TW200525740A - Scalable paired stack-gate flash cell structure and its contactless nor-type flash memory array - Google Patents

Scalable paired stack-gate flash cell structure and its contactless nor-type flash memory array Download PDF

Info

Publication number
TW200525740A
TW200525740A TW93101475A TW93101475A TW200525740A TW 200525740 A TW200525740 A TW 200525740A TW 93101475 A TW93101475 A TW 93101475A TW 93101475 A TW93101475 A TW 93101475A TW 200525740 A TW200525740 A TW 200525740A
Authority
TW
Taiwan
Prior art keywords
layer
gate
regions
region
side wall
Prior art date
Application number
TW93101475A
Other languages
Chinese (zh)
Other versions
TWI232580B (en
Inventor
Ching-Yuan Wu
Original Assignee
Silicon Based Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Based Tech Corp filed Critical Silicon Based Tech Corp
Priority to TW93101475A priority Critical patent/TWI232580B/en
Application granted granted Critical
Publication of TWI232580B publication Critical patent/TWI232580B/en
Publication of TW200525740A publication Critical patent/TW200525740A/en

Links

Abstract

A scalable paired stack-gate flash cell structure comprises a virtual-gate region being formed between two common-source regions, wherein the virtual-gate region comprises a pair of scalable stack-gate regions and a scalable common-drain region being formed between the pair of scalable stack-gate regions. Each of the two common-source regions comprises a common-source diffusion region and the scalable common-drain region comprises a common-drain diffusion region. Each of the pair of scalable stack-gate regions comprises a buried implant layer being formed in a surface portion of the semiconductor substrate. A deeper diffusion region is formed in the scalable common-drain region or each of the two common-source regions for forming a double-diffused channel in each of the pair of scalable stack-gate regions. The scalable paired stack-gate flash cell structure is used to implement a contactless NOR-type flash memory array.

Description

200525740 五、發明說明α) 【發明所屬之技術領域】 >本發明與一種疊堆閘(stack—gate)快閃細胞元及其快 閃記憶陣列有關,特別是與一種可微縮化偶對(paired)疊 隹間夬門、、、田胞元結構及其無接點非或型—快閃記 憶陣列有關。 【先前技術】 一種疊堆閘 用技術 被用來 NAND) 或型快 用通道 >穿透 區或一 該疊堆 子穿透 及擦洗 圖 閘快閃 而下至 •一個 快閃記憶細 小線寬(m i 1 一種非或型以作 憶陣列以作 列中的該疊 入(CHEI)法 胞元具有一個閘長度藉甶所使 mum feature size)來定義常 為石馬儲存的應用及一種非及( 為檔案儲存的應用,其中該非 堆閘快閃記憶細胞元通常係利 來寫入而利用富勒一諸得漢(FN 漂浮閘層穿透至一個共源擴政 ;該非及型快閃記憶陣列中的 藉由富勒-諾得漢第遂,f電 及一個半導體基板之間來寫入 f示一個非或型快閃記憶陣列之中的,個疊堆 、:胞元之一個簡要剖面圖,其中一個閘區由上 =一個控制閘導電層1〇4、一/間介電層103 冰浮閘層102及一個穿透介電層1〇1係形成於一 的一個最 組成 型快 閃記 熱電 法將 個半 閘快 於一 閃記 憶陣 子注 電子 導體 閃記 個隔 由一個隔離 基板來擦洗 憶細胞元係 離漂浮閘層 記憶 少包 隔離200525740 V. Description of the invention α) [Technical field to which the invention belongs] > The present invention relates to a stack-gate flash cell and a flash memory array thereof, and particularly to a miniaturizable pair ( The paired) interstellar cardia, cell, and field cell structure and their non-contact non-or type-flash memory array are related. [Previous technology] A stack gate technology is used for NAND) or a type of fast-pass channel> a penetrating area or a stack that penetrates and scrubs the gate and flashes down to a flash memory with a small line width (Mi 1 a non-or type is used as a memory array to form a column of the CHEI method cell has a gate length by the mum feature size) to define the application that is often stored as a stone horse and a non- (For file storage applications, in which the non-stack gate flash memory cell is usually written using the Fuller-Zhude Han (FN floating gate layer to penetrate a common source expansion; the non-type flash memory A full cross-section of a stack of cells in a non-OR flash memory array is written in the array by writing Fuller-Nordhandis, f electricity and a semiconductor substrate. In the figure, one of the gate regions is composed of a control gate conductive layer 104, a dielectric layer 103, an ice floating gate layer 102, and a penetrating dielectric layer 101. Flash memory thermoelectric method makes a half gate faster than a flash memory. A substrate separated by the separator to a scrub ternary memory cell from the floating gate layer packet memory less isolation

200525740 五、發明說明(2) 個P-型半導體基板1 〇 〇之上;該第二導電型的一個雙擴散 (double-diffused)區106a/105a係形成於一個共源區之内 的該半導體基板1 〇 〇的一個表面部份,以作為具有一個高 推雜n+擴散區l〇6a形成於一個淡摻雜n_擴散區i〇5a之内 的一個共源擴散區1 0 6 a / 1 0 5 a ;以及一個高摻雜n +擴散區 l〇6b形成於一個共汲區之該半導體基板1〇〇的一個表面部 份’以作為一個共汲擴散區1 〇 6 b。這裡值得注意的是,該 淡摻雜η -擴散區1 〇 5 a如圖一 A所示係用來消除擦洗時所產 生的帶對帶(band to band)穿透效應。對於—個寫入操作 而言’ 一個相對高的正電壓(1 〇伏〜1 2伏)係加於該控制閘 導,層1 0 4,一個中度高的正電壓(6伏〜8伏)係加於該共汲 擴散區1 06b,而該共源擴散區1 〇6a/1 05a係接地。此時熱 電子將經由一個高汲電場來產生並且注入到該隔離漂浮閘 層1 0 2之内。對於一個擦洗操作而言,儲存於該隔離漂浮 閘層1 0 2之内的電子係藉由外加一個相對高的負電壓(—i 0 伏^ - 1 2伏)於該控制閘導電層1 〇 4之上而一個中度高的正 電壓(5伏)加於該共源擴散區丨〇6a/1 〇5a之上,並藉由該隔 f漂浮閘層102穿透位於該共源擴散區106a/105a之延伸 4份的該穿透介電層1 〇 1來擦洗。這裡可以清楚地看到, 通^熱電子注入法的寫入功率較大且寫入效率較低。另外 卷當疊堆閘長度縮小時,抵穿效應將成為主要的關切點; *接面深度縮小時,作為擦洗之該共源擴散區i 0 6a/丨0 5a 的延伸部份亦將縮小。 圖一 B顯示圖一 A中的該淡摻雜n -擴散區1 〇 53係加予去200525740 V. Description of the invention (2) Above P-type semiconductor substrate 1000; a double-diffused region 106a / 105a of the second conductivity type is formed by the semiconductor within a common source region A surface portion of the substrate 100 is a common source diffusion region 1 0 6 a / 1 having a highly doped n + diffusion region 106a formed within a lightly doped n_ diffusion region 105a. 0 5 a; and a highly doped n + diffusion region 106 b formed on a surface portion of the semiconductor substrate 100 in a common-drain region as a common-drain diffusion region 106 b. It is worth noting here that the lightly doped n-diffusion region 105a is used to eliminate the band-to-band penetration effect generated during scrubbing as shown in Fig. 1A. For a write operation, a relatively high positive voltage (10 volts to 12 volts) is applied to the control gate, layer 104, a moderately high positive voltage (6 volts to 8 volts) ) Is added to the common-diffusion region 106b, and the common-source diffusion region 106a / 10a is grounded. Hot electrons will be generated via a high-drain electric field and injected into the isolated floating gate layer 102. For a scrubbing operation, the electrons stored in the isolation floating gate layer 102 are applied with a relatively high negative voltage (-i 0 volt ^-12 volt) to the control gate conductive layer 1 〇 4 and a moderately high positive voltage (5 volts) is applied to the common source diffusion region 〇06a / 1 05a, and penetrates the common source diffusion region through the f floating gate layer 102 106a / 105a is extended by 4 parts of the penetrating dielectric layer 101 to be scrubbed. It can be clearly seen here that the write power of the hot electron injection method is large and the write efficiency is low. In addition, when the stack gate is reduced in length, the penetration effect will become the main concern; * When the junction depth is reduced, the extension of the common source diffusion area i 0 6a / 丨 0 5a will also be reduced. FIG. 1B shows the lightly doped n-diffusion region 105 in FIG. 1A.

200525740 五、發明說明(3) 除。該疊堆間快閃記憶細胞元 儲,電子藉由富勒. 體基板1 0 0 。此種簡單的結構 陣列之内且可以將電子由該半 閘層102内來寫入。雖然該非 堆閘快閃記憶細胞元的寫入功 之内的該疊堆閘快閃記憶細胞 其讀出速度較慢。 因此,本發明的一個主要 對疊堆閘快閃記憶細胞元結構 閃記憶陣列,其中該可微縮化 的每一個至少包含一種第一導 通道形成於一種第二導電型的 二導電型的一個埋層離子佈植 長度所產生的抵穿效應。 本發明的另一個目的係提 閘快閃細胞元結構具有該第二 與該第二導電型的一個高摻雜 一型無接點非或型快閃記憶陣 本發明的一個進一步目的 叠堆閘快閃細胞元結構具有該 植層與該第二導電塑的一個高 種第二型無接點非或塑快閃記 本發明的一個額外目的係 的擦洗操作係將位於該漂浮 •諾得漢穿透法擦洗至該半導 係常用於該非及型快閃記憶 導體基板1 0 0穿透至該漂浮 及型快閃記憶陣列中的該疊 率較小,但一個串(s t r i n g) 元係以串聯的方式來連接, 目的係提供一種可微縮化偶 以形成一個無接點非或型快 偶對疊堆閘快閃細胞元結構 電型的一個可微縮化雙擴散 一個共源或汲擴散區及該第 層之間來消除一個微縮化閘 供一種第一型可微縮化疊堆 導電型的該埋層離子佈植層 沒擴散區連接來形成一種第 列。 係提供一種第二型可微縮化 第二導電型的該埋層離子佈 換雜源擴散區連接來形成一 憶陣列。 提供一種可微縮化偶對疊堆200525740 V. Description of Invention (3) Except. The stack of flash memory cells stores electrons through the Fuller body substrate 100. This simple structure can write electrons into the half gate layer 102 within the array. Although the stack gate flash memory cell has a slow reading speed within the writing function of the non-stack gate flash memory cell. Therefore, a flash memory array of stacked flash memory cells in the present invention, wherein each of the miniaturizable ones includes at least a first conductive channel formed in a buried one of a second conductive type and a two conductive type. Penetration effect caused by layer ion implantation length. Another object of the present invention is a gate-lifting flash cell structure having a second and the second conductivity type, a highly doped type, non-contact non-or type flash memory array, and a further object of the present invention. The flash cell structure has a high-type second contactless non-or plastic flash with the plant layer and the second conductive plastic. An additional purpose of the present invention is that the scrubbing operation system will be located in the float. Scrubbing until the semiconductor is commonly used in the non-flash memory conductor substrate 100 penetrates into the floating flash memory array, the stacking rate is small, but a string element system is connected in series The purpose is to provide a micronizable couple to form a contactless non-or type dual-pair stacked gate flash cell structure of the flash cell, a miniaturizable double diffusion, a common source or sink diffusion region, and The first layer is formed by eliminating a micronization gate between the first layer and a buried type ion implantation layer of a first type of micronizable stack conductivity type to form a first column. A second type of miniaturizable second conductivity type is provided to connect the buried ion diffusion heterodiffusion regions to form a memory array. Provides a miniaturizable dual pair stack

200525740 五、發明說明(4) 閘快閃細胞元結構具有一個單位細胞元尺寸小於4F 2。 本發明的其他特色及優點將於後續描述中更加顯現。 【發明内容】 本發明揭示一種可微縮化偶對疊堆閘快閃細胞元結構 及其無接點非或型快閃記憶陣列。該可微縮化疊堆閘快閃 細胞元結構形成於一種第一導電型的一個半導體基板之上 至少包含一個虛擬閘區(VGR)形成於兩個共源區(CSR)之間 ,其中該半導體基板至少包含一個主動區(AA)形成於兩個 平行淺凹槽隔離區(STI)之間。該虛擬閘區(VGR)至少包 含一對可微縮化疊堆閘區及一個可微縮化共汲區(SCDR)形 成於該對可微縮化疊堆閘區之間。該對可微縮化疊堆閘區 的每一個由上而下至少包含一個第二側邊牆介電墊層、一 個控制閘導電層、一個閘間介電層及一個積體化漂浮閘層 ,其中該積體化漂浮閘層至少包含一個主漂浮閘層形成於 該主動區(A A)之内的一個穿透介電層之上及兩個延伸漂浮 閘層形成於該主漂浮閘層的側邊牆之上且置於該兩個平行 淺凹槽隔離區之内的兩個回蝕第一突出場氧化物層之側邊 部份之上。該對可微縮化疊堆閘區的每一個進一步至少包 含一個雙擴散源或汲區具有該第二導電型的一個共源或汲 擴散區形成於該第一導電型的一個較深擴散區之内及該第 二導電型的一個埋層離子佈植層形成於該穿透介電層之下 的該半導體基板之一個表面部份,其中一個可微縮化雙擴200525740 V. Description of the invention (4) The gate flash cell structure has a unit cell size smaller than 4F 2. Other features and advantages of the present invention will be more apparent in the subsequent description. [Summary of the Invention] The present invention discloses a flash memory cell structure capable of miniaturizing a pair of stacked gates and a flash memory array having no contact non-or type. The miniaturizable stack gate flash cell structure is formed on a semiconductor substrate of a first conductivity type and includes at least one virtual gate region (VGR) formed between two common source regions (CSR), wherein the semiconductor The substrate includes at least one active region (AA) formed between two parallel shallow groove isolation regions (STI). The virtual gate region (VGR) includes at least a pair of micronizable stack gate regions and a micronizable common sink region (SCDR) formed between the pair of minimizable stack gate regions. Each of the pair of miniaturizable stack gate areas includes at least a second side wall dielectric cushion layer, a control gate conductive layer, an inter-gate dielectric layer and an integrated floating gate layer from top to bottom. The integrated floating gate layer includes at least one main floating gate layer formed on a penetrating dielectric layer within the active area (AA) and two extended floating gate layers formed on the side of the main floating gate layer. Above the side wall and above the side portions of the two etch-back first protruding field oxide layers within the two parallel shallow groove isolation regions. Each of the pair of miniaturizable stack gate regions further includes at least one dual diffusion source or drain region having a common source or drain diffusion region of the second conductivity type formed in a deeper diffusion region of the first conductivity type. A buried ion implantation layer inside and of the second conductivity type is formed on a surface portion of the semiconductor substrate under the penetrating dielectric layer, and one of them can be miniaturized and double-expanded.

