TWI227434B - Prediction method and system of gas diffusion - Google Patents

Prediction method and system of gas diffusion Download PDF

Info

Publication number
TWI227434B
TWI227434B TW92112582A TW92112582A TWI227434B TW I227434 B TWI227434 B TW I227434B TW 92112582 A TW92112582 A TW 92112582A TW 92112582 A TW92112582 A TW 92112582A TW I227434 B TWI227434 B TW I227434B
Authority
TW
Taiwan
Prior art keywords
particle
discharge
time
particles
source
Prior art date
Application number
TW92112582A
Other languages
Chinese (zh)
Other versions
TW200424905A (en
Inventor
Ryohji Ohba
Seiichi Kudo
Original Assignee
Mitsubishi Heavy Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd filed Critical Mitsubishi Heavy Ind Ltd
Publication of TW200424905A publication Critical patent/TW200424905A/en
Application granted granted Critical
Publication of TWI227434B publication Critical patent/TWI227434B/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention predicts the diffusion condition of diffusible substance released to atmosphere. Replace the diffusible substance by particle, obtain the moving location of the resulting particle from the source by computation and log beforehand by mapping the moving location and the elapsed time after release. Next, based on the elapsed time and refer to the said intensity data to obtain the particle intensity of the occurring time so that the moving location, the elapsed time after release and intensity correspond to each particle and log beforehand. Calculate the concentration in the specified area at the specified time so as to obtain the particle intensity presenting in the specified area by accumulation.

Description

1227434 玖、發明說明: 技術領域 本發明係關於一種擴散物質的擴散狀況預測方法。本發 明係預測由擴散源(例如放射性物質使用設施與煙岛)排出 至大氣中之物質(例如放射物質與煙),如何擴散至大氣 中,且在各地點做了預測時時刻刻變化之物質濃度者。 先前技術 目前正開發一種放射性物質因事故由處理放射性物質 之設施排出至外部的情形,預測在放射性物質的擴散範圍 與各地點之放射性物質的濃度,且預測具有因放射性物質 而遭受危險的虞慮之地區之擴散狀況預測方法。 該擴散狀況預測方法,不僅在預測放射性物質的擴散狀 況的h形可以適用’例如由工處的煙囪所排出之氣體(煙) 擴散至大氣中的情形、計算各地點之氣體濃度的情形、與 在環境影響評估的解析中,解析擴散物質的擴散狀況的情 形亦可以適用。 藉演算預測排出至大氣中之物質的擴散狀況,係必須要 做其次之2個之演算。 (Ό氣體狀況預測演算 (2)擴散狀況預測演算 所謂上述(1)之氣體狀況預測演算,係依據氣象GPV (Gnd Point Value)與AMEDAS等之氣象觀測資料,藉演算 =析大氣現象之偏微分方程式,由事項發生(例如放射性物 質排出至外部)時點到既定時間後之時點,藉演算求出每一 85181.doc 1227434 定時間刻度之時點之多數之評估地點(格子點位置)的風向 •風速,也就是,意指求出表示每一時間刻度之風速場資 料之氣體狀況之演算。 另外,所謂上述(2)之擴散狀況預測演算,係指將所放出 之擴散物質的濃度與性狀及前述風速場資料,藉代入演嘗 物質(粒子)的擴散狀態之擴散方程式,求出在各每一時間 刻度的各格子點位置之擴散物質的濃度之演算。 <氣體狀況預測演算的說明> 首先,說明氣體狀況預測演算的概略。氣象觀測資料, 例如氣象GPV資料,係由氣象業務支援中心每12小時傳 訊。該氣象GPV資料,係在地球的表面隨著南北方向延伸 並且東西方向之相互之離開距離為規定距離(2km)之多數 之%度假想線,與地球的表面隨著東西方向延伸並且南北 方向之相互之離開距離為規定距離(2km)之多數之經度假 想線交叉之地點(將此等稱為母格子點位置)中,顯示氣象 資料(風速向量(風向、風速)、氣壓、溫度、水份量)者。而 且氣象GPV貝料,係總括傳訊如傳訊時點、由傳訊時點3 小後、6小時後' 9小時之3小時間隔之51小時份之資料, 作為各母格子點位置的氣象資料。 上述之氣象GPV資料之母格子點位置之氣象資料,由於 工間上母格子點位置之相互間距離擴展為,而且時間 上延長為3小時間隔,所以僅藉該母格子點位置的氣象資 料所頟不 < 氣體狀況(風向、風速)資料,亦即風速場資料, 就可以演算擴散物質的擴散濃度。 85181.doc 1227434 為此’有必要藉解析大氣現象之偏微分方程式,由空間 上較粗、且時間上也較粗之氣象觀測資料,求出空間上、 時間上均較密之氣體狀況(風向、風速)。 在此’在設定於應計算計算區域(在地球表面預先設定之 特定區域)之母格子點位置之間,設定子格子點位置。子格 子點位置,係配置於地球的表面隨著南北方向延伸並且東 西方向之相互之離開距離為一定距離(5〇m)之多數之緯度 假想線’與地球的表面隨著東西方向延伸並且南北方向之 相互之離開距離為一定距離(5〇m)之多數之經度假想線交 又之地點。 而且’藉差分解析演算解析大氣現象之偏微分方程式, 求出由演算開始之每一定時間刻度(例如每2〇秒間隔)之子 格子點位置及母格子點位置的氣象資料。可以使用以科羅1227434 (ii) Description of the invention: TECHNICAL FIELD The present invention relates to a method for predicting the diffusion state of a diffusing substance. The present invention predicts how substances (such as radioactive substances and smoke) discharged into the atmosphere from diffusion sources (such as radioactive material use facilities and smoke islands) will diffuse into the atmosphere, and the substances will change from time to time when predictions are made at various locations. Concentrated. The prior art is currently developing a situation in which radioactive materials are discharged to the outside from facilities handling radioactive materials due to accidents, predicting the spread of radioactive materials and the concentration of radioactive materials at various locations, and predicting the risk of danger due to radioactive materials. Method for predicting the spread of the region. This diffusion state prediction method is applicable not only to the h-shape for predicting the diffusion state of radioactive materials, such as the case where the gas (smoke) discharged from the chimney of the workplace diffuses into the atmosphere, the case where the gas concentration at each place is calculated, and In the analysis of the environmental impact assessment, the situation of analyzing the diffusion state of the diffusing substance can also be applied. Calculations to predict the diffusion of substances discharged into the atmosphere must be followed by two calculations. (ΌGas condition prediction calculation (2) Diffusion condition prediction calculation The so-called (1) above-mentioned gas condition prediction calculation is based on meteorological observations such as GPV (Gnd Point Value) and AMEDAS, etc., and the calculation is based on partial differential analysis of atmospheric phenomena Equation, from the time of the occurrence of events (such as the discharge of radioactive materials to the outside) to the point after a predetermined time, by calculation to find the wind direction • wind speed for most of the evaluation points (lattice point positions) at each time point of the 85181.doc 1227434 fixed time scale That is, it means the calculation of the gas state representing the wind speed field data at each time scale. In addition, the above-mentioned (2) diffusion state prediction calculation refers to the concentration and properties of the released diffusive substance and the foregoing The wind speed field data is substituted into the diffusion equation of the diffusion state of the matter (particles) to calculate the concentration of the diffusive matter at each grid point position at each time scale. ≪ Explanation of gas state prediction calculation > First, the outline of the prediction and calculation of gas conditions will be described. Meteorological observation data, such as meteorological GPV data, are supported by the meteorological service. The center communicates every 12 hours. The meteorological GPV data extends along the north-south direction of the earth's surface and the distance between the east and west directions is a majority of the specified distance (2km). The meteorological data (wind speed vector (wind direction, wind speed) , Air pressure, temperature, moisture content). And meteorological GPV materials, which are the sum of the information such as the time of the message, from the time of the message 3 hours later, 6 hours later, 9 hours of 3 hours interval of 51 hours of data, as each parent The meteorological data of the grid point location. The above meteorological GPV data of the meteorological grid point location ’s meteorological data, because the distance between the grid positions of the mother grid on the workshop is extended to, and the time is extended to 3 hours interval, so only the parent is borrowed. The meteorological data at the location of the grid points does not allow data on gas conditions (wind direction, wind speed), that is, wind speed field data, to calculate diffused matter 85181.doc 1227434 For this reason, it is necessary to analyze the partial differential equations of atmospheric phenomena, from the spatially and temporally coarser meteorological observations, to obtain denser spatially and temporally denser gases. The condition (wind direction, wind speed). Here, the position of the sub-lattice point is set between the positions of the mother lattice points set in the area to be calculated (a specific area set in advance on the surface of the earth). The position of the sub-lattice points is arranged on the earth The surface of the earth extends with the north-south direction and the distance between the east and west directions is a certain distance (50m). The majority of the weft vacation line 'and the surface of the earth extend with the east-west direction and the distance between the north-south direction is a certain distance. (50m) The place where most people want to cross the line on vacation. Moreover, the partial differential equations of atmospheric phenomena are analyzed by differential analytical calculations, and meteorological data of the positions of the child lattice points and the positions of the mother lattice points at a certain time scale (for example, every 20 second interval) from the start of the calculation are obtained. Can use Coro

拉夕川儿大學與Mission Research公司所開發之RAMS (Regional Atmospheric M〇deling System)代碼所顯示之風 速%解析的基本方程式,作為解析大氣現象之偏微分方程 式。 以該RAMS代碼所顯示之風速場解析之基本方程式,係 由運動方私式、熱能源方程式、水分之擴散方程式及連續 <公式所形成,以如其次之公式(1)〜(6)表示。 【數1】 85181.doc 1227434 運動方程式 ^i5/5v¥r^ar 3{办 Lry Mr - ^ar5v&^ /JIN V A、3-& ^arwlay 5U&5V& *15v5v^ J 一 aw&avjax / i / \-/ , ( · su^fs^,lr·-/: I si ^1 (1)(2(3) 熱能方程式 dt -li· w- dx 8y dz dxThe basic equation of wind speed% analysis shown by the RAMS (Regional Atmospheric Moulding System) code developed by Laxichuaner University and Mission Research Company is used as a partial differential equation for analyzing atmospheric phenomena. The basic equations of wind speed field analysis shown by the RAMS code are formed by the private equation of motion, the equation of thermal energy, the equation of diffusion of water, and the continuous < formula, which are expressed as the following formulas (1) to (6) . [Number 1] 85181.doc 1227434 Equation of motion ^ i5 / 5v ¥ r ^ ar 3 {Lry Mr-^ ar5v & ^ / JIN VA, 3- & ^ arwlay 5U & 5V & * 15v5v ^ J aw & avjax / i / \-/, (· su ^ fs ^, lr ·-/: I si ^ 1 (1) (2 (3) thermal energy equation dt -li · w- dx 8y dz dx

Kh V 3 —H-—* dx ) dy (4) f rod 水之擴散方程式Kh V 3 —H -— * dx) dy (4) f rod Water diffusion equation

Srn dt δχ .5/- 9 --h — 3z dxSrn dt δχ .5 /-9 --h — 3z dx

Kh d dx •於4) (5) 連續方程式 3π' ^ Rttq f dp^0ou t dpQ0Qv t dpti6Qw'] 3t ^,P〇^〇 L 〇x dy dz j (6) U、V、W ··風速 f:科里奥利•參數 km ·運動量的渦流黏性係數 kn :熱與水分的渦流擴散係數 Qu ··水分(冰-水)的溫位 rn :雨、雪等之水分的混合比 P :密度 rad : radiation(輻射) 及·斤 R·氧體定數 g:重力加速度 P ·、 、 v•足積比熱 7Γ : Exner function (變動八) 、Kh d dx • at 4) (5) continuous equation 3π '^ Rttq f dp ^ 0ou t dpQ0Qv t dpti6Qw'] 3t ^, P〇 ^ 〇L 〇x dy dz j (6) U, V, W ··· f: Coriolis • parameter km • eddy viscosity coefficient of motion kn: vortex diffusion coefficient of heat and moisture Qu • temperature of water (ice-water) temperature rn: mixing ratio of water such as rain and snow P: Density rad: Radiation (radiation) and kg R. Oxygen constant g: Gravitational acceleration P .., v. Foot product specific heat. 7Γ: Exner function.

Qv:暫溫位 P :壓力 附加字0為參照值 如此貝算以 RAMS (Regional Atmospheric Modeling 85181.doc -9 - 1227434 f )代碼所_不《風速場解析的基本方程式,由演算開Qv: temporary temperature bit P: pressure additional word 0 as a reference value, so the calculation is based on RAMS (Regional Atmospheric Modeling 85181.doc -9-1227434 f) code _ not the basic equation of wind speed field analysis, opened by calculation

Mu得到顯示每一定時間刻度(例如每2〇秒間隔)之各母 口子』>u置之氣象資料,與各子格子點位置之氣象資料之 風向向量資料(鳳速場資料)。 <擴散狀況預測演算之概要說明> 其/入針對擴散狀況預測演算加以說明。作擴散狀況預測 演算,係藉RAMS (Regional Atmospheric M〇deHng System) 代碼,將所求出之每2〇秒刻度之各母格子點位置及各子格 子點位置的風速場資料,陸續的代入科羅拉多州立大學與Mu obtains the wind direction vector data (Phoenix field data) showing the meteorological data set by each parent's position at a certain time scale (for example, every 20 second interval) and the meteorological data at the positions of the grid points of each child. < Outline description of diffusion status prediction calculation > The description will be based on the diffusion status prediction calculation. The calculation of the diffusion status is based on the RAMS (Regional Atmospheric ModeHng System) code, and the wind speed field data of the positions of the mother grid points and the positions of the child grid points every 20 seconds are obtained and substituted into Colorado. State University and

Mission Research公司所開發之HYPACT (Hybrid ParticleHYPACT (Hybrid Particle

Concentration Transport Model),作擴散狀況的預測演算。 作為擴散狀況之預測演算的具體例,係採用Lagrangian粒 子擴散模型。 該Lagrangian粒子擴散模型,係使用其次顯示之公式 (7)〜(9)計算粒子的擴散速度(u, 、ν’ 、w’),使各粒子移 動0 【數2】Concentration Transport Model). As a specific example of the prediction calculation of the diffusion status, a Lagrangian particle diffusion model is used. This Lagrangian particle diffusion model uses the formulas (7) to (9) shown next to calculate the diffusion velocity (u,, ν ′, w ’) of particles, and moves each particle to 0. [Number 2]

Lagrangian粒子擴散模型,係使用公式(12)〜(14)計算粒 子的擴散速度。 II* (t) = Ru U.(卜 Δ0 + a - i〇ru v1 (t) = RvV(t-At) + a-R;)rv ) w1 (t) = Rw w4 (t _ ^t) + (1 - Rw )rw 在此,Ru、Rv、: Lagrangel流本身相關係數 85181.doc -10- 1227434 u’ (t)、v’ (t)、w’⑴:粒子的亂流擴散速度成分、 t :時間The Lagrangian particle diffusion model uses the formulas (12) to (14) to calculate the diffusion speed of particles. II * (t) = Ru U. (Bu Δ0 + a-i〇ru v1 (t) = RvV (t-At) + aR;) rv) w1 (t) = Rw w4 (t _ ^ t) + ( 1-Rw) rw Here, the correlation coefficients of Ru, Rv, and Lagrangel flow itself are 85181.doc -10- 1227434 u '(t), v' (t), w'⑴: the turbulent diffusion velocity component of particles, t :time

Ru(^)-Rv(At)= u^t) · u* (t — Δϋ) exp v'(t)· v'(t- At) exp w' (t) · (t - At) exp r^rJ △t)T^rJ △t) (3) 在此,σ u、σ v、σ w :亂流速度標準偏差 Tlu、TLv、Tlw :拉格蘭吉時間標度 ru=au7/u, τν =σν7?ν, rw=crw77w+wd (c?; 在此,77 u、v、77 w ··正規亂數(平均值為0)Ru (^)-Rv (At) = u ^ t) u * (t — Δϋ) exp v '(t) · v' (t- At) exp w '(t) · (t-At) exp r ^ rJ △ t) T ^ rJ △ t) (3) Here, σ u, σ v, σ w: standard deviation of turbulent flow velocity Tlu, TLv, Tlw: Lagrange time scale ru = au7 / u, τν = σν7? ν, rw = crw77w + wd (c ?; Here, 77 u, v, 77 w ··· Normal random number (average value is 0)

Wd :重力沈降速度 在此,將由 RAMS (Regional Atmospheric Modeling System)代碼求出之每20秒刻度之各母格子點位置及各子 格子點位置之風速場資料,陸續代入HYPACT (Hybrid Particle Concentration Transport Model)代碼,說明作擴散 狀況的預測演算之具體例。 為了作該演算,將由排出源排出至大氣中之物質替換成 多數之粒子P,在由排出源的位置至每一演算週期△ t(在此 △ t=20秒),設定發生N個(在此為20個)之粒子P。 也就是,在每一演算週期△ t(20秒)發生20個的粒子,使 其在演算開始時點發生20個之粒子P,從演算開始時點20 秒後發生20個之粒子,從演算開始時點40秒後發生20個之 85181.doc -11 - 1227434 粒子。而且,在每一演算週期△砍“秒),藉演算求出各粒 子P的位置(空間座標)。 丄 又,以Poo01、Pj2、Pqq〇3 P〇〇〇8、P〇〇09、d ι〇 P0004、P 05 P〇o」 Ρ〇〇1ϋ、Poo11、P0012、d u 00 、P〇〇Ut>、P〇〇〇7Wd: The gravity settlement speed is here. The wind speed field data of each mother grid point position and each child grid point position calculated by the RAMS (Regional Atmospheric Modeling System) code every 20 seconds will be substituted into HYPACT (Hybrid Particle Concentration Transport Model). ) Code to explain a specific example of the prediction calculation for the diffusion status. In order to perform this calculation, the material discharged into the atmosphere from the emission source is replaced by a large number of particles P. From the position of the emission source to each calculation period Δ t (here Δ t = 20 seconds), N occurrences (in Here are 20) particles P. That is, 20 particles are generated in each calculation period Δt (20 seconds), so that 20 particles P are generated at the calculation start point, 20 particles are generated 20 seconds after the calculation start point, and from the calculation start point 85181.doc -11-1227434 particles of 20 occur after 40 seconds. In addition, in each calculation cycle, △ is cut for "seconds", and the position (space coordinate) of each particle P is calculated by calculation. 丄 In addition, Poo01, Pj2, Pqq〇3 P〇〇08, P〇〇09, d ι〇P0004, P 05 P〇o '' Po 001ϋ, Poo11, P0012, du 00, P〇〇t >, P〇〇07

Poo17、p00 P 14 15 F〇〇 Λ Poo 18 、〇19、P0020Poo17, p00 P 14 15 F〇〇 Poo 18, 〇19, P0020

Poo16Poo16

Pi 發生之20個之粒子p ,顯示在演算開始時點(時刻〇秒) 以 P2001、P2002、P P2〇09> T, 11 03 20 、P2004、P2005、P,,、d 〇7 p 06 ^ P20 、p20 p. 08 、〇—、P2〇 p 19 ^ 尸20 、P20 個之粒子p。 P2018、P J9、D 20The 20 particles p generated by Pi are displayed at the start point of the calculation (time 0 seconds). P2001, P2002, P P2009 > T, 11 03 20, P2004, P2005, P ,, d 〇7 p 06 ^ P20 , P20 p. 08, 〇—, P20p 19 ^ corpse 20, P20 particles p. P2018, P J9, D 20

Ρ2〇12、P 顯 13 2〇 _、P2014、P2〇15、1> 16P2〇12, P display 13 2〇 _, P2014, P2015, 1 > 16

P 20 20 20 P 17 π從演算開始時點20秒後發生之2〇 以 P4001 、 P4〇〇2 、 P4〇〇3 、 p<04 09、n 10 _ 11 “ P4(/' P4,、Pz 個之粒子P。 ^從演算開始時點4〇秒後發生之2〇 也就是’區別為顯示於符號「p」後面 係從演算開始時點之時間,顯示於符號 :數子, 之數字,係在其時點發生之2 」 的上段 玍爻20個爻粒子。 之粒子也同樣表記。 /、他時點發生 首先,在演算開始時點,由彳 。5原發生20個粒予〜〇1、 ^40' ' - Ρ4〇05 Λ D 06 P4〇〇9、P4〇1〇、P4〇U、P4〇12、D 13 p 18 n [40 ' P4〇 19、P4020,顯 、P Η n 15 ▼、P4007、P4〇〇8 切…' P4016、P4〇 ”P 20 20 20 P 17 π 20 to 40 minutes after the start of the calculation. P4001, P4〇2, P4〇3, p < 04 09, n 10 _ 11 "P4 (/ 'P4 ,, Pz Particle P. ^ 20 which occurs 40 seconds after the start of the calculation, that is, 'the difference is that it is displayed after the symbol "p" is the time from the start of the calculation and is displayed on the symbol: number, the number is in its At the point of time 2 ”, there are 玍 爻 20 particles in the upper segment. The particles are also represented. / 、 He occurs at the point of time. At the beginning of the calculation, 彳. 5 original occurrence of 20 particles ~ 〇1, ^ 40 '' -Ρ4〇05 Λ D 06 P4〇09, P4〇1〇, P4〇U, P4〇12, D 13 p 18 n [40 'P4〇19, P4020, display, P Η n 15 ▼, P4007, P4 〇〇8 Cut ... 'P4016, P4〇 ”

P 1 1 〇〇 ,r00 °〇、p:5、V6、P〇0'P。。 pf 20P 1 1 0 0, r00 ° 0, p: 5, V6, P0′P. . pf 20

Pnnl2'P〇〇13'p〇〇14'p〇〇15'P〇〇 0、〜〇8、Ρ〇009、Ρ0〇ι〇 16、P〇〇17、P0〇i8、p〇〇19 在由演算開始時點2〇秒後,由圖19 生20個的粒子? 〇ι、ρ 〇2 〜不义排出源S 7 拉亍尸20 、Ρ2〇ϋ2、Ρ2〇〇3、ρ 04 ?20、Ρ2〇ϋ5、Ρ 06Pnnl2'P0013'p0014'p0015'P0000, ~ 〇8, PO009, PO0016, PO0017, PO008, p0019 at After 20 seconds from the start of the calculation, 20 particles are generated from Figure 19? 〇ι, ρ 〇2 ~ Injustice discharge source S 7 Pull corpse 20, P2〇2, P2003, ρ04-20, P2〇5, P06

源S再I 85181.doc -12- 07 1227434 1) d 09 -rv i 〇 , 20 20 20、p2〇"、P2。12、P2013、p2014、p2015、p2。16、 p2017、P2018、P2019、p2〇20。 此時,在演算開始時點發生之粒子Po,、Poo02、Poo03、 P〇°04、P〇()。5、Pgg〇6、p〇〇°7、P〇。。8、p。。。9、P。,、P。。11、P。。12、 P。。13、P。。14、P0015、P〇,、p〇〇n、p〇〇18、p〇〇19、^ ^ 由排出源S到達離開位置為止,並且擴散。 各 t 子 P 的 置’係使用以 rams (Regi〇nal Atmospheric Modeling System)代碼求出之每2〇秒刻度之風速場資料, 计异Lagrangian粒子擴散模型之各粒子p的擴散速度 (U, 、v’ 、w,),藉移動各粒子求出。 在由溟异開始時點4〇秒後,由圖2〇顯示之排出源s再發 生 20個的粒子 p4()01、p4()02、p 03、 〇4、pSource S 85181.doc -12- 07 1227434 1) d 09 -rv i 〇, 20 20 20, p2〇 ", P2. 12, P2013, p2014, p2015, p2. 16, p2017, P2018, P2019, p2020. At this point, the particles Po, Poo02, Poo03, P0 ° 04, and P0 () that occurred at the start of the calculation. 5. Pgg〇6, p00 ° 7, P0. . 8. p. . . 9. P. ,, P. . 11, P. . 12, P. . 13, P. . 14, P0015, P0 ,, p00n, p0018, p0019, ^^ from the source S to the exit position and spread. The setting of each t sub-P uses the wind speed field data obtained every 20 seconds on the scale of rams (Regional Atmospheric Modeling System) to calculate the diffusion velocity of each particle p in the Lagrangian particle diffusion model (U, ,, v ', w,), which is obtained by moving each particle. After 40 seconds from the start of the surprise, 20 particles p4 () 01, p4 () 02, p03, 〇4, p were generated from the emission source s shown in FIG. 20

P 4〇08、P40 09 P4〇17 > P, 18 40 p 10 ^ 40 、 k p 19 ^ 40P 4〇08, P40 09 P4〇17 > P, 18 40 p 10 ^ 40, k p 19 ^ 40

P4011、P 40 12 40P4011, P 40 12 40

P 13P 13

4〇05、P4006、P 40 P40 P4020 此時,在演算開始時點發生之粒子P〇。01、Poo02、Po。03、 P〇〇04 ^ Poo05 > P〇〇06 ^ P〇〇〇^ . p〇〇〇B . p〇〇〇9 . p〇〇l〇 . ρ〇〇Π , p〇〇12 χ P〇〇13、P〇〇14、P0015、P0,、p〇〇l7、p。,、p〇〇19、p。,,係 由排出源s到達更離開位置為止,並且擴散。 另外,由演算開始時點20秒後發生之20個粒子p2G01、 P2〇〇2、P2。。3、P2〇。4、P2〇〇5、p2〇〇6、p2〇〇7、p2,、p2〇09、p2〇10、 p20u、p2。12、P2〇i3、p,、p2〇15、p2〇16、p2〇17、p2〇18、p"9、 p 20 20 ’係由排出源s到達離開位置為止,並且擴散。 各粒子P的位置,係使用以RAMS (Regional Atmospheric Modeling System)代碼求出之每20秒刻度之風速場資料, 85181 .doc -13- 1227434 計算Lagrangian粒子擴散模型之各粒子p的擴散速度 (U’ 、v’ 、w’)’藉移動各粒子求出。 在由演算開始時點60秒後’由圖21顯示之排出源s再發 9 Π /Ι3ΕΪ ΛΑ τν Π 1 λ-» λ . 生20個的粒子ρ6()( 卩6〇02、卩6003、P6004、P6005、Ρ6Γ〇6、^ 07 Ρ:、ρ:、Ρ6,、ρ6,、ρ6:、ρ6,、ρ6。"、ρ::15、 Ρ6〇17 60 >60 16 Ρβο19 Ρ 60 20 此時,在演算開始時點發生之粒子匕,、Ρμ〇2、ρ^〇3、 Ρ〇〇04 > Poo05 ^ P〇〇〇^ > P〇〇〇7 . p〇〇〇s . p〇〇〇9 ^ p〇〇1〇 ^ p〇〇u ^ p" l2 ^ p〇〇13、P。。14、p,、p,、、p。,、p〇〇19 由排出源S到達更離開位置為止,並且擴散。 另外’由演算開始時點20秒後發生之2〇個粒子Ρ^01、 P2〇、P20。3、P2。04、P2〇〇5、p2〇〇6、p2〇()7、p2,、p/9、P2〇1〇、 p20u^ P2〇12^ P2013. p2〇14, p2〇15, ρ2〇!6Λ p2〇17^ p2〇18> p2〇19 ^ P2〇2G ’係由排出源S到達更離開位置為止,並且擴散。 另外’由演算開始時點40秒後發生之20個粒子p4〇01、 p4002 ^ P4〇03 > P4〇〇4 . p4〇〇5 , p4〇〇6 ^ p4〇07 λ ρ4〇0δ ^ p4〇09 ^ ?4〇10 ^ p40"、p4。12、P4()n、p4q14、p4()15、p4q16、pj7、pj8、pj9、 P402G,係由排出源s到達離開位置為止,並且擴散。 口粒子P的位置’係使用以rams (Regional Atmospheric4〇05, P4006, P 40 P40 P4020 At this time, the particle P0 occurred at the time of calculation start. 01, Poo02, Po. 03, P〇〇04 ^ Poo05 > P〇〇06 ^ P〇〇〇 ^. P〇〇〇B. P〇〇09. P〇〇〇 10. ρ〇〇Π, p〇〇12 χ P 0013, P0014, P0015, P0 ,, p1717, p. ,, p0019, p. , From the discharge source s to a more separated position, and spread. In addition, 20 particles p2G01, P2002, and P2 that occurred 20 seconds after the start of the calculation. . 3. P20. 4, P2005, p2006, p2007, p2, p209, p210, p20u, p2. 12, P2i3, p2, p2015, p2o16, p2 〇17, p2〇18, p " 9, p20 20 'are from the source s to the exit position, and spread. The position of each particle P is calculated using the wind speed field data every 20 seconds on the scale of RAMS (Regional Atmospheric Modeling System). 85181.doc -13-1227434 calculates the diffusion velocity (U) of each particle p in the Lagrangian particle diffusion model. ', V', w ')' is obtained by moving each particle. After 60 seconds from the start of the calculation, 'the emission source s shown in FIG. 21 is re-issued 9 Π / Ι3ΕΪ ΛΑ τν Π 1 λ- »λ. 20 particles are generated ρ6 () (卩 6002, 卩 6003, P6004 , P6005, P6Γ〇6, ^ 07 P :, ρ :, P6 ,, ρ6 ,, ρ6 :, ρ6 ,, ρ6. &Quot;, ρ :: 15, Ρ6〇17 60 > 60 16 Ρβο19 Ρ 60 20 this At this time, the particle dagger that occurred at the beginning of the calculation, Pμ〇2, ρ ^ 〇3, P〇〇04 > Poo05 ^ P〇〇〇 ^ > P〇〇07. P〇〇〇s. P〇 〇〇9 ^ p〇〇1〇 ^ p〇〇 ^ p " l2 ^ p〇〇13, P ... 14, p, p, p ,, p ..., p0019 from the exhaust source S to reach It leaves the position and spreads. In addition, 20 particles P ^ 01, P2O, P20.3, P2.04, P2005, p2006, p20 ( ) 7, p2 ,, p / 9, P2〇10, p20u ^ P2〇12 ^ P2013. P2〇14, p2〇15, ρ2〇6 6 p2〇17 ^ p2〇18 > p2〇19 ^ P2〇2G 'It is diffused until the emission source S reaches a more distant position. In addition, it is 20 particles p4〇01, p4002 ^ P which occurred 40 seconds after the start of the calculation. 4〇03 > P4〇〇4. P4〇〇5, p4〇〇6 ^ p4〇07 λ ρ4〇0δ ^ p4〇09 ^? 4〇10 ^ p40 ", p4.12, P4 () n, p4q14 , P4 () 15, p4q16, pj7, pj8, pj9, P402G, are from the source s to the exit position, and diffuse. The position of the mouth particle P is used in rams (Regional Atmospheric

Modeling System)代碼求出之每20秒刻度之風速場資料, 計算Lagrangian粒子擴散模型之各粒子ρ的擴散速度 (U, 、ν’ 、w’ ),藉移動各粒子求出。 如上述,陸續使2〇個之粒子發生於每一演算週期△tpO 秒)’並且求出各每一演算週期△ t(20秒)之粒子的位置5也 85181.doc -14- 1227434 破•是空間座標(xi(t)、yi(t)、Zi⑴)。 而且,在由演算開始經過既定時間時,在由排出源 ,既定距離之單位空間(預測地區之單位體積),如圖⑵斤 …、π ’存在粒子的情形’由該粒子的數目可以計算該單位 芝間之物質的濃度。 亦即,在排出源S,若1秒鐘排出Q(m3)的物質,則由於 粒子P在20秒鐘發生20個(換算後1秒鐘丨個),所以各粒子 P,形成每一個均具有Q/l(m3;)的排出源強度。在此,存在 於該單位空間之粒子P的數目,藉乘上排出源強度 Q/l(m3),可以求出該單位空間之物質的濃度。 若一般的顯示上述之具體例,則成為如其次所述。以多 數之粒子替換由排出源所排出之氣體等之物質。而且,由 排出源放出每秒N個之粒子。該情形,在計算上之粒子的 排出量為N/sec。由實際的排出源所排出之物質的排出量為 Q(m3/sec)的情形,則各粒子具有Q/N(m3)的排出源強度。 對每一粒子藉非永恆不變的數值計算運動方程式,亦即 將以 RAMS (Regional Atmospheric Modeling System)代碼求出之 風速場資料’代入HYPACT (Hybrid Particle Concentration Transport Model)代碼’使用Lagrangian粒子擴散模型計算 各粒子P的擴散速度(u’ 、ν’ 、w’ ),藉移動各粒子,可 以非永恆不變的決定各粒子的座標。也就是,可以將各粒 子的空間座標決定於每一演算週期△ t。又,藉Lagrangian 粒子模型求出記錄於資料記錄裝置之各粒子的資料,僅為 各粒子的空間座標(xi(t)、yi(t)、zi(t))。 85181.doc -15- 1227434 粒子(物質)的運動方程式之HYPACT代碼,係表現粒子的 移机擴月欠重力沈降現象者。在此,粒子的移流現象, 係依靠於大氣的時間平、古& 度’擴散現象,係依靠於大氣 的亂流速度,重力沈隆,& A止、^ 、 兄降係依靠於粒子的質量、重力加速 度、空氣的黏性係數等(參照圖23)。 工氣中的單位把積中之粒子個數為η個的情形,該空間 :的乳&版度(物貝濃度)形成nXQ/N(氣體Α空氣m3)。也 就是’形成在存在於該單位空間之粒子數樣上各粒子具 有之排出源強度Q/N。 發明所欲解決之問題 該環境濃度(單位體積之物質濃度),係依靠於所排出之 物質的排出量的時間變化。為此,在排出量隨著時間變化 之條件,擴散計算有必要在各每一排出條件實施。從而, 在假设排出條件較多的情形,有必要實施排出量會例份之 擴散計算,結果需要龐大的計算時間。 ’、 触t圖2 4所示’當例如由排出源s (例如煙峨出氣 -(物貝)時,在風下的某地點F之氣體濃度的時間變化,係 因應由排出源S所排出之物質的時間變化而變化。’、 /就是,如圖25⑷在物質的排出量隨著時間變化的情 :,地點F之物質的濃度,係如叫)隨Modeling System) code calculates the wind speed field data every 20 seconds scale, calculates the diffusion velocity (U,, ν ′, w ′) of each particle ρ in the Lagrangian particle diffusion model, and obtains by moving each particle. As mentioned above, 20 particles are successively generated in each calculation period △ tpO seconds) 'and the position 5 of each particle in each calculation period Δt (20 seconds) is also 85181.doc -14-1227434 broken • Is the space coordinate (xi (t), yi (t), Zi⑴). In addition, when a predetermined time has passed from the start of calculation, the unit space (the unit volume of the predicted area) of the predetermined distance from the exhaust source, as shown in Figure ⑵, π 'case of particles' can be calculated from the number of particles The concentration of a substance in units of shiba. That is, if the Q (m3) substance is discharged from the discharge source S for 1 second, 20 particles (20 seconds after conversion) are generated in the particle P, so each particle P becomes equal to each particle. It has an emission source intensity of Q / l (m3;). Here, the number of particles P existing in the unit space can be calculated by multiplying the intensity Q / l (m3) of the emission source to obtain the concentration of the substance in the unit space. If the above specific example is generally displayed, it will be as follows. Substitute a large number of particles for substances such as gas exhausted from the exhaust source. Furthermore, N particles are emitted from the exhaust source per second. In this case, the discharge amount of the particles in calculation is N / sec. When the discharge amount of the substance discharged from the actual discharge source is Q (m3 / sec), each particle has a Q / N (m3) discharge source intensity. For each particle, the equation of motion is calculated by non-eternal numerical values, and the wind speed field data calculated by the RAMS (Regional Atmospheric Modeling System) code is 'substituted into the HYPACT (Hybrid Particle Concentration Transport Model) code' and calculated using the Lagrangian particle diffusion model. The diffusion velocity (u ', ν', w ') of each particle P can be determined by non-eternal and constant coordinates by moving each particle. That is, the spatial coordinates of each particle can be determined by each calculation period Δt. In addition, the data of each particle recorded in the data recording device by using the Lagrangian particle model is only the spatial coordinates (xi (t), yi (t), zi (t)) of each particle. 85181.doc -15- 1227434 The HYPACT code of the equation of motion of particles (substances) is a person who expresses the phenomenon of particles moving and expanding under the gravity. Here, the particle migration phenomenon depends on the atmospheric time level, paleo & degree 'diffusion phenomenon, and it depends on the atmospheric turbulence velocity, gravity sinking, & A stop, ^, sibling descending system depends on particles Mass, acceleration of gravity, viscosity coefficient of air, etc. (see Figure 23). When the number of particles in the product is η in the unit of industrial gas, the milk & size (concentration of shellfish) of this space forms nXQ / N (gas A air m3). That is, the emission source intensity Q / N of each particle formed on the number of particles existing in the unit space. Problems to be Solved by the Invention The environmental concentration (concentration of a substance per unit volume) depends on the temporal change of the discharge amount of the discharged substance. Therefore, under the condition that the discharge amount changes with time, it is necessary to perform the diffusion calculation for each discharge condition. Therefore, under the assumption that there are many discharge conditions, it is necessary to perform the diffusion calculation of the discharge amount routinely, and as a result, a huge calculation time is required. ', Touch t as shown in Fig. 24.' When, for example, the emission source s (for example, smoke emanates gas-(mussel)), the temporal change of the gas concentration at a certain place F under the wind is due to the emission from the emission source S. The material changes with time. ', / Is, as shown in Figure 25: The discharge of the material changes with time: the concentration of the substance at location F, as called)

^⑷物質的排出量在一定的情形,地點F之物質的濃 ^係如圖26⑻上升到—定值後維持—定濃度,如圖叫 在物W間的被排出的情形,地點F 圖⑽)—時的上升之後變零。 勺敬度係如 85181.doc -16 - 1227434 如此,在物質的排出量隨著時間變化的情形,有必要使 粒子的發生個數配合物質的排出量隨著時間變化。而且, 如此求出隨著時間的經過使發生個數變化之粒子的的移 動位置’由該粒子的移動位置作物質的濃度計算。從而, 在排出量的變化不同之各實例,必須預先做擴散計算,需 要龐大之計鼻結果。 例如在處理放射性物質之設施,在發生放射性物質被排 出至外部之事故的情形,有極多數的物質(例如100種類程 度<物質)被排出。而且,在各每一物質,其排出量因應時 門刀力J不同。從而’在各每一物質,使粒子的發生個數配 合物質的排出量隨著時間變化,如此求出使發生個數變化 I粒子的移動位置,由該粒子的移動位置作物質的濃度計 算。從而’在該情形,有必要預先做對應例如1〇〇種類的 物質之100種類之擴散計算。 本發明係鑒於上述先前技術,以提供一種排出多種類之 物質’並且各物質的排出量即使有隨著時間變化的情形, 亦可以在短時間内預測演算物質的擴散狀況之擴散物質 的擴散狀況預測方法及擴散物質的擴散狀況預測系統為 目的。 發明内容 解決上述問題之本發明之擴散物質的擴散狀況預測方 法’係為了預測由排出源排出至大氣中之物質擴散至大氣 中4狀況,將前述物質替換成多數之粒子,設定為由排出 源的位置在每一演算週期發生預先設定之個數之粒子; 85181.doc -17- 1227434 且在包含排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式’求出各粒子的擴散速度: 由該擴散速度求出在各每一演算週期顯示各粒子存在之 空間位置之空間座標,並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應各演算週期之各粒 子的玄間厓標與各粒子的排出後經過時間,縣記錄於資 料記錄器; ~ 又比例於伴隨所排出之物質的排出後經過時間的時間 經過之排出量的變化,預先設定隨著排出後經過時間的時 間經過對粒子之排出源強度資料; 又,讀出記錄於前述資料記錄裝置之各每一演算週期之 各粒子的空間座標與各粒子的排出後經過時間,並且參照 讀出之排出後經過時間,求出各粒子發生之時點,由前述 排出源^度資料求出該時點之各粒子的排出源強度,在前 述資料記錄裝置再記錄對應各每一演算週期之各粒子的 空間座標與各粒子的排出後經過時間與排出源強度; 又,既定之演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該既定之演算週期之該既定之區域之全 部之粒子的排出源強度求出。 另外,本發明之擴散物質的擴散狀沉預測方法,係為了 預測由多數之排出源排出至大氣中之物質擴散至大氣中 之狀況,將前述物質替換成多數之粒子,設定為由各排出 源的位置在每一演算週期分別發生預先設定之個數之粒 85181.doc -18- 1227434 子; 且在包含排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式,求出各粒子的擴散速度, 由該擴散速度求出在各每一演算週期顯示各粒子存在之 空間位置之空間座標’並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間’對應識別各演算週期之 各粒子的m座標與各粒子的排出後經過時間與排出源 之排出源識別資訊,預先記錄於資料記錄器; 又比例於伴&由各排出源所排出之物質的排出後經過 時間的時間經過之排出量的變化,在各每一排出源預先分 別設定隨著排出後經過時間的時間經過對粒子之排出源 強度資料; 又,讀出記錄於前述資料記錄裝置之各每—演算週期之 各粒子的空間座標與各粒子的排出後經過時間與各粒子 排出源識別資訊,並且參照讀出之排出後經過時間,求出 各粒子發生之時點,參照讀出之排出源識別資訊,由對應 其粒子發生之排出源之前述排出源強度資料求出粒子發 生之時點之各粒子的排出源強度,在前述資料記錄裝置再 記錄對應各每-演算週期之各粒子的空間座標與各粒子 的排出後經過時間與排出源強度; 又,歧之演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該既定之演算週期之該既定之區域之全 邵之粒子的排出源強度求出。 85181.doc -19- 1227434 另外’本發明之擴教物質的擴教狀況預測方法,义 述排出源強度資料,係藉實測由前述排出源*:、二 質的濃度求出並加以設定; 、非出尤物 又前述排“強度資科,係將前述排出㈣周園之 點貫測^物質的濃度之時間變化設定為基礎。 另外’本發明之擴散物質的擴散狀況預測系统各 =者二當擴散物質排出至大氣中時,實剛擴二 貝,-‘發訊續示擴散物質的排出量之資料. 氣象資料傳訊設施,係傳訊氣象觀測資料; 監督官廳,係對前述企業者與前述企業者的 民,通知避難勸告;及 、解析中U係、作擴散物質的才廣散狀況預測清算處 理,且演算既定區域之物質的濃度; / 所的it在述文全解析中心’來自前述企業者顯示擴散物 貝、以及來自前述氣象資料傳訊設施之氣 象觀測資料,係藉資訊傳達手段傳送; ^ 在别述I’会廳’來自前述安全解析中心之物質的 濃度,係藉資訊傳達手段傳送; 難:告前述監督官廳,係因應所傳來的物質的濃度通知避 實施方式 、下依據圖面詳細說明本發明之實施形態。 二第1實施形態(排出源為丨個的情形^〉 ^ 面參,¾圖1〜圖10_面說明關於本發明之第1實施形態 尤擴散物質的擴散狀況預測方法。 85181.doc -20- 1227434 在第1實施形態之第1步驟(參照計算流程圖之圖1},作如 其次之處理。亦即,由排出源S實際排出之物質的排出量 即使一定,隨著時間經過排出量即使變化的情形,首先, 將物質的排出量Q(m3/sec)作為一定值(=1〇),使用先前之^ ⑷ The concentration of the substance discharged at a certain place, the concentration of the substance at the place F is shown in Figure 26⑻, which rises to—a fixed value and then remains—a fixed concentration, as shown in the case of being discharged between the objects W, as shown in Figure FF ) —It goes to zero after rising. The spoon respect is like 85181.doc -16-1227434. In this case, it is necessary to make the number of particles and the amount of matter to change with time in the case where the amount of matter discharged changes with time. Then, the moving position of the particles whose number has changed over time is determined in this way, and the moving position of the particles is used as the concentration of the substance. Therefore, in each case where the change in the discharge volume is different, the diffusion calculation must be performed in advance, and a huge nose calculation result is required. For example, in a facility that handles radioactive materials, in the case of an accident in which radioactive materials are discharged to the outside, a very large amount of materials (for example, 100 kinds of substances < substances) are discharged. In addition, the discharge amount varies depending on the door knife force J for each substance. Therefore, in each substance, the number of particles to be generated and the amount of the discharged substance are changed with time, so that the position where the number of particles is changed is calculated, and the concentration of the substance is calculated from the position of the particles. Therefore, in this case, it is necessary to perform a diffusion calculation of 100 types corresponding to, for example, 100 types of substances in advance. In view of the foregoing prior art, the present invention is to provide a method for discharging a plurality of types of substances, and even if the amount of each substance is changed with time, it is possible to predict the diffusion state of the diffusing substance in a short period of time, even if the diffusing state of the substance is calculated. The purpose is a prediction method and a system for predicting the diffusion state of a diffusing substance. SUMMARY OF THE INVENTION The method for predicting the state of diffusion of a diffusing substance according to the present invention that solves the above-mentioned problem is to predict the state of diffusion of a substance discharged into the atmosphere from an exhaust source into the atmosphere. 4 The number of particles that have been set in advance in each calculation cycle; 85181.doc -17- 1227434 and multiple locations in the area that contains the location of the source of discharge, by which the wind direction and wind speed will change over time The wind velocity field data is substituted into the diffusion equation of the calculated particle's diffusion state to find the diffusion speed of each particle: From this diffusion speed, the spatial coordinates showing the spatial position of each particle at each calculation period are obtained, and the measurement is performed from the original The elapsed time after the discharge of the elapsed time at the time when the foregoing particles occurred corresponds to the Xuanjian cliff of each particle in each calculation cycle and the elapsed time after the discharge of each particle, and the county records it in the data logger; Elapsed time after the discharge of the substance The change in the discharge volume over time is set in advance as the The time passes the intensity source data of the particle discharge; and reads out the space coordinates of each particle recorded in each calculation cycle of the data recording device and the elapsed time after the discharge of each particle, and refers to the read after discharge The elapsed time is used to determine the point of occurrence of each particle, and the intensity of the emission source of each particle at that point of time is obtained from the above-mentioned emission source data, and the spatial coordinates and the coordinates of each particle corresponding to each calculation cycle are recorded in the aforementioned data recording device. The elapsed time and the intensity of the emission source after the discharge of each particle; Also, the concentration of the aforementioned substance in a predetermined area of a predetermined calculation cycle is obtained by accumulating the exhaustion source of all particles existing in the predetermined area of the predetermined calculation cycle. Find the strength. In addition, the method for predicting the diffusion state of a diffusing substance according to the present invention is to predict the state where a substance discharged into the atmosphere from a plurality of emission sources diffuses into the atmosphere, and replaces the foregoing substance with a plurality of particles, and sets each discharge source In each calculation cycle, a preset number of grains are generated 85181.doc -18-1227434; and multiple locations in the area containing the location of the emission source will show the direction of the wind over time. • The wind speed field data is substituted into the diffusion equation for calculating the diffusion state of particles, and the diffusion speed of each particle is obtained. From this diffusion speed, the spatial coordinates showing the spatial position of each particle at each calculation period are calculated and measured. From the elapsed time after the elapsed time when the aforementioned particle first occurred, the m-coordinate of each particle identifying each calculation cycle and the elapsed time after the evacuation of each particle and the evacuation source identification information of the evacuation source are recorded in advance in the data logger ; And proportional to the time elapsed after the elapsed time after the discharge of the substances & discharged by each discharge source For the change of the discharge amount, the discharge source intensity data of the particles is set in advance for each discharge source in accordance with the elapsed time after discharge; and each particle of each calculation period recorded in the aforementioned data recording device is read out. Space coordinates and the elapsed time after the discharge of each particle and the identification information of the discharge source of each particle, and refer to the read elapsed time after discharge to find the point of occurrence of each particle, and refer to the read out identification information of the discharge source to correspond to its particles. The intensity of the emission source of each particle at the time of particle generation is obtained from the foregoing emission source intensity data of the generated emission source, and the space coordinates of each particle corresponding to each per-calculation period and the ejection of each particle are recorded in the aforementioned data recording device. Time and the intensity of the emission source; The concentration of the aforementioned substance in a predetermined area of the disparate calculation period is obtained by accumulating the emission source intensity of all particles existing in the predetermined area of the predetermined calculation period. 85181.doc -19- 1227434 In addition, the method for predicting the expansion status of the expansion substance of the present invention, meaning the emission source intensity data, is obtained by actual measurement from the aforementioned emission source *: and the concentration of the second substance and is set; The non-existent object and the aforementioned "strength resource department" are based on the time change of the concentration of the substance that is continuously measured at the point of discharge from the Zhouyuan Garden. In addition, each of the "diffusion state prediction systems of the diffusive substance of the present invention has two different prediction systems." When the diffusive substance is discharged into the atmosphere, it has just been expanded, and the data of the discharge amount of the diffusive substance will be continued. The meteorological data communication facility is the meteorological observation data. The Supervisory Office is responsible for the aforementioned enterprises and the aforementioned enterprises. People, notify the evacuation advisory; and, in the analysis of U-systems, forecast the liquidation of the dispersed state of diffusing substances, and calculate the concentration of the substances in a given area; / It ’s in the full text analysis center 'from the aforementioned company The display of diffusible shellfish and meteorological observation data from the aforementioned meteorological data communication facilities were transmitted by means of information transmission; The concentration of the substance in the center is transmitted by means of information transmission. Difficulty: The above-mentioned supervisory office is notified to avoid the implementation mode according to the concentration of the substance transmitted. The following describes the implementation mode of the present invention in detail based on the drawings. Morphology (case where there are only one emission source ^> ^ noodles, ¾ Fig. 1 to Fig. 10_ explain the method for predicting the diffusion state of a diffusive substance, particularly a diffusion material, according to the first embodiment of the present invention. 85181.doc -20- 1227434 The first step of the first embodiment (refer to FIG. 1 of the calculation flowchart) is performed as follows. That is, even if the discharge amount of the substance actually discharged by the discharge source S is constant, the discharge amount changes over time. First, let the discharge amount Q (m3 / sec) of the substance be a fixed value (= 10), use the previous one

Lagranglan粒子擴散模型,數值計算粒子的動態。進—步, 除了各b子具有貝訊之空間座標(y⑴、y⑴、zi(t))外,將 最初發生粒子之時點之經過時間之排出後經過時間Ti⑴, 依每一各演算週期△(,記錄於資料記錄裝置i。 右具體的說明該第1步驟之處理,就如其次所述。該演 异,係在每一演算週期△ t(在此△ t = 2〇秒),使2〇個的粒子 發生,並且在在每一演算週期△ 1(2〇秒),演算粒子p的位 置(空間座標)。 首先’在演算開始時點,由排出源S發生20個的粒子 P〇〇01 ^ P〇〇02 ^ P〇〇03 > P〇〇〇4 ^ p〇〇05 ^ p〇〇06 ^ p〇〇07 ^ p〇〇〇8 ^ p^〇9 ^Lagranglan particle diffusion model, numerical calculation of particle dynamics. Further, in addition to the fact that each b has the spatial coordinates (y⑴, y⑴, zi (t)) of Bayson, the elapsed time Ti⑴ after the elapsed time at the time when the particles originally occurred is exhausted according to each calculation period △ ( , Recorded in the data recording device i. The specific description of the processing of the first step is as follows. The operation is performed at each calculation cycle Δt (here Δt = 20 seconds), so that 2 〇 particles are generated, and at each calculation period Δ 1 (20 seconds), the position (spatial coordinates) of the particle p is calculated. First, at the time of calculation start, 20 particles P are generated by the exhaust source S. 01 ^ P〇〇02 ^ P〇〇03 > P〇〇〇4 ^ p〇〇05 ^ p〇〇06 ^ p〇07 ^ p〇〇〇8 ^ p ^ 〇9 ^

Poo10、Poo11、P0。12、P0013、p〇〇14、p〇〇15、p〇〇16、?。。17、p〇〇18、 Poo19、P0020。 在由/貝异開始時點20秒後,由圖2顯示之排出源s再發生 20個的粒子p20Gi、p2Q〇2、p 20 03 P2004 P2005Poo10, Poo11, P0. 12, P0013, p0014, p0015, p0016,? . . 17, p0018, Poo19, P0020. After 20 seconds from the start point of / Beyer, 20 particles p20Gi, p2Q〇2, p 20 03 P2004 P2005 were generated by the emission source s shown in FIG. 2

P2008、P2009、P 2〇 -、P2011、P2012 ' p 13 20 P2〇14 P2〇17 P P20 06 07 20 、P20 15 . -n 16P2008, P2009, P 2〇-, P2011, P2012 'p 13 20 P2〇14 P2〇17 P P20 06 07 20, P20 15 .-n 16

P 20P 20

P 20 18 P2〇19 P2〇20 此時,在演算開始時點發生之粒子Poo01、P〇QG2、PQQ03、 P〇0'4 ' P〇〇°5 ^ P〇0°6 N P〇〇07 ^ Poo08 ' Poo09 > Poo10 ^ Poo11 ^ P〇〇12 ^ P〇°13、Pg〇14、Pg〇15、p〇。16、P。。17、P。。18、p。。19、p,,係 由排出源s到達離開之位置為止並且擴散。 85181.doc -21 - 1227434 各粒子P〇〇01〜Poo20的位置,係使用以RAMS (RegionalP 20 18 P2〇19 P2〇20 At this time, the particles Poo01, P〇QG2, PQQ03, P〇0'4 'P〇〇 ° 5 ^ P〇0 ° 6 NP〇〇07 ^ Poo08 'Poo09 > Poo10 ^ Poo11 ^ P〇〇12 ^ P〇 ° 13, Pg〇14, Pg〇15, p〇. 16. P. . 17, P. . 18. p. . 19, p, is from the point where the exhaust source s reaches the point where it leaves and diffuses. 85181.doc -21-1227434 The position of each particle POO01 ~ Poo20 is based on RAMS (Regional

Atmospheric Modeling System)代碼求得之每20秒刻度之風 速場資料,計算Lagrangian粒子擴散模型之各粒子 P〇〇〜P〇〇2()的擴散速度(u’ 、ν’ 、w’),藉使各粒子移動 求出。 進一步,在演算開始時點發生之粒子PggGi〜p⑽2〇,係由 續异開始時點(粒子最初發生之時點)經過2〇秒。在此,將 排出後經過時間Ti⑴=20秒,分別對應於各粒子ρ〇〇〇ι〜p〇〇2〇 的各二間座標(xi(t := 20))、yi(t= 20)、zi(t = 20),並記錄於 資料記錄裝置1(參照圖丨、圖2)。 在由演算開始時點40秒後,由圖3顯示之排出源S再發生 2〇個的粒子1>4,、p:、P:3、p4〇04、p:5、ρ:6、〜〇7、 Ρ4〇〇δ ^ Ρ4〇09 . Ρ4〇^〇 . ρ4〇π . ρ4〇ΐ2 , ρ4〇13 ^ ρ4〇14 ^ ρ4〇15 ^ ρ4〇16 ^ ρ4〇17、Ρ4018、PJ9、ρ4〇2〇。 此時’ ’在演算開始時點發生之粒子ρ〇〇01、ρ⑽〇2、ρ^〇3、 P〇°" ' P-05 ^ P〇〇°6 ' P〇〇07 ^ Poo08 ^ Poo09 ^ Poo10 ^ Poo- ^ p00-. h〇13、P〇。14、P00i5、P。,、p〇〇17、p。,、、p。, 由排出源S到達更離開之位置為止並且擴散。 另外’在由演算開始時點20秒後發生之20個的粒子 P2。、P2〇02、P2()〇3、P2〇〇4、P20°5、P20〇6、P2〇。7、P2〇08、p2〇〇9、 p2〇、P2〇n、P2。12、p2()i3、p2〇14、p‘5、p;6、p2〇17、p‘8、Atmospheric Modeling System) code to obtain wind velocity field data every 20 seconds scale, calculate the diffusion velocity (u ', ν', w ') of each particle P〇〇 ~ 〇〇 2 () of the Lagrangian particle diffusion model, and borrow It is obtained by moving each particle. Furthermore, the particles PggGi ~ p⑽20 that occurred at the start of the calculation are 20 seconds from the start of the resumption (the time when the particles first occurred). Here, the elapsed time Ti⑴ = 20 seconds after discharge corresponds to the respective two coordinates (xi (t: = 20)), yi (t = 20) of each particle ρ〇〇ι ~ p〇〇2〇. , Zi (t = 20), and recorded in the data recording device 1 (refer to Figure 丨, Figure 2). After 40 seconds from the start of the calculation, 20 more particles 1> 4, p :, P: 3, p404, p: 5, p: 6, ~ are generated from the emission source S shown in FIG. 3. 7.P4〇〇δ ^ P4〇09. P4〇 ^ 〇. Ρ4〇π. Ρ4〇ΐ2, ρ4〇13 ^ ρ4〇14 ^ ρ4〇15 ^ ρ4〇16 ^ ρ4〇17, P4018, PJ9, ρ4〇 2〇. At this time, '' particles ρ〇〇01, ρ⑽〇2, ρ ^ 〇3, P〇 ° which occurred at the start of the calculation '"' P-05 ^ P〇〇 ° 6 'P〇07 ^ Poo08 ^ Poo09 ^ Poo10 ^ Poo- ^ p00-. H〇13, P〇. 14, P00i5, P. ,, p0017, p. ,,, p. From the point where the discharge source S reaches a more distant position and spreads. In addition, 20 particles P2 occurred 20 seconds after the start of the calculation. , P2O02, P2 (3), P2O4, P20 ° 5, P2O6, P2O. 7, P2 08, p 2 0 09, p 2 0, P 2 0n, P 2. 12, p 2 () i 3, p 2 0 14, p '5, p; 6, p 2 0 17, p' 8,

?2〇19、P2〇2G,係由排出源S到達離開之位置為止並且擴散。 各粒子P000 1〜P0〇2〇、p2:〜p2〇2〇的位置,係使用以RAMS (Regional Atmospheric Modeling System)代碼求得之每 2〇 85181.doc -22- 1227434 秒刻度之風速場資料,計算Lagrangian粒子擴散模型之各 粒子 P〇()()1 〜Pgg'P/1 〜P2〇2G 的擴散速度(u, 、v, 、w,), 藉使各粒子移動求出。 進一步’在演算開始時點發生之粒子Pgg01〜P⑽,係由 演算開始時點(粒子最初發生之時點)經過40秒。在此,使 排出後經過時間丁丨⑴=4〇秒,分別對應於各粒子⑽2〇 的各芝間座標(xi(t== 4〇))、yi(t= 4〇)、zi(t== 4〇),並記錄於 資料記錄裝置1(參照圖1、圖3)。 另外’從演算開始時點2〇秒後發生之粒子p2Q〇i〜Ρμ2〇, 係由演算開始時點(粒子最初發生之時點)經過20秒。在 此,使排出後經過時間Ti⑴=2〇秒,分別對應於各粒子 P2〇01 〜P2020 的各空間座標(xi(t= 4〇))、yi(t= 4〇)、叫卜 4〇), 並元錄於資料記錄裝置1(參照圖1、圖3)。 在由演算開始時點60秒後,由圖4顯示之排出源s再發生 20個的粒子 p6〇01、p6〇02、P6〇03、P6〇04、P6〇05、P6Q〇6、p\ P6°08、P6。。9、P6〇1()、P6〇U、P6012、P6〇13、P6〇14、P6〇15、?6。16、 P6〇17、P6。18、P6。19、p6〇2。。 6〇 此時,,在演算開始時點發生之粒子Μ P〇〇04 ^ Poo05 ^ Poo06 ^ P000^ . p〇〇〇S . p〇〇〇9 ^ p〇〇1〇 ^ p〇〇11 ^ 〇〇i2 ' p 13 -p. 14 〇0、 P〇〇、P〇o、P0015、P〇〇i6、P(K)i7、p〇〇i8、p〇〇19 r〇〇 ,儀 排出源S到達更離開之位置為止並且擴散。 由演算開始時點20秒後發生之 p 〇3 ^ 20 、 p 04 k p 05 ^20 、 p 06、 ^20 、 p 〇'7 ^20 、 P 12 ^20 、 p 13 ^ 20 、 s p 14 尸20 、 p 15 ^20 、 p 16 f 20 N 20個的粒子 p 08 ”20、!&gt;2〇〇9、 p 17 ^ p20 、1&gt;2〇18、 另外,在 P2〇〇1、P20。2、 N10、p2〇n、 8518l.doc -23 - 1227434 ?2° 、P20 ’係由排出源8到達更離開之位置為止並且更 擴散。 另外’在由演算開始時點40秒後發生之20個的粒子 P4001 ' P4〇02 ^ P4〇03 &gt; P4〇04 . P4〇〇5 . p4〇〇6 , p4〇07 ^ p4〇〇8 ^ ?^〇9 ^ P4〇10 ^ P4〇U ^ P4〇12 ^ P4013 . P4〇i4 λ p4〇i5 ^ p4〇i6 , p4〇i7 ^ p4〇18 ^ Ό 19 2 0 P40 、P40 ,係由排出源s到達離開之位置並且更擴散。 各粒子P:〜P:、〇2〇2〇、P:〜p4〇2〇的位置,係使 用以 RAMS (Regional Atmospheric Modeling System)代碼 求得之每20秒刻度之風速場資料,計算Lagrangian粒子擴 散模型之各粒子PG,〜、p2:〜p;。、P4gG1〜P4g2()的擴散 速度(U’ 、V’ 、W’ ),藉使各粒子移動求出。 進一步,在演算開始時點發生之粒子p⑽(Π〜pG()2(),係由 演异開始時點(粒子最初發生之時點)經過60秒。在此,使 排出後經過時間Ti⑴=60秒,分別對應於各粒子Ρ()()〇ι〜Ρ()()2〇 的各空間座標(X1(t= 6〇))、yi(t= 6〇)、zi(t= 6〇),並記錄於 資料記錄裝置1 (參照圖1、圖4)。 另外,從演算開始時點2〇秒後發生之粒子P2〇()1〜p^2〇, 係由次异開始時點(粒子最初發生之時點)經過4〇秒。在 此,使排出後經過時間Ti⑴二4〇秒,分別對應於各粒子 p2001 〜P2020 的各空間座標(xi(t= 60))、yi(t= 6〇)、Zi(卜 6〇卜 並1己錄於資料記錄裝置1 (參照圖1、圖4)。 另外’從演算開始時點40秒後發生之粒子ρ4〇〇ι〜p4Q2〇, 係由演算開始時點(粒子最初發生之時點)經過20秒。在 此,使排出後經過時間Ti⑴=20秒,分別對應於各粒子 85181.doc -24- 1227434 P4001 〜P4020的各空間座標(Xi(t= 6〇))、yi(t= 6〇)、zi(t= 6〇), 並記錄於資料記錄裝置1 (參照圖1、圖4)。 如上述,陸績的使2 0個之粒子發生於每一演算週期△t (20秒),並且求出各每一演算週期△“川秒)之粒子的位 置,也就是空間座標(Xi(t)、yi(t)、zi⑴)。另外,預先計測 各演算週期Δΐ之排出後經過時間Ti(t),使其對應各演算週 期 &lt; 各空間座標與各粒子的排出後經過時間,陸續的記錄 於資料記錄器1。 其次,具體的說明第2步驟(參照圖丨)。在前述之第丄步 驟,已將物質的排出量Q(m3/sec)作為一定值(=1〇)進行數 值計算。但是,由實際之排出源s所排出之物質的排出量, 係如圖5所顯示,較多隨著排出後過時間Ti⑴的經過而變 化。在此,如此在排出量隨著時間變化的情形,對於因應 該圖5所顯示之物質的排出量變化,如圖6所顯示,隨著: 出後經過時間Ti⑴的時間經過之粒子,設定顯示排出源強 度之資料。 秒 又只饤,例如排叫说版取呷间B⑴』 、20秒、60秒’則排出源強度分別形成0.3、0.9、0β6 其次,記錄於資料記錄裝置1,讀出各每-演算週期, 各粒:的工間㈣與各粒子的排出後經過時間L⑴,並 在各每粒子,參照其排出後經過時間丁i⑴,求出 發生之時點,由圖6所千姐山、, / ㈡6所不排出源強度資料求出在該 各粒子的排出源強度。進一 ^ y 仗备权子的空間座垆盥^ 粒子的排出後經過時間丁·“ r /、t 1⑴與排出源強度對應於各每一讀 85181.doc -25- 1227434 算週期,再記錄於資料記憶裝置!。 若具體的說明,作為當排出後經 過時間Ti(t)為20秒時(第 i次之演算週期)的資料,係對應各粒子P:〜p/的各空間 座標(xi(t = 20))、yi(t= 20)、zi(t = 2〇),與排出後經過 Ti⑴=20秒,並記錄於資料記錄裝置丨(參照圖。。 印 在此,讀出該各粒子P:〜P〇〇2〇的各空間座標(xi^ 20))、yi(t = 20)、Zi(t = 20),與排出後經過時間邱)二 秒,藉由現在的時刻t= 20秒減去排出後經過時間Ti⑴=2〇 秒’求出各粒子P:〜P。’發生之時點之排出後經過時間 Ti⑴=0秒。而且’由圖6顯示之排出強度資料,求出當發 生粒子P0001〜P0020時之排出後經過時間Ti⑴=〇秒時之排出 源強度0.3。 而且,對應各粒子PG。01〜P⑽20的各空間座標 yi(t— 20)、Z1(t= 20),與排出後經過時間Ti(t)= 2〇秒,與 各粒子PGG〜PGG的排出源強度〇·3,再記錄於資料記錄器 另外,作為排出後經過時間Ti⑴=4〇秒時(第2次演算週 期)〈貝料,係對應各粒子ρ〇〇οι〜p⑽2〇的各空間座標= 40)) yiG — 40)、zi(t = 40),與排出後經過時間 TRt) = 40 心及各粒子P2〇〇1〜Ρ2〇20的各空間座標(Xi(t= 40))、yi(t = 4〇)' Z1(t=4〇) ’與排出後經過時間Ti⑴=20秒,並記錄於 資料?己錄裝置1(參照圖3)。 在此,碩出各粒子Poo01〜Poo20的各空間座標(xi(t= 40))、 yi〇 4〇)、Z1(t= 40),與排出後經過時間Ti⑴=40秒,藉 85181.doc -26- 1227434 由現在的時刻t= 40秒減去排出 出各粒子生之時&amp;之排^ Tl⑴=40秒,求 占又排出後經過時間Ti(t)=0 秒。而且,由圖6顯示之排出 ^ 20 反,、行求出當發生粒子? 2019 and P202G are diffused from the source S until they leave. The positions of each particle P000 1 ~ P0〇2〇, p2: ~ p2〇2〇 are wind speed field data per 2085181.doc -22-1227434 seconds scale obtained using RAMS (Regional Atmospheric Modeling System) code. , Calculate the diffusion velocity (u,, v,, w,) of each particle P0 () () 1 ~ Pgg'P / 1 ~ P2022G of the Lagrangian particle diffusion model, and obtain it by moving each particle. Furthermore, the particles Pgg01 ~ P⑽ that occurred at the start point of the calculation have passed 40 seconds from the start point of the calculation (the point at which the particles first occurred). Here, the elapsed time after discharge is D0 = 40 seconds, which corresponds to the respective coordinates (xi (t == 4〇)), yi (t = 4〇), zi (t == 4〇) and recorded in the data recording device 1 (refer to FIG. 1 and FIG. 3). In addition, the particles p2Q0i ~ Pμ20, which occur 20 seconds after the start of the calculation, have elapsed 20 seconds from the start of the calculation (the time when the particles first occurred). Here, the elapsed time Ti 排出 = 20 seconds after discharge corresponds to the respective space coordinates (xi (t = 4〇)), yi (t = 4〇), and 卜 4〇 of each particle P201 ~ P2020. ), And recorded in the data recording device 1 (see FIG. 1 and FIG. 3). After 60 seconds from the start of the calculation, another 20 particles p6001, p6002, P6003, P6004, P6005, P6Q〇6, p \ P6 were generated from the emission source s shown in FIG. 4. ° 08, P6. . 9, P6〇1 (), P60U, P6012, P6〇13, P6〇14, P6〇15,? 6.16, P6017, P6.18, P6.19, p602. . 6〇 At this point, the particles M P〇〇04 ^ Poo05 ^ Poo06 ^ P000 ^. P〇〇〇S. P〇〇09 ^ p〇〇1〇 ^ p〇〇11 ^ 〇 〇i2 'p 13 -p. 14 〇0, P〇〇, Po 0, P0015, P00i6, P (K) i7, p00i8, p0019 r〇〇, the instrument exhausts the source S Reached further departures and spread. P 〇3 ^ 20, p 04 kp 05 ^ 20, p 06, ^ 20, p 〇'7 ^ 20, P 12 ^ 20, p 13 ^ 20, sp 14 corpse 20, p 15 ^ 20, p 16 f 20 N 20 particles p 08 ”20,! &gt; 009, p 17 ^ p20, 1 &gt; 2018, and P20, P20.2. N10, p2ON, 8518l.doc -23-1227434? 2 °, P20 'is from the emission source 8 to a more distant position and more diffuse. In addition, '20 particles occurred 40 seconds after the start of the calculation P4001 'P4〇02 ^ P4〇03 &gt; P4〇04. P4〇〇5. P4〇〇6, p4〇07 ^ p4〇〇8 ^? ^ 〇9 ^ P4〇10 ^ P4〇U ^ P4〇12 ^ P4013. P4〇i4 λ p4〇i5 ^ p4〇i6, p4〇i7 ^ p4〇18 ^ 2 19 2 0 P40, P40, is reached by the exhaust source s and left more diffuse. Each particle P: ~ P :, 〇2〇2〇, P: ~ p4〇2〇 position, using the RAMS (Regional Atmospheric Modeling System) code every 20 seconds scale wind speed field data to calculate the Lagrangian particle diffusion model of each particle PG , ~, P2: ~ p;., P4gG1 ~ P4g2 () The velocity (U ', V', W ') can be obtained by moving each particle. Further, the particles p⑽ (Π ~ pG () 2 () that occur at the start point of the calculation are calculated from the start point of the evolution (the particles first occur At that time, 60 seconds have elapsed. Here, the elapsed time Ti⑴ = 60 seconds after discharge corresponds to each space coordinate (X1 (t = 6) of each particle P () () 〇ι ~ Ρ () () 2〇 〇)), yi (t = 6〇), zi (t = 6〇), and record them in the data recording device 1 (see Figs. 1 and 4). In addition, the particle P2 occurred 20 seconds after the start of the calculation. 〇 () 1 ~ p ^ 2〇 means that 40 seconds have elapsed since the start of the sub-iso (the time when the particles first occurred). Here, the elapsed time Ti = 240 seconds after discharge corresponds to each particle p2001 to P2020 Each space coordinate (xi (t = 60)), yi (t = 60), Zi (bu 60b and 1) have been recorded in the data recording device 1 (refer to FIG. 1, FIG. 4). In addition, 'from the calculation The particles ρ4〇ι ~ p4Q20, which occurred 40 seconds after the time point, passed 20 seconds from the time when the calculation started (the time when the particles first occurred). Here, the elapsed time Ti⑴ = 20 seconds after discharge corresponds to each space coordinate (Xi (t = 6〇)), yi (t = 6〇), 85181.doc -24-1227434 P4001 to P4020, zi (t = 60), and recorded in the data recording device 1 (see FIG. 1 and FIG. 4). As described above, Lu Ji caused 20 particles to occur at each calculation period △ t (20 seconds), and obtained the position of the particles at each calculation period △ "chuan seconds", which is the space coordinate (Xi ( t), yi (t), zi⑴). In addition, the elapsed time Ti (t) after discharge of each calculation period Δΐ is measured in advance so that it corresponds to each calculation period &lt; elapsed time after discharge of each spatial coordinate and each particle, successively Recorded in the data recorder 1. Next, the second step (refer to Figure 丨) will be described in detail. In the aforementioned first step, the discharge amount Q (m3 / sec) of the substance has been set to a fixed value (= 10). Numerical calculation. However, the discharge amount of the substance discharged from the actual discharge source s is as shown in FIG. 5, and it often changes as the elapsed time Ti 时间 elapses. Here, the discharge amount changes with time. For the changing situation, as shown in Fig. 6, the discharge amount of the substance corresponding to the change shown in Fig. 5 is set as follows: With the elapsed time after the time Ti elapses, the data showing the intensity of the discharge source is set. , Such as platooning and speaking version to take 呷 间 B⑴ ’, 20 seconds and 60 seconds', the intensity of the emission source is 0.3, 0.9, and 0β6, respectively. Secondly, it is recorded in the data recording device 1 and reads out every calculation period. And, for each particle, referring to the elapsed time D i 排出 after its discharge, find the time point of occurrence, and use the intensity data of the source of non-discharge source in Figure 6 to find the intensity of the source of the particle. ^ Y The space seat of the weighted unit 垆 ^ The elapsed time after the discharge of the particles D. "r /, t 1⑴ and the intensity of the discharge source correspond to each reading 85181.doc -25- 1227434 calculation cycle, and then recorded in Data memory device! . If specifically explained, as the data when the elapsed time Ti (t) is 20 seconds after the discharge (i-th calculation period), it is the spatial coordinates corresponding to each particle P: ~ p / (xi (t = 20) ), Yi (t = 20), zi (t = 2〇), and Ti⑴ = 20 seconds after discharge, and recorded in the data recording device 丨 (refer to the figure. Printed here, read out each particle P: ~ The space coordinates (xi ^ 20)), yi (t = 20), Zi (t = 20), and the elapsed time after discharge (Qiu) of P0020 are two seconds, with the current time t = 20 seconds minus The elapsed time Ti⑴ = 20 seconds after de-emission is performed, and each particle P: ~ P is obtained. 'Elapsed time after exhaustion at the time of occurrence Ti⑴ = 0 seconds. Further, from the discharge intensity data shown in Fig. 6, the discharge source intensity 0.3 when the elapsed time Ti⑴ = 0 seconds after the discharge when the particles P0001 to P0020 occurred was obtained. It also corresponds to each particle PG. The space coordinates yi (t-20), Z1 (t = 20) of each space from 01 to P⑽20, and the elapsed time after discharge Ti (t) = 20 seconds, and the intensity of the emission source of each particle PGG ~ PGG 0.3, and Recorded in the data logger. In addition, when the time elapsed after discharge Ti⑴ = 40 seconds (the second calculation cycle) <Shell material, corresponding to each space coordinate of each particle ρ〇〇οι ~ p⑽2〇 = 40)) yiG — 40), zi (t = 40), and elapsed time TRt after ejection = 40 center and each space coordinate (Xi (t = 40)) of each particle P2001-P2020, yi (t = 4〇 ) 'Z1 (t = 4〇)' and elapsed time Ti 排出 = 20 seconds after discharge, and recorded in the data? The recorded device 1 (see FIG. 3). Here, the space coordinates (xi (t = 40)), yi〇4〇), Z1 (t = 40) of each particle Poo01 ~ Poo20 are identified, and the elapsed time Ti 排出 = 40 seconds after discharge, borrowed 85181.doc -26- 1227434 Subtract from the current time t = 40 seconds, the time when the particles are discharged &amp; the discharge ^ Tl⑴ = 40 seconds, find the elapsed time Ti (t) = 0 seconds after the discharge. Moreover, from the discharge shown in Fig. 6, ^ 20 is reversed, and when the particles are generated,

P 0.3 P〇0 0時之排出後經過時間Ti⑴=〇秒時 之排出源強度 同樣的’讀出各粒子p 01〜p 2〇的 00的各空間座標(xi(t = 4〇))、yi(t=4〇)、zi(t=4〇),與排 斗 ”讲扣傻經過時間Ti⑴=20 秒’藉由現在的時刻t = 4 0秒減去排ψ你Αν 馮云排 出後經過時間 Ti(t)=2〇 秒,求出各粒子Pm01〜P 2〇發峰夕每 知生 &lt; 時點 &lt; 排出後經過時間P 0.3 P 0 0 elapsed time after discharge Ti 0 = 0 seconds The intensity of the discharge source at the same time is' read out each spatial coordinate of 00 of each particle p 01 to p 2 0 (xi (t = 4〇)), yi (t = 4〇), zi (t = 4〇), and the platoon "talk deductive silly elapsed time Ti⑴ = 20 seconds' minus the row ψ your current time t = 40 seconds after you Αν Feng Yun discharged The elapsed time Ti (t) = 20 seconds, and each particle Pm01 to P 2 0 peaks and peaks per day &lt; time point &lt; elapsed time after discharge

Ti⑴=20秒。而且,由圖6顯示之排出強度資料,求出當發 生粒子P2001〜P2〇2〇時之排出後細 听W佼訌過時間丁1(t)= 20秒時之排 出源強度0.5。 而且,對應各粒子P:〜Ρ〇γ的各空間座標(xi(t=4〇))、 yi(t=4〇)、Zi(t=40),與排出後經過時間Ti(t)=4〇秒,與 各粒子P〇〇 P00白勺排出源@度〇·3,再記錄於資料記錄器 另外,對應各粒子P:〜p2〇2〇的各空間座標⑽=4〇))、 yi(t=40)、zi(t=40),與排出後經過時間Ή⑴=2〇秒,與各 粒子P2/1〜Ρ^2ϋ的排出源強度〇.5,再記錄於資料記錄器1。 另外,作為排出後經過時間Ti(t)= 6〇秒時(第3次演算週 期)之資料,係對應 各粒子Poo01〜P002〇的各空間座標(xi(t= 6〇))、yi(t= 6〇)、 zi(t= 60) ’與排出後經過時間Ti〇 6〇秒、及 各粒子P20〜P202()的各空間座標(xi(t= 6〇))、yi(t= 6〇)、 851Sl.doc -27- 1227434 zi(t=6〇),與排出後經過時間TKt)=4〇秒、以及 各粒子?40〜?40的各空間座標(xi(t= 60))、yi(t= 60)、 zi(t 6〇) ’與排出後經過時間Ti(t)= 2〇秒,並記錄於資料 記錄裝置1(參照圖4)。 a 在此,讀出各粒子P:〜P〇〇2〇的各空間座標(xi(t = 6〇))、 yi(t=6〇)、zi(t=60),與排出後經過時間Ti(t)=6〇秒,藉 由現在的時刻t = 60秒減去排出後經過時間Ti⑴=60秒,求 出各粒子P。。。1〜Pgq20發生之時點之排出後經過時間邱卜〇 秒而且2。,由圖6顯示之排出強度資料,求出當發生粒子Ti⑴ = 20 seconds. Furthermore, from the discharge intensity data shown in Fig. 6, the emission source intensity 0.5 when the emission time when particles P2001 to P2020 occurred was monitored, and the time elapsed time D1 (t) = 20 seconds was 0.5. Furthermore, the space coordinates (xi (t = 4〇)), yi (t = 4〇), Zi (t = 40) corresponding to each particle P: ~ P〇γ and the elapsed time Ti (t) = 40 seconds, and the emission source @ 度 〇 · 3 of each particle P00P00, and then recorded in the data logger. In addition, each space coordinate corresponding to each particle P: ~ p2200 (〇 = 4〇)), yi (t = 40), zi (t = 40), elapsed time after discharge Ή⑴ = 20 seconds, and intensity of discharge source of each particle P2 / 1 ~ P ^ 2ϋ 0.5, and then recorded in data recorder 1 . In addition, as the data when the elapsed time Ti (t) = 60 seconds (the third calculation period) after discharge, the data is corresponding to the spatial coordinates (xi (t = 6〇)), yi ( t = 6〇), zi (t = 60) 'and elapsed time Ti060 seconds after discharge, and each space coordinate (xi (t = 60)) of each particle P20 ~ P202 (), yi (t = 6〇), 851Sl.doc -27-1227434 zi (t = 60), and elapsed time after discharge TKt) = 40 seconds, and each particle? 40 ~? Each space coordinate of 40 (xi (t = 60)), yi (t = 60), zi (t6〇) 'and elapsed time after discharge Ti (t) = 20 seconds, and recorded in the data recording device 1 ( (See Figure 4). a Here, read out the space coordinates (xi (t = 6〇)), yi (t = 6〇), zi (t = 60) of each particle P: ~ P〇〇〇〇, and the elapsed time after discharge Ti (t) = 60 seconds, and the current time t = 60 seconds minus the elapsed time after discharge Ti⑴ = 60 seconds, and each particle P is obtained. . . 1 ~ Pgq20 occurs at the time elapsed after discharge Qiu Bu 0 seconds and 2. From the discharge intensity data shown in Figure 6, find out when the particles occur

Poo01〜P。。2。時之排出後經過時間Ti⑴=〇秒時之排出源強度 0·3 〇 同樣的,讀出各粒子〇2020的各空間座標(xi(卜 6〇))、yi(t=60)、zi(t=60),與排出後經過時間 Ti ⑴=4〇 秒,藉由現在的時刻t= 60秒減去排出後經過時間丁1⑴= 秒,求出各粒子〇2。2。發生之時點之排出後經過時間 Tl⑴=2〇秒。而且’由圖6顯示之排出強度資料,求出當發 生粒子p2,〜p2、之排出後經過時間Ti⑴=2q秒時 出源強度0.5。 同樣的,讀出各粒子p4〇〇1〜P4〇2o的各空間座標 60))、沖=60)、邱=60)’與排出後經過時間_)=20 秒,藉由現在的時刻t=60秒減去#出後經過時間叫d 秒’求出各粒子〜P,發生之時點之排出後經過時間 Ti⑴=卿。而且,由議示之排㈣度資料,求出當發 生粒子Ρ4〇〜°時之排出後經過時間释40秒時之排 85181.doc -28 - 1227434 出源強度〇·9。 而且,對應各粒子Ρ〇〇()1〜Ρ⑽20的各空間座標(xi(t=60))、 yi(t=60)、zi(t=60)’與排幻灸經過時間Ti⑴=6〇秒,與 各粒子Poo〜P〇〇 G的排出源強度〇 3,再記錄於資料記錄器 1 ° 另外,對應各粒子P,〜P,的各空間座標(xi(t=6〇))、 yi(t=60)、zi(t=60),與排出後經過時間Ti⑴=4〇秒,與 各粒子P2GG1〜Ρ2γ的排出源強度〇 5,再記錄於資料記錄器 1 ° 另外’對應各粒子P4〇01〜p‘0的各空間座標㈤(t=6〇》、 yi(t=60)、zi(t=60),與排出後經過時間Ti⑴=2〇秒,與 各粒子P4〇 Pm的排出源強度0·9,再記錄於資料記錄器 1 ° 即使在以後〈演算週期,做同樣之處理演算,對應各粒 子的各空間座標、與排出後經過時間Ti⑴、與各粒子的排 出源強度,再記錄於資料記錄裝置。 其次,具體的說明第3步驟(參照圖丨)的處理。例如當在 排出後經過時間Ti⑴=12〇秒時,計算由如圖7顯示之排出 源S,在離開既定距離之既定之格子區域(形成單位體積之 單位工間)1、j、κ之物質的濃度,由資料記錄器工讀出排出 後經過時間Ti⑴=12〇秒之存在於該格子區域之粒子。讀出 時、如圖7頭不之粒子存在的情形,藉累計具有此等各粒 子之排出源強度,可以計算該單位空間之物質的濃度。 也畎是,在圖7顯示之隔子區域存在著有: 85181.doc -29- l227434 強度為0 = 3之4個之粒子pqq〇i、Ρϋ()〇5、、1()、 · 強度為〇。5之3個之粒子P2()G1、ρ2()〇7、; 強度為〇。9之2個之粒子、P4〇ig ·,及 強度為ΟA之1個之粒子p6Qn ; 為此,藉如其次之累計此等粒子的排出源強度,可以二 算出該單位空間之物質的濃度為51。 以计 (0.3X4)+ (0.5X3)+ (0.9X2)+ (0.6 X 1)= 5·!。 若一般的(數學的)說明前述之第丨之實施形態,就如其a 所述、。在第!之實施形態,如圖8所示,在物質(氣體等二 排出源s排出時,配合時間變化預測排出源s之風下之格子 區域I、J、K之物質濃度(氣體濃度)。而且,如圖9(辦顯 二’在物質的排出量q一定的情形,不用說如圖9㈦所顯 不,可以預測演算格子區域卜卜&amp;的濃度時間變化,如圖 ()所頌示,即使物質的排出量為時間變化之排出量 q⑴’如圖iG(b)所顯示,亦可以預測演算格子區域的濃度 時間變化。 在第1 Μ她形態,首先,由排出源s實際所排出之物質的 量Ρ使足’排出量隨著時間經過變化的情形,首 ^將物質的排出量Q(m3/sec)作為一定值(=ί 〇),使用先 月J &lt; Lagranglan粒子擴散模型,將物質替換為粒子,由排 出源S使每秒N個之粒子發生,數值計算各粒子的動態,求 …、7^粒子的位置之空間座標(xi(t)、yi(t)、zi⑴)。進一步, 除了各粒子具有之資訊之空間座標(xi(t)、yi⑴、zi(t))之 外,在各每一演算週期At,將由最初發生粒子之時點之經 85181.doc -30 - 1227434 過時間之排出後經過時間Ti(t),記錄於資料記錄裝置。藉 此,利用先前之Lagrangian粒子擴散模型,可以計測對應 時間變化之所有排出量q(t)之濃度分布之時間變化。 為此,設定比例於時間變化之物質的排出量q(t)之顯示 隨著排出後經過時間Ti⑴的時間經過對粒子之排出源強度 &lt;資料。而且,在某時刻(t),由資料記憶裝置讀出顯示各 粒子的位置之空間座標(Xi(t)、yi⑴、zi(t))與排出後經過時 間 Ti(t) 〇 在一定排出量(Q = 1 ·〇)的情形,各粒子的排出源強度雖 為Q/N(m3)=l/N,不過在時間變化之排出量q(t)的情形, 則各粒子的排出源強度形成q(t— Ti)/N(m3)。 再一次,除了各粒子具有之資訊之空間座標(xi(t)、 yi(t)、zi(t))之外,在各每一時刻⑴,將排出後經過時間丁丨⑴ 及各粒子的排出源強度qi(t — Ti)/N(m3),再記錄於資料記 錄裝置。 在利用對應於Lagrangian粒子擴散模型、與排出後經過 時間、與時間變化之排出量9之排出源強度q(t — Ti)/N(m3) 之本實施例,由於空間中之單位體積中(空氣lm3)之各粒子 具有之排出源強度不同,所以累計各粒子之排出源強度 qi(t- Ti)/N(m3)i Σ qi(t— Ti)/N(m3),形成存在於該單位體 積中之氣體。從而,該空氣中氣體濃度成為Σ qi(t〜 Ti)/N(m3)/N(氣體 m 3/空氣 m3)。 &lt;第2貫施形態(排出源多數的情形)〉 排出源存在多數(j個),由分別之排出源,以時間變化不 85181.doc -31 - 1227434 同 &lt; 排出量(qj(t))排出物質的情形,加上在第1實施形態使 用之Lagrangian粒子擴散模型之粒子資訊(位置、放出後經 ^寺間)藉使各粒子持有排出源識別資訊(si)可以發揮與 第1實施形態相同之功能。 例如如圖11所顯示,在具有2個之排出源S1、§2的情形, 使由排出源si排出之粒子持有排出源識別資訊sl,使由排 出源S2排出之粒子持有排出源識別資訊。而且使用 Lagrangian粒子擴散模型,將物質替換為粒子,由兩排出 、S2分別發生每秒〜個之粒子,數值計算各粒子的動 毖,求出顯示粒子的位置之空間座標(xi(t)、yi⑴、匕⑴)。 進-步’除了各粒子具有之資訊之空間座標(χί⑴、^⑴、 _))之外,使其持有由最初發生粒子之時點之經過時間之 排出後經過時間Ti⑴、與排出源識別資訊U、&amp; 、,圖12⑷所顯示,由排出源S1、似斤排出之排出量q, 作為疋(1),利用先前之Lagrangi如粒子擴散模 型,求出如圖12⑻所顯示之格子區域Η、質 度時間變化,並預先記綠。 、其次,由排出源“所排出之物質的排出量,如圖邮 &lt;虛線所顯7F,若為時間變化之 4 I)針對由孩排出 t子,以與第1實施形態相同之方法,將粒子2 排出源強度作為ql(t)。而且,在各每一 :权卞’參照並 發生之時點之排出源強度q!⑴’設定排出源強度:、:^ 果’在所要之格子區域w、K,藉累 別 85181.doc -32- 1227434 物兔的濃度(所要之格子區域〗、j、κ之物質濃度)之時間變 化。 同樣的,由排出源S2所排出之物質的排出量,若為 q2(t),針對由該排出源81所放出之粒子,以與第丄實施形 悲相同&lt;方法,將粒子之排出源強度作為以⑴。而且,在 各每一粒子,參照其粒子發生之時點之排出源強度q2(t), 設定排出源強度。其結果,在所要之格子區域卜卜&amp;,藉 累计具有排出源識別資訊s2之粒子之排出源強度,可以求 出由排出源S2所排出之物質的濃度(所要之格子區域卜卜 K之物質濃度)之時間變化。 如此,猎加上由排出源S1所排出之物質的濃度之時間變 化’與由排ώ源S2所排出之物質的濃度之時間變化,可以 求出所要格子區域卜J、Κ之物質的濃度。 &lt;第3實施形態&gt; 第3只施形毖,係例如發生氣體漏洩事故之後,依據氣 體的排出量之實測έ士軍 貝^結果,在短時間内計算現狀及未來的濃 度分布之方法。 環境影響評估等夕被 &lt;擴政計畫,由於在緊急時不需要計算 結果,所以隨菩眭 者寺間的經過決定氣體的排出量q(t)之後, 由數日經過數個H i 十 月的時間,實施氣體的擴散狀況之預測演 =。但是,在如氣體戌漏事故等緊急時,由於有必要緊急 採取周邊居民的避m .、 雖對束,所以必須儘可能在短時間内輸 出擴散計算結果。 如此情形,依擔 蘇各時刻之3度空間風速分布,如圖 85181.doc •33 - 1227434 所示,以與第1之實施形態相同之Lagrangian粒 子擴散模型,24小時連續預先實施一定放出率(Q =丨)。 氣體漏洩事故發生後,由設置於排出源之煙囪的出口之 氣體濃度測定裝置等,測定實際氣體排出量q(t)。因應該 實際氣體排出量q(t),藉設定各粒子之排出源強度q(t),以 與第1實施形態相同之方法,可以修正計算對應該氣體排 出量之濃度時間變化(參照圖14((1)(6))。也就是,在各每一 粒子,參照其粒子發生之時點之排出源強度q(t),設定排 出源強度(圖14(d))。而且,在所要之格子區域hj'K,藉 累計存在於其區域之粒子的排出源強度,可以求出由排出 源S所排出之物質的濃度(所要之格子區域卜了、尺之物質濃 度)之時間變化。 又,未來之氣體排出量,係作為與現狀之實測氣體排出 量q(t)等值,或依據他法所設定之預測式加以計算。 將現在及未來之3度空間風速分布作為計算之方法,係 有利用由氣象局等定期的所傳訊之廣域格子(2〇k叫之氣象 資料(GPV : Grid Point Value),以廣域氣象預測^刑 (RAMS、MM5等)計算詳細格子(數km〜數丨〇m)氣象資料 向、風速、氣溫)的變化之方法。 &lt;第4實施形態&gt; 第4實施形態,係例如氣體洩漏事故發生之後,依據洩 漏處所周邊之濃度實測結果,在短時間内計算現狀之$歸 的排出量的方法。 ^ 14 發生氣體漏戌事故的情形,如圖15⑷所顯示由徘出源之 85181.doc -34- 1227434 氣此漏戌源s的排出量q(t),測定困難的情形較多,如此情 形’由在;属戌處所周邊觀測黑占(xk)所實測之濃度(ck⑴)的 時m使用第i實施形態的咖雄子擴散模型, 在短時間内可以推測排出量q(t)。 在漏戌事故發生I,使用第1實施形態的Lagrangian粒子 擴散模型,以一定排出量(Q=l)(參照圖15(b))預先計算某 周邊觀測點(xk)的濃度(Ck⑴計算)(參照圖^⑷)。 孩濃度(ck(t)計算),係以觀測點(xk)為中心,由存在於3 度至間體積(ΔχΧΑΑΑζ)中之粒子(η個),以其次之公式 (10)算出者。Poo01 ~ P. . 2. The elapsed time after the discharge time Ti⑴ = 0 seconds. The intensity of the discharge source is 0.3. Similarly, the spatial coordinates (xi (Bu 60)), yi (t = 60), zi ( t = 60), and the elapsed time Ti4 = 40 seconds after the discharge, and the current time t = 60 seconds minus the elapsed time after discharge D = 1 秒 = seconds, to obtain each particle 0.2.2. The elapsed time after discharge at the time point Tl⑴ = 20 seconds. Further, from the discharge intensity data shown in Fig. 6, when the particles p2, ~ p2, and elapsed time Ti 排出 = 2q seconds after discharge have been obtained, the source intensity is 0.5. Similarly, read out the space coordinates 60)), Punch = 60), Qiu = 60) 'of each particle p4OO1 ~ P4o2' and the elapsed time after discharge _) = 20 seconds, with the current time t = 60 seconds minus #The elapsed time after the exit is called d seconds' to find each particle ~ P, and the elapsed time after discharge at the time of occurrence Ti⑴ = qing. In addition, from the data on the degree of exhaustion discussed, the exhaustion when the elapsed time of 40 seconds after the discharge of the particles P4 ° to °° is released is 85181.doc -28-1227434 and the emission intensity is 0.9. In addition, the spatial coordinates (xi (t = 60)), yi (t = 60), zi (t = 60) 'and the elapsed time of the illusion moxibustion Ti⑴ = 6 corresponding to each particle P00 () 1 ~ P20. Seconds, and the emission source intensity of each particle Poo ~ P〇〇G 0, and recorded in the data logger 1 ° In addition, corresponding to each space coordinate (xi (t = 6〇)) of each particle P, ~ P, yi (t = 60), zi (t = 60), elapsed time after discharge Ti4 = 40 seconds, and intensity of discharge source of each particle P2GG1 ~ P2γ is 0, and then recorded in the data logger 1 ° In addition, corresponding to each The spatial coordinates ㈤ (t = 60), yi (t = 60), zi (t = 60) of particles P4〇01 ~ p'0, and the elapsed time Ti 后 = 20 seconds after discharge, and each particle P4〇 The intensity of the emission source of Pm is 0 · 9, and then recorded in the data logger 1 ° Even after the <calculation cycle, the same processing calculation is performed, corresponding to each spatial coordinate of each particle, and the elapsed time Ti⑴ after discharge, and the discharge of each particle The source intensity is recorded in the data recording device. Next, the processing in the third step (refer to FIG. 丨) will be specifically described. For example, when the elapsed time Ti⑴ = 120 seconds after discharge, the calculation is shown in FIG. 7 The emission source S, in a predetermined grid area (a unit cell forming a unit volume) leaving a predetermined distance, and the concentrations of the substances 1, 1, and κ, are read out by the data logger worker after the elapsed time Ti 排出 = 12 seconds exists in The particles in the grid area. When read out, as shown in Fig. 7, the presence of particles without heads can be used to calculate the concentration of the substance in the unit space by accumulating the intensity of the emission source of each particle. Also, as shown in Fig. 7 The displayed spacer regions are as follows: 85181.doc -29- l227434 4 particles pqq〇i, Pϋ () 〇5, 1 (), · 0 of 3 with an intensity of 0 = 3 Particles P2 () G1, ρ2 () 〇7 ,; 2 particles with an intensity of 0.9, P4〇ig, and 1 particle with an intensity of 0A, p6Qn; for this purpose, by accumulating this second Equal to the intensity of the source of the particles, we can calculate the concentration of the substance in the unit space as 51. (0.3X4) + (0.5X3) + (0.9X2) + (0.6 X 1) = 5 · !. If the general (Mathematically) The first embodiment described above is as described in a. In the first embodiment, as shown in FIG. When the source s is discharged, the material concentration (gas concentration) of the grid regions I, J, and K under the wind of the discharge source s is predicted in accordance with the time change. Moreover, as shown in FIG. Needless to say, as shown in Fig. 9 ,, it is possible to predict the concentration-time variation of the calculated grid area bu & as shown in (), even if the discharge amount of the substance is the time-varying discharge amount q⑴ 'as shown in Fig. IG (b ), It is also possible to predict the concentration-time variation of the calculated grid area. In the first M form, first, when the amount of the substance P discharged by the source s actually changes the amount of the foot's discharge over time, first let the amount of substance Q Q (m3 / sec) be a certain value. (= Ί 〇), using the previous month J & Lagranglan particle diffusion model, replacing the substance with particles, the N source particles are generated every second by the emission source S, the dynamics of each particle are calculated numerically, and the positions of 7 and 7 particles are calculated. Space coordinates (xi (t), yi (t), zi⑴). Further, in addition to the spatial coordinates (xi (t), yi⑴, zi (t)) of the information that each particle has, in each calculation period At, the time at which the particle originally occurred will be 85181.doc -30-1227434 The elapsed time Ti (t) after the elapsed time is recorded in the data recording device. Thus, using the previous Lagrangian particle diffusion model, it is possible to measure the time variation of the concentration distribution of all discharges q (t) corresponding to the time variation. For this reason, the display of the discharge quantity q (t) of the substance proportional to the time is set to display the intensity of the discharge source of the particles as the time elapses after the time Ti⑴ elapses after discharge. Moreover, at a certain time (t), the data storage device reads out the space coordinates (Xi (t), yi⑴, zi (t)) showing the position of each particle and the elapsed time Ti (t) after discharge, at a certain discharge amount. (Q = 1 · 〇), although the emission source intensity of each particle is Q / N (m3) = 1 / N, but in the case of a time-varying emission quantity q (t), the emission source intensity of each particle Form q (t—Ti) / N (m3). Once again, except for the spatial coordinates (xi (t), yi (t), zi (t)) of the information that each particle has, at each time ⑴, the elapsed time Ding ⑴ ⑴ and the The emission source intensity qi (t — Ti) / N (m3) is recorded in the data recording device. In this embodiment using the emission source intensity q (t — Ti) / N (m3) corresponding to the Lagrangian particle diffusion model, the elapsed time after discharge, and the discharge volume 9 with time change, since the unit volume in space ( Each particle of air lm3) has a different emission source intensity, so the cumulative emission source intensity of each particle qi (t-Ti) / N (m3) i Σ qi (t-Ti) / N (m3) is formed and exists in this Gas in a unit volume. Therefore, the gas concentration in the air becomes Σ qi (t ~ Ti) / N (m3) / N (gas m 3 / air m3). &lt; Second implementation mode (when there are a large number of emission sources)> There are a large number of emission sources (j), and the respective emission sources change over time. 85181.doc -31-1227434 Same as &lt; Emission volume (qj (t )) When the substance is discharged, plus the particle information (location, after the release of the temple) of the Lagrangian particle diffusion model used in the first embodiment, each particle holds the identification information (si) of the emission source, which can be used in conjunction with the first 1 implementation of the same function. For example, as shown in FIG. 11, in a case where there are two discharge sources S1 and §2, the particles discharged from the discharge source si are held with the source identification information sl, and the particles discharged from the discharge source S2 are held with the source identification. Information. Furthermore, the Lagrangian particle diffusion model is used to replace matter with particles. Two particles per second are generated from S2 and S2. The dynamics of each particle are calculated numerically, and the space coordinates (xi (t), (yi⑴, dagger). In addition to the space coordinates (χί⑴, ^ ⑴, _)) of the information that each particle has, it holds the elapsed time Ti⑴ from the elapsed time of the time when the particle originally occurred, and the identification information of the emission source. U, &, shown in Fig. 12 ,, the discharge amount q discharged from the discharge source S1, like a catty, as 疋 (1), using the previous Lagrangi such as the particle diffusion model, find the grid area shown in Fig. 12⑻ , Quality and time change, and remember the green in advance. Secondly, the discharge amount of the substance discharged from the discharge source is as shown in Figure 7 &lt; 7F shown by the dotted line, if it is 4 of time change. I) In the same manner as in the first embodiment, for the discharge of t from the child, Let the intensity of the emission source of particle 2 be ql (t). In addition, the intensity of the emission source at the time when each: weight 卞 'refers to the occurrence of q! ⑴' sets the intensity of the emission source :, ^ fruit 'in the desired grid area w, K, the time change of the concentration of the rabbit (the required lattice area, the concentration of the substance of j, κ) of 85181.doc -32-1227434. Similarly, the discharge amount of the substance discharged by the discharge source S2 If it is q2 (t), for the particles released from the discharge source 81, the intensity of the discharge source of the particles is taken as ⑴ in the same way as in the first embodiment. Also, for each particle, refer to The emission source intensity q2 (t) at the time of particle generation is used to set the emission source intensity. As a result, by cumulating the emission source intensity of the particles having the emission source identification information s2 in the desired grid area, it can be obtained The concentration of the substance discharged from the discharge source S2 (desired Sub-area (the concentration of the substance in K)). Thus, the time variation of the concentration of the substance discharged from the source S1 plus the time of the concentration of the substance discharged from the source S2 can be calculated. Show the concentration of the substances in the desired grid area J and K. &lt; Third embodiment &gt; The third application form is, for example, after a gas leakage accident, based on the actual measurement of the amount of gas discharged. A method for calculating the current and future concentration distributions in a short time. Environmental impact assessments and other plans are being expanded, and the calculation results are not needed in an emergency, so the amount of gas discharged is determined by the process between the temples After q (t), a few days after several H i October, the prediction of the gas diffusion status is implemented. However, in the case of an emergency such as a gas leak accident, it is necessary to take immediate precautions from surrounding residents. m., Although the beam, it is necessary to output the diffusion calculation results in a short time as possible. In this case, according to the 3 degree spatial wind speed distribution at each time, as shown in Figure 85181.doc • 33-1227434, The first Lagrangian particle diffusion model of the same embodiment implements a predetermined release rate (Q = 丨) continuously for 24 hours. After a gas leak accident, the actual gas concentration measurement device installed at the outlet of the chimney of the exhaust source measures the actual Gas discharge amount q (t). According to the actual gas discharge amount q (t), by setting the exhaust source intensity q (t) of each particle, the same method as in the first embodiment can be used to correct and calculate the corresponding gas discharge amount. The concentration time changes (refer to FIG. 14 ((1) (6)). That is, for each particle, the emission source intensity q (t) at the time when the particle occurred is set to set the emission source intensity (FIG. 14 (d) )). In addition, in the desired grid region hj'K, by accumulating the intensity of the source of the particles existing in the region, the concentration of the substance discharged from the source S can be obtained (the substance concentration in the desired grid region and the ruler) Time changes. In addition, the future gas emission amount is equivalent to the actual measured gas emission amount q (t), or calculated according to a prediction formula set by another method. The current and future 3 degree spatial wind speed distribution is used as the calculation method. The wide area meteorological data (GPV: Grid Point Value) called by the meteorological bureau is used for wide area meteorology. Method for predicting the change of the detailed grid (several kilometers to several meters) of meteorological data (wind speed, temperature) by calculating the penalty (RAMS, MM5, etc.). &lt; Fourth embodiment &gt; The fourth embodiment is a method of calculating the current amount of exhausted emissions in a short period of time based on the actual measurement results of the concentration around the leaked space after the occurrence of a gas leak. ^ 14 In the case of a gas leak accident, as shown in Figure 15⑷, 85181.doc -34-1227434, which is the source of the leak, is difficult to determine the discharge amount q (t) of the leak source s. 'When the concentration (ck⑴) measured by observing the black account (xk) around the genus 戌 space is used, the discharge amount q (t) can be estimated in a short time using the male male diffusion model of the i-th embodiment. In the event of a leakage accident I, the Lagrangian particle diffusion model of the first embodiment is used to calculate the concentration (Ck⑴ calculation) of a certain surrounding observation point (xk) in advance with a certain discharge amount (Q = 1) (see FIG. 15 (b)). (Refer to Figure ^ ⑷). The concentration of children (calculated as ck (t)) is calculated from the particle (η) existing in the volume from 3 degrees to the inter-volume (Δχ × ΑΑΑζ) with the observation point (xk) as the center, followed by the formula (10).

Ck(t)計算=η X Σ Q(t- ΊΠ)/Ν/(Δ χχ △ yx △ ζ)·· (1〇) 該情形,排出量Q(t—Ti)為一定值(=1)。 其次’測定觀測點(Xk)的濃度時間變化(ck(t)觀測),利 用(10)公式,求出(11)公式。 (Ck(t)觀測)=η οχ £ q〇(t_〇)/N/(Axx △yxAzj+nixCk (t) calculation = η X Σ Q (t- ΊΠ) / N / (Δ χχ △ yx △ ζ) ... (1〇) In this case, the discharge amount Q (t—Ti) is a certain value (= 1) . Next, the concentration-time change of the observation point (Xk) is measured (ck (t) observation), and the formula (11) is obtained using the formula (10). (Ck (t) observation) = η οχ £ q〇 (t_〇) / N / (Axx △ yxAzj + nix

Eql(t- ΔΤ)/Ν/(ΔχΧ ΔγΧΔζ)+η2Χ Eq2(t-2 · ΔΤ)/Ν/(ΔχΧ ΔγΧ Δζ)+ η3Χ Zq3(t-3 · ΔΤ)/Ν/(ΔχΧ ΔγΧ Δζ)+ η4Χ Iq4(t-4 · ΔΤ)/Ν/(ΔχΧ ΔγΧ Δζ)+...... + η 1 X Σql(t—ΐ)/Ν/(ΔχΧ AyX Δζ) + C0⑴.......... ...... (11) 在此,ηΐ、η2、η3及ηΐ,係放出開始後放出於〇秒前、 △ Τ秒前、(ΔΤΧ2)秒前、(ΑΤΧ3)秒前及t秒前之粒子,以 觀測點(xk)為中心存在於3度空間體積(△ X X △ y X △ z)中 85181.doc -35- 1227434 之粒子的總數。 另外,co(t)係稱為本底濃度,作為計算對象由排出源以 外放出,無關觀測地點而存在之濃度,藉一定值或時間t 變化。 qO、ql、q2、q3及ql,係由t秒時開始之〇秒前、△ t秒前、 (△ TX2)秒前、(△ TX3)秒前及ί(Δ TX 1)秒前之放出率。Eql (t- ΔΤ) / N / (Δχχ ΔγχΔζ) + η2 × Eq2 (t-2 · ΔΤ) / Ν / (Δχχ Δγχ Δζ) + η3 × Zq3 (t-3 · ΔΤ) / Ν / (Δχ × Δγ × Δζ) + η4 × Iq4 (t-4 · ΔΤ) / N / (Δχχ Δγχ Δζ) + ...... + η 1 X Σql (t—ΐ) / Ν / (Δχχ AyX Δζ) + C0⑴ ...... .......... (11) Here, ηΐ, η2, η3, and ηΐ are released 0 seconds before the start of release, △ Τ seconds before, (ΔΤχ2) seconds before, and (ΑΤχ3) seconds before And t seconds before, the total number of particles that exist in the 3 degree space volume (△ XX △ y X △ z) with the observation point (xk) as the center, 85181.doc -35-1227434. In addition, co (t) is called the background concentration. The concentration that is released from the source of the discharge as a calculation object, and exists regardless of the observation site, varies by a certain value or time t. qO, ql, q2, q3, and ql are released from 0 seconds before t seconds, △ t seconds, (△ TX2) seconds, (△ TX3) seconds, and ί (Δ TX 1) seconds. rate.

Ck(t)觀測,由於是24小時連續測定,所以由漏洩開始時 刻到0秒後、△ T秒後、(△ TX2)秒後、(△ TX3)秒後及t(^ T XI)秒後,可以測定(1+ 1)個以上。 另外,觀測點xk具有k個的情形,可以求出k X (1 + 1)個 的觀測資料。 由於公式(11)之未知數具有qO、ql、q2、q3及ql之(1 + 1)個,已知數Ck(t)觀測具有kx(l+ 1)個以上,所以未知數 比已知數少。該情形,使用最小自乘法,可以決定未知數 之q〇、ql、q2、q3及ql,使對於觀測濃度“⑴觀測之最小 自乘誤差達到最小。又,圖16為顯示第4實施形態之計算 狀態之流程圖。 &lt;第5實施形態&gt; 第5實施形態,係例如氣體洩漏事故發生之後,依據戌 漏處所周邊之濃度實測結果,在短時間内推測現狀之氣體 的排出量,計算濃度分布的方法。 依第4實施形態,由在漏洩處所周邊觀測點(xk)所實測之 ;辰度(Ck(t)觀測)的時間變化,使用第1實施形態之 Lagrangian粒子擴散模型,即可在短時間推測排出量q(t)。 85181.doc -36 - 1227434 如圖17所示,在漏洩事故發生之前,使用第丨實施形態 之Lagrangian粒子擴散模型,預先以一定放出率(q=1)下, 計算某一周邊觀測點(xk)之濃度(Ck(t)計算)。 該k度(Ck(t)計算),係以觀測點(xk)為中心,由存在於3 度空間體積(△ X X △ y X △ z)中之粒子(11個),以其次之公式 (12)算出者。Ck (t) observation is a continuous measurement for 24 hours, so from the time of leakage to 0 seconds, △ T seconds, (△ TX2) seconds, (△ TX3) seconds, and t (^ T XI) seconds. , Can measure more than (1 + 1). When there are k observation points xk, observation data of k X (1 + 1) can be obtained. Since the unknown number of formula (11) has (1 + 1) qO, ql, q2, q3, and ql, and the known number Ck (t) has more than kx (l + 1) observations, the unknown number is less than the known number. In this case, the minimum automultiplication method can be used to determine the unknowns q0, ql, q2, q3, and ql, so that the minimum automultiplication error for the observed concentration "⑴ is minimized. Also, Fig. 16 shows the calculation of the fourth embodiment. Flow chart of the status. &Lt; Fifth embodiment &gt; The fifth embodiment is, for example, after a gas leak accident, based on the actual measurement result of the leaked area, the current gas discharge amount is estimated in a short time, and the concentration is calculated. The method of distribution. According to the fourth embodiment, the time change of the measured degree (Ck (t) observation) at the observation point (xk) around the leaked space can be obtained by using the Lagrangian particle diffusion model of the first embodiment. Estimate the discharge amount q (t) in a short time. 85181.doc -36-1227434 As shown in Figure 17, before the leakage accident occurs, the Lagrangian particle diffusion model of the first embodiment is used to predict the discharge rate (q = 1) in advance. ), Calculate the concentration (Ck (t) calculation) of a certain surrounding observation point (xk). The k degree (Ck (t) calculation) is centered on the observation point (xk), and exists in the space volume of 3 degrees (△ XX △ y X △ z) The particles (11) are calculated by the following formula (12).

Ck(t)計算=n X Σ Q(t — Τί)/Ν/(Δ χχ △ yx △ z)·· (12) 該情形,放出率Q(t— Ti)為一定值(=ι)。 其次’測定觀測點(xk)的濃度時間變化(ck(t)觀測),利 用(12)公式,求出公式。 (Ck(t)觀測)=nOX EqO(t—0)/Ν/(ΔχχΔγχΔζ)+ ηΐχCk (t) calculation = n X Σ Q (t — Τί) / N / (Δ χχ Δyx Δz) · (12) In this case, the release rate Q (t—Ti) is a certain value (= ι). Next, the concentration-time change at the observation point (xk) is measured (ck (t) observation), and the formula is obtained using the formula (12). (Ck (t) observation) = nOX EqO (t-0) / N / (ΔχχΔγχΔζ) + ηΐχ

Iql(t- ΔΤ)/Ν/(ΔχΧ ΔγΧΔζ)+η2Χ Zq2(t-2 · ΔΤ)/Ν/(ΔχΧ AyX Δζ)+ n3X Eq3(t-3 · ΔΤ)/Ν/(ΔχΧ AyX Δζ)+ n4X Zq4(t-4 · Δ T)/N/( Δ χΧΔγΧΔζ)+...... + Π 1 X Σ ql(t—ΐ)/Ν/(ΔxX ΔyX Δz) + C0 ⑴...... ..........(13) 在此,nl、n2、n3及nl,係放出開始後放出於〇秒前、 △ T秒前、(ΔΤΧ2)秒前、(Ατχ 3)秒前及t秒前之粒子,以 觀測點(Xk)為中心存在於3度空間體積(△ X X △ y X △ Z)中 之粒子的總數。 另外’ co(t)係稱為本底濃度,作為計算對象由排出源以 外放出’無關觀測地點而存在之濃度,藉一定值或時間t 變化。 85181.doc -37- 1227434 qO、ql、q2、q3及ql,係由“少時開始之〇秒前、Δτ秒前、 (△ ΤΧ2)秒前、(△ ΤΧ3)秒前及t(A ΤΧ 1)秒前之放出率。Iql (t- ΔΤ) / N / (ΔχΧ ΔγχΔζ) + η2Χ Zq2 (t-2 · ΔΤ) / Ν / (Δχχ AyX Δζ) + n3X Eq3 (t-3 · ΔΤ) / Ν / (Δχχ AyX Δζ) + n4X Zq4 (t-4 · Δ T) / N / (Δ χχΔγχΔζ) + ... + Π 1 X Σ ql (t-ΐ) / N / (ΔxX ΔyX Δz) + C0 ⑴ ... .............. (13) Here, nl, n2, n3, and nl are 0 seconds before release, △ T seconds before, ΔΤχ2 seconds before, and Ατχ 3 ) The total number of particles existing in the 3 degree space volume (△ XX △ y X △ Z) with the observation point (Xk) as the center of the particles before and t seconds. In addition, "co (t)" is called the background concentration, and the concentration existing as an object to be calculated from the emission source, regardless of the observation site, varies by a certain value or time t. 85181.doc -37- 1227434 qO, ql, q2, q3, and ql are "from 0 seconds before the beginning of time, before Δτ seconds, (△ Τχ2) seconds, (△ Τχ3) seconds, and t (A TX) 1) Release rate before second.

Ck(t)觀測,由於是24小時連續測定,所以由漏洩開始時 刻到0秒後、△ τ秒後、(△ TX2)秒後、(△ TX3)秒後及ί(Δ Τ XI)秒後,可以測定(1+ 1)個以上。 另外,觀測點xk具有k個的情形,可以求出k X (1 + 1)個 的觀測資料。 由於公式(13)之未知數具有q〇、qi、q2、q3及ql之(1 + 1)個,已知數Ck(t)觀測具有kx(l + l)個以上,所以未知數 比已知數少。該情形,使用最小自乘法,可以決定未知數 之qO、ql、q2、q3及ql,使對於觀測濃度“⑴觀測之最小 自乘誤差達到最小。 使用該推測值q〇、q 1、q2、q3及q 1,以第1實施形態之 方法,若進行濃度時間變化的修正計算,就可以計算各每 一經過時間的濃度分布。 &lt;第6實施形態&gt; 第ό實施形態,係以網路提供一種在氣體漏洩事故發生 之後’依據放出量實測結果,在短時間内計算現狀及未來 的濃度分布結果之系統。 在如氣體漏洩事故等之緊急時,由於必須緊急採取周邊 居民的避難對策,所以必須儘可能在短時間内輸出擴散計 算結果。但是,由於如此漏洩事故不知何時會發生,所以 在監督官廳之消防、警察及自治体與企業者之各工廠,就 必須要24小時體制的管理運用為此之計算機系統。 85181.doc -38- 1227434 在該管理運用,由Μ要較多的勞力與#用及高度的計 算機運用技術’相除了常設大規模之危機管㈣統之組 織以外,管理運用有其固難。 因此提出利用最近之網路之資訊提供系統,作為補救該 問題點之方法。 在該第6實施形態,如圖18所示,監督官廉之消防、警 察及自治体等之監督官廳10,與企業者之各工廠η,係在 另外之處所設置安全解析中心12。在安全解析中心Η,介 網路等《資訊傳達手段,收訊來自氣象聽13等之氣象資料 傳訊設施所傳訊之氣象觀測資料,平常時藉使用大型計算 機作計算,依據各時刻之3度空間風速分布,以與第丨實施 形態相同之Lagrangian粒子擴散模型,預先24小時連續實 施一定放出率(Q=l)之擴散計算。 氣體漏戌事故後,若由設置於企業者11的煙_出口之氣 骹 &gt;辰度測疋裝置等,瞭解實測之氣體放出量,將該氣 體放出量q(t)介由網路等之資訊傳達手段,傳送至安全解 析中心12。如此,在安全解析中心12,可以以與第以施 形怨相同 &lt; 方法,修正計算對應於該氣體放出率之濃度時 間變化。 、安全解析中心12,係將計算之濃度計算結果送訊至消 :、警祭及自治体等之監督官廳1〇。監督官廉1〇,係因應 濃度對企業者11與工廠周邊居民14發出避難勸告。 又,未來之氣體放出率,係作為與現狀之實測之氣體放 出率q(t)等值,或依據他法所設定之預測式加以計算。又, 85181.doc -39- 1227434 存在多數之企業者11的情形,在安全解析中⑽作第2實施 形態所顯示之演算’預測濃度時間變化。 作為計算現在及未來之3度空間風速分布之方法,係有 利用由氣㈣13等定期的所傳訊廣域格予(2Qkm)之氣象觀 測資料(GPV:Grid Ρ〇- V叫,以廣域氣象預測模型 (RAMS、MM5等),計算詳細格予(數以〜數】㈣的氣象資 料(風向、風速、氣溫)的時間變化之方法。 發明的效果 如以上實施形態且已具體的說明,關於本發明之擴散物 質的擴散狀況預測方法,係為了預測由排出源排出至大氣 中之物貝擴&amp;至大氣中之狀況’將前述物質替換成多數之 粒子,設定為由排出源的位置在每—演算週期發生預先設 定之個數之粒子; 且在包3排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式,求出各粒子的擴散速度, 由該擴散速度求出在各每—演算週期顯示各粒子存在之 工間位置 &lt; 空間座標’並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應各演算週期之各粒 子的空間屋標與各粒子的排出後經過時間,預先記錄於资 料記錄器; 例於伴蚣所排出之物質的排出後經過時間的時間 L過〈排出I的變化,預先設定隨著排出後經過時間的 間經過對粒子之排出源強度資料·, 、 85181.doc 1227434 又’讀出記錄於前述資料記錄裝置之各每一演算週期之 各粒子的空間座標與各粒子的排出後經過時間,並且參照 讀出之排出後經過時間,求出各粒子發生之時點,由前述 排出源強度資料求出該時點之各粒子的排出源強度,在前 述貝料纪錄裝置再記錄對應各每一演算週期之各粒子的 空間座標與各粒子的排出後經過時間與排出源強度; 又’既足之演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該既定之演算週期之該既定之區域之全 部之粒子的排出源強度求出。 為此,由排出源所排出之量即使不同,亦可以在短時間 内演算特定區域之物質的濃度。 另外,本發明之擴散物質的擴散狀況預測方法,係為了 預測由多數之排出源排出至大氣中之物質擴散至大氣中 之狀況,將前述物質替換成多數之粒子,設定為由各排出 源的位置在每一演算週期分別發生預先設定之個數之粒 子; 且在包含排出源的位置之區域内之多述地點,藉將隨著 時間的經過變化顯示風向•風速之風速場資料,代入演算 粒子的擴散狀態之擴散方程式,求出各粒子的擴散速度, 由該擴散速度求出在各每一演算週期顯示各粒子存在之 空間位置之空間座標,並且計測由最初發生前述粒子的時 點的經過時間之排出後經過時間,對應識別各演算週期之 各粒子的至間座標與各粒子的排出後經過時間與排出源 之排出源减力1】資訊’預先記錄於資料記錄哭· 85181.doc -41 - Ϊ227434 出 &lt; 物質的排出後經過 在各每一排出源預先分 間經過對粒子之排出源 又,比例於伴隨由各排出源所排 時間的時間經過之排出量的變化, 別設定隨著排出後經過時間的時 強度資料; 又,讀出記錄於前述資料記錄裝置之各每—演算週期之 各粒子的空間座標與各粒子的排出後經過時間盘各 排出源識別資訊,並且參照讀出之排出後經過時間,:出 各粒子發生之時點’參照讀出之排出源識別資訊,由對應 其粒子發生之排出源之前述排出源強度資料求出粒子發 生=時點之各粒子的排出源強度,在前述資料記 =對應各每-演算週期之各粒子的空間座標與各粒子 的排出後經過時間與排出源強度; 又,既定之演算週期之既定的區域之前述物質的濃度, 係藉累計存在於該既定之演算週期之該既定之區域之全 部之粒子的排出源強度求出。 為此’由排出源所排出之量即使不_,亦可以在短時間 内演异特疋區域之物質的濃度。另外,物質即使由多數之 排出源所排出’亦可以正確的作物質的濃度計算。 另外,本發明之擴散物質的擴散狀況預剛方::增 =出^度資料,係藉實測由前述排㈣實際所排出之 物貝的濃度求出並加以設定。 =前述排出源強度資料,係將前述排出源的周圍之觀測 ”,·占只測之物質的濃度之時間變化設定為基# 為此’即使沒有預先求出由排出源所二物質的濃度 85l8l.doc -42- 1227434 貝料,亦可以使用實測資料作濃度計算。 另外,本發明之擴散物質的擴散狀況預測系統,係包本 有: ° :業者’係當擴散物質排出至大氣中時,實測擴散物質 、/辰度,發訊顯示擴散物質的排出量之資料; 氧象貝料傳訊設施,係傳訊氣象觀測資料; 風督τ廳,係對前述企業者與前述企業者的周邊之居 民’通知避難勸告;及 安全解析中心,係作申請專利範圍第1或2項之演算處 里且演异既定區域之物質的濃度; 所又,在前述安全解析中心,來自前述企業者顯示擴散物 貝的排出量之資料,以及來自前述氣象資料傳訊設施之 象觀測資料,係藉資訊傳達手段傳送; 、 ^又,在前述監督官廳,來自前述安全解析中心之物質的 ;辰度,係藉資訊傳達手段傳送; 又,則述監督官廳,係因應所傳來的物質的濃度通知 難勸告。 ^此,以在安全解析中心作演算之資訊為基礎,監督官 廳可以迅速的發出避難勸告,可⑼緊急的採取周邊居 避難對策。 圖式簡單說明 '為〜、示本發明之第1實施形態之計算流程之流程圖。 圖2為頭7^本發明之第1實施形態之粒子的擴散狀態之 說明圖。 ~ 85181.doc -43- 1227434 圖3為顯示本發明, 间闰 施形態之粒子的擴散狀態 說明圖 之 圖4為顯示本發明士 方&lt;罘1貫施形態4 說明圖。 之粒子的擴散狀態之 圖5為顯示物質的排 ^ ^ ^ 里W時間變化之一例之特性圖。 圖6為心對應物質 的-例之特性圖。 “的相化讀出源強度 圖7為顯錢定格子區域之粒子分布之說明圖。 圖8為顯讀出源與格子區域之說明圖。 圖9為顯π排出量與 之特性圖。 ”…排出量與濃度的 圖10為顯示挑Φ田&amp; ^ 口 徘出τ與時間變化的情形之排出詈 的關係之特性圖。 &amp; 里 圖11為顯示2個之排出源與格子區域之說明圖。 圖12為顯示排出量與一定的情形之排出量與濃度 係之特性圖。 關係 與濃度 的關 圖13為顯示排出量與時 的關係之特性圖。 圖14為顯示第3實施形態之說明圖。 圖15為顯示第4實施形態之說明圖。 圖1 6為顯示本發明之第4實施形態之計算流程之流程 間變化的情形之排出量與濃度 圖 圖 圖17為顯示本發明之第5實施形態之計算流程之流程 85181.doc -44- 1227434 圖1 8為顯示關於第6實施形態之系統之系統構成圖。 圖19為顯示先前技術之粒子的擴散狀態之說明圖。 圖20為顯示先前技術之粒子的擴散狀態之說明圖。 圖21為#員示先前技術之粒子的擴散狀態之說明圖。 圖22為顯示既定的格子區域之粒子分布的說明圖。 圖23為顯示粒子擴散模型的功能之說明圖。 圖24為顯示排出源與格子區域之說明圖。 圖25為顯示排出量與時間變化的情形之排出量與濃度 的關係之特性圖。 圖26為顯示排出量與一定的情形之排出量與濃度的關 係之特性圖。 圖27為顯示排出量與瞬間的情形之排出量與濃度的關 係之特性圖。 圖式代表符號說明 1 資料記錄裝置 10 監督官廳 11 企業者 12 安全解析中心 13 氣象廳 14 工廠周邊居民 S 、 SI 、 S2 排出源 85181.doc -45 -The Ck (t) observation is a continuous measurement for 24 hours, so from the time when the leak started to 0 seconds, △ τ seconds, (△ TX2) seconds, (△ TX3) seconds, and (△ Τ XI) seconds. , Can measure more than (1 + 1). When there are k observation points xk, observation data of k X (1 + 1) can be obtained. Since the unknowns in formula (13) have (1 + 1) of q0, qi, q2, q3, and ql, and the known number Ck (t) has more than kx (l + l) observations, the unknowns are better than the known numbers less. In this case, the minimum automultiplication method can be used to determine the unknowns qO, ql, q2, q3, and ql, so that the minimum automultiplication error for the observed concentration "⑴ is minimized. Use the estimated values q0, q1, q2, q3 And q 1, according to the method of the first embodiment, if the concentration time change correction calculation is performed, the concentration distribution of each elapsed time can be calculated. &Lt; Sixth embodiment &gt; The sixth embodiment is based on the network Provide a system that calculates the current and future concentration distribution results in a short time based on the actual measurement results of the gas leakage after the gas leakage accident. In the event of an emergency such as a gas leakage accident, it is necessary to take emergency measures against the surrounding residents, Therefore, it is necessary to output the diffusion calculation results in a short time as possible. However, since such a leak accident does not know when it will occur, it is necessary to manage and operate the 24-hour system in the fire department of the Supervisory Office, the police, and the factories of local governments and companies. A computer system for this purpose. 85181.doc -38- 1227434 In this management application, it requires more labor and high-level calculations. In addition to the permanent large-scale organization of crisis management, the use of computer technology has its own management difficulties. Therefore, it is proposed to use the recent Internet information supply system as a method to remedy the problem. In the implementation form, as shown in FIG. 18, the Supervisory Office 10 of the Superintendent's Firefighting, Police, and Local Government, and each factory η of the company's enterprise are located at a separate location with a security analysis center 12. At the security analysis center, Meteorological data such as the Internet are used to receive meteorological observation data from meteorological data transmission facilities such as Meteorological Listening 13, and usually use a large-scale computer for calculation. Based on the 3 degree spatial wind speed distribution at each time, The Lagrangian particle diffusion model with the same form is implemented, and the diffusion calculation with a certain release rate (Q = 1) is performed continuously for 24 hours in advance. After the gas leakage accident, if the smoke_exit gas installed in the company 11 is set up, the degree The radon measuring device, etc., knows the actual gas emission amount, and transmits the gas emission amount q (t) to the safety analysis center 12 via information transmission means such as the Internet. Therefore, in the safety analysis center 12, the same time as the first method can be used to correct the calculation of the concentration-time change corresponding to the gas release rate. The safety analysis center 12 sends the calculated concentration calculation result to Consumers: Police officers, local government officials, and other supervisory offices 10. Supervisor official 10, according to the concentration, issued an evacuation advisory to enterprisers 11 and residents 14 around the factory. In addition, future gas emission rates are measured based on actual conditions. The gas emission rate q (t) is equivalent, or calculated according to a prediction formula set by another method. In addition, 85181.doc -39-1227434 has a large number of companies 11 and performs the second implementation in safety analysis. The morphology shows the calculation of 'predicted concentration-time changes. As a method of calculating the current and future 3 degree spatial wind speed distribution, it is based on the use of regular meteorological observation data (GPV: Grid PO-V called wide-area meteorological observations) from the wide-area grid (2Qkm) periodically transmitted by air radon 13. Prediction model (RAMS, MM5, etc.), a method of calculating the time variation of meteorological data (wind direction, wind speed, air temperature) in detail (number to number). The effect of the invention is as described in the above embodiment and has been specifically explained. The method for predicting the diffusion state of the diffusive substance of the present invention is to predict the state of the substance discharged from the exhaust source to the atmosphere and expand to the atmosphere. 'The foregoing substance is replaced with a large number of particles, and the position of the exhaust source is set at Pre-set number of particles occur in every calculation period; and in multiple locations within the area of the source of the package 3 discharge, the wind direction and wind speed field data will be displayed over time, and substituted into the calculated particles. The diffusion equation of the diffusion state is used to find the diffusion speed of each particle, and from this diffusion speed, the position of the work space showing the existence of each particle at each calculation period is obtained. Coordinates' and measure the elapsed time after the elapsed time from the elapsed time when the aforementioned particle originally occurred, corresponding to the space house of each particle in each calculation cycle and the elapsed time after the evacuation of each particle are recorded in the data recorder in advance;蚣 The elapsed time L after the discharge of the discharged substance has passed the change of the discharge I, and the source intensity data of the particles are set in advance with the passage of time after the discharge, 85181.doc 1227434 and 'Read the record At the spatial coordinates of each particle and the elapsed time after the discharge of each particle in each calculation cycle of the aforementioned data recording device, and referring to the elapsed time after the discharge is read out, the point of occurrence of each particle is obtained, and the intensity data of the discharge source are obtained from the foregoing. Calculate the emission source intensity of each particle at this point in time, and then record the spatial coordinates of each particle corresponding to each calculation period and the elapsed time and intensity of the emission source after each particle is discharged in the shell material recording device; The concentration of the aforementioned substances in a predetermined area of a calculation period is obtained by accumulating the existing substances in the predetermined calculation period. The intensity of the exhaust source of all the particles in the region is obtained. For this reason, even if the amount emitted from the exhaust source is different, the concentration of the substance in the specific region can be calculated in a short time. In addition, the diffusion state of the diffusing substance of the present invention The prediction method is to predict the diffusion of substances discharged into the atmosphere from most sources into the atmosphere. The foregoing substances are replaced with a large number of particles, and the positions of each source are set to be preset in each calculation cycle. The number of particles; and the multiple locations in the area including the location of the emission source, by displaying the wind direction and wind speed field data over time, and substituting them into the diffusion equation that calculates the diffusion state of the particles, find out The diffusion speed of each particle is obtained from the diffusion speed. The space coordinates showing the spatial position of each particle in each calculation cycle are obtained, and the elapsed time after the elapsed time from the elapsed time at which the particle first occurs is measured to identify each correspondingly. The coordinate between each particle of the calculation cycle and the elapsed time and source of each particle after its discharge Emission source deceleration 1] Information 'pre-recorded in the data record · 85181.doc -41-Ϊ227434 out &lt; after the exhaustion of the material, each of the exhaustion sources is divided in advance through the exhaustion source of the particles, and the proportion is For the change in the discharge amount of the time elapsed by each discharge source, do not set the time intensity data with the elapsed time after discharge; and read out the spatial coordinates of each particle recorded in each data-calculation cycle of the aforementioned data recording device. And the discharge source identification information of the time disk after the discharge of each particle, and referring to the elapsed time after reading out, refer to the readout source identification information of the time when each particle occurred, and refer to the discharge source corresponding to the particle generation The foregoing emission source intensity data is used to obtain the emission source intensity of each particle at the time of particle generation = time, and the foregoing data record = the space coordinates of each particle corresponding to each-calculation period and the elapsed time and emission source intensity of each particle; In addition, the concentration of the aforementioned substances in a predetermined area of a predetermined calculation cycle is obtained by accumulating the predetermined existence in the predetermined calculation cycle. Particle source intensity discharge portion of the entire area is obtained. For this reason, even if the amount discharged from the discharge source is not, the concentration of the substance in the special region can be calculated in a short time. In addition, even if the substance is discharged from most sources, the concentration of the substance can be accurately calculated. In addition, the diffusion state of the diffusing substance of the present invention is pre-rigid square:: Incremental data is obtained by measuring the concentration of the shellfish actually discharged from the above-mentioned row and setting it. = The above-mentioned emission source intensity data is based on the observation of the above-mentioned emission source ”, the time variation of the concentration of the only substance to be measured is set as the basis # Therefore, even if the concentration of the two substances by the emission source is not previously obtained, 85l8l .doc -42- 1227434 shellfish, you can also use the measured data for concentration calculation. In addition, the diffusion status prediction system of the diffusive substance of the present invention includes: °: the operator's when the diffusive substance is discharged into the atmosphere, Measured diffusive matter, / degree, and send data showing the discharge of diffusive matter; Oxygen shellfish communication facilities, which are meteorological observation data; Fengdu τ Hall, which is for the aforementioned enterprises and the surrounding residents of the aforementioned enterprises 'Notification of evacuation advice; and the safety analysis center, which is used to calculate the concentration of substances in the calculation area of the patent application item 1 or 2 and deviate from the predetermined area; Therefore, at the aforementioned safety analysis center, the company from the aforementioned company showed the diffusion The discharge data of shellfish and the observational data from the aforementioned meteorological data communication facilities were transmitted by means of information transmission; and The material from the aforementioned security analysis center; Chen degree, which is transmitted by means of information transmission; Moreover, the supervisory office is difficult to advise based on the concentration notification of the transmitted material. ^ This is to perform calculations at the security analysis center. Based on the information, the Office of the Supervisor can quickly issue an evacuation advisory, and can urgently take measures for evacuation in the surrounding area. The diagram briefly illustrates the flow chart of the calculation process of the first embodiment of the present invention. Figure 2 is Head 7 ^ Explanation diagram of the diffusion state of particles in the first embodiment of the present invention. ~ 85181.doc -43-1227434 The present invention &lt; 罘 1 consistent application mode 4 is an explanatory diagram. Fig. 5 is a characteristic diagram showing an example of the time variation of W in the row ^ ^ ^ of the diffusion state of the particles. Fig. 6 is an example of the corresponding substance of the heart Characterization diagram. "Intensity of phased readout source Fig. 7 is an explanatory diagram of the particle distribution in the grid region of the display money. FIG. 8 is an explanatory diagram of a display source and a grid area. Fig. 9 is a graph showing the π discharge amount and its characteristics. "... Fig. 10 of the discharge volume and the concentration is a characteristic diagram showing the relationship between the pick-up field τ and the discharge time when the time changes. &Amp; Figure 11 below shows the two discharge sources and the grid area. An explanatory diagram. Fig. 12 is a characteristic diagram showing the amount of discharge and a certain amount of discharge and concentration. Fig. 13 is a characteristic diagram showing the relationship between the amount of discharge and time. Fig. 14 shows the third embodiment. Fig. 15 is an explanatory diagram showing a fourth embodiment. Fig. 16 is a graph showing a discharge amount and a concentration in a case where a calculation flow of a fourth embodiment of the present invention is changed between processes. Fig. 17 is a display diagram The flow of the calculation flow of the fifth embodiment of the invention 85181.doc -44- 1227434 Fig. 18 is a system configuration diagram showing the system of the sixth embodiment. Fig. 19 is an explanatory diagram showing the diffusion state of the particles of the prior art. Fig. 20 is an explanatory diagram showing the diffusion state of particles of the prior art. Fig. 21 is an explanatory diagram showing the diffusion state of particles of the prior art. Fig. 22 is an explanatory diagram showing the particle distribution of a predetermined grid region. Fig. 23 It is an explanatory diagram showing the function of the particle diffusion model. Fig. 24 is an explanatory diagram showing the discharge source and the grid area. Fig. 25 is a characteristic diagram showing the relationship between the discharge amount and the concentration when the discharge amount changes with time. The characteristic diagram of the relationship between the discharge amount and the discharge amount and the concentration in a certain situation. Fig. 27 is a characteristic diagram showing the relationship between the discharge amount and the discharge amount and the concentration in the instant situation. Explanation of the representative symbols 1 Data recording device 10 Supervision office 11 Enterpriser 12 Safety Analysis Center 13 Meteorological Agency 14 Residents S, SI, S2 around the factory 85181.doc -45-

Claims (1)

1227434 拾、申請專利範圍: 1 · 一種擴散物質的擴散狀況預測方法,其係為了預測由排 出源排出至大氣中之物質擴散至大氣中之狀沉,將前述 物質替換成多數之粒子,設定為由排出源的位置在每一 演算週期發生預先設定之個數之粒子; 且在包含排出源的位置之區域内之多述地點,藉將隨 著時間的經過變化顯示風向•風速之風速場資料,代入 演算粒子的擴散狀態之擴散方程式,求出各粒子的擴散 速度,由該擴散速度求出在各每一演算週期顯示各粒子 存在之空間位置之空間座標,並且計測由最初發生前述 粒子的時點的經過時間之排出後經過時間,對應各演算 週期之各粒子的空間座標與各粒子的排出後經過時間, 預先記錄於資料記錄器; 又,比例於伴隨所排出之物質的排出後經過時間的時 間經過之排出量的變化,預先設定隨著排出後經過時間 的時間經過對粒子之排出源強度資料; 又,謂出記錄於前述資料記錄裝置之各每一演算週期 之各粒子的空間座標與各粒子的排出後經過時間了並且 參照讀出^排出後經過時間,求出各粒子發生之時點, 由前㈣出=強度資料求出該時點之各粒子的排出源強 度’在诃述資料記錄裝置再記錄對應各每一演算週期之 ^粒子的空間座標與各粒子的排出後經過時間與排出源 又 既定之演算週期 之既定的區域之前述物質的1227434 Scope of patent application: 1 · A method for predicting the diffusion state of diffusive substances. In order to predict the diffusion of substances discharged into the atmosphere from the exhaust source into the atmosphere, the foregoing substances are replaced with a majority of particles and set as A predetermined number of particles occur in each calculation cycle from the position of the exhaust source; and the multiple locations in the area containing the position of the exhaust source will show the wind direction and wind speed field data over time , Substituting into the diffusion equation of the diffusive state of the calculated particles, the diffusion speed of each particle is obtained, and the spatial coordinates showing the spatial position of each particle at each calculation cycle are obtained from the diffusion speed, and the measurement of The elapsed time after the elapsed time at the point in time corresponds to the spatial coordinates of each particle in each calculation cycle and the elapsed time after the ejection of each particle, and is recorded in the data logger in advance; and it is proportional to the elapsed time after the ejection of the discharged substance The change of the discharge amount after the passage of time is set in advance as the elapsed time after the discharge The time elapsed data on the intensity of the emission source of the particles; In addition, it is said that the spatial coordinates of each particle recorded in each calculation cycle of the aforementioned data recording device and the elapsed time after the ejection of each particle are referred to and read out after the elapsed time. Time, find the time point when each particle occurs, and find out the intensity of the emission source of each particle at that time point from the previous data = intensity data. In the description data recording device, record the spatial coordinates of the particles corresponding to each calculation period and The elapsed time after the discharge of each particle and the source of the aforementioned substance in a predetermined area of a predetermined calculation period 85181.doc 1227434 度,係藉累計存在於該既定之演算週期之該既定之區域 之全部之粒子的排出源強度求出。 2· —種擴散物質的擴散狀況預測方法,係為了預測由多數 之排出源排出至大氣中之物質擴散至大氣中之狀況,將 則逑物質替換成多數之粒子,設定為由各排出源的位置 在每一演算週期分別發生預先設定之個數之粒子,· 且在包含排出源的位置之區域内之多述地點,藉將隨 著時間的經過變化顯示風向•風速之風速場資料,代入 演算粒子的擴散狀態之擴散方程式,求出各粒子的擴散 速度,由該擴散速度求出在各每一演算週期顯示各粒子 存在之空間位置之$間座標,並且計測由最初發生前述 粒子的時點的經過時間之排出後經過時間,對應識別各 演算週期之各粒子的空間座標與各粒子的排出後經過時 間與排出源之排出源識別資訊,預先記錄於資料記錄器; 又,比例於伴隨由各排出源所排出之物質的排出後^ 過時間的時間經過之排出量的變化,在各每一排出源預 先分別設定隨著排出後經過時間的時間經過對粒子之排 出源強度資料; 又,讀出記錄於前述資料記錄裝置之各每一演算週期 《各粒子的空間座標與各粒子的排出後經過時間與各粒 子排出源識別資訊,並且參照讀出之排出後經過時間二 求出各粒子發生之時點’參照讀出之排出源識別資訊, 由對應其粒子發生之排出源之前述排出源強度資料袁出 粒子發生之時點之各粒子的排出源強度,在;述資料 85181.doc 1227434 錄裝置再記錄對應各母一演算週期之各粒子的空間座標 與各粒子的排出後經過時間與排出源強度; 又,既定之演异週期之既定的區域之前述物質的濃 度,係藉累计存在於該既定之演算週期之該既定之區域 之全部之粒子的排出源強度求出。 3·如申請專利範圍第1或2項之擴散物質的擴散狀況預測方 法,其中前述排出源強度資料,係藉實測由前述排出源 實際排出之物質的濃度求出並加以設定。 4. 如申請專利範圍第1或2項之擴散物質的擴散狀況預測方 法,其中前述排出源強度資料,係將前述排出源的周圍 之觀測點實測之物質的濃度之時間變化設定為基礎。 5. —種擴散物質的擴散狀況預測系統,係包含有: 企業者,係當擴散物質排出至大氣中時,實測擴散物 免的;辰度,發訊顯示擴散物質的排出量之資料; 氣象貨料傳訊設施,係傳訊氣象觀測資料; 監督耳廳,係對前述企業者與前述企業者的周邊之居 民,通知避難勸告;及 安全解析中心’係作申請專利範圍第1或2項之演算處 理,且演异既定區域之物質的濃度; 又,在則迷安全解析中心,來自前述企業者顯示擴散 物貝的排出I《資料’以及來自前述氣象資料傳訊設施 之氣象觀測資料,係藉資訊傳達手段傳送; 又,在則迷監督官廳,來自前述安全解析中心之物質 的丨辰度’係藉資訊傳達手段傳送; 85181.doc 1227434 又,前述監督官廳,係因應所傳來的物質的濃度通知 避難勸告。 85181.doc85181.doc 1227434 degrees, which is obtained by accumulating the intensity of the exhaust source of all particles existing in the predetermined area of the predetermined calculation period. 2 · —A method for predicting the diffusion state of diffusive substances. In order to predict the diffusion of substances discharged into the atmosphere from most sources, the plutonium substance is replaced by a large number of particles, and the A preset number of particles are generated at each calculation cycle, and multiple locations in the area containing the location of the exhaust source are displayed by changing the wind direction and wind speed field data over time. Calculate the diffusion equation of the particle's diffusion state, find the diffusion speed of each particle, and use this diffusion speed to find the $ coordinate between the spatial position where each particle exists in each calculation cycle, and measure the time point from which the aforementioned particle first occurred The elapsed time after the elapsed time corresponds to the spatial coordinates of each particle that identifies each calculation cycle and the emission source identification information of the elapsed time and exhaust source after the exhaustion of each particle is recorded in the data recorder in advance; Changes in the amount of elapsed time after the elapse of the time elapsed after the discharge of substances from each source For each discharge source, the discharge source intensity data of the particles is set in advance with the elapsed time after discharge; in addition, each calculation period recorded in the aforementioned data recording device, "the space coordinates of each particle and the The elapsed time after the discharge of each particle and the identification information of the discharge source of each particle, and the time point of the occurrence of each particle is obtained by referring to the elapsed time after the discharge, and the reference is made to the discharge source corresponding to the particle generation. In the foregoing emission source intensity data, the emission source intensity of each particle at the time of the occurrence of the particles is described in the data 85181.doc 1227434 recording device and then records the spatial coordinates of each particle corresponding to each calculation period of each parent and the ejection of each particle. The elapsed time and the intensity of the emission source; Also, the concentration of the aforementioned substance in a predetermined area of a predetermined evolutionary period is obtained by accumulating the exhaustion source intensity of all particles existing in the predetermined area of the predetermined calculation period. 3. For the method for predicting the diffusion state of the diffusing substance in the scope of the patent application, the emission source intensity data is obtained by actual measurement of the concentration of the substance actually emitted from the emission source and is set. 4. For the method for predicting the diffusion state of a diffusing substance according to item 1 or 2 of the patent application scope, wherein the aforementioned emission source intensity data is based on a temporal change in the concentration of the substance measured at an observation point around the aforementioned emission source. 5. —The diffusion status prediction system of a diffusing substance, including: an enterpriser, which measures the diffusing substance when the diffusing substance is discharged into the atmosphere; the degree, the information showing the discharge amount of the diffusing substance; The cargo communication facilities are for meteorological observations; the supervisory agency is used to notify the evacuation advisers of the aforementioned enterprises and the surrounding residents of the aforementioned enterprises; and the security analysis center is used for the calculation of item 1 or 2 of the scope of patent application Processing and differentiating the concentration of substances in a given area; In addition, in the Zemei Safety Analysis Center, the above-mentioned companies show the emission of diffuse shellfish I "data" and meteorological observation data from the aforementioned meteorological data communication facilities, which are borrowed information Transmission by means of communication; Also, in the Zemi Supervision Office, the degree of material from the security analysis center mentioned above is transmitted by means of information transmission; 85181.doc 1227434 The above-mentioned Supervision Office is based on the concentration of the material transmitted. We inform evacuation advice. 85181.doc
TW92112582A 2001-12-26 2003-05-08 Prediction method and system of gas diffusion TWI227434B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393179A JP3746712B2 (en) 2001-12-26 2001-12-26 Diffusion status prediction method

Publications (2)

Publication Number Publication Date
TW200424905A TW200424905A (en) 2004-11-16
TWI227434B true TWI227434B (en) 2005-02-01

Family

ID=27600230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92112582A TWI227434B (en) 2001-12-26 2003-05-08 Prediction method and system of gas diffusion

Country Status (2)

Country Link
JP (1) JP3746712B2 (en)
TW (1) TWI227434B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466052B (en) * 2012-05-02 2014-12-21 Univ Nat Yunlin Sci & Tech An integrated cross-scaled consequence analysis system for toxic/chemical disaster

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738140B2 (en) * 2011-09-16 2015-06-17 三菱重工業株式会社 Substance release amount estimation apparatus, method and program
KR101348100B1 (en) * 2012-12-10 2014-01-07 사단법인대기환경모델링센터 Radiological dose modeling system for emergency response
KR101513370B1 (en) * 2013-12-23 2015-04-17 대한지적공사 Method and system for providing safety information using location information
JP6870442B2 (en) * 2017-04-06 2021-05-12 富士電機株式会社 Source analyzer and source analysis system
CN113705062B (en) * 2021-07-23 2022-10-18 中国人民解放军92609部队 Smoke tube smoke screen shielding rate prediction method and computer storage medium
CN114566026B (en) * 2022-04-28 2022-07-15 成都蓉悦科技有限公司 Automatic data measurement and control device, system and method for gas transmission station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466052B (en) * 2012-05-02 2014-12-21 Univ Nat Yunlin Sci & Tech An integrated cross-scaled consequence analysis system for toxic/chemical disaster

Also Published As

Publication number Publication date
JP3746712B2 (en) 2006-02-15
JP2003196574A (en) 2003-07-11
TW200424905A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
EP1393099B1 (en) Estimation of toxic substance release
CN108490889B (en) The safe big data data source method for generation of intelligent plant and device based on TE model
KR101046300B1 (en) Method and system for safety management of gas charging facility
KR100841947B1 (en) CARE : Computerized Technical Advisory System for a Radiological Emergency
CN103268109A (en) Chemical industrial park risk management information system based on GIS
US6853924B2 (en) Diffusion status prediction method and diffusion status prediction system for diffused substance
TWI227434B (en) Prediction method and system of gas diffusion
Badicu et al. PMs concentration forecasting using ARIMA algorithm
JP4209354B2 (en) Diffusion state prediction method and diffusion state prediction system
CN100541169C (en) The diffusion-condition predicting method and the diffusion-condition predicting system of diffusate
Melnichenko et al. Devising a procedure to forecast the level of chemical damage to the atmosphere during active deposition of dangerous gases
Гаврись et al. Software-based method of determining the necessary population evacuation zone in case of a chemical accident
Bui et al. Spatiotemporal integration of an agent-based first responder performance model with a fire hazard propagation model for probabilistic risk assessment of nuclear power plants
JP2014106203A (en) Diffusate diffusion state prediction device, method of the same and program
Cervone et al. Source term estimation for the 2011 Fukushima nuclear accident
Peterson et al. Forecasting exposure to volcanic ash based on ash dispersion modeling
KR100671909B1 (en) Prediction method and system of gas diffusion
Penkova et al. On-line control of the state of technosphere and environment objects in Krasnoyarsk region based on monitoring data
RU2736624C1 (en) Method and system for prediction of consequences of accidents involving hazardous substances on hazardous production facilities in real time
Ashraf et al. Comparative study on toxic gas infiltration in a non-process area using CFD and multi-zone models
O'Reilly et al. Risk-aware navigation in industrial plants at risk of NaTech accidents
Balaskas et al. Earthquake early warning and rapid response system based on smart seismic and monitoring sensors embedded in a communication platform and coupled with BIM models
Bradley et al. Models and measurements: Complementary tools for predicting atmospheric dispersion and assessing the consequences of nuclear and radiological emergencies
Sugiyama et al. Opperational Systems for Emergency Preparedness and Response
RU2784687C1 (en) System for monitoring of fire safety of object in real time mode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees