CN103914622A - Quick chemical leakage predicating and warning emergency response decision-making method - Google Patents
Quick chemical leakage predicating and warning emergency response decision-making method Download PDFInfo
- Publication number
- CN103914622A CN103914622A CN201410136961.5A CN201410136961A CN103914622A CN 103914622 A CN103914622 A CN 103914622A CN 201410136961 A CN201410136961 A CN 201410136961A CN 103914622 A CN103914622 A CN 103914622A
- Authority
- CN
- China
- Prior art keywords
- leakage
- neural network
- layout
- sensor
- scenario
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000000126 substance Substances 0.000 title claims abstract description 20
- 238000013528 artificial neural network Methods 0.000 claims abstract description 56
- 238000004088 simulation Methods 0.000 claims abstract description 39
- 238000009792 diffusion process Methods 0.000 claims abstract description 35
- 238000012216 screening Methods 0.000 claims abstract description 35
- 238000012549 training Methods 0.000 claims abstract description 30
- 238000012795 verification Methods 0.000 claims abstract description 7
- 230000010354 integration Effects 0.000 claims abstract description 5
- 230000007613 environmental effect Effects 0.000 claims description 18
- 238000005457 optimization Methods 0.000 claims description 13
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000012502 risk assessment Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 2
- 238000011002 quantification Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 51
- 238000003062 neural network model Methods 0.000 abstract 2
- 231100000331 toxic Toxicity 0.000 description 14
- 230000002588 toxic effect Effects 0.000 description 14
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 5
- 239000002341 toxic gas Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Alarm Systems (AREA)
- Emergency Alarm Devices (AREA)
Abstract
本发明一种化学品泄漏快速预测预警应急响应决策方法,将扩散模型模拟与神经网络和气体传感器系统相结合,应用于工业园区有害气体泄漏的快速预警及辅助决策,包括:园区风险因素识别,用于识别可能发生的各类泄露事故;数值模拟,对所有可能发生的事故进行模拟,得到有害气体的影响范围;数据筛选,根据实际的传感器布局提取和重组数值模拟结果中有效部分;神经网络训练,利用筛选后的数据对特定神经网络模型进行训练,以获得针对特定工业园区及周边条件的模型参数,并使用冗余数据参数验证;传感器系统与神经网络模型整合,将模型与传感器DCS结合起来。
The invention discloses a chemical leakage rapid prediction, early warning and emergency response decision-making method, which combines the diffusion model simulation with the neural network and the gas sensor system, and is applied to the rapid early warning and auxiliary decision-making of harmful gas leakage in industrial parks, including: park risk factor identification, It is used to identify various possible leakage accidents; numerical simulation, to simulate all possible accidents to obtain the influence range of harmful gases; data screening, to extract and reorganize the effective part of the numerical simulation results according to the actual sensor layout; neural network Training, using the filtered data to train a specific neural network model to obtain model parameters for specific industrial parks and surrounding conditions, and use redundant data parameter verification; sensor system and neural network model integration, combining the model with sensor DCS stand up.
Description
技术领域technical field
本发明属于工业生产中的安全预警技术领域,特别涉及一种化学品泄漏快速预测预警应急响应决策方法。The invention belongs to the technical field of safety early warning in industrial production, and in particular relates to a decision-making method for rapid chemical leakage prediction, early warning and emergency response.
背景技术Background technique
很多流程工业在生产过程中会使用或者产生一些对人体有害的有毒、有害气体(如氯气,光气等),这些工业园区一旦发生有毒有害气体泄漏事故,泄漏出的有毒有害气体可能会对周边一定范围内的人类造成严重的危害。在有毒有害气体泄漏事故发生时,泄漏的物质和大致泄漏位置能够比较容易地确定,但有害气体的泄漏量或者泄漏速率则很难在现场获得。在有限的时间利用有限的信息预测有毒气体的扩散趋势和影响范围是事故应急响应过程的重要环节。目前,传统的数值扩散预测模型,包括高斯烟羽模型,计算流体力学模型,以及一些较为成熟的扩散模拟软件都需要使用者提供详细的泄漏源泄露速率,并且需要一定的时间计算才能得到结果。因此,泄漏源的泄露速率或者泄漏量以及较长的计算时间限制了这些传统气体扩散模型在事故应急响应以及辅助决策过程中的应用,它们更多地被用于事故发生之后的调查分析。由于历史原因,我国相当一部分可能发生有毒有害气体泄露事故的工业园区周边3~5km范围内即有居民区存在,当发生严重有毒有害气体泄露事故时,这些有毒有害气体很可能扩散至工业园区界区之外,对居民区产生威胁。在没有快速有效地预测有毒有害气体扩散范围的方法时,决策者往往以最坏的情况考虑有害气体的覆盖范围,而最坏情况的预测结果往往意味着政府部门需要疏散几万甚至十几万人,这是非常不现实的。因此一种快速有效地预测有害气体扩散范围的方法对于事故应急响应和辅助决策具有重要意义。Many process industries will use or produce some poisonous and harmful gases (such as chlorine gas, phosgene, etc.) that are harmful to human body during the production process. It can cause serious harm to humans within a certain range. When a toxic and harmful gas leakage accident occurs, the leaked substance and the approximate location of the leak can be relatively easily determined, but it is difficult to obtain the leakage rate or leakage rate of the harmful gas on site. It is an important part of the accident emergency response process to predict the diffusion trend and influence range of toxic gas with limited information in a limited time. At present, traditional numerical diffusion prediction models, including Gaussian plume models, computational fluid dynamics models, and some relatively mature diffusion simulation software require users to provide detailed leakage rates of leakage sources, and it takes a certain amount of time to calculate and obtain results. Therefore, the leakage rate or leakage of the leakage source and the long calculation time limit the application of these traditional gas diffusion models in the accident emergency response and auxiliary decision-making process, and they are more used in the investigation and analysis after the accident. Due to historical reasons, a considerable number of industrial parks in my country where toxic and harmful gas leakage accidents may occur have residential areas within 3-5km. When serious toxic and harmful gas leakage accidents occur, these toxic and harmful gases are likely to spread to the industrial park boundary Outside the area, it poses a threat to residential areas. When there is no method to quickly and effectively predict the spread of toxic and harmful gases, decision makers often consider the coverage of harmful gases in the worst case, and the worst case prediction results often mean that government departments need to evacuate tens of thousands or even hundreds of thousands Man, this is very unrealistic. Therefore, a method to quickly and effectively predict the diffusion range of harmful gases is of great significance for accident emergency response and auxiliary decision-making.
处理有毒有害气体的工厂都会有针对性地在有毒有害气体储罐附近设置一个或多个有害气体传感器,用于监控是否有气体泄漏。这些气体传感器均与控制中心相连,提供有毒气体泄漏报警信息。但目前很多工业园区均没有完全发挥气体传感器的作用,事故发生时,应急响应人员只能通过传感器获得泄漏气体的种类,瞬时浓度,而不能通过这些信息快速地预测泄漏气体的分布情况,进而采取有效的控制措施,制定合理的疏散计划。Factories dealing with toxic and harmful gases will set up one or more harmful gas sensors near the toxic and harmful gas storage tanks to monitor whether there is any gas leakage. These gas sensors are all connected with the control center to provide toxic gas leakage alarm information. However, at present, many industrial parks do not give full play to the role of gas sensors. When an accident occurs, emergency response personnel can only obtain the type and instantaneous concentration of the leaked gas through the sensor, but cannot quickly predict the distribution of the leaked gas through the information, and then take measures. Effective control measures and a reasonable evacuation plan.
目前,世界上普遍使用的事故后果分析方法主要包括使用不同种类的数值模型(高斯烟羽模型,计算流体力学模型(CFD)以及商业模型PHAST,FLACS等对已经发生的事故进行重现,展示在当时的事故泄露条件下泄漏气体的影响范围(包括死亡区,重伤区和影响区),并研究大气扩散条件对泄漏气体扩散范围和浓度分布的影响。但使用数值模型分析的缺点在于必须知道泄漏源的源强(泄露速率)以及泄露形式(爆炸泄露/孔径泄露等),结合气象参数和传质扩散方程进行模拟,模型复杂,计算耗时长,不能用于事故状态下的实时或者快速预测。At present, the accident consequence analysis methods commonly used in the world mainly include the use of different types of numerical models (Gaussian plume model, computational fluid dynamics model (CFD) and commercial models PHAST, FLACS, etc. to reproduce the accidents that have occurred, as shown in The scope of influence of the leaked gas under the conditions of the accident leak at that time (including the death zone, serious injury zone and impact zone), and the influence of atmospheric diffusion conditions on the diffusion range and concentration distribution of the leaked gas. But the disadvantage of using numerical model analysis is that the leak must be known The source strength (leakage rate) and leakage form (explosion leakage/aperture leakage, etc.) of the source are simulated in combination with meteorological parameters and mass transfer and diffusion equations. The model is complex and the calculation takes a long time, so it cannot be used for real-time or rapid prediction under accident conditions.
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种化学品泄漏快速预测预警应急响应决策方法,对工业园区进行风险分析,泄露情景模拟,适量补充并优化园区现有的有毒有害气体传感器系统,将园区的有毒气体报警系统与气体扩散预测分析相结合,为事故应急响应决策提供技术支持。In order to overcome the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a decision-making method for rapid prediction, early warning, and emergency response of chemical leakage, which can conduct risk analysis on industrial parks, simulate leakage scenarios, and appropriately supplement and optimize the existing toxic and harmful gases in the park. The sensor system combines the toxic gas alarm system in the park with gas diffusion prediction and analysis to provide technical support for accident emergency response decision-making.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种化学品泄漏快速预测预警应急响应决策方法,包括风险因素识别、情景数值模拟、模拟结果筛选、神经网络训练以及训练结果与传感器系统集成共五个阶段,其中:A decision-making method for rapid prediction, early warning, and emergency response of chemical leakage, including five stages of risk factor identification, scenario numerical simulation, simulation result screening, neural network training, and integration of training results and sensor systems, in which:
风险因素识别包括:识别化工园区的风险因素,量化各个风险要素并根据识别的风险要素及其取值范围,合理取值并组合各种可能发生的泄露情景;Identification of risk factors includes: identification of risk factors in chemical industrial parks, quantification of each risk factor, and rational selection and combination of various possible leakage scenarios based on the identified risk factors and their value ranges;
情景数值模拟阶段包括:将园区风险因素识别步骤中组成的所有可能发生的泄露情景进行模拟,以获得不同泄露情景下泄露气体的影响范围;The scenario numerical simulation stage includes: simulating all possible leakage scenarios formed in the park risk factor identification step to obtain the influence range of leaked gas under different leakage scenarios;
模拟结果筛选包括:Simulation result screening includes:
对一种包括4个气体传感器的布局方案中的关键参数进行优化,利用模拟得到的泄露气体浓度分布进行简单优化,得到最适传感器布局;The key parameters in a layout plan including 4 gas sensors are optimized, and the leaked gas concentration distribution obtained by simulation is used for simple optimization to obtain the most suitable sensor layout;
根据确定的传感器布局方案,提取在传感器布局可测量风向范围内的虚拟探测数据以及与之匹配的环境敏感点泄漏气体扩散数据,按照神经网络的训练逻辑准备训练数据和校验数据;According to the determined sensor layout scheme, extract the virtual detection data within the measurable wind direction range of the sensor layout and the matching leakage gas diffusion data of environmentally sensitive points, and prepare training data and verification data according to the training logic of the neural network;
神经网络训练步骤包括:Neural network training steps include:
建立用于函数拟合的前向神经网络,将准备好的训练数据作为神经网络训练的输入输出,计算网络参数;Establish a forward neural network for function fitting, use the prepared training data as the input and output of neural network training, and calculate network parameters;
将检验数据输入部分输入神经网络,结果部分与神经网络预测结果对比,评估预测精度;Input the test data input part into the neural network, and compare the result part with the prediction result of the neural network to evaluate the prediction accuracy;
神经网络与传感器和园区控制系统集成步骤:Steps to integrate neural network with sensors and park control system:
将各个风险源的模拟分析以及训练结果与风险源和环境敏感点的地理位置信息以数据库和调用程序的形式结合,并提供与传感器系统的数据接口,实现从事故发生—传感器报警—模型快速预测—辅助决策的工作流程。Combine the simulation analysis and training results of each risk source with the geographical location information of risk sources and environmental sensitive points in the form of database and call program, and provide a data interface with the sensor system to realize rapid prediction from accident occurrence-sensor alarm-model - Aided decision-making workflow.
所述园区风险识别部分由以下步骤组成:The park risk identification part consists of the following steps:
步骤一、利用风险评估识别风险因子及事故情景因素并判定可能发生的各类泄漏情景的必备要素,包括风险要素和事故情景要素。这些要素包括并不限于风险物质种类(有毒/易燃的气体或易挥发液体)、储量/用量、储存位置(空间坐标)、储存形式(压力,温度,设备)、风速、湿度、温度、大气稳定度、周边环境敏感点位置(空间坐标)等。Step 1. Use risk assessment to identify risk factors and accident scenario factors and determine the necessary elements of various possible leakage scenarios, including risk elements and accident scenario elements. These elements include but are not limited to the type of risk substances (toxic/flammable gas or volatile liquid), storage/amount, storage location (spatial coordinates), storage form (pressure, temperature, equipment), wind speed, humidity, temperature, atmosphere Stability, the location of sensitive points in the surrounding environment (spatial coordinates), etc.
步骤二、分别确定各个风险因子以及事故情境因素的取值范围(针对连续变量),在各个因素的取值范围内分别以一定步长划分数值序列(步长不得超过该因素取值范围的10%),最后将不同的风险因子/事故情景因素的各个取值组合成大量的可能发生的泄露情景。如共有n种风险因素,各个风险因素有Ni种取值(Ni≥1,整数),则共有种泄露情景。Step 2. Determine the value range of each risk factor and accident situation factor (for continuous variables), and divide the numerical sequence with a certain step size within the value range of each factor (the step size must not exceed 10% of the value range of the factor). %), and finally combine the values of different risk factors/accident scenario factors into a large number of possible leakage scenarios. If there are n risk factors in total, and each risk factor has N i values (N i ≥ 1, integer), then there are a leak scenario.
所述情景数值模拟阶段使用的数值模型包括:高斯及类高斯扩散模型(Gaussian Plume Model)、计算流体力学(CFD)模型以及PHAST、FLACS、SLAB、ALOHA、HGSYSTEM等整合模型。最后得到J种泄露情景模拟结果。The numerical models used in the numerical simulation stage of the scenario include: Gaussian and Gaussian-like diffusion models (Gaussian Plume Model), computational fluid dynamics (CFD) models, and integrated models such as PHAST, FLACS, SLAB, ALOHA, and HGSYSTEM. Finally, the simulation results of J leakage scenarios are obtained.
所述模拟结果筛选步骤需要对一组4个传感器进行布局优化,且4个传感器采用正多边形结构,顺序编号为1~4,相邻编号传感器的间距相等,优化步骤如下:The simulation result screening step needs to optimize the layout of a group of 4 sensors, and the 4 sensors adopt a regular polygonal structure, the sequence numbers are 1-4, and the distances between adjacent numbered sensors are equal. The optimization steps are as follows:
步骤一、根据泄漏源的位置以及园区布局,传感器的检测限,确定基本布局参数L1,d和α的取值范围。其中L1为1号传感器距离泄漏源的距离,d为传感器间距,α为1-2和1-4传感器夹角的1/2.Step 1: Determine the value ranges of the basic layout parameters L 1 , d and α according to the location of the leakage source, the layout of the park, and the detection limit of the sensor. Among them, L1 is the distance between No. 1 sensor and the leakage source, d is the distance between sensors, and α is 1/2 of the angle between 1-2 and 1-4 sensors.
步骤二、根据风频信息确定主导风向,传感器对称布置在主导风向下风向上,实际风向与主导风向夹角为β。并取一个较大值β0做为优化区间,将其离散为实际风向序列(β1,β2,…,βM),序列长度为M。(一般取β0=50°,将区间[-50°,50°]离散为间隔1°的风向序列)Step 2: Determine the prevailing wind direction according to the wind frequency information, the sensors are arranged symmetrically in the downwind direction of the prevailing wind, and the angle between the actual wind direction and the prevailing wind direction is β. And take a larger value β 0 as the optimization interval, discretize it into the actual wind direction sequence (β 1 ,β 2 ,…,β M ), the sequence length is M. (Generally take β 0 =50°, and discretize the interval [-50°, 50°] into a wind direction sequence with an interval of 1°)
步骤三、对布局参数L1,d,α在取值范围内离散成参数序列,长度分别为P1,P2,P3,组成种布局方案。Step 3. Discretize the layout parameters L1, d, and α into parameter sequences within the value range, with lengths P 1 , P 2 , and P 3 , consisting of layout scheme.
步骤四、对第k种布局方案(k=1,2,…,K)使用数据筛选算法,针对第j种情景模拟结果(j=1,2,…,J),筛选出该布局方案在风向为βm(m=1,2,…,M)时的有效布局数目 Step 4: Use the data screening algorithm for the kth layout scheme (k=1,2,...,K), and filter out the layout scheme in The number of effective layouts when the wind direction is β m (m=1,2,…,M)
步骤五、对第k种布局方案(k=1,2,…,K)计算不同风向βm(m=1,2,…,M)时的情景适用率记录满足m=1,2,,…,M的最大风向范围Wk,取满足{max(Wk),k=1,2,…,K}的布局为最优化布局。Step 5. Calculate the scenario applicability rate of different wind directions β m (m=1,2,...,M) for the kth layout scheme (k=1,2,...,K) records meet The maximum wind direction range W k of m=1,2,...,M, the layout satisfying {max(W k ),k=1,2,...,K} is taken as the optimal layout.
所述模拟结果筛选步骤中判断有效布局的标准为:对于任意传感器布局,对特定风向下的每种泄漏情景,4个传感器中有3个或3个以上被烟羽覆盖则称该布局为在该风向和泄露情景条件下的有效布局。The criterion for judging the effective layout in the simulation result screening step is: for any sensor layout, for each leakage scenario in a specific wind direction, if 3 or more of the 4 sensors are covered by the plume, the layout is said to be in the air. Effective layout for this wind direction and leak scenario.
所属模拟结果筛选步骤中,情景适用率为(m=1,2,…,Mk=1,2,…,K)。In the screening step of the simulation results, the scenario applicability rate is (m=1,2,...,Mk=1,2,...,K).
所述模拟结果数据筛选部分包含以下筛选算法:The simulation result data screening part includes the following screening algorithms:
步骤一、检查传感器布局参数L1,d,α,实际风向β,下风向敏感源位置(L2,Y2)以及泄露情景序号J等是否符合要求Step 1. Check whether the sensor layout parameters L1, d, α, the actual wind direction β, the position of the sensitive source in the downwind direction (L2, Y2) and the serial number J of the leakage scenario meet the requirements
步骤二、对第j个泄露情景(j=1,2,…,J)模拟结果的气体扩散距离,浓度分布,扩散时间和烟羽宽度进行插值,确定筛选起始点Step 2. Interpolate the gas diffusion distance, concentration distribution, diffusion time and plume width of the simulation results of the jth leakage scenario (j=1,2,...,J), and determine the starting point of screening
步骤三、计算参数γ,θ2,θ4,W1,和W2,其中γ为2,4号传感器以泄漏源为顶点和主导风向夹角,θ2,θ4为2、4号传感器以泄漏源为顶点和实际风向的夹角,W1为环境敏感点距离烟羽中心线的垂直距离,W2为环境敏感点处的烟羽半宽Step 3. Calculate parameters γ, θ 2 , θ 4 , W 1 , and W 2 , where γ is the angle between sensors 2 and 4 with the leakage source as the vertex and the dominant wind direction, θ 2 and θ 4 are sensors 2 and 4 Taking the leakage source as the angle between the vertex and the actual wind direction, W 1 is the vertical distance from the environmental sensitive point to the plume centerline, W 2 is the half-width of the plume at the environmentally sensitive point
步骤四、检查传感器布局在该泄露情景和实际风向下是否为有效布局,若是,继续;若不是,跳过并记录此泄露情景,继续步骤二Step 4. Check whether the sensor layout is effective in the leakage scenario and the actual wind direction, if yes, continue; if not, skip and record the leakage scenario, and continue to step 2
步骤五、提取3个有效传感器位置的污染源浓度和扩散时间。Step 5: Extract the pollution source concentration and diffusion time of the three effective sensor locations.
步骤六、检查泄露气体是否能够扩散至下风向环境敏感点,即计算环境敏感点在第j个泄露情景中的位置参数Qj。如果能,继续步骤七,如果不能,记录此序号并继续步骤二。Step 6: Check whether the leaked gas can diffuse to the environmental sensitive point in the downwind direction, that is, calculate the location parameter Q j of the environmentally sensitive point in the jth leakage scenario. If yes, proceed to step seven, if not, record the serial number and proceed to step two.
步骤七、提取下风向环境敏感点处有害气体的浓度和扩散时间。Step 7: Extract the concentration and diffusion time of the harmful gas at the environmental sensitive point in the downwind direction.
步骤八、将所有提取到的传感器位置浓度和时间值以及下风向敏感点浓度和时间值整理并保存。Step 8: Arranging and saving all extracted sensor position concentration and time values and downwind sensitive point concentration and time values.
所述的判断泄漏气体是否能扩散至下风向环境敏感点的方法为:计算环境敏感点在气体泄露烟羽中的位置参数Qj=W1/W2,若Qj≤1,则环境敏感点受到泄漏气体扩散影响,反之则不受影响。The method for judging whether the leaked gas can diffuse to the environmentally sensitive point in the downwind direction is: calculate the position parameter Q j =W 1 /W 2 of the environmentally sensitive point in the gas leakage plume, if Q j ≤ 1, the environment is sensitive Points are affected by the diffusion of leaked gas, and vice versa.
所述神经网络训练部分实现过程如下:The implementation process of the neural network training part is as follows:
步骤一、确定网络输入,以现场可得的参数作为输入,包括储存压力(p),风速(v),风向(β),温度(T),湿度(h),大气稳定度(S),风险源下风向3台气体传感器的有效浓度测量值(c1,c2,c3)和报警时间(t1,t2,t3),下风向敏感点的位置(L2,Y2)Step 1. Determine the network input, using parameters available on site as input, including storage pressure (p), wind speed (v), wind direction (β), temperature (T), humidity (h), atmospheric stability (S), The effective concentration measurement values (c 1 , c 2 , c 3 ) and alarm time (t 1 , t 2 , t 3 ) of the three gas sensors in the downwind direction of the risk source, and the positions of the downwind sensitive points (L 2 , Y 2 )
步骤二、确定网络输出,以下风向环境敏感点处有害气体到达的浓度(c)和时间(t)作为输出。Step 2: Determine the network output, the concentration (c) and time (t) of the harmful gas arriving at the environmental sensitive point in the downwind direction are taken as the output.
步骤三、网络内部结构确定,使用前向神经网络(BP网络),包含一个非线性隐含层(sigmoid传递函数)和一个线性输出层(linear传递函数),网络不包含反馈回路。Step 3: Determine the internal structure of the network, using a feed-forward neural network (BP network), including a nonlinear hidden layer (sigmoid transfer function) and a linear output layer (linear transfer function), and the network does not include a feedback loop.
步骤四、按照输入输出要求,使用数据筛选算法准备输入和输出数据矩阵以及冗余的验证数据。(矩阵的列为输入输出各要素,行为不同情景的输入输出数据)Step 4. According to the input and output requirements, use the data screening algorithm to prepare the input and output data matrix and redundant verification data. (The columns of the matrix are the input and output elements, and the input and output data of different scenarios)
步骤五、使用MATLAB神经网络工具箱,按照单次统一训练方法对神经网络使用输入输出数据训练,得到网络参数。Step 5. Use the MATLAB neural network toolbox to train the neural network using input and output data according to a single unified training method to obtain network parameters.
步骤六、使用冗余输入数据作为神经网络输入,比较网络输出和冗余输出的差异,评估预测精度。Step 6. Use the redundant input data as the input of the neural network, compare the difference between the network output and the redundant output, and evaluate the prediction accuracy.
所述神经网络与传感器系统集成部分包括如下步骤:The neural network and sensor system integration part includes the following steps:
步骤一、建立单一风险源与主导风向下风向的环境敏感点的区域地图。Step 1. Establish a regional map of a single risk source and environmentally sensitive points in the leeward direction of the dominant wind.
步骤二、对某单一风险源进行风险分析,识别可能的泄露情景并对泄露情景进行模拟。Step 2: Carry out risk analysis on a single risk source, identify possible leakage scenarios and simulate the leakage scenarios.
步骤三、执行数据筛选步骤的传感器布局优化,获得该传感器布局在主导风向下风向的最大适用角度。Step 3: Perform sensor layout optimization in the data screening step to obtain the maximum applicable angle of the sensor layout in the leeward direction of the prevailing wind.
步骤四、对该风险源主导风向下风向最大使用角度范围内的所有环境敏感点进行数据筛选,得到一组神经网络训练的输入输出矩阵。Step 4: Perform data screening on all environmental sensitive points within the maximum use angle range of the dominant wind downwind of the risk source, and obtain a set of input and output matrices for neural network training.
步骤五、使用数据筛选得到的神经网络输入输出矩阵进行训练和预测精度评估。Step 5: Use the input and output matrix of the neural network obtained through data screening for training and evaluation of prediction accuracy.
步骤六、将训练得到的神经网络参数制作成能够自动调用的应用程序,使传感器的DCS数据能够通过数据接口采集并使用应用程序计算。Step 6: Making the trained neural network parameters into an application program that can be called automatically, so that the DCS data of the sensor can be collected through the data interface and calculated using the application program.
步骤七、真实事故发生时,传感器报警—启动预制好的应用程序—预测泄露扩散对环境敏感点的影响(包括是否影响环境敏感点或者泄漏气体到达环境敏感点的时间和浓度)—决策人员判断是否需要疏散。Step 7. When a real accident occurs, the sensor alarms—starts the prefabricated application—predicts the impact of leakage diffusion on environmentally sensitive points (including whether it affects the environment sensitive point or the time and concentration of the leaked gas reaching the environment sensitive point)—judgments by decision makers Whether evacuation is required.
与现有技术相比,本发明提出了一种处理有毒有害气体工厂的传感器布局的简单优化方法,并引进使用前期风险识别,数值模拟以及神经网络训练的快速预测方法,以便在事故发生时能够及时有效地预测有毒有害气体的扩散范围,为园区周围居民区人员疏散和保护提供决策支持。在园区现有有毒有害气体传感器的基础上,针对园区生产工艺以及周边环境,完成对园区生产过程中风险识别,泄露情景模拟,完善传感器布局并进行神经网络训练,克服了有毒气体泄漏事故发生时报警信息不足以支持事故应急响应的不足,保证了方法的适用性和准确性。Compared with the prior art, the present invention proposes a simple optimization method for the sensor layout of factories dealing with toxic and harmful gases, and introduces a rapid prediction method using early risk identification, numerical simulation and neural network training, so that when an accident occurs, it can Timely and effectively predict the diffusion range of toxic and harmful gases, and provide decision support for the evacuation and protection of people in residential areas around the park. On the basis of the existing toxic and harmful gas sensors in the park, according to the production process and the surrounding environment of the park, the risk identification in the production process of the park, the simulation of leakage scenarios, the improvement of the sensor layout and the training of the neural network have been completed to overcome the toxic gas leakage accident. The insufficiency of the alarm information to support the emergency response to the accident ensures the applicability and accuracy of the method.
附图说明Description of drawings
图1为本发明一个实施例方法的流程图。Fig. 1 is a flowchart of a method of an embodiment of the present invention.
图2为本发明一个实施例方法应用情景示意图。Fig. 2 is a schematic diagram of an application scenario of a method according to an embodiment of the present invention.
图3为本发明一个实施例方法得到的传感器布局优化曲线。Fig. 3 is a sensor layout optimization curve obtained by a method of an embodiment of the present invention.
图4为本发明一个实施例方法用于数据筛选的基本算法Fig. 4 is the basic algorithm used for data screening by an embodiment method of the present invention
图5为本发明一个实施例方法应用的神经网络结构图。FIG. 5 is a structural diagram of a neural network used in a method according to an embodiment of the present invention.
图6为本发明一个实施例方法应用的神经网络冗余数据验证。Fig. 6 is a verification of redundant data of the neural network applied by the method of an embodiment of the present invention.
图7为本发明一个实施例方法应用的神经网络对敏感区域是否受影响的判断。Fig. 7 is a judgment of whether the sensitive area is affected by the neural network applied in the method of an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例详细说明本发明的实施方式。The implementation of the present invention will be described in detail below in conjunction with the drawings and examples.
图1是根据本发明的一个实施例的方法的流程图,根据本发明的一个实施例的方法包括:Fig. 1 is the flowchart of the method according to one embodiment of the present invention, the method according to one embodiment of the present invention comprises:
—风险因素识别步骤-Risk factor identification steps
利用风险评估识别风险因子及事故情景因素并判定可能发生的各类泄漏情景的必备要素,包括风险要素和事故情景要素。这些要素包括并不限于风险物质种类(有毒/易燃的气体或易挥发液体)、储量/用量、储存位置(空间坐标)、储存形式(压力,温度,设备)、风速、湿度、温度、大气稳定度、周边环境敏感点位置(空间坐标)等。然后分别确定各个风险因子以及事故情境因素的取值范围(针对连续变量),在各个因素的取值范围内分别以一定步长划分数值序列(步长不得超过该因素取值范围的10%),最后将不同的风险因子/事故情景因素的各个取值组合成大量的可能发生的泄露情景。如共有n种风险因素,各个风险因素有Ni种取值(Ni≥1,整数),则共有种泄露情景。Use risk assessment to identify risk factors and accident scenario factors and determine the necessary elements of various possible leakage scenarios, including risk factors and accident scenario elements. These elements include but are not limited to the type of risk substances (toxic/flammable gas or volatile liquid), storage/amount, storage location (spatial coordinates), storage form (pressure, temperature, equipment), wind speed, humidity, temperature, atmosphere Stability, the location of sensitive points in the surrounding environment (spatial coordinates), etc. Then determine the value ranges of each risk factor and accident situation factor (for continuous variables), and divide the numerical sequence with a certain step size within the value range of each factor (the step size must not exceed 10% of the value range of the factor) , and finally combine the values of different risk factors/accident scenario factors into a large number of possible leakage scenarios. If there are n risk factors in total, and each risk factor has N i values (N i ≥ 1, integer), then there are a leak scenario.
—泄露情景模拟步骤—Simulation steps of leakage scenario
该步骤使用传统气体扩散模型,对前一步骤中识别出的各类泄露情景进行数值模拟,取得不同情况下的有毒有害气体扩散数据及分布情况。可用的模型包括高斯及类高斯扩散模型(Gaussian Plume Model)、计算流体力学(CFD)模型以及PHAST、FLACS、SLAB、ALOHA、HGSYSTEM等。In this step, the traditional gas diffusion model is used to numerically simulate the various leakage scenarios identified in the previous step to obtain the diffusion data and distribution of toxic and harmful gases under different conditions. Available models include Gaussian and Gaussian-like diffusion models (Gaussian Plume Model), computational fluid dynamics (CFD) models, and PHAST, FLACS, SLAB, ALOHA, HGSYSTEM, etc.
—有效数据筛选步骤— Valid data screening steps
图2所示为有效数据筛选步骤的风险源—烟羽—传感器—下风向敏感点的位置关系图。模拟结果筛选步骤需要对一组4个传感器进行布局优化,且4个传感器采用正多边形结构,顺序编号为1~4,相邻编号传感器的间距相等。优化步骤如下:Figure 2 shows the location relationship diagram of the risk source-plume-sensor-downwind sensitive point in the effective data screening step. The simulation result screening step needs to optimize the layout of a group of 4 sensors, and the 4 sensors adopt a regular polygonal structure, numbered sequentially from 1 to 4, and the distance between adjacent numbered sensors is equal. The optimization steps are as follows:
步骤一、根据泄漏源的位置以及园区布局,传感器的检测限,确定基本布局参数L1,d和α的取值范围。其中L1为1号传感器距离泄漏源的距离,d为传感器间距,α为1-2和1-4传感器夹角的1/2.Step 1: Determine the value ranges of the basic layout parameters L 1 , d and α according to the location of the leakage source, the layout of the park, and the detection limit of the sensor. Among them, L1 is the distance between No. 1 sensor and the leakage source, d is the distance between sensors, and α is 1/2 of the angle between 1-2 and 1-4 sensors.
步骤二、根据风频信息确定主导风向,传感器对称布置在主导风向下风向上,实际风向与主导风向夹角为β。并取一个较大值β0做为优化区间,将其离散为实际风向序列(β1,β2,…,βM),序列长度为M。(一般取β0=50°,将区间[-50°,50°]离散为间隔1°的风向序列)Step 2: Determine the prevailing wind direction according to the wind frequency information, the sensors are arranged symmetrically in the downwind direction of the prevailing wind, and the angle between the actual wind direction and the prevailing wind direction is β. And take a larger value β 0 as the optimization interval, discretize it into the actual wind direction sequence (β 1 ,β 2 ,…,β M ), the sequence length is M. (Generally take β 0 =50°, and discretize the interval [-50°, 50°] into a wind direction sequence with an interval of 1°)
步骤三、对布局参数L1,d,α在取值范围内离散成参数序列,长度分别为P1,P2,P3,组成种布局方案。Step 3. Discretize the layout parameters L1, d, and α into parameter sequences within the value range, with lengths P 1 , P 2 , and P 3 , consisting of layout scheme.
步骤四、对第k种布局方案(k=1,2,…,K)使用数据筛选算法,针对第j种情景模拟结果(j=1,2,…,J),筛选出该布局方案在风向为βm(m=1,2,…,M)时的有效布局数目其中有效布局定义为:对于任意传感器布局,对特定风向下的每种泄漏情景,4个传感器中有3个或3个以上被烟羽覆盖(即能探测到烟羽浓度)的布局方案。Step 4: Use the data screening algorithm for the kth layout scheme (k=1,2,...,K), and filter out the layout scheme in The number of effective layouts when the wind direction is β m (m=1,2,…,M) The effective layout is defined as: for any sensor layout, for each leakage scenario in a specific wind direction, three or more of the four sensors are covered by the plume (that is, the plume concentration can be detected).
步骤五、对第k种布局方案(k=1,2,…,K)计算不同风向βm(m=1,2,…,M)时的情景适用率(m=1,2,…,M k=1,2,…,K),记录满足m=1,2,,…,M的最大风向范围Wk,取满足{max(Wk),k=1,2,…,K}的布局为最优化布局。Step 5. Calculate the scenario applicability rate of different wind directions β m (m=1,2,...,M) for the kth layout scheme (k=1,2,...,K) (m=1,2,…,M k=1,2,…,K), records satisfy The maximum wind direction range W k of m=1,2,...,M, the layout satisfying {max(W k ),k=1,2,...,K} is taken as the optimal layout.
图3为由L1=[40,60,80]m,d=[20,30,40]m和α=[30°,45°,60°]的取值组成的27中布局方案的布局优化结果(图3d)。在情景使用率为95%的条件下,传感器布局方案L1=40m,d=20m和α=60°为最优化布局,该布局的最大风向适用范围为﹣20°~20°。确定传感器最优化布局之后,使用图4所示的筛选算法进行模拟结果筛选:Figure 3 is the layout of 27 layout schemes consisting of the values of L 1 =[40,60,80]m, d=[20,30,40]m and α=[30°,45°,60°] Optimization results (Fig. 3d). Under the condition that the scenario usage rate is 95%, the sensor layout scheme L 1 =40m, d=20m and α=60° is the optimal layout, and the maximum wind direction applicable range of this layout is -20°~20°. After determining the optimal sensor layout, use the screening algorithm shown in Figure 4 to screen the simulation results:
步骤一、检查传感器布局参数L1,d,α,实际风向β,下风向敏感源位置(L2,Y2)以及泄露情景序号j等是否符合要求Step 1. Check whether the sensor layout parameters L1, d, α, the actual wind direction β, the position of the sensitive source in the downwind direction (L2, Y2) and the leakage scenario number j meet the requirements
步骤二、对第j个泄露情景(j=1,2,…,J)模拟结果的气体扩散距离,浓度分布,扩散时间和烟羽宽度进行插值,确定筛选起始点Step 2. Interpolate the gas diffusion distance, concentration distribution, diffusion time and plume width of the simulation results of the jth leakage scenario (j=1,2,...,J), and determine the starting point of screening
步骤三、计算参数γ,θ2,θ4,W1,和W2,其中γ为2,4号传感器以泄漏源为顶点和主导风向夹角,θ2,θ4为2、4号传感器以泄漏源为顶点和实际风向的夹角,W1为环境敏感点距离烟羽中心线的垂直距离,W2为环境敏感点处的烟羽半宽Step 3. Calculate parameters γ, θ 2 , θ 4 , W 1 , and W 2 , where γ is the angle between sensors 2 and 4 with the leakage source as the vertex and the dominant wind direction, θ 2 and θ 4 are sensors 2 and 4 Taking the leakage source as the angle between the vertex and the actual wind direction, W 1 is the vertical distance from the environmental sensitive point to the plume centerline, W 2 is the half-width of the plume at the environmentally sensitive point
步骤四、检查传感器布局在该泄露情景和实际风向下是否为有效布局(有效传感器数目大于3),若是,继续;若不是,跳过并记录此泄露情景,继续步骤二Step 4. Check whether the sensor layout is effective in the leakage scenario and the actual wind direction (the number of effective sensors is greater than 3), if so, continue; if not, skip and record the leakage scenario, and continue to step 2
步骤五、提取3个有效传感器位置的污染源浓度和扩散时间。Step 5: Extract the pollution source concentration and diffusion time of the three effective sensor locations.
步骤六、检查泄露气体是否能够扩散至下风向环境敏感点,即计算环境敏感点在第j个泄露情景中的位置参数Qj=W1/W2。如果能,即Qj≤1,继续步骤七,如果不能,即Qj>1,记录此序号并继续步骤二。Step 6: Check whether the leaked gas can spread to the downwind environmentally sensitive point, that is, calculate the location parameter Q j =W 1 /W 2 of the environmentally sensitive point in the jth leakage scenario. If yes, ie Q j ≤ 1, go to step 7; if not, ie Q j > 1, record the sequence number and go to step 2.
步骤七、提取下风向环境敏感点处有害气体的浓度和扩散时间。Step 7: Extract the concentration and diffusion time of the harmful gas at the environmental sensitive point in the downwind direction.
步骤八、将所有提取到的传感器位置浓度和时间值以及下风向敏感点浓度和时间值整理并保存。Step 8: Arranging and saving all extracted sensor position concentration and time values and downwind sensitive point concentration and time values.
—神经网络训练步骤—Neural network training steps
神经网络训练部分实现过程如下:The implementation process of the neural network training part is as follows:
步骤一、确定网络输入,以现场可得的参数作为输入,包括储存压力(p),风速(v),风向(β),温度(T),湿度(h),大气稳定度(S),风险源下风向3台气体传感器的有效浓度测量值(c1,c2,c3)和报警时间(t1,t2,t3),下风向敏感点的位置(L2,Y2)Step 1. Determine the network input, using parameters available on site as input, including storage pressure (p), wind speed (v), wind direction (β), temperature (T), humidity (h), atmospheric stability (S), The effective concentration measurement values (c 1 , c 2 , c 3 ) and alarm time (t 1 , t 2 , t 3 ) of the three gas sensors in the downwind direction of the risk source, and the positions of the downwind sensitive points (L 2 , Y 2 )
步骤二、确定网络输出,以下风向环境敏感点处有害气体到达的浓度(c)和时间(t)作为输出。Step 2: Determine the network output, the concentration (c) and time (t) of the harmful gas arriving at the environmental sensitive point in the downwind direction are taken as the output.
步骤三、网络内部结构确定,如图5所示,使用前向神经网络(BP网络),包含一个非线性隐含层(sigmoid传递函数)和一个线性输出层(linear传递函数),网络不包含反馈回路。Step 3: Determine the internal structure of the network, as shown in Figure 5, use the feedforward neural network (BP network), including a nonlinear hidden layer (sigmoid transfer function) and a linear output layer (linear transfer function), the network does not contain feedback loop.
步骤四、按照输入输出要求,使用数据筛选算法准备输入和输出数据矩阵以及冗余的验证数据。(矩阵的列为输入输出各要素,行为不同情景的输入输出数据)Step 4. According to the input and output requirements, use the data screening algorithm to prepare the input and output data matrix and redundant verification data. (The columns of the matrix are the input and output elements, and the input and output data of different scenarios)
步骤五、使用MATLAB神经网络工具箱,按照单次统一训练方法对神经网络使用输入输出数据训练,得到网络参数。Step 5. Use the MATLAB neural network toolbox to train the neural network using input and output data according to a single unified training method to obtain network parameters.
步骤六、使用冗余输入数据作为神经网络输入,比较网络输出和冗余输出的差异,评估预测精度。如图6显示了一个氯气泄露实施例的神经网络预测情况。图中所有子图的纵坐标均为特定泄露情境下,根据3个传感器报警信息、天气条件以及下风向敏感区域的位置,使用神经网络对下风向敏感区域的Step 6. Use the redundant input data as the input of the neural network, compare the difference between the network output and the redundant output, and evaluate the prediction accuracy. Figure 6 shows the neural network prediction situation of a chlorine gas leakage embodiment. The vertical coordinates of all the subgraphs in the figure are under the specific leakage situation, according to the alarm information of the three sensors, weather conditions and the location of the sensitive area in the downwind direction, the neural network is used to analyze the location of the sensitive area in the downwind direction.
(a)氯气的浓度(ppm)(a) Chlorine concentration (ppm)
(b)氯气到达敏感位置的时间(s)(b) The time (s) for chlorine gas to reach the sensitive location
(c)敏感位置烟羽的半宽W2(m)(c) The half-width W2 of the plume at the sensitive position (m)
(d)敏感位置距离实际风向的垂直距离W1(m)(d) The vertical distance W1 (m) between the sensitive position and the actual wind direction
而图6a~6d的横坐标则是Phast模拟的结果,理论上,图中散点的拟合结果应为直线y=x,实际结果显示,只有氯气浓度的神经网络预测结果相比Phast模拟结果偏小(斜率约为0.93),氯气到达时间、W1和W2的预测结果都非常精确。The abscissas in Figures 6a to 6d are the results of Phast simulation. In theory, the fitting result of the scattered points in the figure should be a straight line y=x. The actual results show that only the neural network prediction results of chlorine concentration are compared with the Phast simulation results. On the small side (slope about 0.93), the chlorine arrival time, W1 and W2 predictions are very accurate.
利用图6c和6d得到的W1和W2的值可以预测下风向敏感区域是否受氯气泄漏的威胁,如图7所示,横坐标为用到的泄漏情景的数量:Using the values of W1 and W2 obtained in Figures 6c and 6d can predict whether the downwind sensitive area is threatened by chlorine gas leakage, as shown in Figure 7, the abscissa is the number of leakage scenarios used:
(a)神经网络浓度预测值与Phast模拟值的相对误差(a) Relative error between neural network concentration prediction value and Phast simulation value
(b)根据图6中神经网络预测的W1和W2计算出的W1/W2比值(b) W1/W2 ratio calculated from W1 and W2 predicted by the neural network in Fig. 6
(c)根据Phast模拟以及烟羽中选点得到的W1/W2比值(c) W1/W2 ratio based on Phast simulation and selected points in the plume
(d)将预测W1/W2和理论W1/W2值取整后相减得到的逻辑结果(d) The logical result obtained by subtracting the predicted W1/W2 and theoretical W1/W2 values after rounding
根据(a)可以发现神经网络预测值与理论值相比的最大误差不超过30%,图7b和7c非常接近,其差别在7d中显示:在2780例泄露情景中,有2例泄露情景下风向敏感点理论上受到氯气泄露威胁,但神经网络预测的结果显示其没有受到威胁,称为“漏报”,漏报率为0.072%;另一方面,只有14例泄露情景中谢分享敏感点理论上没有受到威胁,但神经网络预测显示其受到了威胁,称为“误报”,误报率为0.504%。According to (a), it can be found that the maximum error between the predicted value of the neural network and the theoretical value does not exceed 30%. Figures 7b and 7c are very close, and the difference is shown in 7d: Among the 2780 leakage scenarios, there are 2 leakage scenarios Sensitive points in wind direction are theoretically threatened by chlorine gas leakage, but the results of neural network predictions show that they are not threatened, which is called "missing negative", with a false negative rate of 0.072%; In theory, it is not threatened, but the neural network prediction shows that it is threatened, which is called "false positive", and the false positive rate is 0.504%.
步骤七、将训练得到的神经网络参数制作成能够自动调用的应用程序,使传感器的DCS数据能够通过数据接口采集并使用应用程序计算。Step 7: Making the trained neural network parameters into an application program that can be called automatically, so that the DCS data of the sensor can be collected through the data interface and calculated using the application program.
步骤八、真实事故发生时,传感器报警—启动预制好的应用程序—预测泄露扩散对环境敏感点的影响(包括是否影响环境敏感点或者泄漏气体到达环境敏感点的时间和浓度)—决策人员判断是否需要疏散。Step 8. When a real accident occurs, the sensor alarms—starts the prefabricated application—predicts the impact of leakage diffusion on environmentally sensitive points (including whether it affects environmentally sensitive points or the time and concentration of leaked gas reaching environmentally sensitive points)—judgment by decision makers Whether evacuation is required.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410136961.5A CN103914622B (en) | 2014-04-04 | 2014-04-04 | A kind of chemical leakage fast prediction alarm emergency response decision-making method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410136961.5A CN103914622B (en) | 2014-04-04 | 2014-04-04 | A kind of chemical leakage fast prediction alarm emergency response decision-making method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103914622A true CN103914622A (en) | 2014-07-09 |
CN103914622B CN103914622B (en) | 2017-07-07 |
Family
ID=51040298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410136961.5A Active CN103914622B (en) | 2014-04-04 | 2014-04-04 | A kind of chemical leakage fast prediction alarm emergency response decision-making method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103914622B (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104346657A (en) * | 2014-11-10 | 2015-02-11 | 张江华 | Optimal evacuation method and system for dangerous chemical leakage |
CN104376361A (en) * | 2014-10-15 | 2015-02-25 | 南京航空航天大学 | Nuclear accident source item inversion method based on BP neural network algorithm |
CN104680023A (en) * | 2015-03-12 | 2015-06-03 | 重庆科技学院 | Multi-objective-decision-based pumping unit parameter optimization method |
CN104680025A (en) * | 2015-03-12 | 2015-06-03 | 重庆科技学院 | Oil pumping unit parameter optimization method on basis of genetic algorithm extreme learning machine |
CN104792468A (en) * | 2015-04-07 | 2015-07-22 | 中国石油大学(华东) | Optimal locating method of gas detection alarms of oil refining device |
CN104792935A (en) * | 2015-03-20 | 2015-07-22 | 北京华泰诺安科技有限公司 | Cloud analysis system for nuclear biological and chemical threat |
CN104880494A (en) * | 2015-06-02 | 2015-09-02 | 大连市环境监测中心 | Environmental monitoring terminal and quick deployment system of environmental emergency monitoring |
CN104950708A (en) * | 2015-06-02 | 2015-09-30 | 大连市环境监测中心 | Aerial environment monitoring terminal and environmental emergency monitoring and deploying system |
CN106267620A (en) * | 2015-06-10 | 2017-01-04 | 张国基 | chemical leakage treatment vehicle |
CN106644284A (en) * | 2016-12-16 | 2017-05-10 | 北京伟瑞迪科技有限公司 | Automatic leakage monitoring and repairing system for chemical plant device |
CN106770930A (en) * | 2016-11-24 | 2017-05-31 | 北京蓝色星语科技有限公司 | A kind of use unmanned plane carries out the method and system of hazardous material detection |
CN107607671A (en) * | 2017-08-24 | 2018-01-19 | 慧感(上海)物联网科技有限公司 | A kind of gas leakage source localization method |
CN108091111A (en) * | 2017-11-20 | 2018-05-29 | 淮阴工学院 | A kind of oil truck oil and gas leakage intelligent early-warning system |
CN108596364A (en) * | 2018-03-29 | 2018-09-28 | 杭州电子科技大学 | A kind of chemical industrial park major hazard source dynamic early-warning method |
CN108733881A (en) * | 2018-04-13 | 2018-11-02 | 同济大学 | Cope with the processing method for the air pollution that happens suddenly in public building room |
CN108733893A (en) * | 2018-04-25 | 2018-11-02 | 同济大学 | The public building burst pollution of coupling depth learning method is traced to the source |
CN108932379A (en) * | 2018-06-26 | 2018-12-04 | 山东睿益环境技术有限公司 | A kind of evacuating personnel emergence treating method and its application |
CN109324155A (en) * | 2018-10-31 | 2019-02-12 | 中国石油天然气股份有限公司 | Refining device tail gas pollutant on-line monitoring data early warning method and device |
CN109737309A (en) * | 2019-01-09 | 2019-05-10 | 慧感(上海)物联网科技有限公司 | A kind of risk source based on risk identification leaks source tracing method and its system surely |
CN110046834A (en) * | 2019-05-13 | 2019-07-23 | 苏州大学 | Workplace pernicious gas health risk quantitative evaluating system and its appraisal procedure |
EP3378027A4 (en) * | 2015-11-19 | 2019-08-28 | Halliburton Energy Services, Inc. | Method and system for monitoring and predicting gas leak |
CN110472359A (en) * | 2019-08-21 | 2019-11-19 | 东北大学 | High-temperature fusion molten aluminum and water contact explositions based on numerical simulation technology prevent method for early warning |
CN110531030A (en) * | 2019-08-16 | 2019-12-03 | 北京慧辰资道资讯股份有限公司 | A kind of method and device based on the analysis of Internet of Things big data atmosphere pollution |
CN110674983A (en) * | 2019-09-05 | 2020-01-10 | 辽宁工程技术大学 | Working face gas early warning method based on copula function tail correlation analysis |
CN110874807A (en) * | 2018-09-03 | 2020-03-10 | 中国石油化工股份有限公司 | Inhalation poison leakage emergency response disposal card and use method and application thereof |
CN111105086A (en) * | 2019-12-16 | 2020-05-05 | 茂盟(上海)工程技术股份有限公司 | Visual layout system and method for cooling, heating and power load prediction |
CN111127279A (en) * | 2019-12-31 | 2020-05-08 | 中国科学院合肥物质科学研究院 | A nuclear emergency decision-making system, method and storage medium based on monitoring experiment database |
CN111144055A (en) * | 2019-12-27 | 2020-05-12 | 苏州大学 | Method, device and medium for determining toxic heavy gas leakage concentration distribution in urban environment |
CN111157680A (en) * | 2019-12-31 | 2020-05-15 | 北京辰安科技股份有限公司 | Leakage traceability method and device for indoor volatile substances |
US10663367B2 (en) | 2017-07-28 | 2020-05-26 | International Business Machines Corporation | Adaptive sensing for a gas leak detection |
CN111583067A (en) * | 2020-03-31 | 2020-08-25 | 西南交通大学 | A method and system for safety early warning and emergency decision-making in urban underground large space construction |
CN112270502A (en) * | 2020-11-17 | 2021-01-26 | 北京三维天地科技股份有限公司 | Environment emergency task cooperative disposal platform based on artificial intelligence technology |
CN112330082A (en) * | 2020-08-13 | 2021-02-05 | 青岛科技大学 | Intelligent quantitative risk assessment method based on dynamic mechanism model |
CN113095552A (en) * | 2021-03-29 | 2021-07-09 | 中国海洋石油集团有限公司 | Method and system for predicting volume of combustible gas cloud cluster leaked from ocean platform |
CN113159337A (en) * | 2021-04-08 | 2021-07-23 | 柳州东风容泰化工股份有限公司 | Emergency treatment method and device for o-chlorophenol leakage |
CN113330483A (en) * | 2019-09-18 | 2021-08-31 | 拜耳公司 | Predicting magnetic resonance imaging images by predictive models trained by supervised learning |
CN113468815A (en) * | 2021-07-12 | 2021-10-01 | 南京航空航天大学 | Liquid hazardous chemical substance volatilization concentration estimation method based on Gaussian diffusion model and deep neural network |
CN113624921A (en) * | 2021-08-04 | 2021-11-09 | 杭州谱育科技发展有限公司 | Multi-mode comprehensive pollution tracing method |
CN113821989A (en) * | 2020-06-18 | 2021-12-21 | 中国石油化工股份有限公司 | Emergency disposal simulation risk equipment modeling method and device and storage medium |
CN114001867A (en) * | 2021-10-19 | 2022-02-01 | 北京伟瑞迪科技有限公司 | Monitoring and coping method for gas leakage of park |
CN114023043A (en) * | 2021-10-13 | 2022-02-08 | 厦门理工学院 | Safety early warning method for leaked gas |
CN114241723A (en) * | 2021-12-30 | 2022-03-25 | 武汉市三藏科技有限责任公司 | An environmental monitoring and alarm device and method based on Gaussian atmospheric diffusion |
CN114263855A (en) * | 2021-11-19 | 2022-04-01 | 合肥工业大学 | Method for predicting leakage of natural gas transportation pipeline and application thereof |
WO2022126544A1 (en) * | 2020-12-17 | 2022-06-23 | 西门子(中国)有限公司 | Method and devices for determining pollution source, and computer-readable storage medium |
CN114792165A (en) * | 2022-05-06 | 2022-07-26 | 湖南五凌电力科技有限公司 | Method and device for early warning of gas concentration based on wavelet neural network |
CN115019482A (en) * | 2022-08-04 | 2022-09-06 | 武汉鼎业环保工程技术有限公司 | Dangerous gas itinerant early warning method and device based on big data |
CN115600643A (en) * | 2022-10-17 | 2023-01-13 | 中国科学技术大学(Cn) | A rapid prediction method and system for poisonous gas |
CN116403165A (en) * | 2023-06-05 | 2023-07-07 | 交通运输部水运科学研究所 | A method, device, and readable storage medium for emergency treatment of hazardous chemical leakage |
CN117172477A (en) * | 2023-09-05 | 2023-12-05 | 上海朗晖慧科技术有限公司 | Chemical product production monitoring management system and method based on big data |
CN117290639A (en) * | 2023-11-24 | 2023-12-26 | 深圳大学 | Method and system for positioning and detecting material leakage in phase-change energy storage tank |
CN117709845A (en) * | 2023-12-02 | 2024-03-15 | 国网浙江省电力有限公司 | Storage intelligent management and control system for distinguishing material properties |
CN117789422A (en) * | 2024-02-26 | 2024-03-29 | 江西依爱弘泰消防安全技术有限公司 | Combustible gas alarm control system and method |
EP4195091A4 (en) * | 2020-09-11 | 2024-04-03 | Siemens Ltd. China | Target available model-based environment prediction method and apparatus, program, and electronic device |
CN117959902A (en) * | 2024-04-01 | 2024-05-03 | 大连华邦化学有限公司 | Gas purification function early warning system and method based on data feedback |
CN118133709A (en) * | 2024-02-06 | 2024-06-04 | 同济大学 | Limited space hydrogen leakage detection and rapid positioning method based on hydrodynamic simulation |
WO2024124861A1 (en) * | 2022-12-14 | 2024-06-20 | 中国石油大学(华东) | Method and system for optimizing hydrogen detector spatial-arrangement solution on basis of risk assessment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0916000D0 (en) * | 2009-09-11 | 2009-10-28 | Selex Sensors & Airborne Sys | Sensing network and method |
CN102313793B (en) * | 2011-09-07 | 2014-03-05 | 中国环境科学研究院 | A monitoring system for multi-component gas pollutants in the air of a chemical industrial park |
-
2014
- 2014-04-04 CN CN201410136961.5A patent/CN103914622B/en active Active
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104376361A (en) * | 2014-10-15 | 2015-02-25 | 南京航空航天大学 | Nuclear accident source item inversion method based on BP neural network algorithm |
CN104346657A (en) * | 2014-11-10 | 2015-02-11 | 张江华 | Optimal evacuation method and system for dangerous chemical leakage |
CN104680023A (en) * | 2015-03-12 | 2015-06-03 | 重庆科技学院 | Multi-objective-decision-based pumping unit parameter optimization method |
CN104680025A (en) * | 2015-03-12 | 2015-06-03 | 重庆科技学院 | Oil pumping unit parameter optimization method on basis of genetic algorithm extreme learning machine |
CN104680023B (en) * | 2015-03-12 | 2017-08-29 | 重庆科技学院 | Oil pumper parameter optimization method based on multiobjective decision-making |
CN104680025B (en) * | 2015-03-12 | 2017-08-25 | 重庆科技学院 | Oil pumper parameter optimization method based on genetic algorithm extreme learning machine |
CN104792935A (en) * | 2015-03-20 | 2015-07-22 | 北京华泰诺安科技有限公司 | Cloud analysis system for nuclear biological and chemical threat |
CN104792468A (en) * | 2015-04-07 | 2015-07-22 | 中国石油大学(华东) | Optimal locating method of gas detection alarms of oil refining device |
CN104792468B (en) * | 2015-04-07 | 2016-04-06 | 中国石油大学(华东) | A kind of oil refining apparatus gas detecting and alarming instrument optimization placement method |
CN104880494A (en) * | 2015-06-02 | 2015-09-02 | 大连市环境监测中心 | Environmental monitoring terminal and quick deployment system of environmental emergency monitoring |
CN104950708A (en) * | 2015-06-02 | 2015-09-30 | 大连市环境监测中心 | Aerial environment monitoring terminal and environmental emergency monitoring and deploying system |
CN106267620A (en) * | 2015-06-10 | 2017-01-04 | 张国基 | chemical leakage treatment vehicle |
CN106267620B (en) * | 2015-06-10 | 2019-06-28 | 张国基 | chemical leakage treatment vehicle |
EP3378027A4 (en) * | 2015-11-19 | 2019-08-28 | Halliburton Energy Services, Inc. | Method and system for monitoring and predicting gas leak |
CN106770930B (en) * | 2016-11-24 | 2019-04-16 | 北京蓝色星语科技有限公司 | A kind of method and system carrying out hazardous material detection using unmanned plane |
CN106770930A (en) * | 2016-11-24 | 2017-05-31 | 北京蓝色星语科技有限公司 | A kind of use unmanned plane carries out the method and system of hazardous material detection |
CN106644284A (en) * | 2016-12-16 | 2017-05-10 | 北京伟瑞迪科技有限公司 | Automatic leakage monitoring and repairing system for chemical plant device |
CN106644284B (en) * | 2016-12-16 | 2019-07-12 | 北京伟瑞迪科技有限公司 | Automatic leakage monitoring and repairing system for chemical plant device |
US10663367B2 (en) | 2017-07-28 | 2020-05-26 | International Business Machines Corporation | Adaptive sensing for a gas leak detection |
CN107607671A (en) * | 2017-08-24 | 2018-01-19 | 慧感(上海)物联网科技有限公司 | A kind of gas leakage source localization method |
CN108091111A (en) * | 2017-11-20 | 2018-05-29 | 淮阴工学院 | A kind of oil truck oil and gas leakage intelligent early-warning system |
CN108596364B (en) * | 2018-03-29 | 2021-09-21 | 杭州电子科技大学 | Dynamic early warning method for major hazard source in chemical industry park |
CN108596364A (en) * | 2018-03-29 | 2018-09-28 | 杭州电子科技大学 | A kind of chemical industrial park major hazard source dynamic early-warning method |
CN108733881A (en) * | 2018-04-13 | 2018-11-02 | 同济大学 | Cope with the processing method for the air pollution that happens suddenly in public building room |
CN108733881B (en) * | 2018-04-13 | 2021-10-12 | 同济大学 | Treatment method for dealing with sudden indoor air pollution of public building |
CN108733893A (en) * | 2018-04-25 | 2018-11-02 | 同济大学 | The public building burst pollution of coupling depth learning method is traced to the source |
CN108932379A (en) * | 2018-06-26 | 2018-12-04 | 山东睿益环境技术有限公司 | A kind of evacuating personnel emergence treating method and its application |
CN110874807A (en) * | 2018-09-03 | 2020-03-10 | 中国石油化工股份有限公司 | Inhalation poison leakage emergency response disposal card and use method and application thereof |
CN109324155A (en) * | 2018-10-31 | 2019-02-12 | 中国石油天然气股份有限公司 | Refining device tail gas pollutant on-line monitoring data early warning method and device |
CN109737309A (en) * | 2019-01-09 | 2019-05-10 | 慧感(上海)物联网科技有限公司 | A kind of risk source based on risk identification leaks source tracing method and its system surely |
CN109737309B (en) * | 2019-01-09 | 2021-05-04 | 慧感(上海)物联网科技有限公司 | Risk source and leakage tracing method and system based on risk identification |
CN110046834A (en) * | 2019-05-13 | 2019-07-23 | 苏州大学 | Workplace pernicious gas health risk quantitative evaluating system and its appraisal procedure |
CN110046834B (en) * | 2019-05-13 | 2022-06-24 | 苏州大学 | Workplace Hazardous Gas Health Risk Quantitative Assessment System and Assessment Method |
CN110531030B (en) * | 2019-08-16 | 2021-11-12 | 北京慧辰资道资讯股份有限公司 | Method and device for analyzing atmospheric pollutants based on Internet of things big data |
CN110531030A (en) * | 2019-08-16 | 2019-12-03 | 北京慧辰资道资讯股份有限公司 | A kind of method and device based on the analysis of Internet of Things big data atmosphere pollution |
CN110472359A (en) * | 2019-08-21 | 2019-11-19 | 东北大学 | High-temperature fusion molten aluminum and water contact explositions based on numerical simulation technology prevent method for early warning |
CN110674983A (en) * | 2019-09-05 | 2020-01-10 | 辽宁工程技术大学 | Working face gas early warning method based on copula function tail correlation analysis |
CN113330483A (en) * | 2019-09-18 | 2021-08-31 | 拜耳公司 | Predicting magnetic resonance imaging images by predictive models trained by supervised learning |
CN111105086A (en) * | 2019-12-16 | 2020-05-05 | 茂盟(上海)工程技术股份有限公司 | Visual layout system and method for cooling, heating and power load prediction |
CN111144055B (en) * | 2019-12-27 | 2024-02-02 | 苏州大学 | Method, device and medium for determining concentration distribution of toxic heavy gas leakage in urban environment |
CN111144055A (en) * | 2019-12-27 | 2020-05-12 | 苏州大学 | Method, device and medium for determining toxic heavy gas leakage concentration distribution in urban environment |
CN111127279B (en) * | 2019-12-31 | 2023-07-21 | 中国科学院合肥物质科学研究院 | A nuclear emergency decision-making system, method and storage medium based on monitoring experiment database |
CN111157680A (en) * | 2019-12-31 | 2020-05-15 | 北京辰安科技股份有限公司 | Leakage traceability method and device for indoor volatile substances |
CN111127279A (en) * | 2019-12-31 | 2020-05-08 | 中国科学院合肥物质科学研究院 | A nuclear emergency decision-making system, method and storage medium based on monitoring experiment database |
CN111583067A (en) * | 2020-03-31 | 2020-08-25 | 西南交通大学 | A method and system for safety early warning and emergency decision-making in urban underground large space construction |
CN113821989A (en) * | 2020-06-18 | 2021-12-21 | 中国石油化工股份有限公司 | Emergency disposal simulation risk equipment modeling method and device and storage medium |
CN112330082A (en) * | 2020-08-13 | 2021-02-05 | 青岛科技大学 | Intelligent quantitative risk assessment method based on dynamic mechanism model |
CN112330082B (en) * | 2020-08-13 | 2023-08-15 | 青岛科技大学 | An Intelligent Quantitative Risk Assessment Method Based on Dynamic Mechanism Model |
EP4195091A4 (en) * | 2020-09-11 | 2024-04-03 | Siemens Ltd. China | Target available model-based environment prediction method and apparatus, program, and electronic device |
CN112270502A (en) * | 2020-11-17 | 2021-01-26 | 北京三维天地科技股份有限公司 | Environment emergency task cooperative disposal platform based on artificial intelligence technology |
WO2022126544A1 (en) * | 2020-12-17 | 2022-06-23 | 西门子(中国)有限公司 | Method and devices for determining pollution source, and computer-readable storage medium |
CN113095552A (en) * | 2021-03-29 | 2021-07-09 | 中国海洋石油集团有限公司 | Method and system for predicting volume of combustible gas cloud cluster leaked from ocean platform |
CN113095552B (en) * | 2021-03-29 | 2023-12-26 | 中国海洋石油集团有限公司 | Ocean platform leakage combustible gas cloud cluster volume prediction method and system |
CN113159337A (en) * | 2021-04-08 | 2021-07-23 | 柳州东风容泰化工股份有限公司 | Emergency treatment method and device for o-chlorophenol leakage |
CN113468815A (en) * | 2021-07-12 | 2021-10-01 | 南京航空航天大学 | Liquid hazardous chemical substance volatilization concentration estimation method based on Gaussian diffusion model and deep neural network |
CN113624921B (en) * | 2021-08-04 | 2024-03-29 | 杭州谱育科技发展有限公司 | Multi-mode comprehensive pollution tracing method |
CN113624921A (en) * | 2021-08-04 | 2021-11-09 | 杭州谱育科技发展有限公司 | Multi-mode comprehensive pollution tracing method |
CN114023043A (en) * | 2021-10-13 | 2022-02-08 | 厦门理工学院 | Safety early warning method for leaked gas |
CN114001867A (en) * | 2021-10-19 | 2022-02-01 | 北京伟瑞迪科技有限公司 | Monitoring and coping method for gas leakage of park |
CN114263855A (en) * | 2021-11-19 | 2022-04-01 | 合肥工业大学 | Method for predicting leakage of natural gas transportation pipeline and application thereof |
CN114263855B (en) * | 2021-11-19 | 2024-04-26 | 合肥工业大学 | Natural gas transportation pipeline leakage prediction method and application thereof |
CN114241723A (en) * | 2021-12-30 | 2022-03-25 | 武汉市三藏科技有限责任公司 | An environmental monitoring and alarm device and method based on Gaussian atmospheric diffusion |
CN114792165A (en) * | 2022-05-06 | 2022-07-26 | 湖南五凌电力科技有限公司 | Method and device for early warning of gas concentration based on wavelet neural network |
CN115019482A (en) * | 2022-08-04 | 2022-09-06 | 武汉鼎业环保工程技术有限公司 | Dangerous gas itinerant early warning method and device based on big data |
CN115600643B (en) * | 2022-10-17 | 2023-06-09 | 中国科学技术大学 | A rapid prediction method and system for poisonous gas |
CN115600643A (en) * | 2022-10-17 | 2023-01-13 | 中国科学技术大学(Cn) | A rapid prediction method and system for poisonous gas |
WO2024124861A1 (en) * | 2022-12-14 | 2024-06-20 | 中国石油大学(华东) | Method and system for optimizing hydrogen detector spatial-arrangement solution on basis of risk assessment |
CN116403165B (en) * | 2023-06-05 | 2023-08-04 | 交通运输部水运科学研究所 | Dangerous chemical leakage emergency treatment method, dangerous chemical leakage emergency treatment device and readable storage medium |
CN116403165A (en) * | 2023-06-05 | 2023-07-07 | 交通运输部水运科学研究所 | A method, device, and readable storage medium for emergency treatment of hazardous chemical leakage |
CN117172477A (en) * | 2023-09-05 | 2023-12-05 | 上海朗晖慧科技术有限公司 | Chemical product production monitoring management system and method based on big data |
CN117290639B (en) * | 2023-11-24 | 2024-02-27 | 深圳大学 | Method and system for positioning and detecting material leakage in phase change energy storage tanks |
CN117290639A (en) * | 2023-11-24 | 2023-12-26 | 深圳大学 | Method and system for positioning and detecting material leakage in phase-change energy storage tank |
CN117709845A (en) * | 2023-12-02 | 2024-03-15 | 国网浙江省电力有限公司 | Storage intelligent management and control system for distinguishing material properties |
CN118133709A (en) * | 2024-02-06 | 2024-06-04 | 同济大学 | Limited space hydrogen leakage detection and rapid positioning method based on hydrodynamic simulation |
CN117789422A (en) * | 2024-02-26 | 2024-03-29 | 江西依爱弘泰消防安全技术有限公司 | Combustible gas alarm control system and method |
CN117959902A (en) * | 2024-04-01 | 2024-05-03 | 大连华邦化学有限公司 | Gas purification function early warning system and method based on data feedback |
CN117959902B (en) * | 2024-04-01 | 2024-06-04 | 大连华邦化学有限公司 | Gas purification function early warning system and method based on data feedback |
Also Published As
Publication number | Publication date |
---|---|
CN103914622B (en) | 2017-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103914622B (en) | A kind of chemical leakage fast prediction alarm emergency response decision-making method | |
CN110826514A (en) | Construction site violation intelligent identification method based on deep learning | |
CN114155129B (en) | Atmospheric environment tracing and evaluating method and system based on industrial park | |
CN104897853A (en) | Thermal power plant pollutant discharging monitoring display method based on tower type diffusion model | |
CN102567808A (en) | Method for forecasting and warning accident consequence of major hazard installation by combining with real-time meteorological information | |
CN105787677A (en) | Petrochemical port area accident risk area quantitative assessment method | |
CN105373997A (en) | Real-time weather data-based evacuation method during occurrence of dangerous chemical leakage accident | |
CN109118409B (en) | Natural gas pipeline fire accident hazard analysis method based on risk degree | |
CN108280849A (en) | A kind of correction of pipe gallery gas leakage concentration field prediction and slip method of estimation | |
CN106779320A (en) | A kind of gas pipeline damage from third-party methods of risk assessment based on fuzzy mathematics | |
Mousavi et al. | A sensitivity analysis of parameters affecting the hydrogen release and dispersion using ANOVA method | |
Liu et al. | Gas diffusion model based on an improved Gaussian plume model for inverse calculations of the source strength | |
CN113918673A (en) | Emergency evacuation path planning method in toxic gas leakage accident | |
Tan et al. | Geometric effect of buildings on the dispersion of carbon dioxide cloud in idealized urban street canyons | |
CN115600643B (en) | A rapid prediction method and system for poisonous gas | |
CN104317848A (en) | GIS (Geographic Information System) overlay analysis-based domino accident influence probability analysis method | |
CN114519304A (en) | Multi-target fire scene temperature prediction method based on distributed optical fiber temperature measurement | |
CN116882268B (en) | Data-driven tunnel fire smoke development prediction method and intelligent control system | |
CN116384255B (en) | Park dangerous situation perception method and system based on multi-source data fusion | |
CN115730535A (en) | A method of artificial intelligence reverse source tracing and leak determination based on gas monitoring | |
CN115906706A (en) | High-precision risk analysis method for domino comprehensive risk of hazardous chemical tank area | |
Dong et al. | Impact analysis of multi-sensor layout on the source term estimation of hazardous gas leakage | |
CN102289733A (en) | Method for evaluating regional atmosphere risk space distribution based on GIS (Geographic Information System) | |
Jiang et al. | Fused CFD-interpolation model for real-time prediction of hazardous gas dispersion in emergency rescue | |
Zhang et al. | Intelligent fire location detection approach for extrawide immersed tunnels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |