a single semiconductor laser into a single optical fiber have low output, and the desired output could not be obtained unless they were arranged in multiple rows. Since the multiplexed laser light source has a high output, a desired output can be obtained even with a small number of rows, for example, one row.
  • a laser having an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter is used as an optical fiber. Since a multi-mode optical fiber with 50 m, cladding diameter of 125 m, and NA (numerical aperture) of 0.2 is used, to obtain an output of about 1 W (watt), 48 multi-mode optical fibers ( 8 X 6) must be bundled, and the area of the light emitting area is 0.62 mm 2 (0. 675 mm X O. 925 mm), the brightness at the laser emitting part 68 is 1.6 ⁇ 10 6 (W / m 2), and the brightness per optical fiber is 3.2 ⁇ 10 6 (WZm 2 ) It is.
  • the light irradiating means is a means capable of irradiating a multiplexed laser
  • an output of about 1 W can be obtained with six multi-mode optical finos, and the laser emitting section 68 emits light.
  • the luminance is 123 X 10 6 (WZm 2) next to the laser emitting unit 68, the high brightness of about 80 times compared with the conventional Can be achieved.
  • the luminance per optical fiber is 90 ⁇ 10 6 (WZm 2 ), which is approximately 28 times higher than the conventional one.
  • the diameter of the light emitting area of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm
  • the diameter of the light emitting area of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm.
  • the angle of the light beam incident on the DMD 3 becomes large, and as a result, the light beam incident on the scanning surface 5 Angle increases. For this reason, the beam diameter tends to increase in the focusing direction (shift in the focusing direction).
  • the diameter of the light emitting area of the fiber array light source 66 in the sub-scanning direction is reduced.
  • the angle of the light beam incident on the scanning surface 56 decreases, and as a result, the angle of the light beam incident on the scanning surface 56 decreases. That is, the depth of focus increases.
  • the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to a diffraction limit can be obtained. Therefore, it is suitable for exposing a minute spot.
  • the effect on the depth of focus is more remarkable and effective as the required light amount of the exposure head is larger.
  • the size of one pixel projected on the exposure surface is 10 mx 10 m.
  • DMD is a reflection type spatial light modulator, but FIGS. 37A and 37B are developed views to explain the optical relationship.
  • the data is input to a controller (not shown) connected to the pattern information DMD 50 corresponding to the exposure pattern, and is stored in a frame memory in the controller.
  • This pattern information is data representing the density of each pixel constituting the image in binary (with or without dot recording).
  • the stage 152 having the pattern forming material 150 adsorbed on its surface is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown).
  • a driving device not shown.
  • the pattern information stored in the frame memory is sequentially read for a plurality of lines.
  • the control signal is generated for each exposure head 166 based on the pattern information output and read by the data processing unit.
  • each of the micromirrors of the DMD 50 is turned on / off for each exposure head 166 by the mirror drive control unit based on the generated control signal.
  • the DMD 50 is irradiated with laser light from the fiber array light source 66
  • the laser beam power reflected when the micromirror of the DMD 50 is on is reflected by the lens systems 54 and 58, and the exposed surface of the pattern forming material 150 is exposed. Imaged on 56.
  • the laser beam power emitted from the fiber array light source 66 is turned off for each pixel, and the pattern forming material 150 is exposed in a pixel unit (exposure area 168) of substantially the same number as the number of pixels used in the DMD 50. Is done.
  • the pattern forming material 150 is sub-scanned by the scanner 162 in a direction opposite to the stage moving direction, and a strip-shaped exposed area 170 is provided for each exposure head 166. Is formed.
  • the developing step is a step of exposing the photosensitive layer in the exposing step, curing an exposed area of the photosensitive layer, and developing by removing an uncured area to form a permanent pattern.
  • the method for removing the uncured region can be appropriately selected depending on the purpose without particular limitation, and examples thereof include a method for removing the uncured region using a developer.
  • the developer is not particularly limited and can be appropriately selected depending on the purpose.
  • an alkali metal or alkaline earth metal hydroxide or carbonate, hydrogencarbonate, aqueous ammonia, or an aqueous solution of a quaternary ammonium salt is preferably used.
  • an aqueous solution of sodium carbonate is particularly preferred.
  • the developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium-dimethyl hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine and the like, and organic solvents (eg, alcohols, ketones, esters, ethers, amides, ratatones, etc.) for promoting development may be used in combination.
  • the developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.
  • the pattern forming method of the present invention preferably further includes a curing treatment step.
  • the curing process is a process of performing a curing process on the photosensitive layer in the formed permanent pattern after the development process is performed.
  • the curing treatment can be appropriately selected according to the purpose of the present invention without any particular limitation.
  • a whole-surface exposure treatment, a whole-surface heat treatment and the like are preferably exemplified.
  • Examples of the method of the entire surface exposure treatment include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the development step. By the entire surface exposure, the curing of the resin in the photosensitive composition forming the photosensitive layer is promoted, and the surface of the permanent pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected depending on the particular purpose, but a UV exposure machine such as an ultra-high pressure mercury lamp is preferable.
  • Examples of the method of the entire surface heat treatment include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the development step. By the entire surface heating, the film strength on the surface of the permanent pattern is increased.
  • the heating temperature in the whole-surface heating is preferably from 120 to 250, more preferably from 120 to 200 ° C. If the heating temperature is lower than 120 ° C, the film strength may not be improved by the heat treatment. If the heating temperature is higher than 250 ° C, the resin in the photosensitive composition may be decomposed.
  • the film quality is weak and brittle.
  • the heating time in the entire heating is preferably from 10 to 120 minutes, more preferably from 15 to 60 minutes.
  • the apparatus for heating the entire surface can be appropriately selected from known apparatuses having no particular limitation according to the purpose, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the permanent pattern of the present invention may be formed on the printed wiring board, and further, soldering may be performed as follows. it can.
  • a cured layer that is the permanent pattern is formed, and the metal layer is exposed on the surface of the printed wiring board.
  • gold plating is performed on a portion of the metal layer exposed on the surface of the printed wiring board, soldering is performed.
  • semiconductors, components, etc. are mounted on the soldered portions.
  • the permanent pattern formed by the cured layer exhibits a function as a protective film or an insulating film (interlayer insulating film), a solder resist pattern, and the like, thereby preventing external impact and conduction between adjacent electrodes.
  • the pattern forming method of the present invention it is preferable to form at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
  • the permanent pattern formed by the pattern forming method is the protective film, the interlayer insulating film, or the solder resist pattern
  • the wiring can be protected from external impact and bending force, and particularly,
  • the interlayer insulating film for example, it is useful for high-density mounting of semiconductors and components on a multilayer wiring board or a build-up wiring board.
  • the pattern forming method of the present invention is capable of forming a pattern at a high speed, and thus can be widely used for forming various patterns, and can be particularly suitably used for forming a flexible wiring pattern substrate. .
  • the permanent pattern formed by the pattern forming method of the present invention has excellent surface hardness, insulating property, heat resistance, and the like, and can be suitably used as a protective film, an interlayer insulating film, and a solder resist pattern. it can.
  • Synthesis Example 1 the same procedures as in Synthesis Example 1 were carried out except for using a diisocyanate conjugate represented by the following structural formula (3) in place of 4,4′-dimethanemethanediisocyanate.
  • a polyurethane resin (B) was synthesized.
  • the acid value of this polyurethane resin (B) is 137mgKOHZg.
  • Synthesis Example 1 the same procedures as in Synthesis Example 1 were carried out except for using a diisocyanate conjugate represented by the following structural formula (4) in place of 4,4'-dimethanemethanediisocyanate.
  • a polyurethane resin (C) was synthesized.
  • the acid value of this polyurethane resin (C) was 126 mgKOHZg.
  • Polyurethane resin (D) was synthesized in the same manner as in Synthesis Example 1 except that the diisocyanate compound represented by (5) was used.
  • the acid value of this polyurethane resin (D) is 172mgKOHZg.
  • Synthesis Example 1 a diisocyanate conjugate represented by the following structural formula (9) was used in place of 4,4'-diphenylmethanediisocyanate, and 2,2 bis (hydroxymethyl) propionate was used.
  • Polyurethane resin (G) was synthesized in the same manner as in Synthesis Example 1 except that the dicarboxylic acid compound represented by the following structural formula (10) was used instead of the acid.
  • the acid value of this polyurethane resin (G) was 130 mgKOH / g.
  • Synthesis Example 1 a diisocyanate compound represented by the following structural formula (11) was used in place of 4,4′-diphenylmethanediisocyanate to give 2,2-bis (hydroxymethyl) Polyurethane resin (H) was synthesized in the same manner as in Synthesis Example 1 except that didiolide conjugate represented by the following structural formula (12) was used instead of propionic acid.
  • the acid value of this polyurethane resin (H) was 116 mgKOHZg.
  • Synthesis Example 1 a diisocyanate conjugate represented by the following structural formula (6) was used in place of 4,4'-diphenylmethanediisocyanate, and 2,2 bis (hydroxymethyl) propionate was used.
  • Polyurethane resin (L) was synthesized in the same manner as in Synthesis Example 1 except that a didioli conjugate represented by the following structural formula (17) was used instead of the acid. The acid value of this polyurethane resin (L) was 92 mgKOH / g.
  • Synthesis Example 1 a diisocyanate conjugate represented by the following structural formula (6) was used in place of 4,4'-diphenylmethanediisocyanate, and 2,2 bis (hydroxymethyl) propionate was used.
  • a polyurethane resin (M) was synthesized in the same manner as in Synthesis Example 1 except that the dicarboxylic acid compound represented by the following structural formula (18) was used instead of the acid.
  • the acid value of this polyurethane resin (M) was 87 mgKOHZg.
  • dimethylformamide (DMF) was added to make the heating residue 40% by mass.
  • 3.3 g of methacrylic acid was added, and the mixture was kept warm for 3 hours.
  • 37.9 g of tetrahydrophthalic anhydride (THPA) was added, and the mixture was kept warm for 1 hour.
  • THPA tetrahydrophthalic anhydride
  • the barium sulfate dispersion, barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., B30) 30 parts by mass, the styrene Z 35 mass 0/0 of maleic acid Z butyl Atari rates copolymer Mechirue ethyl ketone solution 34 29 parts by weight and 35.71 parts by weight of 1-methoxy-2-propyl acetate were mixed in advance, and then mixed with a motor mill M-200 (manufactured by Eiger) using zirconia beads having a diameter of 1. Omm.
  • the dispersion was prepared at a speed of 9 mZs for 3.5 hours.
  • the obtained photosensitive composition solution was applied to a two-layer type flexible substrate (copper thickness 35 ⁇ mZ ⁇ fat thickness 25 ⁇ m) by bar coating to have a thickness of 35 ⁇ m after drying. And dried in an oven at 80 ° C. for 30 minutes to form a photosensitive layer.
  • a pattern forming apparatus having optical systems 480 and 482 for forming an image was used.
  • the aperture array 59 arranged near the condensing position of the microlens array 55 receives only light having passed through the corresponding microlens 55a to each of the apertures 59a. It is arranged to be.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1, except that B) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that C) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1, except that D) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that E) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board. [0241] (Example 6)
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that F) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that G) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1, except that H) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that I) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • the photosensitive composition was prepared in the same manner as in Example 1 except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin CO in Synthesis Example 10. To form a photosensitive layer did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive resin was prepared in the same manner as in Example 1 except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin (L) in Synthesis Example 12. A composition was prepared and a photosensitive layer was formed. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive resin was prepared in the same manner as in Example 1 except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin (M) in Synthesis Example 13. A composition was prepared and a photosensitive layer was formed. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • a photosensitive composition 15 parts by mass of trimethylolpropane triglycidyl ether was mixed with the obtained ink to prepare a photosensitive composition.
  • the obtained photosensitive composition solution was applied to the entire surface of the flexible substrate by a screen printing method in the same manner as in Example 1 and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. did.
  • exposure and development were performed in the same manner as in Example 1 to produce a flexible wiring printed board.
  • the obtained photosensitive composition solution was applied to the entire surface of the flexible substrate by screen printing in the same manner as in Example 1, and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • the obtained photosensitive composition solution was applied to the entire surface of the flexible substrate in the same manner as in Example 1. It was applied by screen printing and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • the obtained photosensitive composition solution was applied to the entire surface of the flexible substrate by screen printing in the same manner as in Example 1, and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
  • the surface properties of the obtained flexible printed circuit boards after development were evaluated by visual observation according to the following criteria.
  • 90 or more out of 100 locations do not peel.
  • a rosin-based flux was applied to each flexible printed circuit board and immersed in a 260 ° C solder bath for 10 seconds. After repeating this operation six times, the appearance of the flexible printed circuit board was evaluated according to the following criteria.
  • Each of the flexible printed circuit boards was left in steam at 121 ° C. and 2 atm for 96 hours, and then subjected to the above grid test, and evaluated according to the following criteria.
  • 90 or more out of 100 locations do not peel.
  • the photosensitive composition of the present invention is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, has greatly improved flexibility of a cured film, and has a movable part, such as a mobile phone and various in-vehicle devices. It is suitably used for the production of flexible printed wiring boards such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials For Photolithography (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Disclosed is a photosensitive composition having excellent developability, soldering heat resistance, fracture resistance and pressure cooker resistance which is preferably used for manufacturing flexible printed circuit boards. The cured coating film of such a photosensitive composition is significantly improved in flexibility. Also disclosed are a method for forming a pattern and a permanent pattern. The photosensitive composition contains at least a polyurethane resin (A) having a carboxyl group, a polymerizable compound (B), a photopolymerization initiator (C) and a thermal crosslinking agent (D). The polyurethane resin (A) having a carboxyl group is preferably obtained by reacting a diisocyanate compound represented by the constitutional formula (I) below with a diol compound represented by the constitutional formula (II) or the constitutional formula (III) below.

Description

明 細 書  Specification
感光性組成物、並びにパターン形成方法及び永久パターン  Photosensitive composition, pattern forming method and permanent pattern
技術分野  Technical field
[0001] 本発明は、現像性、はんだ耐熱性、耐折性、プレッシャータッカー耐性に優れ、硬 化皮膜の可撓性が大幅に向上し、フレキシブルプリント配線基板の作製に好適に用 いられる感光性組成物、並びにパターン形成方法及び永久パターンに関する。 背景技術  [0001] The present invention provides a photosensitive material that is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, significantly improves the flexibility of a cured film, and is suitable for use in the production of flexible printed circuit boards. The present invention relates to a hydrophilic composition, a pattern forming method and a permanent pattern. Background art
[0002] 近年、各種プリント配線基板におけるソルダーレジストは、スクリーン印刷による熱 硬化型液状レジスト榭脂から、希アルカリ現像型の液状フォトソルダーレジストインキ へと移行してきている。例えば、特許文献 1には、ノボラック型エポキシィ匕合物と不飽 和モノカルボン酸との反応物に、飽和又は不飽和の多塩基酸無水物を反応させて 得られる光硬化性榭脂、光重合開始剤、希釈剤、及び 2個以上のエポキシ基を有す るエポキシィ匕合物を含有してなるソルダーレジストインキ組成物が提案されている。  [0002] In recent years, the solder resist in various printed wiring boards has been shifting from a thermosetting type liquid resist resin by screen printing to a dilute alkali developing type liquid photo solder resist ink. For example, Patent Document 1 discloses a photocurable resin obtained by reacting a reaction product of a novolak type epoxy conjugate with an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic anhydride, There has been proposed a solder resist ink composition containing a polymerization initiator, a diluent, and an epoxy conjugate having two or more epoxy groups.
[0003] しかし、この場合、ノボラック型エポキシ榭脂をベースとするソルダーレジストインキ 組成物は、その構造上、耐熱性には優れるものの、硬化皮膜が堅くてもろぐ塗膜と 基板との間の密着性に劣るという欠点がある。従って、前記ソルダーレジストインキ組 成物は、硬化皮膜の可撓性を必要としな 、ガラスエポキシ基板などのリジッドな基板 に用途が限定されている。  [0003] However, in this case, although the solder resist ink composition based on the novolak type epoxy resin has excellent heat resistance due to its structure, the cured film is hard and brittle. There is a disadvantage that adhesion is poor. Therefore, the use of the solder resist ink composition is limited to a rigid substrate such as a glass epoxy substrate, which does not require the flexibility of a cured film.
[0004] ところが、近年、加工工程の簡略化や基板の小型化、高密度化などを目的として、 薄くて可撓性のある配線基板 (フレキシブル配線基板)の使用が増力!]しており、可撓 性のあるソルダーレジストインキ組成物が求められている。この要求を満たすため、可 撓性を有するソルダーレジストインキ組成物について、数多くの提案がなされている。 例えば、ビスフエノール A型エポキシ榭脂と、不飽和モノカルボン酸と、無水コハク酸 との反応生成物である不飽和基を有するポリカルボン酸榭脂、光重合開始剤、希釈 剤、及び硬化剤を含有するソルダーレジストインキ組成物が提案されている(特許文 献 2参照)。しかし、この提案においても、耐折性については不十分である。  [0004] In recent years, however, the use of thin and flexible wiring boards (flexible wiring boards) has been increasing for the purpose of simplifying the processing steps and reducing the size and density of the boards!] There is a need for a flexible solder resist ink composition. In order to satisfy this requirement, many proposals have been made for a solder resist ink composition having flexibility. For example, a polycarboxylic acid resin having an unsaturated group, which is a reaction product of a bisphenol A type epoxy resin, an unsaturated monocarboxylic acid, and succinic anhydride, a photopolymerization initiator, a diluent, and a curing agent There has been proposed a solder resist ink composition containing (see Patent Document 2). However, even in this proposal, the folding resistance is insufficient.
[0005] また、感光性榭脂として、希アルカリ水溶液に可溶なポリウレタン榭脂の使用が検 討されている。例えば、カルボキシル基を有する感光性ポリアミド榭脂及びカルボキ シル基を有する感光性ポリアミドイミド榭脂から選択される少なくとも 1種の感光性榭 脂 (A)、エポキシ榭脂 (B)、及び光重合開始剤 (C)を含有する感光性榭脂組成物が 提案されて ヽる (特許文献 3参照)。 [0005] In addition, as a photosensitive resin, use of a polyurethane resin soluble in a dilute alkaline aqueous solution has been detected. Is being debated. For example, at least one photosensitive resin (A) selected from a photosensitive polyamide resin having a carboxyl group and a photosensitive polyamideimide resin having a carboxyl group, an epoxy resin (B), and a photopolymerization initiator. A photosensitive resin composition containing the agent (C) has been proposed (see Patent Document 3).
また、特許文献 4には、エポキシィ匕合物と、不飽和モノカルボン酸とのエステルイ匕物 に飽和又は不飽和の多塩基酸無水物を反応させてなるカルボキシル基を有する感 光性榭脂 (A)、カルボキシル基を有する感光性ポリアミド榭脂及びカルボキシル基を 有する感光性ポリアミドイミド榭脂から選択される少なくとも 1種の感光性榭脂 (B)、ェ ラストマー (C)、エポキシ硬化剤 (D)、及び光重合開始剤 (E)を含有する感光性榭 脂組成物が提案されている。  Further, Patent Document 4 discloses a photosensitive photosensitive resin having a carboxyl group obtained by reacting a saturated or unsaturated polybasic acid anhydride with an esterified product of an epoxy conjugate and an unsaturated monocarboxylic acid ( A), a photosensitive polyamide resin having a carboxyl group and at least one photosensitive resin selected from a photosensitive polyamideimide resin having a carboxyl group (B), an elastomer (C), and an epoxy curing agent (D ) And a photosensitive resin composition containing a photopolymerization initiator (E).
[0006] これらの感光性榭脂組成物によれば、可撓性を有する皮膜を得ることはできるが、 レジストインキ組成物に要求される他の性能、例えば、希アルカリ現像性、はんだ耐 熱性、更には、基板の信頼性にとって重要な性能であるプレッシャータッカー耐性に 関しては、未だ不十分であり、これらの特性を広く備えた回路基板用フォトソルダーレ ジストインキ組成物の速やかな提供が望まれているのが現状である。  [0006] According to these photosensitive resin compositions, it is possible to obtain a film having flexibility, but other properties required for the resist ink composition, such as dilute alkali developability and solder heat resistance. Furthermore, the pressure tacker resistance, which is an important performance for the reliability of the substrate, is still insufficient, and it is desired to provide a photo solder resist ink composition for circuit boards having these characteristics widely. It is the present situation.
[0007] 特許文献 1:特公平 1 - 54390号公報  [0007] Patent Document 1: Japanese Patent Publication No. 1-54390
特許文献 2:特開平 8 - 134390号公報  Patent Document 2: JP-A-8-134390
特許文献 3:特開平 10— 246958号公報  Patent Document 3: JP-A-10-246958
特許文献 4:特開平 11― 288087号公報  Patent Document 4: JP-A-11-288087
発明の開示  Disclosure of the invention
[0008] 本発明は、現像性、はんだ耐熱性、耐折性、プレッシャータッカー耐性に優れ、硬 化皮膜の可撓性が大幅に向上し、フレキシブルプリント配線基板の作製に好適に用 V、られる感光性組成物、並びにパターン形成方法及び永久パターンを提供すること を目的とする。  [0008] The present invention is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, greatly improves the flexibility of a cured film, and is suitable for use in the production of flexible printed wiring boards. An object of the present invention is to provide a photosensitive composition, a pattern forming method and a permanent pattern.
[0009] 前記課題を解決するための手段としては、以下の通りである。即ち、  [0009] Means for solving the above problems are as follows. That is,
< 1 > (A)カルボキシル基を有するポリウレタン榭脂、(B)重合性化合物、(C)光 重合開始剤、及び (D)熱架橋剤を少なくとも含むことを特徴とする感光性組成物で ある。 < 2> (A)カルボキシル基を有するポリウレタン榭脂が、下記構造式 (I)で表され るジイソシァネート化合物と、下記構造式 (Π)及び下記構造式 (ΠΙ)の 、ずれかで表 されるジオールィ匕合物とを反応させてなる前記 < 1 >に記載の感光性組成物である <1> A photosensitive composition comprising at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent. . <2> (A) Polyurethane resin having a carboxyl group is represented by a diisocyanate compound represented by the following structural formula (I) and a difference between the following structural formulas (及 び) and (ΠΙ) The photosensitive composition according to <1>, wherein the photosensitive composition is reacted with
[化 1] [Chemical 1]
0CN— R1— NC0 構造式 ( I ) 0CN— R 1 — NC0 Structural formula (I)
R2 R 2
H0— R3— C一 R4— 0H 構造式 ( I D H0- R 3 - C one R 4 - 0H structural formula (I D
R5 R 5
C00H  C00H
構造式 ( i i i )
Figure imgf000005_0001
Structural formula (iii)
Figure imgf000005_0001
COOH  COOH
ただし、前記構造式 (i)〜(m)において、 R1は、二価炭化水素基を表す。 R2は、水 素原子、又は一価炭化水素基を表す。 R3〜R5は、互いに同一であってもよいし、異 なっていてもよく、二価炭化水素基を表す。 Arは、三価芳香族炭化水素基を表す。 !^〜 及び Arは、更に置換基により置換されていてもよぐ R2、 R3、 R4及び R5は隣 接する 2つ又は 3つが連結して環を形成してもよ 、。 However, in the structural formulas (i) to (m), R 1 represents a divalent hydrocarbon group. R 2 represents a hydrogen atom or a monovalent hydrocarbon group. R 3 to R 5 may be the same or different, and represent a divalent hydrocarbon group. Ar represents a trivalent aromatic hydrocarbon group. ! ^ To and Ar may be further substituted by a substituent. R 2 , R 3 , R 4 and R 5 may form a ring by connecting two or three adjacent groups.
< 3 > (A)カルボキシル基を有するポリウレタン榭脂の酸価が、 80〜300mgKO HZgである前記く 1 >から < 2>のいずれかに記載の感光性組成物である。  <3> The photosensitive composition according to any one of <1> to <2>, wherein the (A) polyurethane resin having a carboxyl group has an acid value of 80 to 300 mg KO HZg.
<4> (D)熱架橋剤が、エポキシ榭脂化合物、ォキセタンィ匕合物、ポリイソシァネ 一トイヒ合物、ポリイソシァネートィヒ合物にブロック剤を反応させて得られる化合物及び メラミン誘導体から選択される少なくとも 1種である前記 < 1 >から < 3 >の 、ずれか に記載の感光性組成物である。  <4> The (D) thermal crosslinking agent is selected from an epoxy resin compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative. The photosensitive composition according to any one of <1> to <3>, which is at least one kind.
< 5 > フレキシブル配線プリント基板の製造に用いられる前記 < 1 >から <4>の V、ずれかに記載の感光性組成物である。 <5> The method according to <1> to <4>, which is used for manufacturing a flexible printed circuit board. V, the photosensitive composition described in any of the above.
<6> 前記 <1>から < 5 >のいずれかに記載の感光性組成物を、基材の表面 に塗布し、乾燥して感光層を形成した後、露光し、現像することを特徴とするパターン 形成方法である。  <6> The photosensitive composition according to any one of <1> to <5>, is applied to a surface of a substrate, dried to form a photosensitive layer, exposed, and developed. This is a pattern forming method.
<7> 感光層が、光照射手段からの光を受光し出射する描素部を n個有する光変 調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射 面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロ レンズアレイを通した光で、露光される前記 < 6 >に記載のパターン形成方法である  <7> After the photosensitive layer modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means, The pattern forming method according to <6>, wherein the pattern is exposed by light passing through a microlens array in which microlenses having an aspheric surface capable of correcting aberration due to surface distortion are arranged.
<8> 感光層が、光照射手段からの光を受光し出射する描素部を n個有する光変 調手段により、前記光照射手段からの光を変調させた後に、前記描素部の周辺部か らの光を入射させな ヽレンズ開口形状を有するマイクロレンズを配列したマイクロレン ズアレイを通過させた光で露光される前記く 6 >に記載のパターン形成方法である。 <8> After the photosensitive layer modulates the light from the light irradiating unit by the light modulating unit having n pixel units that receive and emit the light from the light irradiating unit, and <6> The pattern forming method according to <6>, wherein the light is exposed to light having passed through a microlens array in which microlenses having lens opening shapes are arranged without allowing light from the part to enter.
<9> マイクロレンズ力 描素部における出射面の歪みによる収差を補正可能な 非球面を有する前記 < 8 >に記載のパターン形成方法である。  <9> Microlens force The pattern forming method according to <8>, wherein the pattern forming method has an aspheric surface capable of correcting aberration due to distortion of an emission surface in a picture element portion.
<10> 非球面が、トーリック面である前記 <7>から <9>のいずれかに記載の パターン形成方法である。  <10> The pattern forming method according to any one of <7> to <9>, wherein the aspheric surface is a toric surface.
く 11 > レンズ開口形状が、円形である前記く 8 >に記載のパターン形成方法で ある。  <11> The pattern forming method according to <8>, wherein the lens opening shape is circular.
< 12> レンズ開口形状力 そのレンズ面に遮光部を設けることにより規定される 前記 < 8 >からく 11 >のいずれかに記載のパターン形成方法である。  <12> Lens opening shape force The pattern forming method according to any one of <8> to <11>, defined by providing a light-shielding portion on the lens surface.
<13> 光変調手段が、 n個の描素部の中から連続的に配置された任意の n個未 満の前記描素部をパターン情報に応じて制御可能である前記く 7 >からく 12 >の <13> The light modulating means can control any of the n less than n picture elements arranged continuously from among the n picture elements according to the pattern information. 12>
V、ずれかに記載のパターン形成方法である。 V, the pattern formation method described in the description.
<14> 光変調手段が、空間光変調素子である前記く 7>からく 13>のいずれ かに記載のパターン形成方法である。  <14> The pattern forming method according to any one of <7> to <13>, wherein the light modulating means is a spatial light modulating element.
<15> 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記く 14 >に記載のパターン形成方法である。 < 16 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザビームを集光して前記マルチモード光ファイバ に結合させる集合光学系とを備える前記 < 7 >から < 15 >のいずれかに記載のバタ ーン形成方法である。 <15> The pattern forming method according to <14>, wherein the spatial light modulator is a digital 'micromirror' device (DMD). <16> The light irradiating means includes a plurality of lasers, a multi-mode optical fiber, and a collective optical system for condensing each of the plurality of laser beams irradiated and for coupling the laser beam to the multi-mode optical fiber. The pattern forming method according to any one of the above <7> to <15>.
< 17> レーザ光の波長が 395〜415nmである前記く 16 >に記載のパターン形 成方法である。  <17> The pattern forming method according to <16>, wherein the wavelength of the laser beam is 395 to 415 nm.
< 18 > 前記 < 6 >から < 17>のいずれかに記載のパターン形成方法により形成 されることを特徴とする永久パターンである。  <18> A permanent pattern formed by the pattern forming method according to any one of <6> to <17>.
[0010] 本発明の感光性組成物は、(A)カルボキシル基を有するポリウレタン榭脂、(B)重 合性化合物、(C)光重合開始剤、及び (D)熱架橋剤を少なくとも含んでなる。該 (A) のカルボキシル基を有するポリウレタン榭脂は、特定構造のジイソシァネートイ匕合物 と、特定構造のジオールィ匕合物を反応させて行われる。その結果、希アルカリ現像性 に優れた感光性組成物が得られ、その硬化皮膜が優れた可撓性、密着性、はんだ 耐熱性、耐折性、及びプレッシャータッカー耐性を有し、フレキシブル配線プリント基 板の製造に好適である。  [0010] The photosensitive composition of the present invention contains at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent. Become. The (A) polyurethane resin having a carboxyl group is produced by reacting a diisocyanate conjugate having a specific structure with a diol conjugate having a specific structure. As a result, a photosensitive composition excellent in dilute alkali developability is obtained, and the cured film has excellent flexibility, adhesion, solder heat resistance, folding resistance, and pressure tacker resistance, and is suitable for flexible wiring printing. It is suitable for manufacturing substrates.
[0011] 本発明によると、従来における問題を解決することができ、現像性、はんだ耐熱性、 耐折性、プレッシャータッカー耐性に優れ、硬化皮膜の可撓性が大幅に向上し、フレ キシブルプリント配線基板の作製に好適に用いられる感光性組成物、パターン形成 方法、及び永久パターンを提供することができる。  [0011] According to the present invention, the conventional problems can be solved, and the developability, solder heat resistance, folding resistance, and pressure tacker resistance are excellent, the flexibility of the cured film is greatly improved, and the flexible print is achieved. The present invention can provide a photosensitive composition, a pattern forming method, and a permanent pattern which are suitably used for manufacturing a wiring board.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、デジタル ·マイクロミラー ·デバイス(DMD)の構成を示す部分拡大図の 一例である。  FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD).
[図 2A]図 2Aは、 DMDの動作を説明するための説明図の一例である。  FIG. 2A is an example of an explanatory diagram for explaining the operation of a DMD.
[図 2B]図 2Bは、図 2Aと同様の DMDの動作を説明するための説明図の一例である  [FIG. 2B] FIG. 2B is an example of an explanatory diagram for explaining the DMD operation similar to FIG. 2A.
[図 3A]図 3Aは、 DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビーム の配置及び走査線を比較して示した平面図の一例である。 [FIG. 3A] FIG. 3A is an example of a plan view showing a comparison of the arrangement of exposure beams and scanning lines when a DMD is not arranged in an inclined manner and when a DMD is arranged in an inclined manner.
[図 3B]図 3Bは、 図 3Aと同様の DMDを傾斜配置しない場合と傾斜配置する場合と で、露光ビームの配置及び走査線を比較して示した平面図の一例である。 [FIG. 3B] FIG. 3B shows a case where the same DMD as in FIG. FIG. 4 is an example of a plan view showing the arrangement of exposure beams and scanning lines in comparison.
[図 4A]図 4Aは、 DMDの使用領域の例を示す図の一例である。  FIG. 4A is an example of a diagram showing an example of a DMD use area.
[図 4B]図 4Bは、図 4Aと同様の DMDの使用領域の例を示す図の一例である。 FIG. 4B is an example of a diagram showing an example of a DMD use area similar to FIG. 4A.
[図 5]図 5は、スキャナによる 1回の走査でパターン形成材料を露光する露光方式を 説明するための平面図の一例である。 FIG. 5 is an example of a plan view for explaining an exposure method for exposing a pattern forming material in one scan by a scanner.
[図 6A]図 6Aは、スキャナによる複数回の走査でパターン形成材料を露光する露光 方式を説明するための平面図の一例である。  FIG. 6A is an example of a plan view for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner.
[図 6B]図 6Bは、図 6Aと同様のスキャナによる複数回の走査でパターン形成材料を 露光する露光方式を説明するための平面図の一例である。  [FIG. 6B] FIG. 6B is an example of a plan view for explaining an exposure method for exposing the pattern forming material by a plurality of scans by the same scanner as in FIG. 6A.
[図 7]図 7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。  FIG. 7 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
[図 8]図 8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。  FIG. 8 is an example of a schematic perspective view showing a configuration of a scanner of the pattern forming apparatus.
[図 9A]図 9Aは、パターン形成材料に形成される露光済み領域を示す平面図の一例 である。  FIG. 9A is an example of a plan view showing an exposed area formed on a pattern forming material.
[図 9B]図 9Bは、各露光ヘッドによる露光エリアの配列を示す図の一例である。  FIG. 9B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
[図 10]図 10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例であ る。  FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including a light modulation unit.
[図 11]図 11は、図 10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断 面図の一例である。  FIG. 11 is an example of a cross-sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG.
[図 12]図 12は、パターン情報に基づいて、 DMDの制御をするコントローラの一例で ある。  FIG. 12 is an example of a controller that controls DMD based on pattern information.
[図 13A]図 13Aは、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った 断面図の一例である。  FIG. 13A is an example of a cross-sectional view along an optical axis showing a configuration of another exposure head having a different coupling optical system.
[図 13B]図 13Bは、マイクロレンズアレイ等を使用しな ヽ場合に被露光面に投影され る光像を示す平面図の一例である。  FIG. 13B is an example of a plan view showing a light image projected on a surface to be exposed when a microlens array or the like is not used.
[図 13C]図 13Cは、マイクロレンズアレイ等を使用した場合に被露光面に投影される 光像を示す平面図の一例である。  FIG. 13C is an example of a plan view showing a light image projected on a surface to be exposed when a microlens array or the like is used.
[図 14]図 14は、 DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図 の一例である。 [図 15A]図 15Aは、前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方 向につ 、て示すグラフの一例である。 FIG. 14 is an example of a diagram showing, by contour lines, distortion of a reflecting surface of a micro mirror constituting a DMD. FIG. 15A is an example of a graph showing distortion of a reflecting surface of the micromirror in two diagonal directions of the mirror.
[図 15B]図 15Bは、図 15Aと同様の前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方向について示すグラフの一例である。  [FIG. 15B] FIG. 15B is an example of a graph showing the same distortion of the reflecting surface of the micro mirror as in FIG. 15A in two diagonal directions of the mirror.
[図 16A]図 16Aは、パターン形成装置に用いられたマイクロレンズアレイの正面図の 一例である。  FIG. 16A is an example of a front view of a microlens array used in a pattern forming apparatus.
[図 16B]図 16Bは、パターン形成装置に用いられたマイクロレンズアレイの側面図の 一例である。  FIG. 16B is an example of a side view of the microlens array used in the pattern forming apparatus.
[図 17A]図 17Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。  FIG. 17A is an example of a front view of microlenses constituting a microlens array.
[図 17B]図 17Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。  FIG. 17B is an example of a side view of a micro lens constituting a micro lens array.
[図 18A]図 18Aは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。  [FIG. 18A] FIG. 18A is an example of a schematic diagram showing a light condensing state by a microlens in one section.
[図 18B]図 18Bは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。  [FIG. 18B] FIG. 18B is an example of a schematic diagram showing a light condensing state by a microlens in one section.
[図 19A]図 19Aは、本発明のマイクロレンズの集光位置近傍におけるビーム径をシミ ユレーシヨンした結果を示す図の一例である。  FIG. 19A is an example of a diagram showing a result of simulating a beam diameter near a condensing position of a microlens of the present invention.
[図 19B]図 19Bは、図 19Bと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 19B is an example of a diagram showing the same simulation result as FIG. 19B at another position.
[図 19C]図 19Cは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 19C is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
[図 19D]図 19Dは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 19D is an example of a diagram showing the same simulation result as FIG. 19A at another position.
[図 20A]図 20Aは、従来のパターン形成方法において、マイクロレンズの集光位置近 傍におけるビーム径をシミュレーションした結果を示す図の一例である。  FIG. 20A is an example of a diagram showing a result of simulating a beam diameter near a condensing position of a microlens in a conventional pattern forming method.
[図 20B]図 20Bは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。 [図 20C]図 20Cは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。 FIG. 20B is an example of a view showing the same simulation result as FIG. 20A at another position. FIG. 20C is an example of a view showing the same simulation result as FIG. 20A at another position.
[図 20D]図 20Dは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 20D is an example of a diagram showing the same simulation result as FIG. 20A at another position.
[図 21]図 21は、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 21 is an example of a plan view showing another configuration of the multiplexed laser light source.
[図 22A]図 22Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。  FIG. 22A is an example of a front view of microlenses constituting a microlens array.
[図 22B]図 22Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。  [FIG. 22B] FIG. 22B is an example of a side view of a micro lens constituting a micro lens array.
[図 23A]図 23Aは、図 22A及び Bのマイクロレンズによる集光状態を 1つの断面内に つ!、て示す概略図の一例である。  [FIG. 23A] FIG. 23A is an example of a schematic diagram showing the state of light condensing by the microlenses of FIGS. 22A and 22B in one cross section.
[図 23B]図 23Bは、図 23Aの一例と別の断面内について示す概略図の一例である。  FIG. 23B is an example of a schematic diagram showing an example of a cross section different from the example of FIG. 23A.
[図 24A]図 24Aは、光量分布補正光学系による補正の概念についての説明図の一 例である。 FIG. 24A is an example of an explanatory diagram showing the concept of correction by a light amount distribution correction optical system.
[図 24B]図 24Bは、光量分布補正光学系による補正の概念についての説明図の一 例である。  FIG. 24B is an example of an explanatory diagram showing the concept of correction by the light amount distribution correction optical system.
[図 24C]図 24Cは、光量分布補正光学系による補正の概念についての説明図の一 例である。  FIG. 24C is an example of an explanatory diagram illustrating the concept of correction by the light amount distribution correction optical system.
[図 25]図 25は、光照射手段がガウス分布でかつ光量分布の補正を行わない場合の 光量分布を示すグラフの一例である。  FIG. 25 is an example of a graph showing a light quantity distribution when the light irradiation means has a Gaussian distribution and does not correct the light quantity distribution.
[図 26]図 26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例 である。  FIG. 26 is an example of a graph showing a light quantity distribution after correction by a light quantity distribution correction optical system.
[図 27A]図 27A(A)は、ファイバアレイ光源の構成を示す斜視図であり、図 27A(B) は、(A)の部分拡大図の一例であり、図 27A(C)及び (D)は、レーザ出射部におけ る発光点の配列を示す平面図の一例である。  [FIG. 27A] FIG. 27A (A) is a perspective view showing a configuration of a fiber array light source. FIG. 27A (B) is an example of a partially enlarged view of FIG. 27 (A), and FIG. 27A (C) and FIG. () Is an example of a plan view showing an arrangement of light emitting points in the laser emitting section.
[図 27B]図 27Bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す 正面図の一例である。  FIG. 27B is an example of a front view showing an arrangement of light emitting points in a laser emitting section of the fiber array light source.
[図 28]図 28は、マルチモード光ファイバの構成を示す図の一例である。 [図 29]図 29は、合波レーザ光源の構成を示す平面図の一例である。 FIG. 28 is an example of a diagram showing a configuration of a multimode optical fiber. FIG. 29 is an example of a plan view showing a configuration of a multiplexed laser light source.
[図 30]図 30は、レーザモジュールの構成を示す平面図の一例である。  FIG. 30 is an example of a plan view showing a configuration of a laser module.
[図 31]図 31は、図 30に示すレーザモジュールの構成を示す側面図の一例である。  FIG. 31 is an example of a side view showing a configuration of the laser module shown in FIG. 30.
[図 32]図 32は、図 30に示すレーザモジュールの構成を示す部分側面図である。  FIG. 32 is a partial side view showing the configuration of the laser module shown in FIG. 30.
[図 33]図 33は、レーザアレイの構成を示す斜視図の一例である。  FIG. 33 is an example of a perspective view showing a configuration of a laser array.
[図 34A]図 34Aは、マルチキヤビティレーザの構成を示す斜視図の一例である。  FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser.
[図 34B]図 34Bは、図 34Aに示すマルチキヤビティレーザをアレイ状に配列したマル チキヤビティレーザレイの斜視図の一例である。  FIG. 34B is an example of a perspective view of a multi-cavity laser ray in which the multi-cavity lasers shown in FIG. 34A are arranged in an array.
[図 35]図 35は、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 35 is an example of a plan view showing another configuration of the multiplexed laser light source.
[図 36A]図 36Aは、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 36A is an example of a plan view showing another configuration of the multiplexed laser light source.
[図 36B]図 36Bは、図 36Aの光軸に沿った断面図の一例である。  FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 36A.
[図 37A]図 37Aは、従来の露光装置における焦点深度と本発明のパターン形成方法 FIG. 37A shows the depth of focus of a conventional exposure apparatus and the pattern forming method of the present invention.
(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。 FIG. 4 is an example of a cross-sectional view along an optical axis showing a difference from a depth of focus by a (pattern forming apparatus).
[図 37B]図 37Bは、従来の露光装置における焦点深度と本発明のパターン形成方法 (パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。  FIG. 37B is an example of a cross-sectional view along the optical axis showing a difference between the depth of focus of the conventional exposure apparatus and the depth of focus of the pattern forming method (pattern forming apparatus) of the present invention.
[図 38A]図 38Aは、マクロアレイを構成するマイクロレンズの他の例を示す正面図で ある。  [FIG. 38A] FIG. 38A is a front view showing another example of the microlenses forming the macroarray.
[図 38B]図 38Bは、マクロアレイを構成するマイクロレンズの他の例を示す側面図であ る。  [FIG. 38B] FIG. 38B is a side view showing another example of the microlenses forming the macroarray.
[図 39A]図 39Aは、マクロアレイを構成するマイクロレンズの正面図の一例である。  [FIG. 39A] FIG. 39A is an example of a front view of a micro lens constituting a macro array.
[図 39B]図 39Bは、マクロアレイを構成するマイクロレンズの側面図の一例である。  [FIG. 39B] FIG. 39B is an example of a side view of a micro lens forming a macro array.
[図 40]図 40は、球面レンズ形状例を示すグラフである。  FIG. 40 is a graph showing an example of a spherical lens shape.
[図 41]図 41は、他のレンズ面形状例を示すグラフである。  FIG. 41 is a graph showing another example of the lens surface shape.
[図 42]図 42は、マイクロレンズアレイの他の例を示す斜視図である。  FIG. 42 is a perspective view showing another example of the microlens array.
[図 43]図 43は、マイクロレンズアレイの他の例を示す平面図である。  FIG. 43 is a plan view showing another example of the microlens array.
[図 44]図 44は、マイクロレンズアレイの他の例を示す平面図である。 [図 45A]図 45Aは、いずれもマイクロレンズアレイの他の例を示す縦断面図である。 FIG. 44 is a plan view showing another example of the microlens array. FIG. 45A is a longitudinal sectional view showing another example of the microlens array.
[図 45B]図 45Bは、いずれもマイクロレンズアレイの他の例を示す縦断面図である。  FIG. 45B is a longitudinal sectional view showing another example of the microlens array.
[図 45C]図 45Cは、いずれもマイクロレンズアレイの他の例を示す縦断面図である。 発明を実施するための最良の形態  FIG. 45C is a longitudinal sectional view showing another example of the microlens array. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] (感光性組成物) (Photosensitive composition)
本発明の感光性組成物は、(A)カルボキシル基を有するポリウレタン榭脂、(B)重 合性化合物、(C)光重合開始剤、及び (D)熱架橋剤を少なくとも含んでなり、更に必 要に応じてその他の成分を含んでなる。  The photosensitive composition of the present invention comprises at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent. It contains other components as necessary.
[0014] 〔 (A)カルボキシル基を有するポリウレタン榭脂〕 [(A) Polyurethane resin having carboxyl group]
前記カルボキシル基を有するポリウレタン榭脂としては、特に制限はなぐ 目的に応 じて適宜選択することができ、例えば、下記構造式 (I)で表されるジイソシァネートイ匕 合物と、下記構造式 (Π)及び下記構造式 (ΠΙ)の ヽずれかで表されるジオールィ匕合 物とを反応させてなるものが好まし 、。  The polyurethane resin having a carboxyl group is not particularly limited and can be appropriately selected depending on the purpose.For example, a diisocyanate compound represented by the following structural formula (I) may be selected from the following. Those obtained by reacting the diol conjugate represented by the structural formula (II) and the formula (II) below are preferred.
[0015] [化 3] [0015] [Formula 3]
0CN— R1— NC0 構造式 ( I ) 0CN— R 1 — NC0 Structural formula (I)
R2 R 2
H0— R3— C一 R4— 0H 構造式 ( I D H0- R 3 - C one R 4 - 0H structural formula (I D
R5 R 5
C00H 構造式 ( i i i )
Figure imgf000012_0001
C00H Structural formula (iii)
Figure imgf000012_0001
C00H  C00H
[0016] 前記構造式 (I)において、 R1は、二価炭化水素基を表し、例えば、二価の脂肪族 炭化水素基、又は二価の芳香族炭化水素基を表す。該二価の脂肪族炭化水素基と しては、ァノレキレン基が好適であり、例えば、エチレン、プロピレン、ブチレン、アミレ ン、へキシレンなどが挙げられる。前記二価の芳香族炭化水素基としては、ァリール 基から水素原子を一つ除いたァリーレン基が好適であり、例えば、フエ二レン基など が挙げられる。なお、 R1中には、イソシァネート基と反応しない他の官能基、例えば、 エステル基、ウレタン基、アミド基、ウレイド基などを有していてもよい。これらは更に置 換基により置換されて 、てもよ 、。 In the structural formula (I), R 1 represents a divalent hydrocarbon group, for example, a divalent aliphatic hydrocarbon group or a divalent aromatic hydrocarbon group. As the divalent aliphatic hydrocarbon group, an anoalkylene group is preferable, and examples thereof include ethylene, propylene, butylene, and amylene. And hexylene. As the divalent aromatic hydrocarbon group, an arylene group obtained by removing one hydrogen atom from an aryl group is preferable, and examples thereof include a phenylene group. R 1 may have another functional group that does not react with the isocyanate group, for example, an ester group, a urethane group, an amide group, a ureide group, and the like. These may be further substituted by a substituent.
前記置換基としては、例えば、水酸基、ハロゲン原子、ニトロ基、カルボキシル基、 シァノ基、アルキル基、ァリール基や複素環基等が挙げられる。  Examples of the substituent include a hydroxyl group, a halogen atom, a nitro group, a carboxyl group, a cyano group, an alkyl group, an aryl group and a heterocyclic group.
[0017] 前記構造式 (Π)中 R2において、水素原子、又は一価炭化水素基を表す。該ー価 炭化水素基としては、例えば、アルキル基、ァラルキル基、ァリール基、アルコキシ基 、及びァリーロキシ基のいずれかを表し、これらは更に置換基により置換されていても よい。 In the structural formula (Π), R 2 represents a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon group include any of an alkyl group, an aralkyl group, an aryl group, an alkoxy group, and an aryloxy group, and these may be further substituted with a substituent.
前記アルキル基としては、炭素数 1〜8のものが好ましぐ例えば、メチル基、ェチル 基、 n—プロピル基、イソプロピル基、 n—ブチル基、イソブチル基、 sec—ブチル基、 n—へキシル基、イソへキシル基、 n—へプチル基、 n—ォクチル基、イソォクチル基 などが挙げられる。  The alkyl group preferably has 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, n-hexyl Group, isohexyl group, n-heptyl group, n-octyl group, isooctyl group and the like.
前記ァラルキル基としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、ベンジル基、フエ-ルェチル基、フエ-ルプロピル基、などが挙げられる。 前記ァリール基としては、特に制限はなぐ 目的に応じて適宜選択することができ、 炭素数 6〜15のものが好ましぐ例えば、フエ-ル基、トリル基、キシリル基、ビフエ- リル基、ナフチル基、アントリル基、フエナントリル基、などが挙げられる。  The aralkyl group is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a benzyl group, a phenyl group, and a propyl group. The aryl group is not particularly limited and may be appropriately selected depending on the purpose.Preferred are those having 6 to 15 carbon atoms, for example, a phenyl group, a tolyl group, a xylyl group, a biphenyl group, Examples include a naphthyl group, an anthryl group and a phenanthryl group.
前記アルコキシ基としては、炭素数 1〜: L0のものが好ましぐ例えば、メトキシ基、ェ トキシ基、プロポキシ基、ブトキシ基、などが挙げられる。  The alkoxy group preferably has 1 to L0 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a propoxy group and a butoxy group.
[0018] 前記構造式 (Π)及び (III)中 R3〜R5は、互いに同一であっても、異なっていてもよく 、二価炭化水素基を表す。該二価炭化水素基としては、上記 R1と同様なものを用い ることができ、炭素数 1〜20のアルキレン基、炭素数 6〜15のァリーレン基などが好 ましい。 In the structural formulas (Π) and (III), R 3 to R 5 may be the same or different and represent a divalent hydrocarbon group. As the divalent hydrocarbon group, those similar to the aforementioned R 1 can be used, and an alkylene group having 1 to 20 carbon atoms and an arylene group having 6 to 15 carbon atoms are preferable.
Arは、三価の芳香族炭化水素基を表し、例えば、ァリール基力も水素原子を 2つ 除いたものが挙げられる。 !^〜 及び八!:は、更に置換基により置換されていてもよぐ R2、 R3、 R4及び R5は 隣接する 2つ又は 3つが連結して環を形成してもよい。該環としては、芳香族環、脂 肪族環、複素環などが挙げられる。 Ar represents a trivalent aromatic hydrocarbon group, and examples thereof include an aryl group obtained by removing two hydrogen atoms. ! ^ ~ And eight! : May be further substituted by a substituent. R 2 , R 3 , R 4 and R 5 may be linked together to form a ring. Examples of the ring include an aromatic ring, an aliphatic ring, and a heterocyclic ring.
[0019] 前記構造式 (I)で表されるジイソシァネートイ匕合物の具体的としては、例えば、 2,4 —トリレンジイソシァネート、 2,4 トリレンジイソシァネートの二量体、 2,6 トリレンジ イソシァネート、 p キシリレンジイソシァネート、メタキシリレンジイソシァネート、 4,4, ージフエ-ルメタンジイソシァネート、 1,5 ナフチレンジイソシァネート、 3,3'—ジメ チルーピフエ-ルー 4,4,ージイソシァネート等の芳香族ジイソシァネートイ匕合物;へ キサメチレンジイソシァネート、トリメチルへキサメチレンジイソシァネート、リジンジイソ シァネート、ダイマー酸ジイソシァネート等の脂肪族ジイソシァネートイ匕合物;イソホロ ンジイソシァネート、 4,4'ーメチレンビス(シクロへキシルイソシァネート)、メチルシク 口へキサン一 2,4 (又は 2,6)ジイソシァネート、 1,3— (イソシァネートメチル)シクロへ キサン等の脂環族ジイソシァネートイ匕合物; 1,3 ブチレングリコール 1モルとトリレン ジイソシァネート 2モルとの付加体等のジオール化合物とジイソシァネートイ匕合物との 反応物であるジイソシァネートイ匕合物などが挙げられる。これらは、 1種を単独で用い てもよく、 2種以上を併用しても力まわない。 Specific examples of the diisocyanate conjugate represented by the structural formula (I) include, for example, dimer of 2,4-tolylene diisocyanate and 2,4 tolylene diisocyanate 2,6 Tolylene diisocyanate, p-xylylene diisocyanate, meta-xylylene diisocyanate, 4,4, diphenylmethane diisocyanate, 1,5 naphthylene diisocyanate, 3,3'-dimension Aromatic diisocyanate conjugates such as chirpypyru-leu 4,4, diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate, etc. Aliphatic diisocyanate conjugation product; isophorone diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), methylcyclohexane-1,4 (or 2 Alicyclic diisocyanate conjugates such as diisocyanate and 1,3- (isocyanatemethyl) cyclohexane; adducts of 1,3 butylene glycol with 1 mol and tolylene diisocyanate with 2 mol; A diisocyanate conjugate which is a reaction product of a diol compound and a diisocyanate conjugate is exemplified. These may be used alone or in combination of two or more.
[0020] 前記構造式 (Π)又は前記構造式 (ΠΙ)で表されるカルボキシル基を有するジオール 化合物としては、例えば、 3, 5 ジヒドロキシ安息香酸、 2, 2 ビス(ヒドロキシメチル) プロピオン酸、 2, 2 ビス(ヒドロキシェチル)プロピオン酸、 2,2 ビス(3 ヒドロキシ プロピル)プロピオン酸、 2, 2 ビス(ヒドロキシメチル)酢酸、ビス一(4ーヒドロキシフエ ニル)酢酸、 4,4 ビス一(4ーヒドロキシフヱニル)ペンタン酸、酒石酸等が挙げられ る。これらは、 1種を単独で用いてもよぐ 2種以上を併用しても力まわない。  Examples of the diol compound having a carboxyl group represented by the structural formula (Π) or the structural formula (ΠΙ) include 3,5 dihydroxybenzoic acid, 2,2 bis (hydroxymethyl) propionic acid, 2 2,2 bis (hydroxyethyl) propionic acid, 2,2 bis (3 hydroxypropyl) propionic acid, 2,2 bis (hydroxymethyl) acetic acid, bis (4-hydroxyphenyl) acetic acid, 4,4 bis (4- (Hydroxyphenyl) pentanoic acid, tartaric acid and the like. One of these may be used alone, or two or more of them may not be used in combination.
[0021] なお、前記ポリウレタン榭脂は、前記構造式 (I)で表されるジイソシァネートイ匕合物、 及び前記構造式 (Π)、又は前記構造式 (III)で表されるカルボキシル基を有するジォ ール化合物の 2種以上から形成されて 、てもよ 、。  The polyurethane resin is a diisocyanate compound represented by the structural formula (I), and a carboxyl represented by the structural formula (Π) or the structural formula (III) It may be formed from two or more kinds of diol compounds having a group.
また、カルボキシル基を有さず、他のイソシァネート化合物と反応しない置換基を有 して 、てもよ 、ジオール化合物を、アルカリ現像性を低下させな!/、程度に併用するこ とができる。該ジオール化合物としては、例えば、エチレングリコール、ジエチレンダリ コーノレ、トリエチレングリコーノレテトラエチレンダリコール、プロピレングリコール、ジプ ロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチノレ グリコール、 1,3 ブチレングリコール、 1,6 へキサンジオール、 2 ブテン 1,4 ジオール、 2, 2,4 トリメチルー 1,3 ペンタンジオール、 1,4 ビス βーヒドロキシ エトキシシクロへキサン、シクロへキサンジメタノール、トリシクロデカンジメタノール、 水添ビスフエノール Α、水添ビスフエノール F、ビスフエノール Aのエチレンオキサイド 付加体、ビスフエノール Aのプロピレンオキサイド付カ卩体、ビスフエノール Fのエチレン オキサイド付カ卩体、ビスフエノール Fのプロピレンオキサイド付カ卩体、水添ビスフエノー ル Aのエチレンオキサイド付カ卩体、水添ビスフエノール Aのプロピレンオキサイド付カロ 体、ヒドロキノンジヒドロキシェチルエーテル、 p キシリレングリコール、ジヒドロキシェ チルスルホン、ビス一(2 ヒドロキシェチル) 2,4 トリレンジ力ルバメート、 2,4 トリレ ン一ビス一(2—ヒドロキシェチルカルバミド)、ビス一(2—ヒドロキシェチル) m—キシ リレン力ルバメート、ビス一(2—ヒドロキシェチル)フタレートなどが挙げられる。これら は、 1種を単独で用いてもよぐ 2種以上を併用しても力まわない。 In addition, the diol compound may have a substituent that does not have a carboxyl group and does not react with another isocyanate compound. As the diol compound, for example, ethylene glycol, diethylene dali Cornole, triethylene glycolone tetraethylene dalicol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentinole glycol, 1,3 butylene glycol, 1,6 hexanediol, 2-butene 1,4 diol, 2, 2 , 4 Trimethyl-1,3 pentanediol, 1,4 bis β-hydroxyethoxycyclohexane, cyclohexanedimethanol, tricyclodecanedimethanol, hydrogenated bisphenol Α, hydrogenated bisphenol F, ethylene oxide of bisphenol A Adducts, bisphenol A kneaded with propylene oxide, bisphenol F with kneaded ethylene oxide, bisphenol F with kneaded propylene oxide, hydrogenated bisphenol A with kneaded ethylene oxide Body, carohydrate of hydrogenated bisphenol A with propylene oxide, hydroquinone dihydroxyethyl ether, p-xylylene glycol, dihydroxyethyl sulfone, bis- (2-hydroxyethyl) 2,4 tolylene diamine bamate, 2,4 tolylene 1 Bis (2-hydroxyethylcarbamide), bis (2-hydroxyethyl) m-xylylene dibamate, bis (2-hydroxyethyl) phthalate and the like can be mentioned. One of these may be used alone or two or more may be used in combination.
[0022] 前記ポリウレタン榭脂は、前記ジイソシァネート化合物及び前記ジオール化合物を 非プロトン性溶媒中、それぞれの反応性に応じて活性の公知な触媒を添加し、加熱 すること〖こより合成できる。  [0022] The polyurethane resin can be synthesized by heating the diisocyanate compound and the diol compound in an aprotic solvent, adding a known catalyst having an activity in accordance with the respective reactivity, and heating.
前記ジイソシァネートイ匕合物と前記ジオールィ匕合物のモル比(ジイソシァネートイ匕 合物:ジオールィ匕合物)は 0. 8 : 1〜1. 2: 1が好ましい。前記ポリウレタン榭脂の末端 にイソァネート基が残存した場合、アルコ一ル類又はァミン類等で処理することにより 、最終的にイソシァネート基が残存しな ヽ形で合成される。  The molar ratio of the diisocyanate compound and the diolide compound (diisocyanate compound: diolide compound) is preferably 0.8: 1 to 1.2: 1. When the isocyanate group remains at the terminal of the polyurethane resin, the polyurethane resin is finally treated in a form in which the isocyanate group does not remain by treating with an alcohol or an amine.
[0023] 前記 (A)成分のポリウレタン榭脂の酸価は、 80〜300mgKOHZgが好ましぐ 80 〜180mgKOH/gがより好ましぐ 90〜170mgKOHZg力 s更に好ましく、 100〜1 60mgKOHZgが特に好ましい。前記酸価が 80mgKOHZg未満であると、得られ る感光性組成物が優れたアルカリ現像性を示さなくなることがあり、 300mgKOH/g を超えると、得られる感光性組成物からのパターンの形状が劣化し、高い解像度が 得られないことがある。 [0023] (A) the acid value of the components of the polyurethane榭脂is more preferably more preferably tool 90~170mgKOHZg force s is 80~300mgKOHZg is preferred instrument 80 ~180mgKOH / g, particularly preferably 100~1 60mgKOHZg. If the acid value is less than 80 mgKOHZg, the obtained photosensitive composition may not exhibit excellent alkali developability.If the acid value exceeds 300 mgKOH / g, the shape of the pattern from the obtained photosensitive composition may deteriorate. However, high resolution may not be obtained.
ここで、前記酸価は、一定量のポリウレタンカルボン酸を、例えば、メトキシプロパノ ールのような溶媒に溶解し、力価の分かった水酸化カリウム水溶液で滴定すること〖こ よる中和量から算出することができる。 Here, the acid value is determined by converting a certain amount of polyurethane carboxylic acid to, for example, methoxypropanoic acid. Dissolved in a solvent such as sodium chloride, and titrated with a potassium hydroxide aqueous solution having a known titer. The concentration can be calculated from the neutralization amount.
[0024] 前記カルボキシル基を有するポリウレタン榭脂における重量平均分子量 (Mw)は、 1000以上力 子ましく、 5000〜10万がより好ましい。  [0024] The weight average molecular weight (Mw) of the polyurethane resin having a carboxyl group is preferably 1000 or more, more preferably 5000 to 100,000.
前記カルボキシル基を有するポリウレタン榭脂の含有量は、前記感光性組成物に 対し 50〜99. 5質量%が好ましぐ 55〜95質量%がより好ましい。前記ポリウレタン 榭脂の含有量が、 50質量%未満であると、本発明の目的及び効果を奏しないことが あり、多すぎると、相対的に重合性ィヒ合物の存在量が低下するため、露光部のアル カリ現像液耐性や、硬化膜の力学的強度やはんだ耐熱性が劣化することがある。  The content of the polyurethane resin having a carboxyl group is preferably from 50 to 99.5% by mass, more preferably from 55 to 95% by mass, based on the photosensitive composition. If the content of the polyurethane resin is less than 50% by mass, the objects and effects of the present invention may not be achieved. If the content is too large, the amount of the polymerizable compound relatively decreases. In addition, the alkali developer resistance of the exposed portion, the mechanical strength of the cured film, and the solder heat resistance may deteriorate.
[0025] なお、本発明の感光性組成物には、前記ポリウレタン榭脂以外にも、更に必要に応 じてその他の榭脂を前記ポリウレタン榭脂に対し 50質量%以下の量添加することが 好ましい。前記その他の榭脂としては、例えば、ポリアミド榭脂、エポキシ榭脂、ポリア セタール榭脂、アクリル榭脂、メタクリル樹脂、ポリスチレン榭脂、ノボラック型フエノー ル榭脂などが挙げられる。  [0025] In addition to the polyurethane resin, the photosensitive composition of the present invention may further contain, if necessary, other resin in an amount of 50% by mass or less based on the polyurethane resin. preferable. Examples of the other resin include polyamide resin, epoxy resin, polyacetal resin, acrylic resin, methacrylic resin, polystyrene resin, and novolac-type phenol resin.
[0026] 〔(B)重合性化合物〕  [(B) Polymerizable compound]
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、分子中に少なくとも 1個、好ましくは 2個以上の付加重合可能な基を有し、沸 点が常圧で 100°C以上である化合物が好ましぐ例えば、(メタ)アクリル基を有する モノマー力 選択される少なくとも 1種が好適に挙げられる。  The polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose.The polymerizable compound has at least one, preferably two or more addition-polymerizable groups in the molecule, and has a boiling point of at least one. A compound having a pressure of 100 ° C. or higher is preferred. For example, at least one selected from a monomer having a (meth) acrylic group is preferred.
[0027] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、ポリエチレングリコールモノ (メタ)アタリレート、ポリプ ロピレングリコールモノ(メタ)アタリレート、フエノキシェチル (メタ)アタリレート等の単 官能アタリレートや単官能メタタリレート;ポリエチレングリコールジ (メタ)アタリレート、 ポリプロピレングリコールジ (メタ)アタリレート、トリメチロールェタントリアタリレート、トリ メチロールプロパントリアタリレート、トリメチロールプロパンジアタリレート、ネオペンチ ルグリコールジ (メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ペンタ エリスリトールトリ(メタ)アタリレート、ジペンタエリスリトールへキサ(メタ)アタリレート、 ジペンタエリスリトールペンタ(メタ)アタリレート、へキサンジオールジ (メタ)アタリレー ト、トリメチロールプロパントリ(アタリロイルォキシプロピル)エーテル、トリ(アタリロイル ォキシェチル)イソシァヌレート、トリ(アタリロイルォキシェチル)シァヌレート、グリセリ ントリ(メタ)アタリレート、トリメチロールプロパンやグリセリン、ビスフエノール等の多官 能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で (メ タ)アタリレートイ匕したもの、特公昭 48— 41708号、特公昭 50— 6034号、特開昭 51 — 37193号等の各公報に記載されているウレタンアタリレート類;特開昭 48— 6418 3号、特公昭 49 43191号、特公昭 52— 30490号等の各公報に記載されているポ リエステルアタリレート類;エポキシ榭脂と (メタ)アクリル酸の反応生成物であるェポキ シアタリレート類等の多官能アタリレートやメタタリレートなどが挙げられる。これらの中 でも、トリメチロールプロパントリ (メタ)アタリレート、ペンタエリスリトールテトラ (メタ)ァ タリレート、ジペンタエリスリトールへキサ(メタ)アタリレート、ジペンタエリスリトールぺ ンタ (メタ)アタリレートが特に好ま 、。 The monomer having a (meth) acrylic group is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) atarylate and polypropylene glycol mono (meth) ataliate. Monofunctional acrylates and monofunctional methacrylates such as phenoxyshethyl (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolethane triatalylate, and trimethylolpropane triaryl. Rate, trimethylolpropane diatalylate, neopentyl glycol di (meth) atalylate, pentaerythritol tetra (meth) atalylate, pentaerythritol tri (meth) atalylate, dipentaerythritol hexane (Meth) atalylate, dipentaerythritol penta (meth) atalylate, hexanediol di (meth) atalyre G, trimethylolpropane tri (atalyloyloxypropyl) ether, tri (atalyloyloxyshethyl) isocyanurate, tri (atalyloyloxyshethyl) cyanurate, glycerin tri (meth) atalylate, trimethylol propane, glycerin, bisphenol, etc. No. 48-41708, No. 50-6034, and No. 51-37193 Urethane acrylates described in each gazette such as JP-A-48-64183, JP-B-49-43191, JP-B-52-30490 and the like; Multifunctional atarelays such as epoxy thiatalylates, which are reaction products of epoxy resin and (meth) acrylic acid Etc. and Metatarireto and the like. Among these, trimethylolpropane tri (meth) atalylate, pentaerythritol tetra (meth) atalylate, dipentaerythritolhexa (meth) atalylate, and dipentaerythritol penta (meth) atalylate are particularly preferred.
[0028] 前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、 5〜50質 量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未満で あると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、 50質量%を 超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。  [0028] The solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration in developability and a decrease in exposure sensitivity may occur. If the content exceeds 50% by mass, the tackiness of the photosensitive layer may become too strong. Yes, not preferred.
[0029] 〔(C)光重合開始剤〕  [(C) Photopolymerization initiator]
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、約 300〜800nm (より好ましくは 330〜500nm)の範 囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有して ヽるこ とが好ましい。  The photopolymerization initiator can be appropriately selected from known photopolymerization initiators, which are not particularly limited, as long as the photopolymerization initiator has an ability to initiate polymerization of the polymerizable compound. Those having photosensitivity to visible light produce some action with the preferred photo-excited sensitizer and may be an activator that generates an active radical. It may be an initiator that initiates. It is preferable that the photopolymerization initiator contains at least one component having a molecular extinction coefficient of at least about 50 in the range of about 300 to 800 nm (more preferably, 330 to 500 nm).
[0030] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの、ォキサジァゾール骨格を 有するもの等)、ホスフィンオキサイド、へキサァリールビイミダゾール、ォキシム誘導 体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム塩、ケトォキシムェ 一テルなどが挙げられる。 Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.), phosphine oxides, and hexyl pyridines. Imidazole, oxime induction Compounds, organic peroxides, thio compounds, ketone compounds, aromatic oxalates, ketoxime ether, and the like.
[0031] 前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物としては、例えば、若林ら 著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載のィ匕合物、英国特許第 138 8492号明細書記載の化合物、特開昭 53— 133428号公報記載の化合物、独国特 許第 3337024号明細書記載の化合物、 F. C. Schaefer等による J . Org. Chem. ; 29、 1527 (1964)記載の化合物、特開昭 62— 58241号公報記載の化合物、特開 平 5— 281728号公報記載の化合物、特開平 5— 34920号公報記載化合物、米国 特許第 4212976号明細書に記載されている化合物、などが挙げられる。  Examples of the halogenated hydrocarbon compound having a triazine skeleton include, for example, those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), and British Patent No. 138 8492. Compounds described in JP-A-53-133428, compounds described in German Patent No. 3337024, compounds described in FC Schaefer et al., J. Org. Chem .; 29, 1527 (1964) Compounds described in JP-A-62-58241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, compounds described in U.S. Pat. Is mentioned.
[0032] 前記若林ら著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載の化合物とし ては、例えば、 2 フエ-ル— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2 — (4 クロルフエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- ( 4 トリル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシフ ェ-ル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (2, 4 ジクロル フエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2, 4, 6 トリス(トリ クロルメチル)—1, 3, 5 トリアジン、 2—メチル—4, 6 ビス(トリクロルメチル)—1, [0032] The compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5 Triazine, 2 — (4 chlorophenyl) — 4, 6 bis (trichloromethyl) — 1, 3, 5 triazine, 2- (4 tolyl) — 4, 6 bis (trichloromethyl) — 1, 3, 5 triazine, 2- (4-methoxyphenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2,4 dichlorophenol) -4,6 bis (trichloromethyl) -1, 3,5 triazine, 2,4,6 tris (trichloromethyl) -1,3,5 triazine, 2-methyl-4,6 bis (trichloromethyl) -1,
3, 5 トリアジン、 2— n—ノ-ル—4, 6 ビス(トリクロルメチル)—1 , 3, 5 トリアジ ン、及び 2— , α , β—トリクロルェチル) -4, 6 ビス(トリクロルメチル)—1, 3, 5—トリァジンなどが挙げられる。 3,5 triazine, 2-n-nor-4,6-bis (trichloromethyl) -1,3,5-triazine and 2-, α, β-trichloroethyl) -4,6bis (trichloromethyl) ) -1,3,5-triazine and the like.
[0033] 前記英国特許 1388492号明細書記載の化合物としては、例えば、 2—スチリルー [0033] Examples of the compounds described in the above-mentioned British Patent No. 1388492 include 2-styryl
4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メチルスチリル)— 4, 6 —ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4, 6 - ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4 ァミノ — 6 トリクロルメチル—1, 3, 5 トリァジンなどが挙げられる。 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6-bis (trichloromethyl) -1,3,5 triazine, 2- (4-methoxystyryl) — 4, 6-bis (trichloromethyl) -1,3,5 triazine, 2- (4-methoxystyryl) -4-amino—6 trichloromethyl-1,3,5 triazine and the like.
前記特開昭 53— 133428号公報記載の化合物としては、例えば、 2— (4—メトキシ —ナフト— 1—ィル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (4- エトキシ—ナフ卜— 1—ィル)—4, 6 ビス(卜リクロルメチル)—1, 3, 5 卜リアジン、 2 -〔4— (2 エトキシェチル)—ナフトー 1—ィル〕—4, 6 ビス(トリクロルメチル) 1 , 3, 5 トリァジン、 2- (4, 7 ジメトキシ一ナフトー 1—ィル) 4, 6 ビス(トリクロ ルメチル)— 1, 3, 5 卜リアジン、及び 2— (ァセナフ卜— 5—ィル)—4, 6 ビス(トリ クロルメチル)—1, 3, 5 トリァジンなどが挙げられる。 Examples of the compound described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6bis (trichloromethyl) -1,3,5 triazine, (4-ethoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2 ethoxyxetil) -naphtho-1-yl] -4, 6 Bis (trichloromethyl) 1 , 3,5 triazine, 2- (4,7 dimethoxy-1-naphthol 1-yl) 4,6 bis (trichloromethyl) —1,3,5 triazine, and 2- (acenaphth-5-yl) — 4,6 bis (trichloromethyl) -1,3,5 triazine and the like.
[0034] 前記独国特許 3337024号明細書記載の化合物としては、例えば、 2—(4ースチリ ノレフエ二ノレ) 4、 6 ビス(トリクロロメチノレ)一 1, 3, 5 トリァジン、 2- (4— (4—メト キシスチリル)フエ-ル)—4、 6 ビス(トリクロロメチル)—1, 3, 5 トリァジン、 2- (1 —ナフチルビ-レンフエ-ル)一 4、 6 ビス(トリクロロメチル) 1, 3, 5 トリァジン、 2 クロロスチリルフエ-ル一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4 チォフェン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5— トリアジン、 2— (4 チォフェン一 3 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチ ル)一 1 , 3, 5 トリアジン、 2— (4 フラン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリ クロロメチル) 1, 3, 5 トリァジン、及び 2— (4 ベンゾフラン一 2 ビ-レンフエ- ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが挙げられる。  [0034] Examples of the compound described in the specification of German Patent 3337024 include 2- (4-styrenolefenedinole) 4,6, bis (trichloromethinole) -1,3,5 triazine, 2- (4- (4-Methoxystyryl) phenol) -4,6 Bis (trichloromethyl) -1,3,5 triazine, 2- (1—Naphthylbi-lenfene) -14,6 Bis (trichloromethyl) 1,3 , 5 triazine, 2 chlorostyryl-1,4-bis (trichloromethyl) 1,3,5 triazine, 2— (4 thiophene-1 2-bi-enephenyl) -1,4,6 bis (trichloromethyl) 1, 3,5—triazine, 2— (4 thiophene-3 bi-phenylene) -1,4,6 bis (trichloromethyl) 1-1,3,5 triazine, 2— (4 furan-12-biphenylene) 1,4,6-bis (trichloromethyl) 1,3,5 triazine, and 2- (4 - Le) 4, 6-bis (trichloromethyl) 1, 3, and 5 Toriajin the like.
[0035] 前記 F. C. Schaefer等による J. Org. Chem. ; 29、 1527 (1964)記載のィ匕合物 としては、例えば、 2—メチルー 4, 6 ビス(トリブロモメチル)一1, 3, 5 トリァジン、 2, 4, 6 トリス(トリブロモメチル)一1, 3, 5 トリアジン、 2, 4, 6 トリス(ジブロモメ チル) 1, 3, 5 トリアジン、 2 ァミノ— 4—メチル—6 トリ(ブロモメチル)— 1, 3, 5 トリァジン、及び 2—メトキシ一 4—メチル 6 トリクロロメチル一 1, 3, 5 トリア ジンなどが挙げられる。  The conjugate described in FC Schaefer et al. In J. Org. Chem .; 29, 1527 (1964) includes, for example, 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2,4,6 tris (tribromomethyl) -1,3,5 triazine, 2,4,6 tris (dibromomethyl) 1,3,5 triazine, 2 amino-4-methyl-6 tri (bromomethyl) — 1,3,5 triazine and 2-methoxy-14-methyl-6 trichloromethyl-1,3,5 triazine.
[0036] 前記特開昭 62— 58241号公報記載の化合物としては、例えば、 2— (4—フエニル ェチ -ルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2— (4— ナフチルー 1ーェチュルフエ-ルー 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジ ン、 2— (4— (4 トリルェチュル)フエ-ル)— 4, 6 ビス(トリクロロメチル)—1 , 3, 5 —トリァジン、 2- (4— (4—メトキシフエ-ル)ェチュルフエ-ル) 4, 6—ビス(トリク 口ロメチル) 1, 3, 5 トリァジン、 2— (4— (4—イソプロピルフエ-ルェチュル)フエ -ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4— (4 ェチルフ ェ -ルェチュル)フエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなど が挙げられる。 [0037] 前記特開平 5— 281728号公報記載の化合物としては、例えば、 2—(4 トリフル ォロメチルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2, 6 —ジフルオロフェ-ル)—4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジクロロフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジブロモフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが 挙げられる。 Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-phenyl) -4,6bis (trichloromethyl) -1,3,5 triazine, 2— (4—Naphthyl 1-etulfuru-ru 4,6 Bis (trichloromethyl) 1,3,5 triazine, 2— (4— (4 trilueturyl) phenyl) — 4,6 Bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethyrufur) 4,6-bis (trimethylmethyl) 1,3,5 triazine, 2- (4- (4-isopropylphenyl) 4,6 Bis (trichloromethyl) 1,3,5 Triazine, 2— (4— (4ethyl) -leuture) fer) -1,4,6 Bis (trichloromethyl) 1,3 , 5 triazine and the like. [0037] Examples of the compound described in JP-A-5-281728 include 2- (4 trifluoromethylphenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6-difluorophenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2,6 dichlorophenyl) -4,6 bis (trichloromethyl) -1,3,5 triazine And 2- (2,6 dibromophenyl) -1,4,6 bis (trichloromethyl) 1,3,5 triazine.
[0038] 前記特開平 5— 34920号公報記載化合物としては、例えば、 2, 4 ビス(トリクロ口 メチル)— 6— [4— (N, N—ジエトキシカルボ-ルメチルァミノ)—3—ブロモフエ-ル [0038] The compounds described in JP-A-5-34920 include, for example, 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbolmethylamino) -3-bromophenol.
1— 1, 3, 5 トリァジン、米国特許第 4239850号明細書に記載されているトリハロメ チル— s トリァジン化合物、更に 2, 4, 6 トリス(トリクロロメチル)—s トリァジン、 2 - (4—クロ口フエ-ル) 4, 6—ビス(トリブロモメチル) s トリァジンなどが挙げら れる。 1—1,3,5 triazine, trihalomethyl-s triazine compound described in US Pat. No. 4,239,850, and 2,4,6 tris (trichloromethyl) —s triazine; Phenyl) 4,6-bis (tribromomethyl) s triazine.
[0039] 前記米国特許第 4212976号明細書に記載されている化合物としては、例えば、ォ キサジァゾール骨格を有する化合物(例えば、 2 トリクロロメチル— 5 フエ二ルー 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4 クロ口フエ二ル)一 1, 3, 4 —ォキサジァゾール、 2 トリクロロメチル一 5— (1—ナフチル) 1, 3, 4—ォキサジ ァゾール、 2 トリクロロメチル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール、 2 トリブ口モメチルー 5—フエ二ルー 1, 3, 4 ォキサジァゾール、 2 トリブ口モメチ ル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール; 2 トリクロロメチル— 5—ス チリル— 1, 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (4 クロルスチリル) —1, 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4—メトキシスチリル)一 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (1—ナフチル)—1, 3, 4—ォ キサジァゾール、 2 トリクロロメチル— 5— (4— n—ブトキシスチリル)— 1, 3, 4—ォ キサジァゾール、 2 トリブ口モメチルー 5—スチリルー 1, 3, 4 ォキサジァゾール等 )などが挙げられる。  [0039] Examples of the compound described in the above-mentioned US Patent No. 4212976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl-1,3,4-oxadiazole, 2 trichloromethyl 1-5— (4-chlorophenol) -1,3,4-oxadiazole, 2 trichloromethyl-15- (1-naphthyl) 1,3,4-oxadiazole, 2 trichloromethyl—5— (2naphthyl) —1,3,4-oxadiazole, 2 trimethyl-methyl-5-phenyl 1,3,4-oxadiazole, 2-trimethylmethyl—5- (2 naphthyl) -1,3,4-oxadiazole; 2 trichloromethyl— 5—styryl—1,3,4-oxadiazole, 2 trichloromethyl—5— (4 chlorstyryl) —1,3,4-oxadiazole, 2 trichloromethyl-1-5 -— (4-methoxystyryl) 1,3,4-oxadiazole, 2 trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2 trichloromethyl-5- (4-n-butoxystyryl) -1,3,4- Oxaziazole, 2-trimethyl 2-methyl-5-styryl-1,3,4 oxaziazole) and the like.
[0040] 前記ォキシム誘導体としては、例えば、 3 べンゾイロキシイミノブタン 2 オン、 3 ァセトキシィミノブタン 2 オン、 3 プロピオニルォキシイミノブタン 2 オン、 [0040] Examples of the oxime derivative include 3 benzoyloximinobutane 2 on, 3 acetoximiniobutane 2 on, 3 propionyloxy iminobutane 2 on,
2 -ァセトキシィミノペンタン 3 オン、 2 -ァセトキシィミノ 1 フエ-ルプロパン — 1—オン、 2 ベンゾイロキシィミノ一 1—フエ-ルプロパン一 1—オン、 3— (4 ト ルエンスルホ -ルォキシ)イミノブタン 2—オン、及び 2—エトキシカルボ-ルォキシ イミノー 1 フエ-ルプロパン 1 オン、などが挙げられる。 2-acetoxyiminopentane 3 on, 2-acetoxyimino 1 phenolpropane — 1—one, 2 Benzoyloxymino 1—1-Felppropane 1—One, 3- (4 Toluenesulfo-Loxy) iminobutane 2-—On, and 2-Ethoxycarboxy-imino 1 Fe-propane 1—On , And the like.
また、上記以外の光重合開始剤として、アタリジン誘導体 (例えば、 9 フエ-ルァク リジン、 1 , 7 ビス(9、 9,—アタリジ-ル)ヘプタン等)、 N フエ-ルグリシン等、ポリ ハロゲン化合物(例えば、四臭化炭素、フエ-ルトリブ口モメチルスルホン、フエ-ルト リクロロメチルケトン等)、クマリン類(例えば、 3— (2—ベンゾフロイル)—7—ジェチ ルァミノクマリン、 3— (2 ベンゾフロイル) - 7 - ( 1—ピロリジ -ル)クマリン、 3 ベン ゾィル 7 ジェチルァミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチルアミ ノクマリン、 3—(4ージメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3,3,一 カルボ-ルビス(5, 7—ジ—n—プロポキシクマリン)、 3, 3,—カルボ-ルビス(7—ジ ェチルァミノクマリン)、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7 ージェチルァミノクマリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルアミ ノクマリン、 7—メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル 5, 7 —ジプロポキシクマリン、 7 ベンゾトリアゾール 2—イルクマリン、また、特開平 5-1 9475号、特開平 7 - 271028号、特開 2002 - 363206号、特開 2002 - 363207号、 特開 2002- 363208号、特開 2002- 363209号公報等に記載のクマリン化合物など )、アミン類 (例えば、 4ージメチルァミノ安息香酸ェチル、 4ージメチルァミノ安息香酸 n—ブチル、 4ージメチルァミノ安息香酸フエネチル、 4ージメチルァミノ安息香酸 2— フタルイミドエチル、 4ージメチルァミノ安息香酸 2—メタクリロイルォキシェチル、ペン タメチレンビス(4 ジメチルァミノべンゾエート)、 3 ジメチルァミノ安息香酸のフエネ チル、ペンタメチレンエステル、 4 ジメチルァミノべンズアルデヒド、 2 クロル一 4— ジメチルァミノべンズアルデヒド、 4—ジメチルァミノべンジルアルコール、ェチル(4— ジメチルァミノべンゾィル)アセテート、 4—ピベリジノアセトフエノン、 4—ジメチルアミ ノベンゾイン、 N, N—ジメチルー 4—トルイジン、 N, N ジェチルー 3—フエネチジ ン、トリベンジルァミン、ジベンジルフエ-ルァミン、 N—メチル N—フエ-ルペンジ ルァミン、 4—ブロム一 Ν,Ν—ジメチルァニリン、トリドデシルァミン、ァミノフルオラン 類(ODB, ODBII等)、クリスタルバイオレツトラクトン、ロイコクリスタルバイオレット等) 、ァシルホスフィンオキサイド類(例えば、ビス(2, 4, 6 トリメチルベンゾィル)一フエ -ルホスフィンオキサイド、ビス(2, 6 ジメトキシベンゾィル)—2, 4, 4 トリメチル— ペンチルフエ-ルホスフィンオキサイド、 LucirinTPOなど)、メタ口セン類(例えば、ビ ス(7? 5— 2, 4 シクロペンタジェン一 1—ィル)一ビス(2, 6 ジフロロ一 3— (1H— ピロール一 1—ィル)一フエ-ル)チタニウム、 5 シクロペンタジェ -ル一 6 ク メ-ル一アイアン(1 + )—へキサフロロホスフェート(1 )等)、特開昭 53— 133428 号公報、特公昭 57— 1819号公報、同 57— 6096号公報、及び米国特許第 36154 55号明細書に記載されたィ匕合物などが挙げられる。 As photopolymerization initiators other than those described above, polyhalogen compounds such as athalidine derivatives (eg, 9-phenylazine, 1,7-bis (9,9, -atalyzyl) heptane), N-phenylglycine, etc. For example, carbon tetrabromide, ferributyl momethylsulfone, ferrichloromethylketone, etc., coumarins (eg, 3- (2-benzofuroyl) -7-ethylaminocoumarin, 3- (2-benzofuroyl)- 7- (1-Pyrrolidyl) coumarin, 3 Benzoyl 7-Jethylaminocoumarin, 3- (2-Methoxybenzoyl) 7 Jetylaminonocoumarin, 3- (4-Dimethylaminobenzoyl) 7-Jetylaminocoumarin , 3,3,1-Carboxylbis (5,7-di-n-propoxycoumarin), 3,3, -Carboxylbis (7-diethylaminocoumarin), 3-benzoyl 7-meth Cyclin, 3- (2-furoyl) 7-Jetylaminocoumarin, 3- (4-Jetylaminocinnamoyl) 7-Jetylaminocoumarin, 7-methoxy-1 3- (3-pyridylcarboyl) coumarin, 3-benzoyl 5,7-dipropoxy coumarin, 7 benzotriazol 2-yl coumarin, JP-A 5-1 9475, JP-A 7-271028, JP-A 2002-363206, JP-A 2002-363207, Coumarin compounds described in JP-A-2002-363208, JP-A-2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, n-butyl 4-dimethylaminobenzoate, phenethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate) Acid 2-phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxethyl, pentamethylenebis (4-dimethylaminobenzoate) G), 3 phenethyl of dimethylaminobenzoic acid, pentamethylene ester, 4 dimethylaminobenzaldehyde, 2 chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4 —Piberidinoacetophenone, 4-Dimethylaminobenzoin, N, N—Dimethyl-4-Toluidine, N, N Jetyl-3-phenethidine, Tribenzylamine, Dibenzylphen-lamine, N-Methyl N-phenyl-lamine , 4-bromo-1,2-dimethylaniline, tridodecylamine, aminofluorans (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc.) , And acylphosphine oxides (for example, bis (2,4,6 trimethylbenzoyl) -1-phenylphosphine oxide, bis (2,6 dimethoxybenzoyl) -2,4,4 trimethyl-pentylphenolphosphine Oxides, LucirinTPO, etc.), meta-cyclones (for example, bis (7-5-2,4 cyclopentadiene-1-yl) -bis (2,6 difluoro-1-3- (1H-pyrrole-1-1-)) Le) -phenyl) titanium, 5-cyclopentagel-16-cmole-iron (1 +)-hexafluorophosphate (1), etc., JP-A-53-133428, JP-B-57 Nos. 1819, 57-6096, and U.S. Pat. No. 3,615,555.
[0042] 前記ケトン化合物としては、例えば、ベンゾフエノン、 2 メチルベンゾフエノン、 3— メチルベンゾフエノン、 4 メチルベンゾフエノン、 4ーメトキシベンゾフエノン、 2 クロ 口べンゾフエノン、 4 クロ口べンゾフエノン、 4 ブロモベンゾフエノン、 2—カノレボキ シベンゾフエノン、 2—エトキシカルボニルベンゾルフェノン、ベンゾフエノンテトラカル ボン酸又はそのテトラメチルエステル、 4, 4,一ビス(ジアルキルァミノ)ベンゾフエノン 類(例えば、 4, 4,一ビス(ジメチルァミノ)ベンゾフエノン、 4, 4,一ビスジシクロへキシ ルァミノ)ベンゾフエノン、 4, 4,一ビス(ジェチルァミノ)ベンゾフエノン、 4, 4,一ビス( ジヒドロキシェチルァミノ)ベンゾフエノン、 4—メトキシ一 4'—ジメチルァミノべンゾフエ ノン、 4, 4'—ジメトキシベンゾフエノン、 4—ジメチルァミノべンゾフエノン、 4—ジメチ ルアミノアセトフエノン、ベンジル、アントラキノン、 2—t—ブチルアントラキノン、 2—メ チノレアントラキノン、フエナントラキノン、キサントン、チォキサントン、 2—クロノレーチォ キサントン、 2, 4 ジェチルチオキサントン、フルォレノン、 2 べンジルージメチルァ ミノー 1一(4 モルホリノフエ-ル) 1ーブタノン、 2—メチルー 1一〔4 (メチルチオ )フエ-ル〕 2 モルホリノ一 1—プロパノン、 2 ヒドロキシー 2—メチルー〔4— (1— メチルビ-ル)フエ-ル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類 (例えば、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインプロピ ノレエーテノレ、ベンゾインイソプロピノレエーテノレ、ベンゾインフエ-ノレエーテノレ、ベンジ ルジメチルケタール)、アタリドン、クロロアタリドン、 N—メチルアタリドン、 N ブチル アタリドン、 N ブチル一クロロアタリドンなどが挙げられる。  Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, and 4-chlorobenzophenone. , 4-bromobenzophenone, 2-canoleboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarbonic acid or its tetramethyl ester, 4,4,1-bis (dialkylamino) benzophenones (for example, 4 4,4-bis (dimethylamino) benzophenone, 4,4,1-bisdicyclohexylamino) benzophenone, 4,4,1-bis (getylamino) benzophenone, 4,4,1-bis (dihydroxyethylamino) benzophenone, 4- Methoxy-1 4'-dimethylaminobenzophenone, 4 , 4'-Dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methinoleanthraquinone, phenanthraquinone, xanthon, thioxanthon , 2-Chronoratio xanthone, 2,4 Getyl thioxanthone, Fluorenone, 2 Benzyl dimethylamine Minor 1 (4 morpholinophenol) 1-butanone, 2-Methyl-11 (4 (methylthio) phenyl) 2 Morpholino I 1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, benzoin propionate ether, benzoin isopropylate) Nore Athenole, benzoinphe-noreatenole, benzyldimethylketal), ataridone, chloroataridone, N-methylataridone, N-butyl ataridone, N-butyl-chloroataridone, and the like.
[0043] また、後述する感光層への露光における露光感度や感光波長を調整する目的で、 前記光重合開始剤に加えて、増感剤を添加することが可能である。 Further, in order to adjust the exposure sensitivity and the photosensitive wavelength in the exposure of the photosensitive layer described below, It is possible to add a sensitizer in addition to the photopolymerization initiator.
前記増感剤は、後述する光照射手段としての可視光線や紫外光'可視光レーザな どにより適宜選択することができる。  The sensitizer can be appropriately selected according to visible light, ultraviolet light, or visible light laser as a light irradiation means described later.
前記増感剤は、活性エネルギー線により励起状態となり、他の物質 (例えば、ラジカ ル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)するこ とにより、ラジカルや酸等の有用基を発生することが可能である。  The sensitizer is excited by an active energy ray and interacts with another substance (eg, a radical generator, an acid generator, etc.) (eg, energy transfer, electron transfer, etc.) to generate radicals or radicals. It is possible to generate useful groups such as acids.
[0044] 前記増感剤としては、特に制限はなぐ公知の増感剤の中から適宜選択することが できるが、例えば、公知の多核芳香族類 (例えば、ピレン、ペリレン、トリフエ二レン)、 キサンテン類(例えば、フルォレセイン、ェォシン、エリス口シン、ローダミン B、ローズ ベンガル)、シァニン類(例えば、インドカルボシァニン、チアカルボシァニン、ォキサ カルボシァニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チア ジン類(例えば、チォニン、メチレンブルー、トルイジンブルー)、アタリジン類(例えば 、アタリジンオレンジ、クロロフラビン、ァクリフラビン)、アントラキノン類(例えば、アント ラキノン)、スクァリウム類 (例えば、スクァリウム)、アタリドン類 (例えば、アタリドン、クロ ロアタリドン、 N—メチルアタリドン、 N ブチルアタリドン、 N ブチル一クロロアクリド ン等)、クマリン類(例えば、 3—(2 べンゾフロイル) 7 ジェチルァミノクマリン、 3 - (2 ベンゾフロイル) 7— (1—ピロリジ -ル)クマリン、 3 ベンゾィル 7 ジェ チルァミノクマリン、 3- (2—メトキシベンゾィル) 7 ジェチルァミノクマリン、 3— (4 —ジメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3,3,一カルボニルビス(5 , 7—ジ n—プロポキシクマリン)、 3, 3,一カルボニルビス(7—ジェチルァミノタマリ ン)、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7—ジェチルアミノク マリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルァミノクマリン、 7—メトキ シ— 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル—5, 7—ジプロポキシクマ リン等があげられ、他に特開平 5- 19475号、特開平 7- 271028号、特開 2002- 363 206号、特開 2002 - 363207号、特開 2002 - 363208号、特開 2002 - 363209号 等の各公報に記載のクマリンィ匕合物など)が挙げられる。  [0044] The sensitizer can be appropriately selected from known sensitizers that are not particularly limited, and examples thereof include known polynuclear aromatics (eg, pyrene, perylene, and triphenylene). Xanthenes (eg, fluorescein, eosin, erythricular synth, rhodamine B, rose bengal), cyanines (eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (eg, merocyanine, carbomerocyanine), Thiazines (for example, thionine, methylene blue, toluidine blue), athalidines (for example, ataridine orange, chloroflavin, acriflavin), anthraquinones (for example, anthraquinone), squariums (for example, squarium), and ataridones (for example, , Ataridon, black Ataridone, N-methylataridone, N-butylataridone, N-butyl-chloroacridone, etc., coumarins (for example, 3- (2-benzofuroyl) 7 getylaminocoumarin, 3- (2-benzofuroyl) 7- (1 —Pyrrolidyl-coumarin, 3 benzoyl 7-Jethylaminocoumarin, 3- (2-methoxybenzoyl) 7-Jethylaminocoumarin, 3 -— (4—Dimethylaminobenzoyl) 7—Jetylaminocoumarin, 3,3,1-carbonylbis (5,7-di-n-propoxycoumarin), 3,3,1-carbonylbis (7-getylaminotamarin), 3-benzoyl 7-methoxycoumarin, 3- (2- 7-Jetylaminocoumarin, 7-Jetylaminocoumarin, 7-Methoxy, 3- (3-pyridylcarboyl) coumarin, 3-Be Zyl-5,7-dipropoxycoumarin and the like, and in addition, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363207, and JP-A-2002- No. 363208, Japanese Unexamined Patent Publication No. 2002-363209, etc.).
[0045] 前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開 2001 - 3057 34号公報に記載の電子移動型開始系 [ (1)電子供与型開始剤及び増感色素、 (2) 電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容 型開始剤 (三元開始系)]などの組合せが挙げられる。 Examples of the combination of the photopolymerization initiator and the sensitizer include an electron transfer type initiator described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye , (2) And electron-accepting initiators and sensitizing dyes, (3) electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiators)].
[0046] 前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、 0. 05-30 質量%が好ましぐ 0. 1〜20質量%がより好ましぐ 0. 2〜10質量%が特に好ましい 。該含有量が、 0. 05質量%未満であると、活性エネルギー線への感度が低下し、露 光プロセスに時間がかかり、生産性が低下することがあり、 30質量%を超えると、保 存時に前記感光層から前記増感剤が析出することがある。  [0046] The content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on all components in the photosensitive composition. Particularly preferred is 2 to 10% by mass. If the content is less than 0.05% by mass, the sensitivity to active energy rays will decrease, the exposure process will take time, and productivity may decrease. In some cases, the sensitizer may precipitate from the photosensitive layer.
[0047] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  [0047] The photopolymerization initiator may be used alone or in combination of two or more.
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が 40 5nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記 α—アミノア ルキルケトン類、前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物と後述する 増感剤としてのアミンィ匕合物とを組合せた複合光開始剤、へキサァリールビイミダゾ ール化合物、あるいは、チタノセンなどが挙げられる。  Particularly preferred examples of the photopolymerization initiator include the phosphine oxides, the α-aminoalkyl ketones, and the halogenated carbonization having the triazine skeleton, which can correspond to a laser beam having a wavelength of 405 nm in exposure described below. Examples thereof include a composite photoinitiator in which a hydrogen compound is combined with an amine conjugate described below as a sensitizer, a hexaarylbiimidazole compound, or titanocene.
[0048] 前記光重合開始剤の前記感光性組成物における含有量としては、 0. 1〜30質量 %が好ましぐ 0. 5〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。  [0048] The content of the photopolymerization initiator in the photosensitive composition is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, and from 0.5 to 15% by mass. Is particularly preferred.
[0049] 〔熱架橋剤〕  [Thermal crosslinking agent]
前記熱架橋剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、 前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために 、現像性等などに悪影響を与えない範囲で、例えば、エポキシ榭脂ィ匕合物、ォキセ タンィ匕合物、ポリイソシァネートイ匕合物、ポリイソシァネートイ匕合物にブロック剤を反応 させて得られる化合物及びメラミン誘導体力 選択される少なくとも 1種を用 V、ること ができる。  The thermal cross-linking agent is not particularly limited and can be appropriately selected depending on the purpose. In order to improve the film strength of the photosensitive layer formed using the photosensitive composition after curing, the thermal cross-linking agent may be developed. For example, an epoxy resin conjugate, an oxetane conjugate, a polyisocyanate conjugate, or a polyisocyanate conjugate may be reacted with a blocking agent within a range that does not adversely affect the properties. And at least one selected from the group consisting of a compound and a melamine derivative.
[0050] 前記エポキシ榭脂化合物としては、例えば、ビキシレノール型もしくはビフエノール 型エポキシ榭脂 (「ΥΧ4000、ジャパンエポキシレジン社製」等)又はこれらの混合物 、イソシァヌレート骨格等を有する複素環式エポキシ榭脂(「TEPIC、 日産化学工業 社製」、「ァラルダイト PT810、チバ スぺシヤノレティ ケミカノレズ社製」等)、ビスフエノ ール A型エポキシ榭脂、ノボラック型エポキシ榭脂、ビスフエノール F型エポキシ榭脂 、水添ビスフエノール A型エポキシ榭脂、グリシジノレアミン型エポキシ榭脂、ヒダントイ ン型エポキシ榭脂、脂環式エポキシ榭脂、トリヒドロキシフエニルメタン型エポキシ榭 脂、ビスフエノール S型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、テ トラフエ-ロールエタン型エポキシ榭脂、グリシジルフタレート榭脂、テトラグリシジル キシレノィルエタン榭脂、ナフタレン基含有エポキシ榭脂(「ESN— 190、 ESN— 36 0、新曰鉄ィ匕学ネ土製」、「HP— 4032, EXA-4750,: EXA— 4700 ;大日本インキイ匕 学工業社製」等)、ジシクロペンタジェン骨格を有するエポキシ榭脂(「HP— 7200, HP- 7200H;大日本インキ化学工業社製」等)、グリシジルメタアタリレート共重合 系エポキシ榭脂(「CP— 50S, CP- 50M ;日本油脂社製」等)、シクロへキシルマレ イミドとグリシジルメタアタリレートとの共重合エポキシ榭脂などが挙げられる力、これら に限られるものではない。これらのエポキシ榭脂は、 1種単独で使用してもよいし、 2 種以上を併用してもよい。 As the epoxy resin compound, for example, a bixylenol type or biphenol type epoxy resin (“# 4000, manufactured by Japan Epoxy Resin Co., Ltd.”) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton and the like (“TEPIC, manufactured by Nissan Chemical Industries, Ltd.”, “Araldite PT810, manufactured by Ciba-Sushi Noreti Chemical Canolezu, etc.”), bisphenol A type epoxy resin, novolak type epoxy resin, bisphenol F type epoxy resin, water Bisphenol A type epoxy resin, glycidinoleamine type epoxy resin, hydantoi Epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenyl methane epoxy resin, bisphenol S epoxy resin, bisphenol A novolak epoxy resin, tetrafluoro- ethane epoxy resin, Glycidyl phthalate resin, tetraglycidyl xylenolethane resin, and naphthalene group-containing epoxy resin (“ESN-190, ESN-360, Shin-Tei-Danigaku Nedo”, “HP-4032, EXA-4750 ,: EXA-4700; Dainippon Ink and Daikaku Kogyo Co., Ltd.), epoxy resin having a dicyclopentadiene skeleton (HP-7200, HP-7200H; Dainippon Ink and Chemicals, etc.), glycidyl Meta-ephalate copolymerized epoxy resin ("CP-50S, CP-50M; manufactured by NOF Corporation" etc.), copolymerized epoxy resin of cyclohexylmaleimide and glycidyl methacrylate, and the like. Power, but not limited to these. These epoxy resins may be used alone or in a combination of two or more.
[0051] 前記ォキセタンィ匕合物としては、例えば、ビス [ (3—メチルー 3—ォキセタニルメトキ シ)メチル]エーテル、ビス [ ( 3—ェチル— 3—ォキセタ -ルメトキシ)メチル]エーテル 、 1, 4 ビス [ (3—メチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビス [ ( 3 -ェチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、( 3 -メチル 3—ォキセ タ -ル)メチルアタリレート、 (3ーェチルー 3ーォキセタ -ル)メチルアタリレート、 (3- メチル 3—ォキセタ -ル)メチルメタタリレート、 ( 3 ェチル 3—ォキセタ -ル)メチ ルメタタリレート又はこれらのオリゴマーあるいは共重合体等の多官能ォキセタン類の 他、ォキセタン基と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、カルド型ビスフエノ 一ノレ類、カリックスァレーン類、カリックスレゾノレシンアレーン類、シノレセスキォキサン 等の水酸基を有する榭脂など、とのエーテルィ匕合物が挙げられ、この他、ォキセタン 環を有する不飽和モノマーとアルキル (メタ)アタリレートとの共重合体なども挙げられ る。 [0051] Examples of the oxetanei conjugate include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1,2 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methylatarylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers Oxetane group, novolak resin, poly (p-hydroxystyrene), cardo-type bisphenol, calixarene, calixresone And ethers having a hydroxyl group such as cinoresesquioxane and the like, and copolymers of an unsaturated monomer having an oxetane ring with an alkyl (meth) acrylate. Are also mentioned.
[0052] また、前記エポキシ榭脂化合物や前記ォキセタンィ匕合物の熱硬化を促進するため 、例えば、ジシアンジアミド、ベンジルジメチルァミン、 4— (ジメチルァミノ) N, N— ジメチルベンジルァミン、 4ーメトキシ N, N ジメチルベンジルァミン、 4ーメチルー N, N ジメチルベンジルァミン等のアミン化合物;トリェチルベンジルアンモ-ゥムク ロリド等の 4級アンモ-ゥム塩化合物;ジメチルァミン等のブロックイソシァネートイ匕合 物;イミダゾール、 2—メチルイミダゾール、 2 ェチルイミダゾール、 2 ェチルー 4 メチルイミダゾール、 2 フエ-ルイミダゾール、 4 フエ-ルイミダゾール、 1—シァノ ェチルー 2 フエ-ルイミダゾール、 1一(2 シァノエチル) 2 ェチルー 4ーメチ ルイミダゾール等のイミダゾール誘導体二環式アミジンィ匕合物及びその塩;トリフエ- ルホスフィン等のリン化合物;メラミン、グアナミン、ァセトグアナミン、ベンゾグアナミン 等のグアナミン化合物; 2, 4 ジァミノ 6 メタクリロイルォキシェチル S トリアジ ン、 2 ビュル一 2, 4 ジァミノ一 S トリアジン、 2 ビュル一 4, 6 ジァミノ一 S ト リアジン'イソシァヌル酸付カ卩物、 2, 4 ジアミノー 6—メタクリロイルォキシェチルー S -トリァジン'イソシァヌル酸付加物等の S -トリァジン誘導体;などを用いることができ る。これらは 1種単独で使用してもよぐ 2種以上を併用してもよい。なお、前記ェポキ シ榭脂化合物や前記ォキセタン化合物の硬化触媒、あるいは、これらとカルボキシル 基の反応を促進することができるものであれば、特に制限はなぐ上記以外の熱硬化 を促進可能な化合物を用いてもょ 、。 [0052] In order to promote the thermal curing of the epoxy resin compound and the oxetane conjugate, for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxyN Amine compounds such as N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine; quaternary ammonium salts such as triethylbenzylammonium-dimethyl chloride; block isocyanates such as dimethylamine Substances: imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2 phenylimidazole, 1- (2-cyanoethyl) 2ethyl 4-Methyl imidazole derivatives such as imidazole Bicyclic amidine conjugates and salts thereof; phosphorus compounds such as triphenylphosphine; guanamine compounds such as melamine, guanamine, acetguanamine, benzoguanamine; 2,4 diamino 6 methacryloyloxyshetyl S-triazine, 2-Bu-1,2,4-Diamino S-triazine, 2-Bu-1,4,6-Diamino-S Triazine, a product with isocyanuric acid, 2,4 diamino-6-methacryloyloxetyl-S-triazine, isocyanur S-triazine derivatives such as acid adducts; Ru can be used. These may be used alone or in combination of two or more. In addition, a curing catalyst for the epoxy resin compound or the oxetane compound, or a compound capable of accelerating the thermosetting other than the above, which is not particularly limited, as long as it can promote the reaction of these with the carboxyl group. You can use it.
前記エポキシ榭脂、前記ォキセタンィ匕合物、及びこれらとカルボン酸との熱硬化を 促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常 0. 01〜 15質量%でぁる。  The solid content of the epoxy resin, the oxetane conjugate, and the compound capable of promoting thermal curing of the epoxy resin and the carboxylic acid with the carboxylic acid in the solid content of the photosensitive composition is usually 0.01 to 15% by mass. Puru.
また、前記熱架橋剤としては、特開平 5— 9407号公報記載のポリイソシァネートイ匕 合物を用いることができ、該ポリイソシァネートイ匕合物は、少なくとも 2つのイソシァネ 一ト基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されて いてもよい。具体的には、 1, 3 フエ-レンジイソシァネートと 1, 4 フエ-レンジイソ シァネートとの混合物、 2, 4 及び 2, 6 トルエンジイソシァネート、 1, 3 及び 1, 4 キシリレンジイソシァネート、ビス(4 イソシァネート フエ-ル)メタン、ビス(4 イソシァネートシクロへキシル)メタン、イソフォロンジイソシァネート、へキサメチレンジ イソシァネート、トリメチルへキサメチレンジイソシァネート等の 2官能イソシァネート; 該 2官能イソシァネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等と の多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記 2 官能イソシァネートとの付加体;へキサメチレンジイソシァネート、へキサメチレン 1 , 6 ジイソシァネート及びその誘導体等の環式三量体;などが挙げられる。 [0054] 更に、本発明の感光性組成物の保存性を向上させることを目的として、前記ポリィ ソシァネート及びその誘導体のイソシァネート基にブロック剤を反応させて得られる化 合物を用いてもよい。 Further, as the thermal crosslinking agent, a polyisocyanate conjugate described in JP-A-5-9407 can be used, and the polyisocyanate conjugate has at least two isocyanate groups. May be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing Specifically, a mixture of 1,3 phenylenediisocyanate and 1,4 phenylenediisocyanate, 2,4 and 2,6 toluene diisocyanate, 1,3 and 1,4 xylylene diisocyanate Bifunctional isocyanates such as bis (4 isocyanate phenyl) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; A polyfunctional alcohol of a bifunctional isocyanate with trimethylolpropane, pentalithol, glycerin, etc .; an adduct of the polyfunctional alcohol with an alkylene oxide adduct and the bifunctional isocyanate; hexamethylene diisocyanate. Cyclic trimers such as xamethylene 1,6 diisocyanate and its derivatives; It is. Further, for the purpose of improving the storage stability of the photosensitive composition of the present invention, a compound obtained by reacting a blocking agent with an isocyanate group of the above polyisocyanate and its derivative may be used.
前記イソシァネート基ブロック剤としては、イソプロパノール、 tert. —ブタノール等 のアルコール類; ε —力プロラタタム等のラタタム類;フエノール、クレゾール、 ρ— tert . —ブチノレフエノーノレ、 p— sec. —ブチノレフエノーノレ、 p— sec. —アミノレフエノーノレ、 p -ォクチルフエノール、 p -ノ-ルフエノール等のフエノール類; 3 -ヒドロキシピリジ ン、 8—ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メ チルェチルケトキシム、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセト ォキシム、シクロへキサノンォキシム等の活性メチレンィ匕合物;などが挙げられる。こ れらの他、特開平 6 - 295060号公報記載の分子内に少なくとも 1つの重合可能な 二重結合及び少なくとも 1つのブロックイソシァネート基のいずれかを有する化合物 などを用いることができる。 Examples of the isocyanate group blocking agent include alcohols such as isopropanol and tert.-butanol; ε- ratatams such as kyprolatatam; phenol, cresol, ρ-tert.-butynolephenole, p-sec.—butino Phenols, p-sec.—aminophenols, phenols such as p-octylphenol and p-norphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridin and 8-hydroxyquinoline; dialkyl Active methylene conjugates such as malonate, methylethyl ketoxime, acetylacetone, alkyl acetoacetate oxime, acetoxime and cyclohexanone oxime; In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in a molecule described in JP-A-6-295060 can be used.
[0055] また、前記熱架橋剤として、メラミン誘導体を用いることができる。該メラミン誘導体と しては、例えば、メチロールメラミン、アルキル化メチロールメラミン (メチロール基を、 メチル、ェチル、ブチル等でエーテルィ匕したィ匕合物)などが挙げられる。これらは 1種 単独で使用してもよいし、 2種以上を併用してもよい。これらの中でも、保存安定性が 良好で、感光層の表面硬度ある ヽは硬化膜の膜強度自体の向上に有効である点で 、アルキル化メチロールメラミンが好ましぐへキサメチル化メチロールメラミンが特に 好ましい。  Further, a melamine derivative can be used as the thermal crosslinking agent. Examples of the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, or the like). These may be used alone or in combination of two or more. Among these, hexamethylated methylol melamine is particularly preferred because alkylated methylol melamine is preferred in that storage stability is good and the surface hardness of the photosensitive layer is effective in improving the film strength itself of the cured film. .
[0056] 前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、 1〜40質量% が好ましぐ 3〜20質量%がより好ましい。該固形分含有量が 1質量%未満であると、 硬化膜の膜強度の向上が認められず、 40質量%を超えると、現像性の低下や露光 感度の低下を生ずることがある。  [0056] The solid content of the thermal crosslinking agent in the solid content of the photosensitive composition is preferably 1 to 40% by mass, more preferably 3 to 20% by mass. If the solid content is less than 1% by mass, no improvement in film strength of the cured film is observed, and if it exceeds 40% by mass, developability and exposure sensitivity may decrease.
[0057] 〔その他の成分〕  [Other components]
前記その他の成分としては、例えば、熱重合禁止剤、可塑剤、着色剤 (着色顔料あ るいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤及びその 他の助剤類 (例えば、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤、剥離促 進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。こ れらの成分を適宜含有させることにより、目的とする感光性組成物の安定性、写真性 、膜物性などの性質を調整することができる。 Examples of the other components include a thermal polymerization inhibitor, a plasticizer, a coloring agent (colored pigment or dye), an extender pigment, and the like, and further, an adhesion promoter to the substrate surface and other auxiliary agents. Agents (e.g., conductive particles, fillers, defoamers, flame retardants, leveling agents, Promoters, antioxidants, fragrances, surface tension adjusters, chain transfer agents, etc.). By appropriately containing these components, properties such as stability, photographic properties, and film properties of the intended photosensitive composition can be adjusted.
[0058] 熱重合禁止剤  [0058] Thermal polymerization inhibitor
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止 するために添カ卩してもよい。  The thermal polymerization inhibitor may be added to prevent thermal polymerization or polymerization with time of the polymerizable compound.
前記熱重合禁止剤としては、例えば、 4—メトキシフエノール、ハイドロキノン、アル キルまたはァリール置換ノヽイドロキノン、 tーブチルカテコール、ピロガロール、 2—ヒド ロキシベンゾフエノン、 4—メトキシ一 2 ヒドロキシベンゾフエノン、塩化第一銅、フエ ノチアジン、クロラニル、ナフチルァミン、 13 ナフトール、 2, 6 ジ tーブチルー 4 クレゾール、 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、ピリジン 、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、 4ートルイジン、メチレンブルー、銅と 有機キレート剤反応物、サリチル酸メチル、及びフエノチアジン、ニトロソィ匕合物、 -ト 口ソィ匕合物と A1とのキレート等が挙げられる。  Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl- or aryl-substituted hydroquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-12-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6-di-t-butyl-4 cresol, 2,2-methylenebis (4-methyl-6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, a reaction product of copper and an organic chelating agent, methyl salicylate, and phenothiazine, a nitrosoy conjugate, and a chelate of A1 and a chels.
[0059] 前記熱重合禁止剤の含有量としては、前記重合性化合物に対して 0. 001〜5質 量%が好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が特に好ましい 。該含有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあり、 5質量%を超えると、活性エネルギー線に対する感度が低下することがある。  [0059] The content of the thermal polymerization inhibitor is preferably from 0.001 to 5% by mass, more preferably from 0.005 to 2% by mass, based on the polymerizable compound. % By weight is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may decrease, and if it exceeds 5% by mass, the sensitivity to active energy rays may decrease.
[0060] 一着色顔料  [0060] One color pigment
前記着色顔料としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、ビク卜! J ピュア一ブルー BO (C. I. 42595)、オーラミン(C. I. 41000)、 フアット'ブラック HB (C. I. 26150)、モノライト'エロー GT(C. I.ビグメント 'エロー 1 2)、パーマネント 'エロー GR(C. I.ピグメント 'エロー 17)、パーマネント 'エロー HR( C. I.ビグメント 'エロー 83)、パーマネント 'カーミン FBB (C. I.ビグメント 'レッド 146 )、ホスターバームレッド ESB (C. I.ピグメント 'バイオレット 19)、パーマネント 'ルビ 一 FBH (C. I.ビグメント 'レッド 11)フアステル 'ピンク Bスプラ(C. I.ビグメント 'レッド 81)モナストラル'ファースト 'ブルー(C. I.ピグメント 'ブルー 15)、モノライト'ファー スト'ブラック B (C. I.ビグメント 'ブラック 1)、カーボン、 C. I.ビグメント 'レッド 97、 C. I.ビグメント 'レッド 122、 C. I.ビグメント 'レッド 149、 C. I.ビグメント 'レッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ビグメント 'レッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピグメント.グリーン 36、 C . I.ビグメント 'ブルー 15 : 1、 C. I.ビグメント 'ブルー 15 :4、 C. I.ビグメント 'ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 60、 C. I.ピグメント.ブ ルー 64などが挙げられる。これらは 1種単独で用いてもよいし、 2種以上を併用しても よい。 The color pigment may be appropriately selected depending on the purpose, for which there is no particular limitation. For example, Victor! J Pure Blue BO (CI 42595), Auramine (CI 41000), and Fat'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11') Huaster 'Pink B Supra (CI Pigment' Red 81 ') Monastral' First 'Blue (CI Pigment' Blue 15 '), Monolight 'First' Black B (CI Pigment 'Black 1'), Carbon, CI Pigment 'Red 97, C. I. pigment 'Red 122, CI pigment' red 149, CI pigment 'red 168, CI pigment' red 177, CI pigment 'red 180, CI pigment' red 192, CI pigment.red 215, CI pigment.green 7, CI Pigment Green 36, CI Pigment Blue 15: 1, CI Pigment Blue 15: 4, CI Pigment Blue 15: 6, CI Pigment Blue 22, CI Pigment Blue 60, CI Pigment Blue 64 And the like. These may be used alone or in combination of two or more.
[0061] 前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形 成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔 料の種類により異なる力 一般的には 0. 05〜: LO質量%が好ましぐ 0. 1〜5質量% 力 り好ましい。  [0061] The solid content of the coloring composition in the solid content of the photosensitive composition can be determined in consideration of the exposure sensitivity and the resolution of the photosensitive layer at the time of forming a permanent pattern. Power that varies depending on type of paint Generally 0.05-: LO mass% is preferred 0.1-5 mass% force is more preferred.
[0062] 一体質顔料 [0062] Monolithic pigment
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるい は線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く 抑えることを目的として、無機顔料や有機微粒子を添加することができる。  In the photosensitive composition, if necessary, for the purpose of improving the surface hardness of the permanent pattern, or reducing the coefficient of linear expansion, or for reducing the dielectric constant or dielectric loss tangent of the cured film itself. In addition, inorganic pigments and organic fine particles can be added.
前記無機顔料としては、特に制限はなぐ公知のものの中から適宜選択することが でき、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケィ素粉、微粉状酸化 ケィ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、 クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、 マイ力などが挙げられる。  The inorganic pigment can be appropriately selected from known inorganic pigments having no particular restrictions. Examples thereof include kaolin, barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, fumed silica, and silica. Examples include fixed silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and myriki.
前記無機顔料の平均粒径は、 10 m未満が好ましぐ 3 m以下がより好ましい。 該平均粒径が 10 m以上であると、光錯乱により解像度が劣化することがある。 前記有機微粒子としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、メラミン榭脂、ベンゾグアナミン榭脂、架橋ポリスチレン榭脂などが挙げられ る。また、平均粒径 1〜5 /ζ πι、吸油量 100〜200m2Zg程度のシリカ、架橋樹脂から なる球状多孔質微粒子などを用いることができる。 The average particle size of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. When the average particle diameter is 10 m or more, the resolution may be deteriorated due to light scattering. The organic fine particles are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Spherical porous fine particles made of silica or crosslinked resin having an average particle size of 1 to 5 / ζπι and an oil absorption of about 100 to 200 m 2 Zg can be used.
[0063] 前記体質顔料の添加量は、 5〜60質量%が好ましい。該添加量が 5質量%未満で あると、十分に線膨張係数を低下させることができないことがあり、 60質量%を超える と、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久バタ ーンを用いて配線を形成する場合にお!、て、配線の保護膜としての機能が損なわれ ることがある。 [0063] The addition amount of the extender is preferably 5 to 60% by mass. If the addition amount is less than 5% by mass, the coefficient of linear expansion may not be sufficiently reduced, and may exceed 60% by mass. When a cured film is formed on the surface of the photosensitive layer, the film quality of the cured film becomes brittle, and when a wiring is formed using a permanent pattern, the function of the wiring as a protective film is impaired. It may be.
[0064] 密着促進剤  [0064] Adhesion promoter
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知 の 、わゆる密着促進剤を用いることができる。  In order to improve the adhesion between the layers or the adhesion between the photosensitive layer and the substrate, a known adhesion promoter can be used for each layer.
[0065] 前記密着促進剤としては、例えば、特開平 5— 11439号公報、特開平 5— 34153 2号公報、及び特開平 6—43638号公報などに記載の密着促進剤が好適に挙げら れる。具体的には、ベンズイミダゾール、ベンズォキサゾール、ベンズチアゾール、 2 メルカプトべンズイミダゾール、 2—メルカプトべンズォキサゾール、 2—メルカプト ベンズチアゾール、 3 モルホリノメチルー 1 フエ二ルートリアゾールー 2 チオン、 3 モルホリノメチル 5 フエニル ォキサジァゾール 2 チオン、 5 アミノー 3 モルホリノメチル チアジアゾール 2 チオン、及び 2 メルカプト 5 メチル チォーチアジアゾール、トリァゾール、テトラゾール、ベンゾトリァゾール、カルボキシ ベンゾトリァゾール、アミノ基含有べンゾトリァゾール、シランカップリング剤などが挙げ られる。  [0065] Preferred examples of the adhesion promoter include the adhesion promoters described in JP-A-5-11439, JP-A-5-341532, JP-A-6-43638, and the like. . Specifically, benzimidazole, benzoxazole, benzthiazole, 2 mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3 morpholinomethyl-1 phenyletriazole-2 thione, 3 morpholino Methyl 5 phenyl oxaziazole 2 thione, 5 amino-3 morpholinomethyl thiadiazole 2 thione, and 2 mercapto 5 methyl thiothiadiazole, triazole, tetrazole, benzotriazole, carboxy benzotriazole, benzotriazole containing amino group, silane coupling agent, etc. No.
[0066] 前記密着促進剤の含有量としては、前記感光性組成物中の全成分に対して 0. 00 1質量%〜20質量%が好ましぐ 0. 01〜10質量%がより好ましぐ 0. 1質量%〜5 質量%が特に好ましい。  [0066] The content of the adhesion promoter is preferably from 0.001% by mass to 20% by mass, more preferably from 0.01% to 10% by mass, based on all components in the photosensitive composition. 0.1 mass% to 5 mass% is particularly preferred.
[0067] 本発明の感光性組成物は、現像性、はんだ耐熱性、耐折性、プレッシャータッカー 耐性に優れ、硬化皮膜の可撓性が大幅に向上する。このため、プリント配線板 (多層 配線基板、ビルドアップ配線基板等)、カラーフィルタや柱材、リブ材、スぺーサ一、 隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パ ターン形成用として広く用いることができ、特に本発明の感光性組成物、永久パター ン及びその形成方法に好適に用いることができる。  [0067] The photosensitive composition of the present invention is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, and significantly improves the flexibility of a cured film. For this reason, printed wiring boards (multilayer wiring boards, build-up wiring boards, etc.), display materials such as color filters and pillars, ribs, spacers, partitions, etc., and permanent patterns such as holograms, micromachines, and proofs are formed. It can be widely used for applications, and in particular, can be suitably used for the photosensitive composition, the permanent pattern and the method for forming the same of the present invention.
[0068] 〔感光層〕  [Photosensitive layer]
前記感光層は、本発明の前記感光性組成物により形成される。  The photosensitive layer is formed by the photosensitive composition of the present invention.
前記感光層は、後述する露光工程において、少なくとも光照射手段力 の光を受 光し出射する描素部を n個有する光変調手段により、前記光照射手段からの光を変 調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面 を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光、又は、前 記描素部の周辺部からの光を入射させな 、レンズ開口形状を有するマイクロレンズ を配列したマイクロレンズアレイを通過した光で、露光されるのが好まし!/、。 The photosensitive layer receives at least the light of the light irradiating means in an exposure step described later. After modulating the light from the light irradiating means by a light modulating means having n picture element portions for emitting and emitting light, a micro-sphere having an aspheric surface capable of correcting an aberration due to distortion of an emission surface in the picture element portion. Light that has passed through a microlens array in which lenses are arranged, or light that has passed through a microlens array in which microlenses having a lens aperture shape are arranged without allowing light from the periphery of the picture element portion to enter. , Preferably exposed! /.
[0069] 前記感光層の厚みとしては、特に制限はなぐ目的に応じて適宜選択することがで きるが、例えば、 3〜: LOO m力好ましく、 5〜70 mがより好ましい。  [0069] The thickness of the photosensitive layer can be appropriately selected depending on the particular purpose, but is, for example, preferably 3 to: LOO m force, and more preferably 5 to 70 m.
[0070] 前記感光層の形成方法としては、基材上に、本発明の前記感光性組成物を、水又 は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗 布し、乾燥させることにより積層する方法が挙げられる。  [0070] As a method for forming the photosensitive layer, a photosensitive composition solution is prepared by dissolving, emulsifying, or dispersing the photosensitive composition of the present invention in water or a solvent on a substrate. Is directly applied and dried to laminate.
[0071] 前記感光性組成物溶液の溶剤としては、特に制限はなぐ目的に応じて適宜選択 することができ、例えば、メタノール、エタノール、 n—プロパノール、イソプロパノール 、 n—ブタノール、 sec ブタノール、 n—へキサノール等のアルコール類;アセトン、メ チルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなど のケトン類;酢酸ェチル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸 ェチル、フタル酸ジメチル、安息香酸ェチル、及びメトキシプロピルアセテートなどの エステル類;トルエン、キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類 ;四塩化炭素、トリクロロエチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチ レン、モノクロ口ベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェチル エーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノエチノレエ 一テル、 1ーメトキシー 2—プロパノールなどのエーテル類;ジメチルホルムアミド、ジメ チルァセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を添 カロしてちょい。  [0071] The solvent of the photosensitive composition solution can be appropriately selected depending on the purpose without particular limitation. Examples thereof include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-butanol. Alcohols such as hexanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and diisobutyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate Esters such as ethyl, benzoate, and methoxypropyl acetate; Aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene; Carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, chloride C, such as methylene and monochrome benzene Genated hydrocarbons; ethers such as tetrahydrofuran, getyl ether, ethylene glycolone monomethinoleate, ethylene glycolone monoethynole ether, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane And the like. These may be used alone or in combination of two or more. Also, add a known surfactant.
[0072] 前記塗布の方法としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイ =1一ター、力 一テンコーターなどを用いて、前記支持体に直接塗布する方法が挙げられる。  [0072] The coating method can be appropriately selected depending on the purpose without particular limitation. For example, a spin coater, a slit spin coater, a roll coater, a die = 1 coater, a force coater, or the like can be used. And a method of directly applying to the support.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。 The drying conditions vary depending on each component, type of solvent, usage ratio, and the like, It is usually at a temperature of 60 to 110 ° C for about 30 seconds to 15 minutes.
[0073] (永久パターン及びパターン形成方法) (Permanent Pattern and Pattern Forming Method)
本発明の永久パターンは、本発明のパターン形成方法により得られる。 本発明のパターン形成方法は、本発明の感光性組成物を、基材の表面に塗布し、 乾燥して感光層を形成した後、露光し、現像する。本発明においては、可撓性及び 耐折性に優れた感光性組成物を用いるので、フレキシブル基板に適用することがで き、ロール ·ッ一 ·ロールで露光を行うことができ、生産性が飛躍的に向上する。  The permanent pattern of the present invention is obtained by the pattern forming method of the present invention. In the pattern forming method of the present invention, the photosensitive composition of the present invention is applied to the surface of a substrate, dried to form a photosensitive layer, exposed, and developed. In the present invention, since a photosensitive composition having excellent flexibility and folding resistance is used, the photosensitive composition can be applied to a flexible substrate, and can be exposed by a roll-to-roll process, thereby improving productivity. Improve dramatically.
以下、本発明のパターン形成方法の説明を通じて、本発明の永久パターンの詳細 も明らかにする。  Hereinafter, the details of the permanent pattern of the present invention will be clarified through the description of the pattern forming method of the present invention.
[0074] 〔基材〕 [Substrate]
前記基材としては、特に制限はなぐ公知の材料の中から表面平滑性の高いもの 力も凸凹のある表面を有するものまで適宜選択することができ、例えば、板状の基材 (基板)が好ましぐ具体的には、フレキシブルプリント配線板形成用基板 (例えば、銅 張積層板)、ガラス板 (例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属 板などが挙げられる力 これらの中でも、フレキシブルプリント配線板形成用基板が 好ましぐ多層配線基板やビルドアップ配線基板などへの半導体等の高密度実装化 が可能となる点で、該プリント配線板形成用基板が配線形成済みであるのが特に好 ましい。  The substrate is not particularly limited, and may be appropriately selected from known materials having high surface smoothness and those having a surface with unevenness. For example, a plate-like substrate (substrate) is preferable. More specifically, the force includes a substrate for forming a flexible printed wiring board (eg, a copper-clad laminate), a glass plate (eg, a soda glass plate), a synthetic resin film, paper, a metal plate, and the like. Among these, the printed wiring board forming substrate has already been formed with wiring because it enables high-density mounting of semiconductors and the like on multilayer wiring boards and build-up wiring boards, which are preferred by flexible printed wiring board forming substrates. It is particularly preferred that
[0075] 前記基材は、該基材上に前記感光性組成物による感光層が形成されてなる積層 体における前記感光層に対して後述する露光することにより、露光した領域を硬化さ せ、後述する現像により永久パターンを形成することができる。  [0075] The substrate is exposed to light, as will be described later, on the photosensitive layer in the laminate in which the photosensitive layer of the photosensitive composition is formed on the substrate, thereby curing the exposed region. A permanent pattern can be formed by development described later.
[0076] 一積層体  [0076] One laminate
前記積層体の形成方法としては、特に制限はなぐ目的に応じて適宜選択すること ができるが、前記基材上に、前記感光性組成物を塗布及び乾燥して形成した感光層 を積層するのが好ましい。  The method of forming the laminate may be appropriately selected depending on the purpose, and the method is not particularly limited. Is preferred.
前記塗布及び乾燥の方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記感光性組成物における感光層を形成する際に行われる、前 記感光性組成物溶液の塗布及び乾燥と同様な方法で行うことができ、例えば、該感 光性組成物溶液をスピンコーター、スリットスピンコーター、ロールコーター、ダイコー ター、カーテンコーターなどを用いて塗布する方法が挙げられる。 The method of coating and drying can be appropriately selected depending on the particular purpose without limitation. For example, the method of forming a photosensitive layer in the photosensitive composition may include the method of forming a photosensitive layer. And drying can be performed in the same manner as in the application and drying. Examples include a method of applying the optical composition solution using a spin coater, a slit spin coater, a roll coater, a die coater, a curtain coater, or the like.
[0077] [露光工程] [Exposure Step]
前記露光工程としては、少なくとも光照射手段力 の光を受光し出射する描素部を n個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描 素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズ が配列されたマイクロレンズアレイを通過させた光、又は、前記描素部の周辺部から の光を入射させな ヽレンズ開口形状を有するマイクロレンズを配列したマイクロレンズ アレイを通過させた光によって、前記感光層形成工程により形成された感光層を、露 光する工程である。  In the exposing step, the light from the light irradiating unit is modulated by a light modulating unit having at least n pixel units that receive and emit light of at least the power of the light irradiating unit. Light passing through a microlens array having a microlens having an aspheric surface capable of correcting aberration due to distortion or light from a peripheral portion of the picture element portion is not incident. This is a step of exposing the photosensitive layer formed in the photosensitive layer forming step by light passing through a microlens array in which lenses are arranged.
[0078] 前記露光工程としては、少なくとも光照射手段力 の光を受光し出射する描素部を n個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描 素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズ が配列されたマイクロレンズアレイを通過させた光、又は、前記描素部の周辺部から の光を入射させな ヽレンズ開口形状を有するマイクロレンズを配列したマイクロレンズ アレイを通過させた光によって、前記感光層形成工程により形成された感光層を、露 光する工程を有する。  [0078] In the exposing step, the light from the light irradiating unit is modulated by a light modulating unit having at least n pixel units that receive and emit light with the power of the light irradiating unit. Light passing through a microlens array in which a microlens having an aspheric surface capable of correcting aberration due to distortion of the light exit surface is arranged, or light from the periphery of the pixel portion is not incident. Exposing the photosensitive layer formed in the photosensitive layer forming step by light passing through a microlens array having microlenses arranged therein.
[0079] 前記露光工程において、前記光照射手段から照射される光としては、特に制限は なぐ目的に応じて適宜選択することができるが、例えば、光重合開始剤や増感剤を 活性化する電磁波、紫外から可視光、電子線、 X線、レーザ光などが挙げら、これら の中でも、光のオンオフ制御が短時間で行え、光の干渉制御が容易なレーザ光が好 適に挙げられる。  [0079] In the exposure step, the light emitted from the light irradiation means can be appropriately selected depending on the purpose without particular limitation. For example, a photopolymerization initiator or a sensitizer is activated. Suitable examples include electromagnetic waves, ultraviolet to visible light, electron beams, X-rays, and laser beams. Of these, laser beams that can perform on / off control of light in a short time and easily control light interference are preferable.
前記紫外力 可視光の光の波長としては、特に制限はなぐ目的に応じて適宜選 択することができるが、感光性組成物の露光時間の短縮を図る目的から、 330-65 Onmが好ましぐ 395〜415nm力より好ましく、 405nmであることが特に好ましい。 前記光照射手段による光の照射方法としては、特に制限はなぐ目的に応じて適宜 選択することができ、例えば、高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲン ランプ、複写機用冷陰極管、 LED,半導体レーザなどの公知の光源によって照射す る方法が挙げられる。また、これらの光源からの光を 2以上合成して照射することが好 適であり、 2以上の光を合成したレーザ光(以下、「合波レーザ光」ということがある。 ) を照射することが特に好適に挙げられる。 The wavelength of the ultraviolet light and visible light can be appropriately selected depending on the particular purpose, but 330-65 Onm is preferable for the purpose of shortening the exposure time of the photosensitive composition. It is more preferably at 395-415 nm, and particularly preferably at 405 nm. The method of irradiating the light by the light irradiating means can be appropriately selected depending on the particular purpose, for example, a high-pressure mercury lamp, a xenon lamp, a carbon arc lamp, a halogen lamp, a cold cathode tube for a copying machine, an LED. Irradiation with a known light source such as a semiconductor laser. Method. In addition, it is preferable to irradiate two or more lights from these light sources in combination, and to irradiate a laser beam in which two or more lights are combined (hereinafter, may be referred to as a “combined laser beam”). Is particularly preferred.
前記合波レーザ光の照射方法としては、特に制限はなぐ目的に応じて適宜選択 することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレー ザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させる 集合光学系とにより合波レーザ光を構成して照射する方法が挙げられる。  The method of irradiating the multiplexed laser beam can be appropriately selected depending on the particular purpose. However, a plurality of laser light sources, a multi-mode optical fiber, and a laser radiated from the plurality of laser light sources are used. There is a method of irradiating a combined laser light by using a collective optical system that collects light and couples the light to the multi-mode optical fiber.
[0080] 前記露光工程にお!、て、光を変調する方法としては、前記光照射手段からの光を 受光し出射する描素部を n個有する光変調手段により変調する方法であれば、特に 制限はなぐ目的に応じて適宜選択することができるが、 n個の描素部の中から連続 的に配置された任意の n個未満の描素部をパターン情報に応じて制御する方法が好 適に挙げられる。 In the exposing step, as a method of modulating light, any method may be used as long as it is a method of modulating light by n light-modulating means having n picture elements for receiving and emitting light from the light irradiating means. In particular, the restriction can be appropriately selected depending on the purpose to be relaxed.However, a method of controlling any of less than n successively arranged picture elements out of n picture elements according to the pattern information is used. It is preferably listed.
前記描素部の数 (n)としては、特に制限はなぐ目的に応じて適宜選択することが できるが、 2以上が好ましい。  The number (n) of the picture element portions can be appropriately selected depending on the particular purpose, but is preferably 2 or more.
前記光変調手段における描素部の配列としては、特に制限はなぐ目的に応じて 適宜選択することができるが、例えば、 2次元的に配列されることが好ましぐ格子状 に配列されることがより好まし 、。  The arrangement of the picture element portions in the light modulating means can be appropriately selected according to the purpose to which there is no particular limitation.For example, the arrangement of the picture element portions is preferably arranged in a two-dimensional grid. Is more preferred,.
また、前記光の変調方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができるが、前記光変調手段が、空間光変調素子による方法が好適に挙げられる 前記空間光変調素子としては、特に制限はなぐ目的に応じて適宜選択することが できる力 デジタル 'マイクロミラ^ デバイス(DMD)、 MEMS (Micro Electro M echanical Systems)タイプの空間光変調素子(SLM ; Special Light Modulat or)、電気光学効果により透過光を変調する光学素子 (PLZT素子)、液晶光シャツタ (FLC)などが好適に挙げられ、これらの中でも DMDが特に好適に挙げられる。  Further, the method of modulating the light can be appropriately selected depending on the particular purpose, but a method using a spatial light modulating element as the light modulating means is preferably exemplified as the spatial light modulating element. Can be selected as appropriate according to the purpose of the application, especially digital “Micro Mirror Device” (DMD), MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM; Special Light Modulat or), An optical element (PLZT element) that modulates transmitted light by an electro-optic effect, a liquid crystal optical shutter (FLC), and the like are preferable, and among these, DMD is particularly preferable.
[0081] 前記露光工程において、前記変調手段により変調された光は、前記描素部におけ る出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列され たマイクロレンズアレイ、又は、前記描素部の周辺部からの光を入射させないレンズ 開口形状を有するマイクロレンズを配列したマイクロレンズアレイを通過させられる。 前記マイクロレンズアレイに配置されるマイクロレンズとしては、特に制限はないが、 例えは、非球面を有するものが好ましぐ前記非球面がトーリック面であるマイクロレン ズであることがより好まし!/、。 In the exposing step, the light modulated by the modulating means is a microlens array in which microlenses having an aspheric surface capable of correcting aberration due to distortion of an emission surface in the picture element portion, or A lens that does not allow light from the periphery of the picture element to enter The light can pass through a microlens array in which microlenses having an opening shape are arranged. The microlenses arranged in the microlens array are not particularly limited.For example, those having an aspherical surface are preferred, and the aspherical surface is more preferably a microlens having a toric surface! / ,.
更に、前記露光工程において、前記変調手段により変調された光は、アパーチャァ レイ、結合光学系、適宜選択されるその他の光学系などを通過させられることが好ま しい。  Further, in the exposure step, it is preferable that the light modulated by the modulating means is passed through an aperture array, a coupling optical system, another optical system appropriately selected, or the like.
[0082] 前記露光工程において、感光層を、露光する方法としては、特に制限はなぐ目的 に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げ られる力 デジタル露光が好適である。  [0082] In the exposure step, the method of exposing the photosensitive layer can be appropriately selected depending on the purpose without particular limitation. Examples thereof include digital exposure and analog exposure, and digital exposure is preferable. is there.
前記デジタル露光の方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変 調されたレーザ光を用いて行われることが好適である。  The method of the digital exposure can be appropriately selected depending on the purpose without particular limitation. For example, using a laser beam modulated according to a control signal generated based on predetermined pattern information. Preferably, it is performed.
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく 、目的に応じて適宜選択することができるが、短時間、かつ高速露光を可能とする観 点から、露光光と感光層とを相対的に移動させながら行うことが好ましぐ前記デジタ ル ·マイクロミラー ·デバイス (DMD)と併用されることが特に好ま 、。  Further, in the exposure step, the method of exposing the photosensitive layer is not particularly limited and may be appropriately selected depending on the intended purpose. It is particularly preferable to use together with the digital micromirror device (DMD), which is preferably performed while relatively moving the photosensitive layer and the photosensitive layer.
[0083] 前記露光工程にお!、て、不活性ガス雰囲気下で露光することもできる。例えば、前 記感光層形成工程により形成された感光層を、露光する方法としては、特に制限は なぐ目的に応じて適宜選択することができ、例えば、不活性ガスを前記感光層表面 に直接吹きかける方法、枠状フレームの一辺が開放され、不活性ガスの導入孔が少 なくとも残りの 1辺に形成された試料台中の露光空間に、露光対象である感光層が形 成された試料を載置し、前記不活性ガスの導入孔カゝら不活性ガスを導入して、感光 層表面を不活性ガスで覆!、つつ、露光を行う方法などが挙げられる。 [0083] In the exposure step, the exposure may be performed in an inert gas atmosphere. For example, the method of exposing the photosensitive layer formed in the photosensitive layer forming step can be appropriately selected depending on the purpose without particular limitation. For example, an inert gas is directly blown onto the surface of the photosensitive layer. Method: A sample on which a photosensitive layer to be exposed is formed is placed in an exposure space in a sample stage where one side of the frame-shaped frame is opened and the inlet for inert gas is formed on at least the other side. Then, an inert gas is introduced through the hole for introducing the inert gas to cover the surface of the photosensitive layer with the inert gas, and exposure is performed.
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導 入することも可能である。  It is also possible to use the exposure space as a sealed space and introduce an inert gas into the sealed space under reduced pressure.
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されるこ とを防止できれば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、 窒素、ヘリウム、ァノレゴンなどが挙げられる。 The inert gas can be appropriately selected depending on the purpose without particular limitation as long as the polymerization reaction of the photosensitive layer can be prevented from being inhibited by the influence of oxygen. Examples include nitrogen, helium, and anoregon.
[0084] 以下、本発明のパターン形成方法に好適に用いられるパターン形成装置を図面を 参照しながら説明する。  Hereinafter, a pattern forming apparatus suitably used in the pattern forming method of the present invention will be described with reference to the drawings.
[0085] 図 7は、本発明のパターン形成方法に好適に用いられるパターン形成装置の外観 を示す概略斜視図である。  FIG. 7 is a schematic perspective view showing the appearance of a pattern forming apparatus suitably used in the pattern forming method of the present invention.
前記光変調手段を含むパターン形成装置は、図 7に示すように 4本の脚部 154に 支持された厚い板状の設置台 156の上面に、シート状のパターン形成材料 150を表 面に吸着して保持する平板状のステージ 152を備えている。  As shown in FIG. 7, the pattern forming apparatus including the light modulating means adsorbs a sheet-like pattern forming material 150 on the upper surface of a thick plate-like mounting table 156 supported by four legs 154. The stage 152 is provided with a flat plate-shaped stage 152 for holding the stage.
ステージ 152は、その長手方向がステージ移動方向を向くように配置されると共に、 前記設置台 156の上面に形成されたガイド 158によって往復移動可能に支持されて いる。なお、前記パターン形成装置には、ステージ 152をガイド 158に沿って駆動す るための図示しな 、駆動装置を有して 、る。  The stage 152 is arranged so that its longitudinal direction is directed to the stage moving direction, and is supported so as to be able to reciprocate by a guide 158 formed on the upper surface of the mounting table 156. The pattern forming apparatus has a driving device (not shown) for driving the stage 152 along the guide 158.
[0086] 設置台 156の中央部には、ステージ 152の移動経路を跨ぐように下向き C字状のゲ ート 160が設けられている。ゲート 160の各々の端部は、設置台 156の長手方向中 央部における両側面に固定されている。このゲート 160の一方の側面側には、スキヤ ナ 162が設けられ、他方の側面側には、パターン形成材料 150の先端及び後端を検 知する複数 (例えば、 2個)の検知センサ 164が設けられている。スキャナ 162及び検 知センサ 164は、ゲート 160に各々取り付けられて、ステージ 152の移動経路の上方 に固定配置されている。なお、スキャナ 162及び検知センサ 164は、これらを制御す る図示しないコントローラに接続されている。  [0086] At the center of the installation base 156, a downward C-shaped gate 160 is provided so as to straddle the movement path of the stage 152. Each end of the gate 160 is fixed to both side surfaces at the center in the longitudinal direction of the mounting base 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the leading and trailing ends of the pattern forming material 150 are provided on the other side. Is provided. The scanner 162 and the detection sensor 164 are attached to the gate 160, respectively, and are fixed above the moving path of the stage 152. Note that the scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
[0087] 図 8は、スキャナの構成を示す概略斜視図である。また、図 9Aは、感光層に形成さ れる露光済み領域を示す平面図であり、図 9Bは、露光ヘッドによる露光エリアの配 列を示す図である。  FIG. 8 is a schematic perspective view showing the configuration of the scanner. FIG. 9A is a plan view showing an exposed area formed on the photosensitive layer, and FIG. 9B is a view showing an arrangement of exposure areas by an exposure head.
スキャナ 162は、図 8及び図 9Bに示すように、 m行 n列(例えば、 3行 5列)の略マトリ ックス状に配列された複数 (例えば、 14個)の露光ヘッド 166を備えている。この例で は、パターン形成材料 150の幅との関係で、 3行目には 4個の露光ヘッド 166を配置 した。なお、 m行目の n列目に配列された個々の露光ヘッドを示す場合は、露光へッ ド 166 と表記する。 露光ヘッド 166による露光エリア 168は、副走査方向を短辺とする矩形状である。 従って、ステージ 152の移動に伴い、パターン形成材料 150には露光ヘッド 166毎 に帯状の露光済み領域 170が形成される。なお、 m行目の n列目に配列された個々 の露光ヘッドによる露光エリアを示す場合は、露光エリア 168 As shown in FIGS. 8 and 9B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (for example, 3 rows and 5 columns). . In this example, four exposure heads 166 are arranged on the third line in relation to the width of the pattern forming material 150. Incidentally, when the individual exposure heads arranged in the m-th row and the n-th column are indicated, they are expressed as exposure heads 166. The exposure area 168 of the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Therefore, with the movement of the stage 152, a strip-shaped exposed region 170 is formed on the pattern forming material 150 for each exposure head 166. When the exposure area of each exposure head arranged in the m-th row and the n-th column is indicated, the exposure area 168
mnと表記する。  Notated as mn.
[0088] また、図 9A及び Bに示すように、帯状の露光済み領域 170が副走査方向と直交す る方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配 列方向に所定間隔 (露光エリアの長辺の自然数倍、本例では 2倍)ずらして配置され ている。このため、 1行目の露光エリア 168 と露光エリア 168 との間の露光できな  Further, as shown in FIGS. 9A and 9B, each of the exposure heads in each row arranged in a line so that the strip-shaped exposed areas 170 are arranged without gaps in a direction orthogonal to the sub-scanning direction is provided. They are arranged at predetermined intervals (a natural number times the long side of the exposure area, twice in this example) in the arrangement direction. Therefore, the exposure between the exposure area 168 of the first row and the exposure area 168 cannot be performed.
11 12  11 12
い部分は、 2行目の露光エリア 168 と 3行目の露光エリア 168 とにより露光すること  Area is to be exposed by the exposure area 168 on the second row and the exposure area 168 on the third row.
21 31  21 31
ができる。  Can do.
[0089] 図 10は、露光ヘッドの概略構成を示す斜視図である。  FIG. 10 is a perspective view showing a schematic configuration of the exposure head.
露光ヘッド 166  Exposure head 166
11〜166 各々は、図 10に示すように、光ビームをパターン情報に mn  11 to 166, as shown in FIG.
応じて光変調する前記光変調手段 (各描素毎に変調する空間光変調素子)としての The light modulating means that modulates light according to (a spatial light modulating element that modulates each pixel)
、米国テキサス 'インスツルメンッ社製のデジタル ·マイクロミラ一'デバイス(以下「D MD」ということがある。) 50と、 DMD50の光入射側に配置され、光ファイバの出射端 部 (発光点)が露光エリア 168の長辺方向と対応する方向に沿って一列に配列される レーザ出射部 68を備えた光照射手段 66としてのファイバアレイ光源 66と、ファイバァ レイ光源 66から出射されたレーザ光を補正して DMD上に集光させるレンズ系 67と、 レンズ系 67を透過したレーザ光を DMD50に向けて反射するミラー 69と、 DMD50 で反射されたレーザ光 Bを、パターン形成材料 150上に結像する結像光学系 51とを 備えている。なお、図 10では、レンズ系 67を概略的に示してある。 , Texas, U.S.A. "Digital micromirror device" (hereinafter, sometimes referred to as "DMD") 50 manufactured by Instrumentmen Co., Ltd. and a light emitting side (light emitting point) of an optical fiber arranged on the light incident side of DMD50. Exposure area 168 Fiber array light source 66 as light irradiating means 66 with laser emitting unit 68 arranged in a line along the direction corresponding to the long side direction of laser and laser light emitted from fiber array light source 66 A lens system 67 that focuses the laser beam on the DMD, a mirror 69 that reflects the laser beam transmitted through the lens system 67 toward the DMD 50, and an image of the laser beam B reflected by the DMD 50 on the pattern forming material 150. And an imaging optical system 51. In FIG. 10, the lens system 67 is schematically illustrated.
[0090] 図 12は、パターン情報に基づいて、 DMDの制御を行うコントローラである。 FIG. 12 shows a controller that controls DMD based on pattern information.
DMD50は、図 12に示すように、データ処理部、ミラー駆動制御部などを有するコ ントローラ 302に接続されている。このコントローラ 302のデータ処理部では、入力さ れたパターン情報に基づいて、露光ヘッド 166毎に DMD50の制御すべき領域内の 各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域につい ては後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信 号に基づいて、露光ヘッド 166毎に DMD50の各マイクロミラーの反射面の角度を制 御する。 The DMD 50 is connected to a controller 302 having a data processing unit, a mirror drive control unit, and the like, as shown in FIG. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the area to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The area to be controlled will be described later. Further, the mirror drive control unit controls the angle of the reflection surface of each micro mirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. Control.
[0091] 図 1は、前記光変調手段としてのデジタル 'マイクロミラー'デバイス (DMD)の構成 を示す部分拡大図である。  FIG. 1 is a partially enlarged view showing the configuration of a digital 'micromirror' device (DMD) as the light modulating means.
図 1〖こ示すよう〖こ、 DMD50は、 SRAMセル (メモリセル) 60上〖こ、各々描素(ピクセ ル)を構成する多数 (例えば、 1024個 X 768個)の微小ミラー(マイクロミラー) 62が 格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支 柱に支えられたマイクロミラー 62が設けられており、マイクロミラー 62の表面にはアル ミニゥム等の反射率の高い材料が蒸着されている。なお、マイクロミラー 62の反射率 は 90%以上であり、その配列ピッチは縦方向、横方向とも一例として 13. であ る。また、マイクロミラー 62の直下には、ヒンジ及びヨークを含む支柱を介して通常の 半導体メモリの製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60が 配置されており、全体はモノリシックに構成されている。  Figure 1 As shown here, DMD50 is an SRAM cell (memory cell) above 60, each of which has a large number (for example, 1024 x 768) of small mirrors (micromirrors) constituting picture elements (pixels) Reference numeral 62 denotes a mirror device arranged in a lattice. In each pixel, a micromirror 62 supported by a pillar is provided at the top, and a material having a high reflectance such as an aluminum is deposited on the surface of the micromirror 62. The reflectance of the micromirror 62 is 90% or more, and the arrangement pitch is 13. as an example in both the vertical and horizontal directions. Immediately below the micromirror 62, a silicon-gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed via a support including a hinge and a yoke, and the entire structure is monolithically configured. ing.
[0092] 図 2A及び Bは、 DMDの動作を説明する図である。  [0092] FIGS. 2A and 2B are diagrams illustrating the operation of the DMD.
DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ±ひ度 (例えば ± 12度)の範囲で傾けられる。図 2Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 2Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。  When a digital signal is written to the SRAM cell 60 of the DMD 50, the microphone mirror 62 supported by the support post is positioned within a range of ± 12 degrees (eg, ± 12 degrees) with respect to the substrate on which the DMD 50 is placed, centered on the diagonal line. Can be tilted. FIG. 2A shows a state in which the micromirror 62 is turned on and tilted to + α degrees, and FIG. 2A shows a state in which the micromirror 62 is turned off and tilts to α degrees.
従って、パターン情報に応じて、 DMD50の各ピクセルにおけるマイクロミラー 62の 傾きを制御することによって、 DMD50に入射したレーザ光は、それぞれのマイクロミ ラー 62の傾き方向へ反射される。  Therefore, by controlling the tilt of the micromirrors 62 in each pixel of the DMD 50 according to the pattern information, the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62.
なお、図 1では、マイクロミラー 62が、 + α度又は α度に制御されている状態の 一例を示す。それぞれのマイクロミラー 62のオンオフ制御は、 DMD50に接続された 前記コントローラ 302によって行われる。また、オフ状態のマイクロミラー 62で反射し たレーザ光 Βが進行する方向には、図示しな 、光吸収体が配置されて 、る。  Note that FIG. 1 shows an example of a state in which the micromirror 62 is controlled to + α degrees or α degrees. The ON / OFF control of each micromirror 62 is performed by the controller 302 connected to the DMD 50. In the direction in which the laser beam reflected by the off-state micromirror 62 travels, a light absorber (not shown) is arranged.
[0093] DMD50は、その短辺が副走査方向と所定角度 0 (例えば、 0. 1° 〜5° )を成す ように僅かに傾斜させて配置するのが好ま 、。 [0093] DMD 50 is preferably arranged to be slightly inclined such that its short side forms a predetermined angle 0 (for example, 0.1 ° to 5 °) with the sub-scanning direction.
図 3Αは、 DMD50を傾斜させない場合の各マイクロミラーによる反射光像 (露光ビ ーム) 53の走査軌跡を示し、図 3Bは DMD50を傾斜させた場合の露光ビーム 53の 走査軌跡を示している。 Figure 3Α shows the reflected light image (exposure window) of each micromirror when the DMD50 is not tilted. FIG. 3B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
図 3Bに示すように、 DMD50には、長手方向にマイクロミラーが多数個(例えば、 1 024個)配列されたマイクロミラー列力 短手方向に多数^ & (例えば、 756糸且)配列さ れているが、 DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム 53 の走査軌跡(走査線)のピッチ P力 DMD50を傾斜させない場合の走査線のピッチ  As shown in FIG. 3B, the DMD 50 has a large number of micromirrors (for example, 1,024) arranged in the longitudinal direction, and a large number of micromirrors arranged in the short direction (for example, 756 threads). However, by inclining the DMD50, the pitch of the scanning locus (scanning line) of the exposure beam 53 by each micromirror P force The scanning line pitch when the DMD50 is not inclined
2  2
Pより狭くなり、解像度を大幅に向上させることができる。一方、 DMD50の傾斜角は 微小であるので、 DMD50を傾斜させた場合の走査幅 Wと、 DMD50を傾斜させな  It becomes narrower than P, and the resolution can be greatly improved. On the other hand, since the inclination angle of the DMD 50 is very small, the scanning width W when the DMD 50 is inclined and the DMD 50 are not inclined.
2  2
い場合の走査幅 wとは略同一である。 In this case, the scanning width w is almost the same.
次に、前記光変調手段における変調速度を速くさせる方法 (以下「高速変調」と称 する)について説明する。  Next, a method of increasing the modulation speed in the light modulation means (hereinafter referred to as “high-speed modulation”) will be described.
ファイバアレイ光源 66から DMD50にレーザ光 Bが照射されると、ファイバアレイ光 源 66から出射されたレーザ光が描素毎にオンオフされて、ノターン形成材料 150が DMD50の使用描素数と略同数の描素単位 (露光エリア 168)で露光される。また、 パターン形成材料 150がステージ 152と共に一定速度で移動されることにより、パタ ーン形成材料 150がスキャナ 162によりステージ移動方向と反対の方向に副走査さ れ、露光ヘッド 166毎に帯状の露光済み領域 170が形成される。  When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the no-turn forming material 150 has substantially the same number of pixels as the number of pixels used by the DMD 50. Exposure is performed in pixel units (exposure area 168). Further, by moving the pattern forming material 150 at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in a direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure head 166 is provided for each exposure head 166. The completed area 170 is formed.
ここで、 DMD50全体のデータ処理速度には、限界があり、使用する描素数に比例 して 1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用す ることで 1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対 して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要 はない。  Here, there is a limit to the data processing speed of the DMD50 as a whole, and the modulation speed per line is determined in proportion to the number of picture elements used. The modulation speed per line increases. On the other hand, in the case of the exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
DMD50は、主走査方向にマイクロミラーが 1024個配列されたマイクロミラー列が 、副走査方向に 768組配列されている力 コントローラ 302により一部のマイクロミラ 一列(例えば、 1024個 X 256列)だけが駆動するように制御される。  The DMD50 has a micromirror array in which 1024 micromirrors are arranged in the main scanning direction, and 768 sets are arranged in the subscanning direction. The force controller 302 controls only a part of micromirror arrays (for example, 1024 x 256 arrays). Is controlled to drive.
図 4A及び Bは、 DMDの使用領域を示す図である。  FIGS. 4A and 4B are diagrams showing areas where the DMD is used.
図 4Aに示すように、 DMDの使用領域としては、 DMD50の中央部に配置された マイクロミラー列を使用してもよぐ図 4Bに示すように、 DMD50の端部に配置された マイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合 は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用する マイクロミラー列を適宜変更してもよ 、。 As shown in FIG.4A, the DMD can be used by using an array of micromirrors arranged in the center of the DMD50.As shown in FIG.4B, it is arranged at the end of the DMD50. An array of micromirrors may be used. Further, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed according to the situation, such as using a micromirror array having no defect.
例えば、 768組のマイクロミラー列の内、 384組だけ使用する場合には、 768組全 部使用する場合と比較すると 1ライン当り 2倍速く変調することができる。また、 768組 のマイクロミラー列の内、 256組だけ使用する場合には、 768組全部使用する場合と 比較すると 1ライン当り 3倍速く変調することができる。  For example, when only 384 of the 768 micromirror rows are used, modulation can be performed twice as fast per line as compared to the case where all 768 sets are used. When only 256 of the 768 micromirror arrays are used, modulation can be performed three times faster per line than when all 768 sets are used.
[0095] 以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミ ラーが 1, 024個配列されたマイクロミラー列力 副走査方向に 768糸且配列された D MDを備えている力 コントローラにより一部のマイクロミラー列だけが駆動されるよう に制御することにより、全部のマイクロミラー列を駆動する場合に比べて、 1ライン当り の変調速度が速くなる。 As described above, according to the pattern forming method of the present invention, a micro mirror array force in which 1,024 micro mirrors are arranged in the main scanning direction is provided with a DMD in which 768 yarns are arranged in the sub scanning direction. By controlling only a part of the micromirror arrays by the force controller, the modulation speed per line is faster than when all the micromirror arrays are driven.
[0096] また、 DMDのマイクロミラーを部分的に駆動する例について説明した力 所定方向 に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各 々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが 2次元状に 配列された細長い DMDを用いても、反射面の角度を制御するマイクロミラーの個数 が少なくなるので、同様に変調速度を速くすることができる。  [0096] In addition, as described in the example of partially driving the micro mirror of the DMD, the control signal is applied to each of the substrates on which the length in the direction corresponding to the force predetermined direction is longer than the length in the direction intersecting the predetermined direction. Even when using a long and thin DMD in which a large number of micromirrors whose reflection surface angles can be changed in a two-dimensional manner, the number of micromirrors that control the reflection surface angles is reduced, so the modulation speed can be similarly increased. Can be faster.
[0097] 前記露光の方法としては、図 5に示すように、スキャナ 162による X方向への 1回の 走査でパターン形成材料 150の全面を露光してもよい。  As the exposure method, as shown in FIG. 5, the entire surface of the pattern forming material 150 may be exposed by one scanning in the X direction by the scanner 162.
また、前記露光の方法としては、図 6A及び Bに示すように、スキャナ 162によりパタ ーン形成材料 150を X方向へ走査した後、スキャナ 162を Y方向に 1ステップ移動し 、 X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査でパター ン形成材料 150の全面を露光するようにしてもょ 、。  6A and 6B, after the pattern forming material 150 is scanned by the scanner 162 in the X direction, the scanner 162 is moved by one step in the Y direction, and is scanned in the X direction. For example, the scanning and the movement may be repeated so that the entire surface of the pattern forming material 150 is exposed in a plurality of scans.
[0098] 前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が 硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領 域が除去され、パターンが形成される。  [0098] The exposure is performed on a partial region of the photosensitive layer, whereby the partial region is cured. In a developing step described below, an uncured region other than the cured partial region is exposed. The area is removed and a pattern is formed.
[0099] 次に、レンズ系 67及び結像光学系 51を説明する。  Next, the lens system 67 and the imaging optical system 51 will be described.
図 11は、図 10における露光ヘッドの構成の詳細を示す光軸に沿った複走査方向 の断面図である。 FIG. 11 shows the details of the configuration of the exposure head in FIG. 10 in the multiple scanning direction along the optical axis. FIG.
図 11に示すように、レンズ系 67は、ファイバアレイ光源 66から出射した照明光とし てのレーザ光 Bを集光する集光レンズ 71、集光レンズ 71を通過した光の光路に挿入 されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという) 72、及 びロッドインテグレータ 72の前方つまりミラー 69側に配置された結像レンズ 74を備え ている。  As shown in FIG. 11, the lens system 67 is a condenser lens 71 that collects laser light B as illumination light emitted from the fiber array light source 66, and is inserted into the optical path of the light passing through the condenser lens 71. A rod-shaped optical integrator (hereinafter, referred to as a rod integrator) 72 and an imaging lens 74 arranged in front of the rod integrator 72, that is, on the mirror 69 side are provided.
集光レンズ 71、ロッドインテグレータ 72及び結像レンズ 74は、ファイバアレイ光源 6 6から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光 束として DMD50に入射させる。  The condenser lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to be incident on the DMD 50 as a light flux close to parallel light and having a uniform intensity in a beam cross section.
[0100] レンズ系 67から出射したレーザ光 Bは、ミラー 69で反射し、 TIR (全反射)プリズム 7 0を介して DMD50に照射される。なお、図 10では、この TIRプリズム 70は省略して ある。 [0100] Laser light B emitted from lens system 67 is reflected by mirror 69 and applied to DMD 50 via TIR (total reflection) prism 70. In FIG. 10, the TIR prism 70 is omitted.
[0101] 図 11に示すように、結像光学系 51は、レンズ系 52, 54からなる第 1結像光学系と、 レンズ系 57, 58からなる第 2結像光学系と、これらの結像光学系の間に挿入された マイクロレンズアレイ 55と、アパーチャアレイ 59とを備えて!/ヽる。  As shown in FIG. 11, the imaging optical system 51 includes a first imaging optical system including lens systems 52 and 54, a second imaging optical system including lens systems 57 and 58, and A microlens array 55 inserted between the image optics and an aperture array 59 are provided.
[0102] マイクロレンズアレイ 55は、 DMD50の各描素に対応する多数のマイクロレンズ 55 aが 2次元状に配列されてなるものである。本例では、後述するように DMD50の 102 4個 X 768列のマイクロミラーのうち 1024個 X 256列だけが駆動されるので、それに 対応させてマイクロレンズ 55aは 1024個 X 256列配置されている。 [0102] The microlens array 55 is formed by arranging a large number of microlenses 55a corresponding to each picture element of the DMD 50 in a two-dimensional manner. In this example, as described later, only 1024 × 256 columns of the micromirrors of 1024 × 768 columns of the DMD50 are driven, and accordingly, the microlenses 55a are arranged in 1024 × 256 columns. .
マイクロレンズ 55aの配置ピッチは、縦方向、横方向とも 41 μ mである。マイクロレン ズ 55aの焦点距離は、 0. 19mm、NA (開口数)は 0. 11である。  The arrangement pitch of the microlenses 55a is 41 μm in both the vertical and horizontal directions. The focal length of the micro lens 55a is 0.19 mm, and the NA (numerical aperture) is 0.11.
また、マイクロレンズ 55aは、光学ガラス BK7から形成されている。  The micro lens 55a is formed from optical glass BK7.
各マイクロレンズ 55aの位置におけるレーザ光 Bのビーム径としては、 41 μ mである  The beam diameter of the laser beam B at the position of each micro lens 55a is 41 μm
[0103] アパーチャアレイ 59は、マイクロレンズアレイ 55の各マイクロレンズ 55aに対応する 多数のアパーチャ(開口) 59aが形成されている。各アパーチャ 59aの径は、 10 /z m である。 [0103] In the aperture array 59, a large number of apertures (openings) 59a corresponding to each micro lens 55a of the micro lens array 55 are formed. The diameter of each aperture 59a is 10 / zm.
[0104] 第 1結像光学系は、 DMD50による像を 3倍に拡大してマイクロレンズアレイ 55上に 結像する。 [0104] The first imaging optical system magnifies the image obtained by the DMD 50 three-fold and places it on the microlens array 55. Form an image.
第 2結像光学系は、マイクロレンズアレイ 55を経た像を 1. 6倍に拡大してパターン 形成材料 150上に結像、投影する。  The second imaging optical system magnifies the image passing through the microlens array 55 by 1.6 times to form an image on the pattern forming material 150 and project it.
従って、光学系全体では、 DMD50による像力 4. 8倍に拡大されてパターン形成 材料 150上に結像、投影される。  Therefore, in the entire optical system, the image is magnified 4.8 times by the DMD 50 and is formed and projected on the pattern forming material 150.
[0105] なお、前記第 2結像光学系とパターン形成材料 150との間にプリズムペア 73が配 設され、該プリズムペア 73を図 11において、上下方向に移動させることにより、パタ ーン形成材料 150上における像のピントを調節可能となって 、る。なお同図中にお いて、パターン形成材料 150は矢印 F方向に副走査送りされる。  Note that a prism pair 73 is provided between the second imaging optical system and the pattern forming material 150, and the prism pair 73 is moved up and down in FIG. The focus of the image on material 150 is now adjustable. In the figure, the pattern forming material 150 is sub-scanned in the direction of arrow F.
[0106] 次に、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等 について図面を参照しながら説明する。  Next, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.
[0107] 図 13Aは、前記露光ヘッドの構成を示す光軸に沿った断面図である。  FIG. 13A is a cross-sectional view along the optical axis showing the configuration of the exposure head.
図 13Aに示すように、前記露光ヘッドは、 DMD50にレーザ光を照射する光照射 手段 144、 DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学 系) 454、 458、 DMD50の各描素部に対応して多数のマイクロレンズ 474が配置さ れたマイクロレンズアレイ 472、マイクロレンズアレイ 472の各マイクロレンズに対応し て多数のアパーチャ 478が設けられたアパーチャアレイ 476、アパーチャを通過した レーザ光を被露光面 56に結像するレンズ系(結像光学系) 480、 482で構成される。  As shown in FIG. 13A, the exposure head includes light irradiation means 144 for irradiating the DMD 50 with laser light, lens systems (imaging optical systems) 454 and 458 for enlarging and forming an image of the laser light reflected by the DMD 50. A microlens array 472 in which a large number of microlenses 474 are arranged corresponding to each picture element portion of the DMD 50, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, an aperture Lens systems (imaging optical systems) 480 and 482 for imaging the laser light passing through the surface 56 to be exposed.
[0108] 図 14は、 DMD50を構成するマイクロミラー 62の反射面の平面度を測定した結果 を示す図である。  FIG. 14 is a view showing the result of measuring the flatness of the reflecting surface of the micro mirror 62 included in the DMD 50.
図 14において、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッ チは 5nmである。図中 X方向及び y方向は、マイクロミラー 62の 2つ対角線方向であ り、マイクロミラー 62は y方向に延びる回転軸を中心として前述のように回転する。 図 15A及び Bは、それぞれ、図 14における X方向、 y方向に沿ったマイクロミラー 62 の反射面の高さ位置変位を示す。  In FIG. 14, the same height position of the reflection surface is connected by a contour line, and the pitch of the contour line is 5 nm. In the figure, the X direction and the y direction are two diagonal directions of the micromirror 62, and the micromirror 62 rotates about the rotation axis extending in the y direction as described above. FIGS. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the X direction and the y direction in FIG. 14, respectively.
図 14及び図 15に示した通り、マイクロミラー 62の反射面には歪みが存在し、そして 特にミラー中央部に注目してみると、 1つの対角線方向(y方向)の歪み力 別の対角 線方向(X方向)の歪みよりも大きくなつている。このため、マイクロレンズアレイ 55のマ イク口レンズ 55aで集光されたレーザ光 Bの集光位置における形状が歪むという問題 が発生し得る。 As shown in FIGS. 14 and 15, there is a distortion on the reflecting surface of the micromirror 62, and especially when focusing on the central portion of the mirror, a distortion force in one diagonal direction (y direction) is applied. It is larger than the distortion in the line direction (X direction). For this reason, the micro lens array 55 A problem may occur that the shape of the laser beam B condensed by the exit lens 55a is distorted at the condensing position.
[0109] 図 16A及び Bは、それぞれ、マイクロレンズアレイ 55全体の正面形状及び側面形 状を示す図である。  FIGS. 16A and 16B are diagrams showing the front shape and the side shape of the entire microlens array 55, respectively.
図 16Aに示すように、マイクロレンズアレイ 55は、 DMD50のマイクロミラー 62に対 応して、マイクロレンズ 55aを横方向に 1024列、縦方向に 256列並設して構成される マイクロレンズアレイ 55の長辺の寸法は、 50mmであり、短辺の寸法は 20mmであ る。  As shown in FIG. 16A, the microlens array 55 is configured by arranging 1024 rows of microlenses 55a horizontally and 256 rows of vertical microlenses 55a corresponding to the micromirrors 62 of the DMD 50. The dimension of the long side is 50mm, and the dimension of the short side is 20mm.
なお、同図 Aでは、マイクロレンズ 55aの並び順を、横方向については jで、縦方向 については kで示す。  In FIG. A, the arrangement order of the microlenses 55a is indicated by j in the horizontal direction and by k in the vertical direction.
[0110] 図 17A及び Bは、マイクロレンズアレイ構成するマイクロレンズの正面形状及び側 面形状を示す図である。なお、図 17Aには、マイクロレンズ 55aの等高線を併せて示 す。  FIGS. 17A and 17B are diagrams showing the front shape and the side shape of the microlenses constituting the microlens array. Note that FIG. 17A also shows contour lines of the microlenses 55a.
図 17A及び Bに示すように、マイクロレンズ 55aの光出射側の端面は、マイクロミラ 一 62の反射面の歪みによる収差を補正する非球面形状とされる。  As shown in FIGS. 17A and 17B, the end surface on the light emission side of the microlens 55a has an aspherical shape for correcting aberration due to distortion of the reflecting surface of the micromirror-62.
非球面形状のマイクロレンズ 55aは、具体的には、 X方向における曲率半径 Rxがー 0. 125mmであり、 y方向における曲率半径 Ryがー 0. 1mmとされるトーリックレンズ である。  More specifically, the aspherical microlens 55a is a toric lens having a radius of curvature Rx in the X direction of -0.125 mm and a radius of curvature Ry in the y direction of -0.1 mm.
図 18は、マイクロレンズによる集光状態を 1つの断面内 Aと別の断面内 Bについて 示す概略図である。  FIG. 18 is a schematic diagram showing the light condensing state by the microlens in one section A and another section B. FIG.
図 18に示すように、マイクロレンズアレイ構成するマイクロレンズ 55aとして、光出射 側の端面が非球面形状であるトーリックレンズが用いられているため、 X方向及び y方 向に平行断面内におけるレーザ光 Bの集光状態は、 X方向に平行断面内と y方向に 平行断面内とを比較すると、後者の断面内の方がマイクロレンズ 55aの曲率半径がよ り小であって、焦点距離がより短くなる。  As shown in FIG. 18, as the microlenses 55a constituting the microlens array, a toric lens having an aspherical end surface on the light emission side is used, so that the laser light in a cross section parallel to the X direction and the y direction is used. When the light-collecting state of B is compared between a cross section parallel to the X direction and a cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller in the latter cross section, and the focal length is longer. Be shorter.
[0111] マイクロレンズ 55aの形状としては、 2次の非球面形状であってもよぐより高次 (4次 、 6次 · · の非球面形状であってもよい。前記高次の非球面形状を採用することによ り、ビーム形状をさらに高精細にすることができる。さらには、マイクロミラー 62の反射 面の歪みに応じて、前述した X方向及び y方向の曲率が互いに一致しているようなレ ンズ形状を採用することも可能である。以下、そのようなレンズ形状の例について詳し く説明する。 The shape of the micro lens 55a may be a secondary aspherical shape or a higher order (fourth order, sixth order, etc. aspherical shape. The higher order aspherical surface may be used). By adopting the shape Therefore, the beam shape can be further refined. Further, it is also possible to adopt a lens shape in which the curvatures in the X direction and the y direction coincide with each other according to the distortion of the reflection surface of the micromirror 62. Hereinafter, an example of such a lens shape will be described in detail.
[0112] 図 39A、 Bにそれぞれ等高線付き正面形状、側面形状を示すマイクロレンズ 55a" は、 X方向及び y方向の曲率が互いに等しぐかつ、該曲率が、球面レンズの曲率 Cy をレンズ中心からの距離 hに応じて補正したものとなっている。すなわち、このマイクロ レンズ 55a"のレンズ形状の基となる球面レンズ形状は、例えば、下記計算式 (数 1) でレンズ高さ(レンズ曲面の光軸方向位置) zを規定したものを採用する。  [0112] FIGS. 39A and 39B show a micro lens 55a "showing a front shape and a side shape with contour lines, respectively, in which the curvatures in the X direction and the y direction are equal to each other, and the curvature is the center of the spherical lens curvature Cy. The spherical lens shape which is the basis of the lens shape of the micro lens 55a "is calculated by, for example, the following formula (Equation 1). (Position in the direction of the optical axis) is used.
[数 1]  [Number 1]
c h2 ch 2
1 +SQ RT { 1 -Cy 2h2) なお、上記曲率 Cy=(lZ〇.1mm)である場合の、レンズ高さ zと距離 hとの関係を グラフにして図 40に示す。 1 + SQ RT {1 -C y 2 h 2 ) In addition, FIG. 40 is a graph showing the relationship between the lens height z and the distance h when the curvature Cy = (lZ〇.1 mm).
[0113] そして、上記球面レンズ形状の曲率 Cyをレンズ中心力 の距離 hに応じて下記計 算式 (数 2)のように補正して、マイクロレンズ 55a"のレンズ形状とする。  Then, the curvature Cy of the spherical lens shape is corrected according to the following formula (Equation 2) according to the distance h of the lens center force to obtain the lens shape of the micro lens 55a ″.
[数 2]  [Number 2]
C 2 h 2 C 2 h 2
+a h4+b h6 + ah 4 + bh 6
1 +SQRT ( 1 - C 2 h 2) 1 + SQRT (1-C 2 h 2 )
[0114] 前記計算式 (数 2)においても、 zの意味するところは上述の計算式 (数 2)と同じであ り、ここでは 4次係数 a及び 6次係数 bを用いて曲率 Cyを補正している。なお、上記曲 率 Cy=(l/0. lmm)、4次係数 a=l.2X103、 6次係数 a=5.5X107である場合 の、レンズ高さ zと距離 hとの関係をグラフにして図 41に示す。 In the above formula (Formula 2), the meaning of z is the same as the above formula (Formula 2). Here, the curvature Cy is calculated using the fourth-order coefficient a and the sixth-order coefficient b. It has been corrected. The relationship between the lens height z and the distance h when the above-mentioned curvature Cy = (l / 0.lmm), fourth-order coefficient a = l.2 × 10 3 and sixth-order coefficient a = 5.5 × 10 7 is plotted. This is shown in FIG.
[0115] また、マイクロレンズ 55aの光出射側の端面形状をトーリック面とすることの他、 2つ の光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイ クロレンズアレイを構成することも可能である。  [0115] Further, in addition to forming the end surface shape of the light exit side of the micro lens 55a as a toric surface, a micro lens array is formed from a micro lens having one of two light passing end surfaces as a spherical surface and the other as a cylindrical surface. It is also possible to configure.
[0116] 図 19A、 B、 C、及び Dは、マイクロレンズ 55aの集光位置(焦点位置)近傍における ビーム径を計算機によってシミュレーションした結果を示す図である。 また、比較のために、マイクロレンズが、曲率半径 Rx=Ry=—0. 1mmの球面形状 である場合について、同様のシミュレーションを行った結果を、図 20A、 B、 C及び D に示す。なお、各図における zの値は、マイクロレンズ 55aのピント方向の評価位置を 、マイクロレンズ 55aのビーム出射面からの距離で示している。 [0116] FIGS. 19A, 19B, 19C, 19D, and 19D are diagrams showing the results of computer simulation of the beam diameter near the converging position (focal position) of the microlens 55a. For comparison, FIGS. 20A, 20B, 20C, and 20D show the results of a similar simulation performed when the microlens has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. Note that the value of z in each drawing indicates the evaluation position of the microlens 55a in the focusing direction by the distance from the beam emission surface of the microlens 55a.
また、前記シミュレーションに用いたマイクロレンズ 55aの面形状は、下記計算式で 計算される。  The surface shape of the micro lens 55a used in the simulation is calculated by the following formula.
[0117] [数 3] [0117] [Number 3]
C 2 X 2 + C y 2 Y 2 C 2 X 2 + C y 2 Y 2
~ 1 +S Q R T ( 1 - C 2 X 2 - C 2 Y 2 ) 但し、前記計算式において、 Cxは、 X方向の曲率( = lZRx)、 Cyは、 y方向の曲 率( = lZRy)、 Xは、 X方向に関するレンズ光軸 O力もの距離、 Yは、 y方向に関する レンズ光軸 O力もの距離、をそれぞれ示す。 ~ 1 + SQRT (1 -C 2 X 2 -C 2 Y 2 ) where Cx is the curvature in the X direction (= lZRx), Cy is the curvature in the y direction (= lZRy), X Denotes the distance of the lens optical axis O force in the X direction, and Y denotes the distance of the lens optical axis O force in the y direction.
[0118] 図 19A〜Dと図 20A〜Dとを比較すると明らかなように、本発明のパターン形成方 法ではマイクロレンズ 55aを、 y方向に平行断面内の焦点距離力 方向に平行断面 内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけ るビーム形状の歪みが抑制される。このため、歪みの無い、より高精細な画像をパタ ーン形成材料 150に露光可能となる。  [0118] As is clear from a comparison between Figs. 19A to 19D and Figs. 20A to 20D, in the pattern forming method of the present invention, the microlens 55a is set to have a focal length in a cross section parallel to the y direction. By using a toric lens smaller than the focal length, the distortion of the beam shape near the focusing position is suppressed. Therefore, a higher definition image without distortion can be exposed to the pattern forming material 150.
[0119] なお、マイクロミラー 62の X方向及び y方向に関する中央部の歪の大小関係力 上 記と逆になつている場合は、 X方向に平行断面内の焦点距離が y方向に平行断面内 の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪 みの無い、より高精細な画像をパターン形成材料 150に露光可能となる。  [0119] When the magnitude relation of the distortion of the central portion of the micromirror 62 in the X direction and the y direction is opposite to the above, the focal length in the cross section parallel to the X direction becomes If a microlens is formed from a toric lens having a focal length smaller than the focal length of the microlens, similarly, a high-definition image without distortion can be exposed to the pattern forming material 150.
[0120] アパーチャアレイ 59は、マイクロレンズアレイ 55の集光位置近傍に配置される。ァ パーチヤアレイ 59に備えられた各アパーチャ 59aには、対応するマイクロレンズ 55a を経た光のみが入射する。従って、 1のマイクロレンズ 55aに対応する 1のアパーチャ 59aには、それと対応しない隣接のマイクロレンズ 55aからの光が入射することが防止 され、消光比を高めることが可能となる。  [0120] The aperture array 59 is arranged near the converging position of the microlens array 55. Each of the apertures 59a provided in the aperture array 59 receives only the light that has passed through the corresponding microlens 55a. Therefore, the light from the adjacent microlens 55a that does not correspond to the one aperture 59a corresponding to the one microlens 55a is prevented from entering, and the extinction ratio can be increased.
アパーチャ 59aの径をある程度小さくすれば、マイクロレンズ 55aの集光位置にお けるビーム形状の歪みを抑制する効果が得られ力 アパーチャアレイ 59で遮断され る光量がより多くなり、光利用効率が低下する。この場合に、マイクロレンズ 55aを前 記非球面形状とすることにより、光の遮断が防止され、光利用効率が高く保たれる。 If the diameter of the aperture 59a is reduced to some extent, the effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a is obtained, and the force is blocked by the aperture array 59. The amount of light to be used increases, and the light use efficiency decreases. In this case, by forming the micro lens 55a into the aspherical shape, the light is prevented from being blocked, and the light use efficiency is kept high.
[0121] また、前記マイクロレンズアレイ 55及びアパーチャアレイ 59により、 DMD50を構成 するマイクロミラー 62の反射面の歪みによる収差を補正して 、るが、 DMD以外の空 間光変調素子を用いる本発明のパターン形成方法においても、その空間光変調素 子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差 を補正し、ビーム形状に歪みが生じることを防止可能である。  The microlens array 55 and the aperture array 59 correct aberration caused by distortion of the reflection surface of the micromirror 62 constituting the DMD 50. However, the present invention uses a spatial light modulator other than the DMD. Also in the pattern forming method described above, when distortion is present on the surface of the picture element portion of the spatial light modulator, the present invention is applied to correct the aberration due to the distortion and prevent the beam shape from being distorted. It is possible.
[0122] なお、本発明のパターン形成方法においては、マイクロミラー 62の 2つの対角線方 向に光学的に対応する X方向及び y方向の曲率が異なるトーリックレンズであるマイク 口レンズ 55aが適用されている力 マイクロミラー 62の歪みに応じて、図 38A、 Bにそ れぞれ等高線付き正面形状、側面形状を示すように、矩形のマイクロミラー 62の 2つ の辺方向に光学的に対応する XX方向及び yy方向の曲率が互いに異なるトーリックレ ンズカもなるマイクロレンズ 55a,も適用可能である。  In the pattern forming method of the present invention, a microphone aperture lens 55a which is a toric lens having different curvatures in the X and y directions optically corresponding to the two diagonal directions of the micromirror 62 is applied. According to the distortion of the micromirror 62, as shown in FIGS. 38A and 38B, the front and side shapes with contour lines respectively correspond to the two sides of the rectangular micromirror 62. The microlens 55a, which is also a toric lens having different curvatures in the direction and the yy direction, is also applicable.
[0123] 図 13Aに示すように、前記結像光学系は、レンズ 480、 482を備え、アパーチャァ レイ 59を通過した光は、該結像光学系により被露光面 56上に結像される。  As shown in FIG. 13A, the imaging optical system includes lenses 480 and 482, and the light passing through the aperture array 59 is imaged on the exposure surface 56 by the imaging optical system.
[0124] 以上説明したとおり、前記パターン形成装置は、 DMD50により反射されたレーザ 光力 レンズ系の拡大レンズ 454、 458により数倍に拡大されて被露光面 56に投影 されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ 472及びァパ 一チヤアレイ 476が配置されていなければ、図 13Bに示すように、被露光面 56に投 影される各ビームスポット BSの 1描素サイズ (スポットサイズ)が露光エリア 468のサイ ズに応じて大きなものとなり、露光エリア 468の鮮鋭度を表す MTF (Modulation T ransfer Function)特'性が低下する。  As described above, since the pattern forming apparatus is magnified several times by the magnifying lenses 454 and 458 of the laser beam lens system reflected by the DMD 50 and projected onto the exposed surface 56, the entire image is formed. The area becomes wider. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected on the exposure surface 56 is reduced. The size becomes large according to the size of the exposure area 468, and the MTF (Modulation Transfer Function) characteristic indicating the sharpness of the exposure area 468 decreases.
一方、前記パターン形成装置では、マイクロレンズアレイ 472及びアパーチャアレイ 476を備えているので、 DMD50により反射されたレーザ光は、マイクロレンズアレイ 472の各マイクロレンズにより DMD50の各描素部に対応して集光される。これにより 、図 13Cに示すように、露光エリアが拡大された場合でも、各ビームスポット BSのスポ ットサイズを所望の大きさ(例えば、 lO ^ m X lO ^ m)に縮小することが可能となり、 MTF特性の低下を防止して、高精細な露光を行うことができる。 なお、露光エリア 468が傾いているのは、描素間の隙間を無くす為に、 DMD50を 傾けて配置して 、る力らである。 On the other hand, since the pattern forming apparatus includes the microlens array 472 and the aperture array 476, the laser light reflected by the DMD 50 is reflected by each microlens of the microlens array 472 to correspond to each pixel of the DMD 50. It is collected. As a result, as shown in FIG. 13C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, lO ^ mXlO ^ m). High-definition exposure can be performed while preventing a decrease in MTF characteristics. It is to be noted that the exposure area 468 is inclined because the DMD 50 is inclined and arranged to eliminate the gap between the picture elements.
また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによつ て被露光面 56上でのスポットサイズが一定の大きさになるようにビームを整形するこ とができると共に、各描素に対応して設けられたアパーチャアレイを通過させることに より、隣接する描素間でのクロストークを防止することができる。  Also, even if the beam is thickened due to the aberration of the microlens, the beam can be shaped by the aperture array so that the spot size on the surface 56 to be exposed becomes a constant size. By passing the light through an aperture array provided corresponding to the picture elements, crosstalk between adjacent picture elements can be prevented.
更に、光照射手段 144に高輝度光源を使用することにより、レンズ 458からマイクロ レンズアレイ 472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接 する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実 現することができる。  Further, by using a high-intensity light source for the light irradiating means 144, the angle of the light beam incident from the lens 458 to each microlens of the microlens array 472 becomes small, so that a part of the light beam of the adjacent picture element enters. Can be prevented. That is, a high extinction ratio can be realized.
図 22A及び Bは、他のマイクロレンズアレイの正面形状及び側面形状を示す図で ある。  22A and 22B are diagrams showing a front shape and a side shape of another microlens array.
図 22に示すとおり、他のマイクロレンズアレイとしては、各マイクロレンズに、マイクロ ミラー 62の反射面の歪みによる収差を補正する屈折率分布を持たせたものである。 図示の通り、他のマイクロレンズ 155aの外形形状は平行平板状である。なお、同図 における x、 y方向は、既述した通りである。  As shown in FIG. 22, as another microlens array, each microlens has a refractive index distribution for correcting aberration caused by distortion of the reflection surface of the micromirror 62. As shown, the outer shape of the other microlens 155a is a parallel plate. The x and y directions in the figure are as described above.
図 23は、図 22のマイクロレンズ 155aによる上記 X方向及び y方向に平行断面内に おけるレーザ光 Bの集光状態を示す概略図である。  FIG. 23 is a schematic diagram showing a state of focusing of the laser beam B in a cross section parallel to the X direction and the y direction by the microlens 155a of FIG.
図 23に示すように、マイクロレンズ 155aは、光軸 O力 外方に向力つて次第に増大 する屈折率分布を有するものであり、同図にお 、てマイクロレンズ 155a内に示す破 線は、その屈折率が光軸 O力 所定の等ピッチで変化した位置を示している。図示 の通り、 X方向に平行断面内と y方向に平行断面内とを比較すると、後者の断面内の 方がマイクロレンズ 155aの屈折率変化の割合がより大であって、焦点距離がより短く なって 、る。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用 いても、前記マイクロレンズアレイ 55を用いる場合と同様の効果を得ることが可能で ある。  As shown in FIG. 23, the microlens 155a has a refractive index distribution that gradually increases as the optical axis O force moves outward, and the broken line shown in the microlens 155a in FIG. The position at which the refractive index changes at a predetermined equal pitch of the optical axis O force is shown. As shown in the figure, comparing the cross section parallel to the X direction and the cross section parallel to the y direction, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is shorter. Become. Even when a microlens array composed of such a refractive index distribution type lens is used, the same effect as when the microlens array 55 is used can be obtained.
なお、図 17及び図 18に示したマイクロレンズ 55aにおいて、併せて、前記屈折率 分布を与え、面形状と屈折率分布の双方によって、マイクロミラー 62の反射面の歪 みによる収差を補正することも可能である。 In addition, in the micro lens 55a shown in FIGS. 17 and 18, the refractive index distribution is given together, and the distortion of the reflecting surface of the micro mirror 62 is determined by both the surface shape and the refractive index distribution. It is also possible to correct aberrations caused by only the light.
[0126] 次に、前記マイクロレンズアレイの他の一例について図面を参照しながら説明する 本例のマイクロレンズアレイは、図 42に示すとおり、前記描素部の周辺部からの光 を入射させな ヽレンズ開口形状を有するマイクロレンズを配列してなる。  Next, another example of the microlens array will be described with reference to the drawings. As shown in FIG. 42, the microlens array of this example does not allow light from the periphery of the picture element portion to enter.マ イ ク ロ Micro lenses having a lens opening shape are arranged.
[0127] 先に図 14及び図 15を参照して説明したとおり、 DMD50のマイクロミラー 62の反射 面には歪みが存在する力 その歪み変化量はマイクロミラー 62の中心力も周辺部に 行くにつれて次第に大きくなる傾向を有している。そしてマイクロミラー 62の 1つの対 角線方向(y方向)の周辺部歪み変化量は、別の対角線方向(X方向)の周辺部歪み 変化量と比べて大きぐ上記の傾向もより顕著となっている。  As described above with reference to FIGS. 14 and 15, a force that has a distortion on the reflection surface of the micromirror 62 of the DMD 50 The amount of change in the distortion gradually increases as the central force of the micromirror 62 also moves toward the periphery. It has a tendency to increase. The above-mentioned tendency that the amount of change in the distortion of the peripheral portion in one diagonal direction (y direction) of the micromirror 62 is larger than that in the other diagonal direction (the direction of X) becomes more remarkable. ing.
[0128] 本例のマイクロレンズアレイは、上述の問題に対処するために適用されたものであ る。このマイクロレンズアレイ 255は、アレイ状に配設されたマイクロレンズ 255aが円 形のレンズ開口を有するものとされている。そこで、上述のように歪みが大きいマイク 口ミラー 62の反射面の周辺部、特に、四隅部で反射したレーザ光 Bはマイクロレンズ 255aによって集光されなくなり、集光されたレーザ光 Bの集光位置における形状が 歪んでしまうことを防止できる。したがって、歪みの無い、より高精細な画像をパター ン形成材料 150に露光可能となる。  [0128] The microlens array of this example is applied to address the above-described problem. In the microlens array 255, the microlenses 255a arranged in an array have a circular lens opening. Therefore, as described above, the laser beam B reflected at the periphery of the reflection surface of the microphone opening mirror 62 having a large distortion, particularly at the four corners, is not condensed by the micro lens 255a, and the condensed laser beam B is condensed. Distortion of the shape at the position can be prevented. Therefore, a higher-definition image without distortion can be exposed to the pattern forming material 150.
[0129] また前記マイクロレンズアレイ 255においては、図 42に示したとおり、マイクロレンズ 255aを保持している透明部材 255b (これは通常、マイクロレンズ 255aと一体的に形 成される)の裏面、つまりマイクロレンズ 255aが形成されている面と反対側の面に、互 いに離れた複数のマイクロレンズ 255aのレンズ開口の外側領域を埋める状態にして 、遮光性のマスク 255cが形成されている。このようなマスク 255cが設けられているこ とにより、マイクロミラー 62の反射面の周辺部、特に四隅部で反射したレーザ光 Bは そこで吸収、遮断されるので、集光されたレーザ光 Bの形状が歪んでしまうという問題 力 り確実に防止される。  [0129] In the microlens array 255, as shown in Fig. 42, the back surface of a transparent member 255b (which is usually formed integrally with the microlens 255a) holding the microlens 255a, That is, a light-shielding mask 255c is formed on the surface opposite to the surface on which the microlenses 255a are formed, so as to fill the regions outside the lens openings of the plurality of microlenses 255a that are separated from each other. By providing such a mask 255c, the laser beam B reflected at the periphery of the reflecting surface of the micromirror 62, especially at the four corners, is absorbed and cut off there. The problem of shape distortion is reliably prevented.
[0130] 前記マイクロレンズアレイ 255において、マイクロレンズの開口形状は上述した円形 に限られるものではなぐ例えば図 43に示すように、楕円形の開口を有するマイクロ レンズ 455aを複数並設してなるマイクロレンズアレイ 455や、図 44に示すように多角 形(図示の例では四角形)の開口を有するマイクロレンズ 555aを複数並設してなるマ イク口レンズアレイ 555等を適用することもできる。なお上記マイクロレンズ 455a及び 555aは、通常の軸対称球面レンズの一部を円形あるいは多角形に切り取った形の ものであり、通常の軸対称球面レンズと同様の集光機能を有する。 [0130] In the microlens array 255, the opening shape of the microlens is not limited to the circular shape described above. For example, as shown in Fig. 43, a microlens 455a having an elliptical opening is arranged in parallel. The lens array 455 and polygons as shown in Figure 44 A micro-aperture lens array 555 in which a plurality of microlenses 555a each having a shape (square in the illustrated example) are arranged in parallel may be applied. The microlenses 455a and 555a are formed by cutting a part of a normal axisymmetric spherical lens into a circle or a polygon, and have the same light condensing function as a normal axisymmetric spherical lens.
[0131] さらに、本発明においては、図 45の A、 B及び Cに示すようなマイクロレンズアレイを 適用することも可能である。同図 Aに示すマイクロレンズアレイ 655は、透明部材 655 bのレーザ光 Bが出射する側の面に、上記マイクロレンズ 55a、 455a及び 555aと同 様の複数のマイクロレンズ 655aが互いに密接するように並設され、レーザ光 Bが入 射する側の面に上記マスク 255cと同様のマスク 655cが形成されてなる。なお、図 42 のマスク 255cはレンズ開口の外側部分に形成されているのに対し、このマスク 655c はレンズ開口内に設けられている。また同図 Bに示すマイクロレンズアレイ 755は、透 明部材 455bのレーザ光 Bが出射する側の面に、互いに離して複数のマイクロレンズ 755a力並設され、それらのマイクロレンズ 755a間にマスク 755cが形成されてなる。 また同図 Cに示すマイクロレンズアレイ 855は、透明部材 855bのレーザ光 Bが出射 する側の面に、互いに接する状態にして複数のマイクロレンズ 855aが並設され、各 マイクロレンズ 855aの周辺部にマスク 855cが形成されてなる。  [0131] Further, in the present invention, it is also possible to apply a microlens array as shown in A, B, and C of FIG. The microlens array 655 shown in FIG.A has a plurality of microlenses 655a similar to the microlenses 55a, 455a, and 555a closely contacting each other on the surface of the transparent member 655b on the side where the laser light B is emitted. A mask 655c similar to the above-mentioned mask 255c is formed on the surface on the side where the laser light B enters, which is arranged in parallel. The mask 255c in FIG. 42 is formed outside the lens opening, whereas the mask 655c is provided inside the lens opening. The microlens array 755 shown in FIG. B has a plurality of microlenses 755a spaced apart from each other on the surface of the transparent member 455b on which the laser beam B is emitted, and a mask 755c is provided between the microlenses 755a. Is formed. In the microlens array 855 shown in Fig. C, a plurality of microlenses 855a are arranged side by side on the surface of the transparent member 855b on the side from which the laser beam B is emitted, in a state of being in contact with each other. The mask 855c is formed.
[0132] なお、前記マスク 655c、 755c及び 855cは全て、前述のマスク 255cと同様に円形 の開口を有するものであり、それによりマイクロレンズの開口が円形に規定されるよう になっている。  The masks 655c, 755c, and 855c all have a circular opening similarly to the above-described mask 255c, so that the opening of the microlens is defined to be circular.
[0133] 以上説明したマイクロレンズ 255a、 455a, 555a, 655a及び 755aのように、マスク を設ける等によって、 DMD50のマイクロミラー 62の周辺部からの光を入射させな!/ヽ レンズ開口形状とする構成は、図 17に示す既述のマイクロレンズ 55aのようにマイク 口ミラー 62の面の歪みによる収差を補正する非球面形状のレンズや、図 22に示すマ イク口レンズ 155aのように上記収差を補正する屈折率分布を有するレンズに併せて 採用することも可能である。そのようにすれば、マイクロミラー 62の反射面の歪みによ る露光画像の歪みを防止する効果が相乗的に高められる。  By providing a mask or the like like the microlenses 255a, 455a, 555a, 655a, and 755a described above, light from the periphery of the micromirror 62 of the DMD 50 is not incident! The configuration includes an aspherical lens that corrects the aberration due to the distortion of the surface of the microphone aperture mirror 62 like the above-described microlens 55a shown in FIG. 17 and the above aberration like the microphone aperture lens 155a shown in FIG. It is also possible to employ the present invention together with a lens having a refractive index distribution that corrects the following. By doing so, the effect of preventing the exposure image from being distorted due to the distortion of the reflecting surface of the micromirror 62 is synergistically enhanced.
[0134] 特に、図 45Cに示すように、マイクロレンズアレイ 855におけるマイクロレンズ 855a のレンズ面にマスク 855cが形成される構成において、マイクロレンズ 855aが上述の ような非球面形状や屈折率分布を有するものとされ、その上で、例えば、図 11に示し たレンズ系 52、 54のような第 1結像光学系の結像位置力 マイクロレンズ 855aのレン ズ面に設定されているときは、特に光利用効率が高くなり、より高強度の光でパター ン形成材料 150を露光することができる。すなわち、そのときは、第 1の結像光学系に より、マイクロミラー 62の反射面の歪みによる迷光が該光学系の結像位置で 1点に集 束するように光が屈折する力 この位置にマスク 855cが形成されていれば、迷光以 外の光が遮光されることがなくなり、光利用効率が向上する。 In particular, as shown in FIG. 45C, in the configuration in which the mask 855c is formed on the lens surface of the micro lens 855a in the micro lens array 855, the micro lens 855a is It has an aspherical shape and a refractive index distribution as described above. Then, for example, the imaging position force of the first imaging optical system such as the lens systems 52 and 54 shown in FIG. When the pattern forming material 150 is set to the closed surface, the light use efficiency is particularly high, and the pattern forming material 150 can be exposed to light of higher intensity. That is, at this time, the first image-forming optical system refracts light so that stray light due to distortion of the reflecting surface of the micromirror 62 is focused at one point at the image-forming position of the optical system. If the mask 855c is formed at the same time, light other than stray light will not be blocked, and the light use efficiency will be improved.
[0135] 本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光 学系と併用してもよぐ例えば、 1対の組合せレンズからなる光量分布補正光学系な どが挙げられる。 [0135] In the pattern forming method of the present invention, for example, a light amount distribution correction optical system including a pair of combination lenses, which can be used in combination with another optical system appropriately selected from known optical systems, is used. No.
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束 幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅 を変化させて、光照射手段からの平行光束を DMDに照射するときに、被照射面で の光量分布が略均一になるように補正する。以下、前記光量分布補正光学系につい て図面を参照しながら説明する。  The light amount distribution correction optical system changes the light beam width at each emission position such that the ratio of the light beam width of the peripheral portion to the light beam width of the central portion near the optical axis is smaller on the emission side than on the incidence side. When the DMD is irradiated with the parallel light beam from the light irradiation means, correction is made so that the light amount distribution on the irradiated surface is substantially uniform. Hereinafter, the light amount distribution correcting optical system will be described with reference to the drawings.
[0136] 図 24は、光量分布補正光学系による補正の概念を示す説明図である。 FIG. 24 is an explanatory diagram showing the concept of correction by the light amount distribution correction optical system.
図 24Aに示すように、入射光束と出射光束とで、その全体の光束幅 (全光束幅) H 0、 HIが同じである場合について説明する。なお、図 24Aにおいて、符号 51、 52で 示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示 したものである。  As shown in FIG. 24A, a case will be described where the entire light beam width (total light beam width) H 0, HI is the same between the incident light beam and the outgoing light beam. In FIG. 24A, portions indicated by reference numerals 51 and 52 virtually represent the incident surface and the outgoing surface in the light amount distribution correcting optical system.
前記光量分布補正光学系において、光軸 Z1に近い中心部に入射した光束と、周 辺部に入射した光束とのそれぞれの光束幅 hO、 hi力 同一であるものとする(hO = hl)。前記光量分布補正光学系は、入射側において同一の光束幅 hO, hiであった 光に対し、中心部の入射光束については、その光束幅 hOを拡大し、逆に、周辺部の 入射光束に対してはその光束幅 hiを縮小するような作用を施す。即ち、中心部の出 射光束の幅 hlOと、周辺部の出射光束の幅 hl lとについて、 hl l <hlOとなるように する。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の 光束幅の比「hl lZhlO」力 入射側における比(hlZhO= l)に比べて小さくなつて いる((hl lZhlO)く 1)。 In the light amount distribution correction optical system, it is assumed that the light beam width hO and the hi force of the light beam incident on the central portion near the optical axis Z1 and the light beam incident on the peripheral portion are the same (hO = hl). The light amount distribution correction optical system enlarges the light beam width hO for the central light beam with respect to the light beams having the same light beam width hO, hi on the incident side, and conversely, increases the light beam width for the peripheral light beam. On the other hand, the light beam width hi is reduced. That is, the width hlO of the emitted light beam in the central portion and the width hll of the emitted light beam in the peripheral portion are set to satisfy hll <hlO. Expressed in terms of the ratio of the light beam width, the ratio of the light beam width of the peripheral portion to the light beam width of the central portion on the emission side “hl lZhlO” force is smaller than the ratio on the incident side (hlZhO = l). Yes ((hl lZhlO)) 1).
[0137] このように光束幅を変化させることにより、通常では光量分布が大きくなつている中 央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利 用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは 、例えば、有効領域内における光量ムラが 30%以内、好ましくは 20%以内となるよう にする。 [0137] By changing the light beam width in this manner, the light beam in the central portion, which normally has a large light amount distribution, can be used for the peripheral portion where the light amount is insufficient. The light amount distribution on the irradiated surface is made substantially uniform without lowering the usage efficiency. The degree of uniformity is set so that, for example, the light amount unevenness within the effective area is within 30%, preferably within 20%.
[0138] 前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束 幅を変える場合(図 24B, C)においても同様である。  [0138] The operation and effect of the light amount distribution correction optical system are the same when the entire light beam width is changed between the incident side and the outgoing side (Figs. 24B and 24C).
[0139] 図 24Bは、入射側の全体の光束幅 H0を、幅 H2に"縮小"して出射する場合 (H0  FIG. 24B shows a case where the entire light beam width H0 on the incident side is “reduced” to the width H2 and emitted (H0
>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hi 1が中心部に比べて小 さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を 周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大き くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「H11ZH10」が、入射側における比 (hlZhO= l)に比べて小さくなる(( hl lZhlO)く 1)。  > H2). Even in such a case, the light amount distribution correction optical system increases the light beam width h0, hi on the incident side, the light beam width hlO in the central portion on the output side becomes larger than that on the peripheral portion, Conversely, the luminous flux width hi 1 at the periphery is made smaller than that at the center. Considering the reduction rate of the luminous flux, the reduction rate for the incident light flux in the central portion is made smaller than that in the peripheral portion, and the reduction rate for the incident light flux in the peripheral portion is made larger than that in the central portion. Also in this case, the ratio “H11ZH10” of the peripheral beam width to the central beam width is smaller than the ratio (hlZhO = 1) on the incident side ((hllZhlO) 1).
[0140] 図 24Cは、入射側の全体の光束幅 H0を、幅 H3に"拡大"して出射する場合 (H0 く H3)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hi 1が中心部に比べて小 さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を 周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さ くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「hl lZhlO」力 入射側における比 (hlZhO= l)に比べて小さくなる((h l lZhlO) < l)。  [0140] Fig. 24C shows a case where the entire light beam width H0 on the incident side is "enlarged" to a width H3 and emitted (H0 to H3). Even in such a case, the light amount distribution correction optical system increases the light beam width h0, hi on the incident side, the light beam width hlO in the central portion on the output side becomes larger than that on the peripheral portion, Conversely, the luminous flux width hi 1 at the periphery is made smaller than that at the center. Considering the magnification of the luminous flux, the effect is such that the magnification of the incident light at the center is made larger than that of the peripheral part, and the magnification of the incident light at the periphery is made smaller than that of the center. Also in this case, the ratio of the luminous flux width in the peripheral part to the luminous flux width in the central part “hl lZhlO” force is smaller than the ratio (hlZhO = l) on the incident side ((hl lZhlO) <l).
[0141] このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、 光軸 Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出 射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、 出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅 は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことが でき、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された 光束断面を形成することができる。 [0141] As described above, the light amount distribution correction optical system changes the light beam width at each emission position, and outputs the ratio of the light beam width of the peripheral portion to the light beam width of the central portion near the optical axis Z1 as compared with the incident side. Since the light emission side is made smaller, the light flux having the same light flux width on the incident side becomes larger on the emission side at the center than on the periphery, and the light flux width on the periphery becomes It is smaller than the center. As a result, the light flux in the central portion can be utilized in the peripheral portion, and a light beam cross section having a substantially uniform light amount distribution can be formed without reducing the light use efficiency of the entire optical system.
[0142] 次に、前記光量分布補正光学系として使用する 1対の組合せレンズの具体的なレ ンズデータの 1例を示す。この例では、前記光照射手段がレーザアレイ光源である場 合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータ を示す。なお、シングルモード光ファイバの入射端に 1個の半導体レーザを接続した 場合には、光ファイノ からの射出光束の光量分布がガウス分布になる。本発明のパ ターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファ ィバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に 近 、中心部の光量が周辺部の光量よりも大き!/、場合にも適用可能である。  Next, an example of specific lens data of a pair of combination lenses used as the light amount distribution correction optical system will be described. This example shows lens data in the case where the light quantity distribution in the cross section of the emitted light beam is a Gaussian distribution, such as when the light irradiation means is a laser array light source. When one semiconductor laser is connected to the input end of the single mode optical fiber, the light quantity distribution of the light beam emitted from the optical fin becomes a Gaussian distribution. The pattern forming method of the present invention can be applied to such a case. In addition, it can be applied to the case where the core diameter of the multimode fiber is reduced and it approaches the configuration of a single mode optical fiber, etc. It is.
下記表 1に基本レンズデータを示す。  Table 1 below shows the basic lens data.
[0143] [表 1] [Table 1]
Figure imgf000052_0001
Figure imgf000052_0001
[0144] 表 1から分力るように、 1対の組合せレンズは、回転対称の 2つの非球面レンズから 構成されている。光入射側に配置された第 1のレンズの光入射側の面を第 1面、光出 射側の面を第 2面とすると、第 1面は非球面形状である。また、光出射側に配置され た第 2のレンズの光入射側の面を第 3面、光出射側の面を第 4面とすると、第 4面が 非球面形状である。 [0144] As can be seen from Table 1, the pair of combination lenses is composed of two rotationally symmetric aspheric lenses. If the surface on the light incident side of the first lens arranged on the light incident side is the first surface and the surface on the light emitting side is the second surface, the first surface has an aspherical shape. Further, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface, and the surface on the light emitting side is the fourth surface, the fourth surface has an aspherical shape.
[0145] 表 1にお!/、て、面番号 Siは i番目(i= 1〜4)の面の番号を示し、曲率半径 riは i番目 の面の曲率半径を示し、面間隔 diは i番目の面と i+ 1番目の面との光軸上の面間隔 を示す。面間隔 di値の単位はミリメートル (mm)である。屈折率 Niは i番目の面を備え た光学要素の波長 405nmに対する屈折率の値を示す。 [0145] In Table 1,! /, The surface number Si indicates the number of the i-th surface (i = 1 to 4), the curvature radius ri indicates the curvature radius of the i-th surface, and the surface spacing di is Distance between the i-th surface and the i + 1-th surface on the optical axis Indicates. The unit of the surface spacing di value is millimeter (mm). The refractive index Ni indicates the value of the refractive index of the optical element having the i-th surface at a wavelength of 405 nm.
下記表 2に、第 1面及び第 4面の非球面データを示す。  Table 2 below shows the aspherical surface data of the first and fourth surfaces.
[表 2]  [Table 2]
Figure imgf000053_0002
Figure imgf000053_0002
[0147] 上記の非球面データは、非球面形状を表す下記式 (A)における係数で表される。 [0147] The above-mentioned aspherical surface data is represented by a coefficient in the following equation (A) representing an aspherical shape.
[0148] [数 4]
Figure imgf000053_0001
[0148] [Number 4]
Figure imgf000053_0001
[0149] 上記式 (A)にお 、て各係数を以下の通り定義する。  [0149] In the above equation (A), each coefficient is defined as follows.
Z :光軸から高さ pの位置にある非球面上の点から、非球面の頂点の接平面 (光軸に 垂直な平面)に下ろした垂線の長さ(mm)  Z: Length of perpendicular (mm) from the point on the aspheric surface at the height p from the optical axis to the tangent plane of the aspheric surface's apex (plane perpendicular to the optical axis)
P:光軸からの距離 (mm)  P: Distance from optical axis (mm)
K:円錐係数  K: cone coefficient
じ:近軸曲率(17 r:近軸曲率半径)  : Paraxial curvature (17r: paraxial curvature radius)
ai:第 i次 (i= 3〜: LO)の非球面係数 表 2に示した数値において、記号" E"は、その次に続く数値が 10を底とした"べき指 数 であることを示し、その 10を底とした指数関数で表される数値力 E"の前の数値 に乗算されることを示す。例えば、「1. OE— 02」であれば、「1. 0 X 10_2」であること を示す。 ai: The i-th (i = 3 ~: LO) aspherical coefficient In the numerical values shown in Table 2, the symbol "E" indicates that the following numerical value is an exponent with a base of 10, and the numerical power E expressed by an exponential function with the base 10 Indicates that the number before "is multiplied. For example, “1. OE-02” indicates “1.0 X 10 _2 ”.
[0150] 図 26は、前記表 1及び表 2に示す 1対の組合せレンズによって得られる照明光の光 量分布を示す。ここで、横軸は光軸力ゝらの座標を示し、縦軸は光量比(%)を示す。な お、比較のために、図 25に、補正を行わな力つた場合の照明光の光量分布 (ガウス 分布)を示す。  FIG. 26 shows a light amount distribution of illumination light obtained by the pair of combination lenses shown in Tables 1 and 2. Here, the horizontal axis indicates the coordinates of the optical axis force and the vertical axis indicates the light amount ratio (%). For comparison, FIG. 25 shows the light amount distribution (Gaussian distribution) of the illumination light when the force is not corrected.
図 25及び図 26に示すように、光量分布補正光学系で補正を行うことにより、補正を 行わな力つた場合と比べて、略均一化された光量分布が得られている。これにより、 光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。  As shown in FIGS. 25 and 26, by performing the correction by the light amount distribution correcting optical system, a substantially uniform light amount distribution is obtained as compared with the case where the power is not corrected. Thus, it is possible to perform uniform exposure with a uniform laser beam without lowering the light use efficiency.
[0151] 次に、光照射手段としてのファイバアレイ光源 66を説明する。  [0151] Next, the fiber array light source 66 as light irradiation means will be described.
図 27A(A)は、ファイバアレイ光源の構成を示す斜視図であり、図 27A(B)は、 (A )の部分拡大図であり、図 27A (C)及び (D)は、レーザ出射部における発光点の配 列を示す平面図である。また、図 27Bは、ファイバアレイ光源のレーザ出射部におけ る発光点の配列を示す正面図である。  27A (A) is a perspective view showing a configuration of a fiber array light source, FIG.27A (B) is a partially enlarged view of (A), and FIGS.27A (C) and (D) are laser emission sections. FIG. 3 is a plan view showing an array of light emitting points in FIG. FIG. 27B is a front view showing an arrangement of light emitting points in a laser emitting portion of the fiber array light source.
[0152] 図 27Aに示すように、ファイバアレイ光源 66は、複数(例えば、 14個)のレーザモジ ユール 64を備えており、各レーザモジュール 64には、マルチモード光ファイバ 30の 一端が結合されている。マルチモード光ファイバ 30の他端には、コア径がマルチモ ード光ファイバ 30と同一でかつクラッド径がマルチモード光ファイバ 30より小さい光フ アイバ 31が結合されている。図 27Bに詳しく示すように、マルチモード光ファイバ 31 の光ファイバ 30と反対側の端部は副走査方向と直交する主走査方向に沿って 7個 並べられ、それが 2列に配列されてレーザ出射部 68が構成されている。  [0152] As shown in FIG. 27A, the fiber array light source 66 includes a plurality (for example, 14) of laser modules 64, and one end of the multi-mode optical fiber 30 is coupled to each of the laser modules 64. I have. An optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a smaller cladding diameter than the multimode optical fiber 30 is coupled to the other end of the multimode optical fiber 30. As shown in detail in FIG.27B, the end of the multi-mode optical fiber 31 on the side opposite to the optical fiber 30 is arranged in seven rows along the main scanning direction orthogonal to the sub-scanning direction. An emission section 68 is configured.
[0153] 図 27Bに示すように、レーザ出射部 68は、表面が平坦な 2枚の支持板 65に挟み込 まれて固定されている。また、マルチモード光ファイバ 31の光出射端面には、その保 護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光フ アイバ 31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のよう な保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせる ことができる。 As shown in FIG. 27B, the laser emitting section 68 is sandwiched and fixed between two support plates 65 having flat surfaces. Further, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection thereof. The light emitting end face of the multi-mode optical fiber 31 is easily collected and deteriorated due to the high light density.However, the provision of the protective plate as described above prevents dust from adhering to the end face and reduces the deterioration. Delay be able to.
[0154] また、クラッド径が小さい光ファイバ 31の出射端を隙間無く 1列に配列するために、 クラッド径が大きい部分で隣接する 2本のマルチモード光ファイバ 30の間にマルチモ ード光ファイバ 30を積み重ね、積み重ねられたマルチモード光ファイバ 30に結合さ れた光ファイバ 31の出射端が、クラッド径が大きい部分で隣接する 2本のマルチモー ド光ファイバ 30に結合された光ファイバ 31の 2つの出射端の間に挟まれるように配列 されている。  [0154] Further, in order to arrange the emission ends of the optical fibers 31 having a small clad diameter in a single row without any gap, a multi-mode optical fiber is provided between two adjacent multimode optical fibers 30 at a portion having a large clad diameter. The output end of the optical fiber 31 coupled to the stacked multi-mode optical fiber 30 is connected to two adjacent multi-mode optical fibers 30 at the portion where the cladding diameter is large. It is arranged so as to be sandwiched between two emission ends.
[0155] このような光ファイバは、図 28に示すように、クラッド径が大きいマルチモード光ファ ィバ 30のレーザ光出射側の先端部分に、長さ l〜30cmのクラッド径が小さい光ファ ィバ 31を同軸的に結合することにより得ることができる。 2本の光ファイバは、光フアイ バ 31の入射端面が、マルチモード光ファイバ 30の出射端面に、両光ファイバの中心 軸が一致するように融着されて結合されている。上述した通り、光ファイバ 31のコア 3 laの径は、マルチモード光ファイバ 30のコア 30aの径と同じ大きさである。  [0155] As shown in FIG. 28, such an optical fiber has an optical fiber having a length of l to 30 cm and a small clad diameter at the tip of the multimode optical fiber 30 having a large clad diameter on the laser light emission side. This can be obtained by coaxially coupling the optical fibers 31. The two optical fibers are fused and bonded to the output end face of the multimode optical fiber 30 such that the central axes of the two optical fibers coincide with each other. As described above, the diameter of the core 3 la of the optical fiber 31 is the same as the diameter of the core 30 a of the multimode optical fiber 30.
[0156] また、長さが短くクラッド径が大きい光ファイバにクラッド径カ 、さい光ファイバを融 着させた短尺光ファイバを、フェルールゃ光コネクタ等を介してマルチモード光フアイ バ 30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、ク ラッド径カ 、さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光 ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ 31を、 マルチモード光ファイバ 30の出射端部と称する場合がある。  [0156] Further, a short optical fiber obtained by fusing an optical fiber having a short length and a large cladding diameter with a cladding diameter and an optical fiber is connected to the output end of the multi-mode optical fiber 30 via a ferrule optical connector or the like. May be combined. The detachable connection using a connector or the like makes it easy to replace the tip when the diameter of the clad fiber or the optical fiber is broken, thereby reducing the cost required for the maintenance of the exposure head. In the following, the optical fiber 31 may be referred to as the emission end of the multimode optical fiber 30.
[0157] マルチモード光ファイバ 30及び光ファイバ 31としては、ステップインデックス型光フ アイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい 。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いること ができる。本実施の形態では、マルチモード光ファイバ 30及び光ファイバ 31は、ステ ップインデックス型光ファイバであり、マルチモード光ファイバ 30は、クラッド径 = 125
Figure imgf000055_0001
πι, NA=0. 2、入射端面コートの透過率 = 99. 5%以上であり 、光ファイバ 31は、クラッド径 =60 μ m、コア径 = 50 μ m、 NA=0. 2である。
[0157] The multimode optical fiber 30 and the optical fiber 31 may be any of a step index optical fiber, a graded index optical fiber, and a composite optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index optical fibers, and the multimode optical fiber 30 has a clad diameter = 125.
Figure imgf000055_0001
πι, NA = 0.2, transmittance of the incident end face coat = 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.
[0158] 一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失 が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されて いる。し力しながら、波長が短いほど伝搬損失は少なくなり、 GaN系半導体レーザか ら出射された波長 405nmのレーザ光では、クラッドの厚み { (クラッド径一コア径) Z2 }を 800nmの波長帯域の赤外光を伝搬させる場合の 1Z2程度、通信用の 1. In general, for laser light in the infrared region, the propagation loss increases when the cladding diameter of the optical fiber is reduced. For this reason, a suitable clad diameter is determined according to the wavelength band of the laser light. Yes. However, as the wavelength becomes shorter, the propagation loss decreases as the wavelength becomes shorter. In the case of laser light of 405 nm wavelength emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter-core diameter) Z2} is reduced to 800 nm in the wavelength band. About 1Z2 when transmitting infrared light, 1.
の波長帯域の赤外光を伝搬させる場合の約 1Z4にしても、伝搬損失は殆ど増加し ない。従って、クラッド径を 60 mと小さくすることができる。  Even when the infrared light of the wavelength band of about 1Z4 is propagated, the propagation loss hardly increases. Therefore, the clad diameter can be reduced to 60 m.
[0159] 但し、光ファイバ 31のクラッド径は 60 μ mには限定されない。従来のファイバアレイ 光源に使用されている光ファイバのクラッド径は 125 mである力 クラッド径が小さく なるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は 80 m 以下が好ましぐ 60 m以下がより好ましぐ 40 m以下が更に好ましい。一方、コア 径は少なくとも 3〜4 μ m必要であることから、光ファイバ 31のクラッド径は 10 μ m以 上が好ましい。 However, the clad diameter of the optical fiber 31 is not limited to 60 μm. Conventional fiber arrays The cladding diameter of the optical fiber used for the light source is 125 m. The smaller the cladding diameter, the deeper the focal depth.Therefore, the cladding diameter of the multimode optical fiber is preferably 80 m or less. m or less is more preferable 40 m or less is further preferable. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.
[0160] レーザモジュール 64は、図 29に示す合波レーザ光源(ファイバアレイ光源)によつ て構成されている。この合波レーザ光源は、ヒートブロック 10上に配列固定された複 数(例えば、 7個)のチップ状の横マルチモード又はシングルモードの GaN系半導体 レーザ LD1, LD2, LD3, LD4, LD5, LD6,及び LD7と、 GaN系半導体レーザ L D1〜: LD7の各々に対応して設けられたコリメータレンズ 11, 12, 13, 14, 15, 16, 及び 17と、 1つの集光レンズ 20と、 1本のマルチモード光ファイバ 30と、から構成され ている。なお、半導体レーザの個数は 7個には限定されない。例えば、クラッド径 =6 O ^ m,コア径 = 50 πι、 NA=0. 2のマルチモード光ファイバには、 20個もの半導 体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、かつ光 ファイバ本数をより減らすことができる。  The laser module 64 is composed of a multiplex laser light source (fiber array light source) shown in FIG. The multiplexed laser light source includes a plurality (for example, seven) of chip-shaped lateral multi-mode or single-mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6 fixed on the heat block 10. , And LD7, and GaN-based semiconductor lasers LD1 to: Collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of LD7, one condenser lens 20, and 1 And a multi-mode optical fiber 30. The number of semiconductor lasers is not limited to seven. For example, as many as 20 semiconductor laser beams can enter a multimode optical fiber with a cladding diameter = 6 O ^ m, a core diameter = 50πι, and NA = 0.2. The light quantity can be realized and the number of optical fibers can be further reduced.
[0161] GaN系半導体レーザ LD1〜LD7は、発振波長が総て共通(例えば、 405nm)で あり、最大出力も総て共通(例えば、マルチモードレーザでは 100mW、シングルモ 一ドレーザでは 30mW)である。なお、 GaN系半導体レーザ LD1〜LD7としては、 3 50nm〜450nmの波長範囲で、上記の 405nm以外の発振波長を備えるレーザを 用いてもよい。 [0161] The GaN-based semiconductor lasers LD1 to LD7 have a common oscillation wavelength (for example, 405 nm) and a maximum output (for example, 100 mW for a multi-mode laser and 30 mW for a single-mode laser). Note that, as the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than 405 nm in the wavelength range of 350 nm to 450 nm may be used.
[0162] 前記合波レーザ光源は、図 30及び図 31に示すように、他の光学要素と共に、上方 が開口した箱状のパッケージ 40内に収納されている。パッケージ 40は、その開口を 閉じるように作成されたパッケージ蓋 41を備えており、脱気処理後に封止ガスを導入 し、ノ ッケージ 40の開口をパッケージ蓋 41で閉じることにより、パッケージ 40とパッケ ージ蓋 41とにより形成される閉空間 (封止空間)内に上記合波レーザ光源が気密封 止されている。 As shown in FIGS. 30 and 31, the combined laser light source is housed together with other optical elements in a box-shaped package 40 having an open top. Package 40 has its opening It is equipped with a package lid 41 that is created so as to be closed.The sealing gas is introduced after the degassing process, and the opening of the package 40 is closed with the package lid 41 to form the package 40 and the package lid 41. The combined laser light source is hermetically sealed in a closed space (sealed space).
[0163] パッケージ 40の底面にはベース板 42が固定されており、このベース板 42の上面に は、前記ヒートブロック 10と、集光レンズ 20を保持する集光レンズホルダー 45と、マ ルチモード光ファイバ 30の入射端部を保持するファイバホルダー 46とが取り付けら れている。マルチモード光ファイバ 30の出射端部は、ノ ッケージ 40の壁面に形成さ れた開口からパッケージ外に引き出されている。  [0163] A base plate 42 is fixed to the bottom surface of the package 40. On the top surface of the base plate 42, the heat block 10, the condenser lens holder 45 holding the condenser lens 20, and the multi-mode light A fiber holder 46 for holding the input end of the fiber 30 is attached. The emission end of the multimode optical fiber 30 is drawn out of the package from an opening formed in the wall surface of the knockout 40.
[0164] また、ヒートブロック 10の側面にはコリメータレンズホルダー 44が取り付けられており 、コリメータレンズ 11〜17が保持されている。パッケージ 40の横壁面には開口が形 成され、この開口を通して GaN系半導体レーザ LD1〜LD7に駆動電流を供給する 配線 47がパッケージ外に引き出されている。  [0164] A collimator lens holder 44 is attached to the side surface of the heat block 10, and holds the collimator lenses 11 to 17. An opening is formed in the lateral wall surface of the package 40, and a wiring 47 for supplying a drive current to the GaN semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
[0165] なお、図 31においては、図の煩雑化を避けるために、複数の GaN系半導体レーザ のうち GaN系半導体レーザ LD7にのみ番号を付し、複数のコリメータレンズのうちコ リメータレンズ 17にのみ番号を付している。  In FIG. 31, in order to avoid complication of the figure, only the GaN semiconductor laser LD7 among the plurality of GaN semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses is numbered. Only numbered.
[0166] 図 32は、前記コリメータレンズ 11〜17の取り付け部分の正面形状を示すものであ る。コリメータレンズ 11〜17の各々は、非球面を備えた円形レンズの光軸を含む領 域を平行平面で細長く切り取った形状に形成されている。この細長形状のコリメータ レンズは、例えば、榭脂又は光学ガラスをモールド成形することによって形成すること ができる。コリメータレンズ 11〜17は、長さ方向が GaN系半導体レーザ LD1〜LD7 の発光点の配列方向(図 32の左右方向)と直交するように、上記発光点の配列方向 に密接配置されている。  FIG. 32 shows a front shape of a mounting portion of the collimator lenses 11 to 17. Each of the collimator lenses 11 to 17 is formed in a shape in which a region including an optical axis of a circular lens having an aspherical surface is cut into an elongated shape in a parallel plane. The elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emission points of the GaN-based semiconductor lasers LD1 to LD7 (the horizontal direction in FIG. 32).
[0167] 一方、 GaN系半導体レーザ LD1〜LD7としては、発光幅が 2 mの活性層を備え 、活性層と平行方向、直角な方向の拡がり角が各々例えば 10° 、30° の状態で各 々レーザビーム B 1〜B7を発するレーザが用!、られて 、る。これら GaN系半導体レ 一ザ LD1〜LD7は、活性層と平行方向に発光点が 1列に並ぶように配設されている [0168] 各発光点力 発せられたレーザビーム B1〜B7は、上述のように細長形状の各コリ メータレンズ 11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり 角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射するこ とになる。つまり、各コリメータレンズ 11〜17の幅が 1. lmm、長さが 4. 6mmであり、 それらに入射するレーザビーム B1〜B7の水平方向、垂直方向のビーム径は各々 0 . 9mm、 2. 6mmである。また、コリメータレンズ 11〜17の各々は、焦点距離 f = 3m On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having an emission width of 2 m, and has a divergence angle of, for example, 10 ° or 30 ° in a direction parallel or perpendicular to the active layer. Lasers that emit laser beams B1 to B7 are used! These GaN-based semiconductor lasers LD1 to LD7 are arranged such that light emitting points are arranged in a line in a direction parallel to the active layer. [0168] Each of the emitted laser beams B1 to B7 has a larger divergence angle with respect to each of the elongated collimator lenses 11 to 17 as described above. Is incident in a state where the direction in which is smaller coincides with the width direction (direction orthogonal to the length direction). In other words, the width of each of the collimator lenses 11 to 17 is 1.lmm and the length is 4.6mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident on them are 0.9mm and 2. 6 mm. Each of the collimator lenses 11 to 17 has a focal length f = 3 m
1 m、 NA=0. 6、レンズ配置ピッチ = 1. 25mmである。  1 m, NA = 0.6, lens arrangement pitch = 1.25 mm.
[0169] 集光レンズ 20は、非球面を備えた円形レンズの光軸を含む領域を平行平面で細 長く切り取って、コリメータレンズ 11〜17の配列方向、つまり水平方向に長ぐそれと 直角な方向に短い形状に形成されている。この集光レンズ 20は、焦点距離 f = 23m [0169] The condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspheric surface into a long and narrow plane with a parallel plane, and arranging the collimator lenses 11 to 17 in a direction perpendicular to the direction in which the collimator lenses 11 to 17 are long in the horizontal direction. It is formed in a short shape. This condenser lens 20 has a focal length f = 23 m
2 m、 NA=0. 2である。この集光レンズ 20も、例えば、榭脂又は光学ガラスをモールド 成形することにより形成される。  2 m, NA = 0.2. The condenser lens 20 is also formed by molding resin or optical glass, for example.
[0170] 前記ファイバアレイ光源は、 DMDを照明する光照射手段に、合波レーザ光源の光 ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いている ので、高出力でかつ深い焦点深度を備えたパターン形成装置を実現することができ る。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために 必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コストィ匕が図られる また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので 、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、 より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビー ム径 1 μ m以下、解像度 0. 1 μ m以下の超高解像度露光の場合にも、深い焦点深 度を得ることができ、高速かつ高精細な露光が可能となる。したがって、高解像度が 必要とされる薄膜トランジスタ (TFT)の露光工程に好適である。 [0170] The fiber array light source uses a high-brightness fiber array light source in which the emitting ends of the optical fibers of the multiplexed laser light source are arranged in an array as the light irradiation means for illuminating the DMD. And a pattern forming apparatus having a deep depth of focus can be realized. Further, since the output of each fiber array light source is increased, the number of fiber array light sources necessary to obtain a desired output is reduced, and the cost of the pattern forming apparatus is reduced. Since the diameter is smaller than the diameter of the cladding at the incident end, the diameter of the light emitting section is smaller, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high-resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep focal depth can be obtained, and high-speed and high-definition exposure can be performed. Therefore, it is suitable for a thin film transistor (TFT) exposure step where high resolution is required.
[0171] 前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に 限定されず、例えば、 1個の発光点を有する単一の半導体レーザ力 入射されたレ 一ザ光を出射する 1本の光ファイバを備えたファイバ光源をアレイ化したファイバァレ ィ光源を用いることができる。 [0172] 複数の発光点を備えた光照射手段としては、例えば、図 33に示すように、ヒートブ ロック 100上に、複数(例えば、 7個)のチップ状の半導体レーザ LD1〜LD7を配列 したレーザアレイを用いることができる。また、図 34Aに示す、複数 (例えば、 5個)の 発光点 110aが所定方向に配列されたチップ状のマルチキヤビティレーザ 110を用い ることも可能である。マルチキヤビティレーザ 110は、チップ状の半導体レーザを配列 する場合と比べ、発光点を位置精度良く配列できるので、各発光点力 出射されるレ 一ザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキヤビテ ィレーザ 110に橈みが発生し易くなるため、発光点 110aの個数は 5個以下とするの が好ましい。 [0171] The light irradiation means is not limited to a fiber array light source provided with a plurality of the multiplexed laser light sources. For example, a single semiconductor laser having one light emitting point may be used. It is possible to use a fiber array light source in which a fiber light source having one optical fiber for emitting light is arrayed. As light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 33, a plurality (for example, seven) of chip-shaped semiconductor lasers LD1 to LD7 are arranged on a heat block 100. Laser arrays can be used. It is also possible to use a chip-shaped multi-cavity laser 110 shown in FIG. 34A in which a plurality of (for example, five) light emitting points 110a are arranged in a predetermined direction. In the multicavity laser 110, the light emitting points can be arranged with higher positional accuracy than in the case of arranging chip-shaped semiconductor lasers, so that the laser beams emitted from each light emitting point can be easily combined. However, when the number of light emitting points increases, the radius of the multicavity laser 110 is easily generated during laser manufacturing. Therefore, it is preferable that the number of the light emitting points 110a be five or less.
[0173] 前記光照射手段としては、このマルチキヤビティレーザ 110や、図 34Bに示すように 、ヒートブロック 100上に、複数のマルチキヤビティレーザ 110が各チップの発光点 11 Oaの配列方向と同じ方向に配列されたマルチキヤビティレーザレイを、レーザ光源と して用いることができる。  As the light irradiating means, as shown in FIG. 34B, the multi-cavity laser 110 and a plurality of multi-cavity lasers 110 are arranged on the heat block 100 according to the arrangement direction of the light emitting points 11 Oa of each chip. Multi-cavity laser rays arranged in the same direction can be used as a laser light source.
[0174] また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光 を合波するものには限定されない。  [0174] Further, the multiplexed laser light source is not limited to one that multiplexes laser light emitted from a plurality of chip-shaped semiconductor lasers.
例えば、図 21に示すように、複数 (例えば、 3個)の発光点 110aを有するチップ状 のマルチキヤビティレーザ 110を備えた合波レーザ光源を用いることができる。この合 波レーザ光源は、マルチキヤビティレーザ 110と、 1本のマルチモード光ファイバ 130 と、集光レンズ 120と、を備えて構成されている。マルチキヤビティレーザ 110は、例 えば、発振波長が 405nmの GaN系レーザダイオードで構成することができる。  For example, as shown in FIG. 21, a multiplexed laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (eg, three) light emitting points 110a can be used. This multiplexed laser light source includes a multi-cavity laser 110, one multi-mode optical fiber 130, and a condenser lens 120. The multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
[0175] 前記構成では、マルチキヤビティレーザ 110の複数の発光点 110aの各々力 出射 したレーザビーム Bの各々は、集光レンズ 120によって集光され、マルチモード光ファ ィバ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光ファイバ内を 伝搬し、 1本に合波されて出射する。  In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is condensed by the condensing lens 120, and is condensed on the core 130a of the multi-mode optical fiber 130. Incident. The laser light incident on the core 130a propagates in the optical fiber, is multiplexed into one light, and is emitted.
[0176] マルチキヤビティレーザ 110の複数の発光点 110aを、上記マルチモード光フアイ ノ 130のコア径と略等しい幅内に並設すると共に、集光レンズ 120として、マルチモ ード光ファイバ 130のコア径と略等しい焦点距離の凸レンズや、マルチキヤビティレ 一ザ 110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレ ンズを用 、ることにより、レーザビーム Bのマルチモード光ファイバ 130への結合効率 を上げることができる。 [0176] A plurality of light emitting points 110a of the multi-cavity laser 110 are juxtaposed within a width substantially equal to the core diameter of the multi-mode optical fin 130, and a condensing lens 120 of the multi-mode optical fiber 130 is provided. A convex lens with a focal length approximately equal to the core diameter, or a rod lens that collimates the beam emitted from the multicavity laser 110 only in a plane perpendicular to the active layer. By using the laser diode, the coupling efficiency of the laser beam B to the multi-mode optical fiber 130 can be increased.
[0177] また、図 35に示すように、複数 (例えば、 3個)の発光点を備えたマルチキヤビティレ 一ザ 110を用い、ヒートブロック 111上に複数(例えば、 9個)のマルチキヤビティレー ザ 110が互いに等間隔で配列されたレーザアレイ 140を備えた合波レーザ光源を用 いることができる。複数のマルチキヤビティレーザ 110は、各チップの発光点 110aの 配列方向と同じ方向に配列されて固定されている。  As shown in FIG. 35, a multicavity laser 110 having a plurality of (for example, three) light emitting points is used, and a plurality of (for example, nine) multicavities are provided on the heat block 111. A combined laser light source including a laser array 140 in which the bit lasers 110 are arranged at equal intervals from each other can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
[0178] この合波レーザ光源は、レーザアレイ 140と、各マルチキヤビティレーザ 110に対応 させて配置した複数のレンズアレイ 114と、レーザアレイ 140と複数のレンズアレイ 11 4との間に配置された 1本のロッドレンズ 113と、 1本のマルチモード光ファイバ 130と 、集光レンズ 120と、を備えて構成されている。レンズアレイ 114は、マルチキヤビティ レーザ 110の発光点に対応した複数のマイクロレンズを備えて 、る。  The multiplexed laser light source is provided with a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and a laser array 140 and a plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multi-mode optical fiber 130, and a condenser lens 120. The lens array 114 includes a plurality of micro lenses corresponding to the light emitting points of the multi-cavity laser 110.
[0179] 上記の構成では、複数のマルチキヤビティレーザ 110の複数の発光点 110aの各 々力 出射したレーザビーム Bの各々は、ロッドレンズ 113により所定方向に集光され た後、レンズアレイ 114の各マイクロレンズにより平行光化される。平行光化されたレ 一ザビーム Lは、集光レンズ 120によって集光され、マルチモード光ファイバ 130のコ ァ 130aに入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝搬し、 1本 に合波されて出射する。  In the above configuration, each of the laser beams B emitted from the plurality of light emitting points 110a of the plurality of multicavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then the lens array 114 Are collimated by the respective microlenses. The collimated laser beam L is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is multiplexed into one light, and is emitted.
[0180] 更に、他の合波レーザ光源としては、図 36A及び Bに示すように、略矩形状のヒート ブロック 180上に光軸方向の断面力 字状のヒートブロック 182が搭載され、 2つのヒ ートブロック間に収納空間が形成されている。 L字状のヒートブロック 182の上面には 、複数の発光点 (例えば、 5個)がアレイ状に配列された複数 (例えば、 2個)のマルチ キヤビティレーザ 110が、各チップの発光点 110aの配列方向と同じ方向に等間隔で 配列されて固定されている。  [0180] Further, as another combined laser light source, as shown in Figs. 36A and 36B, a heat block 182 having a cross section in the optical axis direction is mounted on a substantially rectangular heat block 180. A storage space is formed between the heat blocks. On the upper surface of the L-shaped heat block 182, a plurality (for example, two) of multi-cavity lasers 110 in which a plurality of light-emitting points (for example, five) are arranged in an array are provided. Are arranged at equal intervals in the same direction as the arrangement direction and are fixed.
[0181] 略矩形状のヒートブロック 180には凹部が形成されており、ヒートブロック 180の空 間側上面には、複数の発光点 (例えば、 5個)がアレイ状に配列された複数 (例えば、 2個)のマルチキヤビティレーザ 110が、その発光点がヒートブロック 182の上面に配 置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。 [0182] マルチキヤビティレーザ 110のレーザ光出射側には、各チップの発光点 110aに対 応してコリメートレンズが配列されたコリメートレンズアレイ 184が配置されている。コリ メートレンズアレイ 184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が 大き 、方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さ 、 方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをァレ ィ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高 出力化が図られると共に、部品点数が減少し低コストィ匕することができる。 [0181] A recess is formed in the substantially rectangular heat block 180, and a plurality of light emitting points (for example, five) are arranged in an array (for example, five) on the space-side upper surface of the heat block 180. , Two) of the multi-cavity lasers 110 such that the light emitting points are located on the same vertical plane as the light emitting points of the laser chips disposed on the upper surface of the heat block 182. [0182] A collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting point 110a of each chip is arranged on the laser light emitting side of the multi-cavity laser 110. In the collimating lens array 184, the length direction of each collimating lens and the divergence angle of the laser beam are large and the direction (fast axis direction) coincides, and the width direction of each collimating lens has a small divergence angle and the direction (slow axis). Direction). In this manner, by integrating the collimating lens into an array, the space utilization efficiency of the laser light is improved, the output of the multiplexed laser light source is increased, and the number of components is reduced and the cost is reduced. Can be.
[0183] また、コリメートレンズアレイ 184のレーザ光出射側には、 1本のマルチモード光ファ ィバ 130と、このマルチモード光ファイバ 130の入射端にレーザビームを集光して結 合する集光レンズ 120と、が配置されている。  [0183] In addition, one multi-mode optical fiber 130 is provided on the laser light emitting side of the collimating lens array 184, and a concentrator for condensing and combining the laser beam at the incident end of the multi-mode optical fiber 130. The optical lens 120 is disposed.
[0184] 前記構成では、レーザブロック 180、 182上に配置された複数のマルチキヤビティ レーザ 110の複数の発光点 110aの各々から出射したレーザビーム Bの各々は、コリ メートレンズアレイ 184により平行光化され、集光レンズ 120によって集光されて、マ ルチモード光ファイバ 130のコア 130aに入射する。コア 130aに入射したレーザ光は 、光ファイバ内を伝搬し、 1本に合波されて出射する。  In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multicavity lasers 110 disposed on the laser blocks 180 and 182 is converted into a parallel light by the collimating lens array 184. The light is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is multiplexed into one light, and is emitted.
[0185] 前記合波レーザ光源は、上記の通り、マルチキヤビティレーザの多段配置とコリメ一 トレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を 用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成する ことができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源 として特に好適である。  [0185] As described above, the multiplexed laser light source can achieve particularly high output by the multi-stage arrangement of multi-cavity lasers and the array of collimating lenses. By using this multiplexed laser light source, a fiber array light source or a bundle fiber light source having higher brightness can be formed, and therefore, it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.
[0186] なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ 13 0の出射端部をそのケーシングから引き出したレーザモジュールを構成することがで きる。  [0186] It is possible to configure a laser module in which each of the multiplexed laser light sources is housed in a casing and the emission end of the multi-mode optical fiber 130 is drawn out of the casing.
[0187] また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモー ド光ファイバと同一でかつクラッド径がマルチモード光ファイバより小さい他の光フアイ バを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、 クラッド径が 125 m、 80 m、 60 μ m等のマルチモード光ファイバを、出射端に他 の光ファイバを結合せずに使用してもよい。 [0188] スキャナ 162の各露光ヘッド 166において、ファイバアレイ光源 66の合波レーザ光 源を構成する GaN系半導体レーザ LD1〜LD7の各々力 発散光状態で出射したレ 一ザビーム Bl, B2, B3, B4, B5, B6,及び B7の各々は、対応するコリメータレンズ 11〜17によって平行光化される。平行光化されたレーザビーム B1〜B7は、集光レ ンズ 20によって集光され、マルチモード光ファイバ 30のコア 30aの入射端面に収束 する。 [0187] Further, another optical fiber having the same core diameter as that of the multimode optical fiber and a smaller cladding diameter than the multimode optical fiber is coupled to the emission end of the multimode optical fiber of the multiplexed laser light source to form a fiber array. The example of increasing the brightness of the light source has been described.For example, a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 μm, etc. is used without coupling another optical fiber to the output end. Is also good. In each of the exposure heads 166 of the scanner 162, the GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 emit laser beams Bl, B2, B3, Each of B4, B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17. The parallelized laser beams B1 to B7 are condensed by the converging lens 20, and converge on the incident end face of the core 30a of the multimode optical fiber 30.
[0189] 集光光学系は、コリメータレンズ 11〜17及び集光レンズ 20によって構成される。ま た、集光光学系とマルチモード光ファイバ 30とによって合波光学系が構成される。 集光レンズ 20によって上述のように集光されたレーザビーム B1〜B7力 マルチモ ード光ファイバ 30のコア 30aに入射して光ファイバ内を伝搬し、 1本のレーザビーム B に合波されてマルチモード光ファイバ 30の出射端部に結合された光ファイバ 31から 出射する。  The condensing optical system includes collimator lenses 11 to 17 and condensing lens 20. Further, the converging optical system and the multi-mode optical fiber 30 constitute a multiplexing optical system. The laser beams B1 to B7 focused by the condenser lens 20 as described above are incident on the core 30a of the multi-mode optical fiber 30, propagate through the optical fiber, and are combined into one laser beam B. The light exits from the optical fiber 31 coupled to the exit end of the multimode optical fiber 30.
[0190] 各レーザモジュールにおいて、レーザビーム B1〜: B7のマルチモード光ファイバ 30 への結合効率が 0. 85で、 GaN系半導体レーザ LD1〜LD7の各出力が 30mWの 場合には、アレイ状に配列された光ファイバ 31の各々について、出力 180mW( = 3 OmWX O. 85 X 7)の合波レーザビーム Bを得ることができる。従って、 6本の光フアイ ノ 31がアレイ状に配列されたレーザ出射部 68での出力は約 1W ( = 180mW X 6) である。  In each laser module, when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and the output of each of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, an array is formed. For each of the arranged optical fibers 31, a combined laser beam B having an output of 180 mW (= 3 OmWX O. 85 × 7) can be obtained. Therefore, the output at the laser emitting section 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6).
[0191] ファイバアレイ光源 66のレーザ出射部 68には、高輝度の発光点が主走査方向に 沿って一列に配列されている。単一の半導体レーザからのレーザ光を 1本の光フアイ バに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所 望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少 数列、例えば 1列でも所望の出力を得ることができる。  [0191] In the laser emitting section 68 of the fiber array light source 66, high-luminance light emitting points are arranged in a line along the main scanning direction. Conventional fiber light sources that combine laser light from a single semiconductor laser into a single optical fiber have low output, and the desired output could not be obtained unless they were arranged in multiple rows. Since the multiplexed laser light source has a high output, a desired output can be obtained even with a small number of rows, for example, one row.
[0192] 例えば、半導体レーザと光ファイバを 1対 1で結合させた従来のファイバ光源では、 通常、半導体レーザとしては出力 30mW (ミリワット)程度のレーザが使用され、光ファ ィバとしてはコア径 50 m、クラッド径 125 m、 NA (開口数) 0. 2のマルチモード光 ファイバが使用されているので、約 1W (ワット)の出力を得ようとすれば、マルチモー ド光ファイバを 48本(8 X 6)束ねなければならず、発光領域の面積は 0. 62mm2 (0. 675mm X O. 925mm)である力ら、レーザ出射部 68での輝度は 1. 6 X 106 (W/m 2)、光ファイバ 1本当りの輝度は 3. 2 X 106(WZm2)である。 For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled one-to-one, a laser having an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter is used as an optical fiber. Since a multi-mode optical fiber with 50 m, cladding diameter of 125 m, and NA (numerical aperture) of 0.2 is used, to obtain an output of about 1 W (watt), 48 multi-mode optical fibers ( 8 X 6) must be bundled, and the area of the light emitting area is 0.62 mm 2 (0. 675 mm X O. 925 mm), the brightness at the laser emitting part 68 is 1.6 × 10 6 (W / m 2), and the brightness per optical fiber is 3.2 × 10 6 (WZm 2 ) It is.
[0193] これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マ ルチモード光ファイノ 6本で約 1Wの出力を得ることができ、レーザ出射部 68での発 光領域の面積は 0. 0081mm2 (0. 325mmX 0. 025mm)であるから、レーザ出射 部 68での輝度は 123 X 106(WZm2)となり、従来に比べ約 80倍の高輝度化を図る ことができる。また、光ファイバ 1本当りの輝度は 90 X 106(WZm2)であり、従来に比 ベ約 28倍の高輝度化を図ることができる。 On the other hand, when the light irradiating means is a means capable of irradiating a multiplexed laser, an output of about 1 W can be obtained with six multi-mode optical finos, and the laser emitting section 68 emits light. since the area of the light region is 0. 0081mm 2 (0. 325mmX 0. 025mm ), the luminance is 123 X 10 6 (WZm 2) next to the laser emitting unit 68, the high brightness of about 80 times compared with the conventional Can be achieved. In addition, the luminance per optical fiber is 90 × 10 6 (WZm 2 ), which is approximately 28 times higher than the conventional one.
[0194] ここで、図 37A及び Bを参照して、従来の露光ヘッドと本実施の形態の露光ヘッドと の焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源 の発光領域の副走査方向の径は 0. 675mmであり、露光ヘッドのファイバアレイ光 源の発光領域の副走査方向の径は 0. 025mmである。図 37Aに示すように、従来の 露光ヘッドでは、光照射手段 (バンドル状ファイバ光源) 1の発光領域が大きいので、 DMD3へ入射する光束の角度が大きくなり、結果として走査面 5へ入射する光束の 角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太り やすい。  Here, with reference to FIGS. 37A and 37B, the difference in the depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emitting area of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm, and the diameter of the light emitting area of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm. As shown in FIG. 37A, in the conventional exposure head, since the light emitting area of the light irradiating means (bundle fiber light source) 1 is large, the angle of the light beam incident on the DMD 3 becomes large, and as a result, the light beam incident on the scanning surface 5 Angle increases. For this reason, the beam diameter tends to increase in the focusing direction (shift in the focusing direction).
[0195] 一方、図 37Bに示すように、本発明のパターン形成装置における露光ヘッドでは、 ファイバアレイ光源 66の発光領域の副走査方向の径カ 、さいので、レンズ系 67を通 過して DMD50へ入射する光束の角度が小さくなり、結果として走査面 56へ入射す る光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副 走査方向の径は従来の約 30倍になっており、略回折限界に相当する焦点深度を得 ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は 、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面 に投影された 1描素サイズは 10 m X 10 mである。なお、 DMDは反射型の空間 光変調素子であるが、図 37A及び Bは、光学的な関係を説明するために展開図とし た。  On the other hand, as shown in FIG. 37B, in the exposure head in the pattern forming apparatus of the present invention, the diameter of the light emitting area of the fiber array light source 66 in the sub-scanning direction is reduced. The angle of the light beam incident on the scanning surface 56 decreases, and as a result, the angle of the light beam incident on the scanning surface 56 decreases. That is, the depth of focus increases. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to a diffraction limit can be obtained. Therefore, it is suitable for exposing a minute spot. The effect on the depth of focus is more remarkable and effective as the required light amount of the exposure head is larger. In this example, the size of one pixel projected on the exposure surface is 10 mx 10 m. Note that DMD is a reflection type spatial light modulator, but FIGS. 37A and 37B are developed views to explain the optical relationship.
[0196] 次に、前記パターン形成装置を用いた本発明のパターン形成方法について説明 する。 まず、露光パターンに応じたパターン情報力 DMD50に接続された図示しないコ ントローラに入力され、コントローラ内のフレームメモリにー且記憶される。このパター ン情報は、画像を構成する各描素の濃度を 2値 (ドットの記録の有無)で表したデータ である。 Next, a pattern forming method of the present invention using the pattern forming apparatus will be described. First, the data is input to a controller (not shown) connected to the pattern information DMD 50 corresponding to the exposure pattern, and is stored in a frame memory in the controller. This pattern information is data representing the density of each pixel constituting the image in binary (with or without dot recording).
次に、パターン形成材料 150を表面に吸着したステージ 152は、図示しない駆動 装置により、ガイド 158に沿ってゲート 160の上流側から下流側に一定速度で移動さ れる。ステージ 152がゲート 160下を通過する際に、ゲート 160に取り付けられた検 知センサ 164によりパターン形成材料 150の先端が検出されると、フレームメモリに 記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み 出されたパターン情報に基づいて各露光ヘッド 166毎に制御信号が生成される。そ して、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド 166毎に DMD50のマイクロミラーの各々がオンオフ制御される。  Next, the stage 152 having the pattern forming material 150 adsorbed on its surface is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). When the end of the pattern forming material 150 is detected by the detection sensor 164 attached to the gate 160 when the stage 152 passes below the gate 160, the pattern information stored in the frame memory is sequentially read for a plurality of lines. The control signal is generated for each exposure head 166 based on the pattern information output and read by the data processing unit. Then, each of the micromirrors of the DMD 50 is turned on / off for each exposure head 166 by the mirror drive control unit based on the generated control signal.
次に、ファイバアレイ光源 66から DMD50にレーザ光が照射されると、 DMD50の マイクロミラーがオン状態のときに反射されたレーザ光力 レンズ系 54、 58によりパタ ーン形成材料 150の被露光面 56上に結像される。  Next, when the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser beam power reflected when the micromirror of the DMD 50 is on is reflected by the lens systems 54 and 58, and the exposed surface of the pattern forming material 150 is exposed. Imaged on 56.
このようにして、ファイバアレイ光源 66から出射されたレーザ光力 描素毎にオンォ フされて、パターン形成材料 150が DMD50の使用描素数と略同数の描素単位 (露 光エリア 168)で露光される。  In this way, the laser beam power emitted from the fiber array light source 66 is turned off for each pixel, and the pattern forming material 150 is exposed in a pixel unit (exposure area 168) of substantially the same number as the number of pixels used in the DMD 50. Is done.
また、パターン形成材料 150がステージ 152と共に一定速度で移動されることにより 、パターン形成材料 150がスキャナ 162によりステージ移動方向と反対の方向に副 走査され、露光ヘッド 166毎に帯状の露光済み領域 170が形成される。  Further, by moving the pattern forming material 150 together with the stage 152 at a constant speed, the pattern forming material 150 is sub-scanned by the scanner 162 in a direction opposite to the stage moving direction, and a strip-shaped exposed area 170 is provided for each exposure head 166. Is formed.
[0197] 〔現像工程〕 [Development Step]
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した 領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成 する工程である。  The developing step is a step of exposing the photosensitive layer in the exposing step, curing an exposed area of the photosensitive layer, and developing by removing an uncured area to form a permanent pattern.
[0198] 前記未硬化領域の除去方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  [0198] The method for removing the uncured region can be appropriately selected depending on the purpose without particular limitation, and examples thereof include a method for removing the uncured region using a developer.
[0199] 前記現像液としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、アルカリ金属又はアルカリ土類金属の水酸ィ匕物若しくは炭酸塩、炭酸水素 塩、アンモニア水、 4級アンモニゥム塩の水溶液等が好適に挙げられる。これらの中 でも、炭酸ナトリウム水溶液が特に好ましい。 [0199] The developer is not particularly limited and can be appropriately selected depending on the purpose. For example, an alkali metal or alkaline earth metal hydroxide or carbonate, hydrogencarbonate, aqueous ammonia, or an aqueous solution of a quaternary ammonium salt is preferably used. Among these, an aqueous solution of sodium carbonate is particularly preferred.
[0200] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、ベンジルァミン、ェチレ ンジァミン、エタノールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレント リアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進さ せるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミ ド類、ラタトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶 液と有機溶剤を混合した水系現像液であってもよぐ有機溶剤単独であってもよい。  [0200] The developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium-dimethyl hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine and the like, and organic solvents (eg, alcohols, ketones, esters, ethers, amides, ratatones, etc.) for promoting development may be used in combination. The developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.
[0201] 〔硬化処理工程〕  [0201] [Curing treatment step]
本発明のパターン形成方法は、更に、硬化処理工程を含むことが好ましい。  The pattern forming method of the present invention preferably further includes a curing treatment step.
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターン〖こ おける感光層に対して硬化処理を行う工程である。  The curing process is a process of performing a curing process on the photosensitive layer in the formed permanent pattern after the development process is performed.
[0202] 前記硬化処理としては、特に制限はなぐ目的に応じて適宜選択することができる 力 例えば、全面露光処理、全面加熱処理などが好適に挙げられる。 [0202] The curing treatment can be appropriately selected according to the purpose of the present invention without any particular limitation. For example, a whole-surface exposure treatment, a whole-surface heat treatment and the like are preferably exemplified.
[0203] 前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久バタ ーンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光 により、前記感光層を形成する感光性組成物中の榭脂の硬化が促進され、前記永久 パターンの表面が硬化される。 [0203] Examples of the method of the entire surface exposure treatment include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the development step. By the entire surface exposure, the curing of the resin in the photosensitive composition forming the photosensitive layer is promoted, and the surface of the permanent pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ目的に応じて適宜選択するこ とができるが、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。  The apparatus for performing the entire surface exposure can be appropriately selected depending on the particular purpose, but a UV exposure machine such as an ultra-high pressure mercury lamp is preferable.
[0204] 前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形 成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前 記永久パターンの表面の膜強度が高められる。 [0204] Examples of the method of the entire surface heat treatment include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the development step. By the entire surface heating, the film strength on the surface of the permanent pattern is increased.
前記全面加熱における加熱温度としては、 120〜250でカ 子ましく、 120〜200°C 力 り好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が 得られないことがあり、 250°Cを超えると、前記感光性組成物中の樹脂の分解が生じ The heating temperature in the whole-surface heating is preferably from 120 to 250, more preferably from 120 to 200 ° C. If the heating temperature is lower than 120 ° C, the film strength may not be improved by the heat treatment.If the heating temperature is higher than 250 ° C, the resin in the photosensitive composition may be decomposed.
、膜質が弱く脆くなることがある。 前記全面加熱における加熱時間としては、 10〜120分が好ましぐ 15〜60分がよ り好ましい。 In some cases, the film quality is weak and brittle. The heating time in the entire heating is preferably from 10 to 120 minutes, more preferably from 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for heating the entire surface can be appropriately selected from known apparatuses having no particular limitation according to the purpose, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0205] なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント 配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うこと ができる。  [0205] When the substrate is a printed wiring board such as a multilayer wiring board, the permanent pattern of the present invention may be formed on the printed wiring board, and further, soldering may be performed as follows. it can.
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリ ント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属 層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った 部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが 、保護膜あるいは絶縁膜 (層間絶縁膜)、ソルダーレジストパターンなどとしての機能 を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。  That is, by the developing step, a cured layer that is the permanent pattern is formed, and the metal layer is exposed on the surface of the printed wiring board. After gold plating is performed on a portion of the metal layer exposed on the surface of the printed wiring board, soldering is performed. Then, semiconductors, components, etc. are mounted on the soldered portions. At this time, the permanent pattern formed by the cured layer exhibits a function as a protective film or an insulating film (interlayer insulating film), a solder resist pattern, and the like, thereby preventing external impact and conduction between adjacent electrodes.
[0206] 本発明のパターン形成方法においては、保護膜、層間絶縁膜、及びソルダーレジ ストパターンの少なくともいずれかを形成するのが好ましい。前記パターン形成方法 により形成される永久パターンが、前記保護膜、前記層間絶縁膜、あるいは、前記ソ ルダーレジストパターンであると、配線を外部からの衝撃や曲げカゝら保護することが でき、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ 配線基板などへの半導体や部品の高密度実装に有用である。 In the pattern forming method of the present invention, it is preferable to form at least one of a protective film, an interlayer insulating film, and a solder resist pattern. When the permanent pattern formed by the pattern forming method is the protective film, the interlayer insulating film, or the solder resist pattern, the wiring can be protected from external impact and bending force, and particularly, In the case of the interlayer insulating film, for example, it is useful for high-density mounting of semiconductors and components on a multilayer wiring board or a build-up wiring board.
[0207] 本発明のパターン形成方法は、高速でパターン形成が可能であるため、各種パタ ーンの形成に広く用いることができ、特にフレキシブル配線パターン基板の形成に好 適に使用することができる。 The pattern forming method of the present invention is capable of forming a pattern at a high speed, and thus can be widely used for forming various patterns, and can be particularly suitably used for forming a flexible wiring pattern substrate. .
また、本発明のパターン形成方法により形成される永久パターンは、優れた表面硬 度、絶縁性、耐熱性などを有し、保護膜、層間絶縁膜、ソルダーレジストパターンとし て好適に使用することができる。  Further, the permanent pattern formed by the pattern forming method of the present invention has excellent surface hardness, insulating property, heat resistance, and the like, and can be suitably used as a protective film, an interlayer insulating film, and a solder resist pattern. it can.
[0208] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。 [0209] (合成例 1) [0208] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. [0209] (Synthesis example 1)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
500mLの三つ口フラスコに下記構造式(1)で表される 4,4'ージフエニルメタンジィ ソシァネート 125g、及び下記構造式(2)で表される 2, 2 ビス(ヒドロキシメチル)プロ ピオン酸 67gをジォキサン 290mlに溶解した。次いで、この溶液に、 Ν,Ν ジェチル ァ-リンを lg入れた後、ジォキサン還流下で 6時間撹拌し、反応させた後、得られた 溶液を水 4L及び酢酸 40mLの溶液中に、少しずつ加えてポリマーを析出させた。得 られた固体を真空乾燥させることにより 185gのポリウレタン榭脂 (A)を合成した。この ポリウレタン榭脂(A)の酸価は 138mgKOHZgであった。 GPCにて重量平均分子 量 (ポリスチレン換算)を測定したところ、 28,000であった。  In a 500 mL three-necked flask, 125 g of 4,4'-diphenylmethanediacid cyanate represented by the following structural formula (1) and 2,2 bis (hydroxymethyl) propione represented by the following structural formula (2) 67 g of the acid were dissolved in 290 ml of dioxane. Next, 1 g of ジ ェ, Ν dimethyl ether was added to this solution, and the mixture was stirred under reflux of dioxane for 6 hours to react.After the reaction, the resulting solution was gradually added to a solution of 4 L of water and 40 mL of acetic acid. In addition, the polymer was precipitated. The obtained solid was dried under vacuum to synthesize 185 g of polyurethane resin (A). The acid value of this polyurethane resin (A) was 138 mgKOHZg. The weight average molecular weight (in terms of polystyrene) measured by GPC was 28,000.
[化 4] 構造式 ( 1 ) [Formula 4] Structural formula (1)
Figure imgf000067_0001
Figure imgf000067_0001
CH, CH,
H0CHつ CH20H 構造式 (2 ) H0CH one CH 2 0H structural formula (2)
COOH COOH
[0210] (合成例 2)  [0210] (Synthesis example 2)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (3)で表されるジイソシァネートイ匕合物を用いた以外は、合成例 1と同様にして、ポリ ウレタン榭脂(B)を合成した。このポリウレタン榭脂(B)の酸価は 137mgKOHZgで めつに。  In Synthesis Example 1, the same procedures as in Synthesis Example 1 were carried out except for using a diisocyanate conjugate represented by the following structural formula (3) in place of 4,4′-dimethanemethanediisocyanate. Thus, a polyurethane resin (B) was synthesized. The acid value of this polyurethane resin (B) is 137mgKOHZg.
[化 5] 構造式 (3 )
Figure imgf000068_0001
[Formula 5] Structural formula (3)
Figure imgf000068_0001
(合成例 3)  (Synthesis example 3)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (4)で表されるジイソシァネートイ匕合物を用いた以外は、合成例 1と同様にして、ポリ ウレタン榭脂(C)を合成した。このポリウレタン榭脂(C)の酸価は 126mgKOHZgで あった。  In Synthesis Example 1, the same procedures as in Synthesis Example 1 were carried out except for using a diisocyanate conjugate represented by the following structural formula (4) in place of 4,4'-dimethanemethanediisocyanate. Thus, a polyurethane resin (C) was synthesized. The acid value of this polyurethane resin (C) was 126 mgKOHZg.
[化 6]  [Formula 6]
構造式 (4 )Structural formula (4)
Figure imgf000068_0002
Figure imgf000068_0002
[0212] (合成例 4)  [0212] (Synthesis example 4)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 In Synthesis Example 1, the following structural formula was used instead of 4,4′-diphenylmethanediisocyanate.
(5)で表されるジイソシァネートイ匕合物を用いた以外は、合成例 1と同様にして、ポリ ウレタン榭脂(D)を合成した。このポリウレタン榭脂(D)の酸価は 172mgKOHZgで めつに。 Polyurethane resin (D) was synthesized in the same manner as in Synthesis Example 1 except that the diisocyanate compound represented by (5) was used. The acid value of this polyurethane resin (D) is 172mgKOHZg.
[化 7]  [Formula 7]
OCN— (CH^ CO 構造式 (5 )  OCN— (CH ^ CO structural formula (5)
[0213] (合成例 5)  [0213] (Synthesis example 5)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 In Synthesis Example 1, the following structural formula was used instead of 4,4′-diphenylmethanediisocyanate.
(6)で表されるジイソシァネートイ匕合物を用い以外は、合成例 1と同様にして、ポリウ レタン樹脂 (E)を合成した :のポリウレタン榭脂(E)の酸価は 148mgKOHZgであ つた o Except for using the diisocyanate compound represented by (6), the same procedure as in Synthesis Example 1 was repeated except that The urethane resin (E) was synthesized: The acid value of the polyurethane resin (E) was 148 mgKOHZg.
[化 8] 構造式 (6 )
Figure imgf000069_0001
[Formula 8] Structural formula (6)
Figure imgf000069_0001
70mo l % 30mo l %  70mol% 30mol%
[0214] (合成例 6)  [0214] (Synthesis example 6)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (7)で表されるジイソシァネートイ匕合物を用い、 2,2 ビス(ヒドロキシメチル)プロピオ ン酸の代わりに下記構造式 (8)で表されるジオールィ匕合物を用いた以外は、合成例 1と同様にして、ポリウレタン榭脂 (F)を合成した。このポリウレタン榭脂 (F)の酸価は 118mgKOHZgであった。  In Synthesis Example 1, 2,2 bis (hydroxymethyl) propionate was used in place of 4,4′-diphenylmethanediisocyanate, using a diisocyanate conjugate represented by the following structural formula (7). Polyurethane resin (F) was synthesized in the same manner as in Synthesis Example 1 except that the dicarboxylic acid compound represented by the following structural formula (8) was used instead of the acid. The acid value of this polyurethane resin (F) was 118 mgKOHZg.
[化 9] 構造式 (7 )  [Formula 9] Structural formula (7)
構造式 (8 )
Figure imgf000069_0002
Structural formula (8)
Figure imgf000069_0002
[0215] (合成例 7)  [0215] (Synthesis example 7)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (9)で表されるジイソシァネートイ匕合物を用い、 2,2 ビス(ヒドロキシメチル)プロピオ ン酸の代わりに下記構造式(10)で表されるジオールィ匕合物を用いた以外は、合成 例 1と同様にして、ポリウレタン榭脂(G)を合成した。このポリウレタン榭脂(G)の酸価 は 130mgKOH/gであった。  In Synthesis Example 1, a diisocyanate conjugate represented by the following structural formula (9) was used in place of 4,4'-diphenylmethanediisocyanate, and 2,2 bis (hydroxymethyl) propionate was used. Polyurethane resin (G) was synthesized in the same manner as in Synthesis Example 1 except that the dicarboxylic acid compound represented by the following structural formula (10) was used instead of the acid. The acid value of this polyurethane resin (G) was 130 mgKOH / g.
[化 10] 構造式 (9 )[Formula 10] Structural formula (9)
Figure imgf000070_0001
Figure imgf000070_0001
構造式 (1 0 )
Figure imgf000070_0002
Structural formula (10)
Figure imgf000070_0002
(合成例 8)  (Synthesis example 8)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (11)で表されるジイソシァネートイ匕合物を用い、 2,2—ビス(ヒドロキシメチル)プロピ オン酸の代わりに下記構造式( 12)で表されるジオールィ匕合物を用 、た以外は、合 成例 1と同様にして、ポリウレタン榭脂 (H)を合成した。このポリウレタン榭脂 (H)の酸 価は 116mgKOHZgであった。  In Synthesis Example 1, a diisocyanate compound represented by the following structural formula (11) was used in place of 4,4′-diphenylmethanediisocyanate to give 2,2-bis (hydroxymethyl) Polyurethane resin (H) was synthesized in the same manner as in Synthesis Example 1 except that didiolide conjugate represented by the following structural formula (12) was used instead of propionic acid. The acid value of this polyurethane resin (H) was 116 mgKOHZg.
[化 11]
Figure imgf000070_0003
[Formula 11]
Figure imgf000070_0003
構造式 ( 1 2 )
Figure imgf000070_0004
Structural formula (1 2)
Figure imgf000070_0004
(合成例 9)  (Synthesis example 9)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (13)で表されるジイソシァネートイ匕合物を用い、 2,2 ビス(ヒドロキシメチル)プロピ オン酸の代わりに下記構造式(14)で表されるジオールィ匕合物を用いた以外は、合 成例 1と同様にして、ポリウレタン榭脂 (I)を合成した。このポリウレタン榭脂 (I)の酸価 は 99mgKOH/gであった。 In Synthesis Example 1, 2,2 bis (hydroxymethyl) propane was used in place of 4,4′-diphenylmethanediisocyanate, using a diisocyanate conjugate represented by the following structural formula (13). Polyurethane resin (I) was synthesized in the same manner as in Synthesis Example 1 except that a diolide conjugate represented by the following structural formula (14) was used instead of on-acid. The acid value of this polyurethane resin (I) was 99 mgKOH / g.
[化 12]  [Formula 12]
構造式 ( 1 3 )
Figure imgf000071_0001
Structural formula (13)
Figure imgf000071_0001
70mo l % 30mo l %  70mol% 30mol%
構造式 ( 1 4 )Structural formula (14)
Figure imgf000071_0002
Figure imgf000071_0002
C00H  C00H
[0218] (合成例 10)  [0218] (Synthesis example 10)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1にお 、て、 2,2—ビス (ヒドロキシメチル)プロピオン酸の代わりに下記構造 式(15)で表されるジオールィ匕合物を用いた以外は、合成例 1と同様にして、ポリウレ タン榭脂 (J)を合成した。このポリウレタン榭脂 (J)の酸価は 88mgKOH/gであった  In Synthesis Example 1, except that 2,2-bis (hydroxymethyl) propionic acid was replaced with a diol conjugate represented by the following structural formula (15), Polyurethane resin (J) was synthesized. The acid value of this polyurethane resin (J) was 88 mgKOH / g
[化 13] [Formula 13]
Figure imgf000071_0003
Figure imgf000071_0003
60mo I % 40mo I %  60mo I% 40mo I%
[0219] (合成例 11)  [0219] (Synthesis example 11)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1にお 、て、 2,2—ビス (ヒドロキシメチル)プロピオン酸の代わりに下記構造 式(16)で表されるジオールィ匕合物を用いた以外は、合成例 1と同様にして、ポリウレ タン榭脂 (K)を合成した。このポリウレタン榭脂 (K)の酸価は 82mgKOHZgであつ [化 14] In Synthesis Example 1, except that a didioli conjugate represented by the following structural formula (16) was used instead of 2,2-bis (hydroxymethyl) propionic acid, Polyurethane resin (K) was synthesized. The acid value of this polyurethane resin (K) is 82 mgKOHZg. [Formula 14]
Figure imgf000072_0001
Figure imgf000072_0001
COOH  COOH
構造式 (1 6) 60mo I ( 40mol( Structural formula (1 6) 60mo I (40mol (
[0220] (合成例 12)  [0220] (Synthesis example 12)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (6)で表されるジイソシァネートイ匕合物を用い、 2,2 ビス(ヒドロキシメチル)プロピオ ン酸の代わりに下記構造式( 17)で表されるジオールィ匕合物を用 、た以外は、合成 例 1と同様にして、ポリウレタン榭脂 (L)を合成した。このポリウレタン榭脂 (L)の酸価 は 92mgKOH/gであった。  In Synthesis Example 1, a diisocyanate conjugate represented by the following structural formula (6) was used in place of 4,4'-diphenylmethanediisocyanate, and 2,2 bis (hydroxymethyl) propionate was used. Polyurethane resin (L) was synthesized in the same manner as in Synthesis Example 1 except that a didioli conjugate represented by the following structural formula (17) was used instead of the acid. The acid value of this polyurethane resin (L) was 92 mgKOH / g.
[化 15]  [Formula 15]
0CN 構造式 (6〕
Figure imgf000072_0002
0CN structural formula (6)
Figure imgf000072_0002
70mol% 30mol%  70mol% 30mol%
CH, CH,
H0CH, C— CH20H H0-(CH2)2-0- (CH2) 2-0H 構造式 (1 7) H0CH, C— CH 2 0H H0- (CH 2 ) 2 -0- (CH 2 ) 2 -0H Structural formula (1 7)
COOH COOH
60mol% 40mol%  60mol% 40mol%
[0221] (合成例 13) [0221] (Synthesis example 13)
カルボキシル基を有するポリウレタン榭脂の合成  Synthesis of polyurethane resin with carboxyl group
合成例 1において、 4,4'ージフエ-ルメタンジイソシァネートの代わりに下記構造式 (6)で表されるジイソシァネートイ匕合物を用い、 2,2 ビス(ヒドロキシメチル)プロピオ ン酸の代わりに下記構造式(18)で表されるジオールィ匕合物を用いた以外は、合成 例 1と同様にして、ポリウレタン榭脂(M)を合成した。このポリウレタン榭脂(M)の酸 価は 87mgKOHZgであった。 [化 16] 構造式 (6 )
Figure imgf000073_0001
In Synthesis Example 1, a diisocyanate conjugate represented by the following structural formula (6) was used in place of 4,4'-diphenylmethanediisocyanate, and 2,2 bis (hydroxymethyl) propionate was used. A polyurethane resin (M) was synthesized in the same manner as in Synthesis Example 1 except that the dicarboxylic acid compound represented by the following structural formula (18) was used instead of the acid. The acid value of this polyurethane resin (M) was 87 mgKOHZg. [Formula 16] Structural formula (6)
Figure imgf000073_0001
70mo l ¾ 30mo I ¾  70mo l ¾ 30mo I ¾
構造式 (1 8 )
Figure imgf000073_0002
Structural formula (18)
Figure imgf000073_0002
[0222] (比較合成例 1)  [0222] (Comparative Synthesis Example 1)
エポキシ当量が 217であり、かつ一分子中に平均して 7個のフエノール核残基と、 更にエポキシ基とを併せ有するクレゾ一ルノボラック型エポキシ榭脂の 1当量と、ァク リル酸の 1. 05当量とを反応させた。得られた反応物に、無水テトラヒドロフタル酸の 0 . 69当量をフエノキシェチルアタリレートを溶媒として常法により反応させて、フエノキ シェチルアタリレートを 35質量%含んだ粘調な液体 (エポキシアタリレート榭脂)を調 製した。このエポキシアタリレート榭脂は混合物として 63. 4mgKOH/gの酸価を示 した。  An epoxy equivalent of 217, and one equivalent of a cresol novolak-type epoxy resin having an average of seven phenolic core residues in one molecule and an epoxy group, and 1. Reacted with 05 equivalents. To the obtained reaction product, 0.69 equivalents of tetrahydrophthalic anhydride was reacted by a conventional method using phenoxyshetyl atalylate as a solvent, and a viscous liquid containing 35% by mass of phenoxyshetyl atalylate (epoxy Attalylate (fat) was prepared. This epoxy acrylate resin showed an acid value of 63.4 mgKOH / g as a mixture.
[0223] (比較合成例 2)  (Comparative Synthesis Example 2)
撹拌機、還流冷却器、不活性ガス導入口、及び温度計を備えたフラスコ内に、ポリ テトラメチレンエーテルグリコール(PTG、平均分子量 1, 000) 1, 000g、セバシン酸 405gを仕込み、 2時間かけて 200°Cに昇温しさらに 3時間反応させた後冷却し、酸 価 81. 9、分子量 1, 370のポリテトラメチレンエーテルグリコールの両末端カルボン 酸物を合成した。  In a flask equipped with a stirrer, reflux condenser, inert gas inlet, and thermometer, charge 1,000 g of polytetramethylene ether glycol (PTG, average molecular weight 1,000) and 405 g of sebacic acid, and take 2 hours The temperature was raised to 200 ° C., and the mixture was further reacted for 3 hours, and then cooled to synthesize a polytetramethylene ether glycol polycarboxylic acid at both ends having an acid value of 81.9 and a molecular weight of 1,370.
[0224] 次に、撹拌機、還流冷却器、不活性ガス導入口、及び温度計を備えたフラスコ内に 、 γ ブチロラタトン 100g、 N—メチルピロリドン(NMP) 50gを仕込んだ。さらに上記 ポリテトラメチレンエーテルグリコールの両末端カルボン酸物 55. 6g、アジピン酸 6. 1 g、セバシン酸 8. 3g、イソフタル酸 13. 7g、 4, 4' —ジフエ-ルメタンジイソシァネー ト(MDI) 13. 8g、トリレンジイソシァネート(コロネート T80、 日本ポリウレタン工業社 製) 14. 4gを仕込み、 200°Cに昇温し、 4時間保温後冷却し、加熱残分 40質量%、 酸価(固形分) 83. 5のポリアミド榭脂を合成した。 [0224] Next, 100 g of γ-butyrolataton and 50 g of N-methylpyrrolidone (NMP) were charged into a flask equipped with a stirrer, a reflux condenser, an inert gas inlet, and a thermometer. Further, 55.6 g of the above-mentioned polytetramethylene ether glycol at both terminal carboxylic acids, 6.1 g of adipic acid, 8.3 g of sebacic acid, 13.7 g of isophthalic acid, 4,4'-diphenylmethane diisocyanate (MDI) 13.8 g, tolylene diisocyanate (Coronate T80, Nippon Polyurethane Industry Co., Ltd.) 14.4 g), heated to 200 ° C, cooled for 4 hours, and then cooled to synthesize a polyamide resin having a heating residue of 40% by mass and an acid value (solid content) of 83.5.
更に、ビスフエノール A型エポキシ榭脂ェピコート 1001 (油化シェルエポキシ製) 14 1. 5gを仕込み、 140°Cで 2時間保温した後、ジメチルホルムアミド(DMF)をカロえ、 加熱残分 40質量%にした。 120°Cでアクリル酸 10. 7gをカ卩ぇ 3時間保温後、テトラヒ ドロ無水フタル酸 (THPA) 90. 6gを添カ卩し 1時間保温した。次いで、グリシドール 58 . 4gを加え 2時間保温後、テトラヒドロ無水フタル酸 (THPA) 240gを加え 2時間保温 した。次いで、ジメチルホルムアミド (DMF)で希釈し、加熱残分 55質量%、酸価(固 形分) 145mgKOHZgの感光性ポリアミド榭脂を合成した。  Furthermore, 141.5 g of bisphenol A-type epoxy resin epoxy coat 1001 (manufactured by Yuka Shell Epoxy) was charged, and after keeping the temperature at 140 ° C for 2 hours, dimethylformamide (DMF) was caloried, and the heating residue was 40% by mass. I made it. After incubating 10.7 g of acrylic acid at 120 ° C for 3 hours, 90.6 g of tetrahydrophthalic anhydride (THPA) was added thereto, and the mixture was incubated for 1 hour. Next, 58.4 g of glycidol was added and the mixture was kept for 2 hours, and 240 g of tetrahydrophthalic anhydride (THPA) was added and kept for 2 hours. Next, it was diluted with dimethylformamide (DMF) to synthesize a photosensitive polyamide resin having a heating residue of 55% by mass and an acid value (solid content) of 145 mgKOHZg.
[0225] (比較合成例 3)  [0225] (Comparative Synthesis Example 3)
攪拌機、還流冷却器、及び温度計を備えたフラスコ内に、 ex , ω—ポリブタジエンジ カルボン酸(NISSO— PB C— 1000、 日本曹達社製) 482. 6質量部、臭素化ビス フエノール Α型エポキシ榭脂 (YDB— 400、東都化成株式会社製) 400質量部、力 ルビトールアセテート 183質量部、及びソルベントナフサ(ソルべッソ 150) 110質量 部を入れ、 110°Cで 8時間加熱した。これにアクリル酸 36. 4質量部、メチルハイド口 キノン 0. 5質量部、カルビトールアセテート 6質量部を仕込み、 70°Cで、トリフエ-ル ホスフィン 3質量部、ソルベントナフサ 6質量部を仕込み、 100°Cに加熱し、固形分酸 価が 2KOHmgZg以下になるまで反応させた。次に、得られた溶液を 50°Cまで冷却 し、テトラヒドロ無水フタル酸 100質量部、カルビトールアセテート 126質量部、ソルべ ントナフサ 6質量部を仕込み、 80°Cで所定時間反応させ、固形分酸価 59KOHmg 固形分 40質量%の不飽和基含有ポリカルボン酸榭脂を合成した。  In a flask equipped with a stirrer, reflux condenser and thermometer, ex, ω-polybutadiene dicarboxylic acid (NISSO-PB C-1000, manufactured by Nippon Soda Co., Ltd.) 482.6 parts by mass, brominated bisphenol Α type epoxy 400 parts by mass of resin (YDB-400, manufactured by Toto Kasei Co., Ltd.), 183 parts by mass of rubitol acetate, and 110 parts by mass of solvent naphtha (Solvesso 150) were added and heated at 110 ° C. for 8 hours. 36.4 parts by mass of acrylic acid, 0.5 parts by mass of quinone methyl hydride, 6 parts by mass of carbitol acetate are charged, and at 70 ° C., 3 parts by mass of triphenylphosphine and 6 parts by mass of solvent naphtha are charged. The mixture was heated to 100 ° C and reacted until the acid value of the solid content became 2 KOHmgZg or less. Next, the obtained solution was cooled to 50 ° C, 100 parts by mass of tetrahydrophthalic anhydride, 126 parts by mass of carbitol acetate, and 6 parts by mass of sorbent naphtha were charged, and the mixture was reacted at 80 ° C for a predetermined time to obtain a solid content. An unsaturated group-containing polycarboxylic acid resin having an acid value of 59 KOHmg and a solid content of 40% by mass was synthesized.
[0226] 攪拌機、還流冷却器、不活性ガス導入口、及び温度計を備えたフラスコ内に、 γ— ブチロラタトン 100g、 N—メチルピロリドン(NMP) 50gを仕込み、更に上記不飽和基 含有ポリカルボン酸榭脂 74. 6g、アジピン酸 3. 3g、セバシン酸 4. 6g、イソフタル酸 7. 5g、 4, 4' —ジフエ-ノレメタンジイソシァネート(MDI) 4. 8g、 トリレンジイソシァネ ート(コロネート T80、 日本ポリウレタン工業社製) 13. 4gを仕込み、 200°Cに昇温し 、 4時間保温後冷却し、加熱残分 40質量%、酸価(固形分) 58. 6のポリアミド榭脂を 得た。更に、ビスフエノール A型エポキシ榭脂(ェポミック R140、三井石油化学工業 社製) 27. 6gを仕込み、 140°Cで 2時間保温後、ジメチルホルムアミド (DMF)をカロえ 加熱残分 40質量%にした。 120°Cでメタクリル酸 3. 3gを加え 3時間保温後、テトラヒ ドロ無水フタル酸 (THPA) 37. 9gを添カ卩し 1時間保温した。次いで、ジメチルホルム アミド(DMF)で希釈し、加熱残分 55質量%、酸価(固形分) 74KOHmgZgの感光 性ポリアミド榭脂を合成した。 [0226] In a flask equipped with a stirrer, a reflux condenser, an inert gas inlet, and a thermometer, 100 g of γ-butyrolataton and 50 g of N-methylpyrrolidone (NMP) were charged, and the above unsaturated group-containing polycarboxylic acid was further charged. 74.6 g of resin, 3.3 g of adipic acid, 4.6 g of sebacic acid, 7.5 g of isophthalic acid, 4,4'-diphenolemethanediisocyanate (MDI) 4.8 g, tolylene diisocyanate (Coronate T80, manufactured by Nippon Polyurethane Industry Co., Ltd.) 13.4 g, heated to 200 ° C, kept warm for 4 hours, then cooled, heating residue 40 mass%, polyamide with acid value (solid content) 58.6 A fat was obtained. Furthermore, bisphenol A type epoxy resin (Epomic R140, Mitsui Petrochemical Industries 27.6 g), and the mixture was kept at 140 ° C. for 2 hours. Then, dimethylformamide (DMF) was added to make the heating residue 40% by mass. At 120 ° C, 3.3 g of methacrylic acid was added, and the mixture was kept warm for 3 hours. Then, 37.9 g of tetrahydrophthalic anhydride (THPA) was added, and the mixture was kept warm for 1 hour. Next, it was diluted with dimethylformamide (DMF) to synthesize a photosensitive polyamide resin having a heating residue of 55% by mass and an acid value (solid content) of 74 KOHmgZg.
[0227] 攪拌機、還流冷却器、及び温度計を備えたフラスコ内に、クレゾ一ルノボラック型ェ ポキシ榭脂(エポキシ当量: 200) 200質量部、アクリル酸 20質量部、メチルノヽイド口 キノン 0. 4質量部、カルビトールアセテート 80質量部、及びソルベントナフサ 20質量 部を仕込み、 70°Cで加熱攪拌して、混合物を溶解した。次に、溶液を 50°Cまで冷却 し、トリフエ-ルホスフィン 0. 5質量部を仕込み、 100°Cに加熱し、固形分酸価が 1K OHmgZg以下になるまで反応させた。ソルベントナフサ 10質量部を仕込み、固形 分 67質量%のアタリレート基とエポキシ基を含有する榭脂を合成した。 [0227] In a flask equipped with a stirrer, a reflux condenser, and a thermometer, 200 parts by mass of cresol novolac-type epoxy resin (epoxy equivalent: 200), 20 parts by mass of acrylic acid, and methylnonoid quinone 0. 4 parts by mass, 80 parts by mass of carbitol acetate, and 20 parts by mass of solvent naphtha were charged and heated and stirred at 70 ° C. to dissolve the mixture. Next, the solution was cooled to 50 ° C, 0.5 parts by mass of triphenylphosphine was charged, heated to 100 ° C, and reacted until the acid value of the solid content became 1K OHmgZg or less. 10 parts by mass of solvent naphtha was charged, and a resin containing an acrylate group and an epoxy group having a solid content of 67% by mass was synthesized.
[0228] (比較合成例 4) [0228] (Comparative Synthesis Example 4)
まず、スチレン Zn—ブチルアタリレート Zマレイン酸無水物(モル比 = 41/24/3 5)からなる共重合体を滴下重合法により合成した。  First, a copolymer composed of styrene Zn-butyl acrylate and maleic anhydride Z (molar ratio = 41/24/35) was synthesized by a drop polymerization method.
次に、得られた共重合体 103. 71質量部をメチルェチルケトン 220質量部に溶解 した。この溶液にベンジルァミン 36. 1質量部、及びメチルェチルケトン 40質量部の 溶液を室温下、撹拌しつつ 2時間かけて滴下し、更に室温で 6時間撹拌することで反 応を完了し、ベンジルァミン変性樹脂の溶液(固形分 36. 8質量%)を合成した。 得られた榭脂の酸価は酸価 135KOHmgZg、重量平均分子量は 30,000、固形 分濃度 36. 8質量%であった。  Next, 103.71 parts by mass of the obtained copolymer was dissolved in 220 parts by mass of methyl ethyl ketone. A solution of 36.1 parts by mass of benzylamine and 40 parts by mass of methyl ethyl ketone was added dropwise to this solution over 2 hours with stirring at room temperature, and the reaction was completed by further stirring at room temperature for 6 hours. A solution of the modified resin (solid content: 36.8% by mass) was synthesized. The acid value of the obtained resin was 135 KOHmgZg, the weight average molecular weight was 30,000, and the solid concentration was 36.8% by mass.
[0229] (実施例 1) (Example 1)
-フレキシブル配線プリント基板の作製 - 合成例 1のポリウレタン榭脂 (A) 24. 75質量部、メトキシプロパノール 13. 36質量 部、 2官能アクリルモノマー (R712、 日本化薬社製) 3. 06質量部、ジペンタエリスリト ールへキサアタリレート 4. 59質量部、ビス(2,4,6—トリメチルベンゾィル)一フエ-ル ホスフィンォキシド(チバ スペシャルティー ケミカルズ社製) 1. 98質量部、へキサメ トキシメチルメラミン(MW30HM、三和ケミカル株式会社製) 5. 00質量部、フタロシ アニングリーン分散液 (濃度 10質量%メトキシプロパノール中) 1. 0質量部、及び F7 80F (大日本インキ化学工業株式会社製)の 30質量%メチルェチルケトン溶液 0. 0 66質量部を混合して、感光性組成物を調製した。 -Preparation of flexible printed circuit board-Polyurethane resin of Synthesis Example 1 (A) 24.75 parts by mass, methoxypropanol 13.36 parts by mass, bifunctional acrylic monomer (R712, Nippon Kayaku Co., Ltd.) 3.06 parts by mass , Dipentaerythritol hexaatalylate 4.59 parts by mass, bis (2,4,6-trimethylbenzoyl) -1-phenyl phosphinoxide (manufactured by Ciba Specialty Chemicals) 1.98 parts by mass , Hexamethoxymethylmelamine (MW30HM, manufactured by Sanwa Chemical Co., Ltd.) Anine green dispersion (concentration: 10% by mass in methoxypropanol) 1.0 parts by mass and 30% by mass of F780F (manufactured by Dainippon Ink and Chemicals, Inc.) 0.066 parts by mass of methyl ethyl ketone solution were mixed. Thus, a photosensitive composition was prepared.
[0230] なお、上記硫酸バリウム分散液は、硫酸バリウム (堺化学社製、 B30) 30質量部と、 上記スチレン Z無水マレイン酸 Zブチルアタリレート共重合体の 35質量0 /0メチルェ チルケトン溶液 34. 29質量部と、 1—メトキシ— 2 プロピルアセテート 35. 71質量 部と、を予め混合した後、モーターミル M— 200 (アイガー社製)で、直径 1. Ommの ジルコユアビーズを用い、周速 9mZsにて 3. 5時間分散して調製した。 [0230] In addition, the barium sulfate dispersion, barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., B30) 30 parts by mass, the styrene Z 35 mass 0/0 of maleic acid Z butyl Atari rates copolymer Mechirue ethyl ketone solution 34 29 parts by weight and 35.71 parts by weight of 1-methoxy-2-propyl acetate were mixed in advance, and then mixed with a motor mill M-200 (manufactured by Eiger) using zirconia beads having a diameter of 1. Omm. The dispersion was prepared at a speed of 9 mZs for 3.5 hours.
[0231] 次に、得られた感光性組成物溶液をバー塗布により、 2層タイプのフレキシブル基 板 (銅厚 35 μ mZ榭脂厚 25 μ m)上に、乾燥後膜厚が 35 μ mになるように塗布し、 80°Cのオーブン中で 30分間乾燥し、感光層を形成した。  [0231] Next, the obtained photosensitive composition solution was applied to a two-layer type flexible substrate (copper thickness 35 µmZ 榭 fat thickness 25 µm) by bar coating to have a thickness of 35 µm after drying. And dried in an oven at 80 ° C. for 30 minutes to form a photosensitive layer.
[0232] <露光工程 >  [0232] <Exposure step>
基板上の感光層に対し、以下に説明するパターン形成装置を用いて、波長が 405 nmのレーザ光を、 15段ステップゥェッジパターン(Δ logE = 0. 15)、及び所望配線 パターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。  A laser beam having a wavelength of 405 nm is applied to the photosensitive layer on the substrate by using a pattern forming apparatus described below, and a 15-step step-judge pattern (ΔlogE = 0.15) and a desired wiring pattern are formed. Irradiation and exposure were performed so as to obtain a partial area of the photosensitive layer.
[0233] パターン形成装置  [0233] Pattern forming apparatus
前記光照射手段として図 27〜32に示す合波レーザ光源と、前記光変調手段とし て図 4に示す主走査方向にマイクロミラーが 1024個配列されたマイクロミラー列が、 副走査方向に 768組配列された前記光変調手段の内、 1024個 X 256列のみを駆 動するように制御された DMD50と、図 13に示した一方の面がトーリック面であるマイ を通した光を前記感光層に結像する光学系 480、 482とを有するパターン形成装置 を用いた。  The multiplexed laser light source shown in FIGS. 27 to 32 as the light irradiating means and the micromirror row in which 1024 micromirrors are arranged in the main scanning direction shown in FIG. Of the arrayed light modulating means, a DMD 50 controlled to drive only 1024 × 256 rows, and light passing through a layer having one toric surface as shown in FIG. A pattern forming apparatus having optical systems 480 and 482 for forming an image was used.
[0234] 前記マイクロレンズとしては、図 17及び図 18に示すように、トーリックレンズ 55aが用 いられており、前記 X方向に光学的に対応する方向の曲率半径 Rx= 0. 125mm, 前記 y方向に対応する方向の曲率半径 Ry=— 0. 1mmである。  As shown in FIGS. 17 and 18, a toric lens 55a is used as the microlens, and a radius of curvature Rx = 0.125 mm in a direction optically corresponding to the X direction, The radius of curvature in the direction corresponding to the direction is Ry = —0.1 mm.
[0235] また、マイクロレンズアレイ 55の集光位置近傍に配置されるアパーチャアレイ 59は 、その各アパーチャ 59aに、それと対応するマイクロレンズ 55aを経た光のみが入射 するように配置されている。 [0235] The aperture array 59 arranged near the condensing position of the microlens array 55 receives only light having passed through the corresponding microlens 55a to each of the apertures 59a. It is arranged to be.
[0236] 次いで、 1質量0 /0の炭酸ソーダ水溶液を用いて 60秒間スプレー現像 (スプレー圧: 2. OkgfZcm2)し、未露光部分を除去した。次いで、循環式オーブンを用いて、 160 °Cにて 1時間加熱硬化を行! ヽ、フレキシブル配線プリント基板を作製した。 [0236] Then, 60 seconds spray development using a 1 aqueous solution of sodium carbonate by weight 0/0 (spray pressure: 2. OkgfZcm 2) and to remove the unexposed portions. Next, using a circulating oven, heat curing was performed at 160 ° C. for 1 hour to produce a flexible printed circuit board.
[0237] (実施例 2)  (Example 2)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 2のポリウレタン榭脂( -Fabrication of a flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 2.
B)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1, except that B) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0238] (実施例 3)  (Example 3)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 3のポリウレタン榭脂( -Fabrication of flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 3.
C)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that C) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0239] (実施例 4)  (Example 4)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 4のポリウレタン榭脂( -Fabrication of flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 4.
D)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1, except that D) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0240] (実施例 5)  [0240] (Example 5)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 5のポリウレタン榭脂( -Fabrication of a flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 5.
E)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 [0241] (実施例 6) A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that E) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board. [0241] (Example 6)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 6のポリウレタン榭脂( -Fabrication of flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 6.
F)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that F) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0242] (実施例 7)  [0242] (Example 7)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 7のポリウレタン榭脂( -Fabrication of flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 7.
G)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that G) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0243] (実施例 8)  [0243] (Example 8)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 8のポリウレタン榭脂( -Fabrication of a flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 8.
H)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1, except that H) was used. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0244] (実施例 9)  (Example 9)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 9のポリウレタン榭脂( -Fabrication of flexible printed circuit board-In Example 1, the polyurethane resin (A) of Synthesis Example 1 was replaced with the polyurethane resin (S) of Synthesis Example 9.
I)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成し た。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基板 を作製した。 A photosensitive composition was prepared and a photosensitive layer was formed in the same manner as in Example 1 except that I) was replaced. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0245] (実施例 10)  (Example 10)
-フレキシブル配線プリント基板の作製 - 実施例 1において、合成例 1のポリウレタン榭脂 (A)を合成例 10のポリウレタン榭脂 COに代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。 -Fabrication of a flexible printed circuit board-The photosensitive composition was prepared in the same manner as in Example 1 except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin CO in Synthesis Example 10. To form a photosensitive layer did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0246] (実施例 11)  (Example 11)
-フレキシブル配線プリント基板の作製 - 実施例 1にお 、て、合成例 1のポリウレタン榭脂 (A)を合成例 11のポリウレタン榭脂 (K)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。  -Fabrication of a flexible printed circuit board-In Example 1, except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin (K) in Synthesis Example 11, Then, a photosensitive composition was prepared, and a photosensitive layer was formed. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0247] (実施例 12)  (Example 12)
-フレキシブル配線プリント基板の作製 - 実施例 1において、合成例 1のポリウレタン榭脂 (A)を合成例 12のポリウレタン榭脂 (L)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形成 した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント基 板を作製した。  -Fabrication of a flexible printed circuit board-In Example 1, a photosensitive resin was prepared in the same manner as in Example 1 except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin (L) in Synthesis Example 12. A composition was prepared and a photosensitive layer was formed. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0248] (実施例 13)  (Example 13)
-フレキシブル配線プリント基板の作製 - 実施例 1において、合成例 1のポリウレタン榭脂 (A)を合成例 13のポリウレタン榭脂 (M)に代えた以外は、実施例 1と同様にして、感光性組成物を調製し、感光層を形 成した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリント 基板を作製した。  -Fabrication of a flexible printed circuit board-In Example 1, a photosensitive resin was prepared in the same manner as in Example 1 except that the polyurethane resin (A) in Synthesis Example 1 was replaced with the polyurethane resin (M) in Synthesis Example 13. A composition was prepared and a photosensitive layer was formed. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0249] (比較例 1)  [0249] (Comparative Example 1)
-フレキシブル配線プリント基板の作製 - 比較合成例 1で合成したエポキシアタリレート榭脂 40質量部、 2 -ヒドロキシェチル アタリレート 15質量部、ベンジルジェチルケタール 2. 5質量部、 1一べンジルー 2— メチルイミダゾール 1. 0質量部、レべリング剤(モダフロー、米国モンサントネ土製) 1. 0 質量部、硫酸バリウム 26質量部、及びフタロシア-ン'グリーン 0. 5質量部を三本口 ールミルにより混練してインキを調製した。次いで、得られたインキに、トリメチロール プロパントリグリシジルエーテル 15質量部を混合して感光性組成物を調製した。 得られた感光性組成物溶液について、実施例 1と同様にして、フレキシブル基板の 全面にスクリーン印刷法により塗布し、 80°Cにて 30分間乾燥し、乾燥膜厚 35 mの 感光層を形成した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配 線プリント基板を作製した。 -Fabrication of flexible printed circuit board-40 parts by weight of epoxy acrylate resin synthesized in Comparative Synthesis Example 1, 2-hydroxyethyl acrylate, 15 parts by weight, benzyl getyl ketal 2.5 parts by weight, 1 benzene 2 — 1.0 part by weight of methylimidazole, 1.0 part by weight of a leveling agent (Modaflow, manufactured by Mont Saint-Anet in the United States), 26 parts by weight of barium sulfate, and 0.5 part by weight of phthalocyanine'green by a three-hole mill. The ink was prepared by kneading. Next, 15 parts by mass of trimethylolpropane triglycidyl ether was mixed with the obtained ink to prepare a photosensitive composition. The obtained photosensitive composition solution was applied to the entire surface of the flexible substrate by a screen printing method in the same manner as in Example 1 and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible wiring printed board.
[0250] (比較例 2) [0250] (Comparative Example 2)
-フレキシブル配線プリント基板の作製 - 比較合成例 2で合成した感光性ポリアミド榭脂 91質量部、ペンタエリスリトールへキ サアタリレート 10質量部、クレゾ一ルノボラック榭脂アクリル酸付加物 22質量部、 2— メチルー 1一(4 (メチルチオ)フエ-ル) 2 モルフォリノプロパン 1 オン 7質 量部、 2,4 ジェチルチオキサントン 1質量部、メラミン 2質量部、フタロシア-ングリ ーン 1質量部、タルク 10質量部、硫酸バリウム 43質量部、酸化珪素 21質量部、トリグ リシジルイソシァヌレート 40質量部、及びカルビトールアセテートを三本ロールミルを 用いて混練し、感光性組成物を調製した。  -Preparation of flexible printed circuit board-91 parts by weight of photosensitive polyamide resin synthesized in Comparative Synthesis Example 2, 10 parts by weight of pentaerythritol hexoatalylate, 22 parts by weight of cresolyl novolak resin adduct of acrylic acid, 2-methyl-1 1 (4 (methylthio) phenyl) 2 morpholinopropane 1 on 7 parts by weight, 2,4 dimethylthioxanthone 1 part by weight, melamine 2 parts by weight, phthalocyanine green 1 part by weight, talc 10 parts by weight, 43 parts by mass of barium sulfate, 21 parts by mass of silicon oxide, 40 parts by mass of triglycidyl isocyanurate, and carbitol acetate were kneaded using a three-roll mill to prepare a photosensitive composition.
得られた感光性組成物溶液を、実施例 1と同様にして、フレキシブル基板の全面に スクリーン印刷法により塗布し、 80°Cにて 30分間乾燥し、乾燥膜厚 35 mの感光層 を形成した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリ ント基板を作製した。  The obtained photosensitive composition solution was applied to the entire surface of the flexible substrate by screen printing in the same manner as in Example 1, and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0251] (比較例 3) [0251] (Comparative Example 3)
-フレキシブル配線プリント基板の作製 - 比較合成例 3で合成した不飽和基含有ポリカルボン酸榭脂 25質量部、比較合成 例 3で合成した感光性ポリアミド榭脂 10質量部、 2—メチル 1[4— (メチルチオ)フエ -ル ] 2 モルフオリノープロパン 1 オン 4. 5質量部、 2,4 ジェチルチオキサ ントン 0. 5質量部、メラミン 4質量部、フタロシアニングリーン 1質量部、シリカ 20質量 部、沈降性硫酸バリウム 15質量部、エポキシ榭脂 (ESLV—80XY、新日鐡化学社 製) 12質量部、比較合成例 3で合成したアタリレート基とエポキシ基を含有する榭脂 5 質量部、及びジペンタエリスリトールへキサアタリレート 3質量部を三本ロールミルを用 いて混練し、感光性組成物を調製した。  -Fabrication of flexible printed circuit board-25 parts by weight of unsaturated group-containing polycarboxylic acid resin synthesized in Comparative Synthesis Example 3, 10 parts by weight of photosensitive polyamide resin synthesized in Comparative Synthesis Example 3, 2-methyl 1 [4 — (Methylthio) phenyl] 2 Morpholinopropane 1 on 4.5 parts by mass, 0.5 parts by mass of 2,4 getylthioxanthone, 4 parts by mass of melamine, 1 part by mass of phthalocyanine green, 20 parts by mass of silica, sedimentation 15 parts by mass of barium sulfate, 12 parts by mass of epoxy resin (ESLV-80XY, manufactured by Nippon Steel Chemical Co., Ltd.), 5 parts by mass of resin containing an acrylate and epoxy group synthesized in Comparative Synthesis Example 3, and dipentane 3 parts by mass of erythritol hexatalylate was kneaded using a three-roll mill to prepare a photosensitive composition.
得られた感光性組成物溶液を、実施例 1と同様にして、フレキシブル基板の全面に スクリーン印刷法により塗布し、 80°Cにて 30分間乾燥し、乾燥膜厚 35 mの感光層 を形成した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリ ント基板を作製した。 The obtained photosensitive composition solution was applied to the entire surface of the flexible substrate in the same manner as in Example 1. It was applied by screen printing and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0252] (比較例 4) [0252] (Comparative Example 4)
-フレキシブル配線プリント基板の作製 - 比較合成例 4で合成したベンジルァミン変性榭脂 13. 36質量部、ジペンタエリスリト ールへキサアタリレート 4. 59質量部、 2官能アクリルモノマー(R712、日本化薬社製 ) 3. 06質量部、ビス(2,4,6 トリメチルベンゾィル) フエ-ルホスフィンォキシド(チ ノ スペシャルティー ケミカルズ社製) 1. 98質量部、へキサメトキシメチルメラミン( MW30HM,三和ケミカル株式会社製) 2質量部、 F780F (大日本インキ化学工業 株式会社製)の 30質量%メチルェチルケトン溶液 0. 066質量部、フタロシア-ングリ ーン分散液 (濃度 10質量%メトキシプロパノール中) 1. 0質量部、ハイドロキノンモノ メチルエーテル 0. 024質量部、及び硫酸バリウム分散液 24. 75質量部を三本ロー ルミルを用いて混練し、感光性組成物を調製した。  -Fabrication of flexible printed circuit boards-13.36 parts by weight of benzylamine-modified resin synthesized in Comparative Synthesis Example 4, 4.59 parts by weight of dipentaerythritol hexoatalylate, bifunctional acrylic monomer (R712, Nippon Kagaku) 3. 06 parts by mass, bis (2,4,6 trimethylbenzoyl) phenylphosphinoxide (manufactured by Chino Specialty Chemicals) 1. 98 parts by mass, hexamethoxymethyl melamine (MW30HM) , Sanwa Chemical Co., Ltd.) 2 parts by mass, F780F (Dainippon Ink Chemical Industry Co., Ltd.) 30% by mass methyl ethyl ketone solution 0.066 parts by mass, phthalocyanine green dispersion (concentration 10% by mass) In methoxypropanol) 1.0 parts by mass, 0.024 parts by mass of hydroquinone monomethyl ether, and 24.75 parts by mass of a barium sulfate dispersion were kneaded using a three-roll mill to prepare a photosensitive composition. .
得られた感光性組成物溶液を、実施例 1と同様にして、フレキシブル基板の全面に スクリーン印刷法により塗布し、 80°Cにて 30分間乾燥し、乾燥膜厚 35 mの感光層 を形成した。次に、実施例 1と同様にして、露光、現像を行い、フレキシブル配線プリ ント基板を作製した。  The obtained photosensitive composition solution was applied to the entire surface of the flexible substrate by screen printing in the same manner as in Example 1, and dried at 80 ° C for 30 minutes to form a photosensitive layer having a dry film thickness of 35 m. did. Next, exposure and development were performed in the same manner as in Example 1 to produce a flexible printed circuit board.
[0253] 得られた実施例 1〜13及び比較例 1〜4のフレキシブル配線プリント基板にっ 、て 、以下のようにして、諸特性を評価した。結果を表 3及び表 4に示す。  The characteristics of the obtained flexible printed circuit boards of Examples 1 to 13 and Comparative Examples 1 to 4 were evaluated as follows. The results are shown in Tables 3 and 4.
[0254] <現像性の評価 >  [0254] <Evaluation of developability>
得られた各フレキシブル配線プリント基板の現像後の表面性状を目視観察により、 下記基準で評価した。  The surface properties of the obtained flexible printed circuit boards after development were evaluated by visual observation according to the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇:非画像部で現像後、完全に組成物が除去された。  〇: The composition was completely removed after development in the non-image area.
△:非画像部に、わずかに残渣がある。  Δ: There is a slight residue in the non-image area.
X:現像できない残渣がある。  X: There are residues that cannot be developed.
[0255] <密着性の評価 > JIS K5400に準じて各フレキシブル配線プリント基板に lmm幅の碁盤目を 100 箇所作製し、セロハンテープにより剥離試験 (碁盤目テスト)を行い、下記基準で評価 した。 [0255] <Evaluation of adhesion> According to JIS K5400, 100 lmm-width grids were formed on each flexible wiring printed circuit board, and a peeling test (cross-gauge test) was performed using cellophane tape, and evaluated according to the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇: 100箇所中 90箇所以上が剥離しない。  〇: 90 or more out of 100 locations do not peel.
△: 100箇所中 50箇所以上 90箇所未満が剥離しない。  Δ: 50 to less than 90 out of 100 locations did not peel.
X: 100箇所中 0箇所以上 50箇所未満が剥離しない。  X: 0 to less than 50 out of 100 locations do not peel.
[0256] <はんだ耐熱性の評価 > [Evaluation of solder heat resistance]
各フレキシブル配線プリント基板にロジン系フラックスを塗布し、 260°Cのはんだ浴 に 10秒間浸漬した。この操作を 6回繰り返した後、フレキシブル配線プリント基板の 外観を下記基準で評価した。  A rosin-based flux was applied to each flexible printed circuit board and immersed in a 260 ° C solder bath for 10 seconds. After repeating this operation six times, the appearance of the flexible printed circuit board was evaluated according to the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇:外観に剥離や膨れがなぐはんだの潜りがない。  〇: There is no dive of solder that peels or swells in appearance.
X:剥離、膨れ、又ははんだの潜りがある。  X: Peeling, swelling, or solder dive.
[0257] <耐プレツシャタッカーテスト(PCT) > [0257] <Preslasher Tucker Test (PCT)>
各フレキシブル配線プリント基板について 121°C、 2気圧の水蒸気中で 96時間放 置後、上記碁盤目テストを行い、下記基準で評価した。  Each of the flexible printed circuit boards was left in steam at 121 ° C. and 2 atm for 96 hours, and then subjected to the above grid test, and evaluated according to the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇: 100箇所中 90箇所以上が剥離しない。  〇: 90 or more out of 100 locations do not peel.
△: 100箇所中 50箇所以上 90箇所未満が剥離しない。  Δ: 50 to less than 90 out of 100 locations did not peel.
X: 100箇所中 0箇所以上 50箇所未満が剥離しない。  X: 0 to less than 50 out of 100 locations do not peel.
[0258] <耐折性〉 [0258] <Folding resistance>
ポリイミド基板 (厚み = 25 m)上の圧延銅箔 (厚み = 35 m)力 なる無接着 2層 フレキシブル基板上に、実施例 1〜 13及び比較例 1〜4の各感光性組成物をバーコ ート法又はスクリーン印刷法でコートし、感光層を形成した。次いで、 500mjZcm2の 露光後、 160°Cにて 2時間加熱して硬化皮膜 (厚み = 35 μ m)を形成し、 VCM FL EX TEESTER(IPC— FC241C, JIS— C5016)を用いて、温度 =室温、周波数 = 25Hz、ストローク = 25mm、曲率半径 = 2mmの条件で、折り曲げを行って銅にク ラックが入るまでの屈曲寿命(回)で評価した。 Rolled copper foil (thickness = 35 m) on a polyimide substrate (thickness = 25 m). A photosensitive layer was formed by coating by a printing method or a screen printing method. Then, after exposure of 500 mjZcm 2 , it was heated at 160 ° C for 2 hours to form a cured film (thickness = 35 μm). Bend at room temperature, frequency = 25Hz, stroke = 25mm, radius of curvature = 2mm It was evaluated based on the flex life (times) until the rack was inserted.
[0259] [表 3]  [0259] [Table 3]
Figure imgf000083_0001
Figure imgf000083_0001
[0260] [表 4]  [0260] [Table 4]
Figure imgf000083_0002
Figure imgf000083_0002
産業上の利用可能性  Industrial applicability
本発明の感光性組成物は、現像性、はんだ耐熱性、耐折性、及びプレッシャータツ カー耐性に優れ、硬化皮膜の可撓性が大幅に向上し、可動部を有する携帯電話、 各種車載機器などのフレキシブルプリント配線基板の作製に好適に用いられる。  The photosensitive composition of the present invention is excellent in developability, solder heat resistance, folding resistance, and pressure tacker resistance, has greatly improved flexibility of a cured film, and has a movable part, such as a mobile phone and various in-vehicle devices. It is suitably used for the production of flexible printed wiring boards such as.

Claims

請求の範囲 The scope of the claims
[1] (A)カルボキシル基を有するポリウレタン榭脂、(B)重合性化合物、(C)光重合開始 剤、及び (D)熱架橋剤を少なくとも含むことを特徴とする感光性組成物。  [1] A photosensitive composition comprising at least (A) a polyurethane resin having a carboxyl group, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent.
[2] (A)カルボキシル基を有するポリウレタン榭脂が、下記構造式 (I)で表されるジィソシ ァネート化合物と、下記構造式 (Π)及び下記構造式 (ΠΙ)の 、ずれかで表されるジォ ール化合物とを反応させてなる請求の範囲第 1項に記載の感光性組成物。  [2] (A) Polyurethane resin having a carboxyl group is represented by a diisocyanate compound represented by the following structural formula (I) and a dispersant represented by the following structural formulas (ΠΙ) and (ΠΙ). 2. The photosensitive composition according to claim 1, wherein the photosensitive composition is reacted with a diol compound.
[化 1]  [Chemical 1]
0CN— R1— NC0 構造式 ( I ) 0CN— R 1 — NC0 Structural formula (I)
構造式 ( Ϊ Ϊ ) Structural formula (Ϊ Ϊ)
構造式 ( i i i )
Figure imgf000084_0001
Structural formula (iii)
Figure imgf000084_0001
COOH  COOH
ただし、前記構造式 (i)〜(m)において、 R1は、二価炭化水素基を表す。 R2は、水 素原子、又は一価炭化水素基を表す。 R3〜R5は、互いに同一であってもよいし、異 なっていてもよく、二価炭化水素基を表す。 Arは、三価芳香族炭化水素基を表す。 !^〜 及び Arは、更に置換基により置換されていてもよぐ R2、 R3、 R4及び R5は隣 接する 2つ又は 3つが連結して環を形成してもよ 、。 However, in the structural formulas (i) to (m), R 1 represents a divalent hydrocarbon group. R 2 represents a hydrogen atom or a monovalent hydrocarbon group. R 3 to R 5 may be the same or different, and represent a divalent hydrocarbon group. Ar represents a trivalent aromatic hydrocarbon group. ! ^ To and Ar may be further substituted by a substituent. R 2 , R 3 , R 4 and R 5 may form a ring by connecting two or three adjacent groups.
[3] (A)カルボキシル基を有するポリウレタン榭脂の酸価力 80〜300mgKOHZgであ る請求の範囲第 1項力 第 2項のいずれかに記載の感光性組成物。  [3] The photosensitive composition according to any one of [1] to [2], wherein (A) the acid value of the polyurethane resin having a carboxyl group is from 80 to 300 mgKOHZg.
[4] (D)熱架橋剤が、エポキシ榭脂化合物、ォキセタンィ匕合物、ポリイソシァネートイ匕合 物、ポリイソシァネートイ匕合物にブロック剤を反応させて得られる化合物及びメラミン 誘導体力 選択される少なくとも 1種である請求の範囲第 1項力 第 3項のいずれか に記載の感光性組成物。 [4] (D) a compound obtained by reacting a blocking agent with an epoxy resin compound, an oxetane conjugate, a polyisocyanate conjugate, a compound obtained by reacting a blocking agent with the epoxy resin compound, melamine and melamine Derivative power Claims that are at least one selected from the group 4. The photosensitive composition according to item 1.
[5] フレキシブル配線プリント基板の製造に用いられる請求の範囲第 1項力 第 4項のい ずれかに記載の感光性組成物。  [5] The photosensitive composition according to any one of [1] to [4], which is used for manufacturing a flexible printed circuit board.
[6] 請求の範囲第 1項力 第 5項のいずれかに記載の感光性組成物を、基材の表面に 塗布し、乾燥して感光層を形成した後、露光し、現像することを特徴とするパターン 形成方法。 [6] Claims 1. The photosensitive composition according to any one of claims 5 is applied to the surface of a substrate, dried to form a photosensitive layer, and then exposed and developed. Characteristic pattern formation method.
[7] 感光層が、光照射手段からの光を受光し出射する描素部を n個有する光変調手段に より、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪み による収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズァレ ィを通した光で、露光される請求の範囲第 6項に記載のパターン形成方法。  [7] After the photosensitive layer modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means, 7. The pattern forming method according to claim 6, wherein the pattern is exposed with light passing through a microlens array in which microlenses having an aspheric surface capable of correcting aberration due to surface distortion are arranged.
[8] 感光層が、光照射手段からの光を受光し出射する描素部を n個有する光変調手段に より、前記光照射手段力 の光を変調させた後に、前記描素部の周辺部力 の光を 入射させな ヽレンズ開口形状を有するマイクロレンズを配列したマイクロレンズアレイ を通過させた光で露光される請求の範囲第 6項に記載のパターン形成方法。  [8] After the photosensitive layer modulates the light of the light irradiating means by light modulating means having n picture element parts for receiving and emitting light from the light irradiating means, 7. The pattern forming method according to claim 6, wherein the pattern is formed by exposing to light that has passed through a microlens array in which microlenses having a lens opening shape are arranged without allowing light of a specific force to enter.
[9] マイクロレンズが、描素部における出射面の歪みによる収差を補正可能な非球面を 有する請求の範囲第 8項に記載のパターン形成方法。  9. The pattern forming method according to claim 8, wherein the microlens has an aspheric surface capable of correcting an aberration due to distortion of an emission surface in the picture element portion.
[10] 非球面が、トーリック面である請求の範囲第 7項力 第 9項のいずれかに記載のバタ ーン形成方法。  [10] The pattern forming method according to any one of claims 7 to 9, wherein the aspheric surface is a toric surface.
[11] レンズ開口形状が、円形である請求の範囲第 8項に記載のパターン形成方法。  [11] The pattern forming method according to claim 8, wherein the lens aperture shape is circular.
[12] レンズ開口形状が、そのレンズ面に遮光部を設けることにより規定される請求の範囲 第 8項力 第 11項のいずれかに記載のパターン形成方法。 [12] The pattern forming method according to any one of [8] to [11], wherein the shape of the lens opening is defined by providing a light shielding portion on the lens surface.
[13] 光変調手段が、 n個の描素部の中から連続的に配置された任意の n個未満の前記描 素部をパターン情報に応じて制御可能である請求の範囲第 7項力も第 12項のいず れかに記載のパターン形成方法。 [13] The light modulating means can control, according to the pattern information, any less than n of the picture elements arranged continuously out of the n picture elements. 13. The pattern forming method according to any one of paragraphs 12.
[14] 光変調手段が、空間光変調素子である請求の範囲第 7項力も第 13項のいずれかに 記載のパターン形成方法。 14. The pattern forming method according to claim 7, wherein the light modulating means is a spatial light modulating element.
[15] 空間光変調素子が、デジタル ·マイクロミラー ·デバイス (DMD)である請求の範囲第[15] The spatial light modulator is a digital micromirror device (DMD).
14項に記載のパターン形成方法。 Item 15. The pattern forming method according to Item 14.
[16] 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそ れぞれ照射されたレーザビーム^^光して前記マルチモード光ファイバに結合させ る集合光学系とを備える請求の範囲第 7項力も第 15項のいずれかに記載のパターン 形成方法。 [16] A light irradiating means includes a plurality of lasers, a multi-mode optical fiber, and a collective optical system that emits laser beams emitted from the plurality of lasers and couples the light to the multi-mode optical fiber. The pattern forming method according to any one of claims 15 to 15, further comprising:
[17] レーザ光の波長が 395〜415nmである請求の範囲第 16項に記載のパターン形成 方法。  [17] The pattern forming method according to claim 16, wherein the wavelength of the laser beam is 395 to 415 nm.
[18] 請求の範囲第 6項力も第 17項のいずれかに記載のパターン形成方法により形成さ れることを特徴とする永久パターン。  [18] A permanent pattern, wherein the force is also formed by the pattern forming method according to any one of [17] to [17].
PCT/JP2005/010609 2004-06-15 2005-06-09 Photosensitive composition, method for forming pattern, and permanent pattern WO2005124462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514715A JPWO2005124462A1 (en) 2004-06-15 2005-06-09 Photosensitive composition, pattern forming method and permanent pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-177185 2004-06-15
JP2004177185 2004-06-15

Publications (1)

Publication Number Publication Date
WO2005124462A1 true WO2005124462A1 (en) 2005-12-29

Family

ID=35509861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010609 WO2005124462A1 (en) 2004-06-15 2005-06-09 Photosensitive composition, method for forming pattern, and permanent pattern

Country Status (5)

Country Link
JP (1) JPWO2005124462A1 (en)
KR (1) KR20070062965A (en)
CN (1) CN101116035A (en)
TW (1) TW200612199A (en)
WO (1) WO2005124462A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215392A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Photosensitive composition, as well as photosensitive laminate, method for forming permanent pattern, and printed board

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099851B2 (en) * 2009-04-27 2012-12-19 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
CN103631097B (en) * 2013-12-11 2016-06-08 中国科学院光电技术研究所 The 3D printer of a kind of photoetching formula
JP6320425B2 (en) * 2013-12-26 2018-05-09 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate
JP6624808B2 (en) 2014-07-25 2019-12-25 キヤノン株式会社 Photocurable composition, method for producing cured product pattern using the same, method for producing optical component, method for producing circuit board
JP6324363B2 (en) 2014-12-19 2018-05-16 キヤノン株式会社 Photocurable composition for imprint, method for producing film using the same, method for producing optical component, method for producing circuit board, method for producing electronic component
CN105068384B (en) * 2015-08-12 2017-08-15 杭州思看科技有限公司 A kind of laser projector time for exposure control method of hand-held laser 3 d scanner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287946A (en) * 1987-05-21 1988-11-25 Fuji Photo Film Co Ltd Photosensitive composition
JPH02223952A (en) * 1988-12-06 1990-09-06 Hoechst Ag Radiation polymerizing mixture and copying material manufactured therefrom
JP2000131836A (en) * 1998-10-28 2000-05-12 Nicca Chemical Co Ltd Photosensitive resin composition and soldering photoresist ink composition for circuit board
JP2001500628A (en) * 1996-02-28 2001-01-16 ケニス シー ジョンソン Microlens scanner for microlithography and wide field confocal microscope
JP2002338652A (en) * 2001-05-17 2002-11-27 Nippon Kayaku Co Ltd Aqueous alkaline solution-soluble urethane forming epoxycarboxylate compound, photosensitive resin composition using the same and its hardened material
JP2003192760A (en) * 2001-12-25 2003-07-09 Showa Highpolymer Co Ltd Photosensitive resin and photosensitive resist ink composition
JP2004006440A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Laser apparatus, exposure head, and exposure device
JP2004062155A (en) * 2002-06-07 2004-02-26 Fuji Photo Film Co Ltd Exposure head and exposure device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287946A (en) * 1987-05-21 1988-11-25 Fuji Photo Film Co Ltd Photosensitive composition
JPH02223952A (en) * 1988-12-06 1990-09-06 Hoechst Ag Radiation polymerizing mixture and copying material manufactured therefrom
JP2001500628A (en) * 1996-02-28 2001-01-16 ケニス シー ジョンソン Microlens scanner for microlithography and wide field confocal microscope
JP2000131836A (en) * 1998-10-28 2000-05-12 Nicca Chemical Co Ltd Photosensitive resin composition and soldering photoresist ink composition for circuit board
JP2002338652A (en) * 2001-05-17 2002-11-27 Nippon Kayaku Co Ltd Aqueous alkaline solution-soluble urethane forming epoxycarboxylate compound, photosensitive resin composition using the same and its hardened material
JP2003192760A (en) * 2001-12-25 2003-07-09 Showa Highpolymer Co Ltd Photosensitive resin and photosensitive resist ink composition
JP2004006440A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Laser apparatus, exposure head, and exposure device
JP2004062155A (en) * 2002-06-07 2004-02-26 Fuji Photo Film Co Ltd Exposure head and exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215392A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Photosensitive composition, as well as photosensitive laminate, method for forming permanent pattern, and printed board

Also Published As

Publication number Publication date
TW200612199A (en) 2006-04-16
CN101116035A (en) 2008-01-30
JPWO2005124462A1 (en) 2008-04-17
KR20070062965A (en) 2007-06-18

Similar Documents

Publication Publication Date Title
KR101411346B1 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and method of pattern formation
JP2007016184A (en) Elastomer, photosensitive composition, photosensitive film, and method for forming permanent pattern
WO2005116775A1 (en) Pattern forming method, color filter manufacturing method, color filter, and liquid crystal display
WO2005124462A1 (en) Photosensitive composition, method for forming pattern, and permanent pattern
JP2007199205A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and pattern
WO2006068048A1 (en) Material for pattern formation, apparatus for pattern formation, and method for pattern formation
JP2006243543A (en) Method for forming permanent pattern
JP2007025275A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming same
JP2007133333A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JP2006235101A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JP2007023254A (en) Curing promoter, thermosetting resin composition, photosensitive composition and photosensitive film, and permanent pattern and method for forming the same
WO2006095494A1 (en) Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming same
JP4546368B2 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2007106886A (en) Curing accelerator, thermosetting resin composition, photosensitive composition, photosensitive film, permanent pattern and method for forming it
JP2005311305A (en) Permanent pattern forming method
JP2007133108A (en) Photosensitive solder resist composition and film, and permanent pattern and method of forming same
JP2006065000A (en) Photosensitive composition for sandblast resist, sandblast resist film using the same, and sandblast resist pattern forming method
JP2006243552A (en) Photosensitive composition, photosensitive film, and permanent pattern and method for forming the same
JP2007093793A (en) Photosensitive film, permanent pattern forming method and pattern
JP2007025176A (en) Pattern forming material, pattern forming apparatus, and method for forming permanent pattern
JP2007041240A (en) Pattern forming material, pattern forming method, and pattern
JP4468087B2 (en) Photosensitive composition for solder resist, photosensitive film, permanent pattern and method for forming the same
WO2006100817A1 (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2006160854A (en) Styrene derivative, polymer, its production method, pattern forming material, permanent pattern, and its production method
JP2006084873A (en) Photosensitive composition, photosensitive film, permanent pattern, and forming method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000325

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580027502.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006514715

Country of ref document: JP

122 Ep: pct application non-entry in european phase