第10頁 200525740 五、發明說明(5) 散通道形成於該共源或汲擴散區及該埋層離子佈植層之間 係位於該半導體基板的一個表面部份。該兩個共源區(CSR )的每一個至少包含一個雙擴散區形成於該主動區(A A )之 内的該半導體基板之一個表面部份、一個第一側邊牆介電 墊層形成於該虛擬閘區(VGR)的每一個側邊牆之上且置於 由該主動區(AA)之内的該穿透介電層及該兩個平行淺凹槽 隔離區(STI)之内的該兩個回#第二突出場氧化物層所組 成的一個平坦表面之上、及一個高摻雜源擴散區形成於該 第一側邊牆介電墊層之外的該雙擴散區之内;該可微縮化 共汲區(SCDR)至少包含一對第三側邊牆介電墊層形成於該 對可微縮化疊堆閘區(SGR)的側邊牆之上且置於該平坦表 面之上及該第二導電型的一個高掺雜汲擴散區形成於該對 第三側邊牆介電墊層之間的該主動區(A A)之内的該半導體 基板之一個表面部份,其中該高掺雜汲擴散區係與該埋層 離子佈植層連接而該高摻雜源擴散區係形成於該雙擴散區 之内來組成一種第一型可微縮化疊堆閘結構。該兩個共源 區(CSR)的每一個至少包含一個第一側邊牆介電塾層形成 於該虛擬閘區(VGR )的每一個側邊牆之上且置於該平坦表 面之上、及該第二導電型的一個高掺雜源擴散區形成於該 第一側邊牆介電墊層之外的該主動區(A A)之該半導體基板 的一個表面部份;該可微縮化共汲區(SCDR)至少包含一個 雙擴散區形成於該對可微縮化疊堆閘區之間的該半導體基 板之表面部份、一對第三側邊牆介電墊層形成於該對可微 縮化疊堆閘區(SGR)的側邊牆之上且置於該平坦表面之上Page 10 200525740 V. Description of the invention (5) A diffuse channel is formed between the common source or drain diffusion region and the buried ion implantation layer and is located on a surface portion of the semiconductor substrate. Each of the two common source regions (CSR) includes at least one double diffusion region formed in the active region (AA), a surface portion of the semiconductor substrate, and a first side wall dielectric pad layer formed in Above each side wall of the virtual gate region (VGR) and placed inside the penetrating dielectric layer and the two parallel shallow groove isolation regions (STI) within the active region (AA) The two back #second protruding field oxide layers are formed on a flat surface, and a highly doped source diffusion region is formed in the double diffusion region outside the first side wall dielectric pad layer. ; The miniaturizable common drain region (SCDR) includes at least a pair of third side wall dielectric pads formed on the side walls of the pair of miniaturizable stack gate regions (SGR) and placed on the flat surface A highly doped drain diffusion region above and of the second conductivity type is formed on a surface portion of the semiconductor substrate within the active region (AA) between the pair of third side wall dielectric pads, The highly doped drain diffusion region is connected to the buried ion implantation layer, and the highly doped source diffusion region is formed in the double diffusion. To constitute the zone type may be one first gate stack structure miniaturization. Each of the two common source regions (CSR) includes at least one first side wall dielectric layer formed on each side wall of the virtual gate region (VGR) and placed on the flat surface, And a highly doped source diffusion region of the second conductivity type is formed on a surface portion of the semiconductor substrate of the active region (AA) outside the first side wall dielectric pad; the micronizable common The drain region (SCDR) includes at least one double diffusion region formed on the surface portion of the semiconductor substrate between the pair of micronizable stack gate regions, and a pair of third side wall dielectric pads formed on the pair of micronizable On the side wall of the stack gate area (SGR) and on the flat surface

200525740 五、發明說明(6) 、及該第二導電型的一個高摻雜汲擴散區形成於該對第三 側邊牆介電墊層之間的該雙擴散區之内,其中該高摻雜源 擴散區係與該埋層離子佈植層連接而該高摻雜汲擴散區係 形成於該雙擴散區之内來組成一種第二型可微縮化疊堆閘 快閃細胞元結構。該第一 /第二型可微縮化疊堆閘結構更 進一步包含一個共汲導電島形成於該對第三側邊牆介電墊 層之間的該高摻雜汲擴散區之上而一個共源導電管線形成 於該對第一側邊牆介電墊層之外且置於由該主動區(A A )之 内的該高摻雜源擴散區及該兩個平行淺凹槽隔離區之内的 兩個回#第三突出場氧化物層所組成的一個平坦床之上、 及一個平面化氧化物層形成於該第一側邊牆介電墊層之外 且置於該共源導電管線之上,其中一個金屬位元線連同該 共汲導電島係對準於該主動區(A A)之上來同時成形。 本發明之一種無接點非或型快閃記憶陣列至少包含複 數可微縮化偶對疊堆閘快閃細胞元結構形成於該第一導電 型的一個半導體基板之上,其中複數主動區(AA)及複數平 行淺凹槽隔離區(ST I )係交變地形成於該半導體基板之上 。該複數可微縮化偶對疊堆閘快閃細胞元結構的每一個形 成於一對共源區之間至少包含一對可微縮化疊堆閘區(SGR )及一個可微縮化共汲區(SCDR)形成於該對可微縮化疊堆 閘區(SGR)之間。複數共源導電管線係與該複數平行淺凹 槽隔離區(STI)互為垂直且該複數共源導電管線的每一個 係形成於一對第一側邊牆介電墊層之間且置於由該複數平 行淺凹槽隔離區(STI)的每一個之内的一個回蝕第三突出200525740 V. Description of the invention (6), and a highly doped drain diffusion region of the second conductivity type is formed in the double diffusion region between the pair of third sidewall spacers, wherein the highly doped diffusion region The heterogeneous diffusion region is connected to the buried ion implantation layer and the highly doped drain diffusion region is formed within the double diffusion region to form a second type of micronizable stack gate flash cell structure. The first / second type miniaturizable stack gate structure further includes a common-drain conductive island formed on the highly doped drain-diffusion region between the pair of third side wall dielectric pads and a common-drain conductive island. A source conductive pipeline is formed outside the pair of first side wall dielectric pads and placed within the highly doped source diffusion region and the two parallel shallow groove isolation regions within the active region (AA). The two back #three protruding field oxide layers are formed on a flat bed, and a planarized oxide layer is formed outside the first side wall dielectric cushion layer and placed on the common source conductive pipeline. Above, one of the metal bit lines and the common conductive island system are aligned on the active area (AA) to be simultaneously formed. A non-contact non-or-type flash memory array of the present invention includes at least a plurality of micronizable dual-pair stacked gate flash cell structures formed on a semiconductor substrate of the first conductivity type, wherein a plurality of active regions (AA ) And a plurality of parallel shallow groove isolation regions (ST I) are alternately formed on the semiconductor substrate. Each of the plurality of miniaturizable dual stack gate flash cell structures is formed between a pair of common source regions and includes at least a pair of miniaturizable stack gate regions (SGR) and a micronizable common drain region ( SCDR) is formed between the pair of miniaturizable stack gate regions (SGR). The plurality of common source conductive pipelines are perpendicular to the plurality of parallel shallow groove isolation regions (STIs) and each of the plurality of common source conductive pipelines is formed between a pair of first side wall dielectric pads and placed The third protrusion is etched back by one within each of the plurality of parallel shallow groove isolation regions (STI)

第12頁 式 方 施 實 rtPage 12 Formula Implementation RT

200525740 五、發明說明(7) 場氧化物層及該複數主動區(A A )的每一個之内的一個高摻 雜源擴散區所交變地組成的一個平坦床之上,而一個平面 化氧化物層係形成於該對第一側邊牆介電墊層之間且置於 該複數共源導電管線的每一個之上;複數共汲導電島係形 成於該對第三側邊牆介電墊層之間且置於該複數高摻雜汲 擴散區之上;以及複數金屬位元線連同該可微縮化共汲區 (SCDR)之内的該複數共汲導電島係對準於該複數主動區( AA^之上來同時成形。該對可微縮化疊堆閘區(SGR)的每一 2導i而下至少包含一個第二侧邊膽介電塾層、一個控制 ^該福f、一個閑間介電層、及複數積體化漂浮閘層,其 層^成於ΐ體化漂浮閘層的每一個至少包含一個主漂浮閘 層之上」复數主動區(ΑΑ)的每一個之内的一個穿透介電 之上且置$ = = 2漂洋閘層形成於該主漂浮閘層的側邊踏 第隔離區(STI)之内的兩… 化疊堆間快閃 二紝部份之上。複數第一型可微縮 馬對叠堆來形成複數第-型可微縮化 接點非或型快閃d;冓j j 土本發明之-種第-型無 元結構來組成本發明微':化偶對… 决閃5己憶陣列。 種第一型無接點非或型200525740 V. Description of the Invention (7) The field oxide layer and a highly doped source diffusion region within each of the plurality of active regions (AA) are alternately formed on a flat bed, and a planarized oxide An object layer is formed between the pair of first side wall dielectric pads and is placed on each of the plurality of common source conductive pipelines; a plurality of common drain islands are formed on the pair of third side wall dielectrics. Between the underlayers and placed on the plurality of highly doped drain diffusion regions; and a plurality of metal bit lines together with the plurality of common drain islands within the scalable common drain region (SCDR) are aligned with the plurality The active area (AA ^) is formed at the same time. Each of the two-dimension i of the pair of miniaturizable stack gate areas (SGR) includes at least one second side bile dielectric layer, a control ^ f, A leisure dielectric layer and a plurality of integrated floating gates, each layer of which is composed of at least one main floating gate layer including each of the floating gates, and each of the plurality of active regions (AA) An internal penetrating dielectric layer is placed on the side of the main floating gate layer. Within the second isolation zone (STI), the two flashes are stacked on top of each other. The first type can be scaled down to form a plurality of first-type scaleable contact non-or type flashes. d; 冓 jj The present invention is a kind of the first-type elementless structure to form the micro-invention of the present invention: a pair of pairs ... a 5 flash memory array of the first type.

第13頁Page 13

200525740 五、發明說明(8) 現明參見圖二A及圖二B,其中圖二A顯示本發明之一 種第一型可,縮化偶對疊堆閘快閃細胞元結構之一種第一 型可微縮化豐堆閘快閃細胞元結構;圖二B顯示本發明之 一種第二型可微縮化偶對疊堆閘快閃細胞元結構之一種第 一型可微縮化疊堆閘快閃細胞元結構的一個剖面圖。 ,/由圖f A所示,該第一型可微縮化疊堆閘快閃細胞元 係形成於該第一型導電型的一個半導體基板3 〇 〇之上至少 包含一個Γ微縮化疊堆閘區(SGR)、一個共源區(CSR)、 及一個/可微縮化共汲區(SCDR),其中該可微縮化疊堆閘區 (SGR)係,成於該共源區(CSR)及該可微縮化共汲區(SCDR )之間。該可微縮化疊堆閘區(SGR)由上而下至少包含一個 第二側邊牆介電墊層3 1 6 a、一個控制閘導電層3 0 9 b、一個 閘間介電層3 0 8b、及一個積體化漂浮閘層3〇3c/3〇6e ,其 中該積體化漂浮閘層3 0 3 c / 3 0 6 e至少包含一個主漂浮閘層 3 0 3c形成於一個主動區(AA)之内的一個穿透介電層3 02c之 上及兩個延伸漂浮閘層3 0 6 e (未圖示)形成於該主漂浮閘層 3 0 3 c的側邊牆之上且置於該兩個平行淺凹槽隔離區(ST j) 之内的兩個回蝕第一突出場氧化物層3〇5b(未圖示)的側邊 部份之上。該可微縮化疊堆閘區(S G R )更進一步至少包含 位於該共源區(CSR)之内的一個雙擴散源區31 lb/31 la之一 個延伸部份且具有一個第二導電型的一個共源擴散區3 1 1 b 形成於該第一導電型的一個較深擴散區3 1 1 a之内,及該第 二導電型的一個埋層離子佈植層3 〇丨c形成於該可微縮化疊 堆閘區(SGR)之内的該穿透介電層3〇2c之下的該半導體基200525740 V. Description of the invention (8) Refer to Fig. 2A and Fig. 2B, where Fig. 2A shows a first type of the present invention, a first type of shrinkable cascaded flash cell structure Microbial flash cell structure of Fengdui gate can be miniaturized; FIG. 2B shows a first type of miniaturizable stack gate flash cell according to the present invention. A sectional view of the metastructure. / As shown in FIG. F A, the first type of micronizable stack gate flash cell system is formed on a semiconductor substrate 300 of the first type of conductive pattern and includes at least one Γ micronized stack gate. Region (SGR), a common source region (CSR), and a / micronizable common sink region (SCDR). The minimizable stack gate region (SGR) is formed in the common source region (CSR) and Between the miniaturizable co-drain regions (SCDRs). The miniaturizable stack gate area (SGR) from top to bottom includes at least one second side wall dielectric cushion layer 3 1 6 a, a control gate conductive layer 3 0 9 b, and an inter-gate dielectric layer 3 0 8b, and an integrated floating gate layer 303c / 3〇6e, wherein the integrated floating gate layer 3 0 3c / 3 0 6e includes at least one main floating gate layer 3 0 3c formed in an active area (AA) one penetrating dielectric layer 3 02c and two extending floating gate layers 3 0 6 e (not shown) are formed on the side walls of the main floating gate layer 3 0 3 c and Two side portions of the two etched back first protruding field oxide layers 305b (not shown) disposed within the two parallel shallow groove isolation regions (STj) are disposed. The miniaturizable stack gate region (SGR) further includes at least an extension of a double diffusion source region 31 lb / 31 la within the common source region (CSR) and has a second conductivity type. A common source diffusion region 3 1 1 b is formed within a deeper diffusion region 3 1 1 a of the first conductivity type, and a buried ion implantation layer 3 〇c of the second conductivity type is formed on the Minimize the semiconductor substrate under the penetrating dielectric layer 30c within the stacked gate region (SGR)

第14頁 200525740 五、發明說明(9) 板3 0 0的一個表面部份。一個第一側邊牆介電墊層3 1 2 a形 成於該可微縮化疊堆閘區(SGR)的一個側邊牆之上且置於 由該主動區(AA)之内的該穿透介電層3 0 2c及位於該共源區 (CSR)之内的該兩個平行淺凹槽隔離區(STI )之兩個回蝕第 二突出場氧化物層(3 0 5 c )(未圖示)所組成的一個平坦表面 之上。該共源區(CSR)更進一步至少包含該第二導電型的 一個高摻雜源擴散區3 1 1 c形成於該共源擴散區3 1 1 b之内及 一個共源導電管線31 4b/3 13b形成於該第一側邊牆介電墊 層31 2a之外且置於由該主動區(AA)之内的一個高摻雜源擴 散區311c及該兩個平行淺凹槽隔離區(STI)之内的兩個回 蝕第三突出場氧化物層3 0 5d(未圖示)所組成的一個平坦床 之上及一個平面化氧化物層315 a形成於該第一側邊牆介電 墊層31 2a之外且置於該共源導電管線31 4b/31 3b之上。該 可微縮化共汲區(SCDR)至少包含一個第三側邊牆介電墊層 3 1 7a形成於該可微縮化疊堆閘區(SGR )的另一個側邊牆之 上且置於該平坦表面之上、該第二導電型之一個高摻雜汲 擴散區3 1 8a形成於該第三側邊牆介電墊層3 1 7a之外的該主 動區(AA)之内的該半導體基板300之一個表面部份及一個 共汲導電島3 1 9b形成於該第三側邊牆介電墊層3 1 7a之外且 置於該高摻雜汲擴散區31 8a之上。一個金屬位元線3 20a連 同該共汲導電島3 1 9 b係對準於該主動區(A A )之上來同時成 形。 該第一型可微縮化疊堆閘快閃細胞元可以利用三種方 法來寫入。第一種寫入方法係將一個正電壓3伏〜6伏加於Page 14 200525740 V. Description of the invention (9) A surface part of the plate 3 0 0. A first side wall dielectric cushion layer 3 1 2 a is formed on a side wall of the miniaturizable stack gate area (SGR) and placed in the penetration from the active area (AA) Dielectric layer 3 0 2c and two etch-back second protruding field oxide layers (3 0 5 c) of the two parallel shallow groove isolation regions (STI) located within the common source region (CSR) (not shown) (Illustrated) on a flat surface. The common source region (CSR) further includes at least a highly doped source diffusion region 3 1 1 c of the second conductivity type formed within the common source diffusion region 3 1 1 b and a common source conductive line 31 4b / 3 13b is a highly doped source diffusion region 311c and two parallel shallow groove isolation regions (a highly doped source diffusion region 311c) formed outside the first side wall dielectric pad 31 2a and placed within the active region (AA). STI) within a flat bed composed of two etch-back third protruding field oxide layers 3 0 5d (not shown) and a planarized oxide layer 315 a are formed on the first side wall The electric pad layer 31 2a is outside and placed on the common source conductive line 31 4b / 31 3b. The miniaturizable common drain region (SCDR) includes at least one third side wall dielectric cushion layer 3 1 7a formed on the other side wall of the miniaturizable stack gate region (SGR) and placed on the side wall. The semiconductor of the second conductivity type with a highly doped drain diffusion region 3 1 8a formed on the flat surface is formed within the active region (AA) outside the third side wall dielectric pad layer 3 1 7a A surface portion of the substrate 300 and a common-drain conductive island 3 1 9b are formed outside the third side wall dielectric pad layer 3 1 7a and disposed on the highly doped drain diffusion region 3 1 8a. A metal bit line 3 20a and the common drain conductive island 3 1 9 b are aligned on the active area (A A) to form simultaneously. This first type of miniaturizable stack gate flash cell can be written using three methods. The first writing method is to add a positive voltage of 3 volts to 6 volts to

第15頁 200525740 五、發明說明(ίο) 該控制閘導電層3 0 9b之上來恰好導通該雙擴散通道31 la, 該共汲導電島31 9b連同該位元線32 0a係加予一個正電壓 1伏〜3伏,而該共源導電管線3 1 4b及該半導體基板係接地 。熱電子藉由接近該雙擴散通道3 11 a與該埋層離子佈植層 3 0 1 c之間的接面之高橫向電場來產生,然後注入到該積體 化漂浮閘層3 0 3 c / 3 0 6 c之内。該寫入方法與傳統分閘式之 中間通道熱電子注入(MCHEI )法非常相似,其寫入電流較 小且寫入效率較高。第二種寫入方法係將加於該共源導電 管線314b/313b及該共汲導電島的外加電壓互調,熱電子 將由該雙擴散通道3 1 1 a及該共源擴散區3 1 1 b之間的接面之 高橫向電場來產生,然後注入於該積體化漂浮閘層3 0 3 c / 3 0 6e之内。該寫入方法與傳統的熱電子注入(CHEI)法非常 相似,但由於具有一個較短的通道長度,因而其寫入功率 較小而寫入效率較高。第三種寫入方法係將一個高的正電 壓1 0伏〜1 2伏加於該控制閘導電層3 〇 9 b之上,該共汲導電 島3 1 9b及該位元線3 2 0 a係接地,而該共源導電管線及該 半導體基板3 0 0係浮接(f 1 0 a t丨n g ),則該埋層離子佈植層 3 0 1 c之内的電子將藉由富勒—諾得漢(F n )穿透法穿透到該 積體化漂浮閘層3 0 3 c / 3 0 6 e之内,以獲得非常低的寫入電 流。由於本發明提供該共源擴散區3丨丨b具有一個較深的接 ,深度來提供一個較大的擦洗表面面積,因而該第一型可 微縮化疊堆閘快閃細胞元比傳統源邊擦洗方法更具效率。 另外’該第一型可微縮化疊堆閘快閃細胞元可以經由該埋 層離子佈植層3 0 1 c外加一個相對高的負電壓於該控制閘導Page 15 200525740 V. Description of the invention (ίο) The double-diffusion channel 31 la is turned on just above the conductive layer 3 0 9b of the control gate, and the conductive island 31 9b together with the bit line 32 0a is applied with a positive voltage. 1 volt to 3 volts, and the common source conductive line 3 1 4b and the semiconductor substrate are grounded. Hot electrons are generated by a high lateral electric field near the interface between the double diffusion channel 3 11 a and the buried ion implant layer 3 0 1 c, and then injected into the integrated floating gate layer 3 0 3 c / 3 0 6 c. This writing method is very similar to the traditional split-gate middle-channel hot electron injection (MCHEI) method, which has a smaller writing current and higher writing efficiency. The second writing method is to intermodulate the applied voltages applied to the common source conductive line 314b / 313b and the common drain conductive island, and the hot electrons will be controlled by the double diffusion channel 3 1 1 a and the common source diffusion area 3 1 1 The high lateral electric field at the junction between b is generated, and then injected into the integrated floating gate layer 3 0 3 c / 3 0 6e. This writing method is very similar to the traditional hot electron injection (CHEI) method, but because it has a short channel length, its writing power is small and writing efficiency is high. The third writing method is to add a high positive voltage of 10 volts to 12 volts to the control gate conductive layer 3 009 b, the common drain conductive island 3 1 9b and the bit line 3 2 0 a is grounded, and the common source conductive line and the semiconductor substrate 3 0 0 are floating (f 1 0 at 丨 ng), the electrons in the buried ion implantation layer 3 0 1 c will pass through Fuller —Nordheim (F n) penetration method penetrates into the integrated floating gate layer 3 0 3 c / 3 0 6 e to obtain a very low write current. Since the present invention provides that the common source diffusion region 3b has a deep junction, the depth provides a large scrubbing surface area, so the first type of miniaturizable stack gate flash cell is smaller than the traditional source edge The scrub method is more efficient. In addition, the first type of miniaturizable stack gate flash cell can apply a relatively high negative voltage to the control gate via the buried ion implantation layer 3 0 1 c.

200525740 五、發明說明(11) 電層309b之上及一個正電壓加於該金屬位元線32〇a =上 來執行一個位元接一個位元的擦洗’其中該共源導電管線 314b/3 0 3b及該半導體基板3〇〇係浮接。 圖二B顯示本發明之一種第二型可微縮化疊堆間快閃 細胞元結構的一種第二型可微縮化疊堆閘快閃細胞元之一 個剖面圖。比較圖二A與圖二B可以清楚地看到’圖二β可 以藉由位於該共源區(CSR)及該可微縮化共汲區(SCDR)之 内的摻雜結構及其延伸部份的互調來得到,因此進一步的 討論不再贅述。相似地,該第二型種可微縮化疊堆閘快閃 細胞元可以經由該第一型可微縮化疊堆閘快閃細胞元結構 之外加源/汲電壓的互調來寫入。這裡可以清楚地看到, 該第二型可微縮化疊堆閘快閃細胞元提供電子由該積體化 漂浮閘層303c/306e至該埋層離子佈植區301c之間的富勒-諾得漢穿透並具有一個較大的面積來擦洗,然而電子由該 共源擴散區31 lb至該積體化漂浮閘層3 0 3c/ 3 0 6e之富勒-諾 得漢穿透比該第一型可微縮化疊堆閘快閃細胞元之寫入具 有一個較小的表面面積。相似地,該第二型可微縮化疊堆 閘快閃細胞元可以經由前述之中間通道熱電子注入(MCHEI )或熱電子通道注入(CHE I)法來寫入。 現請參見圖三A至圖三I,其中揭示製造本發明之一種 可微縮化偶對疊堆閘快閃細胞元結構及其無接點非或型快 閃記憶陣列之具有一種自動對準積體化漂浮閘結構之一種 淺凹槽隔離(ST I )結構的製程步驟及其剖面圖。這裡值得 注意的是,圖三A至圖三I所示之該淺凹槽隔離結構具有該200525740 V. Description of the invention (11) A positive voltage is applied to the metal bit line 309b and a positive voltage is applied to the metal bit line 32a = to perform a bit-by-bit scrubbing, wherein the common source conductive line 314b / 3 0 3b and this semiconductor substrate 300 are floating. Figure 2B shows a cross-sectional view of a second type of miniaturizable stack flash flash cell structure of the present invention. Comparing Fig. 2A and Fig. 2B, it can be clearly seen that 'Fig. 2 β can be obtained by the doped structure and its extensions located within the common source region (CSR) and the micronizable common drain region (SCDR). Intermodulation is obtained, so further discussion will not be repeated here. Similarly, the second type of miniaturizable stack gate flash cell can be written via the intermodulation of the source / drain voltage plus the source of the first type of miniaturizable stack gate flash cell structure. It can be clearly seen here that the second type of miniaturizable stack gate flash cell provides electrons from the integrated floating gate layer 303c / 306e to the buried ion implantation region 301c. Dehan penetrates and has a large area for scrubbing, however, the electron from 31 lb of the common source diffusion region to the integrated floating gate layer 3 0 3c / 3 0 6e has a Fuller-Nordhan penetration ratio that is larger than that The writing of the first type of miniaturizable stack gate flash cells has a smaller surface area. Similarly, the second type of miniaturizable stack gate flash cell can be written via the aforementioned middle channel hot electron injection (MCHEI) or hot electron channel injection (CHE I) method. Please refer to FIG. 3A to FIG. 3I, which disclose the fabrication of a miniaturizable dual-stack stack gate flash cell structure of the present invention and its non-contact non-or flash memory array with an automatic alignment product. Process steps and sectional views of a shallow groove isolation (ST I) structure for a bulk floating gate structure. It is worth noting here that the shallow groove isolation structure shown in FIGS.

$ 17頁 200525740 五、發明說明(12) 自動對準積體化漂浮閘結構僅是用來製造該可微縮化偶對 疊堆問f閃細胞70結構及其無接點非或型快閃記憶陣列的 一個示範例’其它自動對準積體化漂浮閘結構亦可以使用$ 17 pages 200525740 V. Description of the invention (12) The self-aligning integrated floating gate structure is only used to make the miniaturized dual-stack stack interstitial cell 70 structure and its non-contact non-or type flash memory An example of an array 'Other self-aligning integrated floating gate structures can also be used

y圖二A顯不一種第二導電型的一個埋層離子佈植層301 係形成於一種第一導電型的一個半導體基板3〇〇之一個表 =1份,然後’一個穿透介電層3 〇 2係形成於該埋層離子 301之上丄一個第一導電層3 0 3係形成於該穿透介電 二爲^上,接著,一個覆蓋介電層304係形成於該第一導 上。該半導體基板3〇〇可以是該第一導電型的一 # Μ I 7成,该第二導電型的一個井區之内。該埋層離子 於嗲i道0Γ系贫跨過一個犧牲氧化物層(未圖示)佈植摻雜質 厣Τηί導體基板300的一個表面部份來形成。該穿透介電 ! . •至少包含一個熱(therma 1)二氧化矽層或一個氮化 門1 Y丨^ 6 d )熱一氧化石夕層’其厚度係介於7 0埃和1 2 0埃之 一 4第一導電層3 0 3至少包含一個摻雜(doped)複晶矽層 1個推雜非晶矽層且利用低壓化學氣相堆積(Lpcv]))法 積’其厚度係介於丨〇 〇 〇埃和2 〇 〇 〇埃之間。該覆蓋介 少包含一個氮化石夕層且利用麵…^ 度係介於1 0 0 0埃和3 0 0 0埃之間。 Μ /、序Fig. 2A shows a buried ion implantation layer 301 of a second conductivity type formed on a semiconductor substrate 300 of a first conductivity type. One table = 1 part, and then a penetration dielectric layer. 3 0 2 is formed on the buried ion 301 and a first conductive layer 3 0 3 is formed on the penetrating dielectric layer 2. Next, a covering dielectric layer 304 is formed on the first conductive layer. on. The semiconductor substrate 300 may be a #M I 70% of the first conductivity type, and within a well region of the second conductivity type. The buried layer ions are formed on a surface portion of a conductive substrate 300 by implanting a dopant QT conductive substrate 300 across a sacrificial oxide layer (not shown). The penetrating dielectric!. • At least one thermal (therma 1) silicon dioxide layer or one nitride gate 1 Y 丨 ^ 6 d) thermal oxide layer, its thickness is between 70 angstroms and 1 2 0 angstrom 1 4 first conductive layer 3 0 3 contains at least one doped polycrystalline silicon layer 1 doped amorphous silicon layer and is deposited using a low pressure chemical vapor deposition (Lpcv)) method Between Angstroms and 2000 Angstroms. The overlay contains at least one nitride layer and the utilization area is between 100 Angstroms and 300 Angstroms. Μ /, order

義福f 顯示一個罩幕光阻(PR1)步驟(未圖示)係用來定 ,位於兮$ i(AA)及複數平行淺凹槽隔離區(sti);然後 覆蓋平行淺凹槽隔離區(STI)的每一個之内的該 覆盍"電層304 、該第一導電層3 0 3、該穿透介電層3〇2及Yifu f shows a mask photoresistor (PR1) step (not shown), which is used to determine the location of the parallel shallow groove isolation area (sti); and then cover the parallel shallow groove isolation area (STI) the overlay " electrical layer 304, the first conductive layer 303, the penetrating dielectric layer 302, and

第18頁 200525740 五、發明說明(13) 該半導體基板3 0 0係藉由非等向乾式蝕刻法來循序地蝕刻 ,以形成位於該半導體基板3 0 0之内的一個淺凹槽。位於 該半導體基板3 0 0之内的該淺凹槽係介於4 0 0 0埃和8 0 0 0埃 之間。 圖三C顯示一個平面化場氧化物層3 0 5 a係用來填滿該 複數平行淺凹槽隔離區(S T I )的每一個之内的空隙。該平 面化場氧化物層3 0 5 a係由二氧化矽、填玻璃(p - g 1 a s s )或 硼磷玻璃(BP-glass)所組成且利用高密度電漿(HDP)CVD、 電漿加強型(P E ) C V D或L P C V D法來堆積,係先堆積一個厚氧 化物層3 0 5來填滿該複數平行淺凹槽隔離區(ST丨)的每一個 之内的空隙,接著利用化學-機械磨平(CMP)法將所堆積之 厚氧化物層3 0 5加予平面化並以該成形覆蓋介電層3〇4&作 為一個磨平停止層(polishing stop)。這裡值得注意的是 ’在未形成該平面化場氧化物層3 0 5 a之前,可以進行一個 熱氧化製程來形成一個襯(1 iner)氧化物層(未圖示)於該 凹槽半導體表面之上來消除凹槽所產生的瑕疵。 圖二D顯示位於該複數平行淺凹槽隔離區(s τ丨)的每一 個之内的该平面化場氧化物層3 0 5 a係回餘至所預定的一個 厚度;然後,一個平面化導電層3 0 6a係填滿該複數平行淺 凹槽隔離區(STI)的每一個之内的空隙。該平面化導電層 3 0 6a係由摻雜複晶矽或摻雜非晶矽所組成且利用LpcVD ^ 來堆積,係先堆積一個導電層3 0 6於所形成的一個結構表 面之上,再利用CMP法將所堆積之導電層3 〇 6加予平面化並 以該成形覆蓋介電層3 0 4 a作為一個磨平停止層。Page 18 200525740 V. Description of the invention (13) The semiconductor substrate 300 is sequentially etched by anisotropic dry etching to form a shallow groove within the semiconductor substrate 300. The shallow grooves within the semiconductor substrate 300 are between 400 angstroms and 800 angstroms. FIG. 3C shows that a planarized field oxide layer 3 05 a is used to fill the voids within each of the plurality of parallel shallow groove isolation regions (S T I). The planarized field oxide layer 3 0 5 a is composed of silicon dioxide, glass-filled (p-g 1 ass) or boro-phosphorus glass (BP-glass) and uses high-density plasma (HDP) CVD and plasma. Reinforced (PE) CVD or LPCVD methods are used to deposit. A thick oxide layer 3 05 is first deposited to fill the voids within each of the plurality of parallel shallow groove isolation regions (ST 丨), and then chemically- The mechanical polishing (CMP) method planarizes the thick oxide layer 305 deposited and covers the dielectric layer 304 with the shape as a polishing stop. It is worth noting here that, before the planarized field oxide layer 3 0 5 a is not formed, a thermal oxidation process may be performed to form a 1 iner oxide layer (not shown) on the semiconductor surface of the groove. To eliminate defects caused by grooves. FIG. 2D shows that the planarized field oxide layer 3 0 5 a located within each of the plurality of parallel shallow groove isolation regions (s τ 丨) is back to a predetermined thickness; then, a planarization is performed. The conductive layer 3 0 6a fills a gap in each of the plurality of parallel shallow groove isolation regions (STI). The planarized conductive layer 3 06a is composed of doped polycrystalline silicon or doped amorphous silicon and is stacked using LpcVD ^. A conductive layer 3 06 is deposited on the surface of a structure, and then The CMP method is used to planarize the stacked conductive layer 306, and the formed covering dielectric layer 304a is used as a smoothing stop layer.

第19頁 200525740 五、發明說明(14) 圖三E顯示位於該複數平行淺凹槽隔離區(STI )的每一 個之内的該平面化導電層3 〇 63係利用非等向乾式蝕刻法來 回蚀至該成形第一導電層3 〇 3 a的一個頂部表面水平,以形 成位於該複數平行淺凹槽隔離區(STI)的每一個之内的一 個回蝕導電層30 6b。 圖二F顯示一對側邊牆介電墊層(Spacer)g〇7a形成於 鄰近成形覆蓋介電層3 0 4 a的侧邊牆之上且位於該複數平行 淺凹槽隔離區(S T I )的每一個之内。該對側邊牆介電墊層 3 0 7a係由氮化石夕所組成且利用lpcvd法來堆積,係先堆積 一個介電層307 (未圖示)於一個所形成的結構表面之上, 再回餘所堆積之介電層3〇7的一個厚度。 圖三G顯示位於該複數平行淺凹槽隔離區(ST丨)的每 一個之内,該對側邊牆介電墊層3 〇 7a之間的該回蝕導電層 3 0 6b係非等向地餘刻成一種斜角(tape red)側邊牆結構。 圖三Η顯示該成形覆蓋介電層304a及該對側邊牆介電 塾層30 7a係利用熱磷酸或非等向乾式蝕刻法加予去除。這 裡可以清楚地看到,一個積體化漂浮閘結構3 0 3a/3 0 6c至 少包含一個成形第一導電層3 〇3a及兩個回蝕導電層3 0 6c 係用來增加每一個疊堆閘快閃細胞元的耦合比(c〇Up 1 i ng ratio)0 圖三1顯示一個閘間(intergate)介電層3 08係形成於 圖三Η所示的一個所形成的結構表面之上;然後,一個第 二導電層3 0 9係形成於該閘間介電層3 〇 8之上;接著,一個 罩幕介電層3 1 0係形成於該第二導電層3 〇 9之上。該閘間介Page 19, 200525740 V. Description of the invention (14) Figure 3E shows the planarized conductive layer 3 within each of the plurality of parallel shallow groove isolation regions (STI). 3 063 is back and forth using non-isotropic dry etching Etching to a top surface level of the shaped first conductive layer 303a to form an etch-back conductive layer 306b within each of the plurality of parallel shallow groove isolation regions (STIs). FIG. 2F shows that a pair of side wall dielectric spacers (Spacer) g07a are formed on the side wall adjacent to the forming and covering dielectric layer 3 0 4 a and are located in the plurality of parallel shallow groove isolation regions (STI). Within each of them. The pair of side wall dielectric cushion layers 3 0 7a is composed of nitride nitride and is stacked using the lpcvd method. A dielectric layer 307 (not shown) is first deposited on a formed structure surface, and then One thickness of the stacked dielectric layer 3007 is returned. FIG. 3G shows that within each of the plurality of parallel shallow groove isolation regions (ST 丨), the etch-back conductive layer 3 0 6b between the pair of side wall dielectric pads 3 0a is anisotropic The ground is carved into a tape red side wall structure. FIG. 3A shows that the formed overlying dielectric layer 304a and the pair of side wall dielectric layers 30 7a are added and removed by using hot phosphoric acid or anisotropic dry etching. It can be clearly seen here that an integrated floating gate structure 3 0 3a / 3 0 6c includes at least one shaped first conductive layer 3 03a and two etched back conductive layers 3 0 6c, which are used to increase each stack Coupling ratio of gate flash cells (c0Up 1 ing ratio) 0 Figure III 1 shows an intergate dielectric layer 3 08 is formed on the surface of a structure shown in Figure III. ; Then, a second conductive layer 3 0 9 is formed on the inter-gate dielectric layer 3 0 8; then, a mask dielectric layer 3 1 0 is formed on the second conductive layer 3 0 9 . The Intermediate

第20頁 200525740 五、發明說明(15) _--' 電層30 8係一個二氧化矽/氮化 一個氮化矽/二氧化矽(N〇)結構且[^矽—(0N0)結構或 介於100埃和3 00埃之間。該第】導/電J :::夕:度係 晶矽層且利用LPCVD法來堆^ ^ 9係一個摻雜複 (W),,, -, #, ,Λν?. - 其厚度係介於250 0埃和5〇〇。埃之間】。用這 二,摻2複晶石夕層可以進一步佈植該第二導電】二個= 。圖三1中之沿著一個主動區(AA),如一 5 ^ f所私不,係顯示於圖四A中。這裡可以清楚地看到 i ίί明僅需一個罩幕光阻(PR1)步驟即可形成具有一種 動、ί準積體化漂浮閘結構3〇3a/3〇6c之一種淺凹槽隔離 (SU)結構。這裡值得強調的是,一對導電侧邊牆墊層(未 圖示)了以形成於鄰近成形第一導電層3〇3a的侧邊牆之上 代圖三B所示之該平面化導電層3〇6a,其中該成形覆 蓋介電層304 a在形成該對導電側邊牆墊層之前先加予去除 〇 現睛參見圖四A至圖四κ,其中揭示製造本發明之一種 第一型可微縮化偶對疊堆閘快閃細胞元結構及其第一型無 接點非或型快閃記憶陣列之接續圖三I的製程步驟及其剖 面圖。 圖四A顯示圖三I所標示之沿著一個I _ Γ線的一個主動 區(AA)之内的一個複層結構之一個剖面圖。 圖四B顯示一個罩幕光阻(PR2)的梦驟(未圖示)係用來 成形複數虛擬疊堆閘區(VGR)交變地形成於該半導體基板Page 20 200525740 V. Description of the invention (15) _-- 'The electric layer 30 is a silicon dioxide / nitride nitride / silicon dioxide (N〇) structure and [^ silicon— (0N0) structure or Between 100 Angstroms and 300 Angstroms. The first] conductivity / electrical J ::: evening: degree-based crystalline silicon layer and using LPCVD method to stack ^ ^ 9 is a doped complex (W) ,,,-, #,, Λν ?.-Its thickness is referred to At 250 angstroms and 500 angstroms. Between Egypt]. With these two, doped with polycrystalite can further implant the second conductive] two =. Along the active area (AA) in FIG. 31, as shown in FIG. 5A, it is shown in FIG. 4A. It can be clearly seen here that only a single photoresist (PR1) step is required to form a shallow groove isolation (SU) with a movable, quasi-integrated floating gate structure 3〇3a / 3〇6c. )structure. It is worth emphasizing here that a pair of conductive side wall cushioning layers (not shown) are formed on the side wall adjacent to the first conductive layer 30a formed to replace the planarized conductive layer 3 shown in FIG. 3B. 〇6a, wherein the forming and covering dielectric layer 304a is removed before forming the pair of conductive sidewall spacers. See Fig. 4A to Fig. 4K, which shows that a first type of the present invention can be manufactured. The structure of the miniature paired stack gate flash cell structure and the continuation of the first type of contactless non-or type flash memory array are shown in FIG. FIG. 4A shows a cross-sectional view of a multi-layer structure within an active area (AA) along an I_Γ line indicated in FIG. 3I. FIG. 4B shows that a photomask (PR2) dream step (not shown) is used to form a plurality of virtual stacked gate regions (VGR) alternately formed on the semiconductor substrate.

200525740 五、發明說明(16) 3 0 0之上;然後,位於複數共源區(CSR)的每一個之内的該 罩幕介電層3 1 0、該第二導電層3 0 9、該閘間介電層3 0 8 、 及該複數積體化漂浮閘結構3 03a/30 6c係利用非等向乾式 餘刻法來循序地加予去除;而該回钱第一突出場氧化物層 305b (請見圖三I)係同時被回蝕至該穿透介電層302 a的一 個頂部表面水平來形成由位於該複數主動區(AA)的每一個 之内的一個回敍第二突出場氧化物層3 0 5 c (未圖示);然後 ,以自動對準的方式佈植摻雜質於該複數主動區(AA)之内 的該半導體基板3 0 0之表面部份來形成複數雙擴散區3 1 1 b /311a。該複數雙擴散區31 lb/3 11 a的每一個至少包含該第 一導電型的一個較深擴散區311 a形成於該第二導電型的一 個共源擴散區3 1 1 b之内。該較深擴散區3 11 a係中度摻雜且 藉由自動對準的方式將摻雜質跨過該穿透介電層30 2a佈植 於位於鄰近虛擬閘區(VGR)之間的該複數主動區(AA)之内 的該半導體基板3 0 0之一個表面部份,然後利用一個高溫 爐或一個快速熱退火(RTA)系統將所佈植的摻雜質驅入至 一個所要的深度。相似地’該共源擴散區3 1 1 b係利用該較 深擴散區3 11 a的相同製程步驟來形成。這裡可以清楚地看 到,該第一導電型的一個可微縮化雙擴散通道係形成於該 第二導電型的該共源擴散區3 11 b及該第二導電型的該埋^ 離子佈植層3 0 1 b之間的該半導體基板3 0 0的_個表^部& 且可以輕易地控制來獲得具有一個較短的通道長度。^ ^ 值得注意的是’該共源擴散區3 1 1 b可以是高摻雜(hea^iiy -doped)或中度摻雜(moderately-doped)。200525740 V. Description of the invention (16) 3 0 0; then, the mask dielectric layer 3 1 0, the second conductive layer 3 0 9, which is located within each of the plurality of common source regions (CSR) The inter-gate dielectric layer 3 0 8 and the complex integrated floating gate structure 3 03a / 30 6c are sequentially removed using the non-isotropic dry-cut method; and the first protruding field oxide layer of the money back 305b (see Figure III) is etched back to a top surface level of the penetrating dielectric layer 302a at the same time to form a second protrusion that is located within each of the plurality of active regions (AA). Field oxide layer 3 0 5 c (not shown); and then, forming a surface portion of the semiconductor substrate 3 0 0 doped within the active area (AA) in an automatic alignment manner The complex double diffusion region 3 1 1 b / 311a. Each of the plurality of double diffusion regions 31 lb / 3 11 a includes at least a deeper diffusion region 311 a of the first conductivity type formed in a common source diffusion region 3 1 1 b of the second conductivity type. The deeper diffusion region 3 11 a is moderately doped and the dopants are implanted across the penetrating dielectric layer 30 2 a by the auto-alignment method in the region between adjacent virtual gate regions (VGR). A surface portion of the semiconductor substrate 300 within a plurality of active regions (AA), and then the implanted dopants are driven to a desired depth by using a high temperature furnace or a rapid thermal annealing (RTA) system . Similarly, the common source diffusion region 3 1 1 b is formed using the same process steps of the deeper diffusion region 3 11 a. It can be clearly seen here that a micronizable double diffusion channel of the first conductivity type is formed in the common source diffusion region 3 11 b of the second conductivity type and the buried ion implantation of the second conductivity type. The three parts of the semiconductor substrate 300 between the layers 3 0 1 b can be easily controlled to obtain a short channel length. ^ ^ It is worth noting that the common source diffusion region 3 1 1 b may be highly doped (modealy-doped) or moderately-doped.

第22頁 200525740 五、發明說明(17) 圖四c顯示一對第一側邊牆介電墊層312a係形成於鄰 ,擬閘區(VGR)的侧邊牆之上且置於該複數共源區(CSR) =:一個之内的該平坦表面之一部份之上;然後,以自動 j準的方式進行離子佈植來形成該第二導電型的複數高摻 =共源擴散區31 lc於該複數共源區(CSR)之每一個的該複 ,,擴散區3 11 b之内。該對第一側邊牆介電墊層3丨2&係 t S i匕石f/斤組成且利用LPCVD法來堆積,係先堆積一個 二Si人圖雷示二個所形成的結構表…,然後回 蚀所堆積之介電層3 1 2的一個厚度。 圖四D顯示位於該對第一側邊 該穿透介電層3 0 2a係利用:蓉:2層312a之間的 於該對第-側邊牆介電墊:^:S::去除而位 氧化物層305c係同時回的该回蝕第二突出場 每一個之内的該高摻雜序餘披來組成由該複數主動區(AA)的 隔離區(STI)的每一侗、κ政區311 c及该複數平行淺凹槽 層305d(未圖示)所交變=^ = 一 2回=第三突出場氧化物 平面化第三導電声3 1卩/且成的一個平坦床;接著,一個 一個之内的該對i 一伽a惠係形成於該複數共源區(CSR)的每 。該平面化第三導電屏f牆介電墊層3128之間的一個空隙 LPCVD法來堆積",係先\ 13&係由摻雜複晶矽所組成且利用 該複數共源區(csut積一個第三導電層313(未圖示)於 墊層3 1 2a^門的 =母一個之内的該對第一側邊牆介電 :隙,然後利用CMP *將所堆積之第 化並以該罩幕介電層3l〇a作為-個Page 22 200525740 V. Description of the invention (17) Figure 4c shows that a pair of first side wall dielectric pads 312a are formed adjacent to each other, and are placed on the side walls of the pseudo gate area (VGR) and placed in the plurality of total Source region (CSR) =: one within a portion of the flat surface; then, ion implantation is performed in an automatic j-alignment manner to form the complex conductivity of the second conductivity type = common source diffusion region 31 lc is within the complex of each of the plurality of common source regions (CSR), within the diffusion region 3 11 b. The pair of first side wall dielectric pads 3 丨 2 & is composed of tSi dagger f / kg and is stacked using LPCVD method, and a two-Si structure chart is first stacked to show the structure table, ... A thickness of the deposited dielectric layer 3 1 2 is then etched back. Figure 4D shows that the penetrating dielectric layer 3 0 2a located on the first side of the pair uses: Rong: 2 layers 312a on the pair of -side wall dielectric pads: ^: S :: The in-situ oxide layer 305c is composed of the highly doped sequence residues within each of the etched-back second protruding fields at the same time to form each 侗, κ of the isolation region (STI) of the complex active region (AA). Alternating area 311 c and the plurality of parallel shallow groove layers 305d (not shown) = ^ = one 2 times = third protruding field oxide planarization third conductive sound 3 1 卩 / and a flat bed ; Then, the pair i-gamma-a system within one by one is formed in each of the plurality of common source regions (CSR). A gap between the planarized third conductive screen f wall dielectric pad 3128 and the LPCVD method is used to deposit "", which is composed of doped polycrystalline silicon and uses the complex common source region (csut product). A third conductive layer 313 (not shown) within the pair of first side wall dielectrics: gaps within the pad layer 3 1 2a ^ gate = mother, and then using CMP * to stack the first The mask dielectric layer 31a serves as a

200525740 五、發明說明(18) 圖四E顯示位於該複數共源區(CSR)的每一個之内的 該平面化第三導電層3 1 3 a係回蝕至所預定的一個厚度來形 成一個共源導電層31 3b ;然後,該複數共源區(CSR)的每 一個之内的該共源導電層3丨3 b係佈植該第二導電型的一個 高劑量之摻雜質。 圖四F顯示一個覆蓋共源導電層3 1 4b係形成於該複數 共源區(CSR)的每一個之内的該共源導電層3丨3b之上;然 後,一個平面化氧化物層3丨5a係形成於該對第一側邊牆介 電墊層31 2a之間且置於該複數共源區(CSR)的每一個之内 的該共源導電管線314b/3 13b之上。該覆蓋導電層314b係 由矽化鶴(WSi 2 )或鎢所組成且利用LpcVD法或賤鍍法 (sput ter ing)來堆積,係利用製造該共源導電層3Ub^相 同製程步驟來形成。這裡值得注意的是,該共源導電管線 3 14d/3 13b可以利用一個高摻雜複晶矽層或一個鎢⑼)層襯 有一個障礙金屬(barrier metal)層來加予取代。 圖四G顯示位於該複數虛擬閘區(VGR)之内的該罩幕 介電層3 1 Oa係利用熱磷酸或非等向乾式蝕刻法來選^性地 加予去除;然後,一對第二側邊牆介電墊層3丨6a係形成於 鄰近共源區(CSR)的側邊牆之上且置於該複數虛擬^區(、 VGR)的每一個之内的該成形第二導電層3 0 93的一部份&面 之上來定義一對可微縮化疊堆閘區(SGR)並同時定^ 一個 可微縮化共汲區(SCDR),如圖四Η所示;接著,進行一個 非嚴謹(non-critical)罩幕光阻(PR3)步驟將一個^幕光 阻PR3置於該複數共源區(CSR)的每一個及鄰近第二200525740 V. Description of the invention (18) Figure 4E shows that the planarized third conductive layer 3 1 3 a located within each of the plurality of common source regions (CSR) is etched back to a predetermined thickness to form a The common source conductive layer 31 3b; then, the common source conductive layer 3b in each of the plurality of common source regions (CSR) is implanted with a high-dose dopant of the second conductivity type. FIG. 4F shows that a common source conductive layer 3 1 4b is formed on the common source conductive layer 3 丨 3b within each of the plurality of common source regions (CSR); then, a planarized oxide layer 3 5a is formed between the pair of first side wall dielectric pads 31 2a and is placed on the common source conductive line 314b / 3 13b within each of the plurality of common source regions (CSR). The covering conductive layer 314b is composed of siliconized crane (WSi 2) or tungsten and is stacked by LpcVD method or sput tering, and is formed by the same process steps for manufacturing the common source conductive layer 3Ub ^. It is worth noting here that the common source conductive pipeline 3 14d / 3 13b can be replaced by a highly doped polycrystalline silicon layer or a tungsten-rhenium layer lined with a barrier metal layer. FIG. 4G shows that the mask dielectric layer 3 1 Oa located within the plurality of virtual gate regions (VGR) is selectively added and removed by using hot phosphoric acid or anisotropic dry etching. Then, a pair of first The two side wall dielectric pads 3 丨 6a are the formed second conductive layers formed on the side walls adjacent to the common source region (CSR) and placed within each of the plurality of virtual regions (, VGR). A part of the & plane of layer 3 0 93 defines a pair of shrinkable stack gate regions (SGR) and simultaneously defines a shrinkable common sink region (SCDR), as shown in Fig. 4; Perform a non-critical mask photoresistor (PR3) step to place a photoresistor PR3 in each of the plurality of common source regions (CSR) and adjacent second

200525740 五、發明說明(19) 介電墊層 層3 1 6 a係 積一個介 ,再回蝕 圖四 該成形第 積體化漂 第一突出 的一個頂 罩幕光阻 3 1 6 a的一部份表面之上。該對第 由氮化矽所組成且利用LPCVD法 電層3 1 6 (未圖示)於一個所形成 所堆積之介電層3 1 6的一個厚度< Η顯示位於該對第二側邊牆介電 二導電層3 0 9 a、該成形閘間介電 浮閘結構3 0 3b/3 0 6d係循序地加 場氧化物層3 0 5 b係同時回蝕至該 部表面水平來形成一個平坦表面 PR3〇 二側邊牆介電塾 來堆積,係先堆 的結構表面之上 ) 墊層3 1 6 a之間的 層3 0 8 a及該複數 予去除且該回餘 穿透介電層302b ;接著,去除該200525740 V. Description of the invention (19) A dielectric pad layer 3 1 6 a is integrated with a dielectric, and then etched back. Part of the surface. A thickness of the pair of first dielectric layers 3 1 6 composed of silicon nitride and using the LPCVD electrical layer 3 1 6 (not shown) is shown on the second side of the pair. The wall dielectric two conductive layer 3 0 a. The shaped inter-gate dielectric floating gate structure 3 0 3b / 3 0 6d is formed by sequentially adding a field oxide layer 3 0 5 b at the same time by etching back to the surface level of the part to form A flat surface, PR3, and a dielectric layer on the side wall, are stacked on top of the structure surface of the stack.) The layer 3 0 6 a between the cushion layer 3 1 6 a and the complex number is removed and the remnant penetrates the dielectric layer. Electrical layer 302b; then, remove the

μ,四1顯示一對第三側邊牆介電墊層30 7a係形成於該 可微縮化共沒區(SCDR)之内及該對可微縮化疊堆閘區(SGR )的側邊牆之上且置於該平坦表面之上;然後,以自動對 準的方^進行離子佈植來形成該第二導電型之複數高摻雜 沒擴散區31 8a於該可微縮化共汲區(SCDR)之内的該對第三 側邊牆介電塾層3 1 7 a之間的該複數主動區(A A )之内的該半 導體基板之表面部份。該對第三側邊牆介電墊層3丨7a係由 二氧化碎或氮化矽所組成且利用LPCVDE法來堆積,係先堆 積一個介電層317 (未圖示)於一個所形成的結構表面之上 ,然後回餘所堆積之介電層3丨7的一個厚度。μ, 4 1 shows that a pair of third side wall dielectric pads 30 7a are formed in the miniaturizable common subregion (SCDR) and the side walls of the miniaturizable stack gate region (SGR) And placed on the flat surface; then, ion implantation is performed in an automatically aligned manner to form the plurality of highly doped non-diffused regions 31 8a of the second conductivity type in the micronizable common-drain region ( The surface portion of the semiconductor substrate within the plurality of active regions (AA) between the pair of third side wall dielectric chirp layers 3 1 7a within SCDR). The pair of third side wall dielectric pads 3 丨 7a are composed of silicon dioxide or silicon nitride and are stacked using the LPCVDE method. A dielectric layer 317 (not shown) is first deposited on one On the surface of the structure, and then return a thickness of the stacked dielectric layers 3 丨 7.

圖四J顯示位於該對第三側邊牆介電墊層3丨7a之間的 该平坦表面係利用非等向地蝕刻來形成該可微縮化共汲區 (SCDR)之内的一個平坦床;然後,一個平面化共汲導電層 3198形成於該可微縮化共汲區(3(:1)1〇之内的該對第三側邊FIG. 4J shows that the flat surface located between the pair of third side wall dielectric pads 3 and 7a is an anisotropic etch to form a flat bed within the micronizable common drain region (SCDR). ; Then, a planarized common-sinking conductive layer 3198 is formed on the pair of third sides within the micronizable common-sinking region (3 (: 1) 10)

第25頁 200525740 五、發明說明(20) 牆介電墊層3 1 7a之間。該平面化共汲導電層3丨9a係由摻雜 複晶石夕所組成且利用LpCVD法來堆積,係更進一步佈植有 該ί二Ϊ電型的一個高劑量之摻雜質(未圖示)。這裡值得 ,思,疋’一個耐高溫(ref ract〇ry)金屬矽化物層(未圖 不)可以利用一種自動對準矽化製程來形成於該可微縮化 ^ =區(SCDR)之内的該平面化共汲導電層31 9a之上。該耐 高溫金屬石夕化物層係由矽化鈦(Ti Si 2)或矽化鈷(CoS丨2)所 組成。 ^ 圖四£顯示一個金屬層32 0 (未圖示)係形成於圖四J所 示之一個平坦表面之上;該金屬層32〇連同位於該可微縮 化共沒區(SCDR)之内的該平面化共汲導電層31 9a係藉由一 個罩幕光阻(PR4)步驟(未圖示)對準於該複數主動區(AA) 之上來同時成形,以形成複數金屬位元線3 2 0 a與該可微縮 化共沒區之内的該複數共汲導電島3丨9b積體化連結。該金 屬層3 2 0係一個鎢(ψ)、鋁(a 1)或銅(Cu )層形成於一個障礙 金屬層之上,諸如一個氮化鈦(TiN)或氮化钽(TaN)層。該 罩幕光阻(PR4)步驟可以至少包含複數罩幕光阻PR4被成形 成一種斜角側邊牆結構或複數罩幕介電層藉由複數罩幕光 1¾ PR4來成形且一對側邊牆介電墊層形成於該複數罩幕介 電墊層的每一個之側邊牆之上以作為一個硬質罩幕來蝕刻 該金屬層3 2 0及該可微縮化共汲區之内的該平面化共汲導 電層3 1 9 a。這裡可以清楚地看到,本發明僅需三個嚴謹罩 幕光阻步驟(PR1、PR2、及PR4)及一個非嚴謹罩幕光阻步 驟(P R 3 )即可製造一種第一型可微縮化偶對疊堆閘快閃細Page 25 200525740 V. Description of the invention (20) Between the wall dielectric pads 3 1 7a. The planarized common-drawing conductive layer 3 丨 9a is composed of doped polycrystalline spar and is stacked by LpCVD method. It is further implanted with a high-dose dopant (not shown) Show). It is worth thinking here, that a refractory metal silicide layer (not shown) can be formed using an auto-aligned silicidation process within the micronizable region (SCDR). The planarized common-drain conductive layers 31 to 9a. The refractory metal petrified layer is composed of titanium silicide (Ti Si 2) or cobalt silicide (CoS 丨 2). ^ Figure 4 shows that a metal layer 32 0 (not shown) is formed on a flat surface as shown in Figure 4 J; the metal layer 32 0 together with the inside of the micronizable common area (SCDR) The planarized common-drain conductive layer 31 9a is formed by aligning over the active area (AA) with a mask photoresist (PR4) step (not shown) to form a plurality of metal bit lines 3 2 0 a is integrated with the plurality of total conductive islands 3 9b within the micronizable common area. The metal layer 3 2 0 is a tungsten (ψ), aluminum (a 1), or copper (Cu) layer formed on a barrier metal layer, such as a titanium nitride (TiN) or tantalum nitride (TaN) layer. The mask photoresist (PR4) step may include at least a plurality of mask photoresist PR4 formed into a beveled side wall structure or a plurality of mask dielectric layers formed by a plurality of mask light 1¾ PR4 and a pair of sides A wall dielectric pad is formed on a side wall of each of the plurality of mask dielectric pads to serve as a hard mask to etch the metal layer 3 2 0 and the micronizable common drain region. The planarized common-drain conductive layer 3 1 9 a. It can be clearly seen here that the present invention only needs three rigorous mask photoresist steps (PR1, PR2, and PR4) and one non-rigid mask photoresist step (PR3) to produce a first type of micronizable Fast flashing of dual-pair stack gate

第26頁 200525740 五、發明說明(21) 胞元結構,如圖四K中一個虛線方塊所標示,及其第一型 無接點非或型快閃記憶陣列。 現請參見圖五,其中顯示本發明之第一型可微縮化偶 對疊堆閘快閃細胞元結構及其第一型無接點非或型快閃記 憶陣列的一個簡要頂視佈建圖;而沿著一個A-A,線的一個 簡要剖面圖係顯示於圖四K中。 圖五顯示複數主動區(AA)及複數平行淺凹槽隔離區( S T I )係交變地形成於一個半導體基板300之上;一對可微 縮化字線區(WL) 3 0 9b形成於該複數虛擬閘區(VGR)的每一 個之内係形成於兩個共源區(CSR)之間,其中複數共汲導 電島31 9b係形成於該可微縮化共汲區(SCDR)之内的一對第 三側邊牆介電墊層3 1 7 a之間且置於該複數主動區(A A)之内 的複數高摻雜汲擴散區318a之上而該兩個共源區(CSR)的 每一個至少包含一個共源導電管線(CSBL) 31 4d/3 13d形成 於一對第一側邊牆介電墊層3 1 2 a之間且置於由該複數平行 淺凹槽隔離區(STI)的每一個之内的回蝕第三突出場氧化 物層30 5b及該複數主動區(AA)的每一個之内的一個高摻 雜源擴散區3 1 1 c所交變地組成的一個平坦床之上;該對可 微縮化字線(WL) 3 0 9b的每一個至少包含一個控制閘導電層 3 0 9b形成於一個閘介電層308b之上再形成於複數積體化漂 浮閘層30 3c/ 3 0 6e之上,其中該複數積體化漂浮閘層30 3c / 3 0 6 e的每一個至少包含一個主漂浮閘層3 0 3 c及其兩個延 伸漂浮閘層3 0 6e ;及複數金屬位元線(BL) 32 0a與該可微 縮化共汲區(3001〇之内的該複數共汲導電島3191}積體化連Page 26 200525740 V. Description of the invention (21) The cell structure is indicated by a dashed square in Figure 4K, and its first type of non-contact non-or type flash memory array. Please refer to FIG. 5, which shows a brief top-view layout diagram of the flash memory cell structure of the first type of miniaturizable dual-pair stack gate of the present invention and the first type of contactless non-or type flash memory array. ; And along AA, a brief cross-sectional view of the line is shown in Figure 4K. FIG. 5 shows that a plurality of active regions (AA) and a plurality of parallel shallow groove isolation regions (STI) are alternately formed on a semiconductor substrate 300; a pair of micronizable word line regions (WL) 3 0 9b are formed on the semiconductor substrate 300. Each of the plurality of virtual gate regions (VGR) is formed between two common source regions (CSRs), and the plurality of common drain islands 31 9b are formed within the scalable common drain region (SCDR). A pair of third side wall dielectric pads 3 1 7 a are placed on the plurality of highly doped drain diffusion regions 318 a within the plurality of active regions (AA) and the two common source regions (CSR) Each of them contains at least one common source conductive line (CSBL) 31 4d / 3 13d formed between a pair of first side wall dielectric pads 3 1 2 a and placed in the isolation region by the plurality of parallel shallow grooves ( STI) are formed alternately in each of the etchback third protruding field oxide layer 30 5b and a highly doped source diffusion region 3 1 1 c in each of the plurality of active regions (AA) On a flat bed; each of the pair of micronizable word lines (WL) 3 0 9b includes at least one control gate conductive layer 3 0 9b formed on a gate dielectric layer 3 08b is further formed on the plurality of integrated floating gates 30 3c / 3 0 6e, wherein each of the plurality of integrated floating gates 30 3c / 3 0 6e includes at least one main floating gate 30 3 c and its two extended floating gate layers 3 0 6e; and a plurality of metal bit lines (BL) 32 0a and the micronizable common drain region (the complex total drain conductive island 3191 within 30010) are integrated even

第27頁 200525740 五、發明說明(22) 結,對準於該複數主動區(AA )之上來成形。圖五亦顯示一 個單位細胞元(UC )如一個虛線方塊所標示係等於2ρ · X, 其中X係一個可微縮化係數且可以等於2 f或小於/大於2 ρ。 因,’該單位細胞元尺寸(uc)係可微縮化且可藉由該虛擬 閘區(VGR)>及用來定義該對可微縮化疊堆閘區(SGR)的每 一個之該第二侧邊牆介電墊層3丨6 a的寬度來加予控制。 現請參見圖六A至圖六e ,其中顯示圖五所標示之各 種不同的剖面圖。圖六A顯示圖五中之沿著一個B — B,線的 一個簡要剖面圖,其中一個共源導電管線314b/31 3b係形 成於該複數平行淺凹槽隔離區(STI)的每一個之内的一個 回#第三突出場氧化物層3〇5d及位於該複數主動區(AA)的 每一個之内且形成於一個雙擴散區311b/311a之内的一個 咼摻雜源擴散區3 1 1 c所交變地組成的一個平坦床之上;一 個平面化場氧化物層315a係形成於該共源導電管線314b/ 3 1 3 b之上;以及複數金屬位元線3 2 〇 a係交變地形成於該平 面化氧化物層3 1 5a之上且藉由圖四κ所描述之該罩幕光阻 (PR4)步驟對準於該複數主動區(AA)之上來成形及蝕刻。 圖六β顯示圖五中之沿著一個C-C,線的一個簡要剖面 圖,其中一個第一側邊牆介電墊層3丨2a係形成於由該複數 平行淺凹槽隔離區(STI)的每'一個之内的^一個回触第二突 出場氧化物層305c及位於該複數主動區(AA)的每一個之 内的一個雙擴散區311b/311a之上的一個穿透介電層302c 所交變地組成的一個平坦表面之上;以及複數金屬位元線 3 2 0a係交變地形成於該第一側邊牆介電墊層31 2a之上且藉Page 27 200525740 V. Description of the invention (22) The junction is formed by aligning on the plural active area (AA). Figure 5 also shows that a unit cell (UC), as indicated by a dashed box, is equal to 2ρ · X, where X is a scaleable coefficient and may be equal to 2 f or less than / greater than 2 ρ. Because, 'the unit cell size (uc) can be miniaturized and the virtual gate region (VGR) > and the first and second elements used to define each of the pair of miniaturizable stack gate regions (SGR) The width of the two side wall dielectric pads 3 丨 6 a is controlled. Please refer to Fig. 6A to Fig. 6e, which show various cross-sectional views indicated in Fig. 5. FIG. 6A shows a schematic cross-sectional view taken along a line B--B in FIG. 5, in which a common source conductive line 314b / 31 3b is formed in each of the plurality of parallel shallow groove isolation regions (STI). An internal # 3rd protruding field oxide layer 305d and an erbium-doped source diffusion region 3 located within each of the plurality of active regions (AA) and formed within a double diffusion region 311b / 311a 1 1 c on a flat bed composed alternately; a planarized field oxide layer 315a is formed on the common source conductive line 314b / 3 1 3 b; and a plurality of metal bit lines 3 2 〇a Alternately formed on the planarized oxide layer 3 1 5a and formed and etched by aligning the mask photoresist (PR4) step on the multiple active area (AA) as described in FIG. . FIG. 6 β shows a schematic cross-sectional view along a CC line in FIG. 5, in which a first side wall dielectric cushion layer 3 丨 2a is formed by the plurality of parallel shallow groove isolation regions (STI). ^ One back-to-back second protruding field oxide layer 305c and one penetrating dielectric layer 302c over a double diffusion region 311b / 311a within each of the plurality of active regions (AA) And a plurality of metal bit lines 3 2 0a are alternately formed on the first side wall dielectric pad 31 2a and borrow

第28頁 200525740 五、發明說明(23) 由該罩幕光阻(PR4)步驟對準於該複數主動區(AA)之上來 成形及餘刻。 圖六C顯示圖五中之沿著一個d - D,線的一個簡要剖面 圖,其中一個控制閘導電層3 0 9 b係形成於一個閘間介電層 3 0 8b之上以作為一個字線(WL );該閘間介電層3 0 8b係形成 於複數積體化漂浮閘層303c/306e之上且置於鄰近積體化 漂浮閘層3 0 3 c / 3 0 6 e之間的一個回蝕第一突出場氧化物層 3 0 5 b之上’其中e亥複數積體化漂浮閘層3 〇 3 c / 3 0 6 e的每一 個至少包含一個主漂浮閘層3 0 3彿成於一個埋層離子佈植 層3 0 1 c之上的一個穿透介電層3 0 2 c之上及兩個延伸漂浮閘 層3 0 6 e形成於該主漂浮閘層3 0 3 c的側邊牆之上且置於鄰近 回#第一突出場氧化物層3 0 5 b的側邊部份之上;一個第二 側邊牆介電墊層3 1 6 a係形成於該控制閘層3 0 9 b之上;以及 複數金屬位元線(BL) 3 2 0a係交變地形成於該第二側邊牆介 電墊層316 a之上且對準於該複數主動區(aa)之上來成形。 圖六D顯示圖五中之沿著一個e-E,線的一個簡要剖面 圖’其中一個第三側邊牆介電墊層3 1 7a係形成於由該複數 主動區(AA)的每一個之内的一個埋層離子佈植層301c之 上的一個穿透介電層3 0 2c及該複數平行淺凹槽隔離區(STI )的每一個之内的一個回蝕第二突出場氧化物層3 〇 5 c所交 變地組成的一個平坦表面之上;以及複數金屬位元線(BL) 3 2 0a係交變地形成於該第三側邊牆介電墊層317a之上且藉 由該罩幕光阻(PR4)步驟對準於該複數主動區(AA)之上來 成形。Page 28 200525740 V. Description of the invention (23) The mask photoresist (PR4) step is aligned on the multiple active area (AA) to form and engrav. FIG. 6C shows a schematic cross-sectional view taken along a line d-D in FIG. 5, in which a control gate conductive layer 3 0 9 b is formed on a gate dielectric layer 3 8 b as a word. Line (WL); the inter-gate dielectric layer 3 0 8b is formed on the plural integrated floating gate layer 303c / 306e and is placed between the adjacent integrated floating gate layer 3 0 3 c / 3 0 6 e An etchback of the first protruding field oxide layer over 3 0 5 b 'wherein the e plural complex integrated floating gate layer 3 0 3 c / 3 0 6 e each contains at least one main floating gate layer 3 0 3 The Buddha is formed on a buried ion implantation layer 3 0 1 c above a penetrating dielectric layer 3 0 2 c and two extended floating gate layers 3 0 6 e are formed on the main floating gate layer 3 0 3 c is on the side wall and is positioned adjacent to the side part of the first protruding field oxide layer 3 0 5 b; a second side wall dielectric pad layer 3 1 6 a is formed on the side wall A control gate layer 3 0 9 b; and a plurality of metal bit lines (BL) 3 2 0a are alternately formed on the second side wall dielectric pad layer 316 a and aligned with the plurality of active regions (Aa). FIG. 6D shows a schematic cross-sectional view along an eE line in FIG. 5 where one of the third side wall dielectric pads 3 1 7a is formed in each of the plurality of active regions (AA). A buried dielectric ion implantation layer 301c, a penetrating dielectric layer 3 0 2c and an etch-back second protruding field oxide layer 3 within each of the plurality of parallel shallow groove isolation regions (STI) 〇5 c is formed on a flat surface alternately; and a plurality of metal bit lines (BL) 3 2 0a are alternately formed on the third side wall dielectric pad layer 317a and through the The mask photoresist (PR4) step is aligned on the plurality of active areas (AA) to form.

第29頁 200525740 五、發明說明(24) ~' ,$ 5,不圖五中之沿著一個F-F,線的一個簡要剖面 f f金屬仅元線(BL) 3 2 0a係與該複數共汲導電島 换她、彼^結且置於該複數主動區(AA)之内的該複數高 二二L t ί Ϊ 3 1 8a之上而該複數共沒導電島3 1 91)係形成於 f灯淺凹槽隔離區(STI)之内的鄰近回蝕第三突出 =^上务層3 0 5 d的—個小部份之上。如圖四κ所描述,該 、f數ΐ t S”步驟可以至少包含複數罩幕光阻PR4對準於該 Ξ ί 5 ί ί UA)之上且#刻成一種斜角側邊牆結構或複數 Φ拥二:日、藉由複數罩幕光阻PR4來成形而一個側邊牆介 A — : t ί ΐ該複數罩幕介電層的每一個側邊牆之上以作 ^ :個,質罩幕來形成該複數金屬位元線(BL)32〇a與該複 數八汲,電島3 1 9b積體化連結,如圖六E所示。 現凊參見圖七A至圖七κ,其中揭示製造本發明之一種 第一型可微縮化偶對疊堆閘快閃細胞元結構及其無接點非 或型快閃記憶陣列之接續圖三I的製程步雜及其剖面圖。 比較圖四K及圖七κ可以清楚看到,圖四K中之該複數共源 區(CSR)的每一個之内的摻雜質結構係形成於圖七Κ中之該 複數可微縮化共汲區(SCDR)的每一個之内而圖四Κ中之該 複數可微縮化共汲區以⑶趵的每一個之内的摻雜質結構係 形成於圖七κ所示之該複數共源區(CSR)的每一個之内。因 此,圖七A至圖七κ的詳細製程步驟及其别面圖不再贅述。 相似地,圖五所示之一個簡要頂視佈建圖仍可以用來描述 該第二型可微縮化偶對疊堆閘快閃細胞元結構及其第二型 無接點非或型快閃記憶陣列。然而,圖六A至圖六E所示的Page 29, 200525740 V. Description of the invention (24) ~ ', $ 5, not a brief cross section along a line FF in Figure 5, metal only element line (BL) 3 2 0a is electrically conductive with the complex number The island is replaced by her, and it is placed in the plural active area (AA) above the plural high 22 L t ί Ϊ 3 1 8a and the plural conductive island 3 1 91) is formed in the f lamp The adjacent etch-back third protrusion within the shallow trench isolation region (STI) is a small portion of the upper service layer 3 0 5 d. As shown in FIG. 4K, the step “f number ΐ t S” may include at least a plurality of mask photoresistors PR4 aligned on the Ξ ί 5 ί UA) and #etched into a beveled side wall structure or Plural Φ: Two, one side is formed by a plurality of mask photoresistors PR4 and a side wall is A —: t ΐ 之上 Each side wall of the dielectric layer of the plurality of masks is used as ^: a, The mask is used to form the complex metal bit line (BL) 32〇a and the complex octave, and the electric island 3 1 9b is integrated and connected, as shown in FIG. 6E. Now, see FIGS. 7A to 7 κ, which reveals the manufacturing of a first type of micronizable dual-pair stack gate flash cell structure and its continuation of non-or-type non-or flash memory array. FIG. Comparing Fig. 4K and Fig. 7κ, it can be clearly seen that the dopant structure within each of the plurality of common source regions (CSR) in Fig. 4K is formed in the complex number in Fig. 7K that can be miniaturized Within each of the common drain regions (SCDRs) and the plural miniaturizable common drain regions in FIG. 4K, the dopant structure within each of the CDRs is formed as shown in FIG. Within each of the plurality of common source regions (CSRs). Therefore, the detailed process steps of FIG. 7A to FIG. 7κ and their other views are not repeated. Similarly, a brief top-view layout diagram shown in FIG. It can still be used to describe the structure of the second type of miniaturizable dual-stack stacked flash cell and its second type of non-contact non-or type flash memory array. However, the

第30頁 200525740 五、發明說明(25) 各種不同剖面圖可以經由下列的修正來描述:圖六A中之 一個摻雜質結構3 1 1 c / 3 1 1 b / 3 11 a可以藉由一個摻雜質結構 318&來取代;圖六8中之一個摻雜質結構3111)/311&可由 一個摻雜質結構3 0 1 c來取代;圖六e中之一個摻雜質結構 3 0 1 c可以藉由一個摻雜質結構3丨丨b/ 3丨丨c來取代;而圖六 E中的一個摻雜質結構3 1 8 a可以藉由一個摻雜質結構3 1 1 c /31 lb/31 la來取代。 這裡可以清楚地看到,形成圖七κ所需的嚴謹及非嚴 謹罩幕光阻步驟係與形成圖四](相同。這裡值得強調的是 ,圖四Κ中之該高摻雜汲擴散區318a可以形成於該第二導 電型的一個共沒擴散區318b (未圖示)之内而圖七K中之該 高摻雜源擴散區3 1 8 a可以形成於該第二導電型的一個共源 擴散區31 8b(未圖示)之内。該共源/汲擴散區318b至少包 含一個中度或高摻雜擴散區。 根據以上的描述,本發明的特特色及優點可以歸納如 (a)本發明之該可微縮化偶對疊堆閘細胞元結構提供一對 可微縮化疊堆閘區(SGR)及一個可微縮化共汲區(SCDR)以 獲得一個可微縮化單位細胞元尺寸小於或等於4F 2。 (b )本發明之該可微縮化偶對疊堆閘細胞元結構及其無接 點非或型快閃記憶陣列可以利用較少的嚴謹及非嚴謹罩幕 光阻步驟來製造。Page 30 200525740 V. Description of the invention (25) Various different cross-sectional views can be described by the following amendments: One dopant structure in Fig. 6A is 3 1 1 c / 3 1 1 b / 3 11 a. Dopant structure 318 & to replace; one dopant structure 3111) / 311 & in FIG. 6 may be replaced by one dopant structure 3 0 1 c; one dopant structure 3 0 1 in FIG. 6e c can be replaced by a dopant structure 3 丨 丨 b / 3 丨 丨 c; and a dopant structure 3 1 8 a in FIG. 6E can be replaced by a dopant structure 3 1 1 c / 31 lb / 31 la instead. It can be clearly seen here that the rigorous and non-rigid mask photoresist steps required to form FIG. 7κ are the same as those in FIG. 4]. (It is worth emphasizing that the highly doped drain diffusion region in FIG. 318a may be formed in a common diffusion region 318b (not shown) of the second conductivity type and the highly doped source diffusion region 3 1 8a in FIG. 7K may be formed in a second conductivity type Within the common source diffusion region 31 8b (not shown). The common source / drain diffusion region 318b includes at least one moderately or highly doped diffusion region. According to the above description, the features and advantages of the present invention can be summarized as ( a) The miniaturizable dual-stack gate cell structure of the present invention provides a pair of miniaturizable stack gate region (SGR) and a micronizable pooling region (SCDR) to obtain a micronizable unit cell The size is less than or equal to 4F 2. (b) The miniaturizable dual-stacked stack gate cell structure of the present invention and its non-contact non-or flash memory array can use less rigorous and non-rigid mask photoresistors. Steps to manufacture.

200525740 五、發明說明(26) (C)本發明之該可微縮化偶 源區及該可微縮化共沒區 二j $二f疋結構提供該共 額外的罩幕光阻步驟。 各種不同的接雜質分佈且無需 (d )本發明之该可微縮化偶對羼一 一個可微縮化㈣閘長度之_對3 : ^結構提供具有 元且無需顧慮抵穿效應。 、、 邊堆閘快閃細胞 (e )本發明之該可微縮化偶200525740 V. Description of the invention (26) (C) The micronizable couple region and the micronizable common zone of the present invention provide a total of additional mask photoresist steps. A variety of different impurity distributions are not required (d) The micronizable pair of the present invention-a micronizable gate length of the _pair 3: ^ structure provides the element without the need to worry about the puncture effect. (B) Side stack gate flash cells (e) The micronizable couple of the present invention

可微縮化疊堆閘快間細胞;一隹;經:巧構提供該對 )穿透、中間通道熱電子注八法母f t由;勒-諾得漢(FNReducing the size of the stacker gate intermediary cell; a stack; via: the structure provides the pair of) penetrating, middle channel hot electron injection method, ft by; Le-Nordheim (FN

Si:來有效率地寫入且藉由富勒-ϊίίίί:; 邊或汲邊來有效率地擦洗。 于属穿透至源 導的區 源間散 共之擴 數板沒 複基雜 供體摻 提導高 列半數 陣該複。 憶於於題 記對置問 閃相島觸 快及電接 型阻導除 或電汲消 非線共及 點管數阻 接的複電 無小而觸 之較容接 明有電低 發具線降 本線管來 }管小上 f C電較之 本發明雖特別以參考所附的例子或内涵來圖示及描述 ,但僅是代表陳述而非限制。再者,本發明不侷限於所列 之細節,對於熟知此種技術的人亦可瞭解,各種不同形狀 或細節的更動在不脫離本發明的真實精神和範,下均可製Si: come to write efficiently and by Fuller-ϊίίί :; scrubbing efficiently with edge or edge. The region that penetrates to the source is interspersed with the source and the number of spreading plates is not complex. The donor is doped and the derivative is high. Recalling in the inscription, the interrogation of the flash phase island is fast and the electrical connection type resistance is eliminated or the electric drain is eliminated. The number of non-linear reconnection points is blocked. Compared with the present invention, although the circuit diagram and the description of the f C circuit are specifically illustrated and described with reference to the attached examples or connotations, they are merely representative statements and not limitations. Furthermore, the present invention is not limited to the details listed, and those skilled in the art can also understand that changes in various shapes or details can be made without departing from the true spirit and scope of the present invention.

200525740 五、發明說明(27) 造,但亦屬本發明的範疇。 Η·Ι 第33頁 200525740 圖式簡單說明 圖一 A及圖一 B顯示先前技術之疊堆閘快閃細胞元的簡 要剖面圖,其中圖一 A顯示具有一個雙擴散源結構及一個 單擴散汲結構之一種疊堆閘快閃細胞元的一個剖面圖;圖 一 B顯示具有一個單擴散源/汲結構之一種疊堆閘快閃細胞 元的一個剖面圖。 圖二A及圖二B揭示本發明之疊堆閘快閃細胞元結構的 簡要剖面圖,其中圖二A揭示一種第一型可微縮化疊堆閘 快閃細胞元結構的一個剖面圖;圖二B揭示一種第二型可 微縮化疊堆閘快閃細胞元結構的一個剖面圖。 圖三A至圖三I揭示製造本發明之一種可微縮化偶對疊 堆閘快閃細胞元結構及其無接點非或型快閃記憶陣列之具 有一種自動對準積體化漂浮閘結構的一種淺凹槽隔離(ST I )結構的製程步驟及其剖面圖。 圖四A至圖四K顯示製造本發明之第一型可微縮化偶對 疊堆閘快閃細胞元結構及其第一型無接點非或型快閃記憶 陣列之接續圖三I的製程步驟及其剖面圖。 圖五揭示本發明之一種第一型可微縮化偶對疊堆閘快 閃細胞元結構及其第一型無接點非或型快閃記憶陣列的一 個簡要頂視佈建圖,其中沿著一個A-A’線的一個剖面圖係 顯示於圖四K中。 圖六A至圖六E揭示圖五中所標示之各種不同的剖面 圖,其中圖六A揭示沿著一個B - B ’線的一個剖面圖;圖六B 揭示沿著一個C-C’線的一個剖面圖;圖六C揭示沿著一個 D-D’線的一個剖面圖;圖六D揭示沿著一個E-E’線的一個200525740 V. Description of Invention (27) It is also within the scope of the present invention. Η · Ι Page 33 200525740 Brief Description of Drawings Figures 1A and 1B show a brief cross-sectional view of a stack gate flash cell in the prior art, of which Figure 1A shows a structure with a dual diffusion source and a single diffusion drain. A cross-sectional view of a stack gate flash cell of a structure; FIG. 1B shows a cross-section view of a stack gate flash cell with a single diffusion source / drain structure. FIG. 2A and FIG. 2B show a schematic cross-sectional view of a flash cell structure of a stack gate of the present invention, wherein FIG. 2A shows a cross-sectional view of a first type of miniaturizable stack gate flash cell structure; Section B reveals a cross-sectional view of the flash cell structure of a second type of miniaturizable stack gate. FIG. 3A to FIG. 3I show the manufacturing of a flash cell structure of a miniaturizable dual-stack stacked gate of the present invention and a non-contact non-or type flash memory array with an auto-aligned integrated floating gate structure. The process steps of a shallow groove isolation (ST I) structure and its sectional view. FIG. 4A to FIG. 4K show the manufacturing process of the first type of miniaturizable dual-pair stack gate flash cell structure of the present invention and the first type of non-contact non-or type flash memory array. FIG. Steps and its section. FIG. 5 is a schematic top-view layout diagram of the flash memory cell structure of a first type of miniaturizable dual-stack stacked gate of the present invention and its first type of non-contact non-or type flash memory array. A sectional view of an AA 'line is shown in FIG. 4K. Figures 6A to 6E show the various cross-sectional views marked in Figure 5, where Figure 6A shows a cross-section view along a line B-B '; Figure 6B shows a cross-section line C-C' A cross-sectional view of FIG. 6C reveals a cross-sectional view along a line D-D '; FIG. 6D reveals a cross-section of a line E-E'

第34頁 200525740 圖式簡單說明 剖面圖;以及圖六E揭示沿著一個F - F ’線的一個剖面圖。 圖七A至圖七K揭示製造本發明之一種第二型可微縮化 偶對疊堆閘快閃細胞元結構及其第二型無接點非或型快閃 記憶陣列之接續圖三I的製程步驟及其剖面圖。 代表圖號說明: 300 半導體基板 301 埋層離子佈植層 301a/3 01b/301c成形埋層離子佈植層 3 0 2 穿透介電層 302a/302b302c成形穿透介電層 303 第二導電層 303a/303b成形第二導電層 303c主漂浮閘層 304 覆蓋介電層 3 04a成形覆蓋介電層 30 5a平面化場氧化物層 3 0 5b回蝕第一突出場氧化物層 305c回蝕第二突出場氧化物層 305d回蝕第三突出場氧化物層 306a平面化導電層 306b回蝕導電層 306c/306d成形回蝕導電層 306e延伸漂浮閘層 3 0 7a側邊牆介電墊層 30 8 閘間介電層 3 0 8a/3 0 8b成形閘間介電層 30 9 第二導電層 3 0 9a成形第二導電層 3 0 9b控制閘導電層 310 罩幕介電層 310a成形罩幕介電層 3 1 1 a較深擴散區 3 1 1 b共源/汲擴散區Page 34 200525740 Brief description of the drawings Sectional view; and Fig. 6E reveals a sectional view along an F-F 'line. FIG. 7A to FIG. 7K show the fabrication of a second type of miniaturizable dual-pair stack gate flash cell structure and the continuation of the second type of contactless non-or type flash memory array of FIG. Process steps and sectional views. Representative drawing number description: 300 semiconductor substrate 301 buried ion implanted layer 301a / 3 01b / 301c formed buried ion implanted layer 3 0 2 penetrating dielectric layer 302a / 302b302c forming penetrating dielectric layer 303 second conductive layer 303a / 303b forming the second conductive layer 303c main floating gate layer 304 covering the dielectric layer 3 04a forming covering the dielectric layer 30 5a planarization field oxide layer 3 0 5b etch back the first protruding field oxide layer 305c etch back the second The protruding field oxide layer 305d etches back the third protruding field oxide layer 306a, the planarized conductive layer 306b, the etched back conductive layer 306c / 306d, the etched back conductive layer 306e, and the extended floating gate layer 3 0 7a. Inter-gate dielectric layer 3 0 8a / 3 0 8b forming inter-gate dielectric layer 30 9 second conductive layer 3 0 9a forming second conductive layer 3 0 9b control gate conductive layer 310 mask dielectric layer 310a forming mask dielectric Electrical layer 3 1 1 a Deeper diffusion region 3 1 1 b Common source / drain diffusion region

200525740 圖式簡單說明 3 1 1 c高摻雜源/汲擴散區 313a平面化第三導電層 314b覆蓋共源導電層 3 1 5 a平面化氧化物層 317a第三側邊牆介電墊層 319a平面化共汲導電層 3 2 0 金屬層 312a第一側邊牆介電墊層 3 1 3 b共源導電層 314b/313b共源導電管線 316a第二侧邊牆介電墊層 3 1 8 a高摻雜汲/源擴散區 31 9b共汲導電島 3 2 0 a金屬位元線200525740 Brief description of the diagram 3 1 1 c Highly doped source / drain diffusion region 313a Planar third conductive layer 314b Cover common source conductive layer 3 1 5a Planar oxide layer 317a Third side wall dielectric pad layer 319a Planar common drain conductive layer 3 2 0 metal layer 312a first side wall dielectric pad 3 1 3 b common source conductive layer 314b / 313b common source conductive pipeline 316a second side wall dielectric pad 3 1 8 a Highly doped drain / source diffusion region 31 9b common drain conductive island 3 2 0 a metal bit line

第36頁Page 36

Claims (1)

200525740 六、申請專利範圍 1. 一種可微縮化偶對疊堆閘快閃細胞元結構,至少包含: 一種第一導電型的一個半導體基板,其中該半導體基 板至少包含一個主動區(AA)形成於兩個平行淺凹槽隔離區 (STI)之間; 一個虛擬閘區(VGR)形成於兩個共源區(CSR)之間且置 於該半導體基板之上,其中該虛擬閘區(VGR)至少包含一 對可微縮化疊堆閘區(SGR)及一個可微縮化共汲區(SCDR) 形成於該對可微縮化疊堆閘區(SGR)之間; 該兩個共源區的每一個至少包含一個第一側邊牆介電 墊層形成於該虛擬閘區(VGR)的每一個側邊牆之上且置於 由該主動區(AA)之内的一個穿透介電層及該兩個平行淺凹 槽隔離區(STI)之内的兩個回蝕第二突出場氧化物層所組 成之一個平坦表面的一部份之上、一種第二導電型的一個 高摻雜源擴散區藉由該虛擬閘區(VGR)及該第一側邊牆介 電墊層作為一個離子佈植罩幕來佈植摻雜質於該主動區( A A)之内的該半導體基板之一個表面部份、一個共源導電 管線形成於該第一側邊牆介電墊層之外且置於由該主動區 (A A)之内的該高摻雜源擴散區及該兩個平行淺凹槽隔離區 (STI)之内的兩個回蝕第三突出場氧化物層所組成的一個 平坦床之上、及一個平面化氧化物層形成於該第一側邊牆 介電墊層之外且置於該共源導電管線之上; 該對可微縮化疊堆閘區(SGR)的每一個由上而下至少 包含一個第二側邊牆介電墊層、一個控制閘導電層、一個 閘間介電層、及一個積體化漂浮閘層,其中該積體化漂浮200525740 VI. Scope of patent application 1. A miniaturizable dual-stack gate flash cell structure including at least: a semiconductor substrate of a first conductivity type, wherein the semiconductor substrate includes at least an active area (AA) formed in Between two parallel shallow groove isolation regions (STI); a virtual gate region (VGR) is formed between two common source regions (CSR) and is placed on the semiconductor substrate, wherein the virtual gate region (VGR) At least a pair of miniaturizable stack gate regions (SGR) and a miniaturizable common drain region (SCDR) are formed between the pair of miniaturizable stack gate regions (SGR); each of the two common source regions A penetrating dielectric layer including at least one first side wall dielectric cushion layer formed on each side wall of the virtual gate region (VGR) and placed within the active region (AA) and Above a portion of a flat surface composed of two etched-back second field oxide layers within the two parallel shallow trench isolation regions (STI), a highly doped source of a second conductivity type Diffusion area through the virtual gate area (VGR) and the first side wall dielectric pad As an ion implantation mask, a surface portion of the semiconductor substrate doped with dopants in the active area (AA) and a common source conductive line are formed on the first side wall dielectric cushion layer. Outside and placed by the highly doped source diffusion region inside the active region (AA) and two etched back third field oxide layers inside the two parallel shallow groove isolation regions (STI) A flat bed and a planarized oxide layer are formed outside the first side wall dielectric cushion layer and placed on the common source conductive pipeline; the pair of micronizable stack gate regions (SGR Each of the above) includes at least a second side wall dielectric cushion layer, a control gate conductive layer, an inter-gate dielectric layer, and an integrated floating gate layer, wherein the integrated floating gate layer 第37頁 200525740 六、 申請專利範圍 閘廣i ϋ ί —個主漂浮閘層形成於該主動區(aa)之内的 該穿二11之上及兩個延伸漂浮閘層形成於該主漂浮閘 層的牆之上且置於該兩個平行淺凹槽隔離區(sTI) 之内蚌可斜第一突出場氧化物層的侧邊部份之上; = 、、、匕共汲區(SCDR)至少包含一對第三側邊牆介 電ί^巫於"亥對可微縮化疊堆閘區(SGR )的側邊牆之上 真二坦表面之上、該第二導電型的一個高摻雜汲擴 散隱二布植摻雜質於該對第三之間的該 主動之内的該半導體基板之份、及一個 共浓導電島形成於該對第三側邊牆介電墊間且置於該 高務雜汲擴散區之上; 個雙擴散結構形成於該兩個共源區的每一個或該可 微縮彳>匕共沒區之内的該半導體基板之一個表面部份且具有 ,個南換雜源或汲擴散區形成於該雙擴散結構之内,其中 該雙擴散結構至少包含該第二導電型的一個共源或共汲擴 散隱形成於該第一導電蜇的一個較深擴散區之内;以及 一個埋層離子佈植層形成於該雙擴散結構及該高摻雜 浪戒源擴散區之間的該资透介電層之下,其中該第一導電 贺的一個雙擴散通道係形成於該埋層離子佈植層及該共源 或兵沒擴散區之間的該軾深擴散區之一個半導體表面部份 2 ·如/申請專利範圍第1頊所述之可微縮化偶對疊堆閘快閃 細胞元結構’其中一個金屬位元線連同該共汲導電島係藉Page 37 200525740 VI. Application scope Zha Guang i — ί — A main floating gate layer is formed on the crossing 11 in the active area (aa) and two extended floating gate layers are formed on the main floating gate Layer above the wall of the layer and placed within the two parallel shallow groove isolation regions (sTI) above the side portion of the oxide layer of the oblique first protruding field; ) Includes at least a pair of third side wall dielectrics on top of the true ditan surface on the side walls of the pair of miniaturizable stack gate areas (SGR), one of the second conductivity type A highly doped diffusive layer is implanted with dopants in the semiconductor substrate between the pair of thirds, and a conductive conductive island is formed between the pair of third side wall dielectric pads. And placed on the high-efficiency miscellaneous diffusion region; a double diffusion structure is formed on each of the two common source regions or a surface portion of the semiconductor substrate within the shrinkable > common region Moreover, a south-exchanged heterodyne or a drain diffusion region is formed in the double-diffusion structure, wherein the double-diffusion structure includes at least the A common source or common drain diffusion of the second conductivity type is formed implicitly in a deeper diffusion region of the first conductive chirp; and a buried ion implantation layer is formed on the double diffusion structure and the highly doped wave ring. Under the permeable dielectric layer between the source diffusion regions, a double diffusion channel of the first conductive frame is formed between the buried ion implantation layer and the plutonium between the common source or submerged diffusion region. A semiconductor surface part of the deep diffusion region 2 · The miniaturizable dual-pair stack gate flash cell structure described in / of the patent application scope 1 'One of the metal bit lines together with the common drain island is borrowed 第38頁 200525740 六、申請專利範圍 由一個罩幕光阻步驟對準於該主動區之上來同時成形及蝕 刻。 3. 如申請專利範圍第1項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該對可微縮化疊堆閘區係藉由形成於該 兩個共源區之内的該第一側邊牆介電墊層之内侧邊牆之上 的該對第二側邊牆介電墊層來定義。 4. 如申請專利範圍第1項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該兩個延伸漂浮閘層的每一個至少包含 具有一種斜角側邊牆結構的一個延伸導電層或一個導電側 邊牆塾層。 5. 如申請專利範圍第1項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該雙擴散通道係形成於該共源擴散區及 與該高摻雜汲擴散區連接之該埋層離子佈植層之間。 6. 如申請專利範圍第1項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該雙擴散通道係形成於該共汲擴散區及 與該高摻雜源擴散區連接的該埋層離子佈植層之間。 7. 如申請專利範圍第1項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該雙擴散結構係藉由一種自動對準離子 佈植技術及一種雜質驅入技術先形成一個較深擴散區再形Page 38 200525740 6. Scope of patent application A mask photoresist step is aligned on the active area to form and etch at the same time. 3. The flash cell structure of the miniaturizable dual-pair stack gate as described in item 1 of the scope of the patent application, wherein the pair of miniaturizable stack gate regions is formed by the two common source regions. The pair of second side wall dielectric pads above the inner side wall of the first side wall dielectric pad is defined. 4. The miniaturizable dual-stack stack gate flash cell structure described in item 1 of the scope of the patent application, wherein each of the two extended floating gate layers includes at least one extension having a beveled side wall structure A conductive layer or a layer of conductive side walls. 5. The miniaturizable dual-stack stacked gate flash cell structure described in item 1 of the patent application scope, wherein the dual diffusion channel is formed in the common source diffusion region and connected to the highly doped drain diffusion region. The buried layer is implanted between ion implantation layers. 6. The flashable cell structure of the miniaturizable dual-stack stack gate as described in item 1 of the scope of the patent application, wherein the dual diffusion channel is formed in the common-drain diffusion region and the diffusion region connected to the highly doped source diffusion region. The buried layer is implanted between ion implantation layers. 7. The flash cell structure of the miniaturizable paired stack gate described in item 1 of the scope of the patent application, wherein the double diffusion structure is first formed by an auto-aligned ion implantation technology and an impurity drive-in technology A deeper diffusion zone 第39頁 200525740 六、申請專利範圍 成一個共源或汲擴散區於該兩個共源區的每一個或該可微 縮化共汲區之内。 8. —種可微縮化偶對疊堆閘快閃細胞元結構,至少包含: 一種第一導電型的一個半導體基板,其中該半導體基 板至少包含一個主動區(A A)形成於兩個平行淺凹槽隔離區 (STI)之間; 一個虛擬閘區(VGR)形成於兩個共源區(CSR)之間且置 於該半導體基板之上,其中該虛擬閘區(VGR)至少包含一 對可微縮化疊堆閘區(SGR )藉由形成於該兩個共源區的側 邊牆之上的一對第二側邊牆介電墊層來定義及一個可微縮 化共汲區(SCDR)形成於該對可微縮化疊堆閘區(SGR)之間 , 該兩個共源區的每一個至少包含一個第一側邊牆介電 墊層形成於該虛擬閘區(VGR)的每一個側邊牆之上且置於 由該主動區(A A )之内的一個穿透介電層及該兩個平行淺凹 槽隔離區(ST I )之内的兩個回蝕第二突出場氧化物層所組 成之一個平坦表面的一部份之上、一種第二導電型的一個 高摻雜源擴散區藉由該虛擬閘區(VGR)及該第一側邊牆介 電墊層作為一個離子佈植罩幕來佈植摻雜質於該主動區( A A)之内的該半導體基板之一個表面部份、一個共源導電 管線形成於該第一側邊牆介電墊層之外且置於由該主動區 (A A)之内的該高摻雜源擴散區及該兩個平行淺凹槽隔離區 (STI)之内的兩個回蝕第三突出場氧化物層所組成的一個Page 39 200525740 VI. Scope of patent application A common source or drain region is within each of the two common source regions or the scalable common source region. 8. A miniaturizable dual-stack gate flash cell structure, including at least: a semiconductor substrate of a first conductivity type, wherein the semiconductor substrate includes at least one active area (AA) formed in two parallel shallow recesses Between trench isolation regions (STI); a virtual gate region (VGR) is formed between two common source regions (CSR) and is placed on the semiconductor substrate, wherein the virtual gate region (VGR) includes at least one pair of The miniaturized stacked gate area (SGR) is defined by a pair of second side wall dielectric pads formed on the side walls of the two common source areas and a minimizable common drain area (SCDR) Formed between the pair of miniaturizable stack gate regions (SGR), each of the two common source regions including at least one first side wall dielectric pad formed in each of the virtual gate regions (VGR) Two etched back second field oxidations above the side wall and placed within the active region (AA) by a penetrating dielectric layer and within the two parallel shallow groove isolation regions (ST I) A part of a flat surface composed of an object layer, a highly doped source of a second conductivity type expands The scattered region uses the virtual gate region (VGR) and the first side wall dielectric cushion layer as an ion implantation mask to implant one of the semiconductor substrates doped in the active region (AA). A surface portion, a common source conductive pipeline formed outside the first side wall dielectric pad and placed in the active region (AA), the highly doped source diffusion region and the two parallel shallow recesses One of two etched back third field oxide layers within the trench isolation region (STI) 第40頁 200525740 六、申請專利範圍 平坦床之上、及一個平面化氧化物層形成於該第一側邊牆 介電墊層之外且置於該共源導電管線之上; 該對可微縮化疊堆閘區(SGR)的每一個由上而下至少 包含該對第二側邊牆介電墊層的一個、一個控制閘導電層 、一個閘間介電層、及一個積體化漂浮閘層具有一個主漂 浮閘層形成於該主動區(AA)之内的該穿透介電層之上及兩 個延伸漂浮閘層形成於該主漂浮閘層的側邊牆之上且置於 該兩個平行淺凹槽隔離區(STI)之内的兩個回蝕第一突出 場氧化物層的侧邊部份之上,其中該兩個延伸漂浮閘層的 每一個至少包含具有一種斜角側邊牆結構的一個延伸導電 層或一個導電側邊牆墊層; 該可微縮化共汲區(SCDR)至少包含一對第三側邊牆介 電墊層形成於該對可微縮化疊堆閘區的側邊牆之上且置於 該平坦表面之上、該第二導電型的一個高摻雜汲擴散區藉 由佈植摻雜質於該對第三側邊牆介電墊層之間的該主動區 (A A)之内的該半導體基板之一個表面部份、及一個共汲導 電島形成於該對第三側邊牆介電墊層之間且置於該高摻雜 沒擴散區之上; 一個雙擴散結構形成於該兩個共源區的每一個或該可 微縮化共汲區之内的該半導體基板之一個表面部份且具有 一個高摻雜源或汲擴散區形成於該雙擴散結構之内,其中 該雙擴散結構至少包含該第二導電型的一個共源或共汲擴 散區形成於該第一導電型的一個較深擴散區之内; 一個埋層離子佈植層形成於該雙擴散結構及該高摻雜Page 40 200525740 6. The scope of the patent application is on a flat bed, and a planarized oxide layer is formed outside the first side wall dielectric cushion layer and placed on the common source conductive pipeline; the pair can be scaled down Each of the stacked gate areas (SGR) from top to bottom includes at least one of the pair of second side wall dielectric pads, a control gate conductive layer, an inter-gate dielectric layer, and an integrated floating The gate layer has a main floating gate layer formed on the penetrating dielectric layer within the active area (AA) and two extended floating gate layers formed on side walls of the main floating gate layer and placed on Above the side portions of the two parallel shallow trench isolation regions (STI) that etch back the first protruding field oxide layer, wherein each of the two extended floating gate layers includes at least one slope An extended conductive layer or a conductive side wall cushion layer of the corner side wall structure; the miniaturizable common drain region (SCDR) includes at least a pair of third side wall dielectric cushion layers formed on the pair of miniaturizable stacks The side wall of the stack gate area is placed on the flat surface, the second guide A highly doped drain diffusion region of a type by implanting a dopant in a surface portion of the semiconductor substrate within the active region (AA) between the pair of third side wall dielectric pads, and A common-drain conductive island is formed between the pair of third side wall dielectric pads and is placed over the highly doped non-diffused region; a double-diffusion structure is formed in each of the two common source regions or the A surface portion of the semiconductor substrate within the common-drain region and having a highly doped source or drain-diffusion region is formed in the double-diffusion structure, wherein the double-diffusion structure includes at least the second conductive type A common source or common drain region is formed in a deeper diffusion region of the first conductivity type; a buried ion implantation layer is formed in the double diffusion structure and the high doping 第41頁 200525740 六、申請專利範圍 汲或源擴散區之間的該穿透介電層之下,其中該第一導電 型的一個雙擴散通道係形成於與該高掺雜汲擴散區連接的 該埋層離子佈植層及該共源擴散區之間或與該高摻雜源擴 散區連接之該埋層離子佈植層及該共汲擴散區之間的該較 深擴散區之一個半導體表面部份;以及 一個金屬位元線連同一個共汲導電島藉由一個罩幕光 阻步驟對準於該主動區(A A)之上來同時成形及蝕刻。Page 41 200525740 6. The scope of the patent application is below the penetrating dielectric layer between the drain or source diffusion region, wherein a double diffusion channel of the first conductivity type is formed in the connection with the highly doped drain diffusion region. A semiconductor between the buried ion implantation layer and the deep diffusion region between the buried ion implantation layer and the common doped source diffusion region or the highly doped source diffusion region The surface portion; and a metal bit line together with a common-drain conductive island are aligned and etched simultaneously on the active area (AA) through a mask photoresist step. 9.如申請專利範圍第8項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該共源/汲擴散區至少包含一個中度摻 雜擴散區或一個高摻雜擴散區而該較深擴散區至少包含一 個中度摻雜擴散區。 1 0 .如申請專利範圍第8項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該埋層離子佈植層至少包含一個淡摻雜 擴散區或一個中度摻雜擴散區。9. The miniaturizable dual-stack stacked gate flash cell structure according to item 8 of the patent application scope, wherein the common source / drain diffusion region includes at least one moderately doped diffusion region or one highly doped diffusion region The deeper diffusion region includes at least one moderately doped diffusion region. 10. The flashable cell structure of the miniaturizable dual-stack stack gate as described in item 8 of the scope of the patent application, wherein the buried ion implantation layer includes at least one lightly doped diffusion region or one moderately doped diffusion region. Area. 1 1.如申請專利範圍第8項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該共源導電管線至少包含一個高掺雜複 晶矽層、一個高摻雜複晶矽層覆蓋有一個矽化鎢(WS i 2 )、 或鶴(W)層、或一個嫣層概有一個障礙金屬層。 1 2 .如申請專利範圍第8項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該共汲導電島至少包含一個高摻雜複晶1 1. The miniaturizable dual-pair stack gate flash cell structure described in item 8 of the scope of patent application, wherein the common source conductive pipeline includes at least one highly doped polycrystalline silicon layer and one highly doped polycrystalline silicon layer The silicon layer is covered with a tungsten silicide (WS i 2), or a crane (W) layer, or an obstructed metal layer. 12. The miniaturizable dual-pair stack gate flash cell structure as described in item 8 of the scope of patent application, wherein the common-drawing conductive island includes at least one highly doped complex crystal 第42頁 200525740 六、申請專利範圍 矽島、一個高摻雜複晶矽島覆蓋或矽化有一個耐高溫金屬 矽化物層、或一個鎢(w)島襯有一個障礙金屬層。 1 3 .如申請專利範圍第8項所述之可微縮化偶對疊堆閘快閃 細胞元結構,其中該金屬位元線至少包含一個鎢(W )、鋁 (A1)、或銅(Cu)層形成於一個障礙金屬層之上。 1 4. 一種無接點非或型快閃記憶陣列,至少包含: 一種第一導電型的一個半導體基板,其中複數平行淺 凹槽隔離區(STI )及複數主動區(AA)係交變地形成於該半 導體基板之上; 複數虛擬閘區(VGR)交變地形成於該半導體基板之上 且與該複數主動區(A A )互為垂直,其中該複數虛擬閘區( VGR)的每一個形成於兩個共源區之間至少包含一對可微縮 化疊堆閘區(SGR)及一個可微縮化共汲區(SCDR)形成於該 對可微縮化疊堆閘區之間; 該兩個共源區的每一個至少包含一對第一側邊牆介電 墊層形成於鄰近虛擬閘區(VGR)的側邊牆之上且置於由該 複數主動區(AA)的每一個之内的一個穿透介電層及該複數 平行淺凹槽隔離區(STI)的每一個之内的一個回蝕第二突 出場氧化物層所交變地組成之一個平坦表面的一部份之上 、一種第二導電型的複數高摻雜源擴散區藉由佈植摻雜質 於該對第一側邊牆介電墊層之間的該複數主動區(A A)之内 的該半導體基板之表面部份、一個共源導電管線形成於該Page 42 200525740 6. Scope of patent application Silicon island, a highly doped compound silicon island is covered or silicided with a high temperature resistant metal silicide layer, or a tungsten (w) island is lined with a barrier metal layer. 1 3. The flashable cell structure of the miniaturizable dual-stack stack gate as described in item 8 of the scope of the patent application, wherein the metal bit line includes at least one tungsten (W), aluminum (A1), or copper (Cu ) Layer is formed on a barrier metal layer. 1 4. A non-contact non-or type flash memory array, comprising at least: a semiconductor substrate of a first conductivity type, wherein a plurality of parallel shallow groove isolation regions (STI) and a plurality of active regions (AA) are alternately grounded. Formed on the semiconductor substrate; a plurality of virtual gate regions (VGR) are alternately formed on the semiconductor substrate and perpendicular to the plurality of active regions (AA), wherein each of the plurality of virtual gate regions (VGR) Formed between two common source regions including at least a pair of miniaturizable stack gate regions (SGR) and a miniaturizable common drain region (SCDR) formed between the pair of miniaturizable stack gate regions; the two Each of the common source regions includes at least a pair of first side wall dielectric pads formed on the side walls adjacent to the virtual gate region (VGR) and placed between each of the plurality of active regions (AA). A portion of a flat surface alternately formed by a penetrating dielectric layer and an etchback second protruding field oxide layer within each of the plurality of parallel shallow groove isolation regions (STIs) A plurality of highly doped source diffusion regions of a second conductivity type Dopant in the first side wall of the plurality of active regions between the dielectric underlayer (A A) of the inner surface portion of the semiconductor substrate, a common source line is formed on the conductive 第43頁 200525740 六、申請專利範圍 對第一側邊牆介電墊層之間且置於由該複數平行淺凹槽隔 離區(STI)的每一個之内的一個回蝕第三突出場氧化物層 及該複數主動區(A A)的每一個之内的該複數高摻雜源擴散 區的一個所交變地組成的一個平坦床之上、及一個平面化 氧化物層形成於該對第一側邊牆介電墊層之間且置於該共 源導電管線之上; 該對可微縮化疊堆閘區(SGR)的每一個由上而下至少 包含一個第二側邊牆介電塾層、一個控制閘導電層、一個 閘間介電層、及複數積體化漂浮閘層,其中該複數積體化 漂浮閘層的每一個至少包含一個主漂浮閘層形成於該複數 主動區(AA)的每一個之内的該穿透介電層之上及兩個延伸 漂浮閘層形成於該主漂浮閘層的側邊牆之上且置於鄰近平 行淺凹槽隔離區(STI)之兩個回蝕第一突出場氧化物層的 側邊部份之上; 該可微縮化共汲區至少包含一對第三側邊牆介電墊層 形成於該對可微縮化疊堆閘區的側邊牆之上且置於該平坦 表面之上、該第二導電型的複數高摻雜汲擴散區藉由佈植 摻雜質於該對第三側邊牆介電墊層之間的該複數主動區( AA)之内的該半導體基板之表面部份、及複數共汲導電島 形成於該對第三側邊牆介電墊層之間且置於該複數高摻雜 汲擴散區之上; 複數雙擴散結構藉由佈植摻雜質於該複數主動區(A A) 之内的該半導體基板之表面部份形成於該兩個共源區的每 一個或該可微縮化共汲區之内;以及Page 43 200525740 VI. Scope of patent application: An etch-back third protrusion field oxidation between the first side wall dielectric cushion layer and placed within each of the plurality of parallel shallow groove isolation regions (STI) An object layer and a flat bed of an alternately composed of the plurality of highly doped source diffusion regions within each of the plurality of active regions (AA), and a planarized oxide layer are formed on the pair of first One side wall dielectric cushion layer is placed on the common source conductive pipeline; each of the pair of miniaturizable stack gate areas (SGR) includes at least one second side wall dielectric from top to bottom The plutonium layer, a control gate conductive layer, an inter-gate dielectric layer, and a plurality of integrated floating gate layers, wherein each of the plurality of integrated floating gate layers includes at least one main floating gate layer formed in the plurality of active regions Above each of (AA) the penetrating dielectric layer and two extended floating gate layers are formed on the side walls of the main floating gate layer and placed adjacent to the parallel shallow groove isolation region (STI) Two of them etch back a side portion of the first protruding field oxide layer; The micronized common drain region includes at least a pair of third side wall dielectric pads formed on the side walls of the pair of miniaturizable stack gate regions and placed on the flat surface. The second conductive type A plurality of highly doped drain diffusion regions are formed by implanting dopants in the surface area of the semiconductor substrate within the plurality of active regions (AA) between the pair of third side wall dielectric pads, and a plurality of A drain conductive island is formed between the pair of third side wall dielectric pads and is placed on the plurality of highly doped drain diffusion regions; a plurality of double diffusion structures are implanted with dopants in the plurality of active regions (AA ), The surface portion of the semiconductor substrate is formed within each of the two common source regions or within the micronizable common drain region; and 第44頁 r 200525740 六、申請專利範圍 該第二導電型的複數埋層離子佈植層形成於該複數雙 擴散結構及該複數高摻雜汲或源擴散區之間的該穿透介電 層之下的該複數主動區(AA)之該半導體基板的表面部份, 其中該第一導電型的一個雙擴散通道係形成於該複數埋層 離子佈植層的每一個及該共源或共汲擴散區之間的該第一 導電型的一個較深擴散區的一個半導體表面部份。 1 5.如申請專利範圍第1 4項所述之無接點非或型快閃記憶 陣列,其中複數金屬位元線連同該可微縮化共汲區之内的 該複數共汲導電島係藉由一個罩幕光阻步驟對準於該複數 主動區(A A )之上來同時成形及蝕刻。 憶一 記有 閃具 快含 型包 或少 非至 點個 接一 無每 之的 述層 所閘 項浮 4 1漂 第伸 圍延 範個 利兩 專該 請中 申其 如, •列 6 1陣 墊 牆 邊 側 導 個 1 或 層 導 伸 延 個 1 的 構 結 牆 邊 側 角 斜。 種 憶擴 記源 閃共 快該 型於 或位 非個 點一 接每 無的 之區 述散 所擴 項汲 4 1 / 第源 圍共 範數 利複 專該 請中 申其 如, •列 7 1陣 佈。 子接 *-ec 層個 埋一 數每 複的 該區 而散 内擴 之汲 區雜 散摻 擴高 深數 較複 亥亥 =口=口 於與 成係 形個 係一 内每 之的 區層 散植 -It擴 記汲 閃共 快該 型於 或位 非個 點一 接每 無的 之區 述散 所擴 項汲 4 1雜 第摻 圍高 範數 利複 專該 請中 申其 如, •列 8 1陣 第45頁 200525740 六、申請專利範圍 散區之内係形成於該較深擴散區之内而該複數埋層離子佈 植層的每一個係與該複數高摻雜源擴散區的每一個連接。 1 9.如申請專利範圍第1 4項所述之無接點非或型快閃記憶 陣列,其中該共源/汲擴散區至少包含一個中度摻雜擴散 區或一個高摻雜擴散區而該較深擴散區至少包含一個中度 摻雜擴散區。Page 44r 200525740 6. Scope of patent application The second buried conductive ion implantation layer is formed between the multiple double diffusion structure and the penetrating dielectric layer between the plurality of highly doped drain or source diffusion regions. The surface portion of the semiconductor substrate of the plurality of active regions (AA) below, wherein a double diffusion channel of the first conductivity type is formed in each of the plurality of buried ion implantation layers and the common source or common A semiconductor surface portion of a deeper diffusion region of the first conductivity type between the drain diffusion regions. 1 5. The non-contact non-or type flash memory array as described in item 14 of the scope of the patent application, wherein the plurality of metal bit lines together with the plurality of common sinking conductive islands within the scaleable common sinking region are borrowed. A mask photoresist step is aligned on the plurality of active areas (AA) to simultaneously form and etch. Recall that there are flashing fast-packing packages or less non-exhaustive storyboards floating items 4 1 drifting and enlarging Fan Fanli and the two specialties, please apply for them, column 6 1 array of side walls with side guides 1 or layer guides extending sideways with 1 side slopes. The type of memory expansion and expansion of the source and flash is fast. The type is extended in the NOR position. The expanded term is 4 1 / the source range of the common norm. 7 1 array of cloth. The sub-connected * -ec layers are buried one by one in this area and the number of spurs in the diffused area is increased by the number of spurs in the area. Scattered-It expands the memory of the flash, and the type is described in the following paragraphs. The expanded term is 4 1 miscellaneous mixed with a high norm, and the compound should be applied. Column 8 1 array, page 45, 200525740 VI. The area within the patent application area is formed in the deeper diffusion area and each of the plurality of buried ion implantation layers is related to the plurality of highly doped source diffusion areas. Every connection. 19. The non-contact non-or type flash memory array as described in item 14 of the scope of patent application, wherein the common source / drain diffusion region includes at least one moderately doped diffusion region or one highly doped diffusion region and The deeper diffusion region includes at least one moderately doped diffusion region. 2 0 .如申請專利範圍第1 4項所述之無接點非或型快閃記憶 陣列,其中該複數埋層離子佈植層的每一個至少包含一個 中度摻雜擴散區或一個淡摻雜擴散區。20. The non-contact non-or-type flash memory array as described in item 14 of the scope of patent application, wherein each of the plurality of buried ion implantation layers includes at least one moderately doped diffusion region or one lightly doped region. Miscellaneous diffusion area. 第46頁Page 46
TW93101475A 2004-01-20 2004-01-20 Scalable paired stack-gate flash cell structure and its contactless NOR-type flash memory array TWI232580B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93101475A TWI232580B (en) 2004-01-20 2004-01-20 Scalable paired stack-gate flash cell structure and its contactless NOR-type flash memory array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93101475A TWI232580B (en) 2004-01-20 2004-01-20 Scalable paired stack-gate flash cell structure and its contactless NOR-type flash memory array

Publications (2)

Publication Number Publication Date
TWI232580B TWI232580B (en) 2005-05-11
TW200525740A true TW200525740A (en) 2005-08-01

Family

ID=36320072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93101475A TWI232580B (en) 2004-01-20 2004-01-20 Scalable paired stack-gate flash cell structure and its contactless NOR-type flash memory array

Country Status (1)

Country Link
TW (1) TWI232580B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678707B (en) * 2019-02-27 2019-12-01 大陸商長江存儲科技有限責任公司 Bit line driver device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678707B (en) * 2019-02-27 2019-12-01 大陸商長江存儲科技有限責任公司 Bit line driver device
US10937507B2 (en) 2019-02-27 2021-03-02 Yangtze Memory Technologies Co., Ltd. Bit line driver device including active region

Also Published As

Publication number Publication date
TWI232580B (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US9349879B2 (en) Non-volatile memory devices including blocking insulation patterns with sub-layers having different energy band gaps
US7186607B2 (en) Charge-trapping memory device and method for production
TWI693698B (en) Two transistor finfet-based split gate non-volatile floating gate flash memory and method of fabrication
US20080057648A1 (en) Direct tunneling semiconductor memory device and fabrication process thereof
CN101147263A (en) Structure and method of fabricating high-density, trench-based non-volatile random access SONOS memory cells for SOC applications
US20130161717A1 (en) Non-volatile memory device and method for fabricating the same
CN107591449A (en) Semiconductor devices and its manufacture method
CN107464815A (en) Semiconductor devices and its manufacture method
JP2018107176A (en) Manufacturing method for semiconductor device and semiconductor device
TWI721055B (en) Flash memory cell structure and integrated circuit structure
JP4080485B2 (en) Bit line structure and manufacturing method thereof
TWI234244B (en) Paired stack-gate flash cell structure and its contactless NAND-type flash memory arrays
TW200406884A (en) Method of forming a stacked-gate cell structure and its NAND-type flash memory array
US8014203B2 (en) Memory device and methods for fabricating and operating the same
TWI685954B (en) Non-volatile memory structure and manufacturing method thereof
KR102075004B1 (en) Nonvolatile memory device
TW200525740A (en) Scalable paired stack-gate flash cell structure and its contactless nor-type flash memory array
US7932149B2 (en) Method of manufacturing a semiconductor device
TW586219B (en) Self-aligned split-gate flash cell structure and its contactless flash memory arrays
CN111524893B (en) Non-volatile memory device and method of manufacturing the same
TWI234278B (en) Stack-gate flash cell structure and its contactless NOR-type flash memory array
TWI236140B (en) Scalable string/ground select gate structure and its contactless NAND-type ONO flash memory array
TWI220570B (en) Scalable split-gate flash cell structure and its contactless flash memory arrays
TW575947B (en) Isolated stack-gate flash cell structure and its contactless flash memory arrays
TW561591B (en) A stack-gate flash memory cell structure and its contactless flash memory arrays

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees