TW200523678A - Resist pattern formation method, fine pattern formation method using the same, and liquid crystal element fabrication method - Google Patents
Resist pattern formation method, fine pattern formation method using the same, and liquid crystal element fabrication method Download PDFInfo
- Publication number
- TW200523678A TW200523678A TW093136163A TW93136163A TW200523678A TW 200523678 A TW200523678 A TW 200523678A TW 093136163 A TW093136163 A TW 093136163A TW 93136163 A TW93136163 A TW 93136163A TW 200523678 A TW200523678 A TW 200523678A
- Authority
- TW
- Taiwan
- Prior art keywords
- photoresist pattern
- segmented
- film
- forming
- pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 92
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 48
- 230000007261 regionalization Effects 0.000 title abstract description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 195
- 239000000758 substrate Substances 0.000 claims abstract description 89
- 238000000206 photolithography Methods 0.000 claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 26
- 238000003848 UV Light-Curing Methods 0.000 claims abstract description 16
- 238000000059 patterning Methods 0.000 claims abstract description 15
- 238000005530 etching Methods 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000011521 glass Substances 0.000 claims description 23
- 238000001312 dry etching Methods 0.000 claims description 21
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 claims description 20
- 238000001039 wet etching Methods 0.000 claims description 17
- 238000004380 ashing Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 6
- 229910052770 Uranium Inorganic materials 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 238000001459 lithography Methods 0.000 claims 1
- -1 phenol compound Chemical class 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 11
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 10
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 150000002576 ketones Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 150000002989 phenols Chemical class 0.000 description 8
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229910052799 carbon Chemical group 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 238000006482 condensation reaction Methods 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 3
- UWDMKTDPDJCJOP-UHFFFAOYSA-N 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-ium-4-carboxylate Chemical compound CC1(C)CC(O)(C(O)=O)CC(C)(C)N1 UWDMKTDPDJCJOP-UHFFFAOYSA-N 0.000 description 3
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 3
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- JAGRUUPXPPLSRX-UHFFFAOYSA-N 4-prop-1-en-2-ylphenol Chemical compound CC(=C)C1=CC=C(O)C=C1 JAGRUUPXPPLSRX-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229940116333 ethyl lactate Drugs 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000004922 lacquer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 150000003739 xylenols Chemical class 0.000 description 3
- FJJYHTVHBVXEEQ-UHFFFAOYSA-N 2,2-dimethylpropanal Chemical compound CC(C)(C)C=O FJJYHTVHBVXEEQ-UHFFFAOYSA-N 0.000 description 2
- NKTOLZVEWDHZMU-UHFFFAOYSA-N 2,5-xylenol Chemical compound CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 description 2
- WUQYBSRMWWRFQH-UHFFFAOYSA-N 2-prop-1-en-2-ylphenol Chemical compound CC(=C)C1=CC=CC=C1O WUQYBSRMWWRFQH-UHFFFAOYSA-N 0.000 description 2
- HMNKTRSOROOSPP-UHFFFAOYSA-N 3-Ethylphenol Chemical compound CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 2
- IAVREABSGIHHMO-UHFFFAOYSA-N 3-hydroxybenzaldehyde Chemical compound OC1=CC=CC(C=O)=C1 IAVREABSGIHHMO-UHFFFAOYSA-N 0.000 description 2
- CLAQXRONBVEWMK-UHFFFAOYSA-N 4-[(2-hydroxyphenyl)-(4-hydroxy-2,3,5-trimethylphenyl)methyl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C=2C(=CC=CC=2)O)C=2C(=C(C)C(O)=C(C)C=2)C)=C1C CLAQXRONBVEWMK-UHFFFAOYSA-N 0.000 description 2
- LCJZSIQEJPHPMR-UHFFFAOYSA-N 4-[(4-hydroxy-3-methylphenyl)-(2-hydroxyphenyl)methyl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C(C=2C=C(C)C(O)=CC=2)C=2C(=CC=CC=2)O)=C1 LCJZSIQEJPHPMR-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- LEEBETSNAGEFCY-UHFFFAOYSA-N [N-]=[N+]=[N-].[N-]=[N+]=[N-].O=C1C=CC(=O)C=C1 Chemical compound [N-]=[N+]=[N-].[N-]=[N+]=[N-].O=C1C=CC(=O)C=C1 LEEBETSNAGEFCY-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical compound CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- VFPFQHQNJCMNBZ-UHFFFAOYSA-N ethyl gallate Chemical compound CCOC(=O)C1=CC(O)=C(O)C(O)=C1 VFPFQHQNJCMNBZ-UHFFFAOYSA-N 0.000 description 2
- 238000004508 fractional distillation Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- FBSFWRHWHYMIOG-UHFFFAOYSA-N methyl 3,4,5-trihydroxybenzoate Chemical compound COC(=O)C1=CC(O)=C(O)C(O)=C1 FBSFWRHWHYMIOG-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- JESXATFQYMPTNL-UHFFFAOYSA-N mono-hydroxyphenyl-ethylene Natural products OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- BTFQKIATRPGRBS-UHFFFAOYSA-N o-tolualdehyde Chemical compound CC1=CC=CC=C1C=O BTFQKIATRPGRBS-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical class CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- AFXQOXNRTJFOJV-UHFFFAOYSA-N 2,3,4-triethylphenol Chemical compound CCC1=CC=C(O)C(CC)=C1CC AFXQOXNRTJFOJV-UHFFFAOYSA-N 0.000 description 1
- XRUGBBIQLIVCSI-UHFFFAOYSA-N 2,3,4-trimethylphenol Chemical compound CC1=CC=C(O)C(C)=C1C XRUGBBIQLIVCSI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IXQGCWUGDFDQMF-UHFFFAOYSA-N 2-Ethylphenol Chemical compound CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FPYUJUBAXZAQNL-UHFFFAOYSA-N 2-chlorobenzaldehyde Chemical compound ClC1=CC=CC=C1C=O FPYUJUBAXZAQNL-UHFFFAOYSA-N 0.000 description 1
- AFIAIUIEAKCWCD-UHFFFAOYSA-N 2-cyclohexyl-4-[(5-cyclohexyl-4-hydroxy-2-methylphenyl)-(2-hydroxyphenyl)methyl]-5-methylphenol Chemical compound CC1=CC(O)=C(C2CCCCC2)C=C1C(C=1C(=CC(O)=C(C2CCCCC2)C=1)C)C1=CC=CC=C1O AFIAIUIEAKCWCD-UHFFFAOYSA-N 0.000 description 1
- XYIJEFGAYUMNPF-UHFFFAOYSA-N 2-cyclohexyl-4-[(5-cyclohexyl-4-hydroxy-2-methylphenyl)-(3-hydroxyphenyl)methyl]-5-methylphenol Chemical compound CC1=CC(O)=C(C2CCCCC2)C=C1C(C=1C(=CC(O)=C(C2CCCCC2)C=1)C)C1=CC=CC(O)=C1 XYIJEFGAYUMNPF-UHFFFAOYSA-N 0.000 description 1
- TUBNHXBTFDDYPI-UHFFFAOYSA-N 2-cyclohexyl-4-[(5-cyclohexyl-4-hydroxy-2-methylphenyl)-(4-hydroxyphenyl)methyl]-5-methylphenol Chemical compound CC1=CC(O)=C(C2CCCCC2)C=C1C(C=1C(=CC(O)=C(C2CCCCC2)C=1)C)C1=CC=C(O)C=C1 TUBNHXBTFDDYPI-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- MOEFFSWKSMRFRQ-UHFFFAOYSA-N 2-ethoxyphenol Chemical compound CCOC1=CC=CC=C1O MOEFFSWKSMRFRQ-UHFFFAOYSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- UOBYKYZJUGYBDK-UHFFFAOYSA-M 2-naphthoate Chemical compound C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UOBYKYZJUGYBDK-UHFFFAOYSA-M 0.000 description 1
- XLLXMBCBJGATSP-UHFFFAOYSA-N 2-phenylethenol Chemical compound OC=CC1=CC=CC=C1 XLLXMBCBJGATSP-UHFFFAOYSA-N 0.000 description 1
- VZIRCHXYMBFNFD-HNQUOIGGSA-N 3-(2-Furanyl)-2-propenal Chemical compound O=C\C=C\C1=CC=CO1 VZIRCHXYMBFNFD-HNQUOIGGSA-N 0.000 description 1
- SRWILAKSARHZPR-UHFFFAOYSA-N 3-chlorobenzaldehyde Chemical compound ClC1=CC=CC(C=O)=C1 SRWILAKSARHZPR-UHFFFAOYSA-N 0.000 description 1
- VBIKLMJHBGFTPV-UHFFFAOYSA-N 3-ethoxyphenol Chemical compound CCOC1=CC=CC(O)=C1 VBIKLMJHBGFTPV-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- AYKNBEUSHQHYSX-UHFFFAOYSA-N 4-[(4-ethoxyphenyl)diazenyl]-n,n-diethylaniline Chemical compound C1=CC(OCC)=CC=C1N=NC1=CC=C(N(CC)CC)C=C1 AYKNBEUSHQHYSX-UHFFFAOYSA-N 0.000 description 1
- MOXSMAJIGCIVQY-UHFFFAOYSA-N 4-[(5-amino-3-methyl-1-phenylpyrazol-4-yl)diazenyl]phenol Chemical compound CC1=NN(C=2C=CC=CC=2)C(N)=C1N=NC1=CC=C(O)C=C1 MOXSMAJIGCIVQY-UHFFFAOYSA-N 0.000 description 1
- NYIWTDSCYULDTJ-UHFFFAOYSA-N 4-[2-(2,3,4-trihydroxyphenyl)propan-2-yl]benzene-1,2,3-triol Chemical compound C=1C=C(O)C(O)=C(O)C=1C(C)(C)C1=CC=C(O)C(O)=C1O NYIWTDSCYULDTJ-UHFFFAOYSA-N 0.000 description 1
- YMSALPCDWZMQQG-UHFFFAOYSA-N 4-[2-(2,4-dihydroxyphenyl)propan-2-yl]benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)(C)C1=CC=C(O)C=C1O YMSALPCDWZMQQG-UHFFFAOYSA-N 0.000 description 1
- XJGTVJRTDRARGO-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)(C)C1=CC=C(O)C=C1 XJGTVJRTDRARGO-UHFFFAOYSA-N 0.000 description 1
- WXYSZTISEJBRHW-UHFFFAOYSA-N 4-[2-[4-[1,1-bis(4-hydroxyphenyl)ethyl]phenyl]propan-2-yl]phenol Chemical compound C=1C=C(C(C)(C=2C=CC(O)=CC=2)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 WXYSZTISEJBRHW-UHFFFAOYSA-N 0.000 description 1
- CQKQINNUKSBEQR-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]diazenyl]phenol Chemical compound CN(C)c1ccc(cc1)N=Nc1ccc(O)cc1 CQKQINNUKSBEQR-UHFFFAOYSA-N 0.000 description 1
- DYSSRUSKYPHDCK-UHFFFAOYSA-N 4-[amino-bis(4-hydroxyphenyl)methyl]phenol Chemical compound OC1=CC=C(C=C1)C(N)(C1=CC=C(C=C1)O)C1=CC=C(C=C1)O DYSSRUSKYPHDCK-UHFFFAOYSA-N 0.000 description 1
- QADWFOCZWOGZGV-UHFFFAOYSA-N 4-[bis(4-hydroxy-2,5-dimethylphenyl)methyl]benzene-1,2-diol Chemical compound C1=C(O)C(C)=CC(C(C=2C=C(O)C(O)=CC=2)C=2C(=CC(O)=C(C)C=2)C)=C1C QADWFOCZWOGZGV-UHFFFAOYSA-N 0.000 description 1
- QLLXOMGGDNSEMO-UHFFFAOYSA-N 4-[bis(4-hydroxy-2,5-dimethylphenyl)methyl]benzene-1,3-diol Chemical compound C1=C(O)C(C)=CC(C(C=2C(=CC(O)=CC=2)O)C=2C(=CC(O)=C(C)C=2)C)=C1C QLLXOMGGDNSEMO-UHFFFAOYSA-N 0.000 description 1
- TYHOGIGLTWTDIM-UHFFFAOYSA-N 4-[bis(4-hydroxyphenyl)methyl]-2-methoxyphenol Chemical compound C1=C(O)C(OC)=CC(C(C=2C=CC(O)=CC=2)C=2C=CC(O)=CC=2)=C1 TYHOGIGLTWTDIM-UHFFFAOYSA-N 0.000 description 1
- XHHCPUPIFYYPCN-UHFFFAOYSA-N 4-[bis(5-cyclohexyl-4-hydroxy-2-methylphenyl)methyl]benzene-1,2-diol Chemical compound CC1=CC(O)=C(C2CCCCC2)C=C1C(C=1C(=CC(O)=C(C2CCCCC2)C=1)C)C1=CC=C(O)C(O)=C1 XHHCPUPIFYYPCN-UHFFFAOYSA-N 0.000 description 1
- AVPYQKSLYISFPO-UHFFFAOYSA-N 4-chlorobenzaldehyde Chemical compound ClC1=CC=C(C=O)C=C1 AVPYQKSLYISFPO-UHFFFAOYSA-N 0.000 description 1
- WTQZSMDDRMKJRI-UHFFFAOYSA-N 4-diazoniophenolate Chemical compound [O-]C1=CC=C([N+]#N)C=C1 WTQZSMDDRMKJRI-UHFFFAOYSA-N 0.000 description 1
- KIIIPQXXLVCCQP-UHFFFAOYSA-N 4-propoxyphenol Chemical compound CCCOC1=CC=C(O)C=C1 KIIIPQXXLVCCQP-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- FBSOISZAUDOYJR-UHFFFAOYSA-N C=1(C(=CC=C(C1)C)C)O.C1=C(C(=CC=C1)C)C Chemical compound C=1(C(=CC=C(C1)C)C)O.C1=C(C(=CC=C1)C)C FBSOISZAUDOYJR-UHFFFAOYSA-N 0.000 description 1
- BSGVBQHSDDHVLA-UHFFFAOYSA-N C=C.C=C.C(C)(=O)O.C(C(C)O)O Chemical group C=C.C=C.C(C)(=O)O.C(C(C)O)O BSGVBQHSDDHVLA-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical class CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 239000004262 Ethyl gallate Substances 0.000 description 1
- HYTRYEXINDDXJK-UHFFFAOYSA-N Ethyl isopropyl ketone Chemical compound CCC(=O)C(C)C HYTRYEXINDDXJK-UHFFFAOYSA-N 0.000 description 1
- XXRCUYVCPSWGCC-UHFFFAOYSA-N Ethyl pyruvate Chemical compound CCOC(=O)C(C)=O XXRCUYVCPSWGCC-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- SJJISKLXUJVZOA-UHFFFAOYSA-N Solvent yellow 56 Chemical compound C1=CC(N(CC)CC)=CC=C1N=NC1=CC=CC=C1 SJJISKLXUJVZOA-UHFFFAOYSA-N 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- SYWDWCWQXBUCOP-UHFFFAOYSA-N benzene;ethene Chemical compound C=C.C1=CC=CC=C1 SYWDWCWQXBUCOP-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- XOPOEBVTQYAOSV-UHFFFAOYSA-N butyl 3,4,5-trihydroxybenzoate Chemical class CCCCOC(=O)C1=CC(O)=C(O)C(O)=C1 XOPOEBVTQYAOSV-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229960002944 cyclofenil Drugs 0.000 description 1
- KVFDZFBHBWTVID-UHFFFAOYSA-N cyclohexanecarbaldehyde Chemical compound O=CC1CCCCC1 KVFDZFBHBWTVID-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical class CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- UHKJHMOIRYZSTH-UHFFFAOYSA-N ethyl 2-ethoxypropanoate Chemical compound CCOC(C)C(=O)OCC UHKJHMOIRYZSTH-UHFFFAOYSA-N 0.000 description 1
- 235000019277 ethyl gallate Nutrition 0.000 description 1
- 229940117360 ethyl pyruvate Drugs 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007273 lactonization reaction Methods 0.000 description 1
- OVWYEQOVUDKZNU-UHFFFAOYSA-N m-tolualdehyde Chemical compound CC1=CC=CC(C=O)=C1 OVWYEQOVUDKZNU-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- BDJSOPWXYLFTNW-UHFFFAOYSA-N methyl 3-methoxypropanoate Chemical compound COCCC(=O)OC BDJSOPWXYLFTNW-UHFFFAOYSA-N 0.000 description 1
- IBKQQKPQRYUGBJ-UHFFFAOYSA-N methyl gallate Natural products CC(=O)C1=CC(O)=C(O)C(O)=C1 IBKQQKPQRYUGBJ-UHFFFAOYSA-N 0.000 description 1
- CWKLZLBVOJRSOM-UHFFFAOYSA-N methyl pyruvate Chemical compound COC(=O)C(C)=O CWKLZLBVOJRSOM-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- DSNYFFJTZPIKFZ-UHFFFAOYSA-N propoxybenzene Chemical compound CCCOC1=CC=CC=C1 DSNYFFJTZPIKFZ-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/36—Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/1288—Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Materials For Photolithography (AREA)
- Drying Of Semiconductors (AREA)
- Weting (AREA)
- Thin Film Transistor (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
200523678 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明,係關於光阻圖型之形成方法,及使用其形成 微細圖型之形成方法及液晶顯示元件之製造方法。 【先前技術】 在液晶顯不兀件之液晶陣列基板之製造,係使用到使 用光阻被膜之光微影術步驟。 φ 弟2圖〜桌15圖’係例不製造第16圖所示構造之 Si (無定形(amorphous )二氧化矽)形 TFT陣列基板 之步驟。在此例,首先係如第圖2所示,在玻璃基板1上 形成閘電極層2 ’。 接著,以含有在閘電極層2’上形成光阻被膜,將該光 阻被膜,透過光罩予以選擇性曝光之步驟,之光微影術予 以予以圖型化,如第3圖所示可形成光阻圖型R 1 (第1 光微影術步驟)。 # 接著,將所得之光阻圖型R1作爲光罩使閘電極層2 ’ 倉虫刻後,藉由光阻圖型R1之除去,而可形成第4圖所示 * 之閘電極2。 接著,如第5圖所示,在閘電極2所形成之玻璃基板 1上可形成第1絕緣膜3,進而在其上依順序形成第1 α - S i 層4’及f虫刻檔止(stopper)膜5,。 以含有在蝕刻檔止膜5’上形成光阻被膜,使該光阻被 膜’透過光罩進行選擇性曝光之步驟,之光微影術予以予 200523678 (2) 以圖型化’如第6圖所示來形成光阻圖型r2 (第2光微 影術步騾)。 接著,使所得之光阻圖型R2作爲光罩使蝕刻檔止膜 5’及第Ία-Si層4’蝕刻後,藉由光阻圖型r2之除去,可 形成第7圖所示之被圖型化之第1 a _ S i層4與蝕刻檔止膜 5之層合體。 在其上,如第8圖所示,可使第2a_si層6,及源汲電 極形成用金屬膜7 ’依順序形成。 接著,以含有在該金屬膜7’上使光阻被膜形成,使該 光阻被膜,透過光罩進行選擇性曝光之步驟,之光微影術 予以予以圖型化,來形成如第9圖所示之光阻圖型R 3 ( 第3光微影術步驟)。 此後,將所得光阻圖型R3作爲光罩使金屬膜V及第 2cx-Si層6f予以蝕刻後,藉由光阻圖型R3之除去,如第 1 〇圖所示,在蝕刻檔止膜5上,可形成被圖型化之第2 a -Si層6與源電極及汲電極7。 接著,如第1 1圖所示,在玻璃基板1上形成第2絕 緣膜8 ’。 接著,以含有在該第2絕緣膜8’上形成光阻被膜,將 該光阻被膜,透過光罩進行選擇性曝光之步驟,之光微影 術予以圖型化,如第1 2圖所示,可形成光阻圖型R4 (第 4光微影術步驟)。 此後,使所得之光阻圖型R4作爲光罩將第2絕緣膜 8 ’蝕刻後,藉由光阻圖型R4之除去,如第1 3圖所示,被 200523678 (3) 圖型化成具有接觸孔之形狀之第2絕緣膜8。 接著,如第1 4圖所示,在玻璃基板1上形成透明導 電膜9’。 接著,以含有在該透明導電膜V上形成光阻被膜,使 該光阻被膜,將透過光罩進行選擇性曝光之步驟,之光微 影術予以圖型化,如第1 5圖所示,可形成光阻圖型R 5 ( 第5光微影術步驟)。 此後,將所得之光阻圖型R5作爲光罩使透明導電膜 9'予以蝕刻後,光阻圖型R 5之除去,如第1 6圖所示,可 形成被圖型化之透明導電膜9,而獲得液晶陣列基板。 經過此步驟來製造液晶陣列基板之方法中,使用光罩 進行選擇性曝光之光微影術步驟則進行合計5次(第1〜 第5光微影術步驟)。 然而,近年來,液晶顯示元件之低價格化被強烈地期 望’因此製造步驟之簡略化’光阻消費量之抑制等進而被 要求。 因此,爲因應此等期望,因領域之不同使用厚度不同 之段狀之光阻圖型’可使得習知要使用2次之光微影術步 騾之步驟以1次之光微影術步驟就可進行之方法被提案出 。在此方法,在進行以段狀光阻圖型作爲光罩蝕刻後,藉 由利用其厚度之差,可不必依照光微影術步驟,而使此段 狀光阻圖型之平面形狀予以變形者,再度作爲光罩使用來 進行蝕刻。 200523678 (4) 【發明內容】 〔發明欲解決課題〕 根據上述方法,理論上,因可減少光微影術步驟之次 數’故藉此可抑制光阻之消費量,步驟亦可被簡略化,而 可期待在廉價液晶顯示元件之製造爲有效。 但是’在習知之液晶顯示元件製造爲恰當的光阻材料 ’爲了要形成此種段狀光阻圖型,則會使耐蝕刻性或耐熱 性不夠充分,而要實現此方法則有困難。 具體而言,如上述,段狀光阻圖型在其變形前與變形 後因係作爲蝕刻之光罩來使用,故高度蝕刻耐性爲必要, 而要形成此種具有高蝕刻耐性之段狀之光阻圖型則有困難 〇 又’使用於液晶顯示元件製造之光阻圖型,爲了要可 耐蝕刻處理或注入(inplantation )處理,則有實施後烘 烤處理使耐熱性提高之情形,但在習知之液晶顯示元件製 造上爲恰當的光阻材料,在廉價且且高感度之反面,因耐 熱性傾向於劣化,因後烘烤處理會使得段狀之光阻圖型流 動,而要維持不同厚度之形狀則有困難。 本發明,係鑑於上述情事而完成者,其目的爲提供一 種耐蝕刻性及耐熱性優異,可形成段狀光阻圖型之光阻圖 型之形成方法。 又本發明之目的係提供一種,使用本發明光阻圖型之 形成方法之微細圖型之形成方法,及使用該等液晶顯示元 件之製造方法。 _7_ 200523678 (5) 〔解決課題之手段〕 爲達成上述目的,本發明之光阻圖型之形成方法係具 有,(A )在基體上形成光阻被膜之步驟,(B )經含有 選擇性曝光之光微影術步驟,使前述光阻被膜,被圖型化 成具有厚壁部與薄壁部之圖型形狀之步驟,及(C )進行 前述圖型化後,進行U V固化處理,來形成具有厚壁部與 薄壁部之段狀光阻圖型之步驟。 本發明之微細圖型之形成方法係,(D )進行前述 ϋ V固化處理後,進而具有進行後烘烤處理之步驟爲佳。 本發明之微細圖型之形成方法,作爲上述基體,係在 玻璃基板上使閘電極,第1絕緣膜,第1無定形二氧化矽 膜’蝕刻檔止膜,第2無定形二氧化矽膜,及源汲電極形 成用金屬膜,具有以自玻璃基板側依照順序被層合之多層 構造者爲佳。 本發明之微細圖型之形成方法,在形成前述段狀光阻 圖型後,進而以具有,(Ε )在使該段狀光阻圖型作爲光 罩之前述基體上實施蝕刻處理,其後,(F )相對於該段 狀光阻圖型進行灰化處理,使前述薄壁部被除去,(G ) 在除去前述薄壁部後,在使厚壁部作爲光罩之前述基體實 施蝕刻處理,其後(Η )將前述段狀光阻圖型之厚壁部除 去之步驟爲佳。 或者,本發明之微細圖型之形成方法係,以使用具有 前述多層構造之基體之本發明之光阻圖型之形成方法來形 -8- 200523678 (6) 成前 阻圖 無定 二氧 阻圖 述薄 成用 前述 型之 用金 第2 板上 元件 發明 用具 法, 上設 影術 上形 微影 述段狀光阻圖型後,進而具有,(E’)使前述段狀光 型作爲光罩之前述源汲電極形成用金屬膜,前述第2 形二氧化砂膜,前述融刻檔止膜,及前述第1無定形 化矽膜予以蝕刻處理,其後,(F )相對於該段狀光 型進行灰化處理,使前述薄壁部除去,(G’)在將前 壁部除去後,將使厚壁部作爲光罩之前述源汲電極形 金屬腠及前述第2無定形二氧化砂膜予以齡刻處理使 蝕刻檔止膜層曝光,其後,(Η )使前述段狀光阻圖 厚壁部除去之步驟爲佳。 本發明之微細圖型之形成方法係,前述源汲電極形成 屬膜之蝕刻處理爲濕蝕刻處理或者乾蝕刻處理,前述 無定形二氧化矽膜之蝕刻處理以乾蝕刻處理爲佳。 本發明之液晶顯示元件之製造方法係,具有在玻璃基 形成像素圖型來製造液晶陣列基板之步驟的液晶顯示 之製造方法’其爲,使前述像素圖型之一部份,由本 之微細圖型之形成方法來形成。 或者’本發明之液晶顯示元件之製造方法,係以在使 有則述多層構造之基體之本發明之微細圖型之形成方 來形成微細圖型後,進而具有:(1 )在該微細圖型 置第2絕緣膜之步驟,(j )將第2絕緣膜藉由光微 予以圖型化之步驟,(Κ )在被圖型化之第2絕緣膜 成透明導電膜之步驟,以(L )使透明導電膜藉由光 術予以圖型化之步驟爲佳。 -9- 200523678 (7) 〔發明之效果〕 根據本發明之光阻圖型之形成方法,在使光阻被膜圖 型化後實施UV固化,而可形成耐蝕刻性’耐熱性良好, 形狀穩定性優異之段狀光阻圖型。 又,在液晶顯示元件製造中,光阻消費量與半導體製 造步驟比較爲顯著的大量,又爲使大型基板生產效率良好 的製品化則生產率之提高爲必要不可缺。習知,在此種用 途例如使用無分餾,低分子量之樹脂之光阻材料等,雖可 使用廉價且高感度之光阻材料,但,因耐熱性傾向於劣化 ,故會使後烘烤處理所致段狀之光阻圖型造成流動,使得 維持厚度爲不同形狀會有困難。 根據本發明,即使使用此種廉價且高感度之光阻材料 ,亦可形成耐蝕刻性,耐熱性良好的段狀光阻圖型。 根據本發明之微細圖型之形成方法,因段狀光阻圖型 之耐蝕刻性優異,故使該段狀光阻圖型作爲光罩基體予以 蝕刻後,使該段狀光阻圖型之薄壁部以灰化處理除去者再 度作爲光罩使用,可使基體蝕刻,故使用光罩使光阻被膜 圖型化之光微影術步驟之次數可予以減少。 因此,可抑制光阻之消費量,亦可削減較爲高價的光 罩之費用,進而使步驟簡略化。 根據本發明之液晶顯示元件之製造方法,係在玻璃基 板上使像素圖型形成來製造液晶陣列基板之步驟中因可減 少光微影術步騾之次數,藉此,可實現光阻消費量之抑制 ’使用光罩之削減。又製造步驟亦可簡略化,故在製造廉 -10- 200523678 (8) 價之液晶顯示元件爲有效。 〔實施發明之最佳型態〕 〈光阻組成物〉 使用於光阻被膜之形成之光阻組成物,並無特別限制 ,可適用目前爲止用於液晶顯示元件製造用之光阻材料。 例如,(A )相對於鹼可溶性樹脂1 0 0質量份,(B )含有下述一般式(I )所示苯酚化合物5〜25質量份, 相對於(A )成分與(B )成分之總質量1 〇〇質量份,含 有(C )選自下述一般式(III )所示苯醌二疊氮酯化物( 感光性成分1 )及下述一般式(V )所示苯醌二疊氮酯化 物(感光性成分2 )之至少一種於1 5〜4 0質量份之範圍 ,進而(D )含有有機溶劑之正型光阻組成物可恰當地使 用。200523678 九 IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a method for forming a photoresist pattern, a method for forming a fine pattern using the same, and a method for manufacturing a liquid crystal display element. [Prior art] The manufacture of liquid crystal array substrates for liquid crystal display devices is a photolithography process using a photoresist film. Figure 2 to Figure 15 to Table 15 'are examples of steps in which a Si (amorphous silicon dioxide) shape TFT array substrate having the structure shown in Figure 16 is not manufactured. In this example, first, as shown in FIG. 2, a gate electrode layer 2 'is formed on a glass substrate 1. Next, a step of forming a photoresist film on the gate electrode layer 2 ′, and selectively exposing the photoresist film through a photomask, and patterning the photolithography is shown in FIG. 3. Photoresist pattern R 1 is formed (1st photolithography step). # Next, using the obtained photoresist pattern R1 as a photomask to etch the gate electrode layer 2 ′, the photoresist pattern R1 can be removed to form the gate electrode 2 shown in FIG. 4. Next, as shown in FIG. 5, a first insulating film 3 may be formed on the glass substrate 1 formed by the gate electrode 2, and a first α-S i layer 4 ′ and a f-cut stop may be sequentially formed thereon. (Stopper) film 5. The step of forming a photoresist film on the etch stop film 5 'and allowing the photoresist film to be selectively exposed through a photomask is given by photolithography 200523678 (2) Patterned as described in Section 6 As shown in the figure, a photoresist pattern r2 is formed (second photolithography step). Next, using the obtained photoresist pattern R2 as a mask to etch the etching stopper film 5 'and the Ία-Si layer 4', the photoresist pattern r2 can be removed to form a blanket as shown in FIG. 7. The laminated body of the patterned first a_Si layer 4 and the etch stop film 5. On this, as shown in FIG. 8, the 2a_si layer 6 and the source / drain formation metal film 7 'can be sequentially formed. Next, a step including forming a photoresist film on the metal film 7 ', and selectively exposing the photoresist film through a photomask, and patterning the photolithography to form a photoimage 9 Photoresist pattern R 3 shown (3rd photolithography step). After that, the photoresist pattern R3 is used as a mask to etch the metal film V and the second cx-Si layer 6f, and then the photoresist pattern R3 is removed. As shown in FIG. 10, the stop film is etched. 5, a patterned second a-Si layer 6 and a source electrode and a drain electrode 7 may be formed. Next, as shown in FIG. 11, a second insulating film 8 ′ is formed on the glass substrate 1. Next, a step of forming a photoresist film on the second insulating film 8 ′, and selectively exposing the photoresist film through a photomask, and patterning the photolithography is shown in FIG. 12 The photoresist pattern R4 can be formed (4th photolithography step). Thereafter, the obtained photoresist pattern R4 is used as a mask to etch the second insulating film 8 ′, and then the photoresist pattern R4 is removed. As shown in FIG. 13, it is patterned into 200523678 (3) pattern to have The second insulating film 8 in the shape of a contact hole. Next, as shown in Fig. 14, a transparent conductive film 9 'is formed on the glass substrate 1. Next, a step of selectively forming a photoresist film on the transparent conductive film V so that the photoresist film is transmitted through a photomask is patterned by photolithography, as shown in FIG. 15 To form a photoresist pattern R 5 (5th photolithography step). Thereafter, by using the obtained photoresist pattern R5 as a photomask to etch the transparent conductive film 9 ', the photoresist pattern R5 is removed, and as shown in FIG. 16, a patterned transparent conductive film can be formed. 9, while obtaining a liquid crystal array substrate. In the method for manufacturing a liquid crystal array substrate after this step, a photolithography step using a photomask for selective exposure is performed a total of 5 times (1st to 5th photolithography steps). However, in recent years, reduction in the price of liquid crystal display elements has been strongly expected, and therefore simplification of manufacturing steps, and suppression of consumption of photoresist and the like have been demanded. Therefore, in response to these expectations, the use of segmented photoresist patterns with different thicknesses can make it known to use two steps of photolithography steps and one step of photolithography steps. A workable approach is proposed. In this method, after the segmented photoresist pattern is etched, the planar shape of the segmented photoresist pattern can be deformed without using the photolithography step by using the difference in thickness. Or, it is used as a photomask again for etching. 200523678 (4) [Summary of the invention] [Inventive problem to be solved] According to the above method, theoretically, the number of steps of photolithography can be reduced. Therefore, the consumption of photoresist can be suppressed, and the steps can be simplified. On the other hand, it can be expected to be effective in the manufacture of inexpensive liquid crystal display elements. However, "the conventional liquid crystal display element is manufactured as an appropriate photoresist material." In order to form such a segmented photoresist pattern, etching resistance or heat resistance are insufficient, and it is difficult to realize this method. Specifically, as described above, since the segmented photoresist pattern is used as a mask for etching before and after deformation, a high degree of etching resistance is necessary, and it is necessary to form such a segmented pattern having high etching resistance. The photoresist pattern is difficult. In addition, the photoresist pattern used in the manufacture of liquid crystal display elements may be subjected to post-baking treatment to improve heat resistance in order to be resistant to etching treatment or implantation treatment, but It is a suitable photoresist material in the manufacture of conventional liquid crystal display elements. On the opposite side of cheap and high sensitivity, the heat resistance tends to deteriorate, and the post-baking process will cause the segmented photoresist pattern to flow, which must be maintained. Shapes of different thicknesses are difficult. The present invention has been made in view of the foregoing circumstances, and an object thereof is to provide a method for forming a photoresist pattern having excellent etching resistance and heat resistance and capable of forming a segmented photoresist pattern. Another object of the present invention is to provide a method for forming a fine pattern using the method for forming a photoresist pattern according to the present invention, and a method for manufacturing the liquid crystal display element. _7_ 200523678 (5) [Means to solve the problem] In order to achieve the above-mentioned object, the method for forming a photoresist pattern of the present invention includes (A) a step of forming a photoresist film on a substrate, and (B) a process including selective exposure The photolithography step is a step of patterning the aforementioned photoresist film into a pattern shape having a thick wall portion and a thin wall portion, and (C) performing the aforementioned patterning, and then performing UV curing treatment to form A step of a stepped photoresist pattern having a thick wall portion and a thin wall portion. In the method for forming a fine pattern of the present invention, (D) After performing the aforementioned DV curing treatment, it is preferable to further include a step of performing a post-baking treatment. In the method for forming a fine pattern of the present invention, as the substrate, a gate electrode, a first insulating film, a first amorphous silicon dioxide film, an etching stopper film, and a second amorphous silicon dioxide film are formed on a glass substrate. It is preferable that the metal film for forming the source and drain electrodes has a multilayer structure laminated in order from the glass substrate side. In the method for forming a fine pattern of the present invention, after forming the aforementioned segmented photoresist pattern, further, (E) performing an etching treatment on the aforementioned substrate using the segmented photoresist pattern as a photomask, and thereafter (F) performing ashing treatment on the segmented photoresist pattern to remove the thin-walled portion, (G) etching the thick-walled portion of the substrate after removing the thin-walled portion After the treatment, (ii) the step of removing the thick-walled portion of the aforementioned segmented photoresist pattern is preferable. Alternatively, the method for forming the fine pattern of the present invention is to form the photoresist pattern of the present invention using a substrate having the aforementioned multilayer structure. -8- 200523678 The figure illustrates the use of the aforementioned method of inventing the device using the second plate element of gold. After the segmented photoresist pattern is described on the photolithography, it further has (E ') the aforementioned segmented light pattern as The metal film for forming the source and drain electrodes of the photomask, the second sand oxide film, the melting stop film, and the first amorphous silicon film are etched. Thereafter, (F) The segmented light type is subjected to ashing treatment to remove the thin-walled portion. (G ') After removing the front wall portion, the thick-walled portion is used as the source-drain electrode-shaped metal 腠 of the photomask and the second amorphous shape. The sand dioxide film is subjected to ageing treatment to expose the etching stopper film layer, and then (ii) a step of removing the thick-walled portion of the aforementioned segmented photoresist pattern is preferable. In the method for forming a fine pattern of the present invention, the etching process of the source-drain electrode forming metal film is a wet etching process or a dry etching process, and the aforementioned etching process of the amorphous silicon dioxide film is preferably a dry etching process. The method for manufacturing a liquid crystal display element of the present invention is a method for manufacturing a liquid crystal display having a step of forming a pixel pattern on a glass substrate to manufacture a liquid crystal array substrate. The method is to make a part of the aforementioned pixel pattern from the micrograph. Forming method to form. Or 'The manufacturing method of the liquid crystal display element of the present invention is to form a fine pattern by forming the fine pattern of the present invention having a substrate having a multilayer structure, and then: (1) in the fine pattern The step of forming the second insulating film, (j) a step of patterning the second insulating film by light microscopy, and (κ) a step of forming the second insulating film patterned into a transparent conductive film by ( L) The step of patterning the transparent conductive film by photometry is preferred. -9- 200523678 (7) [Effects of the invention] According to the method for forming a photoresist pattern of the present invention, after curing the photoresist film pattern, UV curing is performed to form an etching resistance. The heat resistance is good and the shape is stable. Segmented photoresistance pattern with excellent performance. In the manufacture of liquid crystal display elements, the amount of photoresist consumption is significantly larger than that of semiconductor manufacturing processes, and productivity improvement is necessary to make a large-scale substrate with good production efficiency. It is known that in this application, for example, a photoresist material without fractional distillation and a low molecular weight resin can be used. Although a low-cost and high-sensitivity photoresist material can be used, the heat resistance tends to deteriorate, so it will cause post-baking treatment. The resulting segmented photoresist pattern causes flow, making it difficult to maintain the thickness in different shapes. According to the present invention, even if such a low-cost and high-sensitivity photoresist material is used, it is possible to form a segmented photoresist pattern with good etching resistance and good heat resistance. According to the method for forming a fine pattern of the present invention, since the segmented photoresist pattern is excellent in etching resistance, the segmented photoresist pattern is etched as a mask base, and then the segmented photoresist pattern is formed. The thin-walled part is removed by ashing and used again as a photomask to etch the substrate. Therefore, the number of photolithography steps using the photomask to pattern the photoresist film can be reduced. Therefore, the consumption of photoresist can be suppressed, and the cost of a relatively expensive mask can be reduced, thereby simplifying the steps. According to the method for manufacturing a liquid crystal display element of the present invention, the number of steps of photolithography can be reduced in the step of forming a pixel pattern on a glass substrate to manufacture a liquid crystal array substrate, thereby realizing the consumption of photoresist The suppression of 'reduction using a mask. The manufacturing steps can also be simplified, so it is effective in manufacturing low-cost -10- 200523678 (8) LCD devices. [The best form for implementing the invention] <Photoresist composition> The photoresist composition used for the formation of the photoresist film is not particularly limited, and it can be used as a photoresist material for the manufacture of liquid crystal display elements. For example, (A) contains 100 to 50 parts by mass of the alkali-soluble resin, and (B) contains 5 to 25 parts by mass of the phenol compound represented by the following general formula (I), based on the total of the components (A) and (B). 100 parts by mass, containing (C) selected from the group consisting of benzoquinonediazide ester (photosensitive component 1) represented by the following general formula (III) and benzoquinonediazide represented by the following general formula (V) At least one of the esterified product (photosensitive component 2) is in a range of 15 to 40 parts by mass, and (D) a positive-type photoresist composition containing an organic solvent can be suitably used.
〔式中,R1〜R8係各自獨立之氫原子,鹵原子,碳 原子數1〜6之烷基,碳原子數1〜6之烷氧基,或碳原子 數3〜6之環院基;{^]係各自獨iL之氫原卞或碳原子 數1〜6之烷基;R9可爲氫原子,碳原子數1〜6之烷基, 此時,Q爲具有氫原子,碳原子數1〜6之烷基或下述化 -11 - 200523678 (9) 學式(Π)[In the formula, R1 to R8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a ring group having 3 to 6 carbon atoms; {^] Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; and R9 may be a hydrogen atom and an alkyl group having 1 to 6 carbon atoms. At this time, Q is a hydrogen atom and a carbon atom number. Alkyl group of 1 to 6 or the following -11-200523678 (9) Formula (Π)
R 12 13 (Π)R 12 13 (Π)
(式中,R12及R13爲各自獨立之氫原子,鹵原子’ 碳原子數1〜6之烷基,碳原子數1〜6之烷氧基,或碳原 子數3〜6之瓌烷基;c表示1〜3之整數。)所示殘基’或 ,Q可與R9之末端鍵結,此時,Q表示R9及,Q與R9間 之碳原子,同時表示碳鏈3〜6之兀基;a,b表不1〜3 之整數;d表示〇〜3之整數;a’ ^或d爲3時’各自非爲 R3,R6或R8;n表示〇〜3之整數。〕(In the formula, R12 and R13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 3 to 6 carbon atoms; c represents an integer of 1 to 3.) Residue 'or Q may be bonded to the terminal of R9. At this time, Q represents a carbon atom between R9 and Q and R9, and also represents a carbon chain of 3 to 6 A, b represents an integer of 1 to 3; d represents an integer of 0 to 3; a '^ or d is 3' each is not R3, R6 or R8; n represents an integer of 0 to 3. A
4 〔式中,R]〜R8表示各自獨立之氫原子,鹵原子, 碳原子數]〜6之院基,碳原子數1〜6之院氧基,或碳原 子數3〜6之環烷基;R1G,R"表示各自獨立之氫原子或碳 原子數1〜6之烷基;R9可爲氫原子,碳原子數1〜6之垸 基,此時,Q爲氫原子,碳原子數1〜6之烷基或下述化 學式(IV ) > 12 - 200523678 (10)4 [In the formula, R] to R8 represent each independent hydrogen atom, halogen atom, and number of carbon atoms] A radical of 6 to 6, an oxygen radical of 1 to 6 carbon atoms, or a cycloalkane of 3 to 6 carbon atoms R1G, R " each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R9 may be a hydrogen atom, a fluorenyl group having 1 to 6 carbon atoms, at this time, Q is a hydrogen atom and carbon number Alkyl group of 1 to 6 or the following chemical formula (IV) > 12-200523678 (10)
αν) 式中,R12及R13表示各自獨立之氫原子,鹵原子 ,碳原子數1〜6之烷基,碳原子數1〜6之烷氧基,或碳 原子數3〜6之環烷基;c表示1〜3之整數。),或,Q可 與r9之末端鍵結,此時,Q爲r9及’ Q與r9間之碳原 子,同時表示碳鏈3〜6之環丨完基;D表示’獨立之氫原子 ,或1,2 -萘醌二疊氮-5-磺醯基’ D之至少一個表示1,2 -萘 酸二疊氮擴釀基;a’ b表不1〜3之整數,d表不0〜j之 黟數;a,b或d爲3時’各自非爲R3’ R6或R8; η表示0〜αν) In the formula, R12 and R13 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. ; C represents an integer of 1 to 3. ), Or, Q may be bonded to the end of r9. At this time, Q is a carbon atom between r9 and 'Q and r9, and simultaneously represents a ring of carbon chain 3 to 6; D means' independent hydrogen atom, Or at least one of 1,2-naphthoquinonediazide-5-sulfonyl 'D represents 1,2-naphthoate diazide expansion group; a' b represents an integer of 1 to 3, and d represents 0 The number of 黟 ~ j; when a, b or d is 3, 'each is not R3' R6 or R8; η means 0 ~
(V) (式中,D表示獨立之氫原子,或1,2-萘醌二疊氮-5_磺醯基,D之至少一個爲1,2-萘醌二疊氮-5-磺醯基。 關於(A )成分(鹼可溶性樹脂): 作爲(A )成分之鹼可溶性樹脂,並無特別限制,可 自在正型光阻組成物中作爲被膜形成物質通常使用所得者 之中予以任意選擇。例如,可例舉作爲正型光阻組成物之 被膜形成用樹脂廣爲所知之苯酚樹脂,丙烯系樹脂,苯乙 -13- 200523678 (11) 烯與丙烯酸之共聚物,羥基苯乙烯之聚合物,聚乙 ,聚α-甲基乙烯苯酚等。其中尤以苯酚樹脂被恰 用,其中以可容易溶解於不會膨脹之鹼水溶液,顯 異之酚醛淸漆樹脂爲恰當。 在苯酚樹脂之例方面,可例舉苯酚類與醛類之縮 應生成物,苯酚類與酮類之縮合反應生成物,乙烯苯 聚合物,異丙烯基苯酚系聚合物,該等苯酚樹脂之力口 應生成物等。 在形成前述苯酚樹脂之苯酚類方面,可例舉例如 ;間甲酚,對甲酚,鄰甲酚等之甲酚類;2,3-二甲苯 2,5 -二甲苯酚,3,5•二甲苯酚,3,4_二甲苯酚等之二 酚類;間乙基苯酚,對乙基苯酚,鄰乙基苯酚,,2,3,5 _ 基苯酸,三乙基苯酚,4-三級丁苯酚,3-三級 酉分’ 2-三級丁苯酚,八三級丁基-4_甲基苯酚,2_三 基-5 -甲基苯酚等之烷基苯酚類;對甲氧苯酚,間甲氧 ’對乙氧苯酚,間乙氧苯酚,對丙氧苯酚,間丙氧苯 之烷氧苯酚類;鄰異丙烯基苯酚,對異丙烯基苯酚, 基―4-異丙烯基苯酚,2-乙基-4-異丙烯基苯酚等之異 基苯酚類;苯基苯酚等之芳基苯酚類;4,4,-二羥基雙苯 雙苯酚A ’間苯二酚,氫醌,五倍子酚等之聚羥基苯 等。該等可單獨使用,或組合2種以上使用。在該等 類之中,尤以間甲酚,對甲酚,2,5 -二甲苯酚,3,5 一 苯酚,2 ; 3 5 5 -三甲基苯酚爲佳。 前述醛類方面,可例舉例如甲醛,對甲醛,三噁 苯酚 地使 性優 合反 酚系 氫反 苯酚 酚, 甲苯 三甲 丁苯 級丁 苯酚 酚等 2-甲 丙烯 基, 酚類 苯酚 二甲 烷, -14 - 200523678 (12) 乙醛,丙醛,丁醛,三甲基乙醛,丙烯醛,巴豆醛,環 己烷醛,糠醛,呋喃基丙烯醛,苯甲醛,對苯二甲醛,苯 基乙醛,α -苯基丙醛,沒-苯基丙醛,鄰羥基苯甲醛,間 羥基苯甲醛,對羥基苯甲醛,鄰甲基苯甲醛,間甲基苯甲 醛,對甲基苯甲醛,鄰氯苯甲醛,間氯苯甲醛,對氯苯甲 醛,桂皮醛等。該等可單獨使用,或組合2種以上使用。 在該等醛類之中,就獲得容易性而言以甲醛爲佳,尤以爲 提高耐熱性則可使用羥基苯甲醛類與甲醛之組合。 在前述酮類方面,可例舉例如丙酮,甲基乙基酮,二 乙基酮’一苯基_等。該等可單獨使用,或可組合兩種以 上使用。在苯酚類與酮類之組合中,以五倍子酚與丙酮之 組合特佳。 苯酚類與醛類或酮類之縮合反應生成物,可在酸性觸 媒之存在下以習知之方法製造。此時之酸性觸媒方面,可 使用鹽酸,硫酸,甲酸,草酸,對甲苯磺酸等。如此方式 所得之縮合生成物,可藉由分餾等之處理,使切割低分子 領域者因耐熱性優異故佳。分餾等之處理,係藉由縮合反 應所得之樹脂予以溶解於良溶劑,例如甲醇,乙醇等之醇 ,丙酮,甲基乙基酮等之酮或,乙二醇單乙基醚乙酸酯, 四氫呋喃等,接著注入水中使之沈殿等之方法來進行。 在上述之物中尤其是在全苯酚系重覆單元中,使對甲 酚系重覆單元含有6 0莫耳。/。以上,且使間甲酚系重覆單 元含有30莫耳%以上,聚苯乙烯換算重量平均分子量( M w )爲2 0 0 0〜8 0 0 0之酚醛淸漆樹脂爲佳。 - 15- 200523678 (13) 對甲酚系重覆單元在不足6 0算耳%時’因相對於加 熱處理時之溫度高低不勻易引起感度變化’又間甲酣系重 覆單元在不足3 0莫耳。/〇,會有感度劣化之傾向故不佳。 另外,可含有二甲苯酚系重覆單元或,三甲基苯酚系 重覆單元等之,其他苯酚系重覆單元亦可,但,最佳爲, 對甲酚系重覆單元6 0〜7 0莫耳%,間甲酚系重覆單元4 0 〜3 0莫耳%所成2成分系之酚醛淸漆樹脂,苯酚類之二核 體(具有2個苯酚核之縮合物分子)含量在GPC (凝膠滲 透色譜法)法中爲1 0%以下般之苯酚類之低分子量體含量 少之酚醛淸漆樹脂爲佳。前述二核體可在高溫(例如} 3 〇 °C )之預烘烤或後烘烤中昇華,使爐之天板等髒污,進而 使塗佈光阻之玻璃基板髒污造成其生產率降低之原因。 關於(B )成分(感度提高劑): (B )成分係以使用,上述〜般式(I )所示苯酚化合 物爲佳。 (Β )成分之例方面,可例舉三(4 -羥基苯基)甲院 ,雙(4 -羥基_ 3 -甲基苯基)-2 -羥基苯基甲烷,雙(4 _羥 基-2;3,5-三甲基苯基)-2-羥基苯基甲烷,雙(C羥基_ 3,5-二甲基苯基)羥基苯基甲烷,雙(4_經基-3,5_二甲 基苯基)-3-羥基苯基甲烷,雙(^羥基-3,5_二甲基苯基 )-2-羥基苯基甲烷,雙(C羥基-2,5_二甲基苯基)羥 基苯基甲烷,雙(4 -羥基- 2;5 -二甲基苯基)羥基苯基 甲烷,雙(4 -羥基-2 ; 5 -二甲基苯基)-2 _羥基苯基甲院; -16- 200523678 (14) 雙(4_羥基- 3;5-二甲基苯基)-3,4-二羥基苯基甲烷,雙 (4-羥基- 2,5-二甲基苯基)-3,4-二羥基苯基甲烷,雙(4-羥基-2,5-二甲基苯基)-2,4-二羥基苯基甲烷,雙(4-羥基 苯基)-3-甲氧-4-羥基苯基甲烷,雙(5-環己基-4-羥基-2-甲基苯基)-4-羥基苯基甲烷,雙(5-環己基-4-羥基-2-甲 基苯基)-3-羥基苯基甲烷,雙(5-環己基-4-羥基-2-甲基 苯基)-2-羥基苯基甲烷,雙(5-環己基-4-羥基-2-甲基苯 基)-3,4-二羥基苯基甲烷,1-[1-(4-羥基苯基)異丙基 ]-4-[1,1-雙(4-羥基苯基)乙基]苯,1-[1-(3-甲基-4-羥 基苯基)異丙基]-4-[1,卜雙(3-甲基羥基苯基)乙基] 苯,2- ( 2,3,4 -三羥基苯基)-2- ( 2’,3’,4’-三羥基苯基) 丙烷,2- ( 2,4-二羥基苯基)-2- ( 2’,4’-二羥基苯基)丙 烷,2- ( 4-羥基苯基)-2- ( 4’-羥基苯基)丙烷,2- ( 3-氟-4-羥基苯基)-2- ( 3’-氟-41-羥基苯基)丙烷,2- ( 2〆-二羥基苯基)-2-(4’-羥基苯基)丙烷,2-(2,354-三羥基 苯基)-2- ( 4’-羥基苯基)丙烷,2- ( 2,3,4-三羥基苯基 )-2-(4’-羥基-3’,5’-二甲基苯基)丙烷,雙(2;3,4-三羥 基苯基)甲烷,雙(2,4-二羥基苯基)甲烷,2,3,4-三羥 基苯基- 4’-羥基苯基甲烷,1,1-二(4-羥基苯基)環己烷 ,2,4-雙[1· (4-羥基苯基)異丙基]-5-羥基苯酚等。 在該等中,因感度提高效果特別優異,故以雙(4-羥 基-3-甲基苯基)-2-羥基苯基甲烷,雙(4-羥基- 2,3, 5-三 甲基苯基)-2-羥基苯基甲烷,2;4-雙[1- ( 4-羥基苯基) 異丙基]-5 -羥基苯酚,]7卜二(4 -羥基苯基)環己烷,]- - 17 - 200523678 (15) [1-(4_羥基苯基)異丙基]-4-[],卜雙(4 -羥基苯基)乙基 ]苯等爲佳。 液晶顯示元件製造之領域中,生產率之提高爲非常大 之問題,但藉由該苯酚化合物之配合,可達成高感度化, 賦予生產率之提高,故佳。 又藉由該苯酚化合物之配合,因可在光阻膜強大的形 成表面難溶化層,故在顯影時未曝光部分之光阻膜之膜變 薄量減少,而可抑制顯影時間之差所產生顯影高低不勻之 發生,故佳。 在該苯酚化合物之中,就下述式(V I )所示之化合物 (1'[1-(4-經基苯基)異丙基]-4-[1,1-雙(4-翔基苯基) 乙基)苯)與下述式(VII )所示之化合物(雙(2,3,5-三甲基-羥基苯基)-2 -羥基苯基甲烷),在高感度化, 闻殘膜率化,及線性之提高效果優異之點爲特佳。(V) (In the formula, D represents an independent hydrogen atom, or 1,2-naphthoquinonediazide-5_sulfonyl, and at least one of D is 1,2-naphthoquinonediazide-5-sulfonyl. About (A) component (alkali-soluble resin): The alkali-soluble resin used as (A) component is not particularly limited, and can be arbitrarily selected from among those generally used as a film-forming material in a positive photoresist composition. For example, a phenol resin, a propylene resin, styrene ethyl 13-200523678 (11) a copolymer of olefin and acrylic acid, and hydroxystyrene, which are widely known as a resin for forming a film of a positive photoresist composition, can be mentioned. Polymers, polyethylene, poly-alpha-methyl vinyl phenol, etc. Among them, phenol resins are especially used, and among them, phenolic resins which are easily soluble in non-swelling alkali aqueous solution, and which are significantly different are suitable. For example, the condensation products of phenols and aldehydes, the condensation reaction products of phenols and ketones, ethylene benzene polymers, isopropenyl phenol polymers, and the application of these phenol resins Products, etc. Phenols forming the aforementioned phenol resin For example, cresols such as m-cresol, p-cresol, o-cresol, etc .; 2,3-xylene 2,5-xylenol, 3,5 • xylenol, 3,4_ Diphenols such as xylenol; m-ethylphenol, p-ethylphenol, o-ethylphenol, 2,3,5- benzoic acid, triethylphenol, 4-tert-butylphenol, 3-trisphenol Grade '' -tertiary butylphenol, octatributyl-4-methylphenol, 2-triyl-5-methylphenol and other alkylphenols; p-methoxyphenol, m-methoxy ' Ethoxyphenol, m-ethoxyphenol, p-propoxyphenol, alkoxyphenols of m-propoxybenzene; o-isopropenylphenol, p-isopropenylphenol, 4-isopropenylphenol, 2-ethyl- Isophenols such as 4-isopropenylphenol; Arylphenols such as phenylphenol; 4,4, -Dihydroxybisphenol bisphenol A; Polyhydroxyl such as resorcinol, hydroquinone, gallophenol Benzene, etc. These can be used alone or in combination of two or more. Among them, m-cresol, p-cresol, 2,5-xylenol, 3,5 monophenol, 2; 3 5 5 -Trimethylphenol is preferred. For example, formaldehyde, p-formaldehyde, and trioxol are excellent in synthesizing transphenol-based hydrogen transphenol, 2-methylpropenyl toluenol, butylenol, and the like, and phenol phenol dimethane, -14-200523678 (12 ) Acetaldehyde, propionaldehyde, butyraldehyde, trimethylacetaldehyde, acrolein, crotonaldehyde, cyclohexanealdehyde, furfural, furyl acrolein, benzaldehyde, terephthalaldehyde, phenylacetaldehyde, α-benzene Methylpropanal, M-phenylpropanal, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, o-chlorobenzaldehyde, m Chlorobenzaldehyde, p-chlorobenzaldehyde, cinnamaldehyde, etc. These can be used alone or in combination of two or more. Among these aldehydes, formaldehyde is preferred in terms of availability, and in particular, a combination of hydroxybenzaldehyde and formaldehyde may be used to improve heat resistance. Examples of the aforementioned ketones include acetone, methyl ethyl ketone, diethyl ketone'-phenyl- and the like. These can be used alone or in combination of two or more. Among the combinations of phenols and ketones, the combination of gallic phenol and acetone is particularly preferred. The condensation reaction product of phenols and aldehydes or ketones can be produced by a conventional method in the presence of an acidic catalyst. As the acidic catalyst at this time, hydrochloric acid, sulfuric acid, formic acid, oxalic acid, p-toluenesulfonic acid and the like can be used. The condensation product obtained in this way can be processed by fractionation or the like, so that those who cut the low-molecular field are excellent in heat resistance. Processing such as fractional distillation is to dissolve the resin obtained by the condensation reaction in a good solvent, such as alcohols such as methanol, ethanol, ketones such as acetone, methyl ethyl ketone, or ethylene glycol monoethyl ether acetate, Tetrahydrofuran and the like are then injected into the water to cause Shen Dian and the like. Among the above-mentioned ones, the p-cresol-based repeating unit contains 60 mol, especially in the perphenol-based repeating unit. /. The above is preferably a phenolic lacquer resin having a m-cresol-based repeating unit containing 30 mol% or more and having a polystyrene-equivalent weight average molecular weight (M w) of 2000 to 800. -15- 200523678 (13) When the p-cresol-based repeating unit is less than 60% of the ear, 'the sensitivity change is likely to be caused by the temperature unevenness compared with the heat treatment', and the formaline repeating unit is less than 3 0 moles. / 〇, there is a tendency that the sensitivity is deteriorated, so it is not good. In addition, it may contain xylenol-based repeating units or trimethylphenol-based repeating units, and other phenol-based repeating units may be used. However, it is most preferable that p-cresol-based repeating units 6 0 to 7 0 mol%, m-cresol-based repeating unit 40 ~ 3 0 mol% 2-phenol phenolic lacquer resin, phenolic dinuclear body (condensation molecule with 2 phenolic cores) content in GPC (gel permeation chromatography) method is preferably a phenolic lacquer resin having a low content of low-molecular-weight phenols such as 10% or less. The aforementioned dinuclear body can be sublimed in pre-baking or post-baking at a high temperature (for example,} 30 ° C), so that the top plate of the furnace is dirty, and then the glass substrate coated with photoresist is dirty, which reduces its productivity. The reason. Regarding the component (B) (sensitivity-enhancing agent): The component (B) is used, and a phenol compound represented by the above formula (I) is preferable. Examples of the (B) component include tris (4-hydroxyphenyl) methylamine, bis (4-hydroxy-3 -methylphenyl) -2-hydroxyphenylmethane, and bis (4-hydroxy-2) ; 3,5-trimethylphenyl) -2-hydroxyphenylmethane, bis (Chydroxy_ 3,5-dimethylphenyl) hydroxyphenylmethane, bis (4-meryl-3,5_ Dimethylphenyl) -3-hydroxyphenylmethane, bis (^ hydroxy-3,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (Chydroxy-2,5-dimethylbenzene Hydroxyphenylmethane, bis (4-hydroxy-2; 5-dimethylphenyl) hydroxyphenylmethane, bis (4-hydroxy-2; 5-dimethylphenyl) -2 _hydroxyphenyl A hospital; -16- 200523678 (14) bis (4-hydroxy-3; 5-dimethylphenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-2,5-dimethyl Phenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -2,4-dihydroxyphenylmethane, bis (4-hydroxyphenyl)- 3-methoxy-4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2 -Methylphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy 2-methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -3,4-dihydroxyphenylmethane, 1- [1 -(4-hydroxyphenyl) isopropyl] -4- [1,1-bis (4-hydroxyphenyl) ethyl] benzene, 1- [1- (3-methyl-4-hydroxyphenyl) Isopropyl] -4- [1, bubis (3-methylhydroxyphenyl) ethyl] benzene, 2- (2,3,4-trihydroxyphenyl) -2- (2 ', 3', 4'-trihydroxyphenyl) propane, 2- (2,4-dihydroxyphenyl) -2- (2 ', 4'-dihydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2 -(4'-hydroxyphenyl) propane, 2- (3-fluoro-4-hydroxyphenyl) -2- (3'-fluoro-41-hydroxyphenyl) propane, 2- (22--dihydroxybenzene ) -2- (4'-hydroxyphenyl) propane, 2- (2,354-trihydroxyphenyl) -2- (4'-hydroxyphenyl) propane, 2- (2,3,4-trihydroxybenzene ) -2- (4'-hydroxy-3 ', 5'-dimethylphenyl) propane, bis (2; 3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ) Methane, 2,3,4-trihydroxyphenyl-4'-hydroxyphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,4-bis [1 · (4-hydroxy Phenyl) isopropyl ] -5-hydroxy-phenol. Among these, since the effect of improving sensitivity is particularly excellent, bis (4-hydroxy-3-methylphenyl) -2-hydroxyphenylmethane and bis (4-hydroxy-2,3,5-trimethyl Phenyl) -2-hydroxyphenylmethane, 2; 4-bis [1- (4-hydroxyphenyl) isopropyl] -5 -hydroxyphenol,] 7 bis (4-hydroxyphenyl) cyclohexane ,]--17-200523678 (15) [1- (4-hydroxyphenyl) isopropyl] -4- [], bis (4-hydroxyphenyl) ethyl] benzene and the like are preferred. In the field of liquid crystal display device manufacturing, the improvement of productivity is a very large problem. However, the compounding of the phenol compound can achieve high sensitivity and increase productivity, which is preferable. In addition, with the combination of the phenol compound, a hardly soluble layer can be formed on the surface of the photoresist film, so the film thickness of the photoresist film in the unexposed part during development is reduced, and the difference in development time can be suppressed. It is better to have uneven development. Among the phenol compounds, a compound represented by the following formula (VI) (1 '[1- (4-Cyclophenyl) isopropyl] -4- [1,1-bis (4-xiangyl) Phenyl) ethyl) benzene) and a compound represented by the following formula (VII) (bis (2,3,5-trimethyl-hydroxyphenyl) -2-hydroxyphenylmethane) are highly sensitive, The residual film rate is excellent, and the linear improvement effect is particularly good.
-18 - 200523678 (16)-18-200523678 (16)
在配合(B )成分之情形,其含量相對於爲(a )成 分之鹼可溶性樹脂1 〇 〇質量份,可在爲5〜2 5質量份,較 佳爲10〜20質量份之範圍選擇。 若低於此範圍,則無法充分獲得高感度化,高殘膜率 化之提高效果,超過此範圍時,在顯影後之基板表面則易 於產生殘渣物,又原料成本亦被提高,並不佳。 關於(C )成分(感光性成分): 以使用選自上述一般式(ΠΙ )所示苯醌二疊氮( diazido )酯化物(感光性成分1 )及上述一般式(V )所 示苯醌二疊氮酯化物(感光性成分2 )之中之至少一種爲 佳,尤其是將該感光性成分1與感光性成分2混合使用, 即使在使用5 00 x 6 0 0mm2以上之大型玻璃基板之處理中’ 亦可提供巨觀特性(塗布性,加熱高低不勻特性’顯影高 低不勻特性)優異之光阻材料。 另外,感光性成分1之平均酯化率以4 0〜6 0 %爲佳, 更佳爲4 5〜5 5 %。在不足4 0 %會有顯影後之膜變薄易於發 生,使得殘膜率易於降低。超過6 0 %時,會有使感度顯著 劣化之傾向。 -19- 200523678 (17) 在^感光性成分】方面,以下述式(vm)所示之化 合物(雙(2、甲基-4_羥基-5_環己苯基)·3,肛二羥基苯基 甲k )之1,2、萘醌二疊氮_ 5 _磺醯基化合物之苯醌二疊氮 酯化物比較_價,就可調整感度,解像性,線性( lineanty )優骞之光阻組成物之點而育較佳。此內酯化率 5 0 %爲最好。When the component (B) is blended, the content may be selected from the range of 5 to 25 parts by mass, and more preferably 10 to 20 parts by mass based on 1,000 parts by mass of the alkali-soluble resin having the component (a). If it is lower than this range, it will not be possible to obtain high sensitivity and increase the effect of high residual film rate. When it exceeds this range, residues will easily be generated on the substrate surface after development, and the cost of raw materials will be increased, which is not good. . Regarding the (C) component (photosensitive component): A benzoquinone diazido esterified product (photosensitive component 1) and a benzoquinone represented by the general formula (V) are used. At least one of the diazide esters (photosensitive component 2) is preferable, and especially the photosensitive component 1 and the photosensitive component 2 are mixed and used, even when using a large glass substrate having a size of 5000 x 600 mm or more. During processing, it can also provide a photoresist material with excellent macroscopic characteristics (coating properties, heating unevenness characteristics, and development unevenness characteristics). The average esterification rate of the photosensitive component 1 is preferably from 40 to 60%, and more preferably from 45 to 55.5%. If it is less than 40%, the film after development will become thin and prone to occur, making the residual film rate easy to decrease. When it exceeds 60%, the sensitivity tends to deteriorate significantly. -19- 200523678 (17) In terms of ^ photosensitive component], a compound represented by the following formula (vm) (bis (2, methyl-4_hydroxy-5_cyclohexylphenyl) · 3, anal dihydroxy 1,2,2,2-naphthoquinonediazide 5-benzoquinonediazide ester of sulfonyl compound, valence, can adjust sensitivity, resolution, lineanty The point of the photoresist composition is better. This lactonization rate of 50% is the best.
一方面,在感光性成分2方面,以下述式(ιχ )所示 之2,3’454’-四氫經基二苯基酮之152、萘醌二疊氮一5-磺醯 化合物之本醌二疊氮酯化物爲佳。其內之平均醋化率50 〜7 0 %之物爲佳,更佳爲5 5〜6 5 %。在不足5 0 %時,會有 易於產生顯影後之膜變薄,使殘膜率易於降低。一方面, 超過70%時,會有保存穩定性降低之傾向。該感光性成分 2,爲非常廉價,就可調整感度優異之光阻組成物之點爲 佳。在其中,醋化率5 9 %之物爲最佳。 HO ΟΗOn the one hand, with respect to the photosensitive component 2, the basic formula of 2,3'454'-tetrahydrodiphenyl ketone 152 and naphthoquinonediazide-5-sulfonamidine compound represented by the following formula (ιχ) is shown below. Quinone diazide is preferred. The average vinegarization rate within the range of 50 to 70% is preferred, and more preferably 5 to 65%. If it is less than 50%, there is a tendency for the film to become thinner after development, which tends to reduce the residual film rate. On the other hand, when it exceeds 70%, storage stability tends to decrease. This photosensitive component 2 is very inexpensive, and it is preferable to adjust a photoresist composition having excellent sensitivity. Among them, the vinegarization rate of 59% is the best. HO ΟΗ
分 成 性 光 感 述 上 了 除 分 成 性 光 感 Λ]/ C 外 以 2 物ο 2 化- 醋 氮 疊 二 醌 苯 之 他 其 用 使 亦 可 200523678 (18) 上述其他之苯醌二疊氮酯化物之使用量,在(c )感 光性成分中,以30質量%以下,尤其是25質量%以下爲 佳。 感光性成分1與2之混合比率,相對於感光性成分1 之5 0質量份,使感光性成分2爲4 0〜6 0質量份,尤其是 4 5〜5 5質量份之範圍爲所期望。 感光性成分2之配合量比此範圍更少時,會有感度劣 化之傾向,若比此範圍更多時,會有光阻組成物之解像性 5線性劣化之傾向。 (C)成分之配合量,可在相對於(A)成分之鹼可 溶性樹脂與(B )成分之合計量1 〇 〇質量份,爲1 5〜4 0質 量份,較佳爲2 0〜3 0質量份之範圍選擇。(C )成分之配 合量若低於上述範圍時,則圖型無法獲得忠實的影像,轉 印性亦會降低。一方面,(C )成分之配合量若超過上述 範圍時,感度或解像性會劣化,又顯影處理後會有殘渣物 發生之傾向。 此種光阻組成物,係將(A )〜(C )成分及各種添 加成分,溶解於爲有機溶劑之下述(D )成分,以溶液之 形式使用爲佳。 關於(D )成分(有機溶劑): 較佳之有機溶劑之例方面,可例舉丙酮,甲基乙基酮 ,環己酮,甲基異戊酮,2 -庚酮等之酮類;乙二醇,丙二 醇,二乙二醇,乙二醇單乙酸酯,丙二醇單乙酸酯二乙二 -21 - 200523678 (19) 醇單乙酸酯,或該等之單甲基醚,單乙基醚,單丙醚,單 丁醚或單苯基醚等之多價醇類及其衍生物;二噁烷般之環 式醚類;及乳酸乙酯,酢酸甲酯,酢酸乙酯,酢酸丁酯, 丙酮酸甲酯,丙酮酸乙酯,甲氧丙酸甲酯,乙氧丙酸 乙醋等之酯類。該等可單獨使用,或混合2種以上使用。 在該等之內以丙二醇單甲基醚乙酸酯(PGMEA ), 就可賦予光阻組成物優異之塗布性,可賦予大型玻璃基板 上之光阻被膜優異之膜厚均勻性之點爲佳。 PGMEA以單獨溶齊!J使用爲最好,但PGMEA以外之溶 劑亦可與此混合使用。在此種溶劑方面,可例舉例如乳酸 乙酯,γ-丁內酯,丙二醇單丁醚等。 在使用乳酸乙酯之情形,相對於PGMEA之質量比爲 0.1〜10倍量,較佳爲在1〜5倍量之範圍配合爲所望。 又,在使用7 -丁內酯之情形,相對於PGMEA,質量 比在0 · 01〜1倍量,較佳爲〇 . 〇 5〜0.5倍量之範圍配合爲 所望。 在液晶顯示元件製造之領域中,通常使光阻被膜以 0.5〜2.5 μ m,尤其是1 . 0〜2 · 0 μ m之膜厚在玻璃基板上形 成爲必要,但因此’使用該等有機溶劑,組成物中之上述 (A )〜(C )成分之總量,相對於組成物之全質量可調 整爲3 0質量%以下’較佳爲2 0〜2 8質量%之方式,而以 作爲塗布性優異之液晶顯示元件製造用光阻材料爲佳。 此情形任意使用之下述(E )成分之量亦予以斟酌, 溶劑(D )之使用量’相對於組成物之全質量以6 5〜8 5 >22- 200523678 (20) 質量%,較佳爲7 0〜7 5質量%爲佳。 關於(E )成分(其他之添加劑): 其他之成分方面,防光暈(halation)用之紫外線吸 收劑,例如252’5454’-四氫羥基二苯基酮,4-二甲基氨基-2’,4’-二羥基二苯基酮,5-氨基-3-甲基-1-苯基-4- (4-羥基 苯基偶氮)吡唑,4 -二甲基氨基-4 ’ -羥基偶氮苯,4 -二乙 基氨基- 4’-乙氧偶氮苯,4 二乙基氨基偶氮苯,谷氨醯胺 (glutamine )等或,又,爲防止輝紋(striati〇n )用之界 面活性劑,例如 Frorard FC-4 3 0,FC43 1 (商品名,住友 3M 公司製),F-top EF122A,EF122B,EF122C,EF1 26 (商品名,T 〇 k e m P r 〇 d u c t s公司製)等之氟系界面活性劑 ’苯醌,萘醌,對甲苯磺酸等之保存穩定化劑,進而因應 必要,在不致影響本發明之情況下,可添加並含有添加樹 月旨,可塑劑,穩定化劑,對比提高劑等之慣用添加劑。 以下,本發明之光阻圖型之形成方法及使用此之微細 圖型之形成方法之實施形態,係以適用於液晶顯示元件之 製造之例來例舉,並參照第]A圖〜第1 G圖予以說明。 首先準備基體。在本發明中基體,並無特別限定,但 在使用必須在基板上予以蝕刻之層爲2層以上所層合之基 體時,因可有效獲得本發明之效果故佳。 在製造液晶顯示元件之情形,基體]0係,例如第]A 圖所示,在玻璃基板]上,使閘電極2,第1絕緣膜3, 第]無定形二氧化矽膜4’,蝕刻檔止膜5’,第2無定形二 -23- 200523678 (21) 氧化矽膜6 ’,及源汲電極形成用金屬膜7 ’,係具有自玻璃 基板1側依照順序層合之多層構造被使用。閘電極2之圖 型化,可以前述第2圖〜第4圖所示順序(含第1光微影 術步驟)來進行。 玻璃基板之大小並無特別限定,但可成爲在 5 0 0 x 600mm2以上,尤其是,5 5 0〜6 5 0 m m 2以上之大型基 板。 閘電極2係由,例如使用鋁(A1 ),鉻(Cr ),鈦 (Ti ) ’或錳(Mo )等之金屬等之導電性材料來形成。 第1絕緣膜3,係例如以SiNx所形成。 蝕刻檔止膜5 ’,係例如以S iNx所形成。 <源汲電極形成用金屬膜7 ’,係例如使鈦(Ti )與鋁( A 1 )與鈦(T i )依照此順序層合之層合膜所構成。 (A )首先,在基體1 〇上形成光阻被膜R,。具體而 言,在基體10上塗佈上述光阻組成物,藉由在1〇〇〜140 °C左右之加熱乾燥(預烘烤),可形成光阻被膜R’。 光阻被膜R ’之厚以1 . 0〜3 · 0 μ m左右爲佳。 使光阻被膜R ’之厚在此範圍內,可在適度曝光量, 曝光時間之範圍內’形成該高低差,又就可使該高低差形 狀良好的解像之點爲佳。 (B )接著,經過光微影術步驟,如第1 b圖所示, 使光阻被膜R ’圖型化成爲具有厚壁部r 1與薄壁部r 2圖型 形狀。 具體而言,例如透過半色調(ha】f tone )光罩等之透 -24 - 200523678 (22) 過率被設定之光罩(光柵r e t i c 1 e ),相對於光阻被膜R, 進行選擇性曝光,接著進行顯影,水洗,而可形成因領域 而厚度不同之形狀之光阻圖型形成。(第2光微影術步驟 )(C )圖型化後,進行UV (紫外線)固化處理,可獲 得第1 B圖所示段狀光阻圖型R。 在段狀光阻圖型R中厚壁部rl與薄壁部r2之厚度差 ,藉由其後之灰化處理可僅除去薄壁部r 2使厚壁部1.1以 恰當厚度殘留起見,則以〇 · 5〜1 · 5 μηι左右爲佳,更佳之 範圍在0.7〜1.3μιη左右。 UV固化可使用公知之方法進行。例如,使用公知之 紫外線照射裝置’在被圖型化之光阻圖型全面照射紫外線 〇 紫外線之照射條件,並非因UV固化而使光阻圖型之 形狀變形,而爲獲得耐蝕刻性優異,耐熱性良好的段狀光 阻圖型R,則特別使用自D e e p U V領域經可視光領域之波 長(波長1 〇 〇〜7 〇 0 n m左右)之紫外線,尤其是使用2 〇 〇 〜5 OOnm左右之波長之紫外線爲主要之輸出光源,而以約 1 0 0 0〜5 0 0 0 0 m J / c m2左右之照射量照射爲佳。更佳之照射 量在2000〜l5〇OOmJ/cm2左右。照射量,係由照射之紫外 線之強度與照射時間來控制。 另外,在U V固化(照射)之際,爲使照射部不致產 生皺紋,控制急激之照射或照射所致溫度上昇爲所望。 (D )在UV固化後,可進行後烘烤。該後烘烤處理 ,具體而言,係實施1 〇 〇〜1 7 0 °C之溫度,3〜]0分左右之 -25- 200523678 (23) 加熱處理。更佳之加熱條件係1 2 0〜1 3 crc,4〜6分左右 〇 此後烘烤處理並非必要,但藉由進行後烘烤可使段狀 光阻圖型R之耐熱性進而提高。又,藉由後烘烤處理,爲 使段狀光阻圖型R與基體1 0之密接性提高,則尤其是爲 獲得對於濕蝕刻處理要得到高耐性爲有效。另外,藉由 UV固化處理可使段狀光阻圖型R之耐熱性提高,故在後 烘烤步驟中並不必擔心圖型會變形。 另外,該UV固化處理與後烘烤處理,可因應所望, 在後述之(F )步驟中於段狀光阻圖型R之灰化處理後, 再度進行亦無妨。 (E )將如此所形成之段狀光阻圖型R作爲光罩,如 第1C圖所示,進行基體10之金屬膜7’蝕刻。金屬膜7’ 之蝕刻可以周知之手法進行。一般而言可使用濕蝕刻處理 ,乾蝕刻亦可。 接著,使相同段狀光阻圖型R作爲光罩,如第1 D圖 所示,藉由前述金屬膜7 ’之蝕刻所曝光之第2無定形二氧 化矽膜6’與其下之蝕刻檔止膜5’,及第1無定形二氧化矽 膜4’予以蝕刻。該等層之蝕刻,可以周知之手法進行。 一般而言可使用乾蝕刻處理。在此之段狀光姐圖型R 作爲光罩使用之鈾刻,可形成蝕刻檔止膜5與第]無定形 二氧化砂層4。 (F )此後,相對於段狀光阻圖型R實施灰化處理, 如第]E圖所示,可除去薄壁部r2。灰化處理可以周知之 -26- 200523678 (24) 手法進行。 段狀光阻圖型R被灰化處理時,厚壁部r 1及薄壁部 r2則同時膜變薄,終究可完全除去薄壁部r2,其下之金 屬膜7 ’則曝光,厚壁部r 1成爲殘留之狀態。在此狀態下 使灰化處理停止,而可僅除去薄壁部ι·2。若殘留.之厚壁 部r 1過薄,則作爲蝕刻光罩之機能並不充分,故殘留之 厚壁部r 1之厚度爲0.7 μηι以上爲佳。 (G)接著,第1F圖所示,將因前述薄壁部r2之除 去而曝光之金屬膜W,使殘留之厚壁部r 1作爲光罩進行 蝕刻處理,而可形成源電極及汲電極7。 接著,如第1 G圖所示,因前次金屬膜7 ’之蝕刻處理 所曝光之第2無定形二氧化矽膜6 ’,使殘留之厚壁部r 1 作爲光罩予以蝕刻處理,來形成被圖型化之第2無定形二 氧化砂膜6。 (Η )其後,將厚壁部r 1除去。厚壁部r 1之除去方 法,可以灰化處理等周知之手法進行。 在目前爲止之步驟,可獲得與前述之第10圖所示檎 造相同構造之微細圖型。 此後,與前述之第 Π〜1 5圖所示步驟同樣之步驟, 可製造液晶陣列基板。亦即,(I )如第1 1圖所示,在前 次步驟所得之微細圖型上使第2絕緣膜8 ’形成。第2絕緣 膜^,係例如可以SiNx形成。 (J )含有在第2絕緣膜81上形成光阻被膜,使該光 阻被膜,透過光罩進行選擇性曝光之步驟,之光微影術, - 27- 200523678 (25) 予以圖型化,如第1 2圖所示,可形成光阻圖型R4 (第3 光微影術步驟)。所得之光阻圖型R4作爲光罩,進行第 2絕緣膜8 ’蝕刻後,將光阻圖型R4除去,如第1 3圖所示 ,可獲得被圖型化成具有接觸孔之形狀之第2絕緣膜8。 (K ) 如第1 4圖所示,在被圖型化之第2絕緣膜8 上使透明導電膜9’形成。透明導電膜9’,例如可以ITo ( 酸化銦錫)形成。 (L)含有在透明導電膜9’上形成光阻被膜,使該光 阻被膜,透過光罩進行選擇性曝光之步驟,之光微影術, 予以圖型化, 如第1 5圖所示,可形成光阻圖型R5 (第4光微影術 步驟)。 ' 此後,所得之光阻圖型R5作爲光罩進行透明導電膜 9 ’蝕刻後,藉由光阻圖型R5之除去,可形成第1 6圖所示 被圖型化之透明導電膜9,可獲得液晶陣列基板。 如此所得之液晶陣列基板與對向基板之間以夾持液晶 之方式,藉由以周知方法組合,而可獲得液晶顯示元件。 根據本實施形態,因可形成耐蝕刻性高之段狀光阻圖 型R,將此段狀光阻圖型R作爲光罩,使基體1 0之金屬 膜7 ’,第2無定形二氧化矽膜6 ’,蝕刻檔止膜5 ’,及第1 無定形二氧化矽膜4 ’予以蝕刻後,使該段狀光阻圖型R 之厚壁部1*1作爲光罩而可進行金屬膜7,及第2無定形二 氧化矽膜6 ’之蝕刻。 因此,在液晶陣列基板之製造步驟中可減少光微影術 - 28- 200523678 (26) 步驟之次數。例如在第2〜1 5圖所示習知之方法,要製造 液晶陣列基板則光微影術步驟有必要進行5次(第1〜第 5之光微影術步驟),而在本實施形態,可使相同構造之 液晶陣列基板以4次之光微影術步驟(第1〜第4光微影 術步驟)就可製造。藉此可抑制光阻之消費量,因步驟亦 爲簡略化,故可謀求液晶陣列基板之製造成本之削減。 又,本實施形態中所形成之段狀光阻圖型R,因耐熱 性良好,在後烘烤處理中可防止變形。藉由後烘烤之實施 ,可進而提高段狀光阻圖型之耐熱性及耐蝕刻性 另外,率本實施形態,係使段狀光阻圖型成爲剖面凹 狀,段狀光阻圖型,因領域不同厚度並不相同,故若爲具 有厚壁部與薄壁部之形狀則佳,在可由蝕刻所形成之微細 圖型可因應形狀適宜設計。例如,可在厚壁部之外側設置 薄壁部之剖面凸狀,亦可爲剖面山型狀。 又,在本實施形態,可適用於本發明之第1 6圖所示 構造之 a - S i (無定形二氧化矽)形τ F T陣列基板之製造 步驟’但並非限定於此構造之液晶陣列基板。本發明在具 有各種像素圖型之液晶陣列基板之製造均可適用,使用本 發明之微細圖型之形成方法來形成像素圖型之一部份,可 獲得與本實施形態同樣之效果。 【實施方式】 〔實施例〕 在下述實施例及比較例中,形成段狀光阻圖型,來評 -29- 200523678 (27) 價耐熱性,耐乾蝕刻性’及耐濕蝕刻性。特性之評價係以 下述方法進行。 (1 )耐熱性評價: 相對於實施例及比較例所得之光阻圖型,進行13〇t ,3 0 0秒之加熱處理,使光阻圖型之形狀不變形者爲〇, ~ 變形者爲X。 ' (2 )耐乾蝕刻性評價: 相對於實施例及比較例所得之光阻圖型,使用乾蝕刻 裝置「TCE-7612X」(裝置名;東京應化工業公司製), 蝕刻氣體係使用CF4,CHF3y He,各40毫升/min,40毫 升 /min,160 毫升 /min,在 300mT0rr (与 39.9Pa)之減壓 氛圍下,進行 700W-400kHz,級(stage)溫度:2〇°C ,靶 標(target )溫度:25°C之處理條件所致乾蝕刻處理,在處 理前後,光阻圖型之形狀不變形者爲〇,變形者爲X。 0 耐濕蝕刻性評價: 相對於實施例及比較例所得之光阻圖型,將該光阻圖 型所形成之基板設定於2(TC之濕蝕刻液[含有氟化氫酸( HF ) /氟化銨(NH4F ) = 1/6 (質量比)混合物之20質量 %水溶液]中,浸漬1 0分下進行濕蝕刻處理,處理後之光 阻圖型,自基底基板不剝離者爲〇,可完成剝離者爲X。 -30- 200523678 (28) (實施例1 ) 調製正型光阻組成物。 (A )成分:甲酚酚醛淸漆樹脂[間甲酚/對甲酚=4/6 ( 莫耳比)之混合苯酚類與甲醛依照常法進行縮合反應所得 之,重量平均分子量(Mw) =5 0 00之樹脂]100質量份, (B)成分:[雙(2,3 5 5 -三甲基-4-羥基苯基)-2-羥基苯基 甲烷]1〇質量份,(C )成分:[2 5 3,4 5 4’_四氫羥基二苯基酮 1莫耳與1,2-萘醌二疊氮-5-磺醯基氯化物2.34莫耳之酯 化反應生成物]29.7質量份,(D)成分:準備[PGMEA]430 質量份,使上述(A )〜(D )成分均勻地溶解後,對此 界面活性劑係以B YK-3 10,B y k - C h e m 1 e 公司製 ] 4 00PPm之配合,對此使用孔徑〇..2μηι之膜過濾器進行過 濾,來調製正型光阻組成物。 所得之正型光阻組成物,使用中央滴下&旋轉塗布法 所致光阻塗布裝置〔TR- 3 6 0 0 0 (東京應化工業公司製) 〕,在100 Orpm進行10秒旋轉塗布,而可在Ti膜所形成 之玻璃基板(3 6 0 m m X 4 6 0 m m )上形成光阻層。 接著,使熱板之溫度爲]3 0°C,藉由打開約Imm之 間隔之鄰近烘烤(P r 〇 X i m i t y b a k e )進行6 0秒之第1次乾 燥,接著使熱板之溫度爲120 °C,藉由打開〇.5mm之間隔 之鄰近烘烤進行60秒之第2次乾燥,來形成膜厚2·〇μηι 之光阻被膜。 相對於該光阻被膜透過光罩進行選擇性曝光,進行顯 影處理,洗淨予以圖型化後,使用高壓水銀燈(使波長 -31 - 200523678 (29) 2 0 0〜6 0 0 nm之光輸出),實施照射量3 0 00mJ/cm2之UV 固化(照射)處理,來形成段狀光阻圖型。 所得之段狀光阻圖型如第1圖所示,爲剖面凹狀,厚 壁部之厚度2.0μηι,薄壁部之厚度〇.8μηι,全體之寬1 3μηι ,薄壁部之寬爲5μηι。 · 關於此段狀光阻圖型,評價耐熱性,耐乾蝕刻性’及 耐濕蝕刻性之結果係如下述表1所示。 (實施例2 ) 使用與實施例1同樣之正型光阻組成物,以與實施例 1同樣之順序形成段狀光阻圖型。但是,段狀光阻圖型之 形狀係成爲剖面凸狀,其尺寸,則爲厚壁部之厚度2.0 μηι ,薄壁部之厚度 0.8 μιη,全體之寬13μηι,厚壁部之寬爲 5 μηα 〇 關於此段狀光阻圖型,評價耐熱性,耐乾蝕刻性’及 耐濕蝕刻性之結果如下述表1所示。 Φ (實施例3 ) 與實施例1同樣,在形成段狀光阻圖型後’相對於此 ,進行1 3 (TC,3 0 0秒之後烘烤處理。 關於後烘烤處理後之段狀光阻圖型,評價耐熱性’耐 乾蝕刻性,及耐濕蝕刻性之結果係如下述表1所示。 (實施例4 ) -32 - 200523678 (30) 與實施例2同樣在形成段狀光阻圖型後,相對於此, 進行130°C,3 00秒之後烘烤處理。 關於後烘烤處理後之段狀光阻圖型,評價耐熱性,耐 乾蝕刻性,及耐濕蝕刻性之結果如下述表1所示。 (比較例1 ) 除了在實施例1中,不進行UV固化處理以外其他則 同樣地形成段狀之光阻圖型。 # 關於此段狀光阻圖型,評價耐熱性,耐乾蝕·刻性,及 耐濕蝕刻性之結果則如下述表1所示。 (比較例2 ) 乂 除了在實施例2中,不進行U V固化處理以外,其他 則同樣,形成段狀之光阻圖型。 關於此段狀光阻圖型,評價耐熱性,耐乾蝕刻性’及 耐濕蝕刻性之結果則如下述表]所示。 Φ (比較例3 ) 相對於比較例1所得之段狀光阻圖型(不予UV固化 ),與上述實施例3同樣進行後烘烤處理。 關於後烘烤處理後之段狀光阻圖型’則評價耐熱性’ 耐乾蝕刻性,及耐濕蝕刻性之結果則如下述表1所示。 (比較例4 ) -33- 200523678 (31) 相對於比較例2所得之段狀光阻圖型(不予UV固化 ),與上述實施例4同樣,進行後烘烤處理。 關於後烘烤處理後之段狀光阻圖型,評價耐熱性,耐 乾蝕刻性,及耐濕蝕刻性之結果則如下述表1所示。 【表1】 UV固化 後烘烤 耐熱性 耐乾蝕刻性 耐濕蝕刻性 實 施 例 1 有 鈕 j\ \\ 〇 〇 X 實 施 例 2 有 無 〇 〇 X 實 施 例 3 有 有 〇 〇 〇 實 施 例 4 有 有 〇 〇 〇 比 較 例 1 4rrr. 貢 無 X X X 比 較 例 2 脏 j \ \\ j\ \\ X X X 比 較 例 3 Μ j 有 — ※ ※ ※ 比 較 例 4 無 有 ※ — — ※ __ ※ ※:後烘烤處理後,因會造成光阻圖型變形,故耐熱 性,耐乾蝕刻性,及耐濕鈾刻性之評價則不進行。 【圖式簡單說明】 【第1A圖〜第1G圖】顯示本發明之光阻圖型之形 成方法及微細圖型之形成方法之實施形態依照步驟順序之 剖面圖。 【第2圖】顯示習知液晶陣列基板之製造步驟之一部 份之剖面圖。 -34- 200523678 (32) 【第3圖】習知液晶陣列基板之製造步驟之一部份延 續前圖之剖面圖。 【第4圖】習知液晶陣列基板之製造步驟之一部份延 續前圖之剖面圖。 [第5圖】習知液晶陣列基板之製造步驟之一部份延 _ 續前圖之剖面圖。 【第6圖】習知液晶陣列基板之製造步驟之一部份延 續前圖之剖面圖。 · 【第7圖】習知液晶陣列基板之製造步驟之一部份延 續前圖之剖面圖。 【第8圖】習知液晶陣列基板之製造步驟之一部份延 續前圖之剖面圖。 【第9圖】習知液晶陣列基板之製造步驟之一部份延 續前圖之剖面圖。 [第1 〇圖〕習知液晶陣列基板之製造步驟之一部份 延續前圖之剖面圖。 φ 【第1 1圖】習知液晶陣列基板之製造步驟之一部份 延續前圖之剖面圖。 【第1 2圖】習知液晶陣列基板之製造步驟之一部份 延續前圖之剖面圖。 【第1 3圖】習知液晶陣列基板之製造步驟之一部份 延續前圖之剖面圖。 · · 【第]4圖】習知液晶陣列基板之製造步驟之一部份 延續前圖之剖面圖。 -35 - 200523678 (33) 【第1 5圖】習知液晶陣列基板之製造步驟之一部份 延續前圖之剖面圖。 【第1 6圖】例示液晶陣列基板之剖面圖。 【主要元件之符號說明】 10 :基體 1 :玻璃基板 2 :閘電極 3 :第1絕緣膜 4’ :第1無定形二氧化矽膜 5 ’ :蝕刻檔止膜 6 | :第2無定形二氧化矽膜 7 ’ :源汲電極形成用金屬膜 光阻被膜 r 1 :厚壁部 r2 :薄壁部 R4 :光阻圖型 8 ^第2絕緣膜 9’ :透明導電膜 R5 :光阻圖型 -36 -Dividable photosensitivity is described in addition to the divided photosensitivity Λ] / C with 2 things ο 2-acetazide diquinone benzene can be used for other purposes 200523678 (18) other benzoquinone diazide esters mentioned above The amount of the compound to be used in the (c) photosensitive component is preferably 30% by mass or less, particularly preferably 25% by mass or less. The mixing ratio of the photosensitive components 1 and 2 is set to 40 to 60 parts by mass of the photosensitive component 2 with respect to 50 parts by mass of the photosensitive component 1, and the range of 4 to 5 to 5 parts by mass is desired. . If the blending amount of the photosensitive component 2 is smaller than this range, the sensitivity tends to deteriorate, and if it is more than this range, the resolution of the photoresist composition 5 tends to deteriorate linearly. The compounding amount of the component (C) may be 1 500 mass parts with respect to the total amount of the alkali-soluble resin of the (A) component and the (B) component, 15 to 40 mass parts, and preferably 20 to 3 mass parts. Choose from 0 parts by mass. If the compounding amount of the component (C) is lower than the above range, a faithful image cannot be obtained in the pattern, and the reproducibility will also decrease. On the other hand, if the compounding amount of the (C) component exceeds the above range, the sensitivity or resolvability will deteriorate, and residues will tend to occur after the development process. Such a photoresist composition is preferably prepared by dissolving the components (A) to (C) and various additional components in the following component (D), which is an organic solvent, and using it as a solution. Regarding the (D) component (organic solvent): Examples of preferred organic solvents include acetone, methyl ethyl ketone, cyclohexanone, methyl isopentanone, 2-heptanone, and the like; Alcohol, propylene glycol, diethylene glycol, ethylene glycol monoacetate, propylene glycol monoacetate diethylene glycol-21-200523678 (19) Alcohol monoacetate, or monomethyl ether of these, monoethyl Ethers, monopropyl ethers, monobutyl ethers or monophenyl ethers and their polyvalent alcohols and their derivatives; dioxane-like cyclic ethers; and ethyl lactate, methyl gallate, ethyl gallate, butyl gallate Esters, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate and the like. These can be used alone or in combination of two or more. Among these, the use of propylene glycol monomethyl ether acetate (PGMEA) can impart excellent coating properties to the photoresist composition, and can impart excellent film thickness uniformity to the photoresist film on a large glass substrate. . It is best to use PGMEA alone! J, but solvents other than PGMEA can also be used in combination. Examples of such a solvent include ethyl lactate,? -Butyrolactone, and propylene glycol monobutyl ether. In the case of using ethyl lactate, the mass ratio to PGMEA is 0.1 to 10 times the amount, preferably in the range of 1 to 5 times the amount. In the case of using 7-butyrolactone, it is desirable that the mass ratio is from 0.01 to 1 times the amount of PGMEA, preferably from 0.5 to 0.5 times the amount. In the field of liquid crystal display device manufacturing, it is usually necessary to form a photoresist film on a glass substrate with a thickness of 0.5 to 2.5 μm, especially 1.0 to 2.0 μm. The total amount of the above components (A) to (C) in the solvent and the composition can be adjusted to 30% by mass or less with respect to the total mass of the composition, and preferably 20 to 28% by mass. It is suitable as a photoresist material for manufacturing a liquid crystal display element having excellent coating properties. In this case, the amount of the following (E) component arbitrarily used is also considered. The amount of the solvent (D) used is 6 5 to 8 5 with respect to the total mass of the composition.> 20-200523678 (20) mass%, It is preferably 70 to 75 mass%. Regarding the (E) component (other additives): For other components, an ultraviolet absorber for anti-halation, such as 252'5454'-tetrahydrohydroxydiphenyl ketone, 4-dimethylamino-2 ', 4'-Dihydroxydiphenyl ketone, 5-amino-3-methyl-1-phenyl-4- (4-hydroxyphenylazo) pyrazole, 4-dimethylamino-4'- Hydroxyazobenzene, 4-diethylamino-4'-ethoxyazobenzene, 4-diethylaminoazobenzene, glutamine, etc., or, in order to prevent streaks ) Used surfactants, such as Frarard FC-4 3 0, FC43 1 (trade name, manufactured by Sumitomo 3M), F-top EF122A, EF122B, EF122C, EF1 26 (trade name, T keke P 〇ducts company) Fluorine surfactants such as benzoquinone, naphthoquinone, p-toluenesulfonic acid, and other storage stabilizers, and if necessary, without affecting the present invention, they can be added and contain the addition of the tree moon purpose, which can be plasticized Additives, stabilizers, contrast enhancers and other conventional additives. Hereinafter, the method for forming the photoresist pattern of the present invention and the embodiment of the method for forming the fine pattern using the present invention are exemplified by examples applicable to the manufacture of a liquid crystal display element, and refer to FIG. 1A to 1 Figure G illustrates. First prepare the substrate. The substrate in the present invention is not particularly limited, but when a substrate in which two or more layers must be etched on a substrate is used, the effect of the present invention is effectively obtained. In the case of manufacturing a liquid crystal display element, the substrate is 0 series, for example, as shown in FIG. A, on a glass substrate], the gate electrode 2, the first insulating film 3, and the] amorphous silicon dioxide film 4 'are etched. Stop film 5 ', second amorphous 23-23-200523678 (21) A silicon oxide film 6' and a source film 7 'forming a metal film 7' have a multilayer structure laminated in order from the glass substrate 1 side use. The patterning of the gate electrode 2 can be performed in the order shown in the above-mentioned Figs. 2 to 4 (including the first photolithography step). The size of the glass substrate is not particularly limited, but it can be a large-sized substrate with a size of 500 x 600 mm2 or more, in particular, a size of 5 500 to 650 m 2 or more. The gate electrode 2 is formed of a conductive material using a metal such as aluminum (A1), chromium (Cr), titanium (Ti) ', or manganese (Mo). The first insulating film 3 is formed of, for example, SiNx. The etching stopper film 5 'is formed of, for example, SiNx. < The metal film 7 'for forming a source / drain electrode is formed of, for example, a laminated film in which titanium (Ti), aluminum (A1), and titanium (Ti) are laminated in this order. (A) First, a photoresist film R ′ is formed on the substrate 10. Specifically, the photoresist composition is coated on the substrate 10, and the photoresist film R 'can be formed by heating and drying (pre-baking) at about 100 to 140 ° C. The thickness of the photoresist film R 'is preferably about 1.0 to 3.0 μm. When the thickness of the photoresist film R 'is within this range, the level difference can be formed within a range of moderate exposure and exposure time', and the point where the shape of the level difference is well resolved is better. (B) Next, after the photolithography step, as shown in Fig. 1b, the photoresist film R 'is patterned into a pattern having a thick wall portion r1 and a thin wall portion r2. Specifically, for example, through a halftone (ha) f tone mask, etc.-24-200523678 (22) A mask (grating retic 1 e) whose pass rate is set is selective with respect to the photoresist film R Exposure, subsequent development, and water washing can form photoresist patterns with different thicknesses depending on the field. (Second photolithography step) (C) After patterning, UV (ultraviolet) curing is performed to obtain the segmented photoresist pattern R shown in FIG. 1B. The thickness difference between the thick wall portion rl and the thin wall portion r2 in the segmented photoresist pattern type R can be removed only by the subsequent ashing treatment so that the thick wall portion 1.1 remains with an appropriate thickness. It is preferably about 0.5 to 1.5 μm, and a more preferable range is about 0.7 to 1.3 μm. UV curing can be performed using a well-known method. For example, using a well-known ultraviolet irradiation device to illuminate ultraviolet rays in a patterned photoresist pattern. The irradiation conditions of ultraviolet rays do not deform the shape of the photoresist pattern due to UV curing. The segmented photoresistance type R with good heat resistance uses ultraviolet rays with a wavelength from the Deep UV field through the visible light field (wavelength of about 100 to 7000 nm), and especially uses 2000 to 5000 nm. The ultraviolet light of the left and right wavelengths is the main output light source, and it is better to irradiate with an irradiation amount of about 100 ~ 5000 m J / c m2. A better irradiation dose is about 2000 ~ 1500 mJ / cm2. The amount of exposure is controlled by the intensity and duration of the ultraviolet rays. In addition, when UV curing (irradiation), in order to prevent wrinkles in the irradiated area, it is desirable to control the temperature increase caused by the irradiated irradiation or the irradiation. (D) After UV curing, post-baking can be performed. Specifically, the post-baking treatment is carried out at a temperature of 100 to 170 ° C, and 3 to -25 to 200523678 (23) heat treatment. The better heating conditions are 1 2 0 to 1 3 crc, about 4 to 6 minutes. ○ Baking treatment is not necessary after this, but the post-baking can improve the heat resistance of the segmented photoresist pattern R. In addition, in order to improve the adhesion between the segmented photoresist pattern R and the substrate 10 by the post-baking treatment, it is particularly effective to obtain high resistance to the wet etching treatment. In addition, the heat resistance of the segmented photoresist pattern R can be improved by UV curing, so there is no need to worry about the pattern being deformed in the post-baking step. In addition, the UV curing treatment and the post-baking treatment may be performed as desired after the ashing treatment of the segmented photoresist pattern R in the step (F) described later. (E) Using the segmented photoresist pattern R thus formed as a photomask, as shown in FIG. 1C, the metal film 7 'of the substrate 10 is etched. The etching of the metal film 7 'can be performed by a known method. Generally speaking, wet etching can be used, and dry etching can also be used. Next, using the same segmented photoresist pattern R as a photomask, as shown in FIG. 1D, the second amorphous silicon dioxide film 6 ′ exposed by the aforementioned etching of the metal film 7 ′ and the etched file below it The stopper film 5 'and the first amorphous silicon dioxide film 4' are etched. The etching of these layers can be performed in a known manner. Generally speaking, a dry etching process can be used. Here, the segmented photo pattern R is used as a mask for uranium engraving, and can form an etch stop film 5 and a first amorphous sand layer 4. (F) Thereafter, an ashing process is performed on the segmented photoresist pattern R, and as shown in FIG. E), the thin-walled portion r2 can be removed. The ashing treatment can be performed by the well-known method -26- 200523678 (24). When the segmented photoresist pattern R is ashed, the thick-walled portion r 1 and the thin-walled portion r2 are thinned at the same time. After all, the thin-walled portion r2 can be completely removed, and the metal film 7 ′ below is exposed and the thick-walled portion is exposed. The portion r 1 remains in a state. In this state, the ashing process is stopped, and only the thin-walled portion 2 can be removed. If the remaining thick wall portion r 1 is too thin, the function as an etching mask is insufficient. Therefore, the thickness of the remaining thick wall portion r 1 is preferably 0.7 μm or more. (G) Next, as shown in FIG. 1F, the metal film W exposed by the removal of the thin-walled portion r2 and the remaining thick-walled portion r 1 as a photomask are etched to form a source electrode and a drain electrode. 7. Next, as shown in FIG. 1G, the second amorphous silicon dioxide film 6 'exposed by the previous etching process of the metal film 7' is etched with the remaining thick wall portion r1 as a photomask. A patterned second amorphous sand dioxide film 6 is formed. (Ii) Thereafter, the thick portion r 1 is removed. The method of removing the thick portion r 1 can be performed by a known method such as an ashing treatment. In the steps so far, a fine pattern with the same structure as the one shown in Fig. 10 can be obtained. Thereafter, the same steps as those shown in the aforementioned Figures Π to 15 can be used to manufacture a liquid crystal array substrate. That is, (I), as shown in Fig. 11, the second insulating film 8 'is formed on the fine pattern obtained in the previous step. The second insulating film ^ can be formed of, for example, SiNx. (J) Containing a step of forming a photoresist film on the second insulating film 81, and selectively exposing the photoresist film through a photomask, photolithography,-27- 200523678 (25) patterning, As shown in FIG. 12, a photoresist pattern R4 can be formed (the third photolithography step). The obtained photoresist pattern R4 is used as a photomask, and after the second insulating film 8 ′ is etched, the photoresist pattern R4 is removed. As shown in FIG. 13, a pattern which is patterned into a shape having a contact hole can be obtained. 2 Insulation film 8. (K) As shown in Fig. 14, a transparent conductive film 9 'is formed on the patterned second insulating film 8. The transparent conductive film 9 'can be formed of, for example, ITo (Indium Tin Acidate). (L) Contains a step of forming a photoresist film on the transparent conductive film 9 ′, and selectively exposing the photoresist film through a photomask, and photolithography, which is patterned, as shown in FIG. 15 To form a photoresist pattern R5 (4th photolithography step). 'Thereafter, the obtained photoresist pattern R5 is used as a photomask to perform the transparent conductive film 9' After the photoresist pattern R5 is removed, the patterned transparent conductive film 9 shown in FIG. 16 can be formed. A liquid crystal array substrate can be obtained. A liquid crystal display element can be obtained by combining the liquid crystal array substrate and the counter substrate thus obtained by sandwiching liquid crystals by a known method. According to this embodiment, a segmented photoresist pattern R having a high etching resistance can be formed, and using this segmented photoresist pattern R as a photomask, the metal film 7 ′ of the substrate 10 and the second amorphous dioxide can be formed. After the silicon film 6 ', the etch stop film 5', and the first amorphous silicon dioxide film 4 'are etched, the thick-walled portion 1 * 1 of the segmented photoresist pattern R can be used as a photomask to perform metallization. Etching of the film 7, and the second amorphous silicon dioxide film 6 '. Therefore, the number of steps of photolithography-28- 200523678 (26) can be reduced in the manufacturing steps of the liquid crystal array substrate. For example, in the conventional method shown in FIGS. 2 to 15, it is necessary to perform the photolithography step five times (the first to fifth photolithography steps) to manufacture a liquid crystal array substrate. In this embodiment, The liquid crystal array substrate of the same structure can be manufactured in 4 photolithography steps (1st to 4th photolithography steps). As a result, the consumption of photoresist can be suppressed, and since the steps are simplified, the manufacturing cost of the liquid crystal array substrate can be reduced. In addition, the segmented photoresist pattern R formed in this embodiment has good heat resistance and can be prevented from deforming during post-baking treatment. With the implementation of post-baking, the heat resistance and etching resistance of the segmented photoresist pattern can be further improved. In addition, the rate of this embodiment is to make the segmented photoresist pattern into a concave section and segmented photoresist pattern. Because the thickness is not the same in different fields, it is better if it has the shape of thick-walled part and thin-walled part. The fine pattern that can be formed by etching can be designed according to the shape. For example, the cross-sectional convex shape of the thin-walled portion may be provided on the outer side of the thick-walled portion, or the cross-sectional mountain shape may be provided. In addition, in this embodiment, it can be applied to the manufacturing steps of the a-S i (amorphous silicon dioxide) -shaped τ FT array substrate having the structure shown in FIG. 16 of the present invention, but it is not limited to the liquid crystal array having this structure. Substrate. The present invention is applicable to the manufacture of a liquid crystal array substrate having various pixel patterns. Using the fine pattern forming method of the present invention to form a part of a pixel pattern, the same effect as that of this embodiment can be obtained. [Embodiment] [Example] In the following examples and comparative examples, segmented photoresist patterns were formed to evaluate -29-200523678 (27) Valence heat resistance, dry etching resistance 'and wet etching resistance. The characteristics were evaluated by the following methods. (1) Evaluation of heat resistance: Relative to the photoresist pattern obtained in the examples and comparative examples, heat treatment was performed at 130t and 300 seconds, so that the shape of the photoresist pattern did not deform. 0, ~ deformed Is X. '(2) Evaluation of dry etching resistance: The dry etching device "TCE-7612X" (device name; manufactured by Tokyo Yingka Kogyo) was used for the photoresist pattern obtained in the examples and comparative examples. CHF3y He, each 40ml / min, 40ml / min, 160ml / min, under a reduced pressure atmosphere of 300mT0rr (and 39.9Pa), 700W-400kHz, stage temperature: 20 ° C, target ( target) Temperature: Dry etching treatment at 25 ° C. Before and after the treatment, the shape of the photoresist pattern is not deformed, and the deformed shape is X. 0 Evaluation of wet etching resistance: The substrate formed by the photoresist pattern is set to 2 (TC wet etching solution [containing hydrofluoric acid (HF) / fluorinated) relative to the photoresist pattern obtained in Examples and Comparative Examples. Ammonium (NH4F) = 1/6 (mass ratio) of a 20% by mass aqueous solution of the mixture], immersed for 10 minutes to perform a wet etching treatment, and the photoresist pattern after the treatment is 〇, which is not peeled from the base substrate can be completed The peeler is X. -30- 200523678 (28) (Example 1) A positive photoresist composition is prepared. (A) Ingredient: cresol novolac resin [m-cresol / p-cresol = 4/6 (mol Ear ratio) mixed phenols and formaldehyde are obtained by condensation reaction according to a conventional method. The resin having a weight average molecular weight (Mw) = 5000 is 100 parts by mass. (B) Ingredient: [double (2,3 5 5 -3) Methyl-4-hydroxyphenyl) -2-hydroxyphenylmethane] 10 parts by mass, (C) component: [2 5 3,4 5 4'_tetrahydrohydroxydiphenyl ketone 1 mole and 1, 2-naphthoquinonediazide-5-sulfonyl chloride 2.34 moles of esterification reaction product] 29.7 parts by mass, (D) component: 430 parts by mass of [PGMEA] is prepared, and (A) to (D) ) After the ingredients are uniformly dissolved, This surfactant is based on the combination of B YK-3 10, Byk-C hem 1 e company] 4 00PPm, and this is filtered using a membrane filter with a pore size of 0.2 μm to prepare a positive photoresist composition. The obtained positive-type photoresist composition was spin-coated at 100 Orpm for 10 seconds using a photoresist coating device [TR-3600 (made by Tokyo Yingka Kogyo Co., Ltd.)] caused by a central dropping & spin coating method. A photoresist layer can be formed on the glass substrate (360 mm X 460 mm) formed by the Ti film. Next, the temperature of the hot plate is set to 3 ° C, and the interval of about 1 mm is opened. Proximity baking (Pr0X imitybake) was dried for the first time in 60 seconds, then the temperature of the hot plate was set to 120 ° C, and second proximity baking was performed for 60 seconds by opening the 0.5mm interval proximity baking. It is dried to form a photoresist film with a thickness of 2.0 μm. The photoresist film is selectively exposed through a photomask, developed, washed and patterned, and then a high-pressure mercury lamp (wavelength -31- 200523678 (29) 2 0 ~ 6 0 0 nm light output), UV irradiation of 3 00 mJ / cm2 (Irradiation) processing to form a segmented photoresist pattern. The resulting segmented photoresist pattern is shown in Fig. 1 with a concave cross section, a thickness of a thick wall portion of 2.0 μm, and a thickness of a thin wall portion of 0.8 μm The width of the whole is 13 μηι, and the width of the thin-walled part is 5 μηι. · The results of this step-shaped photoresist pattern evaluation of heat resistance, dry etching resistance ', and wet etching resistance are shown in Table 1 below. (Example 2) A segmented photoresist pattern was formed in the same procedure as in Example 1 using a positive type photoresist composition similar to Example 1. However, the shape of the segmented photoresist pattern is convex in cross section, and its size is 2.0 μηι for the thick-walled part, 0.8 μιη for the thin-walled part, 13 μηι for the entire width, and 5 μηα for the thick-walled part. 〇 The results of evaluating the photoresist pattern of this segment are shown in Table 1 below. The results of evaluation of heat resistance, dry etching resistance ', and wet etching resistance are shown below. Φ (Example 3) In the same manner as in Example 1, after forming a segmented photoresist pattern, on the other hand, 13 (TC, 300 seconds after baking treatment was performed. Regarding the segment shape after the post-baking treatment The photoresist pattern, the evaluation of heat resistance, dry etching resistance, and wet etching resistance are shown in Table 1 below. (Example 4) -32-200523678 (30) A segmented light was formed in the same manner as in Example 2. After the resist pattern, a baking process was performed at 130 ° C for 3 seconds, and the photoresist pattern after the post-bake process was evaluated for heat resistance, dry etching resistance, and wet etching resistance. The results are shown in Table 1 below. (Comparative Example 1) Except that the UV curing treatment was not performed in Example 1, a segmented photoresist pattern was similarly formed. # Regarding this segmented photoresist pattern, evaluation The results of heat resistance, dry etching resistance, etching resistance, and wet etching resistance are shown in Table 1 below. (Comparative Example 2) 乂 Except that in Example 2, UV curing treatment was not performed, and the other sections were formed in the same manner. Photoresist pattern of this shape. About this segment of photoresist pattern, evaluate heat resistance, dry etching resistance, and moisture resistance. The sharp results are shown in the following table]. Φ (Comparative Example 3) The post-baking treatment was performed in the same manner as in Example 3 above with respect to the segmented photoresist pattern obtained in Comparative Example 1 (without UV curing). The results of the step-shaped photoresist pattern after the post-baking treatment, 'evaluation of heat resistance', dry etching resistance, and wet etching resistance are shown in Table 1 below. (Comparative Example 4) -33- 200523678 (31) The post-baking treatment was performed on the segmented photoresist pattern obtained in Comparative Example 2 (without UV curing) in the same manner as in Example 4. Regarding the segmented photoresist pattern after the post-baking treatment, heat resistance was evaluated. The results of dry etching resistance and wet etching resistance are shown in the following Table 1. [Table 1] Baking heat resistance after UV curing, dry etching resistance, wet etching resistance Example 1 There is a button j \ \\ 〇〇X Example 2 Presence or absence of Example 0X Example 3 Presence or absence of Example 4 Presence or absence of Comparative Example 1 4rrr. Gong Wu XXX Comparative Example 2 Dirty j \ \\ j \ \\ XXX Comparative Example 3 Μ j Yes — ※ ※ ※ Comparative Example 4 None ※ — — ※ __ ※ ※: Post-baking After processing, the photoresist pattern will be deformed, so the evaluation of heat resistance, dry etching resistance, and wet uranium etch resistance will not be performed. [Brief Description of the Drawings] [Figures 1A to 1G] show the present invention The photoresist pattern formation method and the micro pattern formation method are implemented in a sectional view in the order of steps. [Fig. 2] A sectional view showing a part of the manufacturing steps of a conventional liquid crystal array substrate. -34- 200523678 (32) [Figure 3] A part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the cross-sectional view of the previous figure. [Figure 4] A part of the conventional manufacturing steps of the conventional liquid crystal array substrate is continued with the cross-sectional view of the previous figure. [Fig. 5] Part of the manufacturing steps of the conventional liquid crystal array substrate is partially extended. [Figure 6] A part of the conventional manufacturing steps of the conventional liquid crystal array substrate is continued with the cross-sectional view of the previous figure. · [Figure 7] Part of the conventional manufacturing steps of the conventional liquid crystal array substrate is continued from the cross-sectional view of the previous figure. [Fig. 8] A part of the conventional manufacturing steps of the conventional liquid crystal array substrate is continued with the cross-sectional view of the previous figure. [Figure 9] A part of the conventional manufacturing steps of the conventional liquid crystal array substrate is continued with the cross-sectional view of the previous figure. [Fig. 10] A part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the sectional view of the previous figure. φ [Figure 11] Part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the cross-sectional view of the previous figure. [Fig. 12] A part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the sectional view of the previous figure. [Figure 13] Part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the cross-sectional view of the previous figure. [Fig. 4] A part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the cross-sectional view of the previous figure. -35-200523678 (33) [Figure 15] Part of the manufacturing steps of the conventional liquid crystal array substrate is continued from the cross-sectional view of the previous figure. [FIG. 16] A cross-sectional view illustrating a liquid crystal array substrate. [Description of Symbols of Main Components] 10: Substrate 1: Glass substrate 2: Gate electrode 3: First insulating film 4 ': First amorphous silicon dioxide film 5': Etching stop film 6 |: Second amorphous second Silicon oxide film 7 ′: Metal film photoresist film for source-drain electrode formation r 1: Thick wall portion r2: Thin wall portion R4: Photoresist pattern 8 ^ Second insulating film 9 ′: Transparent conductive film R5: Photoresist pattern Model -36-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003414768A JP4275519B2 (en) | 2003-12-12 | 2003-12-12 | Method for forming fine pattern and method for manufacturing liquid crystal display element |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200523678A true TW200523678A (en) | 2005-07-16 |
TWI307457B TWI307457B (en) | 2009-03-11 |
Family
ID=34734474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093136163A TWI307457B (en) | 2003-12-12 | 2004-11-24 | Resist pattern formation method, fine pattern formation method using the same, and liquid crystal element fabrication method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4275519B2 (en) |
KR (1) | KR100681750B1 (en) |
CN (1) | CN100340925C (en) |
TW (1) | TWI307457B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4611690B2 (en) * | 2004-09-03 | 2011-01-12 | 東京応化工業株式会社 | Method for forming resist pattern, method for forming fine pattern using the same, and method for manufacturing liquid crystal display element |
KR101522240B1 (en) * | 2007-12-24 | 2015-05-22 | 엘지디스플레이 주식회사 | Liquid crystal display device and method of fabricating the same |
KR101375855B1 (en) | 2008-11-27 | 2014-03-18 | 엘지디스플레이 주식회사 | Method of fabricating oxide thin film transistor |
CN104253037A (en) * | 2013-06-30 | 2014-12-31 | 无锡华润上华半导体有限公司 | Method for alleviating burning of photoresist during etching |
CN106505033B (en) * | 2016-11-16 | 2019-06-25 | 深圳市华星光电技术有限公司 | Array substrate and preparation method thereof, display device |
CN107195540B (en) * | 2017-06-05 | 2021-01-26 | 京东方科技集团股份有限公司 | Manufacturing method of array substrate, array substrate and display device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5545576A (en) * | 1994-04-28 | 1996-08-13 | Casio Computer Co., Ltd. | Method for manufacturing a thin film transistor panel |
KR100656899B1 (en) * | 1999-06-30 | 2006-12-15 | 삼성전자주식회사 | a manufacturing method of a thin film transistor array panel for liquid crystal displays and a structure of align keys thereof |
KR100601171B1 (en) * | 1999-07-08 | 2006-07-13 | 삼성전자주식회사 | Thin film transistor substrate for liquid crystal display and manufacturing method thereof |
TW449929B (en) * | 2000-08-02 | 2001-08-11 | Ind Tech Res Inst | Structure and manufacturing method of amorphous-silicon thin film transistor array |
TW465117B (en) * | 2000-11-30 | 2001-11-21 | Ind Tech Res Inst | Manufacturing method of polysilicon thin film transistor containing lightly doped drain structure |
-
2003
- 2003-12-12 JP JP2003414768A patent/JP4275519B2/en not_active Expired - Fee Related
-
2004
- 2004-11-24 TW TW093136163A patent/TWI307457B/en not_active IP Right Cessation
- 2004-12-07 KR KR1020040102204A patent/KR100681750B1/en active IP Right Grant
- 2004-12-09 CN CNB2004101003126A patent/CN100340925C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005173341A (en) | 2005-06-30 |
CN1629732A (en) | 2005-06-22 |
KR20050058956A (en) | 2005-06-17 |
TWI307457B (en) | 2009-03-11 |
KR100681750B1 (en) | 2007-02-15 |
CN100340925C (en) | 2007-10-03 |
JP4275519B2 (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4899986B2 (en) | Two-layer laminated film and pattern forming method using the same | |
TWI407253B (en) | Photoresist composition | |
JP3473931B2 (en) | Positive photosensitive composition for lift-off and pattern forming method | |
JP3057010B2 (en) | Positive resist composition and method for forming resist pattern | |
TWI312442B (en) | Method for forming resist pattern, method for fine pattern using the same, and method for producing liquid crystal display element | |
JP3105459B2 (en) | Positive photoresist composition and multilayer resist material using the same | |
US6905809B2 (en) | Photoresist compositions | |
TW200523678A (en) | Resist pattern formation method, fine pattern formation method using the same, and liquid crystal element fabrication method | |
TW200306324A (en) | Novolak resin solution, positive photoresist composition, and method of producing same | |
KR102253191B1 (en) | Positive resist composition, method of forming resist pattern, method of forming pattern comprising metal layer, and method of producing through electrode | |
TWI263118B (en) | Positive photoresist composition and method for forming resist pattern | |
JP6140506B2 (en) | Positive resist composition and resist pattern forming method | |
JP3488332B2 (en) | Positive photoresist coating solution | |
JP5189909B2 (en) | Positive resist composition for lift-off | |
JP7066038B1 (en) | Method for manufacturing a resin composition and a substrate with a pattern resist film | |
JP3631291B2 (en) | Negative resist composition and resist pattern forming method | |
JP3789926B2 (en) | Positive photoresist composition | |
JP2005010487A (en) | Method for forming resist pattern | |
JP2024085295A (en) | Laminate film, method for manufacturing laminate film, and method for manufacturing substrate with pattern resist film | |
JP2005010486A (en) | Method for forming resist pattern | |
JP2010015040A (en) | Rinsing liquid and method for forming resist pattern for lift-off process | |
JP2003233174A (en) | Positive photoresist composition and method for forming resist pattern for production of liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |