TW200424905A - Prediction method and system of gas diffusion - Google Patents

Prediction method and system of gas diffusion Download PDF

Info

Publication number
TW200424905A
TW200424905A TW92112582A TW92112582A TW200424905A TW 200424905 A TW200424905 A TW 200424905A TW 92112582 A TW92112582 A TW 92112582A TW 92112582 A TW92112582 A TW 92112582A TW 200424905 A TW200424905 A TW 200424905A
Authority
TW
Taiwan
Prior art keywords
particle
discharge
particles
time
source
Prior art date
Application number
TW92112582A
Other languages
Chinese (zh)
Other versions
TWI227434B (en
Inventor
Ryohji Ohba
Seiichi Kudo
Original Assignee
Mitsubishi Heavy Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd filed Critical Mitsubishi Heavy Ind Ltd
Publication of TW200424905A publication Critical patent/TW200424905A/en
Application granted granted Critical
Publication of TWI227434B publication Critical patent/TWI227434B/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention predicts the diffusion condition of diffusible substance released to atmosphere. Replace the diffusible substanceby particle, obtain the moving location of the resulting particle from the source by computation and log beforehand by mapping the moving location and the elapsed time after release. Next, based on the elapsed time and refer to the said intensity data to obtain the particle intensity of the occurring time so that the moving location, the elapsed time after release and intensity correspond to each particle and log beforehand. Calculate the concentration in the specified area at the specified timeso as to obtain the particle intensity presenting in the specified area by accumulation.

Description

200424905 玖、發明說明: 技術領域 本發明係關於一種擴散物質的擴散狀況預測方法。本發 明係預測由擴散源(例如放射性物質使用設施與煙函)排出 至大氣中之物質(例如放射物質與煙),如何擴散至大氣 中’且在各地點做了預測時時刻刻變化之物質濃度者。 先前技術 目前正開發一種放射性物質因事故由處理放射性物質 之设施排出至外部的情形,預測在放射性物質的擴散範圍 與各地點之放射性物質的濃度,且預測具有因放射性物質 而遭受危險的虞慮之地區之擴散狀況預測方法。 泫擴散狀況預測方法,不僅在預測放射性物質的擴散狀 況的情形可以適用,例如由工廠的煙固所排出之氣體(煙) 擴散至大氣中的情形、計算各地點之氣體濃度的情形、與 在環境影響評估的解析中,解析擴散物質的擴散狀況的情 形亦可以適用。 藉演算,預測排出至大氣中之物質的擴散狀況,係必須要 做其次之2個之演算。 (1) 氣體狀況預測演算 (2) 擴散狀況預測演算 所謂上述(1)之氣體狀況預測演算,係依據氣象GPV (Grid Point Value)與AMEDAS等之氣象觀測資料,藉演算 解析大氣現象之偏微分方程式,由事項發生(例如放射性物 質排出至外部)時點到既定時間後之時點,藉演算求出每一 85181.doc 200424905 定時間刻度之時點之多數之評估地點(格子點位置)的風向 •風速,也就是,意指求出表示每一時間刻度之風速場資 料之氣體狀況之演算。 另外,所謂上述(2)之擴散狀況預測演算,係指將所放出 之擴散物質的濃度與性狀及前述風速場資料,藉代入演嘗 物質(粒子)的擴散狀態之擴散方程式,求出在各每一時間 刻度的各格子點位置之擴散物質的濃度之演算。 <氣體狀況預測演算的說明> 首先,說明氣體狀況預測演算的概略。氣象觀測資料, 例如氣象GPV資料,係由氣象業務支援中心每12小時傳 訊。該氣象GPV資料,係在地球的表面隨著南北方向延伸 並且東西方向之相互之離開距離為規定距離(2km)之多數 之緯度假想線’與地球的表面隨著柬西方向延伸並且南北 万向之相互之離開距離為規定距離(2km)之多數之經度假 想線交叉之地點(將此等稱為母格子點位置)中,顯示氣象 貝料(風速向量(風向、風速)、氣壓、溫度、水份量)者。而 且,氣象GPV資料,係總括傳訊如傳訊時點、由傳訊時點3 小後、6小時後、9小時之3小時間隔之5 1小時份之資料, 作為各母格子點位置的氣象資料。 上述之氣象GPV資料之母格子點位置之氣象資料,由於 空間上母格子點位置之相互間距離擴展為2Km,而且時間 上延長為3小時間隔,所以僅藉該母格子點位置的氣象資 牛斤”、、員示之氣體狀況(風向、風速)資料,亦即風速場資料, 垅可以演算擴散物質的擴散濃度。 304 85181.doc 200424905 為此,有必要藉解析大氣現象之偏微分方程式,由空間 上較粗、且時間上也較粗之氣象觀測資料,求出空間上、 時間上均較密之氣體狀況(風向、風速)。 在此,在設定於應計算計算區域(在地球表面預先設定之 特定區域)之母格子點位置之間,設定子格子點位置。子格 子點位置,係配置於地球的表面隨著南北方向延伸並且東 西方向之相互之離開距離為一定距離(50m)之多數之緯度 假想線,與地球的表面隨著東西方向延伸並且南北方向之 相互之離開距離為一定距離(50m)之多數之經度假想線交 又之地點。 而且’藉差分解析演算解析大氣現象之偏微分方程式, 求出由 >貝异開始之每一定時間刻度(例如每2〇秒間隔)之子 格子點位置及母格子點位置的氣象資料。可以使用以科羅200424905 (ii) Description of the invention: TECHNICAL FIELD The present invention relates to a method for predicting the diffusion state of a diffusing substance. The present invention is a substance that predicts how substances (such as radioactive substances and smoke) discharged into the atmosphere from diffusion sources (such as radioactive substance use facilities and smoke letters) will diffuse into the atmosphere, and that changes every moment when predictions are made at various locations. Concentrated. The prior art is currently developing a situation in which radioactive materials are discharged to the outside from facilities handling radioactive materials due to accidents, predicting the spread of radioactive materials and the concentration of radioactive materials at various locations, and predicting the risk of danger due to radioactive materials. Method for predicting the spread of the region. The method for predicting the diffusion status is applicable not only to the prediction of the diffusion status of radioactive materials, such as the diffusion of gas (smoke) discharged from the solids of the factory into the atmosphere, the calculation of the gas concentration in various places, and the In the analysis of environmental impact assessment, the situation of analyzing the diffusion status of diffusing substances may also be applied. By calculation, the prediction of the diffusion of substances discharged into the atmosphere must be followed by two calculations. (1) Prediction calculation of gas conditions (2) Prediction calculation of diffusion conditions The so-called (1) prediction of gas conditions is based on meteorological observations such as meteorological GPV (Grid Point Value) and AMEDAS, and the partial differential analysis of atmospheric phenomena by calculation Equation, from the time of the occurrence of the event (such as the discharge of radioactive materials to the outside) to the point after the predetermined time, calculate the wind direction and wind speed of the majority of the evaluation points (lattice point positions) for each 85181.doc 200424905 time point at a fixed time scale by calculation. That is, it means the calculation of the gas condition representing the wind speed field data at each time scale. In addition, the so-called (2) diffusion state prediction calculation means that the concentration and properties of the released diffusing substance and the aforementioned wind speed field data are substituted into the diffusion equation of the diffusing state of the substance (particle) to obtain the Calculation of the concentration of the diffusing substance at the positions of the grid points at each time scale. < Description of gas condition prediction calculation > First, the outline of the gas condition prediction calculation will be described. Meteorological observations, such as meteorological GPV data, are communicated every 12 hours by the Meteorological Operations Support Center. The meteorological GPV data is based on the extension of the north-south direction on the surface of the earth and the distance between the east and west directions is a specified distance (2km). The distance between each other is a predetermined distance (2km). Most places where the vacation line crosses (this is called the parent grid point position) display meteorological materials (wind speed vector (wind direction, wind speed), air pressure, temperature , Water content). In addition, the meteorological GPV data is a summary of the information such as the time of the message, 3 hours later, 6 hours later, and 9 hours at a 3-hour interval of 51 hours. It is used as the meteorological data for the location of each mother grid point. The meteorological data of the location of the mother grid point of the above-mentioned meteorological GPV data, because the distance between the locations of the mother grid points in space is extended to 2Km, and the time is extended to 3 hours, so only the meteorological resources of the location of the mother grid points are borrowed. The data of the gas condition (wind direction, wind speed), which is indicated by the staff, and the wind speed field data, can be used to calculate the diffusion concentration of diffusive substances. From the coarser meteorological observations in space and time, the gas conditions (wind direction, wind speed) that are denser in space and time are obtained. Here, set in the area to be calculated (on the surface of the earth) (Pre-set specific area) between the positions of the mother grid points, set the position of the sub grid points. The positions of the sub grid points are arranged on the surface of the earth as the north-south direction extends and the distance between the east and west directions is a certain distance (50m) The majority of the wefts of the vacation line are extended from east to west with a certain distance from the north and south directions. (50m) where most people want to intersect with each other through vacation. And 'by analyzing the partial differential equation of the atmospheric phenomenon by difference analysis calculation, find out every certain time scale starting from > Baye (for example, every 20 seconds interval) Meteorological data of the location of the child grid point and the location of the mother grid point.

拉夕川1大學與Mission Research公司所開發之RAMS (Regional Atmospheric Modeling System)代碼所顯示之風 速%解析的基本方程式,作為解析大氣現象之偏微分方程 式。 以mRAMS代碼所顯示之風速場解析之基本方程式,係 由運動万程式、熱能源方程式、水分之擴散方程式及連續 《么式所形成,以如其次之公式(1)〜(6)表示。 【數1】 395 85181.doc 200424905 運動方程式 : f|", duld/ayldra^jd/ 4¾.. 韵A .(-卜封 i.5rMax> Γ ? ^ *5wi&avuawlt 二 ί awiayavjsyav»了 r~v ^i&avjarawH / f i \-/ i (1)^(3) Ar^lar 熱能方程式 δθ δθ, δθ r— = -w —~-- v J dt dxThe basic equation of wind speed% analysis shown by the RAMS (Regional Atmospheric Modeling System) code developed by Laxichuan 1 University and Mission Research Company is used as a partial differential equation for analyzing atmospheric phenomena. The basic equations of wind speed field analysis shown by mRAMS code are formed by motion equation, thermal energy equation, moisture diffusion equation and continuous equation, and are expressed by the following formulas (1) to (6). [Number 1] 395 85181.doc 200424905 Equation of motion: f | ", duld / ayldra ^ jd / 4¾ .. Rhyme A. (-卜 封 i.5rMax > Γ? ^ * 5wi & avuawlt 2 awiayavjsyav »了 r ~ v ^ i & avjarawH / fi \-/ i (1) ^ (3) Ar ^ lar thermal energy equation δθ δθ, δθ r— = -w — ~-v J dt dx

Sy 3Θ, d } II _|— 11· I dz dx 水之擴散方程式 連、讀方程式 d9A dSy 3Θ, d} II _ | — 11 · I dz dx Water diffusion equation Connect and read equation d9A d

Kh (4) dz t) (5) = 一 如。(dp,0Qu Jp0^dp^ 9t C,P〇^〇Kh (4) dz t) (5) = as. (dp, 0Qu Jp0 ^ dp ^ 9t C, P〇 ^ 〇

Sr 〇y dz ⑹ U、V、w :風速 f:科里奥利•參數 km :運動量的渦流黏性係數 kn :熱與水分的渦流擴散係數 Qu :水分(冰-水)的溫位 rn :雨、雪等之水分的混合比 P :密度 rad ·· radiation(輕射) g:重力加速度 R:氣體定數 Cv :定積比熱 Exner function (變動分) 、 Qv ·暫溫位 p :壓力 附加字0為參照值 π 如此 4 异以 RAMS (Regional Atmospheric Modeling 85181.doc 200424905 △”em)代碼所顯不《風速場解析的基本方程式,由演算開 u 、得到頭π每一足時間刻度(例如每2〇秒間隔)之各母 格子點位置之氣象資料,與各子格子點位置之氣象資料之 風向向量資料(鳳速場資料)。 <擴散狀況預測演算之概要說明〉 其/人針對擴散狀況預測演算加以說明。作擴散狀況預測 演算,係藉 RAMS (Regi〇nal Atm〇spheric M〇deHng System) 代碼’將所求出之每2〇秒刻度之各母格子點位置及各子格 子點位置的風速場資料,陸續的代入科羅拉多州立大學與Sr 〇y dz ⑹ U, V, w: wind speed f: Coriolis parameter km: eddy viscosity coefficient of motion kn: vortex diffusion coefficient of heat and moisture Qu: temperature level of water (ice-water) rn: Mixing ratio of moisture such as rain, snow, etc. P: density rad · radiation (light shot) g: gravity acceleration R: gas constant Cv: constant product specific heat Exner function (variation points), Qv · temporary temperature p: pressure addition The word 0 is the reference value π, so 4 is different from the basic equation of wind speed field analysis shown in the RAMS (Regional Atmospheric Modeling 85181.doc 200424905 △ "em) code, and the calculation opens u to get each time scale of the head π (for example, every time 20-second interval) meteorological data at the positions of each mother grid point, and wind direction vector data (feng field data) of the meteorological data at the position of each child grid point. The state prediction calculation will be explained. For the diffusion state prediction calculation, the position of each mother grid point and each child grid point of every 20-second scale obtained by the RAMS (Regi〇nal Atm0spheric M0deHng System) code will be used. Wind speed field Material, a succession of generations into the Colorado State University

Mission Research公司所開發之 HYPACT (Hybrid Particle Concentration Transport Model),作擴散狀況的預測演算。 作為擴散狀況之預測演算的具體例,係採用Lagrangiai^^ 子擴散模型。 該Lagrangian粒子擴散模型,係使用其次顯示之公式 (7)〜(9)計算粒子的擴散速度(u, 、ν’ 、w,),使各粒子移 動。 【數2】HYPACT (Hybrid Particle Concentration Transport Model) developed by Mission Research is used to predict the diffusion status. As a specific example of the prediction calculation of the diffusion status, the Lagrangiai ^^ sub-diffusion model is used. This Lagrangian particle diffusion model calculates the diffusion velocity (u,, ν ', w,) of particles using the formulas (7) to (9) shown next, and moves each particle. [Number 2]

Lagrangian粒子擴散模型,係使用公式(12)〜(14)計算粒 子的擴散速度。 ▽•(t) = RTV(t-At) + a,)rv w* (t) = Rw W1 (t - At) + (l ~ R°^)rw 在此,Ru、Rv、Rw : Lagrange亂流本身相關係數 -10 - 3B7 85181.doc 200424905 U,⑴ 、V,(t)、w,( t :時間 Ru(At) = u丨(t)· 一 Δϋ) r ----exp \ Rv(At) = v*(t).V(t«At)=exp^ Rw(At) = w1 (t) · w1 (t - At) ---= exp Δϋ 1 At ^Lv > f At'The Lagrangian particle diffusion model uses the formulas (12) to (14) to calculate the diffusion speed of particles. ▽ • (t) = RTV (t-At) + a,) rv w * (t) = Rw W1 (t-At) + (l ~ R ° ^) rw Here, Ru, Rv, Rw: Lagrange chaos Correlation coefficient of the stream itself -10-3B7 85181.doc 200424905 U, ⑴, V, (t), w, (t: time Ru (At) = u 丨 (t) · 一 Δϋ) r ---- exp \ Rv (At) = v * (t) .V (t «At) = exp ^ Rw (At) = w1 (t) · w1 (t-At) --- = exp Δϋ 1 At ^ Lv > f At '

CO 在此,σ u、σ v、σ w :亂流速度標準偏差 Tlu、TLv、TLw :拉格蘭吉時間標度 ru ^ C7u7lu> = CTVT]V, rw = cTw77w + Wd 〔Cjf ) 在此,7? u、7? V、7? W :正規亂數(平均值為0)CO here, σ u, σ v, σ w: standard deviation of turbulent flow velocity Tlu, TLv, TLw: Lagrange time scale ru ^ C7u7lu &=; CTVT] V, rw = cTw77w + Wd 〔Cjf) , 7? U, 7? V, 7? W: regular random number (mean is 0)

Wd :重力沈降速度 在此,將由 RAMS (Regional Atmospheric Modeling System)代碼求出之每20秒刻度之各母格子點位置及各子 格子點位置之風速場資料,陸續代入HYPACT (Hybrid Particle Concentration Transport Model)代碼,說明作擴散 狀況的預測演算之具體例。 為了作該演算,將由排出源排出至大氣中之物質替換成 多數之粒子P,在由排出源的位置至每一演算週期△ t(在此 △ t二20秒),設定發生N個(在此為20個)之粒子P。 也就是,在每一演算週期Δί(20秒)發生20個的粒子,使 其在演算開始時點發生20個之粒子Ρ,從演算開始時點20 秒後發生20個之粒子,從演算開始時點40秒後發生20個之 85181.doc -11 - 200424905 粒子。而且’在每一演算週期△ t(20秒),藉演算求出各粒 子P的位置(空間座標)。 又,以 P。。01、P0〇02、p0。。3、p0004、P0005、p〇〇06、p〇〇〇7、 Poo08 ' Poo09 ^ P〇〇10 ^ Poo11 ^ P〇〇12 ^ P〇〇13 ^ P〇〇H . p〇〇15 ^ p〇〇16 ^ P0017、PG〇18、P〇〇19、p⑽2G,顯示在演算開始時點(時刻〇秒) 發生之20個之粒子P。 以 P2001、P2002、P2003、P2004、P2〇05、P 06 07 〇8 v 丄 20 a 2〇 、 P2009 ^ P2〇10 ^ Ρ,ο11 . p20^ . p2〇- . p2〇14 , p2〇15 ^ p2〇16 ^ p^l7 ^ P2〇 、Pm 、Pa20,顯示從演算開始時點2〇秒後發生之 個之粒子P。 以 P4〇01、P4002、p4003、P4〇〇4 P4005Wd: The gravity settlement speed is here. The wind speed field data of each mother grid point position and each child grid point position calculated by the RAMS (Regional Atmospheric Modeling System) code every 20 seconds will be substituted into HYPACT (Hybrid Particle Concentration Transport Model). ) Code to explain a specific example of the prediction calculation for the diffusion status. In order to perform this calculation, the material discharged into the atmosphere from the emission source is replaced by a large number of particles P. From the position of the emission source to each calculation period △ t (here Δ t is 20 seconds), N occurrences (in Here are 20) particles P. That is, 20 particles are generated in each calculation period Δί (20 seconds), so that 20 particles P are generated at the calculation start point, 20 particles are generated 20 seconds after the calculation start point, and 40 are calculated from the start point of the calculation. 85181.doc -11-200424905 particles occurred in 20 seconds. In addition, at each calculation period Δt (20 seconds), the position (spatial coordinates) of each particle P is calculated by calculation. Again, take P. . 01, P0 02, p0. . 3.p0004, P0005, p〇〇06, p〇〇07, Poo08 'Poo09 ^ P〇〇10 ^ Poo11 ^ P〇〇12 ^ P〇〇13 ^ P〇〇H. P〇〇15 ^ p〇 〇16 ^ P0017, PG〇18, P0019, p⑽2G, shows the 20 particles P that occurred at the start time of the calculation (time 0 seconds). Take P2001, P2002, P2003, P2004, P205, P06 07 〇8 v 丄 20 a 2〇, P2009 ^ P2〇10 ^ P, ο11. P20 ^. P20-14, p2〇15 ^ p2016 ^ p ^ 17 ^ P20, Pm, Pa20 shows the particle P that occurred 20 seconds after the start of the calculation. P4〇01, P4002, p4003, P4〇04 P4005

P 40 06 P4009、P4010、P4〇"、 P4018、 P4019、 P4〇2〇 個之粒子p。P 40 06 P4009, P4010, P4O ", P4018, P4019, P4o2 particles p.

ρ4007、P 40〇8> P4G12、P4〇13、P4。"、p4〇15、p4〇16、p ,顯示從演算開始時點40秒後發生 17 40 ' 之20 」後面的下段之數字 险別為顯示於符號 係從演算開始時點之時間,顯示於符號「p」後面的上招 讀竽,録其時點發生之_之粒子。在其他時 之粒子也同樣表記。 P。。:先P : 始時。點,由排出源s發生2〇個粒子P。。。1、ρ4007, P 40〇 > P4G12, P4〇13, P4. ", p4〇15, p4〇16, p, show that the number in the lower paragraph after 17 40 '20' after 40 seconds from the start of the calculation is displayed in the symbol. The time from the start of the calculation is displayed in the symbol. The upper stroke after "p" reads the 竽, and records the particles of _ that occurred at that time. Particles at other times are also expressed in the same way. P. . : First P: At the beginning. At the point, 20 particles P are generated from the discharge source s. . . 1,

Poo 、P0012、p00" 〇〇 〇〇 °°、P°°°5、P:6、p:7、p:8、p:、P。,、 、P〇〇,4、P〇〇i5、P〇〇i6、P〇〇17、P0018、P。,、 19顯示之排出源s再發 〇4、 p。 05 p 〇6 Ώ 〇7 r20 、尸20 、P2〇U/、 在由演算開始時點20秒後,由圖 生 20 個的粒子 Ρ2〇〇1、ρ2ϋ〇2、ργ3、/ 85181.doc -12- 200424905 P2〇 08 P2〇〇9、P2〇1〇、P2〇u、P2012、P2〇 11 12 13Poo, P0012, p00 " 〇〇 〇〇 °°, P °°° 5, P: 6, p: 7, p: 8, p:, P. ,,, P00,4, P00i5, P00i6, P0017, P0018, P. The emission source s shown in 19, 19 is re-issued 〇4, p. 05 p 〇6 〇 〇7 r20, corpse 20, P20U /, 20 particles from the graph after 20 seconds from the start of the calculation, P20, ρ2ϋ〇2, ργ3, / 85181.doc -12 -200424905 P2 08 P 2 0 09, P 2 0 10, P 2 0u, P 2012, P 2 0 11 12 13

P 20 n P2015、p20 16 P 17 2(T’、P2〇18、p20”、p2〇… 此時’在演算開始時點發生之粒子ρ〇()(Π、P〇() 、r〇〇 10 ^ Π 1 1 12 19 20 02P 20 n P2015, p20 16 P 17 2 (T ', P2〇18, p20 ", p2〇 ... At this time, the particles that occurred at the start of the calculation are ρ〇 () (Π, P〇 (), r〇〇10 ^ Π 1 1 12 19 20 02

Pr 03 Ρ〇〇04 ' Ρ〇〇05 ^ Ρ〇〇06 ^ Ρ00〇^. P〇〇〇s . ρ〇〇〇9 . ρ〇〇1〇 . ρ〇〇Π . ρ〇〇12 χ Ρ〇。13 ' ρ。。14、Ρ。。15、ρ。,、ρ〇〇17 由排出源S到達離開位置為止,並且擴散。 各粒子Ρ的位置,係使用以RAMS (Regional Atmospheric Modeling System)代碼求出之每2〇秒刻度之風速場資料, 冲算Lagrangian粒子擴散模型之各粒子p的擴散速度 (U, 、V’ 、w,),藉移動各粒子求出。 在由演算開始時點4〇秒後,由圖2〇顯示之排出源s再發 生 20個的粒子 ρ:!、ρ/、ρ:3、ρ:4、ρ Ρ 40 ρ4008、Ρ4η09、Ρ 10 40 40 ρ4〇17、Ρ4018、Ρ4〇β 18 Ρ〇〇19、Ρ〇ο 20 係 4005、Ρ40〇6、Ρ40 ρ40η、Ρ4。12、Ρ4〇13、ρ4〇ι、ρ4〇15、ρ4。 Ρ,。 14 07 16 此時,在演算開始時點發生之粒子、匕^2、ρ〇〇〇3 〇〇—、Ρ〇ο〇7、Ρ0,、Ρ〇0〇9、Ρ:、Ρ〇〇11、ρ〇〇 Ρ〇ο 4、Ρ0005、ρ- 〇6Ρ。。13、ρ。。14、Ρ0。"、Ρ〇〇 由排出源s到達更離開位置為止,並且擴散 另外,由肩算開始時點2〇秒後發生之2〇個 Ρ2〇10 ?20 P2〇〇2、P2〇〇3、r20 11Pr 03 〇〇04 '〇〇〇05 ^ 〇〇〇 〇 〇 〇 00.. 〇〇〇09. Ρ〇〇1〇. Ρ〇〇Π. Ρ〇〇12 χ ΡΡ 〇. 13 'ρ. . 14. P. . 15, ρ. ,, Ρ〇〇17 from the exhaust source S to the departure position, and spread. The position of each particle P is calculated using the wind speed field data every 20 seconds on the scale of the RAMS (Regional Atmospheric Modeling System) code to calculate the diffusion velocity (U,, V ', w,), calculated by moving each particle. After 40 seconds from the start of the calculation, 20 additional particles ρ:!, Ρ /, ρ: 3, ρ: 4, ρ ρ 4008, ρ4η09, ρ 10 40 were generated from the emission source s shown in FIG. 20. 40 ρ4〇17, P4018, P4〇β 18, P0019, Poo 20 series 4005, P4006, P40 ρ40η, P4, 12, P4O13, ρ4〇ι, ρ4〇15, ρ4. P ,. 14 07 16 At this time, the particles, d2, p3, p3, p2, p0, p0, p0, p9, p :, p0011, ρ〇〇Ρ〇ο 4, P0005, ρ-〇〇Ρ. . 13, ρ. . 14. P0. ", P〇〇 from the emission source s to the farther away position, and spread In addition, from the start of shoulder counting 20 seconds after the start of 20 P2010 ~ 20 P2002, P2003, r20 11

Poo17、Ρ0018 Ρ〇〇19、ρ00 11 ΤΛ 12 )0 20 係 Ρ,ηυ3、ΡΟΛ04、p2〇〇5、D 06 P2006、P2007、P2008、Ρ, 09 20Poo17, P0018, P0019, ρ00 11 ΤΛ12) 0 20 series P, ηυ3, ΡΟΛ04, p2005, D 06 P2006, P2007, P2008, P, 09 20

?20 、P2012、D? 20, P2012, D

P 2〇、P2〇14、P2015、P20 20 16、P2017、P2018、n 19 P2〇 ’係由排出源S到達離開位置為止,並且擴散▼ Η乂置係使用以 RAMS (Regional Atm〇spheric 〇delingSystem)代碼求出之每卿刻度之風速場資料, 31Θ 85181如 -13 - 200424905 計算Lagrangian粒子擴散模型之各粒子p的擴散速度 ( v 、w )’藉移動各粒子求出。 在由演算開始時點60秒後,由圖顯示之排出源s再發 生 20個的粒子 P6〇01、P6〇〇2、P6〇〇3、P6〇〇4、P6〇〇5、P6Q〇6、p6Q〇7、 p6。。8、p6〇°9、p601()、p6:、p6()12、p6〇13、P6〇m、b ΤΛ 1 1 60 P6〇、P6。18、P6。19、P6〇2〇。 此時’在演算開始時點發生之粒子p^oi、p㈧Μ、ρ〇α〇3、 Ρ。’4、Ρ〇〇°5、Ρ00°6、ρ。。。' Ρ()()()8、ρ〇()〇9、ρ。,、ρ〇:、ρ〇〇12、 ρ〇。3、ρ。。14、ρ0015、Ρ0〇ΐ6、ρ〇〇17、ρ。,、ρ〇〇19、ρ〇〇20,係 由排出源S到達更離開位置為止,並且擴散。 另外’由演算開始時點2〇秒後發生之2〇個粒子ρ^01、 ρ2002 ^ Ρ2〇03 > Ρ2〇04 > Ρ2〇〇5 , ρ2〇06 ^ ρ2〇07 ^ ρ2〇〇8 , ρ2〇09 ^ ρ2〇1〇 ^ ρ2 0"、ρ2。12、Ρ2。13、ρ2。"、ρ2〇15、ρ2,、ρ2。”、ρ2,、〜19、 ?2° ’係由排出源s到達更離開位置為止,並且擴散。 另外’由演算開始時點40秒後發生之20個粒子ρ^ίΗ、 p4002 ' P4〇03 > P4004 . P4〇〇^ . p4〇〇6 . p4〇07 λ p4〇08 , p4〇09 , p^lO ^ p4〇"、p4。12、P4013、P4〇i4、p4Q15、p4,、p4〇17、pj8、〜19、 P402() ’係由排出源S到達離開位置為止,並且擴散。 各粒子P的仏置’係使用以rams (Regional AtmosphericP 2〇, P 2 0 14, P 2015, P 20 20 16, P 2017, P 2018, n 19 P 2 0 'is from the source S to the departure position, and spreads. ▼ The system is set up using RAMS (Regional Atmospheric 〇delingSystem ) Code to obtain the wind speed field data per scale, 31Θ 85181 such as -13-200424905 Calculate the diffusion velocity (v, w) of each particle p of the Lagrangian particle diffusion model. It is obtained by moving each particle. After 60 seconds from the start of the calculation, the emission source s shown in the figure generated 20 more particles P6001, P6002, P6003, P6004, P6005, P6Q06, p6Q〇7, p6. . 8. p60 ° 9, p601 (), p6 :, p6 () 12, p6013, P60m, b ΤΛ 1 1 60 P60, P6.18, P6.19, P6202. At this time, the particles p ^ oi, p㈧M, ρ〇α〇3, P that occurred at the beginning of the calculation. '4, PO00 ° 5, PO00 ° 6, ρ. . . 'P () () () 8, ρ〇 () 〇9, ρ. ,, ρ〇 :, ρ〇〇12, ρ〇. 3. ρ. . 14, p0015, p0〇6, p0017, p. ,, Ρ〇019, ρ〇〇20, from the source S to reach a more distant position, and spread. In addition, '20 particles ρ ^ 01, ρ2002 ^ P2003 > P2〇04 > P2005, ρ2〇06 ^ ρ2〇07 ^ ρ2〇08, which occurred 20 seconds after the start of the calculation, ρ2〇09 ^ ρ2〇1〇 ^ ρ2 0 ", ρ2.12, P2.13, ρ2. ", ρ2〇15, ρ2 ,, ρ2. ", Ρ2 ,, ~ 19,? 2 ° 'means that the emission source s has reached a more distant position and diffused. In addition, '20 particles ρ ^ ίΗ which occurred 40 seconds after the start of the calculation, p4002' P4〇03 > P4004. P4〇〇 ^. P4〇〇6. P4〇07 λ p4〇08, p4〇09, p ^ lO ^ p4〇 ", p4.12, P4013, P4io4, p4Q15, p4, p4 〇17, pj8, ~ 19, P402 () 'It is from the exhaust source S to the exit position and spreads. The placement of each particle P' uses rams (Regional Atmospheric

Modeling System)代碼求出之每2〇秒刻度之風速場資料, 計算Lagrangian粒子擴散模型之各粒子p的擴散速度 (U 、v 、w’ ),藉移動各粒子求出。 如上述’陸續使2〇個之粒子發生於每一演算週期Atpo 秒)’並且求出各每一演算週期△ ““秒)之粒子的位置,也 85181.doc •14- 200424905 就是空間座標(xi(t)、yi⑴、zi(t》。 而且,在由演算開始經過既定時間時,在由排出源3離 開既定距離之單位空間(預測地區之單位體積),如圖22所 *、員示,存在粒子的情形,由該粒子的數目可以計算該單位 芝間之物質的濃度。 亦即,在排出源S,若1秒鐘排出Q(m3)的物質,則由於 粒子P在20秒鐘發生20個(換算後1秒鐘工個),所以各粒子 P,形成每一個均具有Q/l(m3)的排出源強度。在此,存在 於該單位空間之粒子P的數目,藉乘上排出源強度 Q/l(m3),可以求出該單位空間之物質的濃度。 若一般的顯示上述之具體例,則成為如其次所述。以多 數之粒子替換由排出源所排出之氣體等之物質。而且,由 排出源放出每秒N個之粒子。該情形,在計算上之粒子的 排出量為N/sec。由實際的排出源所排出之物質的排出量為 Q(m3/sec)的情形,則各粒子具有Q/N(m3)的排出源強度。 對每一粒子藉非永恆不變的數值計算運動方程式,亦即 將以 RAMS (Regional Atmospheric Modeling System)代碼求出之 風速場資料’代入HYPACT (Hybrid Particle Concentration Transport Model)代碼,使用Lagrangian粒子擴散模型計算 各粒子P的擴散速度(u’ 、ν’ 、w,),藉移動各粒子,可 以非永恆不變的決定各粒子的座標。也就是,可以將各粒 子的呈間座標決定於每一演算週期△ t。又,藉Lagrangian 粒子模型求出記錄於資料記錄裝置之各粒子的資料,僅為 各粒子的芝間座標(xi(t)、yi⑴、zi⑴)。 85181.doc -15- 200424905 粒子(物質)的運動方程式之HYPACT代碼,係表現粒子的 移流、擴散、重力沈降現象者。在此,粒子的移流現象, 係依靠於大氣的時間平均速度,擴散現象,係依靠於大氣 的亂流速度,重力沈降,係依靠於粒子的質量、重力加速 度、空氣的黏性係數等(參照圖23)。 空氣中的單位體積中之粒子個數為11個的情形,該空間 中的氣體濃度(物質濃度)形成nXQ/N(氣體m3/空氣。也 就是,形成在存在於該單位空間之粒子數11乘上各粒子具 有之排出源強度Q/N。 發明所欲解決之問題 該環境濃度(單位體積之物質濃度),係依靠於所排出之 物質的排出量的時間變&。為此,在排出量隨著時間變化 之條件,擴散計算有必要在各每一排出條件實施。從而, 在假設排出條件較多的情形,有必要實施排出量實例份之 擴散計算,結果需要龐大的計算時間。 亦即’如圖24所示,當例如由排出源s(例如煙⑴排出氣 體(物質)時,在風下的某地點R氣體濃度的時間變化,係 因應由排出源S所排出之物質的時間變化而變化。 也就是’如圖25⑷在物質的排出量隨著時間變化的情 形,地點F之物質的濃度,係如圖25(b)隨著時間變化,如 圖26(a)物質的排出量在一定的情形,地點f之物質的濃 度’係如圖26(b)上升到K直後維持—定濃度,如圖27(a) 在物質瞬間的被排出的情形,地點F之物質的濃度,係如 圖27(b)—時的上升之後變零。 85181.doc -16- 2004249 05 如此,在物質的排出量隨著時間變化的情形,有必要使 粒子的發生個數配合物質的排出量隨著時間變化。而且, 如此求出隨著時間的經過使發生個數變化之粒子的的移 動位置,由該粒子的移動位置作物f的濃度計算。從而, 在排出量的變化不同之各實例,必須預先做擴散計算,需 要龐大之計算結果。 而 例如在處理放射性物質之設施,在發生放射性物質被排 出至外部之事故的情形,有極多數的物質(例如1〇〇種類程 度4物質)被排出。而JL,在各每一物質,其排出量因應時 間刀剎不同。從而,在各每一物質,使粒子的發生個數配 合物質的排出量隨著時間變化,如此求出使發生個數變化 <粒子的移動位置,由該粒子的移動位置作物質的濃度計 异。從而,在該情形,有必要預先做對應例如1〇〇種類的 物質之100種類之擴散計算。 本發明係鑒於上述先前技術,以提供一種排出多種類之 物兔,並且各物質的排出量即使有隨著時間變化的情形, π可以在短時間内預測演算物質的擴散狀況之擴散物質 的擴散狀況預測方法及擴散物質的擴散狀況預測系統為 目的0 發明内容 解決上述問題之本發明之擴散物質的擴散狀況預測方 法’係為了預測由排出源排出至大氣中之物質擴散至大氣 中义狀況’將前述物質替換成多數之粒子,設定為由排出 /原的位置在每一演算週期發生預先設定之個數之粒子; -Η 85181.doc -17- 200424905 且在包含排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式’求出各粒子的擴散速度, 由該擴散速度求出在各每一演算週期顯示各粒子存在之 空間位置之空間座標,並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應各演算週期之各粒 子的空間座標與各粒子的排出後經過時間,預先記錄 料記錄器; ~ 又,比例於伴隨所排出之物f的排出後經過時間的時間 經過之排出量的變化,預先設定隨著排出後經過時間的時 間經過對粒子之排出源強度資料; 又,讀出記錄於前述資料記錄裝置之各每一演算週期之 各粒子的空間座標與各粒子的排出後經過時間,並且^ 讀出之排出後經過時間’求出各粒子發生之時點,由前述 排出源強度資料求出該時點之各粒子的排出源強度,在前 述資料記錄裝置再記錄對應各每一演算週期之各粒子的 空間座標與各粒子的排出後經過時間與排出源強度; 又’既定之演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該既定之演算週期之該既定之區域之全 部之粒子的排出源強度求出。 王 另外,本發明之擴散物質的擴散狀況預測方法,係為了 預測由多數(排出源排出至大氣中之物f擴散至大氣中 之狀況’將前述物質替換成多數之粒子,設定為由各排出 源的位置在每一演算週期分別發生預先設定之個數之粒 315 85181.doc -18- 200424905 子; 且在包含排出源的位置之區域内之多述地點,藉將隨著 B寺間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式,求出各粒子的擴散速度, 由該擴散速度求出在各每一演算週期顯示各粒子存在之 空間位置之空間座標’並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應識別各演算週期之 各粒子的⑽座標與各粒子的排出後經過時間與排出源 之排出源識別資訊,預先記錄於資料記錄器; 又,比例於伴隨由各排出源所排出之物質的排出後經過 時間的時間經過之排出量的變化,在各每—排出源預先分 別設定隨著排出後經過時間的時間經過對粒子之排出 強度資料; 又,謂出記錄於前述資料記錄裝置之各每一演算週期之 各粒子的空間座標與各粒子的排出後經過時間與各粒予 排出源識別資訊,並且參照讀出之排出後經過時間,求出 各粒子發生炙時點,參照讀出之排出源識別資訊,由對應 其粒子發生之排出源之前述排出源強度資料求出粒子發 生〈時點之各粒子的排出源強度,在前述資料記錄裝置再 记錄對應各每一演算週期之各粒子的空間座標與各粒予 的排出後經過時間與排出源強度; 一" 又,既足又演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該%定之演算週期以既定之區域之全 邵之粒子的排出源強度求出。 王 85181.doc -19- 200424905 、.另外本發明 < 擴散物質的擴散狀況預測方法,其中前 述排出源強度資料,係藉實測由前述排出源實際排出之物 貝的濃度求出並加以設定; 〜岫逑排出源強度資料,係將前述排出源的周圍之觀測 ”、、只/、J之物貝的濃度之時間變化設定為基礎。 另=本發明之擴散物質的擴散狀況預測系統,係包含 $、:業者,係當擴散物質排出至大氣中時,實測擴散物 -勺;辰度,發訊顯示擴散物質的排出量之資料; 資料傳訊設施,係傳訊氣象觀測資料; 1¾ έ廳,係對前述企業者與前述企業者的周邊之居 民,通知避難勸告;及 ^解析中心,係作擴散物質的擴散狀況預測演算處 理且濟异既定區域之物質的濃度; 所又在則述安全解析中心,來自前述企業者顯示擴散物 貝的排出里又資料,以及來自前述氣象資料傳訊設施之氣 象觀測資料’係藉資訊傳達手段傳送; ^ 在幻这|i €廳’來自前述安全解析中心之物質的 /辰度,係藉資訊傳達手段傳送; 又,則述監督官廳,係因應所傳來的物質的濃度通知避 難勸告。 實施方式 以下,依據圖面詳細說明本發明之實施形態。 <第1灵施形態(排出源為1個的情形)> 、面參妝圖1〜圖10一面說明關於本發明之第1實施形態 之擴政物質的擴散狀況預測方法。 85181.doc •20- 200424905 在第1 K施形態之第1步騾(參照計算流程圖之圖1),作如 其次之處理。亦即,由排出源S實際排出之物質的排出量 即使一定,隨著時間經過排出量即使變化的情形,首先, 將物質的排出量Q(m3/sec)作為一定值1〇),使用先前之Modeling System) code calculates the wind speed field data every 20 seconds scale, calculates the diffusion velocity (U, v, w ') of each particle p of the Lagrangian particle diffusion model, and obtains by moving each particle. As mentioned above, “20 particles are successively generated in each calculation period (Atpo seconds)” and the position of the particles in each calculation period △ ““ seconds ”is also obtained. 85181.doc • 14- 200424905 is the space coordinate ( xi (t), yi⑴, zi (t >>. Moreover, when a predetermined time has elapsed from the start of the calculation, the unit space (predicted unit volume) at a predetermined distance from the emission source 3 is shown in Fig. 22 *. In the case of particles, the concentration of the substance in the unit can be calculated from the number of particles. That is, if the substance Q (m3) is discharged from the source S in 1 second, the particle P is in 20 seconds. There are 20 occurrences (1 second after conversion), so each particle P is formed to have an emission source intensity of Q / l (m3). Here, the number of particles P existing in the unit space is multiplied by The strength of the exhaust source Q / l (m3) can be used to determine the concentration of the substance in the unit space. If the specific example shown above is generally displayed, it becomes as follows. The gas discharged from the exhaust source is replaced with a large number of particles. And so on. Moreover, N is emitted from the exhaust source per second Particles. In this case, the discharge amount of particles is calculated as N / sec. When the discharge amount of the substance discharged from the actual discharge source is Q (m3 / sec), each particle has Q / N (m3) The intensity of the emission source. For each particle, the equation of motion is calculated by a non-permanent numerical value, and the wind speed field data obtained from the RAMS (Regional Atmospheric Modeling System) code will be substituted into the HYPACT (Hybrid Particle Concentration Transport Model) code. The Lagrangian particle diffusion model calculates the diffusion velocity (u ', ν', w,) of each particle P. By moving each particle, the coordinates of each particle can be determined non-permanently. That is, the coordinates of each particle can be inter-ordinated. It is determined by each calculation period △ t. Moreover, the data of each particle recorded in the data recording device is obtained by the Lagrangian particle model, which is only the Shiba coordinates (xi (t), yi⑴, zi⑴) of each particle. -15- 200424905 The HYPACT code of the equation of motion of particles (substances) represents the migration, diffusion, and gravity settlement of particles. Here, the phenomenon of particle migration depends on The time-averaged velocity of the atmosphere and the phenomenon of diffusion depend on the turbulent velocity of the atmosphere and the settlement of gravity, on the mass of the particles, the acceleration of gravity, and the viscosity coefficient of the air (see Figure 23). When the number of particles is 11, the gas concentration (substance concentration) in the space becomes nXQ / N (gas m3 / air. That is, the number of particles formed in the unit space is 11 times the number of particles each has. Emission source intensity Q / N. Problems to be Solved by the Invention The environmental concentration (concentration of a substance per unit volume) depends on the time change & Therefore, under the condition that the discharge amount changes with time, it is necessary to perform the diffusion calculation for each discharge condition. Therefore, under the assumption that there are many discharge conditions, it is necessary to perform the diffusion calculation of the discharge amount, and as a result, a huge calculation time is required. That is, as shown in FIG. 24, when, for example, a gas (substance) is discharged from an exhaust source s (for example, soot), the time change of the concentration of R gas at a certain place under the wind is due to the time of the substance discharged from the exhaust source S. That is, as shown in Fig. 25 (a). In the case where the amount of discharged material changes with time, the concentration of the substance at location F changes as shown in Fig. 25 (b) over time, as shown in Fig. 26 (a). In a certain situation, the concentration of the substance at the point f is as shown in Figure 26 (b), which rises to K and then maintains a constant concentration, as shown in Figure 27 (a). At the moment when the substance is discharged, the concentration of the substance at the point F , As shown in Figure 27 (b), it will become zero after the rise. 85181.doc -16- 2004249 05 In this way, it is necessary to make the number of particles to match the discharge of the material in the case where the amount of discharged material changes with time. The amount changes with time. In addition, the moving position of the particles that changes the number of particles over time is calculated in this way, and the concentration of the crop f is calculated from the moving position of the particles. Therefore, the change in the discharge amount varies. Example, the diffusion calculation must be done in advance Large calculation results are required. For example, in a facility that handles radioactive materials, in the case of an accident in which radioactive materials are discharged to the outside, a very large number of materials (such as 100 types of 4 substances) are discharged. And JL, in The discharge amount of each substance varies according to the time. Therefore, in each of the substances, the number of particles generated and the discharge amount of the substance change with time, so that the change in the number of particles < The moving position is determined by the particle's moving position as the concentration of the substance. Therefore, in this case, it is necessary to perform a diffusion calculation for 100 types of substances corresponding to, for example, 100 types of substances. The present invention is based on the foregoing prior art. A method for predicting the diffusion state of a diffusive substance and a diffusion state of a diffusive substance in a short time can be predicted by π, even if the discharge amount of various substances changes with time. Prediction system for the purpose 0 Summary of the invention A method for predicting the diffusion state of a diffusing substance of the present invention that solves the above problems In order to predict the diffusion of substances discharged into the atmosphere from the exhaust source into the atmosphere, the above-mentioned substances are replaced with a large number of particles, and set to a predetermined number of particles that will occur in each calculation cycle from the discharge / original position; -Η 85181.doc -17- 200424905 In the multi-point location in the area containing the location of the discharge source, the wind direction and wind speed field data will be displayed over time, and substituted into the diffusion equation for calculating the diffusion state of particles 'Find the diffusion velocity of each particle, and obtain the spatial coordinates showing the spatial position of each particle in each calculation cycle from this diffusion velocity, and measure the elapsed time after the elapsed time elapsed from the elapsed time at which the particle first occurred, The material recorder is recorded in advance corresponding to the space coordinates of each particle in each calculation cycle and the elapsed time after the discharge of each particle; ~ Also, the change is proportional to the change in the amount of elapsed time that elapses with the elapsed time after the discharged object f, Pre-set the emission source intensity data of the particles as time elapses with the elapsed time after discharge; and read the record The spatial coordinates of each particle and the elapsed time after discharge of each particle in each calculation cycle of the aforementioned data recording device, and ^ read out the elapsed time after discharge 'to find out the time when each particle occurred, and use the intensity data of the discharge source to calculate The intensity of the emission source of each particle at this point in time is recorded in the aforementioned data recording device, and the spatial coordinates of each particle corresponding to each calculation period and the elapsed time and intensity of the emission source after each particle are ejected; The concentration of the aforementioned substance in a predetermined area is obtained by accumulating the intensity of the exhaustion source of all particles existing in the predetermined area in the predetermined calculation period. Wang In addition, the method for predicting the diffusion state of the diffusive substance of the present invention is for predicting the state of diffusion of the substance f discharged into the atmosphere from the majority (the source f is diffused into the atmosphere. The location of the source occurs in a predetermined number of grains in each calculation cycle. 315 85181.doc -18- 200424905; and the multiple locations in the area containing the location of the source of discharge will be followed by the B temple. The wind speed field data of wind direction and wind speed are displayed after change, and the diffusion equation of the diffusion state of the calculated particles is substituted to obtain the diffusion speed of each particle. From this diffusion speed, the space showing the spatial position of each particle in each calculation period is obtained. Coordinates' and measure the elapsed time after the elapsed time from the elapsed time when the aforementioned particle first occurred, corresponding to the ⑽ coordinate of each particle that identifies each calculation cycle and the elapsed time after the discharge of each particle and the discharge source identification information of the discharge source are recorded in advance To the data logger; and the proportion is the time elapsed after the discharge of the substance accompanied by each discharge source. The change of the discharge volume between each time is set in advance for each discharge source. The discharge intensity data of the particles with the elapsed time after the discharge is set in advance. Also, it is said that each calculation period recorded in the aforementioned data recording device is The spatial coordinates of each particle, the elapsed time after discharge of each particle, and the identification information of the discharge source of each particle, and referring to the read elapsed time after discharge, determine the time point when each particle occurs, and refer to the read source identification information. The intensity of the emission source of each particle at the time of particle occurrence is obtained from the aforementioned emission source intensity data of the emission source corresponding to the particle generation, and the spatial coordinates and particles of each particle corresponding to each calculation period are recorded in the aforementioned data recording device. The elapsed time after the discharge and the intensity of the discharge source; " Also, the concentration of the aforementioned substance, which is both sufficient and calculated in a predetermined area of the cycle, is a particle that accumulates in the predetermined area and accumulates all particles in the predetermined area. The intensity of the emission source can be obtained. Wang 85181.doc -19- 200424905 、 In addition, the present invention < Prediction method of the diffusion state of the diffusing substance The above-mentioned emission source intensity data is obtained by actually measuring the concentration of the shellfish actually discharged from the aforementioned emission source and is set; ~ 岫 逑 The emission source intensity data is obtained by observing the surroundings of the aforementioned emission source ", only / The time variation of the concentration of the shellfish of J is set as the basis. Another = the system for predicting the diffusion state of the diffusive substance of the present invention, which includes $,: operator, when the diffusive substance is discharged into the atmosphere, the measured diffusive substance-spoon; Chen Du, sending information showing the discharge of diffused substances; data communication facilities, which are meteorological observation data; 1¾, Hall, which is used to notify the evacuation advisers of the aforementioned companies and the surrounding residents of the aforementioned companies; and ^ Analysis Center It is used for the calculation of the diffusion status of diffusive substances, and the concentration of the substances in a given area is resolved. The safety analysis center, the data from the above-mentioned enterprises showing the discharge of diffusive shellfish, and the data from the aforementioned meteorological data The meteorological observation data of the facility is transmitted by means of information transmission; ^ Zaiyi | i € Hall ' / Chen degree, is transmitted by means of information transmission; also, the supervisory office is based on notification of refuge advice based on the concentration of the material. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. < First Lingshi form (when there is one discharge source) > A method for predicting the diffusion state of the expansion substance in the first embodiment of the present invention will be described with reference to Figs. 1 to 10. 85181.doc • 20- 200424905 In the first step of the 1K application pattern (refer to Figure 1 of the calculation flowchart), proceed as follows. That is, even if the discharge amount of the substance actually discharged from the discharge source S is constant, and if the discharge amount changes over time, first, let the discharge amount Q (m3 / sec) of the substance be a fixed value 10), using the previous Of

Lagranglan粒子擴散模型,數值計算粒子的動態。進一步, 除了各粒子具有資訊之空間座標(xi(t)、一⑴、zi⑴)外,將 最初發生粒子之時點之經過時間之排出後經過時間Ti⑴, 依每-各演算週期^ ’記料資料記錄裝置卜 右具脱的說明孩第丨步驟之處理,就如其次所述。該演 #係在每一演算週期At(在此At=2〇秒),使別個的粒子 發生,並且在在每一演算週期秒),帛算粒子p的位 置(空間座標)。 首先’在演算開始時點,由 p 0 5 ^ 00 、 p 14 ^ 00 、 P〇〇〇1^P〇o〇2^P〇〇03.p〇〇〇4, Poo1。、Poo11、P0012、p〇〇i3、Poo19、P0020。 排出源S發生20個的粒子 IV6、P:7、P0,、P:、 P〇。15、p0016、p00"、p〇〇18、 在由演算開始時點20秒後,由圖2顯示之排 、p,、p2,、p20"、P2〇i2、P2〇〗3、p2〇14、p2° P 17 Λ 出源S再發生 ?20〇5 U6 2〇個的粒子 P2〇〇1、Ρ2〇〇2、P2Q03、P2q〇4、匕 〇5 D12、P2〇13、P2〇-.、P2()l5、p 16 Ρ2008 ρΛΛ09 Ν Τ)_ 1 〇 20 、ρ 20 •20 ?20 > Ρ20] 18 n 19 P2020 p 07 r20 20 p 03 r 00 ' ρ 12 尸00 、 20 比 〇 ,係 此時,在演算開始時點發生之粒子p。:、Pqq02、 P〇〇〇4'P〇o〇5>P〇〇06,P〇〇〇7.p〇〇〇8.p〇〇〇^p〇〇10^° n' P〇〇13'P〇〇^P〇o^P00^P〇〇^p〇〇18.p〇〇l9〇;p' 由排出源s到達離開之位置為止並且擴散。 〇 }l%} 85181.doc -21 - 200424905 各粒子Poo01〜P〇〇20的位置,係使用以RAMS (RegionalLagranglan particle diffusion model, numerical calculation of particle dynamics. Further, in addition to the spatial coordinates (xi (t), ⑴, ⑴, 各) of each particle having information, the elapsed time Ti 排出 after the elapsed time at the time when the particle originally occurred is exhausted, according to each-each calculation cycle ^ 'Record data The recording device has a description of the processing of the first step, as described next. This calculation # calculates the position (spatial coordinates) of particle p at each calculation period At (here At = 20 seconds), so that other particles occur, and in each calculation period seconds). First, at the beginning of the calculation, p 0 5 ^ 00, p 14 ^ 00, P 〇〇1 ^ P〇o〇2 ^ P 〇03. P〇〇〇4, Poo1. , Poo11, P0012, p00i3, Poo19, P0020. Twenty particles IV6, P: 7, P0, P :, and P0 were generated in the emission source S. 15, p0016, p00 ", p〇〇18, 20 seconds after the start of the calculation, the row shown in Figure 2, p, p2, p20 ", P2i2, P2〇〗 3, p2〇14, p2 ° P 17 Λ The source S reoccurs? 2050 U6 20 particles P2O1, P2O2, P2Q03, P2q04, D05 D12, P2O13, P2O-., P2 () 15, p 16 P2008 ρΛΛ09 Ν Τ) _ 1 〇20, ρ 20 • 20? 20 > ρ20] 18 n 19 P2020 p 07 r20 20 p 03 r 00 'ρ 12 00 00, 20 ratio 0, Department At this point, the particle p that occurred at the start of the calculation. :, Pqq02, P〇〇04'P〇〇〇5 > P〇〇06, P〇〇07.p〇〇〇〇.8. P〇〇〇 ^ p〇〇 10 n ° P〇〇13 'P〇〇 ^ P〇o ^ P00 ^ P〇〇 ^ p〇〇18.p〇〇190l 90; p' from the exhaust source s to the position of departure and spread. 〇} l%} 85181.doc -21-200424905 The position of each particle Poo01 ~ P〇〇20 is based on RAMS (Regional

Atmospheric Modeling System)代碼求得之每20秒刻度之風 速場資料,計算Lagrangian粒子擴散模型之各粒子 P〇〇G1〜P〇〇2G的擴散速度(u’ 、ν’ 、w’ ),藉使各粒子移動 求出。 進一步,在演算開始時點發生之粒子Pgg〇i〜p⑽2〇,係由 演算開始時點(粒子最初發生之時點)經過2〇秒。在此,將 排出後經過時間Ti(t)= 20秒,分別對應於各粒子Ρ〇〇〇ι〜p〇〇2〇 的各空間座標(xi(t= 20))、yi(t= 20)、Zi(t= 20),並記錄於 資料記錄裝置1 (參照圖1、圖2)。 在由演算開始時點40秒後,由圖3顯示之排出源s再發生 20個的粒子Ρ4,ι、P 〇2、p 03 05 40 、r4〇 -、P4〇m、p4〇w、p4〇u〇、p 06 40 07 p 〇8 ^ 4C P 17 40 、P4〇09、P 10 40Atmospheric Modeling System) code to obtain the wind velocity field data every 20 seconds scale, and calculate the diffusion velocity (u ', ν', w ') of each particle P〇〇G1 ~ P〇〇2G of the Lagrangian particle diffusion model. It is calculated by moving each particle. Further, the particles Pgg0i ~ p⑽20 that occurred at the start of the calculation are elapsed in 20 seconds from the start of the calculation (the time when the particle first occurred). Here, the elapsed time Ti (t) = 20 seconds after discharge corresponds to each spatial coordinate (xi (t = 20)), yi (t = 20) of each particle P0000 ~ p0020. ), Zi (t = 20), and recorded in the data recording device 1 (see FIG. 1 and FIG. 2). After 40 seconds from the start of the calculation, another 20 particles P4, ι, P2, p030540, r4o-, P4om, p4ow, p4o occurred from the emission source s shown in FIG. u〇, p 06 40 07 p 〇8 ^ 4C P 17 40, P4〇09, P 10 40

P 40 11P 40 11

P 40 12P 40 12

P 13 40 、P4014、P40U6 40 、P4018、P4019 P4〇20 此時,,在演算開始時點發生之粒子p〇〇〇2、p〇Q〇3、 P〇o°4、P:、P〇❶。6、P〇。。' P〇:、p〇〇〇9、p。,、PQ〇"、p。。丨2、 P。。13、P〇〇14、P。。15、P0016、p。。"、p〇〇18、p。。丨 9、p〇〇2。,係 由排出源s到達更離開之位置為止並且擴散。 另外,在由濟算開始時點20秒後發生之20個的粒子 P2 0、P20°2、P20。3、p2,、p2〇05、P2〇〇6、〜们、p2,8、、 ' P20^' P-12' P-13' P2014 > P2〇- . p20- . p2〇- . p2〇»8 . P2〇19、P2〇2(),係由排出源S到達離開之位置為止並且擴散。 各粒子Poo01〜P002〇、p2,〜p2〇2〇的位置,係使用以RAMS (Regional Atmospheric M〇deling System)代碼求得之每 2〇 319 85181.doc -22- 200424905 秒刻度之風速場資料,計算Lagrangian粒子擴散模型之各 粒子Poo01 〜P002G、P2()(h 〜P2〇2〇的擴散速度(u, 、v, 、w,), 藉使各粒子移動求出。 進一步,在演算開始時點發生之粒子PGG01〜P⑽,係由 演异開始時點(粒予最初發生之時點)經過4〇秒。在此,使 排出後經過時間Ti(t) = 40秒,分別對應於各粒子 的各空間座標(xi(t= 40))、yi(t= 40)、zi(t= 40),並記錄於 資料記錄裝置1(參照圖1、圖3)。 另外,從演算開始時點2〇秒後發生之粒子ρ2/ι〜p2Q2〇, 係由演算開始時點(粒子最初發生之時點)經過2〇秒。在 此,使排出後經過時間Ti⑴=2〇秒,分別對應於各粒子 P20 〜P20 〇的各空間座標(xi(t= 4〇))、yi(t= 4〇)、zi(t==: , 並記錄於資料記錄裝置參照圖1、圖3)。 在由演算開始時點60秒後,由圖4顯示之排出源s再發生 20個的粒子 p6〇01、p6。02、P6。03、P6Q04、P6〇05、P6Q〇6、p JQ7、 P6。。8、P60。9、Ρ6。10、P60"、P6。12、P6〇13、P6〇14、P6,、p6〇l6、 p6。17、p6〇18、P6。19、p6〇2〇。 6〇、 此時’,在演算開始時點發生之粒子、p。/2、p^〇3 P〇〇04 > Poo05 ^ Poo06,p〇〇〇7 . p〇〇C8 . p〇〇09 , p〇〇1〇 ^ p〇〇n ^ ^ P〇〇13、P。。14、P0015、P〇〇16、p〇〇17、p。, 19 ° 00 ,係 由排出源s到達更離開之位置為止並且擴散。 另外,在 p 〇 1 τ> 02 [20 、?20 、 p 1 〇、τ> 11 ^20 x r2〇 由演 03 12 鼻開始時點2 0秒後發生之 AO0'?:5'?/6'?〗,' 、P2013、P2014、P2015、p2016、 20個的粒子 p 08 ^ ^ Ρ20、|>2〇〇9、 ρ 17 ^、p2〇u、 85181.doc -23- 200424905 P2° 、P20 G ’係由排出源8到達更離開之位置為止並且更 擴散。 另外,在 p 〇 1 p 02 p 1 〇、p 11 a 40 、尸4〇 、 p 19 p 20 [40 、尸 40 , 由頃异開始時點40秒後發生之20個的粒子p4。。3、P4004、P4005、P:6、p4〇。' p4〇〇8、p:9、 p4012、P4013、P4〇14、p4〇15、p4〇16、p4,7、p4〇18、 係由排出源s到達離開之位置並且更擴散。 各粒子P〇0〜Poo20、P2〇01〜P2〇20、P4001〜P4020的位置,係使 ^.XRAMS (Regional Atmospheric Modeling System)^ ^ 求得之每20秒刻度之風速場資料,計算㈤一粒子擴 散模型之各粒子Pqq(h〜P()()2〇 P20 01 P 20 20、P 13 40, P4014, P40U6 40, P4018, P4019 P4〇20 At this time, the particles that occurred at the start of the calculation are p00〇2, p〇Q〇3, P0 ° 4, P :, P〇❶ . 6. P0. . 'P0 :, p009, p. ,, PQ〇 ", p. .丨 2, P. . 13, P0014, P. . 15, P0016, p. . ", p〇〇18, p. .丨 9, p002. , Is from the source s to a more distant location and spread. In addition, 20 particles P20, P20 ° 2, P20.3, p2 ,, p205, P2006, ~ 2, p2,8, 'P20, which occurred 20 seconds after the start of the calculation. ^ 'P-12' P-13 'P2014 > P2〇-. P20-. P2〇-. P2〇 »8. P2019 and P2〇2 () are from the source S to the position where it left and diffusion. The position of each particle Poo01 ~ P002〇, p2, ~ p2〇2〇 is the data of wind speed field per 20319 85181.doc -22- 200424905 seconds scale obtained using RAMS (Regional Atmospheric Modeling System) code. , Calculate the diffusion speeds (u,, v,, w,) of each particle Poo01 ~ P002G, P2 () (h ~ P2202) in the Lagrangian particle diffusion model, and obtain it by moving each particle. Further, at the beginning of the calculation The particles PGG01 ~ P⑽ that occurred at the time point are 40 seconds from the start of the differentiating time (the time point when the particles first occurred). Here, the elapsed time Ti (t) = 40 seconds after discharge corresponds to each of the particles. The space coordinates (xi (t = 40)), yi (t = 40), and zi (t = 40) are recorded in the data recording device 1 (refer to FIG. 1 and FIG. 3). In addition, 20 seconds from the start of the calculation The particles ρ2 / ι ~ p2Q2〇 that occurred after 20 seconds passed from the start of the calculation (the time when the particles first occurred). Here, the elapsed time Ti 排出 = 20 seconds after discharge corresponds to each of the particles P20 to P20 Each space coordinate of 〇 (xi (t = 4〇)), yi (t = 4〇), zi (t ==:, and recorded in the data Recording device (refer to Figure 1, Figure 3). After 60 seconds from the start of the calculation, another 20 particles p600, p6.02, P6.03, P6Q04, and P6005 were generated from the discharge source s shown in Figure 4. , P6Q〇6, pJQ7, P6 ... 8, P60.9, P6.10, P60 ", P6.12, P6〇13, P6〇14, P6, p6〇16, p6.17, p6〇18 , P6.19, p6200. 60. At this time, 'particles that occurred at the beginning of the calculation, p./2, p ^ 03 P〇04 > Poo05 ^ Poo06, p〇〇07. p〇〇C8. p〇〇09, p〇〇〇〇 〇 ^ ^ ^ P0013, P ... 14, P0015, P0016, p0017, p., 19 ° 00 It is from the point where the exhaust source s reaches a more distant position and diffuses. In addition, at p 〇1 τ > 02 [20,? 20, p 1 〇, τ > 11 ^ 20 x r2〇 AO0 '?: 5'? / 6 '? Which occurred after 0 seconds,', P2013, P2014, P2015, p2016, 20 particles p 08 ^ ^ P20, | > 2009, ρ 17 ^, p2〇u, 85181.doc -23- 200424905 P2 °, P20 G 'are from the exhaust source 8 to a more distant position and spread more. In addition, 20 particles p4 occurred at p 0 1 p 02 p 1 0, p 11 a 40, corpse 40, p 19 p 20 [40, corpse 40, and occurred 40 seconds after the start of the difference. . 3. P4004, P4005, P: 6, p4〇. 'p4〇8, p: 9, p4012, P4013, P4〇14, p4〇15, p4〇16, p4,7, p4〇18, are from the discharge source s to the left position and more diffuse. The positions of each particle P00 ~ Poo20, P2〇01 ~ P2〇20, P4001 ~ P4020 are the ^ .XRAMS (Regional Atmospheric Modeling System) ^^ Calculated wind speed field data every 20 seconds scale, and calculate the first Particles of the particle diffusion model Pqq (h ~ P () () 2〇P20 01 P 20 20 、

Pw01〜p4〇2()的擴散 速度〇’ 進一步 / 、w’ ),藉使各粒子移動求出。 在演算開始時點發生之粒子Pqq〇i〜P()()2() ,係由 /貝异開始時點(粒子最初發生之時點)經過60秒。在此,使 排出後經過時間Ti⑴=6〇秒,分別對應於各粒子p〇〇〇1〜p〇〇2〇 的各玉間座 ‘(X1(t= 6〇))、yi(t= 6〇)、zi(t=6〇),並記錄於 貝料冗錄裝置1 (參照圖1、圖4)。 另外’從演算開始時點2〇秒後發生之粒子p^01〜p^2〇, 係由演算開始時點(粒子最初發生之時點)經過40秒。在 此^使排2出後經過時間TKt)=4〇秒,分別對應於各粒子 2〇 P20 的各空間座標(xi(t= 60))、yi(t= 60)、zi(t= 60), 並$錄於資料記錄裝置1(參照圖1、圖4)。 另外’從演算開始時點4〇秒後發生之粒子P4〇01〜p4〇2〇, 係由肩算開始時點(粒子最初發生之時點)經過20秒。在 此,使排出後經過時間TKt)=20秒,分別對應於各粒子 85181.doc -24- 200424905 P40 〜P402()的各空間座標(xi(t== 6〇))、yi(t= 、zi(t= 6()), 並記錄於資料記錄裝置1(參照圖1、圖4)。 如上述,陸續的使2 〇個之粒子發生於每—演算週期△t (2〇秒),並且求出各每一演算週期ΔΚ2〇秒)之粒子的位 置,也就是空間座標(xi⑴、yi⑴、zi⑴另外,預先計測 各演算週期Δί之排出後經過時間Ti(t),使其對應各演算週 期之各空間座標與各粒子的排出後經過時間,陸續的記錄 於資料記錄器1。 其次,具體的說明第2步驟(參照圖1}。在前述之第 驟,已將物質的排出量Q(mVSec)作為一定值(=1〇)進行數 值計算。但是,由實際之排出源s所排出之物質的排出量, 係如圖5所顯示,較多隨著排出後過時間Ti⑴的經過而變 化。在此,如此在排出量隨著時間變化的情形,對於因應 該圖5所顯示之物質的排出量變化,如圖6所顯示,隨著排 出後經過時間Ti⑴的時間經過之粒子’設定顯示排出源強 度之資料。 在圖6之排出源強度資料,例如排出後經過時間丁丨⑴為〇 秒、20秒、60秒,則排出源強度分別形成0.3、0.9、〇.6。 其次,記錄於資料記錄裝置丨,讀出各每一演算週期之 各粒子的空間座標與各粒子的排出後經過時間耵⑴,並且 在各每一粒子,參照其排出後經過時間Ti⑴,求出其粒子 發生之時點,由圖6所示排出源強度資料求出在該時點之 各粒子的排出源強度。進一步。使各粒子的空間座標與各 粒子的排出後經過時間丁i⑴與排出源強度對應於各每一演 85181.doc -25- 200424905 算週期,再記錄於資料記憶裝置1。 若具體的說明,作為當排出後經過時間Ti⑴為20秒時(第 1次乏演算週期)的資料,係對應各粒子以^匕匕❹μ的各空間 座標(邱=2〇))、yi(t = 2〇)、zi(t = 2〇),與排出後經過^ Ti(t)=20秒,並記錄於資料記錄裝置1(參照圖2)。 在此,讀出該各粒子Ρ〇0〇ι〜P〇〇2〇的各空間座標(xi(t = 20))、yi(t= 20)、zi(t= 20),與排出後經過時間卩⑴= 秒,藉由現在的時刻t= 20秒減去排出後經過時間卩⑴二 秒,求出各粒子P〇0〇匕P〇,發生之時點之排出後經過時間The diffusion speeds P ′ from Pw01 to p4〇2 () are further determined by moving each particle (w, w ′). The particles Pqq〇i ~ P () () 2 () that occurred at the start of the calculation are 60 seconds from the start time of the / Beyond (the time when the particles first occurred). Here, the elapsed time Ti⑴ = 60 seconds after discharge corresponds to each of the Tamamas' (X1 (t = 6〇)), yi (t = 60), zi (t = 60), and recorded in the shell material redundant recording device 1 (refer to FIGS. 1 and 4). In addition, the particles p ^ 01 ~ p ^ 20, which occur 20 seconds after the start of the calculation, have passed 40 seconds from the start of the calculation (the time when the particles first occurred). Here, let the time elapsed after row 2 TKt) = 40 seconds, corresponding to each spatial coordinate (xi (t = 60)), yi (t = 60), zi (t = 60) of each particle 20P20. ) And recorded in the data recording device 1 (see FIG. 1 and FIG. 4). In addition, the particles P4001 ~ p4200 that occur 40 seconds after the start of the calculation are calculated from the start of the shoulder calculation (the time when the particles first occur) after 20 seconds. Here, the elapsed time after discharge TKt) = 20 seconds, which corresponds to each spatial coordinate (xi (t == 6〇)), yi (t =, of each particle 85181.doc -24-200424905 P40 ~ P402 ()). , Zi (t = 6 ()), and recorded in the data recording device 1 (refer to Fig. 1 and Fig. 4). As mentioned above, 20 particles are successively generated at every calculation period △ t (20 seconds) And find the position of the particles in each calculation period ΔK20 seconds, that is, the space coordinates (xi⑴, yi⑴, zi⑴). In addition, the elapsed time Ti (t) after the discharge of each calculation period Δί is measured in advance to make it correspond to each The space coordinates of the calculation cycle and the elapsed time after the discharge of each particle are successively recorded in the data recorder 1. Next, the second step will be described in detail (refer to FIG. 1). In the aforementioned step, the amount of material discharged has been Q (mVSec) is calculated numerically as a certain value (= 10). However, the discharge amount of the substance discharged from the actual discharge source s is as shown in FIG. Here, the situation in which the discharge volume changes with time is shown in Figure 5. The change in the discharge amount of the substance is shown in Fig. 6, and the particle 'setting of the time elapsed with the elapsed time Ti⑴ after the discharge shows the data of the intensity of the discharge source.丨 ⑴ is 0 seconds, 20 seconds, and 60 seconds, then the intensity of the emission source is 0.3, 0.9, and 0.6, respectively. Second, it is recorded in the data recording device, and the spatial coordinates and each of the particles of each calculation cycle are read out. The elapsed time 的 after the discharge of the particles, and for each particle, refer to the elapsed time Ti⑴ after the discharge, to find the time point of the occurrence of the particles, and use the emission source intensity data shown in Figure 6 to determine the time of each particle. The intensity of the emission source. Further, the spatial coordinates of each particle and the elapsed time after the ejection of each particle and the intensity of the emission source correspond to each calculation period of 85181.doc -25- 200424905, and are then recorded in the data memory device 1. If specifically explained, as the data when the elapsed time Ti⑴ is 20 seconds after discharge (the first depletion calculation period), it corresponds to each space coordinate of each particle with ^ dagger ❹ μ (Qiu = 2〇)) yi (t = 2〇), zi (t = 2〇), and ^ Ti (t) = 20 seconds after discharge, and record them in the data recording device 1 (see FIG. 2). Here, each particle is read out. The spatial coordinates (xi (t = 20)), yi (t = 20), zi (t = 20) of each space from 〇〇〇〇 ~ 〇〇〇〇〇, and the elapsed time after discharge 卩 ⑴ = seconds, The current time t = 20 seconds minus the second elapsed time after discharge, find each particle P〇〇〇PK P〇, elapsed time after discharge at the time of occurrence

Ti(t)=0秒。而且,由圖6顯示之排出強度資料,求出當發 生粒子ΡΌ001〜P〇〇2〇時之排出後經過時間TKt)=〇秒時之排出 源強度0.3。 而且,對應各粒子P0001〜p〇〇2❶的各空間座標(xi(t=2〇))、 yi(t= 20)、Zi(t= 20),與排出後經過時間Ti〇 2〇秒,與 各粒子PGGG1〜Pgg2g的排出源強度〇·3,再記錄於資料記錄器 1 ° 另外,作為排出後經過時間Ti(t) = 40秒時(第2次演算週 期)之貝料,係對應各粒子ρ〇〇〇ι〜p⑼2〇的各空間座標(xi(t = 40))、yi(t = 40)、Zi(t = 40),與排出後經過時間 TRt) = 40 秒、及各粒子P2〇()1〜p2〇2。的各空間座標(xi(t= 40))、yi(t = 40)、Z1(t=40),與排出後經過時間Ti⑴=20秒,並記錄於 資料記錄裝置1(參照圖3)。 在此’謂出各粒子P0001〜P〇,的各空間座標(xi(t=40))、 yi(t — 40)、Z1(t= 4〇),與排出後經過時間丁…)=秒,藉 85181.doc -26 - 200424905 由現在的時刻40秒減去排出後經 01 20枚丄 、啤間Tl⑴=40秒,求 出各粒子Poo0〜Poo發生之時點之排出 那出後經過時間Ti⑴=〇 秒。而且,由圖6顯示之排出強度資 又貝针,求出當發生粒子Ti (t) = 0 seconds. Further, from the discharge intensity data shown in Fig. 6, the discharge source intensity 0.3 when the elapsed time TKt) = 0 seconds after the occurrence of particles PΌ001 to P2002 was obtained was obtained. Furthermore, the space coordinates (xi (t = 2〇)), yi (t = 20), Zi (t = 20) corresponding to each particle P0001 to p〇〇2❶ and the elapsed time Ti020 seconds after discharge, Corresponds to the emission source intensity 0.3 of each particle PGGG1 ~ Pgg2g, and records it in the data logger 1 °. It is also used as the shell material when the elapsed time Ti (t) = 40 seconds (the second calculation cycle) after discharge. The spatial coordinates (xi (t = 40)), yi (t = 40), Zi (t = 40) of each particle ρ〇〇〇ι ~ p⑼20, and the elapsed time after discharge (TRt) = 40 seconds, and each Particles P20 () 1 to p202. The space coordinates (xi (t = 40)), yi (t = 40), Z1 (t = 40), and the elapsed time Ti⑴ = 20 seconds after discharge are recorded in the data recording device 1 (see FIG. 3). Here, 'the spatial coordinates (xi (t = 40)), yi (t — 40), Z1 (t = 4〇) of each particle P0001 ~ P〇, and the elapsed time D after the discharge ...) = seconds Let ’s use 85181.doc -26-200424905 to subtract from the current time 40 seconds, the time elapsed after the discharge of 01 20 pieces, beer Tl⑴ = 40 seconds, and find the time elapsed after the discharge of each particle Poo0 ~ Poo. The time elapsed after the discharge Ti⑴ = 〇 seconds. In addition, from the discharge intensity data shown in FIG.

Poo01〜Poo20時之排出後經過時間Ti(t)二㈣、陡、 J υ秒時又排出源強度 0.3。 同樣的,讀出各粒子〜01〜ρ。。20的各空間座標(xi(t = 40))'yi(t =40)、zi(t = 40) ’ 與排出後經過時間 Ti⑴=20 秒’藉由現在的時刻40秒減去排出後經過時間丁明=2〇 秒,求出各粒子P2〇G1〜P2〇20發生之暗赴、从, 守”、、占义排出後經過時間After the discharge time from Poo01 to Poo20, the intensity of discharge source was 0.3 when the elapsed time Ti (t) was two seconds, steep, and J υ seconds. Similarly, read each particle ~ 01 ~ ρ. . Each space coordinate of 20 (xi (t = 40)) 'yi (t = 40), zi (t = 40)' and elapsed time after discharge Ti⑴ = 20 seconds' is subtracted from the current time 40 seconds after discharge Time Ding Ming = 20 seconds, find the dark time, obedience, obedience, and elapsed time that each particle P20G1 ~ P2020 occurred.

Ti⑴=20秒。而且’由圖6顯示之排出強度資料,求出當發 生粒子p2〇01〜p2020時之排出後經過時間Ti⑴=2〇秒時之排 出源強度0.5。 而且,對應各粒子P:〜P〇〇2〇的各空間座標⑽=4〇))、 yi(t=4〇)、zi(t=40),與排出後經過時間丁i⑴=4〇秒,與 各粒子P00〜P00的排出源強度0 3,再記錄於資料記錄器 另外,對應各粒子ρ2〇〇ι〜p2〇2〇的各空間座標⑽=4〇))、 河^40!^^40),與排出後經過時間Ή⑴=2〇秒,與各 粒子P2〇〜的排出源強度0·5,再記錄於資料記錄器b 另外,作為排出後經過時間Ti⑴=60秒時(第3次演算週 期)之資料,係對應 各粒子〇的20的各空間座標(xi(t= 60))、yi(t= 60)、 Z1(t=6〇) ’與排出後經過時間Ti⑴=60秒、及 口 L 子 p2〇 ho 〇的各空間座標(xi(t= 6〇))、yi(t= 6〇)、Ti⑴ = 20 seconds. Further, from the emission intensity data shown in Fig. 6, the emission source intensity 0.5 when the elapsed time Ti⑴ = 20 seconds after the emission of the particles p2001 to p2020 is obtained is 0.5. In addition, corresponding to each space coordinate of each particle P: ~ P0020 (〇 = 4〇)), yi (t = 4〇), zi (t = 40), and elapsed time after discharge D 丁 = 40 seconds , And the emission source intensity of each particle P00 ~ P00 is 0 3, and then recorded in the data logger. In addition, corresponding to each space coordinate of each particle ρ2〇ι ~ p2〇2 (⑽ = 4〇)), river ^ 40! ^ ^ 40), and the elapsed time after discharge Ή⑴ = 20 seconds, and the emission source intensity 0 · 5 of each particle P2 0 ~, and recorded in the data recorder b. In addition, when the elapsed time after discharge Ti⑴ = 60 seconds (the 3 calculation cycles) data, corresponding to each space coordinate (xi (t = 60)), yi (t = 60), Z1 (t = 6〇) of 20 corresponding to each particle 0 and the elapsed time Ti⑴ = 60 seconds, and each spatial coordinate (xi (t = 6〇)), yi (t = 6〇),

85181.doc -27- 200424905 (t 6〇),與排出後經過時間Ti⑴=40秒、以及 •各—粒子p,〜p4〇2〇的各空間座標(xi(t= 6〇))、yi(t= 6〇)、 二〇)與排出後經過時間Ti(t)=20秒,並記錄於資料 冗錄裝置1(參照圖4)。 .在此,頃出各粒子P:〜p〇〇2〇的各空間座標㈣t=6〇》、 y ( 60) Zi(t= 60),與排出後經過時間耵⑴^ 6〇秒,藉 由現在的時刻t = 60秒減切出後經過時間Ti⑴=卿、,求 出各粒子Ρ:ι〜pjo發生之時點之排出後經過時間 秒。而且’由圖6顯示之排出強度資料,“當發生粒子 P:〜〇之排出後經過時間Ti⑴=〇秒時之排出源強度 同樣的,讀出各粒子P广〜p2〇2〇的各空間座標㈣卜 6〇))、yi(t=60)、zi(t=60) ’ 與排出後經過時間 Ti(t)y〇 秒’藉由現在的時刻t= 6〇秒減去排出後經過時間邱卜如 秒,求出各粒子P’〜P2’發生之時點之排出後經過時間 Ti⑴=_&gt;、。而且’由圖6顯示之排出強度資料,求出當發 生粒子P2。。1〜P2。2。時之排出後經過時間Ti⑴二2〇秒 出源強度0.5。 同樣的,讀出各粒子P:〜P4〇2。的各空間座標㈣卜 60))、yi(t=60)、zi(t=60),與排出後經過時間 Ti⑴=20 秒’藉由現在的時刻t = 6 0秒減去排出後經過時間 秒,求出各粒子P:〜P4’。發生之時點之排出後經過時間 邱)=40秒。而且’由圖6顯示之排出強度資料,求出 生粒子P:1〜P4。2。時之排出後經過時間Ti⑴。4〇秒時:.; 85181.doc -28- 出源強度Ο · 9。 .而且,對應各粒各空間座標⑽喝)、 y ( 60) zi(t 60) ’與排出後經過時間邱)=的秒與 各粒子P:1〜P。。2。的排出源強度0 3,再記錄於資料記錄器 .另外對應各粒子P2〇〇l〜p2〇20的各空間座標(邱=的))、 y (t 60) zi(t- 60),與排出後經過時間Ti⑴=秒,與 各粒子P20 P2〇的排出源強度〇5,再記錄於資料記錄器 •另外,對應各粒子P:〜p4〇2〇的各空間座標⑽=6〇))、 yi(t=6〇)、Zi(t=60),與排出後經過時間^⑴=2〇秒與 各粒子P4’〜P402〇的排出源強度0.9,再記錄於資料記錄器 卜 即使在以後之演算週期,做同樣之處理演算,對應各 子的各空間座標、與排出後經過時間Ti⑴'與各粒;的排 出源強度,再記錄於資料記錄裝置。 其次,具體的說明第3步驟(參照圖1}的處理。例如當在 排出後經過時間Ti⑴=120秒時,計算由如圖7顯示之排出 源S,在離開既定距離之既定之格子區域(形成單位體積之 單位空間)W、K之物質的濃度,由資料記錄器增出排出 後經過時間Ti⑴=120秒之存在於該格子區域之粒子。讀出 時,如圖7顯示之粒子存在的情形,藉累計具有此等各粒 子之排出源強度,可以計算該單位空間之物質的濃度。 也就是,在圖7顯示之隔子區域存在著有: 85181.doc -29- 200424905 強度為〇。3之4個之粒子匕广、p⑽〇5、pQQl〇、p^o; 強度為〇。5之3個之粒子p2Q〇i、p2Q〇7、; 強度為〇。9之2個之粒子p4〇G8、ρ“ι〇 ;及 強度為〇。6之1個之粒子p6Qi7 ; 為此,藉如其次之累計此等粒子的排出源強度,可以計 异出該單位空間之物質的濃度為5 · 1。 (0·3 X 4)+ (0.5 X 3)+ (〇·9 X 2)+ (〇·6 X 1)= 5.1。 若一般的(數學的)說明前述之第丨之實施形態,就如其次 所述。在第!之實施形態,如圖8所示,在物質(氣體等)由 排出源s排出時,配合時間變化預測排出源s之風下之格子 區域I、J、K之物質濃度(氣體濃度)。而且,如圖9(a)所顯 示’在物質的排出量Q-定的情形,不用說如圖9(b)所顯 不’可以預測演算格子區域w、κ的濃度時間變化,如圖 10(a)所顯示,即使物質的排出量為時間變化之排出量 q⑴,如圖lG(b)所顯示,亦可以預測演算格子區域的濃度 時間變化。 在第1實施形態,首先,由排出源S實際所排出之物質的 排出量即使一定,排出量隨著時間經過變化的情形,首 先,將物質的排出量Q(m3/sec)作為一定值(=1〇),使用先 月’J &lt; Lagranglan粒子擴散模型,將物質替換為粒子9由排 出源S使每秒N個之粒子發生,數值計算各粒子的動態,求 出顯示粒子的位置之空間座標(xi⑴、yi⑴、zi⑴)。進一步, 除了各粒子具有之資訊之空間座標(xi(t)、yi⑴、zi(t))之 外在各每一濟异週期△ t,將由最初發生粒子之時點之經 85181.doc -30- 327 200424905 過時間之排出後經過時間Ti(t),記錄於資料記錄裝置。藉 此,利用先前之Lagrangian粒子擴散模型,可以計測對靡 時間變化之所有排出量q(t)之濃度分布之時間變化。 為此,設定比例於時間變化之物質的排出量q(t)之顯示 隨著排出後經過時間Ti(t)的時間經過對粒子之排出源強戶 之資料。而且,在某時刻(〇,由資料記憶裝置讀出顯示2 粒子的位置之空間座標(xi(t)、yi(t)、Zi(t))與排出後經過時 間 Ti(t)。 在一定排出量(Q=:L〇)的情形,各粒子的排出源強度雖 為Q/N(m3)=l/N,不過在時間變化之排出量q(t)的情形, 則各粒子的排出源強度形成q(t- Ti)/N(m3)。 再一次,除了各粒子具有之資訊之空間座標(xi(t)、 yi(t)、Zi⑴)之外,在各每一時刻⑴,將排出後經過時間Ti⑴ 及各粒子的排出源強度qi(t - Ti)/N(m3),再記綠於資料記 錄裝置。 在利用對應於Lagrangian粒子擴散模型、與排出後經過 時間、與時間變化之排出量q之排出源強度q(t〜Ti)/N(m3) 之本實施例,由於空間中之單位體積中(空氣lm3)之各粒子 具有之排出源強度不同,所以累計各粒子之排出源強度 qi(t- Ti)/N(m3)之Σ qi(t— Ti)/N(m3),形成存在於該單位體 積中之氣體。從而,該空氣中氣體濃度成為Σ #(t 一 Ti)/N(m3)/N(氣體 m3/空氣 m3)。 〈第2實施形態(排出源多數的情形)&gt; 排出源存在多數(j個),由分別之排出源,以時間變化不 85181.doc -31 - 2004249 05 同之排出量(qj(t))排出物質的情形,加上在第!實施形態使 用之Lagrangian粒子擴散模型之粒子資訊(位置、放出後經 過時間),藉使各粒子持有排出源識別資訊(si)可以發揮與 第1實施形態相同之功能。 例如如圖11所顯示,在具有2個之排出源s丨、S2的情形, 使由排出源S1排出之粒子持有排出源識別資訊sl,使由排 出源S2排出之粒子持有排出源識別資訊s2。而且使用 Lagrangian粒子擴散模型,將物質替換為粒子,由兩排出 源SI、S2分別發生每秒]^個之粒子,數值計算各粒子的動 態,求出顯示粒子的位置之空間座標(xi(t)、yi⑴、zi(t))。 進一步,除了各粒子具有之資訊之空間座標、yi⑴、 Z1(t))之外,使其持有由最初發生粒子之時點之經過時間之 排出後經過時間Ti⑴、與排出源識別資訊sl、s2。 如圖i2(a)所顯示,由排出源SI、S2所排出之排出量Q, 刀別作為一疋(=1),利用先前之Lagrangian粒子擴散模 型,求出如圖12(b)所顯示之格子區域j、】、κ之物質的濃 度時間變化,並預先記錄。 其次,由排出源S1所排出之物質的排出量,如圖13(a) 之虛線所顯示,若為時間變化之ql(t),針對由該排出源31 所放出之粒子’以與第斤施形態相同之h去,將粒子之 排出源強度作為q1(t)。而1,在各每一粒子,纟照其粒子 發生之時點之排出源強度ql⑴,設定排出源強度。其結 果,在所要之格子區域υ、κ’藉累計具有排出源識別資 讯sl《粒子之排出源強度,可以求出由排出源以所排出之 85181.doc -32- 329 200424905 物質的濃度(所要之格子區域i、j、κ之物質濃度)之時間變 化。 同樣的’由排出源S2所排出之物質的排出量,若為 q2(t),針對由該排出源S1所放出之粒子,以與第1實施形 悲相同之方法,將粒子之排出源強度作為q2(t)。而且,在 各每一粒子,參照其粒子發生之時點之排出源強度q2(t), 設定排出源強度。其結果,在所要之格子區域卜】、κ,藉 累计具有排出源識別資訊s2之粒子之排出源強度,可以求 出由排出源S2所排出之物質的濃度(所要之格子區域卜了、 K之物質濃度)之時間變化。 如此,藉加上由排出源81所排出之物質的濃度之時間變 化,與由排出源S2所排出之物質的濃度之時間變化,可以 求出所要格子區域I、J、K之物質的濃度。 &lt;第3實施形態&gt; 第3實施形態,係例如發生氣體漏洩事故之後,依據氣 把的排出量之實測結果,在短時間内計算現狀及未來的濃 度分布之方法。 裱境影響評估等之擴散計畫,由於在緊急時不需要計算 〜果所以隨著時間的經過決定氣體的排出量q(t)之後, 數日、、’二過數個月的時間,實施氣體的擴散狀況之預測演 疋在如氣體戌漏事故等緊急時,由於有必要緊急 採取周邊居民的避難對策,所以必須儘可能在短時間内輸 出擴散計算結果。 如圖 如此情形,依據各時刻之3度空間風速分布, S5181.doc -33- 200424905 ()()(c)所示’以與第1之實施形態相同之Lagrangiar^^ 子擴散模型,24小時連續預先實施一定放出率(Q=丨)。 氣體漏洩事故發生後,由設置於排出源之煙!II的出口之 氣體濃度測定裝置等,測定實際氣體排出量q(t)。因應該 實際氣體排出量Vt),藉設定各粒子之排出源強度q(t),以 與第1實施形態相同之方法,可以修正計算對應該氣體排 出量之濃度時間變化(參照圖14((1)(6))。也就是,在各每一 粒子,參照其粒子發生之時點之排出源強度q(t),設定排 出源強度(圖14(d))。而且,在所要之格子區域Ιχ】、κ,藉 累計存在於其區域之粒子的排出源強度,可以求出由排出 源S所排出之物質的濃度(所要之格子區域卜卜〖之物質濃 度)之時間變化。 又,未來之氣體排出量 1卞4興現狀之實測氣體排出 量q(t)等值,或依據他法所設定之預測式加以計算 將現在及未來之3度空間風速分布作為計算之方法,係 有利用由氣象局等定期的所傳訊之廣域格子(2〇km)之氣象 資料(GPV : Grid Point Value),以廣域氣象預測模型 (RAMS、MM5等)計算詳細格子(數km〜數1 ·)氣象資科 向、風速、氣溫)的變化之方法。 &lt;第4實施形態&gt; 第4實施形態,係例如氣體洩漏事故發生之後,依據 漏處所周邊之濃度㈣結果,在短時間内計算現狀之氣^ 的排出量的方法。 ^ 發生氣體漏洩事故的情形 如圖15(a)所顯示由排出源之 85181.doc -34- 200424905 氣體漏洩源S的排出量q(t),測定困難的情形較多,如此情 形,由在漏洩處所周邊觀測點(xk)所實測之濃度的 時間變化,使用第1實施形態的Lagrangian粒子擴散模型, 在短時間内可以推測排出量q(t)。 在漏洩事故發生前,使用第1實施形態的Lagrangian粒子 擴散模型,以一定排出量(Q=l)(參照圖15(b))預先計算某 周邊觀測點(xk)的濃度(Ck⑴計算)(參照圖15(c))。 該濃度(Ck(t)計算),係以觀測點(xk)為中心,由存在於3 度玄間fa和(△ X X △ y X △ z)中之粒子(η個),以其次之公式 (10)算出者。85181.doc -27- 200424905 (t 6〇), and elapsed time Ti⑴ = 40 seconds after discharge, and each space coordinate (xi (t = 6〇)), yi of each particle p, ~ p4〇2〇, yi (t = 6〇), 20) and elapsed time Ti (t) = 20 seconds after discharge, and recorded in the data redundancy recording device 1 (see FIG. 4). Here, the space coordinates of each particle P: ~ p0020 are given: t = 60, y (60) Zi (t = 60), and elapsed time 后 60 seconds after discharge, borrow From the current time t = 60 seconds, the elapsed time Ti⑴ = 卿, after cutting out is subtracted, and the elapsed time in seconds after the discharge of each particle P: ι ~ pjo is obtained. Moreover, as shown in the discharge intensity data shown in FIG. 6, “the discharge source intensity is the same when the elapsed time Ti⑴ = 〇 seconds after the discharge of the particles P: ~ 〇 occurs, and the spaces of each particle P wide ~ p 2 0 2 0 are read out. Coordinate ㈣bu 6〇)), yi (t = 60), zi (t = 60) 'and elapsed time after discharge Ti (t) y0 seconds'. At the current time t = 60 seconds, subtract the elapsed time after discharge. The time Qiu Bu is seconds, to find the elapsed time Ti⑴ = _ &gt; after the time when each particle P '~ P2' occurred, and 'from the discharge intensity data shown in Fig. 6 to find the particle P2 when it occurs. 1 ~ P2. 2. The elapsed time Ti = 20 seconds after the discharge time. The source intensity is 0.5. Similarly, each particle P: ~ P4. 2 is read out of each space coordinate (60)), yi (t = 60) , Zi (t = 60), and the elapsed time after discharge Ti⑴ = 20 seconds '. By subtracting the elapsed time and seconds after discharge from the current time t = 60 seconds, find each particle P: ~ P4'. At the time of occurrence Elapsed time after discharge (Qiu) = 40 seconds. And 'from the discharge intensity data shown in Figure 6, find the birth particles P: 1 ~ P4. 2. elapsed time after discharge Ti⑴. 40 seconds:.; 85181.d oc -28- source intensity 0 · 9.. Also, corresponding to each space coordinate of each particle), y (60) zi (t 60) 'and elapsed time after discharge (Qiu) = seconds and each particle P: 1 The intensity of the emission source of ~ P 2 is 0 3, and then recorded in the data logger. In addition, corresponding to the spatial coordinates of each particle P2001 ~ p2020 (Qiu =), y (t 60) zi ( t-60), the elapsed time after discharge Ti⑴ = second, and the intensity of the discharge source of each particle P20 P2〇5, and then recorded in the data logger • In addition, corresponding to each space coordinate of each particle P: ~ p4〇2〇 (⑽ = 6〇)), yi (t = 6〇), Zi (t = 60), and elapsed time after discharge ^ ⑴ = 20 seconds and the emission source intensity of each particle P4 ′ ~ P402〇 is 0.9, and then recorded in The data recorder performs the same processing calculations even in the subsequent calculation cycles, corresponding to the spatial coordinates of each child, and the elapsed time Ti⑴ ′ and each grain after discharge; the intensity of the discharge source is recorded in the data recording device. Second, A detailed description of the processing of the third step (refer to FIG. 1). For example, when the elapsed time Ti⑴ = 120 seconds after discharge, calculate the discharge source S as shown in FIG. The concentration of the substances in the predetermined grid area (unit space forming a unit volume) of W and K is increased by the data logger, and the particles existing in the grid area after the elapsed time Ti⑴ = 120 seconds are discharged. When read, such as Figure 7 shows the existence of particles. By accumulating the emission source intensity of these particles, the concentration of the substance in the unit space can be calculated. That is, in the spacer region shown in Figure 7, there are: 85181.doc- 29- 200424905 The intensity is 0. The particle size of 4 of 3, p 匕 05, pQQl0, p ^ o; the intensity is 0. Three of the five particles p2Q0i, p2Q07,; the intensity is 0. 2 of 9 particles p4OG8, ρ "ι〇; and 1 of particle 6 p6Qi7; for this purpose, by accumulating the intensity of the source of these particles next, the unit can be counted out The concentration of matter in space is 5 · 1. (0 · 3 X 4) + (0.5 X 3) + (〇 · 9 X 2) + (〇 · 6 X 1) = 5.1. If the general (mathematical) description The aforementioned first embodiment is as follows. In the first embodiment, as shown in FIG. 8, when a substance (gas, etc.) is discharged from the exhaust source s, the time under the wind of the exhaust source s is predicted in accordance with the change in time. The material concentration (gas concentration) of the grid regions I, J, and K. Moreover, as shown in FIG. 9 (a), 'in the case of a fixed amount of material Q-determined, needless to say as shown in FIG. 9 (b)' Prediction of the time variation of the concentration in the calculation grid area, as shown in Fig. 10 (a), even if the discharge amount of the substance is the time-change discharge amount q⑴, as shown in Fig. 1G (b), the calculation of the calculation grid area can also be predicted. Concentration time changes. In the first embodiment, first, even if the amount of the substance actually discharged from the discharge source S is constant, the amount of discharge elapses with time. In the case of chemical conversion, first, let the discharge amount Q (m3 / sec) of the substance be a fixed value (= 10), and use the previous month 'J &lt; Lagranglan particle diffusion model to replace the substance with particles 9 by the emission source S so that every second N particles occur, and the dynamics of each particle are calculated numerically, and the space coordinates (xi⑴, yi⑴, zi⑴) showing the position of the particles are obtained. Further, in addition to the space coordinates (xi (t), yi⑴, zi) of the information that each particle has (t)) At each economic cycle Δt, the elapsed time Ti (t) after the elapse of time from the time when the particles first occurred 85181.doc -30-327 200424905 is recorded in the data recording device. With this, using the previous Lagrangian particle diffusion model, it is possible to measure the time variation of the concentration distribution of all discharges q (t) over time. To this end, set the amount of discharge q (t) of the substance proportional to the time change. Shows the data on the emission source of the particles as the time elapses with the elapsed time Ti (t) after discharge. Moreover, at a certain time (0, the data memory device reads out the space coordinates showing the position of the 2 particles (xi (t ), Yi (t), Zi (t)) and The time elapses after discharge Ti (t). In the case of a certain discharge amount (Q =: L0), although the intensity of the discharge source of each particle is Q / N (m3) = l / N, the discharge amount q changes with time. In the case of (t), the intensity of the emission source of each particle forms q (t-Ti) / N (m3). Once again, except for the spatial coordinates (xi (t), yi (t), Zi⑴) of the information that each particle has In addition, at each time ⑴, the elapsed time Ti⑴ after discharge and the emission source intensity qi (t-Ti) / N (m3) of each particle are recorded on the data recording device. In this embodiment, the discharge source intensity q (t ~ Ti) / N (m3) corresponding to the Lagrangian particle diffusion model, and the elapsed time after discharge, and the discharge quantity q with time change, because in the unit volume in space ( Each particle of air lm3) has a different emission source intensity, so the cumulative emission source intensity qi (t-Ti) / N (m3) of Σ qi (t-Ti) / N (m3) is accumulated in this particle. Gas in a unit volume. Therefore, the gas concentration in the air becomes Σ # (t-Ti) / N (m3) / N (gas m3 / air m3). <Second embodiment (when there are many discharge sources)> There are many (j) discharge sources, and each discharge source has a time variation of 85181.doc -31-2004249 05 The same discharge amount (qj (t) ) Exhaust matter, plus the first! The particle information (position, time elapsed after release) of the Lagrangian particle diffusion model used in the embodiment can perform the same function as the first embodiment by holding each particle's identification information (si) of the emission source. For example, as shown in FIG. 11, in a case where there are two discharge sources s 丨 and S2, the particles discharged from the discharge source S1 hold the discharge source identification information sl, and the particles discharged from the discharge source S2 hold the discharge source identification. Information s2. Furthermore, the Lagrangian particle diffusion model is used to replace the substance with particles, and the particles from the two emission sources SI and S2 are generated every second] particles. The dynamics of each particle are calculated numerically, and the space coordinates (xi (t ), Yi⑴, zi (t)). Further, in addition to the spatial coordinates of the information that each particle has, yi⑴, Z1 (t)), it holds the elapsed time Ti⑴ from the elapsed time of the time when the particle originally occurred, and the source identification information sl, s2. . As shown in Figure i2 (a), the discharge amount Q discharged by the discharge sources SI and S2 is regarded as a blade (= 1). Using the previous Lagrangian particle diffusion model, the figure shown in Figure 12 (b) is obtained. The concentration of the substances in the grid areas j,], and κ changes over time and is recorded in advance. Secondly, as shown by the dotted line in FIG. 13 (a), the discharge amount of the substance discharged by the discharge source S1 is shown in FIG. 13 (a). When the application mode is the same, the intensity of the particle emission source is taken as q1 (t). And 1, for each particle, the intensity of the emission source is set according to the intensity ql of the emission source at the time when the particle occurred. As a result, by accumulating the emission source identification information sl in the desired lattice region υ, κ ′, the intensity of the emission source of the particles, the concentration of the substance 85181.doc -32- 329 200424905 that is emitted by the emission source can be obtained ( (Substance concentration of desired lattice areas i, j, κ) over time. Similarly, if the discharge amount of the substance discharged from the discharge source S2 is q2 (t), the intensity of the discharge source of the particles is the same as that of the first embodiment for the particles released from the discharge source S1. As q2 (t). Further, for each particle, the emission source intensity is set with reference to the emission source intensity q2 (t) at the time when the particle occurred. As a result, by accumulating the emission source intensity of the particles having the emission source identification information s2 in the desired lattice region, κ, the concentration of the substance discharged from the emission source S2 (the desired lattice region, K The concentration of substances) over time. In this way, by adding the time change of the concentration of the substance discharged from the discharge source 81 and the time change of the concentration of the substance discharged from the discharge source S2, the concentration of the substance in the desired grid region I, J, K can be obtained. &lt; Third embodiment &gt; The third embodiment is a method of calculating the current status and future concentration distribution in a short time based on the actual measurement result of the gas discharge volume after a gas leakage accident. The diffusion plan such as the impact assessment of the environment does not need to be calculated in the case of emergency. Therefore, the gas discharge amount q (t) is determined over time, and the gas is implemented in a few days and two months. In the case of an emergency such as a gas leak accident, it is necessary to take emergency measures against the surrounding residents, so it is necessary to output the results of the diffusion calculation in a short time. As shown in this case, according to the 3 degree spatial wind speed distribution at each moment, S5181.doc -33- 200424905 () () (c) shows the same Lagrangiar ^^ sub-diffusion model as the first embodiment, 24 hours Continuously implement a certain release rate (Q = 丨) in advance. After the gas leakage accident, the actual gas discharge amount q (t) is measured by a gas concentration measuring device or the like installed at the outlet of the smoke source II! According to the actual gas discharge amount Vt), by setting the emission source intensity q (t) of each particle, in the same way as in the first embodiment, it is possible to modify and calculate the concentration-time change corresponding to the gas discharge amount (see FIG. 14 (( 1) (6)). That is, for each particle, set the emission source intensity with reference to the emission source intensity q (t) at the time when the particle occurred (Fig. 14 (d)). Also, in the desired grid area Ix], κ, by accumulating the intensity of the emission source of the particles existing in its area, the time change of the concentration of the substance (the desired substance concentration in the grid region) can be obtained from the emission source S. Also, the future The gas emission volume is equal to or equal to the actual measured gas emission volume q (t), or calculated according to the prediction formula set by other methods. The current and future 3 degree spatial wind speed distribution is used as a calculation method. From the meteorological bureau and other regular wide-area grid (20km) meteorological data (GPV: Grid Point Value), the wide-area weather forecast model (RAMS, MM5, etc.) is used to calculate the detailed grid (several kilometers to several 1 · ) Meteorological Resources Direction, Wind Speed, Temperature) Changes in the method. &lt; Fourth embodiment &gt; The fourth embodiment is a method of calculating the current amount of gas ^ in a short period of time based on the results of the concentration around the leaked space after a gas leak accident. ^ The occurrence of a gas leakage accident is shown in Figure 15 (a). As shown in Figure 15 (a), 85181.doc -34- 200424905, the source of the gas leakage source S, is difficult to measure. Using the Lagrangian particle diffusion model of the first embodiment, the temporal change of the concentration measured at the observation point (xk) around the leaked space can be used to estimate the discharge amount q (t) in a short time. Before the leakage accident, the Lagrangian particle diffusion model of the first embodiment is used to calculate the concentration (Ck⑴ calculation) of a certain surrounding observation point (xk) in advance with a certain discharge amount (Q = 1) (see FIG. 15 (b)) ( (See Fig. 15 (c)). The concentration (calculated by Ck (t)) is centered on the observation point (xk), and consists of particles (η) existing in 3 degrees Xuanjian fa and (△ XX △ y X △ z), followed by the formula (10) The calculator.

Ck(t)計算=n X ς Q(t_ τι)/ν/(α χχ △ y X △ z)· · (1〇) 該情形,排出量Q(t— Ti)為一定值”。 其次,測定觀測點(Xk)的濃度時間變化(ck(t)觀測),利 用(1〇)公式,求出(11)公式。 (Ck(t)觀測)=n〇x Eq0(t-0)/N/(AxXAyxAz)+ nixCk (t) calculation = n X X Q (t_ τι) / ν / (α χχ △ y X △ z) · · (1〇) In this case, the discharge amount Q (t- Ti) is a certain value. "Second, Measure the concentration-time change at the observation point (Xk) (ck (t) observation), and use the formula (10) to find the formula (11). (Ck (t) observation) = n〇x Eq0 (t-0) / N / (AxXAyxAz) + nix

Zql(t- ΔΤ)/Ν/(ΔχΧ ΔγΧΔζ)+η2Χ Eq2(t-2 · ΔΤ)/Ν/(ΔχΧ ΔγΧ Δζ)+ η3Χ Σς3(ΐ-3 · ΔΤ)/Ν/(ΔχΧ ΔγΧ Δζ)+ η4Χ Zq4(t-4 · ΔΤ)/Ν/(ΔχΧ ΔγΧ Δζ) + + η 1 X Σ ql(t —ΐ)/Ν/(ΔχΧ ΔγΧ Δζ) + C0(t).......... .....。⑴) 在此’ nl、η2、η3及nl,係放出開始後放出於〇秒前、 △ T秒前、(Δτχ2)秒前、(ΔΤΧ3)秒前及t秒前之粒子,以 觀測點(xk)為中心存在於3度空間體積(△ X X △ y X △ ζ)中 85181.doc -35- 200424905 之粒子的總數。 另外’ co(t)係稱為本底濃度,作為計算對象由排出源以 外放出,無關觀測地點而存在之濃度,藉一定值或時間t 變化。 q〇、q卜q2、q3及ql,係由t秒時開始之〇秒前、At秒前、 (△TX2)秒前、(ΔΤΧ3)秒前及t(ATXl)秒前之放出率。Zql (t- ΔΤ) / N / (Δχχ ΔγχΔζ) + η2Χ Eq2 (t-2 · ΔΤ) / Ν / (Δχχ Δγχ Δζ) + η3 × Σς3 (ΐ-3 · ΔΤ) / Ν / (Δχχ Δγχ Δζ) + η4 × Zq4 (t-4 · ΔΤ) / N / (Δχχ Δγχ Δζ) + + η 1 X Σ ql (t —ΐ) / Ν / (Δχχ Δγχ Δζ) + C0 (t) ... .. ..... ⑴) Here, 'nl, η2, η3, and nl are particles that are released 0 seconds before, △ T seconds, (Δτχ2) seconds, (ΔΤχ3) seconds, and t seconds before the start of the discharge. xk) is the total number of particles whose center exists in 3 degree space volume (△ XX △ y X △ ζ) 85181.doc -35- 200424905. In addition, “co (t)” is called the background concentration, and the concentration that is released from the source of discharge as a calculation object, and exists regardless of the observation site, varies by a certain value or time t. q0, qb, q2, q3, and ql are the release rates from 0 seconds before t seconds, At seconds before, (△ TX2) seconds, (ΔTX3) seconds, and t (ATX1) seconds before.

Ck(t)觀測,由於是24小時連續測定,所以由漏洩開始時 刻到0秒後、△ T秒後、(△ TX2)秒後、(△ τχ3)秒後及ΐ(Δ Τ X 1)秒後,可以測定(1 + 1)個以上。 另外’觀測點xk具有k個的情形,可以求出k X (1 + 1)個 的觀測資料。 由於公式(11)之未知數具有q〇、ql、q2、#及0之(1 + 1)個,已知數Ck⑴觀測具有kx(l+ 1)個以上,所以未知數 比已知數少。該情形,使用最小自乘法,可以決定未知數 之q0、ql、q2、q3及ql,使對於觀測濃度(^⑴觀測之最小 自乘誤差達到最小。又,圖16為顯示第4實施形態之計算 狀態之流程圖。 &lt;第5實施形態&gt; 第5實施形態,係例如氣體洩漏事故發生之後,依據戌 漏處所周邊之濃度實測結果,在短時間内推測現狀之氣體 的排出量,計算濃度分布的方法。 依第4實施形態’由在漏洩處所周邊觀測點(xk)所實測之 濃度(Ck(t)觀測)的時間變化,使用第1實施形態之 Lagrangian粒子擴散模型,即可在短時間推測排出量^⑴。 85181 .doc -36- 200424905 如圖17所示,在漏洩事故發生之前,使用第1實施形態 之Lagrangian粒子擴散模型,預先以一定放出率(q=1)下, 計弃某一周邊觀測點(xk)之濃度(Ck(t)計算)。 該濃度(Ck(t)計算),係以觀測點(xk)為中心,由存在於3 度空間體積(△ X X △ y X △ z)中之粒子個”以其次之公式 (12)算出者。Ck (t) observation is a continuous measurement for 24 hours, so from the time of leakage to 0 seconds later, △ T seconds, (△ TX2) seconds, (△ τχ3) seconds, and ΐ (ΔΤ X 1) seconds. After that, more than (1 + 1) can be measured. In addition, when there are k observation points xk, k X (1 + 1) observation data can be obtained. Since the unknown number of formula (11) has q0, ql, q2, #, and (1 + 1) of 0, and the known number Ck⑴ observation has more than kx (l + 1), the unknown number is less than the known number. In this case, the minimum automultiplication method can be used to determine the unknowns q0, ql, q2, q3, and ql, so as to minimize the minimum multiplication error for the observed concentration (^ ⑴ observation. Also, FIG. 16 shows the calculation of the fourth embodiment. Flow chart of the status. &Lt; Fifth embodiment &gt; The fifth embodiment is, for example, after a gas leak accident, based on the actual measurement result of the leaked area, the current gas discharge amount is estimated in a short time, and the concentration is calculated. Method of distribution. According to the fourth embodiment, the time variation of the concentration (Ck (t) observation) measured from the observation point (xk) around the leaked space, using the Lagrangian particle diffusion model of the first embodiment, Estimate the discharge amount over time. 85181 .doc -36- 200424905 As shown in Fig. 17, before the leakage accident occurs, the Lagrangian particle diffusion model of the first embodiment is used, and calculated in advance at a certain release rate (q = 1). Discard the concentration of a certain surrounding observation point (xk) (calculated by Ck (t)). The concentration (calculated by Ck (t)) is centered on the observation point (xk), and exists in a 3 degree space volume (△ XX △ y X △ z The number of particles in) is calculated by the following formula (12).

Ck(t)計算=n X 2Q(t 一 τί)/Ν/(ΔχχΔγχΔζ)··(12) 該情形,放出率Q(t—Ti)為一定值(=1)。 其次,測定觀測點(xk)的濃度時間變化(ck(t)觀測),利 用(12)公式,求出(13)公式。Ck (t) calculation = n X 2Q (t-τί) / N / (ΔχχΔγχΔζ) (12) In this case, the release rate Q (t-Ti) is a certain value (= 1). Next, measure the concentration-time change at the observation point (xk) (ck (t) observation), and use the formula (12) to find the formula (13).

(Ck⑴觀測)=n OX Zq0(t—0)/Ν/(Δχχ Ayx n 1 X(Ck⑴ observation) = n OX Zq0 (t-0) / N / (Δχχ Ayx n 1 X

Zql(t- ΔΤ)/Ν/(ΔχΧ AyX Δζ)+ n2X Sq2(t-2 · ΔΤ)/Ν/(ΔχΧ AyX Δζ)+ n3X Zq3(t-3 · ΔΤ)/Ν/(ΔχΧ AyX Δζ)+ n4X Zq4(t-4 · ΔΤ)/Ν/(ΔχΧ AyX Δζ)+...... + n 1 X Σql(t—ΐ)/Ν/(ΔxX AyX Δζ) + C0(t)................(13) 在此,nl、n2、n3及nl,係放出開始後放出於〇秒前、 △ T秒前、(△ TX2)秒前、(△ TX3)秒前及t秒前之粒子,以 觀測點(xk)為中心存在於3度空間體積(△ X X △ y X △ z)中 之粒子的總數。 另外,C0(t)係稱為本底濃度,作為計算對象由排出源以 外放出’供關觀測地點而存在之濃度’籍一定值或時間t 變化。 85181.doc -37- 334 200424905 q0、ql、q2、q3及ql,係由t秒時開始之0秒前、△ τ秒前、 (△ΤΧ2)秒前、(ΔΤΧ3)秒前及t(ATXl)秒前之放出率。Zql (t- ΔΤ) / N / (Δχχ AyX Δζ) + n2X Sq2 (t-2 · ΔΤ) / Ν / (Δχχ AyX Δζ) + n3X Zq3 (t-3 · ΔΤ) / Ν / (Δχχ AyX Δζ) + n4X Zq4 (t-4 · ΔΤ) / N / (Δχχ AyX Δζ) + ...... + n 1 X Σql (t-ΐ) / Ν / (ΔxX AyX Δζ) + C0 (t) .. .............. (13) Here, nl, n2, n3, and nl are 0 seconds before the release, △ T seconds before, (△ TX2) seconds before, (△ TX3) The total number of particles existing in the 3 degree space volume (△ XX △ y X △ z) with the observation point (xk) as the center of the particles before and t seconds. In addition, C0 (t) is called the background concentration, and the concentration existing at the 'supply observation site' released from outside the discharge source as a calculation target changes by a certain value or time t. 85181.doc -37- 334 200424905 q0, ql, q2, q3, and ql are 0 seconds before t seconds, △ τ seconds before, (△ Τχ2) seconds, (ΔΤχ3) seconds, and t (ATXl ) Release rate before seconds.

Ck(t)觀測,由於是24小時連續測定,所以由漏洩開始時 刻到0秒後、△ T秒後、(△ TX2)秒後、(△ TX3)秒後及ί(Δ T XI)秒後,可以測定(1+ 1)個以上。 另外,觀測點xk具有k個的情形,可以求出k X (1 + 1)個 的觀測資料。 由於公式(13)之未知數具有q0、ql、q2、q3及ql之(1 + 1)個,已知數Ck(t)觀測具有kX(l + 1)個以上,所以未知數 比已知數少。該情形,使用最小自乘法,可以決定未知數 之q〇、ql、q2、q3及ql,使對於觀測濃度Ck(t)觀測之最小 自乘誤差達到最小。 使用該推測值q〇、q 1、q2、q3及q 1,以第1實施形態之 方法’若進行濃度時間變化的修正計算,就可以計算各每 一經過時間的濃度分布。 &lt;第6實施形態&gt; 第6實施形態,係以網路提供一種在氣體漏戌事故發生 之後,依據放出量實測結果,在短時間内計算現狀及未來 的濃度分布結果之系統。 在如氣體漏洩事故等之緊急時,由於必須緊急採取周邊 居民的避難對策,所以必須儘可能在短時間内輸出擴散計 异結果。但是,由於如此漏洩事故不知何時會發生,所以 在監督官廳之消防、警察及自治体與企業者之各工廠,就 必須要24小時體制的管理運用為此之計算機系統。 85181.doc -38- 200424905 在該管理運用,由於需要較多的勞力與費用及高度的計 算機運用技術,所以除了常設大規模之危機管理系統之組 織以外,管理運用有其困難。 因此提出利用最近之網路之資訊提供系統,作為補救該 問題點之方法。 在該第6實施形態,如圖! 8所示,監督官廳之消防、警 察及自治体等之監督官廳丨0,與企業者之各工廠丨丨,係在 另外之處所設置安全解析中心12。在安全解析中心12,介 網路等之資訊傳達手段,收訊來自氣象聽丨3等之氣象資料 傳訊设施所傳訊之氣象觀測資料,平常時藉使用大型計算 機作計算,依據各時刻之3度空間風速分布,以與第丨實施 形態相同之Lagrangian粒子擴散模型,預先24小時連續實 施一定放出率(Q= 1)之擴散計算。 氣體漏洩事故後,若由設置於企業者11的煙囪出口之氣 體濃度測定裝置等,瞭解實測之氣體放出量q(t),將該氣 體放出量q⑴介由網路等之資訊傳達手段,傳送至安全解 析中心12。如此,在安全解析中心12,可以以與第i實施 形態相同之方法’修正計算對應於該氣體放出率之濃度時 間變化。 、安全二析中心12,係將計算之濃度計算結果送訊至丨 ::警察及自治体等之監督官廳1()。監督官廳Μ,係因7 &gt;辰度對企業者11與工廢周邊居民14發出避難勸告。 出::t來之氣體放出率,係作為與現狀之實測之讀 …q t寺值,或依據他法所設定之預測式加以計算。又 85181.doc -39- 200424905 存在夕數之企業者11的情形,在安全解析中心12作第2實施 形態所顯示之演算,預測濃度時間變化。 作為計算現在及未來之3度空間風速分布之方法,係有 利用由氣象廳13等定期❸所傳訊廣域格子(2〇_之氣象觀 d貝料(GPV · Grid P〇int VaIue),以廣域氣象預測模型 (RAMS MM5等)’計算詳細格子(數^〜數1〇爪)的氣象資 料(風向、風速、氣溫)的時間變化之方法。 發明的效果 噙以上κ知形怨且已具體的說明,關於本發明之擴散物 質的擴散狀況預測方法,係為了預測由排出源排出至大氣 中之物質擴散至大氣中之狀況,將前述物f替換成多數之 粒子,设定為由排出源的位置在每一演算週期發生預先設 定之個數之粒子; 且在包含排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式,求出各粒子的擴散速度, 由該擴散速度求出在各每一演算週期顯示各粒子存在之 空間位置之空間座標,並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應各演算週期之各粒 子的空間座標與各粒子的排出後經過時間,預先記錄於資 料記錄器; ' ' 又,比例於伴隨所排出之物質的排出後經過時間的時間 經過之排出量的變化,預先設定隨著排出後經過時間的時 間經過對粒子之排出源強度資料; 85181.doc -40- 200424905 又,讀出1己錄於前述資料記錄裝置之各每一演算週期之 各粒子的受間座標與各粒子的排出後經過時間,並且參照 $貝出之排出後經過時間,求出各粒子發生之時點,由前述 排出源強度資料求出該時點之各粒子的排出源強度,在前 述資料記錄裝置再記錄對應各每一演算週期之各粒子的 2間座標與各粒子的排出後經過時間與排出源強度; 又,既定之演算週期之既定的區域之前述物質的濃度, 係藉累计存在於該既定之演算週期之該既定之區域之全 部之粒子的排出源強度求出。 為此,由排出源所排出之量即使不同,亦可以在短時間 内演算特定區域之物質的濃度。 另外,本發明之擴散物質的擴散狀況預測方法,係為了 預測由多數之排出源排出至大氣中之物質擴散至大氣中 之狀況,將前述物質替換成多數之粒子,設定為由各排出 源的位置在每一演算週期分別發生預先設定之個數之粒 子; 且在包含排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀毖之擴散方程式,求出各粒子的擴散速度, 由孩擴散速度求出在各每一演算週期顯示各粒子存在之 二間位置之空間座標,並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應識別各演算週期之 各粒子的空間座標與各粒子的排出後經過時間與排出源 '^排出源識別資訊,預先記錄於資料記錄器; 85181.doc -41 - 200424905 又’比例於伴隨由各排出源所排出之物質的排出後經過 時間經過之排出量的變化,在各每—排出源預先分 刻設疋隨著排出後經過時間的時間經過對粒子之排出 強度資料; Λ' 又,讀出記錄於前述資料記錄裝置之各每—演算週期之 各粒子的空間座標與各粒子的排出後經過時間與各粒子 排出源識別資訊’並且參照讀出之排出後經過時間,求出 各粒子發生之時點,參照讀出之排出源識別資訊,由對應 其粒子發生 &lt; 排出源之前述排出源強度資料求出粒子發 生 &lt; 時‘點《各粒子的排出源強度,在前述 記錄對應各每一演算週 戈衮置再 异U期 &lt; 各权子的空間厘標與各粒予 的排出後經過時間與排出源強度; 又’既定之演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該既定之演算週期之該既定之區域之全 部之粒子的排出源強度求出。 為此,由排出源所排出之量即使不同,亦可以在短時間 内演算特定區域之物質的濃度。另外,物料使由多數之 出原所排出,亦可以正確的作物質的濃度計算。 、另外,本發明 &lt; 擴散物質的擴散狀況預測方法,其中前 、排出源強度資料,係藉實測由前述排出源實際所排出之 物質的濃度求出並加以設定。 =前述“源強度料,料前述排㈣的㈣之觀測 ’占只&quot;、〗之物質的濃度之時間變化設定為基礎。 為此’即使沒有預先求出由排出源所排出之物質的濃度 8518l.doc -42- 339 200424905 資料,亦可以使用實測資科作濃度計算。 另外’本發明之擴散物質的擴散狀:預測系統,係包含 有: 企業者,係當擴散物質排出牵士与士 印出至大耽中時,實測擴散物質 的濃度,發訊顯示擴散物質的排出量之資料; 氣象資料傳訊設施,係傳訊氣象觀測資料; 盡督官廳’係對前述企業者與前述企業者的周邊之居 民,通知避難勸告;及 文王解析中心,係作申請專利範圍第丨或2項之演算處 理,且凟算既定區域之物質的濃度; 又’在前述安全解析中心,來自前述企業者顯示擴散物 質的排出量之資料,以及來自前述氣象資料傳訊設施之氣 象觀測資料,係藉資訊傳達手段傳送; 又在㈤述監督官廳,來自前述安全解析中心之物質的 濃度,係藉資訊傳達手段傳送; 又刖述&amp;督耳廳,係因應所傳來的物質的濃度通知避 難勸告。 為此,以在安全解析中心作演算之資訊為基礎,監督官 廳可以迅速的發出避難勸告,可以緊急的採取周邊居民的 避難對策。 圖式簡單說明 圖為’、、、員不本發明之第1實施形態之計算流程之流程圖。 圖2為頌本發明之第1實施形態之粒子的擴散狀態之 說明圖。 85181.doc -43 - 200424905 圖3為,、’、員示本發明之第丨實施形態之粒子的擴散狀態之 說明圖。 圖4為顯不本發明之第1實施形態之粒子的擴散狀態之 說明圖。 圖5為顯π物貝的排出量的時間變化之一例之特性圖。 圖6為顯示對應物質的排出量的時間變化之排出源強度 的一例之特性圖。 圖7為顯示既定格子區域之粒子分布之說明圖。 圖8為顯示排出源與格子區域之說明圖。 圖9為顯示排出量盘 ^ 里一—疋的情形之排出量與濃度的關係 之特性圖。 圖10為顯示排出量與時 的關係之特性圖。 間變化的情形之排出量與濃度 圖11為顯示2個之排山、、R ^, 出源與格子區域之說明圖 排出量與濃度的關 圖12為顯示排出吾^ ^ _ F ® I與一疋的情形之 係之特性圖。 圖13為顯示排由寻^ Λ 鉍時間變化的情形之排出量盥濃度 的關係之特性圖。 ,、狀良 圖14為顯示第3音ρ ^ 币她形態之說明圖。 圖1 5為顯示第4 ♦、a 昂4只她形態之說明圖。 圖16為顯示本發明 、&gt; 匕 圖0 &lt;罘4貝犯形怨之計算流程之流程 圖17為顯示本發 圖 明之第5實施形態之計算流程之流程 85181.doc -44- 200424905 圖1 8為顯示關於第6實施形態之系統之系統構成圖。 圖19為顯示先前技術之粒子的擴散狀態之說明圖。 圖20為顯示先前技術之粒子的擴散狀態之說明圖。 圖21為顯示先前技術之粒子的擴散狀態之說明圖。 圖22為〶員示既定的格子區域之粒子分布的說明圖。 圖23為顯示粒子擴散模型的功能之說明圖。 圖24為顯示排出源與格子區域之說明圖。 圖25為顯示排出量與時間變化的情形之排出量與濃度 的關係之特性圖。 圖2 6為顯示排出量與一 係之特性圖。 走的情形之排出量與濃度的關 圖27為顯示排出量與瞬間的情形之排 係之特性圖。 圖式代表符號說明 出量與濃度的關 10 11 12 13 14 S 、 Si 、 S2 資料記錄裝置 監督官廳 企業者 安全解析中心 氣象廳 工廢周邊居民 排出源 85181.doc -45-The Ck (t) observation is a continuous measurement for 24 hours, so from the time when the leak started to 0 seconds, △ T seconds, (△ TX2) seconds, (△ TX3) seconds, and (△ T XI) seconds. , Can measure more than (1 + 1). When there are k observation points xk, observation data of k X (1 + 1) can be obtained. Since the unknowns in formula (13) have (1 + 1) of q0, ql, q2, q3, and ql, and the known number Ck (t) has more than kX (l + 1) observations, the unknowns are less than the known numbers . In this case, the minimum multiplication method can be used to determine the unknowns q0, ql, q2, q3, and ql to minimize the minimum multiplication error for the observed concentration Ck (t). Using the estimated values q0, q1, q2, q3, and q1, if correction calculation of concentration time change is performed by the method of the first embodiment, the concentration distribution of each elapsed time can be calculated. &lt; Sixth embodiment &gt; A sixth embodiment is a system for providing a system for calculating the current status and future concentration distribution results in a short period of time after the occurrence of a gas leak accident, based on the actual measurement results of emissions. In the case of an emergency such as a gas leak accident, since it is necessary to take emergency measures for the evacuation of the surrounding residents, it is necessary to output the diffusion measurement results within a short time. However, since such a leak accident does not know when it will occur, the fire prevention, police, and local governments and factories of the supervisory office must use a computer system to manage this. 85181.doc -38- 200424905 In this management operation, since it requires more labor and costs and advanced computer operation technology, it has difficulties in management operation except for the organization of a permanent large-scale crisis management system. Therefore, it is proposed to use the information supply system of the recent Internet as a method to remedy the problem. In this sixth embodiment, as shown in the figure! As shown in Figure 8, the Supervisory Office of the Superintendent's Office of Fire, Police, and Local Government, etc., and the factories of the company's factories, 丨 0, are located in other locations. In the security analysis center 12, information transmission methods such as the Internet are used to receive meteorological observation data transmitted by meteorological data transmission facilities such as meteorological listening, etc., and usually use a large computer for calculation, based on 3 degrees at each time The spatial wind speed distribution is based on the same Lagrangian particle diffusion model as in the first embodiment. The diffusion calculation of a certain release rate (Q = 1) is performed continuously for 24 hours in advance. After a gas leakage accident, if the gas concentration measuring device installed at the chimney exit of the company 11 knows the measured gas emission amount q (t), the gas emission amount q is transmitted via an information transmission means such as the Internet. To the security analysis center 12. As described above, in the safety analysis center 12, the change in concentration time corresponding to the gas release rate can be corrected and calculated in the same manner as in the i-th embodiment. The Security Analysis Center 12 sends the calculated concentration calculation results to the Superintendent Office 1 () of the police and local government. The Supervisory Office M issued an evacuation advisory to the enterpriser 11 and the residents 14 around the industrial waste because of 7 &gt; Chendu. Output: The gas emission rate from t is the measured reading as the actual situation… q t value, or calculated according to the prediction formula set by other methods. 85181.doc -39- 200424905 In the case of an enterpriser 11 with a large number of nights, the calculation shown in the second embodiment is performed in the security analysis center 12 to predict the concentration-time change. As a method of calculating the current and future 3 degree spatial wind speed distribution, a wide-area grid (GPV · Grid Point VaIue) that is circulated by the Meteorological Agency 13 and other regular stations is used. Wide-area weather forecasting model (RAMS MM5, etc.) 'Calculates the time variation of meteorological data (wind direction, wind speed, air temperature) in a detailed grid (number ^ ~ number 10 claws). Effect of the invention Specifically, in order to predict the diffusion state of the diffusive substance of the present invention, in order to predict the state of diffusion of the substance discharged into the atmosphere from the exhaust source into the atmosphere, the above-mentioned substance f is replaced with a large number of particles and set to be discharged by The position of the source generates a predetermined number of particles in each calculation cycle; and the multiple locations in the area containing the position of the source are displayed by changing the wind direction and wind speed field data over time, and substituting them into Calculate the diffusion equation of the particle's diffusion state, find the diffusion speed of each particle, and use this diffusion speed to find the space that shows the spatial position of each particle in each calculation cycle And the measured elapsed time from the elapsed time from the point in time when the aforementioned particles first occurred, corresponding to the space coordinates of each particle in each calculation cycle and the elapsed time after the discharge of each particle, which are recorded in the data logger in advance; The ratio is proportional to the change in the amount of discharge that elapses with the passage of time after the elapsed time of the discharged substance, and the data of the intensity of the emission source of the particles is set in advance as the time elapses after the discharge; 85181.doc -40- 200424905 Read out the coordinates of each particle and the elapsed time after the discharge of each particle recorded in each calculation cycle of the aforementioned data recording device, and refer to the elapsed time after the discharge from the shell to find the time when each particle occurred. The intensity of the emission source of each particle at that point in time is obtained from the aforementioned intensity data of the emission source, and the two coordinates corresponding to each particle of each calculation cycle and the elapsed time and emission source of each particle are recorded in the aforementioned data recording device. Intensity; Also, the concentration of the aforementioned substances in a given area of a given calculation period is accumulated in the given The intensity of the emission source of all the particles in the predetermined area in the calculation cycle is obtained. For this reason, even if the amount emitted by the emission source is different, the concentration of the substance in a specific area can be calculated in a short time. The method for predicting the diffusion state of diffusive substances is to predict the diffusion of substances discharged into the atmosphere from most emission sources into the atmosphere. The foregoing substances are replaced with a large number of particles, and the positions of each emission source are set for each calculation. Pre-specified number of particles are generated in each cycle; and in multiple locations within the area containing the location of the emission source, wind speed field data showing wind direction and wind speed will be displayed over time, and will be used to calculate the diffusion of particles. The diffusion equation is used to find the diffusion speed of each particle. From the diffusion speed, the spatial coordinates showing the two positions where each particle exists in each calculation cycle are calculated, and the discharge from the elapsed time from the time when the aforementioned particles first occur is measured. The elapsed time corresponds to the spatial coordinates of each particle in each calculation cycle and the elapsed time after the discharge of each particle. Time and discharge source '^ The discharge source identification information is recorded in advance in the data logger; 85181.doc -41-200424905 Also' proportion is the change in the amount of discharge that elapses with the passage of time after the discharge of substances discharged from each discharge source, Each discharge source is set in advance to record the discharge intensity data of the particles with the elapsed time after discharge; Λ ', and the space of each particle recorded in each calculation period of the aforementioned data recording device is read out Coordinates, elapsed time after discharge of each particle, and identification information of discharge source of each particle ', and referring to the elapsed time after reading out, find out the time point of each particle occurrence, and refer to the read out identification information of the discharge source, and refer to the corresponding particle occurrence &lt;; The above-mentioned emission source intensity data of the emission source is used to find the particle occurrence &lt; point &quot; the intensity of the emission source of each particle, in the aforementioned record, corresponding to each calculation week, and then different U period &lt; space weight of each weight The elapsed time and intensity of the source after the discharge of the target and each grain; and the concentration of the aforementioned substance in a predetermined area of a predetermined calculation cycle is accumulated by The intensity of the emission source of all particles in the predetermined area in the predetermined calculation period is obtained. For this reason, even if the amount discharged from the discharge source is different, the concentration of the substance in a specific area can be calculated in a short time. In addition, the material is discharged from most of the sources, and the concentration of the substance can also be calculated correctly. In addition, the present invention &lt; prediction method for the diffusion state of diffusing substances, wherein the intensity data of the front and exhaust sources is obtained by measuring the concentration of the substance actually discharged from the aforementioned exhaust source and setting it. = The aforementioned "source strength material, the above-mentioned observation of the emission of the ㈣ ㈣" accounted for the time variation of the concentration of the substance is set as the basis. For this reason, even if the concentration of the substance discharged from the exhaust source is not previously obtained 8518l.doc -42- 339 200424905 data, you can also use the measured data to calculate the concentration. In addition, the 'diffusion state of the diffusive substance of the present invention: a prediction system, which includes: the enterpriser, when the diffusive substance is discharged When printed to Dazhong, the concentration of the diffusive substance was measured, and the data showing the discharge amount of the diffusive substance was sent out; the meteorological data communication facility is the meteorological observation data; the Superintendent's Office is for the aforementioned enterprises and the aforementioned enterprises. Residents in the surrounding area will notify the evacuation advisory; and Wenwang Analysis Center will perform calculations on the scope of patent application No. 丨 or 2 and calculate the concentration of substances in a predetermined area; Data on the discharge of diffusive substances and meteorological observation data from the aforementioned meteorological data communication facilities are transmitted by means of information transmission; In the Narrative Supervision Office, the concentration of the substance from the aforementioned safety analysis center is transmitted by means of information transmission; and the Narration &amp; Governor's Office is to notify the evacuation advisory based on the concentration of the transmitted substance. Based on the information calculated by the Security Analysis Center, the Supervisory Office can quickly issue evacuation advice, and can take emergency evacuation measures for surrounding residents. The diagram briefly illustrates the calculation of the first embodiment of the present invention. The flow chart of the process. Fig. 2 is an explanatory diagram illustrating the diffusion state of the particles of the first embodiment of the present invention. 85181.doc -43-200424905 Fig. 3 shows the particles of the first embodiment of the present invention. FIG. 4 is an explanatory diagram showing a diffusion state of particles according to the first embodiment of the present invention. FIG. 5 is a characteristic diagram showing an example of the temporal change of the discharge amount of π shellfish. FIG. 6 is A characteristic diagram showing an example of the intensity of the emission source showing the temporal change in the amount of the emission of the corresponding substance. Fig. 7 is an explanatory diagram showing the particle distribution in a predetermined grid region. Fig. 8 is a graph showing the emission source and An explanatory diagram of the sub-regions. Fig. 9 is a characteristic diagram showing the relationship between the discharge volume and the concentration in the case of the discharge volume ^ li- 疋. Fig. 10 is a characteristic diagram showing the relationship between the discharge volume and the time. Discharge volume and concentration Figure 11 shows the relationship between the discharge volume and the concentration of two rows of mountains, R ^, the source and the grid area. Figure 12 shows the relationship between the discharge volume ^ ^ _ F ® I and I Fig. 13 is a characteristic diagram showing the relationship between the discharge volume and the concentration of bismuth in a time-dependent manner. Fig. 14 is an explanatory diagram showing the shape of the third tone ρ ^ coin. 15 is an explanatory diagram showing the 4th form of the fourth ♦ a ang. Figure 16 is a flowchart showing the calculation process of the present invention, &gt; dagger 0 &lt; The flow of the calculation flow of the fifth embodiment of the Ming Dynasty 85181.doc -44- 200424905 Fig. 18 is a system configuration diagram showing the system of the sixth embodiment. FIG. 19 is an explanatory view showing a diffusion state of particles of the prior art. FIG. 20 is an explanatory diagram showing a diffusion state of particles of the prior art. FIG. 21 is an explanatory diagram showing a diffusion state of particles of the prior art. FIG. 22 is an explanatory diagram showing a particle distribution of a predetermined lattice region by a worker. FIG. 23 is an explanatory diagram showing functions of a particle diffusion model. FIG. 24 is an explanatory diagram showing a discharge source and a grid area. Fig. 25 is a characteristic diagram showing the relationship between the discharge amount and the concentration when the discharge amount changes with time. Fig. 26 is a characteristic diagram showing the discharge volume and the system. Relation between discharge volume and concentration in the case of walking Fig. 27 is a characteristic diagram showing the discharge system and the displacement in the case of the moment. Representation of the symbols in the figure The relationship between the output and the concentration

Claims (1)

200424905 拾、申請專利範圍: 1· 一種擴散物質的擴散狀況預測方法,其係為了預測由排 出源排出至大氣中之物質擴散至大氣中之狀況,將前述 物質替換成多數之粒子,設定為由排出源的位置在每一 演算週期發生預先設定之個數之粒子; 且在包含排出源的位置之區域内之多述地點,藉將隨 著時間的經過變化顯示風向•風速之風速場資料,代入 演算粒子的擴散狀態之擴散方程式,求出各粒子的擴散 速度,由該擴散速度求出在各每一演算週期顯示各粒子 存在之空間位置之空間座標,並且計測由最初發生前述 粒子的時點的經過時間之排出後經過時間,對應各演算 週期之各粒子的空間座標與各粒子的排出後經過時間, 預先記錄於資料記錄器; 又,比例於伴隨所排出之物質的排出後經過時間的時 間經過之排出量的變化,預先設定隨著排出後經過時間 的時間經過對粒子之排出源強度資料; 又,讀出記錄於前述資料記錄裝置之各每一演算週期 之各粒子的空間座標與各粒子的排出後經過時間,並且 參照讀出之排出後經過時間,求出各粒子發生之時點, 由前述排出源強度資料求出該時點之各粒子的排出源強 度,在前述資料記錄裝置再記錄對應各每一演算週期之 各粒子的S間座標與各粒子的排出後經過時間與排出源 強度; 又,既足之演算週期之既定的區域之前述物質的濃 85181.doc 2004249 05 度’係藉累計存在於該既定之演算週期之該既定之區域 之全部之粒子的排出源強度求出。 2· 一種擴散物質的擴散狀況預測方法,係為了預測由多數 疋排出源排出至大氣中之物質擴散至大氣中之狀況,將 七述物質替換成多數之粒子,設定為由各排出源的位置 在每一演算週期分別發生預先設定之個數之粒子; 且在包含排出源的位置之區域内之多述地點,藉將隨 著時間的經過變化顯示風向•風速之風速場資料,代入 次算粒子的擴散狀態之擴散方程式,求出各粒子的擴散 速度,由該擴散速度求出在各每一演算週期顯示各粒子 存在之空間位置之空間座標,並且計測由最初發生前述 粒子的時點的經過時間之排出後經過時間,對應識別各 遺算週期之各粒子的空間座標與各粒子的排出後經過時 門與排出源之排出源識別資訊,預先記錄於資料記錄器; 又,比例於伴隨由各排出源所排出之物質的排出後經 過時間的時間經過之排出量的變化,在各每一排出源預 先分別設定隨著排出後經過時間的時間經過對粒子之排 出源強度資料; 人 續κ把綠於可述資料記錄裝置之各每一演算週期 之各粒子的空間座標與各粒子的排出後經過時間:各料 子排出源朗資訊,並且參照讀出之排_經過時間, 求出各粒子發生之時點,參照讀出之排出源識別资訊, 由對應其粒子發生之排出源之前述排出源強度資料长出 粒子發生之時點之各粒子的排出源強度,在前述資㈣ 85181.doc 344 200424905 錄裝置再記錄對應各每一演算週期之各粒子的空間座標 與各粒子的排出後經過時間與排出源強度,· 又,既足之演算週期之既定的區域之前述物質的濃 度,係藉累計存在於該既定之演算週期之該既定之區域 之全部之粒子的排出源強度求出。 3. 如申請專利範圍第丨或2項之擴散物質的擴散狀況預測方 法’其中前述排出源強度資料,係藉實測由前述排出源 實際排出之物質的濃度求出並加以設定。 4. 如申請專利範圍第142項之擴散物f的擴散狀況預測方 法,其中前述排出源強度資料,係將前述排出源的周圍 之觀測點實測之物質的濃度之時間變化設定為基礎。 5· —種擴散物質的擴散狀況預測系統,係包含有·· 企業者,係當擴散物質排出至大氣中時,實測擴散物 質的濃度,發訊顯示擴散物質的排出量之資料; 乳象資料傳訊設施,係傳訊氣象觀測資料; 監督官廳,係對前述企業者與前述企業者的周邊之居 民,通知避難勸告;及 理’且演算既定區域之物質的濃度; 二在前述安全解析中心,來自前述企業者顯示擴 物=排出量之資料,以及來自前述氣象資料傳訊設 之氣觀’係藉資訊傳達手段傳送; ,、在則迷&amp;督官廳,來自前述安全解析中心之物 的/展度,係藉資訊傳達手段傳送; 85181.doc 200424905 又,前述監督官廳,係因應所傳來的物質的濃度通知 避難勸告。 85181.doc200424905 Scope of patent application: 1. A method for predicting the diffusion state of diffusive substances. In order to predict the diffusion of substances discharged into the atmosphere from an exhaust source into the atmosphere, the foregoing substances are replaced with a large number of particles, and set as The position of the emission source occurs in a predetermined number of particles in each calculation cycle; and the multiple locations in the area containing the position of the emission source will display the wind direction and wind speed field data over time, Substituting into the diffusion equation of the diffusive state of the calculated particles, the diffusion speed of each particle is obtained, and the spatial coordinates showing the spatial position of each particle at each calculation cycle are obtained from the diffusion speed, and the time point at which the aforementioned particles first occur is measured. The elapsed time after the elapsed time corresponds to the spatial coordinates of each particle in each calculation cycle and the elapsed time after the evacuation of each particle are recorded in advance in the data logger; in addition, the ratio is proportional to the elapsed time following the evacuation of the discharged substance. The change of the discharge volume over time is set in advance as the elapsed time after discharge The time passes the intensity source data of the particles; and reads out the space coordinates of each particle and the elapsed time after the discharge of each particle recorded in each calculation cycle of the aforementioned data recording device, and refers to the elapsed time after the read out. Time, the time point at which each particle occurred is obtained, the emission source intensity of each particle at that time point is obtained from the above-mentioned emission source intensity data, and the S-coordinate and each of the particles corresponding to each calculation period are recorded in the aforementioned data recording device. The elapsed time and the intensity of the source after the particles are discharged; and, the concentration of the aforementioned substance in a predetermined area of a sufficient calculation period is 85181.doc 2004249 05 degrees, which is accumulated in the predetermined area of the predetermined calculation period. The exhaust source intensity of all particles was obtained. 2. A method for predicting the diffusion state of diffusive substances. In order to predict the diffusion of substances released into the atmosphere from most plutonium emission sources, the seven substances are replaced with a large number of particles, and the positions are set by each emission source. Pre-set number of particles are generated in each calculation cycle; and in multiple locations within the area containing the location of the emission source, the wind direction and wind speed field data will be displayed over time, and substituted into the secondary calculation. The diffusion equation of the particle's diffusion state is used to find the diffusion speed of each particle. From this diffusion speed, the space coordinates showing the spatial position of each particle in each calculation cycle are obtained, and the passage of time from the time when the aforementioned particles first occur is measured. The elapsed time after the discharge of time corresponds to identifying the space coordinates of each particle in each remaining calculation period and the discharge source identification information of the time gate and the discharge source after the discharge of each particle, which are recorded in advance in the data recorder; Elapsed time after discharge of substances discharged from each discharge source In each discharge source, the intensity data of the discharge source of the particles is set in advance with the elapsed time after discharge; the person continues to place the green coordinates on the space coordinates of each particle in each calculation cycle of the recordable data recording device. And the elapsed time after the discharge of each particle: each material discharges source information, and refers to the read out row_elapsed time to find the point at which each particle occurred, and refers to the read out source identification information to determine the occurrence of the corresponding particle. The intensity of the emission source of each particle at the point when the particle occurred when the aforementioned emission source intensity data of the emission source are grown, and the above-mentioned resource 85181.doc 344 200424905 recording device then records the spatial coordinates and particles of each particle corresponding to each calculation period The elapsed time after discharge and the intensity of the discharge source, and the concentration of the aforementioned substance in a predetermined area of a sufficient calculation period is the discharge source of all particles accumulated in the predetermined area in the predetermined calculation period. Find the strength. 3. For the method for predicting the diffusion state of a diffusive substance in the scope of application for patent application item 丨 or 2, the above-mentioned emission source intensity data is obtained by measuring the concentration of the substance actually discharged from the aforementioned emission source and setting it. 4. For example, the method for predicting the diffusion state of the diffuser f in the scope of patent application No. 142, wherein the intensity information of the emission source is based on the time variation of the concentration of the substance measured at the observation points around the emission source. 5 · —The diffusion status prediction system of a diffusive substance, which includes ... Enterprisers, when the diffusive substance is discharged into the atmosphere, the actual concentration of the diffusive substance is measured, and the information showing the discharge amount of the diffusive substance is sent; The communication facility is the communication meteorological observation data; the supervisory office is the notification of evacuation advice to the aforementioned enterprises and the surrounding residents of the aforementioned enterprises; and the reasoning and calculation of the concentration of substances in a predetermined area; The above-mentioned enterprisers display the data of the expansion = emission volume, and the air view from the above-mentioned meteorological data communication device is transmitted by means of information transmission; The degree is transmitted by means of information transmission; 85181.doc 200424905 Furthermore, the aforementioned supervisory office has notified the evacuation advisory in accordance with the concentration of the transmitted substance. 85181.doc
TW92112582A 2001-12-26 2003-05-08 Prediction method and system of gas diffusion TWI227434B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393179A JP3746712B2 (en) 2001-12-26 2001-12-26 Diffusion status prediction method

Publications (2)

Publication Number Publication Date
TW200424905A true TW200424905A (en) 2004-11-16
TWI227434B TWI227434B (en) 2005-02-01

Family

ID=27600230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92112582A TWI227434B (en) 2001-12-26 2003-05-08 Prediction method and system of gas diffusion

Country Status (2)

Country Link
JP (1) JP3746712B2 (en)
TW (1) TWI227434B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738140B2 (en) * 2011-09-16 2015-06-17 三菱重工業株式会社 Substance release amount estimation apparatus, method and program
TWI466052B (en) * 2012-05-02 2014-12-21 Univ Nat Yunlin Sci & Tech An integrated cross-scaled consequence analysis system for toxic/chemical disaster
KR101348100B1 (en) * 2012-12-10 2014-01-07 사단법인대기환경모델링센터 Radiological dose modeling system for emergency response
KR101513370B1 (en) * 2013-12-23 2015-04-17 대한지적공사 Method and system for providing safety information using location information
JP6870442B2 (en) * 2017-04-06 2021-05-12 富士電機株式会社 Source analyzer and source analysis system
CN113705062B (en) * 2021-07-23 2022-10-18 中国人民解放军92609部队 Smoke tube smoke screen shielding rate prediction method and computer storage medium
CN114566026B (en) * 2022-04-28 2022-07-15 成都蓉悦科技有限公司 Automatic data measurement and control device, system and method for gas transmission station

Also Published As

Publication number Publication date
JP3746712B2 (en) 2006-02-15
JP2003196574A (en) 2003-07-11
TWI227434B (en) 2005-02-01

Similar Documents

Publication Publication Date Title
Pospelov et al. Development of the method of operational forecasting of fire in the premises of objects under real conditions
KR101675733B1 (en) Nuclear power plant accident integrated action system
Zhai et al. Experimental verification of tracking algorithm for dynamically-releasing single indoor contaminant
CN103914622A (en) Quick chemical leakage predicating and warning emergency response decision-making method
KR101752328B1 (en) Educational and Training Simulation System for Emergency Response to Nuclear Accidents in Neighboring Countrie
Han et al. Investigation on an integrated evacuation route planning method based on real-time data acquisition for high-rise building fire
US6853924B2 (en) Diffusion status prediction method and diffusion status prediction system for diffused substance
TW557447B (en) Nuclear emergency countermeasure system and nuclear emergency countermeasure training system
CN104750949A (en) Gas leakage poisoning individual risk quantitative evaluation and characterization method
Zhu et al. Simulation and dose analysis of a hypothetical accident in Sanmen nuclear power plant
TW200424905A (en) Prediction method and system of gas diffusion
CN104863634A (en) Performance detecting method of tunnel fire-fighting equipment
CN103400466B (en) The Subway Station Fire detection of measuring based on parallel temperature and fire power forecasting method
CN115952926B (en) Dangerous gas diffusion range prediction method, system, electronic equipment and storage medium
JP2014106203A (en) Diffusate diffusion state prediction device, method of the same and program
Iwasaki et al. Intercomparison of numerical atmospheric dispersion prediction models for emergency response to emissions of radionuclides with limited source information in the Fukushima Dai-ichi nuclear power plant accident
Гаврись et al. Software-based method of determining the necessary population evacuation zone in case of a chemical accident
CN100541169C (en) The diffusion-condition predicting method and the diffusion-condition predicting system of diffusate
Salami et al. Enhancing fire safety in underground mines: Experimental and large eddy simulation of temperature attenuation, gas evolution, and bifurcation influence for improved emergency response
Cervone et al. Source term estimation for the 2011 Fukushima nuclear accident
Zhu et al. Estimation of the point source parameters by the adjoint equation in the time-varying atmospheric environment with unknown turn-on time
KR100671909B1 (en) Prediction method and system of gas diffusion
Unger et al. Transport of radon gas into a tunnel at Yucca Mountain—estimating large-scale fractured tuff hydraulic properties and implications for the operation of the ventilation system
Yang et al. Radioactive gas diffusion simulation and inhaled effective dose evaluation during nuclear decommissioning
Chung et al. A simplified model for smoke filling time calculation with sprinkler effects

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees