TW200423111A - The method to produce photo data medium - Google Patents

The method to produce photo data medium Download PDF

Info

Publication number
TW200423111A
TW200423111A TW092136471A TW92136471A TW200423111A TW 200423111 A TW200423111 A TW 200423111A TW 092136471 A TW092136471 A TW 092136471A TW 92136471 A TW92136471 A TW 92136471A TW 200423111 A TW200423111 A TW 200423111A
Authority
TW
Taiwan
Prior art keywords
layer
hard coating
surface layer
optical information
manufacturing
Prior art date
Application number
TW092136471A
Other languages
Chinese (zh)
Inventor
Kenji Yoneyama
Kazushi Tanaka
Original Assignee
Tdk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp filed Critical Tdk Corp
Publication of TW200423111A publication Critical patent/TW200423111A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

There is provided a cheap method to produce a photo data medium with surface with excellent properties of anti-scraping, anit-abrasion, anti-contaminating and lubricity. The method to produce photo data medium is the method to photo data medium 1 which at least contains recording layer 7, photo transparent layer 8, hard coat layer 9, and surface layer 10 sequentially on the holder 2. The method includes that hard coat agent composition containing active energy ray hardening components is coated on to form not-cured hard coat layer on the photo transparent layer 8, make the material used for surface layer containing active energy ray hardening components with properties of lubricity and/or anti-contaminating to be film on the not-cured coat layer and to from not-cured surface layer, and the not-cured hard coat layer and not-cured surface layer formed above are exposed to electric ray, and then the both layers above are exposed to UV to cure them to form cured hard coat layer 9 and cured surface layer 10.

Description

200423111 玖、發明說明: (一) 發明所屬之技術領域 本發明係關於光資訊媒體之製造方法,更詳細而言, 係關於具有複合硬被覆層、耐擦傷性·耐磨耗性且防污性· 潤滑性優異之光資訊媒體之製造方法。於本發明中,所謂 複合硬被覆層係包含設置於光資訊媒體表面之承擔耐擦傷 性及耐磨耗性之硬被覆層,與設置於硬被覆層表面之承擔 防污性及潤滑性之表面層。於光資訊媒體中,包含各種讀 取專用光碟、光記錄光碟、光磁性記錄光碟等。 (二) 先前技術 近年來,對於光碟,要求用於動畫資訊等擴張之資訊 處理之記錄容量之高密度化。隨著光碟之高記錄密度化, 記錄/讀取係極容易受到作爲光碟之記錄/讀取雷射光入射側 之光透過層表面之刮傷影響。因此,必須提高光碟之光透 過層表面之硬度。又,於光碟上,由於使用者之使用,於 該表面多有附著指紋、皮脂、汗水、化妝品等污染物之情 況。一旦附著該污染物則不容易除去,對於因所附著之污 染物所導致之資訊訊號記錄及讀取產生顯著之障礙。由於 該等原因,作爲光碟之記錄/讀取雷射光入射側之光透過層 表面係要求優異之耐擦傷性•耐磨耗性且防污性•潤滑性。 現在,光資訊媒體之光透過層等之光學材料方面,由 成形性、透明性及價格等觀點,大多使用聚碳酸酯或甲基 丙烯酸甲酯系之樹脂材料。然而,該等材料係具有所謂對 於耐擦傷性·耐磨耗性或有機污染物之防污性不足之問 -6- 200423111 題,又亦有所謂爲了顯示高絕緣性而容易帶電,而於媒體 保存中或使用中附著大量塵埃於表面,於光資訊之記錄· 讀取中產生錯誤之問題。 爲了提昇媒體表面之耐擦傷性,一般進行於媒體之光 透過層表面形成透明且具有耐擦傷性之硬被覆層。硬被覆 層之形成係藉由於光透過層表面上塗布於分子中具有2個 以上(甲基)丙烯醯基等聚合性官能基之活性能量線束聚 合硬化性化合物,以紫外線等活性能量線束之照射使其硬 化來進行。然而,所得之硬被覆層係與聚碳酸酯或甲基丙 烯酸甲酯等樹脂膜表面比較爲耐磨耗性優異者,對於所達 成得到之耐磨耗性水準具有限制,不一定具有於媒體使用 時之足夠耐擦傷性。爲了耐擦傷性而使樹脂爲較硬者,則 硬化時之收縮變大,所得之媒體係光碟面之翹曲變大。又, 該等硬被覆層係由於僅以耐擦傷性之提升爲目的,不能期 待對於塵埃或大氣中之油氣、或者指紋污染等之污染物質 之防污效果。 對於有機污染物具有防污性之硬被覆層方面,例如於 日本國特開平1 0-1 1 0 1 1 8號公報,提案於硬被覆劑中摻入 非交聯型之氟系界面活性劑。然而,在硬被覆劑中添加非 交聯型氟系界面活性劑之情況下,於媒體使用時例如在進 行擦拭等之情況下,有所謂界面活性劑漸漸消失之問題。 於日本國特開平1 1 -2 1 3444號公報中,揭示於習知之 聚碳酸酯等光碟基板表面上塗布氟系聚合物。然而,氟系 聚合物對於基板表面僅藉由凡得瓦(van der Waals)力物 -7- 200423111 理吸附著,氟系聚合物之對於基板表面之密著性極差。因 而,對於藉由氟系聚合物塗布之表面處理耐久性有重大問 題。 於日本國特開2002- 1 90 1 3 6號公報中,揭示於硬被覆 層中含有氧化矽微粒子等之金屬硫屬化物微粒子,提昇硬 被覆層之耐擦傷性,再者於硬被覆層上設置含有撥水性或 撥油性基之矽烷偶合劑之薄膜,提昇表面之防污性。 但是,使媒體表面低摩擦係數化,則由於可滑過而避 免接觸硬的突起物時之衝擊,可抑制擦傷之產生。因而, 希望使硬被覆層表面低摩擦係數化來更提昇耐擦傷性。特 別地,近年來用於聚焦記錄/讀取雷射光之接物鏡片之開口 數(NA)爲0.7以上、例如變大至0.85左右,同時由於記 錄/讀取雷射光之波長λ變短至400nm左右而導致雷射光之 焦點直徑變小,因此嘗試記錄較大容量之數位資訊。謀求 如此高NA化則接物鏡片與光資訊媒體表面之操作距離 (working distance )變小(例如在設定於ΝΑ = 0 · 8 5左右之 情況下,操作距離爲1 〇 〇 # m左右則比較於以往則顯著變 窄),於光資訊媒體之迴轉中,引起光資訊媒體表面與接 物鏡片或支持鏡片之支持體接觸之可能性變得非常高。因 而,在提高硬被覆層表面之耐磨耗性之同時,尋求進行低 摩擦係數化。 (三)發明內容 其中,本發明之目的係解決上述習知技術之問題點, 提供具有耐擦傷性•耐磨耗性且防污性•潤滑性優異之表面 一 8 - 200423111 之光資訊媒體之廉價製造方法。 本發明者等專心一志硏究之結果,於作爲記錄/讀取雷 射光之入射側之光透過層表面,藉由設置包含承擔耐擦傷 性及耐磨耗性之硬被覆層與承擔前述硬被覆層表面上之防 污性及潤滑性之表面層之複合硬被覆層,發現得到具有耐 擦傷性•耐磨耗性且防污性•潤滑性優異之表面之光資訊媒 體。再者本發明者等,對於光資訊媒體之製造方法進行硏 究而達成本發明。 其係於支持體上依200423111 (1) Description of the invention: (1) The technical field to which the invention belongs The present invention relates to a method for manufacturing an optical information medium. More specifically, it relates to a composite hard coating layer, abrasion resistance, abrasion resistance, and stain resistance. · Manufacturing method of optical information media with excellent lubricity. In the present invention, the so-called composite hard coating layer includes a hard coating layer provided on the surface of the optical information medium, which is responsible for abrasion resistance and abrasion resistance, and a surface provided on the surface of the hard coating layer, which is responsible for antifouling and lubricity. Floor. The optical information media includes various read-only discs, optical recording discs, and magneto-optical recording discs. (2) Prior art In recent years, for optical discs, higher recording density has been required for expanded information processing such as animation information. With the higher recording density of optical discs, the recording / reading system is extremely susceptible to scratches on the surface of the light transmitting layer as the recording / reading laser light incident side of the optical disc. Therefore, it is necessary to increase the hardness of the surface of the optical transmission layer of the optical disc. In addition, on the optical disc, due to the use of the user, there are many cases where contaminants such as fingerprints, sebum, sweat, and cosmetics are attached to the surface. Once the pollutant is attached, it is not easy to remove, and it causes significant obstacles to the recording and reading of information signals caused by the attached pollutant. For these reasons, the surface of the light transmitting layer of the recording / reading laser light incident side of the optical disc requires excellent scratch resistance, abrasion resistance, stain resistance, and lubricity. At present, in terms of optical materials such as light transmission layers of optical information media, polycarbonate, or methyl methacrylate-based resin materials are mostly used from the viewpoints of moldability, transparency, and price. However, these materials have the so-called inadequate anti-scratch resistance, abrasion resistance, or anti-fouling properties of organic pollutants. 6-200423111, and there are also so-called easy-to-charge in order to show high insulation, and the media A large amount of dust adhered to the surface during storage or use, which caused errors in the recording and reading of optical information. In order to improve the scratch resistance of the surface of the media, it is generally performed on the surface of the light transmitting layer of the media to form a transparent and scratch-resistant hard coating layer. The hard coating layer is formed by polymerizing a hardening compound by coating an active energy beam with two or more (meth) acrylfluorenyl polymerizable functional groups in the molecule on the surface of the light transmitting layer, and irradiating the active energy beam with ultraviolet rays or the like. It is hardened to proceed. However, compared with the surface of resin films such as polycarbonate or methyl methacrylate, the hard coating layer obtained is excellent in abrasion resistance, and has a limit on the level of abrasion resistance achieved, and may not necessarily be used in media. Sufficient scratch resistance. If the resin is made harder for scratch resistance, the shrinkage during hardening becomes larger, and the warpage of the obtained media-based optical disc surface becomes larger. In addition, since these hard coatings are only for the purpose of improving the scratch resistance, they cannot be expected to have antifouling effects on pollutants such as dust, atmospheric oil and gas, or fingerprint pollution. As for the hard coating layer having antifouling properties against organic pollutants, for example, in Japanese Patent Application Laid-Open No. 1 0-1 1 0 1 1 8, it is proposed to incorporate a non-crosslinking fluorine-based surfactant into the hard coating agent. . However, when a non-crosslinked fluorine-based surfactant is added to the hard coating agent, there is a problem that the so-called surfactant gradually disappears when the medium is used, for example, when wiping is performed. In Japanese Patent Application Laid-Open No. 1 1-2 1 3444, it is disclosed that a fluorine-based polymer is coated on the surface of a conventional optical disc substrate such as polycarbonate. However, the fluoropolymer is only adsorbed on the substrate surface by van der Waals force -7-200423111, and the fluoropolymer has extremely poor adhesion to the substrate surface. Therefore, there is a significant problem in durability of the surface treatment by coating with a fluoropolymer. Japanese Patent Application Laid-Open No. 2002- 1 90 1 3 6 discloses that metal chalcogenide particles containing silicon oxide particles and the like are contained in the hard coating layer to improve the abrasion resistance of the hard coating layer and further on the hard coating layer A film containing a water- or oil-repellent silane coupling agent is provided to improve the antifouling property of the surface. However, by reducing the coefficient of friction on the surface of the medium, it is possible to prevent the impact when it comes into contact with hard protrusions by sliding it over, and to prevent the occurrence of scratches. Therefore, it is desirable to reduce the coefficient of friction on the surface of the hard coating layer to further improve the scratch resistance. In particular, in recent years, the number of openings (NA) of an objective lens for focusing recording / reading laser light is 0.7 or more, for example, it has increased to about 0.85, and at the same time, the wavelength λ of the recording / reading laser light has been shortened to 400 nm. The diameter of the focal point of the laser light becomes smaller, so try to record digital information with larger capacity. In order to achieve such a high NA, the working distance between the contact lens and the surface of the optical information medium becomes smaller (for example, when the setting is about NA = 0 · 8 5 and the operating distance is about 1 〇〇 # m, it is compared In the past, it was significantly narrower). In the rotation of the optical information medium, the possibility of causing the surface of the optical information medium to contact the object lens or the support supporting the lens has become very high. Therefore, while improving the abrasion resistance of the surface of the hard coating layer, it is sought to reduce the coefficient of friction. (3) Summary of the Invention Among them, the purpose of the present invention is to solve the problems of the above-mentioned conventional technology, and provide a surface with excellent abrasion resistance, abrasion resistance, stain resistance and lubricity. 8-200423111 Inexpensive manufacturing method. As a result of intensive research, the present inventors and others have provided a surface of a light transmitting layer that is the incident side of recording / reading laser light by providing a hard coating layer that bears abrasion resistance and abrasion resistance and assuming the aforementioned hard coating. The composite hard coating layer of the antifouling and lubricating surface layer on the surface of the layer has been found to obtain an optical information medium with a surface that has abrasion resistance, abrasion resistance, and excellent antifouling and lubricity properties. Furthermore, the present inventors have studied the manufacturing method of the optical information medium to achieve the invention. It is attached to the support

本發明中係包含以下之發明。 (1 ) 一種光資訊媒體之製造方法 序至少具有記錄層、光透過層、硬被覆層及表面層之光資 訊媒體之製造方法, 其中包含於光透過層上,塗布包含活性能量線束硬化 性成分之硬被覆劑組成物而形成未硬化之硬被覆層,The present invention includes the following inventions. (1) A method for manufacturing an optical information medium. A method for manufacturing an optical information medium having at least a recording layer, a light transmitting layer, a hard coating layer, and a surface layer. Hard coating composition to form an unhardened hard coating,

於未硬化之硬被覆層上,使包含具有潤滑及/或防污機 能之活性能量線束硬化性成分之表面層用材料成膜而形成 未硬化之表面層, 照射電子線束於所形成之未硬化硬被覆層及未硬化表 面層,然後,照射紫外線來硬化前述二層,形成已硬化之 硬被覆層及已硬化之表面層。該資訊媒體係通過表面層、 硬被覆層及光透過層來入射用於記錄或讀取之雷射光地使 用。 (2 )如記載於(1 )之光資訊媒體之製造方法,其中 包含於硬被覆劑組成物之活性能量線束硬化性成分爲紫外 一 9 一 200423111 線硬化性成分。 (3 )如記載於(1 )或(2 )之光資訊媒體之製造方法, 其中包含於表面層用材料之活性能量線束硬化性成分爲電 子線束硬化性成分。 (4 )如記載於(1 )或(2 )之光資訊媒體之製造方法, 其中包含於表面層用材料之活性能量線束硬化性成分爲電 子線束硬化性,具有聚矽氧系取代基及/或氟系取代基。 (5 )如記載於(1 )〜(4 )中之任一項之光資訊媒體 之製造方法,於形成未硬化之硬被覆層之後,視需要而乾 燥,照射紫外線而形成半硬化狀態之硬被覆層,然後,於 半硬化之硬被覆層上,使表面層用材料成膜而形成未硬化 之表面層。在藉由表面層用材料之塗布形成表面層之情況 下,於塗布表面層用材料之後,進行乾燥。 (6 )如記載於(5 )之光資訊媒體之製造方法,其中 照射紫外線於未硬化之硬被覆層之後,進行退火處理(熱 緩和處理)。 (7 )如記載於(1 )〜(6 )中之任一項之光資訊媒體 之製造方法,其中藉由塗布表面層用材料之成膜來進行, 塗布表面層用材料之後,進行加熱處理。 (8 )如記載於(1 )〜(7 )中之任一項之光資訊媒體 之製造方法’其中於記錄層上,塗布活性能量線束硬化性 材料’照射紫外線而形成半硬化或硬化狀態之光透過層, 然後’於半硬化或硬化狀態之光透過層上塗布硬被覆劑組 成物來形成未硬化之硬被覆層。 - 1 0 - 200423111 (9)如記載於(8)中之製造方法,其中於光透過層 照射紫外線之後,進行退火(熱緩和處理)。 (1 0 )如記載於(1 )〜(7 )中之任一項之光資訊媒體 之製造方法,其中於記錄層上,使用樹脂片材來形成光透 過層’然後,於光透過層上塗布硬被覆劑組成物來形成未 硬化之硬被覆層。 (1 1 )如記載於(1 )〜(1 0 )中之任一項之光資訊媒 體之衣方法’其中表面層係lnm〜l〇〇nm厚度。 (1 2 )如記載於(1 )〜(11 )中之任一項之光資訊媒 體之製造方法,其中光透過層係lOemdOO/zm厚度。 (1 3 )如記載於(1 )〜(1 2 )中之任一項之光資訊媒 體之製造方法,其中電子線束照射中之電子線束之加速電 壓爲20〜l〇〇kV 〇 又’本發明中亦包含以下之發明。 (1 4 ) 一種光資訊媒體之製造方法,其係於光透過性 支持體之一側面上至少具有記錄層,於光透過性支持體之 另一面上依序具有硬被覆層及表面層之光資訊媒體之製造 方法, 其中包含於光透過性支持體之另一面上,塗布包含活 性能量線束硬化性成分之硬被覆劑組成物而形成未硬化之 硬被覆層, 於未硬化之硬被覆層上,使包含具有潤滑及/或防污機 能之活性能量線束硬化性成分之表面層用材料成膜而形成 未硬化之表面層, -11- 200423111 照射電子線束於所形成之未硬化硬被覆層及未硬化表 面層,然後,照射紫外線來硬化前述二層,形成已硬化之 硬被覆層及已硬化之表面層。該光資訊媒體係如通過表面 層、硬被覆層及光透過性支持體來入射用於記錄或讀取之 雷射光地使用。 (1 5 )如記載於(1 4 )之光資訊媒體之製造方法,其 中包含於硬被覆劑組成物之活性能量線束硬化性成分爲紫 外線硬化性成分。 (16 )如記載於(14 )或(15 )之光資訊媒體之製造 方法,其中包含於表面層用材料之活性能量線束硬化性成 分爲電子線束硬化性成分。 (1 7 )如記載於(1 4 )或(1 5 )之光資訊媒體之製造 方法,其中包含於表面層用材料之活性能量線束硬化性成 分爲電子線束硬化性成分,具有矽烷系取代基及/或氟系取 代基。 (1 8 )如記載於(1 4 )〜(1 7 )中之任一項之光資訊媒 體之製造方法’其中於形成未硬化之硬被覆層之後,視需 .要而乾燥,並照射紫外線而形成半硬化狀態之硬被覆層, 然後,於半硬化之硬被覆層上,使表面層用材料成膜並形 成未硬化之表面層。 (1 9 )如記載於(1 8 )之光資訊媒體之製造方法,其 中於未硬化之硬被覆層上照射紫外線之後,進行退火處理 (熱緩和處理)。 (2 0 )如記載於(1 4 )〜(1 9 )中之任一項之光資訊媒 - 1 2 - 200423111 體之製造方法,其中藉由塗布表面層用材料之成膜來進行, 塗布表面層用材料之後,進行加熱處理。 (2 1 )如記載於(1 4 )〜(2 0 )中之任一項之光資訊媒 體之製造方法,其中表面層係lnm〜100nm厚度。 (22 )如言己載於(14 )〜(2 1 )中之任一項之光資訊媒 體之製造方法,其中電子線束照射中之電子線束之加速電 壓爲20〜10〇kV 。 於本發明中,於光資訊媒體中,包含讀取專用光碟、 光記錄光碟、光磁性記錄光碟等各種媒體。 根據本發明,提供具有複合硬被覆層、耐擦傷性•耐 磨耗性且防污性•潤滑性優異之光資訊媒體之廉價製造方 法。 用於實施發明夕範例丨 參照第1圖,說明本發明之光資訊媒體(以下,簡稱 爲光碟)之製造方法。以下,雖然於實例中說明相變化型 之光碟,但本發明係不受其限制\可廣泛適用讀取專用之 光碟、僅可1次記錄之光碟等而不隨記錄層之種類而異。 第1圖係本發明中所製造之光碟之一範例之槪略剖面 圖。於第1圖中,光碟(1 )係於形成有支持基體(2 )之 資訊凹洞或預溝槽等細微凹凸之側面上,依序具有反射層 (3 )、第2介電體層(4 )、相變化記錄材料層(5 )及第 1介電體層(6),於第1介電體層(6)上具有光透過層(8), 於光透過層(8)上具有硬被覆層(9)及表面層(10)。 於該範例中,係反射層(3 )、第2介電體層(4 )、相變 - 1 3 - 200423111 化記錄材料層(5 )及第1介電體層(6 )構成記錄層(7 )。 硬被覆層(9)及表面層(10)二層在方便上稱爲複合硬被 覆層。光碟(1)係通過表面層(10)、硬被覆層(9)及 光透過層(8 ),藉由入射用於記錄或讀取之雷射光來使用。 還有,雖未以圖式說明,於記錄層(7 )上經由間隔層 進一步設置記錄層,具有2層以上記錄層之光碟亦包含於 本發明中。於該情況下,光碟係於距離支持基體(2 )最遠 之記錄層上,具有光透過層(8)、硬被覆層(9)及表面 層(1 0 )。 支持基體(2)係0.3〜1.6mm厚,以0.5〜1.3mm厚度爲 佳,於形成記錄層(7 )之側面上,形成有資訊凹洞或預溝 槽等之細微凹凸。 支持基體(2 )方面,由於如上述光碟(1 )係藉由從 光透過層(8)側入射雷射光來使用,雖不一定需要光學上 爲透明的,透明材料方面係可使用聚碳酸酯樹脂、聚甲基 丙烯酸甲酯(PMM A )等丙烯酸系樹脂、聚鏈烯樹脂等各種 塑膠材料等。在使用該等撓曲容易之材料之情況下,由於 可抑制光碟翹曲之產生而特別有效果。但是,亦可使用玻 璃、陶瓷、金屬等。凹凸圖案係於使用塑膠材料之情況下, 多爲藉由射出成型來製成,在塑膠材料以外之情況下,藉 由光聚合物法(2P法)來成形。 於支持基體(2 )上,通常藉由濺鍍法形成反射層(3 )。 反射層材料方面,可單獨或複合使用金屬元素、半金屬元 素、半導體元素或該等之化合物。具體而言,可選自例如 200423111On the unhardened hard coating layer, a surface layer material containing an active energy beam hardening component having a lubricating and / or antifouling function is formed into a film to form an unhardened surface layer, and the electron beam is irradiated onto the formed unhardened The hard coating layer and the unhardened surface layer are then irradiated with ultraviolet rays to harden the aforementioned two layers to form a hardened hard coating layer and a hardened surface layer. This information medium is used for incident laser light for recording or reading through a surface layer, a hard coating layer, and a light transmitting layer. (2) The manufacturing method of the optical information medium as described in (1), wherein the active energy beam hardening component contained in the hard coating composition is ultraviolet-ray-curing component. (3) The method for manufacturing an optical information medium as described in (1) or (2), wherein the active energy beam-hardening component contained in the surface layer material is an electron beam-hardening component. (4) The method for manufacturing an optical information medium as described in (1) or (2), wherein the active energy beam hardening component contained in the surface layer material is electron beam hardening, and has a polysiloxane-based substituent and / Or a fluorine-based substituent. (5) The method for manufacturing an optical information medium as described in any one of (1) to (4), after forming an unhardened hard coating layer, drying as necessary, and irradiating ultraviolet rays to form a hardened hardened state The coating layer is then formed on the semi-hardened hard coating layer to form a film for the surface layer material to form an unhardened surface layer. In the case where the surface layer is formed by coating the material for the surface layer, the material for the surface layer is applied and then dried. (6) The method for manufacturing an optical information medium as described in (5), wherein the uncured hard coating layer is irradiated with ultraviolet rays and then subjected to an annealing treatment (heat relaxation treatment). (7) The method for producing an optical information medium as described in any one of (1) to (6), wherein the method is performed by coating the surface layer material with a film, and after the surface layer material is applied, heat treatment is performed. . (8) The method for producing an optical information medium as described in any one of (1) to (7), wherein the recording layer is coated with an active energy beam hardening material and is irradiated with ultraviolet rays to form a semi-hardened or hardened state. The light transmitting layer is then coated with a hard coating agent composition on the light transmitting layer in a semi-hardened or hardened state to form an unhardened hard coating layer. -1 0-200423111 (9) The manufacturing method described in (8), wherein the light-transmitting layer is irradiated with ultraviolet rays and then annealed (heat relaxation treatment). (1 0) The method for manufacturing an optical information medium as described in any one of (1) to (7), wherein a resin sheet is used to form a light transmitting layer on the recording layer, and then the light transmitting layer is formed on the recording layer. The hard coating composition is applied to form an unhardened hard coating layer. (1 1) The method of dressing an optical information medium as described in any one of (1) to (10), wherein the surface layer has a thickness of 1 nm to 100 nm. (1 2) The method for manufacturing an optical information medium as described in any one of (1) to (11), wherein the light transmitting layer has a thickness of 10emdOO / zm. (1 3) The method for manufacturing an optical information medium as described in any one of (1) to (1 2), wherein the acceleration voltage of the electron beam during the irradiation of the electron beam is 20 to 100 kV. The invention also includes the following inventions. (1 4) A method for manufacturing an optical information medium, which has at least a recording layer on one side of a light-transmitting support, and sequentially has a light of a hard coating layer and a surface layer on the other side of the light-transmitting support. A method for manufacturing an information medium, which comprises coating a hard coating agent composition containing an active energy beam hardening component on the other surface of a light-transmitting support to form an unhardened hard coating layer on the unhardened hard coating layer , Forming an unhardened surface layer by forming a surface layer material containing an active energy beam hardening component having a lubricating and / or antifouling function, -11- 200423111 irradiates an electron beam to the formed unhardened hard coating layer and The unhardened surface layer is then irradiated with ultraviolet rays to harden the two layers to form a hardened hard coating layer and a hardened surface layer. This optical information medium is used by, for example, incident laser light for recording or reading through a surface layer, a hard coating layer, and a light-transmitting support. (1 5) The method for manufacturing an optical information medium as described in (1 4), wherein the active energy beam-curable component contained in the hard coating composition is an ultraviolet-curable component. (16) The method for manufacturing an optical information medium as described in (14) or (15), wherein the active energy beam hardenable component contained in the material for the surface layer is divided into an electron beam hardenable component. (1 7) The method for manufacturing an optical information medium as described in (1 4) or (1 5), wherein the active energy beam hardening component contained in the surface layer material is an electron beam hardening component and has a silane-based substituent And / or a fluorine-based substituent. (1 8) The manufacturing method of the optical information medium as described in any one of (1 4) to (1 7), wherein after forming an unhardened hard coating layer, if necessary, dry and irradiate ultraviolet rays A hard coating layer in a semi-hardened state is formed, and then a material for the surface layer is formed on the semi-hardened hard coating layer to form an unhardened surface layer. (19) The manufacturing method of the optical information medium as described in (18), wherein the uncured hard coating layer is irradiated with ultraviolet rays, and then annealed (thermal relaxation treatment). (2 0) The manufacturing method of the optical information medium-1 2-200423111 as described in any one of (1 4) to (1 9), wherein the coating is performed by coating a film of a material for a surface layer, and coating After the material for the surface layer, a heat treatment is performed. (2 1) The method for producing an optical information medium as described in any one of (1 4) to (2 0), wherein the surface layer has a thickness of 1 nm to 100 nm. (22) The method for manufacturing an optical information medium as set forth in any one of (14) to (2 1), wherein the acceleration voltage of the electron beam during the irradiation of the electron beam is 20 to 100 kV. In the present invention, the optical information medium includes various media such as a read-only optical disc, an optical recording disc, and a magneto-optical recording disc. According to the present invention, there is provided an inexpensive manufacturing method of an optical information medium having a composite hard coating layer, excellent scratch resistance, abrasion resistance, and stain resistance and lubricity. Example for implementing the invention 丨 With reference to FIG. 1, the manufacturing method of the optical information medium (hereinafter, simply referred to as an optical disc) of the present invention will be described. In the following, although a phase-change type optical disc is described in an example, the present invention is not limited to this. It can be widely used for reading a dedicated disc, a disc that can be recorded only once, and the like, and does not vary depending on the type of the recording layer. Fig. 1 is a schematic sectional view of an example of an optical disc manufactured in the present invention. In the first figure, the optical disc (1) is formed on the side with fine irregularities such as information recesses or pre-grooves supporting the substrate (2), and has a reflective layer (3) and a second dielectric layer (4) in this order. ), A phase change recording material layer (5) and a first dielectric layer (6), a light transmitting layer (8) is provided on the first dielectric layer (6), and a hard coating layer is provided on the light transmitting layer (8) (9) and surface layer (10). In this example, the reflective layer (3), the second dielectric layer (4), the phase change-1 3-200423111 chemical recording material layer (5) and the first dielectric layer (6) constitute the recording layer (7) . The two layers of the hard coating layer (9) and the surface layer (10) are conveniently referred to as a composite hard coating layer. The optical disc (1) is used by passing a laser light for recording or reading through a surface layer (10), a hard coating layer (9), and a light transmitting layer (8). Although not illustrated in the drawings, a recording layer is further provided on the recording layer (7) via a spacer layer, and an optical disc having two or more recording layers is also included in the present invention. In this case, the optical disc is on the recording layer furthest from the supporting substrate (2), and has a light transmitting layer (8), a hard coating layer (9), and a surface layer (1 0). The support substrate (2) is 0.3 to 1.6 mm thick, and preferably 0.5 to 1.3 mm thick. On the side where the recording layer (7) is formed, fine irregularities such as information pits or pre-grooves are formed. In terms of supporting the substrate (2), since the optical disc (1) is used by incident laser light from the light transmitting layer (8) side as described above, although it does not necessarily need to be optically transparent, polycarbonate can be used for transparent materials. Resins, acrylic resins such as polymethyl methacrylate (PMM A), and various plastic materials such as polyolefin resins. In the case of using such a material that is easily bent, it is particularly effective because it can suppress the occurrence of warping of the optical disc. However, glass, ceramics, metal, etc. can also be used. The concave-convex pattern is mostly made by injection molding when a plastic material is used. In the case other than a plastic material, it is formed by a photopolymer method (2P method). A reflective layer (3) is usually formed on the support substrate (2) by sputtering. As for the material of the reflective layer, a metal element, a semi-metal element, a semiconductor element, or a compound thereof may be used alone or in combination. Specifically, it may be selected from, for example, 200423111

Au、Ag、Cu、A1、Pd等週知之反應層材料。反射層係以形 成爲20〜200nm厚度之薄膜爲佳。 於反射層(3 )上、或在無反射層之情況下直接於支持 基體(2 )上,藉由濺鍍法依序形成第2介電體層(4 )、 相變化記錄材料層(5 )、第1介電體層(6 )。 相變化記錄材料層(5 )係藉由因雷射光照射而可逆地 變化成結晶狀態與非晶型狀態,而於兩狀態間光學特性差 異之材料來形成。舉例有Ge-Sb-Te、In-Sb-Te、Sn-Se-Te、 Ge-Te-Sn、In-Se-Tl、In-Sb-Te 等。再者,於該等材料中, 亦可微量添加至少1種選自Co、Pt、Pd、Au、Ag、Ir、Nb、 Ta、V、W、Ti、Cr、Zr、Bi、In等金屬,亦可微量添加氮 等還原性氣體。記錄材料層(5 )之厚度並無特別之限制, 例如,在3〜5 0 n m左右。 第2介電體層(4)及第1介電體層(6)係於記錄材 料層(5 )之上下兩面側地將其夾住而形成。第2介電體層 (4 )及第1介電體層(6 )係具有作爲調整記錄材料層(5 ) 之機械、化學保護機能、以及光學特性之干涉層之機能。 第2介電層體(4)及第1介電體層(6)係個別爲單層所 構成、或多層所構成均可。 第2介電層體(4 )及第1介電體層(6 )係以個別由 包含至少 1 種選自 Si、Zn、Al、Ta、Ti、Co、Zr、Pb、Ag、 Zn、Sn、Ca、Ce、V、Cu、Fe、Mg之金屬中之氧化物、氮 化物、硫化物、氟化物、或該等之複合物來形成爲佳。又, 第2介電層體(4)及第1介電體層(6)個別之衰退係數k - 1 5- 200423111 係以〇 · 1以下爲佳。 第2介電層體(4 )之厚度並無特別之限制,以例如 2 0〜150nm左右爲佳。第1介電體層(6)之厚度並無特別 之限制,以例如20〜20 Onm左右爲佳。可藉由於該等範圍選 擇兩介電體層(4) (6)之厚度來進行反射之調整。 第1介電體層(6 )上,使用活性能量線束硬化性材料、 或使用聚碳酸酯等光透過性片材來形成光透過層(8 )。於 本發明中,活性能量線束方面係指電子線束或紫外線等。 用於光透過層(8 )之活性能量線束硬化性材料方面, 以光學上透明、於所使用之雷射光波長範圍之光學吸收或 反射少、雙折射小爲條件,選自紫外線硬化性材料及電子 線束硬化性材料。 具體而言,由活性能量線束硬化性材料係以紫外線(電 子線束)硬化性化合物或該聚合用組成物構成爲佳。該等 方面,可舉出有含有或導入藉由如丙烯酸或甲基丙烯酸之 酯化合物、環氧丙烯酸酯、丙烯酸胺基甲酸酯之丙烯酸系 雙鏈、如鄰苯二甲酸二烯丙基酯之烯丙系雙鍵、順丁烯二 酸衍生物等之不飽和雙鍵等之紫外線照射所交聯或聚合之 官能基於分子中之單體、寡聚物及聚合物等。該等係以具 有多官能、特別是3官能以上爲佳,僅使用1種或倂用2 種以上均可。又,必要時亦可使用單官能者。 紫外線硬化性單體方面係以低於2000分子量之化合 物、寡聚物方面以2000〜10000者爲佳。該等亦舉出有苯乙 烯、丙烯酸乙酯、二丙烯酸乙二醇酯、二甲基丙烯酸乙二 -16- 200423111 醇酯、二丙烯酸二乙二醇酯、甲基丙烯酸二乙二醇酯、二 丙烯酸-1,6-己二醇酯、二甲基丙烯酸- ;[,6-己二醇酯等,特 佳者方面,舉出有四(甲基)丙烯酸異戊四醇酯、三(甲 基)丙烯酸異戊四醇酯、六(甲基)丙烯酸二異戊四醇酯、 二經甲基丙院三(甲基)丙燦酸酯、三經甲基丙院二(甲 基)丙烯酸酯、酚基環氧乙烷加成物之(甲基)丙烯酸酯 等。其他,紫外線硬化性寡聚物方面,舉出有醚丙烯酸酯 寡聚物或胺基甲酸酯彈性體之丙烯酸改質體等。 活性能量線束硬化性材料亦可包含公認之光聚合起始 劑1 °光聚合起始劑係在使用電子線束作爲活性能量線束之 情況下並非特別需要,但在使用紫外線之情況下則爲必須 的。光聚合起始劑亦可選自苯乙酮系、苯偶因系、二苯基 酮系、噻噸酮系等之通常者。光聚合起始劑中,光自由基 起始劑方面,舉例有大洛丘亞1 1 7 3、伊耳佳丘亞6 5 1、伊 耳佳丘亞184、伊耳佳丘亞907 (均爲汽巴特用化學品公司 製)。光聚合起始劑之含有量係例如相對於前述活性能源 線束硬化性成分,爲0.5〜5重量%左右。 又’紫外線硬化性材料方面,亦適合地使用含有環氧 樹脂及光自由基聚合觸媒之組成物。環氧樹脂方面,以脂 肪族環狀環氧樹脂爲佳,以於分子內具有2個以上環氧基 者爲特佳。脂肪族環狀環氧樹脂方面,係以1種以上之3,4-環氧環己基甲基-3,4-環氧環己酸酯、雙(3,4-環氧環己基 甲基)己二酸酯、雙(3,4-環氧環己基)己二酸酯、2- ( 3,4-環氧環己基-5,5-螺旋-3,4-環氧基)環己烷-間-二□烷、雙 -17- 200423111 (2,3-環氧環戊基)醚、乙烯基環己烯二氧化物等爲佳。對 於脂肪族環狀環氧樹脂之環氧當量並無特別之限制,但由 得到良好之硬化性來看,爲60〜3 00、而以1〇〇〜2 00爲特佳。 光陽離子聚合觸媒係亦可使用公認之任何者,並無特 別之限制。例如,可使用1種以上之金屬氟硼酸鹽及三氟 化硼之錯合物、雙(過氟烷基磺基)甲烷金屬鹽、芳基重 氮鍚化合物、6 A族元素之芳香族鑰鹽、5 a族元素之芳香 族鑰鹽、3 A族〜5 A族元素之二羧基螯合物、硫代吡喃鍮鹽、 具有MF6陰離子(但是,Μ爲P、As或Sb)之6A族元素、 三芳基鎏錯合物鹽、芳香族二氫鎮錯合物鹽、芳香族鎏錯 合物鹽等,特別地,以使用一種以上之聚芳基鎏錯合物鹽、 含鹵素錯離子之芳香族鎏鹽或二氫銚鹽、3A族元素、5A 族元素及6A族元素之芳香族鑰鹽爲佳。光陽離子聚合觸媒 之含有量係例如對於前述活性能量線束硬化性成分,爲 0.5〜5重量%左右。 用於該光透過層之活性能量線束硬化性材料方面,係 以具有1,000〜10,000 cp之黏度(25 °C)者爲佳。 光透過層(8)之形成中,對於第1介電體層(6)上 之活性能量線束硬化性材料之塗布係可藉由旋轉塗布法進 行。光透過層(8)之厚度係例如於硬化後爲1〇〜3 0 0 /zm左 右,以20〜200 //m爲佳,以70~150//m爲特佳,以75〜150 # m爲較特佳。 於本發明中,以於第1介電體層(6 )上塗布活性能量 線束硬化性材料之後,照射紫外線於該硬化性材料層,成 -18 - 200423111 爲半硬化或硬化狀態、以半硬化狀態爲佳之光透過層,然 後,於下一步驟中,於半硬化或硬化狀態之光透過層上塗 布硬被覆劑組合物而形成未硬化之硬被覆層爲佳。 此時之紫外線照射量雖亦隨著光透過層(8 )之厚度或 活性能量線束硬化性材料之種類而定,但在得到半硬化狀 態之光透過層之情況下,可爲例如10〜1 5 00mJ/cm2、以 50〜lOOOmJ/cm2爲佳。以該程度之紫外線照射量,容易得到 半硬化狀態之光透過層。還有,所謂半硬化係表示已塗布 之硬化性材料之一部分未反應之意思。因而,特別不論光 透過層之物理硬化度,即使表面之黏著性(黏性)消失亦 無妨。又,在得到硬化狀態之光透過層之情況下,可爲例 如 1 00 0〜5 0 0 0mJ/cm2、W 2 0 0 0〜4 0 0 Om J/cm2 爲佳。以該範 圍之紫外線照射量,得到硬化狀態之光透過層。特別地, 由於因光透過層已成爲半硬化狀態,沒有流動性,藉由下 一步驟中之硬被覆劑組成物之塗布亦不會弄亂界面,而且 形成與光透過層之密著性非常優異之硬被覆層而佳。 又,亦可分成多數次來進行此時之紫外線照射,於該 情況下,可使紫外線之累積照射量爲上述之範圍。又,可 分成多數次來進行活性能量線束硬化性材料之塗布操作, 亦可於各塗布操作之後進行紫外線操作。由於階段地硬化 分成多數次進行紫外線照射之樹脂,可縮小因累積於光碟 之硬化收縮之應力,使最終累積於光碟之應力變小。該結 果爲即使在光透過層(8 )之厚度爲如上述厚度之情況下, 因可製成機械特性優異之光碟而佳。 -19- 200423111 照射紫外線於光透過層後,亦以進行退火處理 和處理)爲佳。因硬化收縮導致之應力係於硬化性 化之瞬間爲極大,隨時間經過而緩和。因而,藉由 理’以立即釋放累積於光碟之因硬化收縮導致之應力 又’在進行多次紫外線照射之情況下,於紫外線照 照射之下一次紫外線照射之間,藉由進行退火處理 得到更佳之結果。 其中之退火處理溫度方面,以60°C以上爲佳,, 以上爲更佳。由於退火處理溫度爲8 0 °C以上,可較 全進行應力之釋放。退火處理溫度之上限雖因所使 持基體之材質而定,一般以較所使用之材質之玻璃 度Tg至少低10 °C之溫度下進行爲佳。又,退火處理 隨退火處理溫度而定’從生產效率上來看以1〜5分鐘 或者,於本發明中,可使用光透過性樹脂片材 光透過層。於該情況下,於第1介電體層(6 )上, 前述光透過層用同樣之活性能量線束硬化性材料, 未硬化之樹脂材料層。於未硬化之樹脂材料層上, 爲光透過層(8 )之光透過性片材,然後,藉由照射 等之活性能量線束來硬化樹脂材料層,接著光透過 而形成光透過層(8 )。用於該樹脂材料層之活性能 硬化性材料方面,以具有3〜5 00cp ( 25 °C )之黏度者 樹脂材料層之塗布係可藉由旋轉塗布法來進行。樹 層之厚度係例如於硬化後,可爲1〜50//m左右,以 // hi爲佳。 (熱緩 材料硬 退火處 爲佳。 射與該 步驟而 ^ 8 0 °C 早地完 用之支 轉移溫 時間雖 爲佳。 來形成 塗布與 而形成 載置作 紫外線 性片材 量線束 爲佳。 脂材料 1 0 〜4 〇 一 20- 200423111 光透過性片材方面,係使用具有選自例如50〜3 0 0 //m、 以50〜150/zm爲佳之所希望厚度之聚碳酸酯片材。光透過 層(8)之形成,較具體來說,係於真空中(0.1氣壓以下), 載置所希望厚度之聚碳酸酯片材於未硬化之樹脂材料層 上,其次,回到大氣壓氛圍氣體中,照射紫外線來硬化樹 脂材料層。 於光透過層(8)上,形成由硬被覆層(9)與表面層 (10)所構成之複合硬被覆層。首先,說明包含用於硬被 覆層(9 )之活性能量線束硬化性成分之硬被覆層組成物, 與包含具有用於表面層(1 〇 )之潤滑及/或防污機能之活性 能量線束硬化性成分之表面層用材料。 包含於硬被覆劑組成物之活性能量線束硬化性成分方 面,以在光學上爲透明、於所使用之雷射光波長範圍之光 學吸收或反射少、折射率小爲條件,選自紫外線硬化性材 料及電子線束硬化性材料、而以選自紫外線硬化性材料爲 佳。包含於硬被覆劑組成物之紫外線硬化性材料係以選自 與前述之光透過層(8 )用之紫外線硬化性材料同樣者。即, 硬被覆劑組成物方面,可使用包含含有或導入藉由如丙烯 酸或甲基丙烯酸之酯化合物、環氧丙烯酸酯、丙烯酸胺基 甲酸酯之丙烯酸系雙鍵、如鄰苯二甲酸二烯丙基酯之丙烯 系雙鍵、順丁烯二酸衍生物等之不飽和雙鍵等之紫外線照 射所交聯或聚合之官能基於分子中之單體、寡聚物及聚合 物等,與包含光聚合起始劑之自由基聚合性組成物。又, 亦適合地使用含有環氧樹脂及光陽離子聚合觸媒之陽離子 -2卜 200423111 聚合性組成物作爲硬被覆劑組成物。 包含於硬被覆劑組成物之活性能量線束硬化性化合物 方面,可僅使用1種,亦可倂用2種以上。 硬被覆劑組成物係必要時爲了耐磨耗性向上,亦可包 含無機塡充劑,無機塡充劑方面,舉例有氧化矽、氧化鋁、 氧化銷、氧化鈦等。無機塡充劑之平均粒徑,特別在透明 性爲必要之情況下,以lOOnm以下爲佳,以50nm以下爲 較佳。 再者,爲了較爲提高硬化被覆膜之強度或耐磨耗性, 以藉由具有活性能量線束聚合性基之化合物修飾無機塡充 劑之表面爲佳。平均粒徑爲50nm以下,而且以具有活性能 量線束聚合性基之化合物進行表面修飾之無機塡充劑方 面,有記載於例如日本國特開平1 1402 3 5號公報、日本國 特開平9-1001 1 1號公報及日本國特開200 1 - 1 87 8 1 2號公報 之反應性氧化矽粒子,因可於本發明中使用而佳。還有, 記載於日本國特開平1 1 -6023 5號公報之氧化矽粒子,爲包 含陽離子反應性之氧雜環丁基作爲反應性基;記載於曰本 國特開平9-100111號公報之氧化矽粒子係包含自由基反應 性之(甲基)丙烯醯基作爲反應性基。記載於日本國特開 2 00 1 - 1 878 1 2號公報之氧化矽粒子,同時.爲包含(甲基)丙 烯醯基等之自由基反應性不飽和雙鍵、與環氧基等陽離子 反應性基。藉由添加該等無機塡充劑於硬被覆劑組成物中, 可較爲提高硬被覆層之耐磨耗性。無機塡充劑之含有量係 例如於硬被覆劑組成物(作爲固體成分)中爲5〜80重量。/〇 - 22- 200423111 左右。含有較80重量%多之無機塡充劑,容易使硬被覆層 之膜強度變弱。 又,硬被覆劑組成物係進一步於必要時含有非聚合性 之稀釋溶劑、有機塡充劑、聚合抑止劑、抗氧化劑、紫外 線吸收劑、光安定劑、消泡劑、勻塗劑、顏料、砂化合物 等亦無妨。 表面層(10)用材料方面,以光學上爲透明的、於所 使用之雷射光波長範圍之光學吸收或反射少、折射率小爲 條件,如果爲具有可賦予防污性(撥水性及/或撥油性)及/%Known materials for the reaction layer such as Au, Ag, Cu, A1, and Pd. The reflective layer is preferably formed as a thin film having a thickness of 20 to 200 nm. On the reflective layer (3) or directly on the support substrate (2) without a reflective layer, a second dielectric layer (4) and a phase change recording material layer (5) are sequentially formed by a sputtering method. And a first dielectric layer (6). The phase-change recording material layer (5) is formed by a material that is reversibly changed into a crystalline state and an amorphous state by laser light irradiation, and the optical characteristics are different between the two states. Examples include Ge-Sb-Te, In-Sb-Te, Sn-Se-Te, Ge-Te-Sn, In-Se-Tl, In-Sb-Te, and the like. Furthermore, at least one metal selected from the group consisting of Co, Pt, Pd, Au, Ag, Ir, Nb, Ta, V, W, Ti, Cr, Zr, Bi, and In may be added to these materials in a trace amount. A reducing gas such as nitrogen may be added in a small amount. The thickness of the recording material layer (5) is not particularly limited, and is, for example, about 3 to 50 nm. The second dielectric layer (4) and the first dielectric layer (6) are formed by sandwiching the upper and lower sides of the recording material layer (5). The second dielectric layer (4) and the first dielectric layer (6) have a function as an interference layer that adjusts the mechanical, chemical protection, and optical characteristics of the recording material layer (5). The second dielectric layer body (4) and the first dielectric layer body (6) may be each composed of a single layer or a plurality of layers. The second dielectric layer body (4) and the first dielectric layer (6) are each composed of at least one selected from the group consisting of Si, Zn, Al, Ta, Ti, Co, Zr, Pb, Ag, Zn, Sn, It is preferable to form oxides, nitrides, sulfides, fluorides, or a combination thereof among metals of Ca, Ce, V, Cu, Fe, and Mg. The second dielectric layer body (4) and the first dielectric layer body (6) have individual decay coefficients k-1 5- 200423111 of preferably 0.1 or less. The thickness of the second dielectric layer body (4) is not particularly limited, but is preferably about 20 to 150 nm. The thickness of the first dielectric layer (6) is not particularly limited, but is preferably about 20 to 20 nm, for example. The reflection can be adjusted by choosing the thickness of the two dielectric layers (4) (6) due to these ranges. On the first dielectric layer (6), a light-transmitting layer (8) is formed using an active energy beam-hardening material or a light-transmitting sheet such as polycarbonate. In the present invention, the term "active energy beam" refers to an electron beam or ultraviolet rays. The active energy beam-hardening material used for the light-transmitting layer (8) is selected from ultraviolet-curing materials and optically transparent, less optical absorption or reflection in the wavelength range of laser light used, and low birefringence. Electron beam hardening material. Specifically, it is preferable that the active energy beam curable material is composed of an ultraviolet (electron beam) curable compound or the polymerizable composition. In these respects, examples include acrylic double chains containing or introduced by an ester compound such as acrylic acid or methacrylic acid, epoxy acrylate, acrylic urethane, such as diallyl phthalate. The functionalities that are crosslinked or polymerized by ultraviolet irradiation of allylic double bonds, unsaturated double bonds such as maleic acid derivatives, etc. are based on monomers, oligomers and polymers in the molecule. These systems are preferably multifunctional, especially trifunctional or more, and only one type or two or more types may be used. Moreover, you may use a monofunctional one as needed. The ultraviolet curable monomer is preferably a compound having a molecular weight of less than 2000, and the oligomer is preferably 2000 to 10,000. These also include styrene, ethyl acrylate, ethylene glycol diacrylate, ethylene glycol di-16-200423111 alcohol ester, diethylene glycol diacrylate, diethylene glycol methacrylate, 1,6-hexanediol diacrylate and dimethacrylic acid; [, 6-hexanediol ester, etc.] Among the particularly preferable ones, there are isopentaerythritol tetra (meth) acrylate, tris ( Isopentaerythryl methacrylate, diisopentaerythritol hexa (meth) acrylate, tris (meth) propionate, tris (meth) acrylate, tris (meth) acryl Acrylate, (meth) acrylate of phenol-based ethylene oxide adduct, etc. Other examples of the ultraviolet curable oligomer include an acrylic modified body of an ether acrylate oligomer or a urethane elastomer. The active energy beam hardening material may also contain a recognized photopolymerization initiator. 1 ° The photopolymerization initiator is not particularly necessary when an electron beam is used as the active energy beam, but it is necessary when an ultraviolet ray is used. . The photopolymerization initiator may be selected from ordinary ones such as acetophenone-based, benzoin-based, diphenylketone-based, and thioxanthone-based. Among the photopolymerization initiators, examples of the photo-radical initiator include Grand Rochuja 1 1 7 3, Iljachuya 6 5 1, Iljachuya 184, Iljachuya 907 (all (Made by Cibate Chemicals). The content of the photopolymerization initiator is, for example, about 0.5 to 5% by weight based on the active energy beam-hardening component. In terms of the ultraviolet curable material, a composition containing an epoxy resin and a photoradical polymerization catalyst is also suitably used. In terms of epoxy resins, aliphatic cyclic epoxy resins are preferred, and those having two or more epoxy groups in the molecule are particularly preferred. For aliphatic cyclic epoxy resins, one or more types of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanoate and bis (3,4-epoxycyclohexylmethyl) are used. Adipate, bis (3,4-epoxycyclohexyl) adipate, 2- (3,4-epoxycyclohexyl-5,5-spiral-3,4-epoxy) cyclohexane -M-dioxane, bis-17-200423111 (2,3-epoxycyclopentyl) ether, vinyl cyclohexene dioxide and the like are preferred. The epoxy equivalent of the aliphatic cyclic epoxy resin is not particularly limited, but from the viewpoint of obtaining good hardenability, it is preferably 60 to 300, and particularly preferably 100 to 200. The photocationic polymerization catalyst system can also use any of the recognized ones, and there is no particular limitation. For example, more than one metal fluoroborate and boron trifluoride complex, bis (perfluoroalkylsulfo) methane metal salt, aryldiazonium compound, and aromatic key of Group 6 A element can be used Salt, aromatic key salt of group 5 a element, dicarboxyl chelate of group 3 A to 5 A element, thiopyranonium salt, 6A with MF6 anion (however, M is P, As or Sb) Group element, triarylsulfonium complex salt, aromatic dihydrogen complex salt, aromatic sulfonium complex salt, etc., in particular, more than one kind of polyarylfluorene complex salt, halogen-containing halogen compound Aromatic phosphonium salts or dihydrophosphonium salts of ions, aromatic key salts of Group 3A elements, Group 5A elements, and Group 6A elements are preferred. The content of the photocationic polymerization catalyst is, for example, about 0.5 to 5% by weight of the active energy beam-curable component. As for the active energy beam hardening material used for the light transmitting layer, it is preferable to have a viscosity (25 ° C) of 1,000 to 10,000 cp. In the formation of the light transmitting layer (8), the application of the active energy beam hardening material on the first dielectric layer (6) can be performed by a spin coating method. The thickness of the light transmitting layer (8) is, for example, about 10 to 3 0 0 / zm after hardening, preferably 20 to 200 // m, particularly preferably 70 to 150 // m, and 75 to 150 # m is better. In the present invention, after the active energy beam hardening material is coated on the first dielectric layer (6), the hardening material layer is irradiated with ultraviolet rays to form -18-200423111 in a semi-hardened or hardened state. A light-transmitting layer is preferred. Then, in the next step, a hard coating composition is coated on the light-transmitting layer in a semi-hardened or hardened state to form an unhardened hard coating layer. Although the amount of ultraviolet radiation at this time depends on the thickness of the light transmitting layer (8) or the type of the active energy beam hardening material, it can be, for example, 10 to 1 when a light transmitting layer in a semi-hardened state is obtained. 5 00mJ / cm2, preferably 50 ~ 1000mJ / cm2. With this amount of ultraviolet irradiation, a light-transmitting layer in a semi-hardened state can be easily obtained. The term "semi-hardened" means that a part of the applied hardening material is not reacted. Therefore, regardless of the degree of physical hardening of the light-transmitting layer, even if the surface tackiness (adhesiveness) disappears, it does not matter. When a light-transmitting layer in a hardened state is obtained, it may be, for example, 1 00 to 5 0 0 mJ / cm2 and W 2 0 0 to 4 0 0 Om J / cm2. With the ultraviolet irradiation amount in this range, a light-transmitting layer in a cured state was obtained. In particular, since the light-transmitting layer has become a semi-hardened state, there is no fluidity, and the application of the hard coating composition in the next step will not disturb the interface, and the adhesion with the light-transmitting layer is very high. Excellent hard coating. The ultraviolet irradiation at this time may be divided into a plurality of times, and in this case, the cumulative irradiation amount of ultraviolet rays may be in the above-mentioned range. In addition, the coating operation of the active energy beam curable material may be performed in a plurality of times, or the ultraviolet operation may be performed after each coating operation. Since the resin is hardened in stages, it is divided into a plurality of resins that are irradiated with ultraviolet rays, which can reduce the stress that accumulates due to the hardening shrinkage of the optical disc, so that the stress that eventually accumulates on the optical disc is reduced. This result is preferable because the optical transmission layer (8) has a thickness as described above, because it can be made into an optical disc having excellent mechanical characteristics. -19- 200423111 After irradiating ultraviolet rays to the light transmitting layer, it is also preferable to perform annealing treatment and treatment). The stress caused by the hardening shrinkage is extremely large at the moment of hardening, and is relieved with the passage of time. Therefore, by using the principle of 'immediately releasing the stress due to hardening and shrinkage accumulated on the disc', in the case of multiple ultraviolet irradiations, it is better to perform an annealing treatment between ultraviolet irradiations under ultraviolet irradiation. result. Among them, the annealing temperature is preferably 60 ° C or more, and more preferably. Since the annealing temperature is above 80 ° C, the stress can be released more fully. Although the upper limit of the annealing temperature depends on the material of the substrate to be supported, it is generally better to perform at a temperature lower than the glass degree Tg of the material used by at least 10 ° C. The annealing treatment depends on the annealing treatment temperature. From the viewpoint of production efficiency, it is 1 to 5 minutes. Alternatively, in the present invention, a light-transmitting resin sheet may be used as the light-transmitting layer. In this case, on the first dielectric layer (6), the light-transmitting layer is made of the same active energy beam-hardening material and an uncured resin material layer. On the unhardened resin material layer, a light-transmitting sheet of a light-transmitting layer (8), and then hardening the resin material layer by irradiating an active energy beam, and then transmitting the light to form a light-transmitting layer (8) . As for the active energy curable material used for the resin material layer, the resin material layer can be applied by a spin coating method with a viscosity of 3 to 5000 cp (25 ° C). The thickness of the tree layer is, for example, about 1 to 50 // m after hardening, preferably // hi. (The thermal annealing material is better for hard annealing. It is better to spray this step and ^ 80 ° C. The branch transfer temperature time for early completion is better. It is better to form a coating and to form a wire harness that is placed as an ultraviolet sheet. For the fat material 1 0 to 4 20-20 200423111, for the light-transmitting sheet, a polycarbonate sheet having a desired thickness selected from, for example, 50 to 3 0 0 // m and preferably 50 to 150 / zm is used. The formation of the light-transmitting layer (8), more specifically, is in a vacuum (less than 0.1 atmosphere), and a polycarbonate sheet of a desired thickness is placed on the unhardened resin material layer. Next, return to A resin material layer is hardened by irradiating ultraviolet rays in an atmospheric pressure atmosphere. A composite hard coating layer composed of a hard coating layer (9) and a surface layer (10) is formed on the light transmitting layer (8). First, the description includes The hard coating layer composition of the active energy beam hardening component of the hard coating layer (9), and the surface layer containing the active energy beam hardening component having a lubricating and / or antifouling function for the surface layer (10), Material. Contained in hard coating composition The active energy beam hardening component is selected from ultraviolet hardening materials and electron beam hardening materials on the condition that it is optically transparent, has low optical absorption or reflection in the wavelength range of the laser light used, and has a small refractive index. It is preferably selected from ultraviolet curable materials. The ultraviolet curable materials included in the hard coating composition are selected from the same as the ultraviolet curable materials used for the light transmitting layer (8) described above. That is, the composition of the hard coating agent In terms of properties, acrylic resins containing or introducing an acrylic double bond such as an acrylic or methacrylic ester compound, an epoxy acrylate, or an acrylic urethane, such as diallyl phthalate, can be used. The double bonds, unsaturated double bonds, etc. of unsaturated double bonds, etc. are functionalized to be crosslinked or polymerized by ultraviolet irradiation. They are based on monomers, oligomers, and polymers in the molecule, and include photopolymerization initiators. It is also a free radical polymerizable composition. It is also suitable to use a cationic-2 containing a epoxy resin and a photocationic polymerization catalyst as a hard coat. The active energy beam hardening compound contained in the hard coating composition may be used singly or in combination of two or more. The hard coating composition may have a higher abrasion resistance when necessary. Inorganic fillers can be included. Examples of inorganic fillers include silica, alumina, oxide pins, titanium oxide, etc. The average particle size of inorganic fillers is 100 nm or less, especially if transparency is necessary. It is preferable that the thickness be 50 nm or less. In addition, in order to improve the strength or abrasion resistance of the hardened coating film, it is better to modify the surface of the inorganic filler with a compound having an active energy beam polymerizable group. The inorganic fillers having an average particle diameter of 50 nm or less and surface modification with a compound having an active energy beam polymerizable group are described in, for example, Japanese Unexamined Patent Publication No. 1 1402 35 and Japanese Unexamined Patent Publication No. 9- The reactive silica particles of Japanese Patent Publication No. 1001 1 and Japanese Patent Application Laid-Open No. 200 1-1 87 8 1 2 are preferred because they can be used in the present invention. In addition, the silica particles described in Japanese Patent Application Laid-Open No. 1 1-6023 5 contain cationically reactive oxetanyl groups as reactive groups; the oxides described in Japanese Patent Application Laid-Open No. 9-100111 The silicon particle system contains a radically reactive (meth) acrylfluorenyl group as a reactive group. The silicon oxide particles described in Japanese Patent Laid-Open No. 2000-1 878 1 2 are also free radical reactive unsaturated double bonds containing (meth) acrylfluorenyl groups, etc., and react with cations such as epoxy groups. Sex-based. By adding these inorganic fillers to the hard coating agent composition, the wear resistance of the hard coating layer can be relatively improved. The content of the inorganic filler is, for example, 5 to 80% by weight in the hard coating composition (as a solid content). / 〇-22- 200423111. Containing more than 80% by weight of inorganic filler, it is easy to weaken the film strength of the hard coating layer. In addition, the hard coating agent composition further contains a non-polymerizable diluent, an organic filler, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, an antifoaming agent, a leveling agent, a pigment, and the like, as necessary. Sand compounds and the like are also fine. The surface layer (10) is made of materials that are optically transparent, have low optical absorption or reflection in the wavelength range of the laser light used, and have a small refractive index. If they have antifouling properties (water repellency and // Or oil repellent) and /%

或潤滑性之取代基,而且,具有活性能量線束聚合性之反 應性基之化合物,並無特別之限制。例如,舉出有聚矽氧 系取代基或氟系取代基作爲用於賦予防污性及/或潤滑性之 取代基。又,活性能量線束聚合性之反應性基方面,舉出 有(甲基)丙烯醯基、乙烯基及氫硫基等活性能量線束自 由基聚合性反應性基、或環狀醚基及乙嫌基醚基等活性能 量線束陽離子聚合性反應性基。可使用該等自由基聚合性 反應性基或陽離子聚合性反應性基之聚矽氧化合物、或氟 系化合物。 聚矽氧化合物方面,舉出具有聚矽氧之取代基之部位、 與從(甲基)丙烯醯基、乙烯基、氫硫基、環狀醚基及乙 烯基醚基中選擇至少1種之反應性基之化合物,更詳細來 說,雖可舉例示於下述通式(1)〜(3)之化合物,但不一 定限定於該等者。 R-[Si(CH3)20] n-R ( 1 ) - 23- 200423111 R-[Si(CH3)20] n-Si(CH3)3 ( 2) (CH3)3Si0-[Si(CH3)20] n-[Si(CH3)(R)0] m-Si(CH3)3 ( 3) 其中,R係含有從(甲基)丙烯醯基、乙烯基、氫硫 基、環狀醚基及乙烯基醚基之中選擇至少1種之反應性基 之取代基,n、m分別爲聚合度、η爲5〜1000、m爲2〜100。 氟系化合物方面,舉出有含氟(甲基)丙烯酸酯化合 物,具體來說,雖可舉例有(甲基)丙烯酸-2,2,3,3,3-五氟 丙酯、(甲基)丙烯酸-2,2,3,3-四氟丙酯、(甲基)丙烯酸 -2,2,2-三氟乙酯、(甲基)丙烯酸-1H,1H,5H-八氟戊酯、 (甲基)丙烯酸- 3-(過氟-5-甲基己基)-2-羥丙酯、丙烯 酸-2-(過氟辛基)乙酯、(甲基)丙烯酸-3-過氟辛基-2-羥丙酯、(甲基)丙烯酸-2 -(過氟癸基)乙酯、(甲基) 丙烯酸-2-(過氟-9-甲基辛基)乙酯、(甲基)丙烯酸- 3-(過氟-7-甲基辛基)乙酯、(甲基)丙烯酸-2-(過氟-9-甲基癸基)乙酯、(甲基)丙烯酸-1H,1H,9H-十六氟壬酯 等氟化丙烯酸酯,但是不一定限定於該等者。例如,亦以 可使用導入(甲基)丙烯酸酯基之過氟多醚等之聚合物化 合物、或具有取代(甲基)丙烯酸酯基之乙烯基或氫硫基 之氟系化合物等爲佳。舉出有Fombrin Z DOL (醇該質過 氟多醚(澳迪蒙特公司製))之二丙烯酸酯;氟化物ART 3、 氟化物ART 4 (共榮社化學)作爲具體範例。 又,氟系化合物方面,舉出有具有含氟取代基之部位、 與從環狀醚基及乙烯基醚基之中選擇至少1種之反應性基 之化合物。具體來說,雖舉出有3-(1Η,1Η-過氟辛氧基)- -24- 200423111 1,2-環氧丙烷、3-(111,111-過氟壬氧基)-1,2-環氧丙烷、3-(1H,1H-過氟癸氧基)·1,2-環氧丙烷、3· ( 1H,1H-過氟十 一烷氧基)-1,2-環氧丙烷、3- ( 1H,1H-過氟十四烷氧基)-1,2-環氧丙烷、3-( 1H,1H-過氟十六烷氧基)-1,2-環氧丙烷、 111,111,611,611-過氟-1,6-己二醇二環氧丙基醚、111,111,811,811-過氟-1,8-辛二醇二環氧丙基醚、111,111,1011,1011-過氟-1,10-癸二醇二環氧丙基醚、111,111,1211,1211-過氟-1,12-十二烷基 二醇二環氧丙基醚、Fombrin Z DOL(醇改質過氟多醚)(澳 迪蒙特公司製)之二環氧基醚等,但是不一定限定於該等 者。例如,亦以可使用具有3,4-環氧環己基等之脂肪族環 狀環氧基、或乙烯基醚基作爲反應性基之化合物爲佳。 包含於表面層用材料之活性能量線束硬化性化合物方 面,可僅使用1種,亦可倂用2種以上。包含於表面層用 材料之活性能量線束硬化性成分係以爲電子線束硬化性成 分爲佳。 又,於表面層用材料中,係與硬被覆劑組成物中者同 樣地,於必要時,含有非聚合性之稀釋劑、有機塡充劑、 無機塡充劑、聚合抑止劑、抗氧化劑、紫外線吸收劑、光 安定劑、消泡劑、勻塗劑、顏料、矽化合物等亦無妨。 其次,說明包含位於光透過層(8)上之硬被覆層(9) 與表面層(10)之複合硬被覆層之形成。 於本發明中,於使用硬化性材料之半硬化或硬化狀態 之光透過層(8)表面上,或於由光透過性片材所構成之光 透過層(8 )表面上,塗布前述硬被覆劑組成物而形成未硬 - 25- 200423111 化之硬被覆層。硬被覆劑之塗布方法係無限制,可使用旋 轉塗布法、浸漬塗布法、凹版印刷法等各種塗布方法。硬 被覆層硬化後之厚度係可形成爲l//m〜ΙΟ/zm、而以l//m〜5 // m爲佳。低於1 // m則不能賦予光碟足夠之表面硬度,超 鍋l〇//m則有一方面產生裂痕,一方面光碟翹曲變大之傾 向。 於光透過層(8 )表面塗布硬被覆劑組成物之後,於使 前述表面層用材料成膜之前,以無未硬化之硬被覆層之流 動性爲佳。由於無未硬化硬被覆層流動性,在於其上使表 面層用材料成膜時,可防止硬被覆層之膜厚變動或表面性 之惡化,容易使表面用材料均勻地成膜。 爲了使無未硬化被覆層無流動性,例如可於塗布後加 熱,並從硬被覆層除去包含於硬被覆劑組成物中之溶劑。 又,以藉由該加熱進行退火處理(熱緩和處理),並立即 釋放累積於光碟之因硬化收縮導致之應力爲佳。其中之退 火處理溫度方面,係以60 °C爲佳,以80 °C以上爲更佳。退 火處理溫度爲80 °C以上,可較早完全地進行應力之釋放。 退火處理溫度之上限雖隨著所使用之支持基體而定,一般 以於較所使用材質之玻璃轉移溫度Tg至少低1 0 °C之溫度下 進行爲佳。又,退火處理時間雖隨退火處理溫度而定,從 生產效率上來看以1〜5分鐘爲佳。 即使在不進行照射紫外線於光透過層後(即,硬被覆 層形成前)之前述退火處理之情況下,藉由進行硬被覆層 塗布後之退火處理,亦在得到累積於光碟之應力釋放效果 -26- 200423111 之情況下,退火處理時間係以1〜5分鐘左右爲佳。 又,由於未硬化硬被覆層無流動性,塗布後於必要時 加熱,並照射紫外線而亦可使硬被覆層成爲半硬化狀態。 此時,注意紫外線之照射使硬被覆層未完全硬化。還有, 所謂半硬化係表示已塗布之硬被覆劑組成物之一部分未反 應之意思。因而,特別地不論硬被覆層之物理硬化度,表 面之黏著性(黏著)消失亦無妨。此時之紫外線照射量雖 隨硬被覆層之厚度而定,但是可爲例如1〜5 00mJ7cm2、而以 1〜2 00 mJ/cm2爲佳。以該程度之紫外線照射量,容易得到 半硬化狀態之硬被覆層。照射紫外線於硬被覆層之後,亦 以進行與前述同樣之退火處理爲佳。 其次,於未硬化或半硬化(一部分硬化)狀態之硬被 覆層表面上,使前述表面層用材料成膜並形成未硬化表面 層。表面層係亦可形成爲於硬化後所得之厚度爲 lnm〜100nm、而以5nm〜50nm爲佳。低於lnm,則幾乎不能 得到防污性及潤滑性,超過1 〇〇nm則幾乎不能反映下層之 硬被覆層之硬度,減少了耐擦傷性及耐磨耗性之效果。 成膜係可藉由前述表面層用材料之塗布,或藉由蒸鍍 進行。塗布時係以適當之溶劑稀釋前述表面層用材料,該 塗布液並無限制,可藉由旋轉塗布法、浸漬塗布法、凹版 印刷法、噴霧塗布法等各種塗布方法塗布。塗布表面層用 材料之後,以進行加熱處理爲佳。藉由加熱處理蒸發溶劑, 同時藉由熱使表面層用材料均勻而容易得到平滑之表面。 此時之加熱處理溫度係以6(TC以上爲佳,以80°C以上爲更 -27- 200423111 佳。加熱處理時間係以1〜5分鐘左右爲佳。 此時之溶劑方面,以選擇使用實質上不溶解未硬化或 半硬化(部分硬化)狀態之硬被覆層中之活性能量線束硬 化性化合物之溶劑爲佳.。實質上溶解前述硬被覆劑組成物 與否,不僅依賴於溶劑之種類,亦依賴於塗布方法。例如, 在使用旋轉塗布法作爲表面層用材料之塗布方法時,在許 多情況下,由於在旋轉塗布時包含於塗布液之稀釋溶劑大 部分揮發,即使使用某程度溶解前述硬被覆劑組成物之溶 劑,在實用上亦無問題。另外,例如在使用浸漬塗布法作 爲表面層用材料之塗布方法之情況下,由於未硬化之前述 硬被覆層表面與表面層用材料塗布液之接觸時間長,必須 使用完全不溶解或大致上不溶解前述硬被覆劑組成物之溶 劑。 如此一來,形成未硬化或半硬化(部分硬化)狀態之 硬被覆層,與於其表面上形成未硬化之表面層。 其次,層照射電子線束於已形成未硬化或半硬化之硬 被覆層及未硬化之表面,然後,照射紫外線來硬化前述二 層。又,於使用硬化性材料之光透過層(8 )爲半硬化狀態 之情況下硬化光透過層(8 )。 此時,電子線束之照射量可爲例如1〜50 Mr ad、而以 3〜3 OMrad爲佳。又,電子線束之加速電壓可爲20〜100k V、 而以30〜70kV爲佳。以該程度之電子線束照射量及加速電 壓,硬化表面層,同時亦某程度硬化硬被覆層、特別是相 當程度硬化表面層附近之硬被覆層,於界面上強固地密著 - 28 - 200423111 該等二層,再者,不會引起因照射於記錄層之電子線束所 導致之損傷。接著電子線束照射之紫外線照射量雖隨硬被 覆層(9)厚度而定,再者在使用硬化性材料之光透過層(8 ) 爲半硬化狀態之情況下,雖隨光透過層(8 )之厚度而定, 可爲例如500〜5000mJ/cm2、而以1〇〇〜4000mJ/cm2爲佳。在 光透過層(8 )爲半硬化狀態之情況下,爲了完全地硬化光 透過層(8 ),必須較多之紫外線照射量。藉由該等電子線 束照射、緊接著紫外線照射,得到完全硬化且強固地密著 之硬被覆層(9)及表面層(10),同時得到完全硬化之光 透過層(8 )。 藉由電子線束照射、緊接著紫外線照射,認爲能效率 佳地引起包含於表面層用材料之活性能量線束硬化性化合 物之反應性基等之間之反應,或包含於表面層用材料之活 性能量線束硬化性化合物之反應性基、與包含於硬被覆劑 組成物之活性能量線束硬化性化合物(包含具有修飾無機 塡充劑表面之活性能量線束反應性基之化合物)之反應性 基之反應,而得到完全硬化且強固地密著硬被覆層(9 )及 表面層(1 0 )。 又,於電子線束照射、紫外線照射之時,以氛圍氣體 中之氧濃度爲500ppm以下、以200ppm以下爲佳、以1 Oppm 以下爲較佳地藉由氮氣等非活性氣體進行淸洗爲佳。其係 爲了抑制起因於在氛圍氣體中所產生之氧自由基之表面硬 化阻礙。或者,取代抑制照射氛圍氣體中之氧濃度,於硬 被覆劑組成物及/或表面層用材料中,亦可添加習知公認之 -29- 200423111 各種氧阻礙抑制劑。該等氧阻礙抑制劑方面,可使用例如 記載於日本國特開2000-109828號公報、日本國特開2000-109828號公報及日本國特開2000-144011號公報之氧阻礙 抑制劑。當然,倂用上述氧阻礙抑制劑與照射氛圍氣體中 之氧濃度抑制劑亦無妨。 藉由使用如本發明之製程,於高硬度之硬被覆層(9) 上,在最表面反映該硬度之程度中設置薄且具有良好之防 污性•潤滑性之表面層(1 0 ),同時得到硬被覆層(9 )與 表面層(1 〇 )之良好密著性。 其次,參照第2圖,說明對於其他構成範例之光資訊 媒體(以下,簡稱爲光碟)之本發明製造方法。第2圖係 本發明中所製造之光碟之其他範例之槪略剖面圖。 示於第2圖之光碟(3 1 )係於光透過性支持基體(20 ) 之一側上具有有機色素層(25 )、色素層(25 )上之反射 層、於反射層(23 )上經由接著層(28 )所貼合之支持基 體(21),並於支持基體(20)之另一面上具有光透過性 硬被覆層(29 )與光透過性表面層(30 )。於該範例中, 色素層(25 )及反射層(23 )構成記錄層。光碟(31 )係 如通過表面層(30)、硬被覆層(2 9)及支持基體(20), 入射用於記錄或讀取之雷射光地使用。該等光碟方面有記 憶型DVD-R。記錄/讀取雷射光方面,係使用65 0nm或660nm 波長之雷射光。又,使用藍色雷射光線束(405 nm左右之 波長)。 除了示範於第2圖之記憶型DVD-R之外,讀取專用型 -30- 200423111 之DVD-ROM、可重寫型之DVD-RAM等各種正被商品化作 爲光資訊媒體。讀取專用型之DVD方面,有DVD-Video或 DVD-ROM等,於該等光記錄媒體中,係於光透過性基板之 形成時,形成稱爲資訊訊號之凹洞之凸凹,於其上形成A1 等金屬反射層,進一步形成保護層。於保護層上經由接著 層來貼合其他支持基體而形成最終之光資訊媒體。在可重 寫型DVD之情況下,與針對前述相變化型光碟所說明者同 樣地,可構成記錄層。又,於該等構成之媒體中,亦硏究 使用藍色雷射光線束來進行記錄/讀取之方式。 支持基體(20 )方面,係使用光透過性之基板。以往 光透過性支持基體(20 )係射出成形聚碳酸酯樹脂,於該 表面形成各種資訊、例如預坑洞或預溝槽等,所用之材料 係非限定於該等者,亦以使用聚鏈烯樹脂等樹脂爲佳。或 者,亦可藉由於玻璃平板上以2P法形成預坑洞或預溝槽而 得。 於支持基體(20)上,藉由旋轉塗布法塗布溶解於溶 劑之有機色素,並藉由進行乾燥而形成目的膜厚之有機色 素層。有機色素層方面係選自各種賽安寧色素、重氮色素、 酞青色素等。色素層形成方法係除了旋轉塗布法以外亦可 適用噴霧法或絹網印刷法、再者蒸鍍法等,所形成之膜厚 係隨所使用之色素來適宜地選擇。 在適用旋轉塗布法之情況下,溶解色素成分於溶劑中 並使用作爲有機色素溶液,溶劑方面係選擇使用可充分溶 解色素,又對於透過性基板不會造成不良影響者。濃度係 一3卜 200423111 以0 · 0 1〜1 0重量%左右爲佳。 溶劑方面,舉例有甲醇、乙醇、異丙 烯丙基醇、甲基纖維素、乙基纖維素、四 己烷、庚烷、辛烷、癸烷、環己烷、甲基 己;u、一甲基環己院等脂肪族或脂肪族環 溶劑;甲苯、二甲苯、苯等芳香族碳氫化 氯化碳、氯仿、四氯乙院、二溴乙烷等鹵 溶劑;二乙基醚、二丁基醚、二異丙基醚、 劑;3-羥基-3-甲基丁酮等酮系溶劑;乙 酯等酯系溶劑;水等,從該等中,可使用 料者。該等可單獨使用,或者亦可混合2稻 有機色素層之膜厚雖無特別之限制, 爲佳,以60〜250nm左右爲特佳。 於有機色素層(25)上設置反射層( 材料方面,單獨或以合金使用於讀取光之 夠高者、例如 Au、Ag、Cu、Al、Ni、Pd、 又於上述以外亦可含有下述者。例如可舉出 V、Nb、Ru、W、Mn、Re、Fe、Co、Rh、Ir In、Si、Ge、Te、Pb、Po、Sn、Bi 等金屬 $ 反射層之形成雖舉例有濺鍍法、離子 鍍法、真空蒸鍍法等,但是不受該等範例 板上或反射層下亦可設置用於反射率之提 改善之公認無機系或有機系中間層、接著 度係無特別限制者,但是以1 0〜3 0 0 n m 醇、八氟戊醇、 氟丙醇等醇系: 環己烷、乙基環 狀碳氫化合物系 合物系溶劑;四 化碳氫化合物系 二□烷等醚系溶 酸乙酯、乳酸甲 不會侵蝕基板材 ί以上來使用。 (1 0〜3 OOnm左右 2 3 )。反射層之 波長爲反射率足 Cr、Pt等元素。 有 Mg、Se、Hf、 、Zn、Cd、Ga、 获半金屬等。 植入法、化學蒸 限制。又,在基 昇或記錄特性之 層。反射層之厚 左右爲佳,以 - 32- 200423111 80〜200nm左右爲特佳。 於反射層(23 )上通常經由兼具作爲保護層作用之接 著層(2 8 )來貼合支持基體(2〗)。支持基體(2〗)係使 用與前述支持基體(20)同樣者。接著層(28)之材料方 面’如果爲可接著二基體(21)及(20)、保護反射層避 免外力者並無特別之限制。接著劑方面係可舉出有熱可塑 性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等。熱可塑性 樹脂、熱硬化性樹脂等係可溶解於適當之溶劑來塗布塗布 液,並藉由進行乾燥而形成。紫外線硬化性樹脂係可原貌 地或在溶解於適當溶劑來調製塗布液後塗布該塗布液,藉 由照射紫外線來硬化而形成。紫外線硬化性樹脂方面,可 使用例如丙烯酸胺基甲酸酯、環氧丙烯酸酯、聚酯丙烯酸 酯等丙嫌酸酯樹脂。該等材料係可單獨地或混合使用均可, 不僅單層亦可以多層來使用。 接著層(2 8 )之形成方法方面係與記錄層同樣地使用 旋轉塗布法或鑄塑法等之塗布方法。 又,用於貼合之接著劑係使用熱熔膠接著劑、紫外線 硬化型接著劑、加熱硬化型接著劑、黏著型接著劑,適用 於個別之方法,舉例有輥塗法、絹網印刷法、旋轉塗布法 等’在DVD-R之情況下,由操作性或生產性、光碟特性等 總合地判斷而使用紫外線硬化接著劑,並使用絹網印刷法 或旋轉塗布法。 另外,於基持基體(20)之另一面上,形成包含硬被 覆層(29 )及表面層(30 )之複合硬被覆層。包含用於硬 - 33- 200423111 被覆層之活性能量線束硬化性成分之硬被覆劑組成物、及 包含具有用於表面層(3 0 )之潤滑及/或防污機能之活性能 量線束硬化性成分之表面層用材料,係個別地與述於第1 圖之光碟製造中者同樣。 又,硬被覆層(29)及表面層(30)之形成亦可與述 於第1圖之光碟製造中者同樣地進行。於第2圖之光碟中, 硬被覆層(29)係可形成爲l//m〜10//m厚度、以l//m〜5// m爲佳。表面層(30)係可形成爲lnm〜100nm厚度。 藉由使用本發明之製程,於高硬度之硬被覆層(29 ) 上,反映該硬度於最表面之程度地設置薄且具有防污性· 潤滑性之表面層(30 ),同時得到硬被覆層(29 )與表面 層(3 0 )之良好密著性。 藉由使用如以上之材料及成膜、硬化方法,製造具有 耐擦傷性•耐磨耗性及防污性•潤滑性優異、其耐久性亦良 好之複合硬被覆層之光資訊媒體。 【實例】 雖然於以下舉出實例來更具體地說明本發明,但本發 明係不限定於該等實例者。 【實例1】:藉由活性能量線束硬化性材料之光透過層 如以下製作示於第1圖之層構成之光記錄光碟試樣。 於已形成溝槽之碟狀支持基體(2 )(聚碳酸酯製,120mm 直徑、1 .1mm厚)之表面上,藉由濺鍍法形成由Al^PtCu! (原子比)所構成之lOOnm厚之反射層(3 )。前述溝槽深 度係以波長;I =405 nm中光路長來表示爲λ /6。溝槽記錄方 一 34- 200423111 式中之記錄軌跡坑洞爲〇 · 3 2 μ m。 其次,於反射層(3 )表面上,使用A1203耙並藉由濺 鍍法,形成20nm厚之第2介電體層(4)。於第2介電體 層(4 )表面,使用由相變化材料所構成之合金靶並藉由濺 鍍法,形成1 2nm厚之記錄材料層(5 )。使記錄材料層(5 ) 之組成(原子比)爲sb74Te18 ( Gejn!)。於記錄材料層(5 ) 表面,使用ZnS ( 80莫耳% ) -Si02 ( 20莫耳% )靶並藉由 濺鍍法,形成130nm厚之第1介電體層(6)。 其次,於第1介電體層(6)表面,藉由旋轉塗布法塗 布下述之紫外線硬化性材料,然後,藉由照射紫外線(照 射量:5 00m;T/Cm2)來部分硬化。如完全硬化後之厚度爲98 //m地形成光透過層(8)。 (光透過層:紫外線硬化性材料之組成) 丙烯酸胺基甲酸酯寡聚物 50重量份 (三菱縲縈股份有限公司製、大也必姆UK6035 ) 異氰酸EO改質三丙儲酸酯 10重量份 (東亞合成股份有限公司製、阿羅尼克斯M31 5) 異氰酸EO改質二丙烯酸酯 5重量份 (東亞合成股份有限公司製、阿羅尼克斯M21 5) 四氫呋喃丙嫌酸酯 2 5重量份 光聚合起始劑(1-羥基環己苯基酮) 3重量份 其次’於光透過層(8 )上,藉由旋轉塗布法塗布下述 - 35 - 200423111 組成之紫外線/電子線束硬化型硬被覆劑之後,藉由於大氣 中80°C加熱3分鐘來除去被覆膜內部之稀釋溶劑,而形成 未硬化之硬被覆層(9)。 (硬被覆劑之組成) 反應性基修飾膠態二氧化矽(分散劑: :丙二醇單甲基醚乙醯酯, 不揮發份:40重量% ) 1 0 0重量份 六丙烯酸二戊四醇酯 4 8重量份 四氫呋喃丙烯酸酯 1 2重量份 丙二醇單甲基醚乙醯酯 4 0重量份 (非反應性稀釋溶劑) 伊耳卡丘亞1 84 (聚合起始劑) 5重量份 其次,藉由旋轉塗布法塗布過氟多醚二丙烯酸酯(澳 迪蒙特公司製,FombrinZDOL之丙烯酸基改質品,約2000 分子量)之0.5% (質量百分比)氟螺力鈉特FC-77 (住友 3M公司製)溶液於上述未硬化硬被覆層(9)上,於80°C 乾燥之3分鐘, 形成未硬化表面層(1 0 )。 其次,藉由於氮氣流下照射電子線束同時硬化硬被覆 層(9 )與表面層(1〇 )。使用電子線束照射裝置Min-EB (東洋油墨製造股份有限公司製),使電子線束加速電壓 爲5 0kV、照射限量爲lOOkGy ( lOMrad)。照射氛圍氣體 之氧氣濃度爲80ppm。再者,於氮氣流下照射紫外線(照 -36- 200423111 射量:3 000m J/cm2 ),完全硬化光透過層(8)及硬被覆 層(9 )。照射氛圍氣體之氧濃度爲80PPm。硬被覆層(9 ) 之膜厚爲表面層(10)之膜厚約爲25nm。還有, 表面層之膜厚係以過氟多醚(大金工業公司製、迪姆那姆) 爲標準物質,藉由螢光X射線分析(XRF )測定。如此一 來,得到光碟試樣。 【實例2】 於未硬化硬被覆層(9)之形成後、表面層(10)之塗 布前,除了進行紫外線照射(照射量:80 mJ/cm2 )、部分 硬化硬被覆層(9 )以外,與實例1同樣地,得到光碟試樣。 硬被覆層(9)之厚度爲表面層(10)之厚度約爲 2 5 nm 〇 【實例3】 除了改變光透過層(8 )之形成中之紫外線照射量爲3 0 00 J/cm2,於硬被覆劑塗布前完全硬化光透過層(8),及於 未硬化硬被覆層(9)之形成後、表面層(10)之塗布前, 進行紫外線照射(照射量:80 mJ/cm2 )、部分硬化硬被覆 層(9 )以外,與實例1同樣地,得到光碟試樣。硬被覆層 (9)之厚度爲2.1//m、表面層(10)之厚度約爲25nm。 【實例4】以光透過性片材製成光透過層 直到第1介電體層(6 )形成,係與實例1同樣地進行。 於第1介電體層(6)表面,藉由旋轉塗布法塗布自由 基聚合性之紫外線硬化型樹脂溶液(三菱縲縈公司製,4x 108E ’溶劑:乙酸丁酯),如硬化後之厚度爲2.0 Am地形 -37 - 200423111 成樹脂材料層。 其次,於真空中(0.1氣壓以下),載置100//m厚之 聚碳酸酯片材於前述樹脂材料層上。前述聚碳酸酯片材方 面,使用藉由流延法所製造之帝人股份有限公司製之純S。 其次,回到大氣壓氛圍氣體,藉由照射紫外線來硬化前述 樹脂材料層,接著前述聚碳酸酯片材,使其爲光透過層(8)。 以後之操作係與實例1同樣地進行。即,於光透過層 (8)上形成未硬化之硬被覆層(9),其次,形成未硬化 表面層(1 0 ),然後,於氮氣流下藉由照射電子線束同時 硬化硬被覆層(9)與表面層(1〇)。使電子線束加速電壓 爲5 0kV、照射線量爲1 OOkGy ( 1 OMrad )。照射氛圍氣體 之氧濃度爲8 Oppm。再者,於氮氣流下照射紫外線(照射 量:3 000mJ/cm2 ),完全硬化硬被覆層(9 )。照射氛圍氣 體之氧濃度爲80ppm。硬被覆層(9)之厚度爲表 面層(10)之厚度約爲25nm。 【比較例1】 除了未進行最後之紫外線照射(照射量:3 000mJ/cm2 ) 以外,與實例1同樣地進行,得到光碟試樣。 【比較例2】 除了未進行最後之電子線束照射(照射線量:1 〇 〇 k G y (1 OMrad))以外’與實例i同樣地進行,得到光碟試樣。 【比較例3】 除了於未硬化硬被覆層(9 )之形成後、未硬化表面層 (10)之塗布前,進行紫外線照射(照射量:3000mj/cm2), 一 38- 200423111 完全地硬化硬被覆層(9 )以外,與實例1同樣地進行,得 ^ m 到光碟試樣。 (光碟試樣表面之評估) 針對於實例1〜4即比較例1〜3所製作之各光碟試樣, 進行示於以下之性能試驗。 .(1 )耐磨耗性 使用鋼棉#0000,藉由目視以4.9N/cm2荷重來回20次 滑動各光碟試樣之硬被覆層表面時所產生之傷痕程度來判 定。判定基準如以下。 φ 〇:無傷痕產生 △:稍微產生傷痕 X :產生傷痕 (2 )防污性(防污耐久性) 測定各光碟試樣之硬被覆表面之以純水之接觸角。測 定係針對以包含溶劑之重物滑動試樣表面後來進行。滑動 條件係如以下。即,於不織布(旭化成工業公司製,卞科 特林特福利-CT-8 )含浸丙酮,以4.9N/cm2荷重來回滑動50 ^ 次。接觸角之測定係使用協和界面科學公司製、接觸角計 CA-D,於20°C氣溫、60%相對溼度之環境下進行。 表1 實施例實施例 實施例 實施例 比較例 比較例 比較例 1 2 3 4 1 2 3 耐磨耗性 〇 〇 〇 〇 X 〇 〇 接觸角(度) 106 105 106 105 105 59 61 -39- 200423111 以上之測定結果示於表1。 由表1得知,實例1〜4之光碟試樣係耐磨耗性優異、 防污耐久性亦極爲良好。 於比較例1中,由於未進行最後之紫外線照射,耐磨 耗性顯著變差。於比較例2中,由於未進行電子線束照射, 防污性顯著變差。於比較例3中,由於在硬化被覆層之完 全硬化後塗布表面層,防污性顯著變差。 於上述實例中,顯示對於相變化型光碟之複合硬被覆 層之賦予。然而,本發明係不僅記錄層爲相變化形之光碟, 亦適用讀取專用型光碟、或記憶型光碟。因此,前述實例 不過係以所謂觀點作單純之示範,並不受其限制地解釋。 再者,屬於申請範圍之均等範圍之變更係全部爲本發明之 範圍內者。 (五)圖式簡單說明 第1圖係本發明中所製造之光碟之一範例之槪略剖面 圖。 第2圖係本發明中所製造之光碟之一範例之槪略剖面 圖。 元件符號說明 1 光資訊媒體 2 支持基體 3 反射層 4 第2介電體層 5 相變化記錄材料層 _ 4 0 - 第1介電體層 記錄層 光透過層 硬被覆層 表面層 光透過性支持基體 支持基體 反射層 有機色素層 接著層 光透過性硬被覆層 光透過性表面層 光碟There is no particular limitation on the compounds having a lubricating substituent or a reactive group having a reactive energy beam polymerizable group. For example, a polysiloxane-based substituent or a fluorine-based substituent is mentioned as a substituent for imparting antifouling properties and / or lubricity. In addition, the reactive energy polymerizable reactive groups include (meth) acryl fluorenyl, vinyl, and hydrogen sulfide groups such as active energy beam radical polymerizable reactive groups, or cyclic ether groups and ethyl acetate. Cationic polymerizable reactive group such as an active energy beam group such as an ether group. These radically polymerizable reactive groups or cationically polymerizable reactive groups may be used as polysiloxanes or fluorine-based compounds. In the case of polysiloxanes, a site having a polysiloxane substituent and at least one selected from (meth) acrylfluorenyl, vinyl, hydrogenthio, cyclic ether, and vinyl ether are listed. Although the compound of a reactive group is illustrated in more detail by the compound of the following general formula (1)-(3), it is not necessarily limited to these. R- [Si (CH3) 20] nR (1)-23- 200423111 R- [Si (CH3) 20] n-Si (CH3) 3 (2) (CH3) 3Si0- [Si (CH3) 20] n- [Si (CH3) (R) 0] m-Si (CH3) 3 (3) wherein R contains a (meth) acrylfluorenyl group, a vinyl group, a hydrogen thio group, a cyclic ether group, and a vinyl ether group Among them, at least one kind of substituent of a reactive group is selected, n and m are degree of polymerization, η is 5 to 1000, and m is 2 to 100. Examples of the fluorine-based compound include a fluorine-containing (meth) acrylate compound. Specific examples thereof include (meth) acrylic acid-2, 2, 3, 3, 3-pentafluoropropyl ester, and (methyl) ) Acrylic acid-2,2,3,3-tetrafluoropropyl ester, (meth) acrylic acid-2,2,2-trifluoroethyl ester, (meth) acrylic acid-1H, 1H, 5H-octafluoropentyl ester, 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl (meth) acrylate, ethyl 2- (perfluorooctyl) acrylate, 3-perfluorooctyl (meth) acrylate 2-Hydroxypropyl ester, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (perfluoro-9-methyloctyl) ethyl (meth) acrylate, (methyl) 3- (perfluoro-7-methyloctyl) ethyl acrylate, 2- (perfluoro-9-methyldecyl) ethyl (meth) acrylate, -1H, 1H (meth) acrylic acid, 9H-hexafluorononyl ester and other fluorinated acrylates, but not necessarily limited to these. For example, a polymer compound such as a perfluoropolyether into which a (meth) acrylate group is introduced, or a fluorine-based compound having a vinyl group or a hydrogen thio group having a substituted (meth) acrylate group is also preferable. As specific examples, diacrylates of Fombrin Z DOL (alcohol perfluoropolyether (manufactured by Aodimont)); fluoride ART 3, fluoride ART 4 (Kyoeisha Chemical Co., Ltd.) are given. In addition, examples of the fluorine-based compound include a compound having a fluorine-containing substituent and a reactive group selected from at least one of a cyclic ether group and a vinyl ether group. Specifically, although 3- (1Η, 1Η-perfluorooctyloxy)-24-200423111 1,2-epoxypropane, 3- (111,111-perfluorononoxy) -1 are listed, 2-epoxypropane, 3- (1H, 1H-perfluorodecyloxy) · 1,2-epoxypropane, 3 · (1H, 1H-perfluoroundecyloxy) -1,2-epoxy Propane, 3- (1H, 1H-perfluorotetradecanyloxy) -1,2-epoxypropane, 3- (1H, 1H-perfluorohexadecyloxy) -1,2-epoxypropane, 111,111,611,611-perfluoro-1,6-hexanediol diglycidyl ether, 111,111,811,811-perfluoro-1,8-octanediol diglycidyl ether, 111,111,1011,1011-Perfluoro-1,10-decanediol diglycidyl ether, 111,111,1211,1211-Perfluoro-1,12-dodecyl glycol diglycidyl oxide Ether, Fombrin Z DOL (alcohol-modified perfluoropolyether) (diepoxy ether produced by Aodimont), but it is not necessarily limited to these. For example, a compound which can use an aliphatic cyclic epoxy group such as 3,4-epoxycyclohexyl group or a vinyl ether group as a reactive group is also preferred. As for the active energy beam hardening compound contained in the material for the surface layer, only one kind may be used, or two or more kinds may be used alone. The active energy beam hardenable component contained in the surface layer material is considered to be an electron beam hardenable component. In the surface layer material, as in the case of the hard coating composition, a non-polymerizable diluent, an organic filler, an inorganic filler, a polymerization inhibitor, an antioxidant, Ultraviolet absorbers, light stabilizers, defoamers, leveling agents, pigments, silicon compounds, etc. are also fine. Next, the formation of a composite hard coating layer including a hard coating layer (9) and a surface layer (10) on the light transmitting layer (8) will be described. In the present invention, the aforementioned hard coating is applied on the surface of the light-transmitting layer (8) in a semi-hardened or hardened state using a hardening material, or on the surface of the light-transmitting layer (8) composed of a light-transmitting sheet. Agent composition to form an unhardened-25- 200423111 hardened coating. The coating method of the hard coating agent is not limited, and various coating methods such as a spin coating method, a dip coating method, and a gravure printing method can be used. The thickness of the hard coating layer after hardening can be formed from 1 // m to 10 / zm, and preferably from 1 // m to 5 // m. Below 1 // m cannot give the disc a sufficient surface hardness, while the super pan 10 // m has cracks on the one hand, and the tendency of the disc to become warped on the other hand. After the surface of the light-transmitting layer (8) is coated with the hard coating agent composition, the fluidity of the hard coating layer without hardening is preferably before the film for the surface layer is formed. Since there is no fluidity of the unhardened hard coating layer, when the surface layer material is formed thereon, it is possible to prevent the film thickness change of the hard coating layer or the deterioration of the surface property, and it is easy to uniformly form the surface material film. In order to make the non-hardened coating layer non-flowable, for example, the coating may be heated after coating, and the solvent contained in the hard coating composition may be removed from the hard coating layer. In addition, it is preferable to perform annealing treatment (heat relaxation treatment) by the heating and immediately release the stress caused by the hardening shrinkage accumulated in the optical disc. Among them, the annealing temperature is preferably 60 ° C, and more preferably 80 ° C or more. The annealing temperature is above 80 ° C, and the stress can be released completely early. Although the upper limit of the annealing temperature depends on the supporting substrate used, it is generally preferred to perform it at a temperature that is at least 10 ° C lower than the glass transition temperature Tg of the material used. In addition, although the annealing treatment time depends on the annealing treatment temperature, it is preferably 1 to 5 minutes from the viewpoint of production efficiency. Even in the case of not performing the aforementioned annealing treatment after irradiating ultraviolet rays on the light transmitting layer (that is, before forming the hard coating layer), by performing the annealing treatment after coating the hard coating layer, the stress relief effect accumulated in the optical disc is obtained. In the case of -26- 200423111, the annealing treatment time is preferably about 1 to 5 minutes. In addition, since the unhardened hard coating layer has no fluidity, the hard coating layer can be made into a semi-hardened state by heating as necessary after application and irradiating ultraviolet rays. At this time, pay attention that the hard coating layer is not completely hardened by the irradiation of ultraviolet rays. The term "semi-hardened" means that a part of the applied hard coating composition is not reacted. Therefore, in particular, regardless of the degree of physical hardening of the hard coating layer, the surface adhesiveness (adhesion) may disappear. Although the amount of ultraviolet irradiation at this time depends on the thickness of the hard coating layer, it may be, for example, 1 to 500 mJ7cm2, and preferably 1 to 200 mJ / cm2. With this amount of ultraviolet irradiation, a hard coating in a semi-hardened state is easily obtained. After the hard coating layer is irradiated with ultraviolet rays, it is preferable to perform the same annealing treatment as described above. Next, on the surface of the hard coating layer in an unhardened or semi-hardened (partly hardened) state, a film of the aforementioned surface layer material is formed to form an unhardened surface layer. The surface layer system may be formed so that the thickness obtained after hardening is 1 nm to 100 nm, and preferably 5 nm to 50 nm. Below 1 nm, antifouling properties and lubricity can hardly be obtained. Above 1000 nm, it can hardly reflect the hardness of the lower hard coating layer, reducing the effects of scratch resistance and abrasion resistance. The film formation can be performed by coating the aforementioned surface layer material, or by vapor deposition. When coating, the material for the surface layer is diluted with an appropriate solvent. The coating liquid is not limited and can be applied by various coating methods such as a spin coating method, a dip coating method, a gravure printing method, and a spray coating method. After the material for the surface layer is applied, it is preferably heat-treated. The solvent is evaporated by heat treatment, and at the same time, the surface layer material is made uniform by heat, and a smooth surface is easily obtained. At this time, the heat treatment temperature is preferably 6 ° C or higher, and more preferably 80 ° C or higher is -27-200423111. The heat treatment time is preferably about 1 to 5 minutes. For the solvent at this time, choose to use A solvent that does not substantially dissolve the active energy beam-hardening compound in the hard coating layer in an unhardened or semi-hardened (partially hardened) state is preferred. It does not only depend on the type of solvent whether the hard coating composition is substantially dissolved or not. , Also depends on the coating method. For example, when the spin coating method is used as the coating method for the surface layer material, in many cases, since the diluting solvent contained in the coating solution is mostly volatile during spin coating, even if it is dissolved to some extent The solvent of the hard coating agent composition is not practically problematic. In addition, for example, when a dip coating method is used as a coating method for a surface layer material, the surface of the hard coating layer and the material for the surface layer are not cured because the hard coating layer is not hardened. The contact time of the coating liquid is long, and it is necessary to use a solvent which does not dissolve or hardly dissolve the aforementioned hard coating agent composition. The hard coating layer is formed in an unhardened or semi-hardened (partially hardened) state, and an unhardened surface layer is formed on the surface. Next, the layer is irradiated with an electron beam to the hard coating layer and hardened or unhardened The surface is then irradiated with ultraviolet rays to harden the two layers. The light-transmitting layer (8) is hardened when the light-transmitting layer (8) using a hardening material is in a semi-hardened state. At this time, the irradiation amount of the electron beam may be For example, 1 to 50 Mr ad, and preferably 3 to 3 OMrad. The acceleration voltage of the electron wire harness may be 20 to 100 kV, and preferably 30 to 70 kV. The irradiation amount and acceleration voltage of the electron wire harness to this extent The hardened surface layer, and at the same time hardened the hard coating layer, especially the hard coating layer near the hardened surface layer to a certain degree, are strongly adhered to the interface-28-200423111 These two layers, moreover, will not cause Damage caused by the electron beams irradiated to the recording layer. Although the amount of ultraviolet radiation irradiated by the electron beams depends on the thickness of the hard coating layer (9), the light transmitting layer (8) using a hardening material is In the hardened state, although it depends on the thickness of the light transmitting layer (8), it may be, for example, 500 to 5000 mJ / cm2, and preferably 100 to 4000 mJ / cm2. The light transmitting layer (8) is semi-hardened In the case of a state, in order to completely harden the light transmitting layer (8), a large amount of ultraviolet radiation is required. By the irradiation of these electron beams, followed by ultraviolet radiation, a completely hardened and strongly adhered hard coating layer is obtained ( 9) and the surface layer (10), and a fully hardened light transmitting layer (8) is obtained at the same time. The electron beam irradiation followed by the ultraviolet irradiation is considered to cause the active energy beams included in the surface layer material to harden efficiently. Reactions between reactive groups of reactive compounds, or reactive energy beam-curable compounds contained in surface layer materials, and active energy beam-curable compounds (including those with modifications) The reaction of the reactive group of the active energy beam reactive group compound on the surface of the inorganic filler, to obtain a completely hardened and strongly adhered hard coating layer (9) and surface layer (1 0). In the case of electron beam irradiation and ultraviolet irradiation, the oxygen concentration in the ambient gas is preferably 500 ppm or less, preferably 200 ppm or less, and preferably 1 Oppm or less, preferably by rinsing with an inert gas such as nitrogen. This is to suppress the hardening of the surface due to oxygen radicals generated in the atmosphere. Alternatively, instead of suppressing the oxygen concentration in the irradiation atmosphere gas, conventionally recognized -29-200423111 various oxygen blocking inhibitors may be added to the hard coating agent composition and / or the material for the surface layer. As the oxygen barrier inhibitors, for example, the oxygen barrier inhibitors described in Japanese Patent Application Laid-Open No. 2000-109828, Japanese Patent Application Laid-Open No. 2000-109828, and Japanese Patent Application Laid-Open No. 2000-144011 can be used. Of course, it is also possible to use the above-mentioned oxygen blocking inhibitor and the oxygen concentration inhibitor in the irradiation atmosphere. By using the manufacturing process according to the present invention, on the hard coating layer (9) with high hardness, a thin surface layer (1 0) having good antifouling and lubricating properties is provided to the extent that the hardness is reflected on the outermost surface. At the same time, good adhesion of the hard coating layer (9) and the surface layer (10) was obtained. Next, a manufacturing method of the present invention for an optical information medium (hereinafter, simply referred to as an optical disc) of another configuration example will be described with reference to FIG. 2. Fig. 2 is a schematic sectional view of another example of the optical disc manufactured in the present invention. The optical disc (3 1) shown in FIG. 2 has an organic pigment layer (25), a reflective layer on the pigment layer (25), and a reflective layer (23) on one side of the light-transmitting supporting substrate (20). Via the supporting substrate (21) bonded to the adhesive layer (28), a light transmissive hard coating layer (29) and a light transmissive surface layer (30) are provided on the other side of the support substrate (20). In this example, the pigment layer (25) and the reflective layer (23) constitute a recording layer. The optical disc (31) is used by passing a laser light for recording or reading through a surface layer (30), a hard coating layer (29), and a supporting substrate (20). These discs have a memory DVD-R. For recording / reading laser light, laser light with a wavelength of 650 nm or 660 nm is used. A blue laser beam (wavelength of about 405 nm) was used. In addition to the memory-type DVD-R shown in Figure 2, various read-only DVD-ROMs, -30-200423111, and rewritable DVD-RAMs are being commercialized as optical information media. The DVD for reading only includes DVD-Video, DVD-ROM, etc. In these optical recording media, when the light-transmitting substrate is formed, the pits called the information signals are formed on the pits. A metal reflective layer such as A1 is formed, and a protective layer is further formed. The protective layer is bonded to other supporting substrates through an adhesive layer to form the final optical information medium. In the case of a rewritable DVD, a recording layer can be formed in the same manner as described for the aforementioned phase change optical disc. In addition, in these constituted media, a method of recording / reading using a blue laser beam is also studied. As for the supporting substrate (20), a light-transmitting substrate is used. In the past, the light-transmissive support substrate (20) was an injection-molded polycarbonate resin, and various information was formed on the surface, such as pre-pits or pre-grooves. The materials used are not limited to these, but also use chain Resins such as olefin resins are preferred. Alternatively, it can be obtained by forming a pre-pit or a pre-groove on the glass plate by the 2P method. On the support substrate (20), an organic pigment dissolved in a solvent is applied by a spin coating method, and an organic pigment layer having a desired thickness is formed by drying. The aspect of the organic pigment layer is selected from various cyanocyanine pigments, diazo pigments, phthalocyanine pigments, and the like. The method for forming the pigment layer is not only a spin coating method but also a spray method, a screen printing method, and a vapor deposition method. The thickness of the formed film is appropriately selected depending on the pigment used. When the spin coating method is applied, the pigment component is dissolved in a solvent and used as an organic pigment solution. The solvent is selected to sufficiently dissolve the pigment and does not adversely affect the transparent substrate. The concentration is about 3%. 200423111 It is preferably about 0. 0 to 1 to 10% by weight. Examples of solvents include methanol, ethanol, isopropenyl alcohol, methyl cellulose, ethyl cellulose, tetrahexane, heptane, octane, decane, cyclohexane, and methylhexyl; Aliphatic or aliphatic cyclic solvents such as methylcyclohexane; aromatic hydrocarbons such as toluene, xylene, and benzene; halogen solvents such as chloroform, tetrachloroethane, and dibromoethane; diethyl ether, dibutyl Ethers, diisopropyl ethers, agents; ketone solvents such as 3-hydroxy-3-methylbutanone; ester solvents such as ethyl ester; water and the like, from which, those who can be used can be used. These may be used alone or may be mixed with two rice organic pigment layers. Although the film thickness is not particularly limited, it is preferably about 60 to 250 nm. The organic pigment layer (25) is provided with a reflective layer (in terms of materials, alone or in an alloy, which is high enough for reading light, such as Au, Ag, Cu, Al, Ni, Pd, etc.) For example, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir In, Si, Ge, Te, Pb, Po, Sn, Bi, etc. can be mentioned as examples of the formation of a reflective layer. There are sputtering method, ion plating method, vacuum evaporation method, etc., but it is not necessary to provide a recognized inorganic or organic intermediate layer for improving the reflectance on the example plate or under the reflective layer. There are no particular restrictions, but with alcohols such as 10 to 300 nm alcohols, octafluoropentanol, and fluoropropanol: cyclohexane, ethyl cyclic hydrocarbon-based compound-based solvents; tetrachemical hydrocarbons Ethyl ether-soluble acid ethyl esters such as dioxane, and lactic acid methyl ester will not attack the above base plate. (Approximately 1 to 3 OOnm 2 3). The wavelength of the reflective layer is the reflectivity sufficient for Cr, Pt and other elements. Mg, Se, Hf,, Zn, Cd, Ga, semi-metallic, etc. Implantation method, chemical vaporization limitation. Also, in the base or recording characteristics layer The thickness of the reflective layer is preferably about 32-200423111 about 80 to 200 nm. The reflective layer (23) is usually bonded to the supporting substrate via an adhesive layer (28) that also functions as a protective layer ( 2〗). The support substrate (2) is the same as the aforementioned support substrate (20). The material of the bonding layer (28) is' if it can be bonded to the two substrates (21) and (20) and protect the reflective layer from external forces There are no particular restrictions. Examples of the adhesive include thermoplastic resins, thermosetting resins, and UV-curable resins. Thermoplastic resins and thermosetting resins can be dissolved in an appropriate solvent to coat the coating liquid. And is formed by drying. The UV-curable resin can be applied as it is or dissolved in an appropriate solvent to prepare a coating solution, and then cured by irradiating ultraviolet rays. For the UV-curable resin, it can be used For example, acrylic resins such as acrylic urethane, epoxy acrylate, polyester acrylate, etc. These materials can be used alone or in combination, not only single layer but also Multiple layers are used. The method of forming the next layer (2 8) is the same as that of the recording layer using a coating method such as a spin coating method or a casting method. In addition, the adhesive used for bonding is a hot-melt adhesive, UV-curable adhesives, heat-curable adhesives, and adhesive-type adhesives are applicable to individual methods. Examples include roll coating, screen printing, and spin coating. In addition, the UV curing adhesive is used, and the silk screen printing method or the spin coating method is used to judge collectively the productivity and optical disc characteristics. In addition, a hard coating layer (29) is formed on the other surface of the base substrate (20). ) And surface layer (30) of the composite hard coating. Hard coating agent composition containing active energy beam hardening component for hard-33-200423111 coating layer, and active energy beam hardening component containing lubricating and / or antifouling function for surface layer (30) The material for the surface layer is the same as that in the manufacturing of the optical disc described in FIG. 1 individually. The formation of the hard coating layer (29) and the surface layer (30) may be performed in the same manner as in the manufacturing of the optical disc shown in FIG. In the optical disc of FIG. 2, the hard coating layer (29) may be formed to a thickness of 1 // m to 10 // m, and preferably 1 // m to 5 // m. The surface layer (30) can be formed to a thickness of 1 nm to 100 nm. By using the process of the present invention, a thin coating layer (30) with antifouling and lubricating properties is provided on the hard coating layer (29) with high hardness reflecting the hardness to the outermost surface, and a hard coating is obtained at the same time. The good adhesion between the layer (29) and the surface layer (30). By using materials such as the above, film formation, and hardening methods, optical information media with a composite hard coating layer that is excellent in abrasion resistance, abrasion resistance, antifouling, and lubricity, and also excellent in durability are manufactured. [Examples] Although the present invention will be described more specifically with reference to the following examples, the present invention is not limited to those examples. [Example 1]: Light-transmitting layer made of active energy beam hardening material A sample of an optical recording disc having the layer structure shown in Fig. 1 was prepared as follows. 100 nm of Al ^ PtCu! (Atomic ratio) was formed on the surface of the grooved disc-shaped support substrate (2) (made of polycarbonate, 120 mm in diameter and 1.1 mm in thickness) by sputtering. Thick reflective layer (3). The depth of the aforementioned trenches is expressed in terms of wavelength; the optical path length at I = 405 nm is expressed as λ / 6. Groove recording method I 34- 200423111 The pits of the recording track in the formula are 0.32 μm. Next, on the surface of the reflective layer (3), a second dielectric layer (4) with a thickness of 20 nm was formed by using an A1203 rake and a sputtering method. A 12 nm thick recording material layer (5) was formed on the surface of the second dielectric layer (4) by using an alloy target composed of a phase change material and by a sputtering method. The composition (atomic ratio) of the recording material layer (5) was sb74Te18 (Gejn!). On the surface of the recording material layer (5), a ZnS (80 mol%)-Si02 (20 mol%) target was used and a first dielectric layer (6) having a thickness of 130 nm was formed by a sputtering method. Next, on the surface of the first dielectric layer (6), a UV-curable material described below was applied by a spin coating method, and then was partially cured by irradiating ultraviolet rays (irradiation amount: 500 m; T / Cm2). For example, a light-transmitting layer (8) is formed with a thickness of 98 // m after complete hardening. (Light transmission layer: composition of ultraviolet curable material) 50 parts by weight of acrylic urethane oligomer (manufactured by Mitsubishi Chemical Corporation, Great Britain UK6035) isocyanate EO modified tripropionate 10 parts by weight (manufactured by Toa Synthesis Co., Ltd., Aronix M31 5) 5 parts by weight of isocyanate EO modified diacrylate (manufactured by Toa Synthesis Co., Ltd., Aronix M21 5) Tetrahydrofuran propionate 2 5 parts by weight of a photopolymerization initiator (1-hydroxycyclohexyl phenyl ketone) 3 parts by weight 'on the light transmitting layer (8), a UV / electron composition of the following composition is applied by a spin coating method-35-200423111 After the wire harness hardening hard coating agent is heated at 80 ° C in the atmosphere for 3 minutes to remove the diluent solvent inside the coating film, an unhardened hard coating layer is formed (9). (Composition of hard coating agent) Reactive group modified colloidal silica (dispersant: propylene glycol monomethyl ether acetoacetate, non-volatile content: 40% by weight) 1 0 0 parts by weight of dipentaerythritol hexaacrylate 4 8 parts by weight of tetrahydrofuran acrylate 1 2 parts by weight of propylene glycol monomethyl ether acetamyl ester 40 0 parts by weight (non-reactive diluent solvent) Ilkachya 1 84 (polymerization initiator) 5 parts by weight, followed by Spin coating with 0.5% (mass percentage) of perfluoropolyether diacrylate (manufactured by Aodimont, FombrinZDOL, acrylic modified, approximately 2000 molecular weight) fluorospironate FC-77 (manufactured by Sumitomo 3M) ) The solution is dried on the unhardened hard coating layer (9) at 80 ° C for 3 minutes to form an unhardened surface layer (1 0). Secondly, the hard coating layer (9) and the surface layer (10) are simultaneously hardened by irradiating the electron beam under a nitrogen flow. An electron beam irradiating device Min-EB (manufactured by Toyo Ink Manufacturing Co., Ltd.) was used, so that the acceleration voltage of the electron beam was 50 kV, and the irradiation limit was 100 kGy (lOMrad). The oxygen concentration in the irradiation atmosphere was 80 ppm. Furthermore, under a nitrogen stream, ultraviolet rays were irradiated (irradiation: -36- 200423111, irradiation volume: 3 000 m J / cm2), and the light transmitting layer (8) and the hard coating layer (9) were completely hardened. The oxygen concentration of the irradiation atmosphere gas was 80 PPm. The film thickness of the hard coating layer (9) is about 25 nm for the film thickness of the surface layer (10). In addition, the film thickness of the surface layer was measured by a fluorescent X-ray analysis (XRF) using a perfluoropolyether (Dimkin Corporation, Dimnam) as a reference material. In this way, a disc sample is obtained. [Example 2] After the formation of the unhardened hard coating layer (9) and the coating of the surface layer (10), in addition to ultraviolet irradiation (irradiation amount: 80 mJ / cm2) and a partially hardened hard coating layer (9), In the same manner as in Example 1, a disc sample was obtained. The thickness of the hard coating layer (9) is about 25 nm of the thickness of the surface layer (10). [Example 3] In addition to changing the amount of ultraviolet radiation in the formation of the light transmitting layer (8) to 3 00 J / cm2, The light transmitting layer (8) is completely hardened before the hard coating agent is applied, and after the formation of the unhardened hard coating layer (9), the surface layer (10) is subjected to ultraviolet irradiation (irradiation amount: 80 mJ / cm2), Except for the partially cured hard coating layer (9), in the same manner as in Example 1, an optical disk sample was obtained. The thickness of the hard coating layer (9) is 2.1 // m, and the thickness of the surface layer (10) is approximately 25 nm. [Example 4] A light-transmitting layer was formed from a light-transmitting sheet until the first dielectric layer (6) was formed, and it was performed in the same manner as in Example 1. On the surface of the first dielectric layer (6), a radically polymerizable ultraviolet curable resin solution (manufactured by Mitsubishi Electric Corporation, 4x 108E 'solvent: butyl acetate) is applied by a spin coating method, and the thickness after curing is 2.0 Am Terrain-37-200423111 into a resin material layer. Next, a 100 // m-thick polycarbonate sheet was placed on the aforementioned resin material layer in a vacuum (below 0.1 atmosphere). As the polycarbonate sheet, pure S manufactured by Teijin Co., Ltd. manufactured by a casting method was used. Next, the atmosphere is returned to atmospheric pressure, and the resin material layer is cured by irradiating ultraviolet rays, and then the polycarbonate sheet is made a light transmitting layer (8). Subsequent operations are performed in the same manner as in Example 1. That is, an unhardened hard coating layer (9) is formed on the light transmitting layer (8). Next, an unhardened surface layer (1 0) is formed. Then, the hard coating layer (9) is simultaneously hardened by irradiating an electron beam under a nitrogen stream. ) And surface layer (10). The electron beam acceleration voltage was 50 kV, and the irradiation dose was 100 kGy (1 OMrad). The oxygen concentration in the irradiation atmosphere was 8 Oppm. Furthermore, the hard coating layer (9) was completely hardened by irradiating ultraviolet rays (irradiation amount: 3,000 mJ / cm2) under a nitrogen stream. The oxygen concentration in the irradiation atmosphere was 80 ppm. The thickness of the hard coating layer (9) is about 25 nm of the thickness of the surface layer (10). [Comparative Example 1] An optical disc sample was obtained in the same manner as in Example 1 except that the final ultraviolet irradiation (irradiation amount: 3 000 mJ / cm2) was not performed. [Comparative Example 2] The same procedure as in Example i was performed except that the final electron beam irradiation (irradiation amount: 1000 k G y (1 OMrad)) was not performed to obtain a disc sample. [Comparative Example 3] Except after the formation of the unhardened hard coating layer (9) and before the application of the unhardened surface layer (10), ultraviolet irradiation (irradiation amount: 3000mj / cm2), 38-200423111 was completely hardened. Except for the coating layer (9), it was carried out in the same manner as in Example 1 to obtain a sample of the optical disk. (Evaluation of the surface of the optical disk sample) For each optical disk sample produced in Examples 1 to 4, that is, Comparative Examples 1 to 3, the following performance tests were performed. (1) Abrasion resistance Use steel wool # 0000 to determine the degree of scratches generated by sliding the hard coating surface of each optical disc sample back and forth 20 times with a load of 4.9 N / cm2. The judgment criteria are as follows. φ 〇: No scratch generation △: Slight scratch generation X: Scratch generation (2) Antifouling (antifouling durability) The contact angle of pure water on the hard-coated surface of each disc sample was measured. The measurement was performed after sliding the surface of the sample with a weight containing a solvent. The sliding conditions are as follows. That is, a non-woven fabric (manufactured by Asahi Kasei Industries Co., Ltd., CT-Flint-CT-8) was impregnated with acetone and slid back and forth 50 ^ times under a load of 4.9 N / cm2. The contact angle was measured using a contact angle meter CA-D manufactured by Kyowa Interface Science Co., Ltd. at an environment of 20 ° C air temperature and 60% relative humidity. Table 1 Examples Examples Examples Examples Comparative Examples Comparative Examples 1 2 3 4 1 2 3 Abrasion resistance 〇〇〇〇 × 〇〇 Contact angle (degrees) 106 105 106 105 105 59 61 -39- 200423111 The above measurement results are shown in Table 1. As can be seen from Table 1, the optical disk samples of Examples 1 to 4 are excellent in abrasion resistance and have excellent antifouling durability. In Comparative Example 1, since the final ultraviolet irradiation was not performed, the abrasion resistance was significantly deteriorated. In Comparative Example 2, since the electron beam irradiation was not performed, the antifouling property was significantly deteriorated. In Comparative Example 3, since the surface layer was applied after the hardened coating layer was completely cured, the antifouling property was significantly deteriorated. In the above examples, the application of a composite hard coating layer to a phase change optical disc is shown. However, the present invention is not only an optical disc with a phase change recording layer, but also a read-only optical disc or a memory optical disc. Therefore, the foregoing examples are merely exemplified by so-called viewpoints and are not to be interpreted without limitation. In addition, all the changes belonging to the equal scope of the application scope are within the scope of the present invention. (V) Brief Description of Drawings Figure 1 is a schematic sectional view of an example of an optical disc manufactured in the present invention. Fig. 2 is a schematic sectional view of an example of an optical disc manufactured in the present invention. Description of component symbols 1 Optical information media 2 Supporting substrate 3 Reflective layer 4 Second dielectric layer 5 Phase change recording material layer _ 4 0-First dielectric layer recording layer Light transmission layer Hard coating layer Surface layer Light transmittance support Substrate support Substrate reflective layer, organic pigment layer, light-transmissive hard coating layer, light-transmissive surface layer disc

-41--41-

Claims (1)

200423111 拾、申請專利範圍: 1 · 一種光資訊媒體之製造方法,其係於支持基體上依序至 少具有記錄層、光透過層、硬被覆層及表面層之光資訊 媒體之製造方法,其包括: 在光透過層上,塗布含有活性能量線束硬化性成分之硬 被覆劑組成物而形成未硬化之硬被覆層, 在未硬化之硬被覆層上,使包含具有潤滑及/或防污機能 之 '活性能量線束硬化性成分之表面層用材料成膜而形成 未硬化之表面層, 在所形成之未硬化之硬被覆層及未硬化之表面層照射電 子線束’然後照射紫外線而硬化該二層,以形成硬化之 硬被覆層及硬化之表面層。 2 ·如申請專利範圍第1項之光資訊媒體之製造方法,其中 包含於硬被覆劑組成物之活性能量線束硬化性成分爲紫 外線硬化性成分。 3 ·如申請專利範圍第1項之光資訊媒體之製造方法,其中 包含於表面層用材料之活性能量線束硬化性成分爲電子 線束硬化性成分。 4 ·如申請專利範圍第1項之光資訊媒體之製造方法,其中 包含於表面用材料之活性能量線束硬化性成分爲電子線 束硬化性成分,且具有聚矽氧系取代基及/或氟系取代基 〇 5 ·如申請專利範圍第1項之光資訊媒體之製造方法,其中 於形成未硬化之硬被覆層之後,可視需要而乾燥,照射 - 4 2 - 200423111 紫外線而成爲半硬化狀態之硬被覆層,然後於半硬化之 硬被覆層上,使該表面層用材料成膜而形成未硬化之表 面層。 6.如申請專利範圍第5項之光資訊媒體之製造方法,其中 於未硬化之硬被覆層照射紫外線後,進行退火處理(熱 緩和處理)。 7 ·如申請專利範圍第1項之光資訊媒體之製造方法,其中 於藉由塗布進行表面層用材料之成膜、塗布表面層用材 料之後,進行加熱處理。 8 ·如申請專利範圍第1項之光資訊媒體之製造方法,其中 於記錄層上,塗布活性能量線束硬化性材料,照射紫外 線、以形成半硬化或硬化狀態之光透過層,然後於半硬 化或硬化狀態之光透過層上塗布硬被覆劑組成物而形成 未硬化之硬被覆層。 9.如申請專利範圍第8項之光資訊媒體之製造方法,其中 於光透過層照射紫外線之後,進行退火處理(熱緩和處 理)。 1 〇·如申請專利範圍第1項之光資訊媒體之製造方法,其中 於記錄層上,使用樹脂片材來形成光透過層,然後於光 透過層上塗布硬被覆劑組成物而形成未硬化之硬被覆層 〇 1 1.如申請專利範圍第1項之光資訊媒體之製造方法,其中 表面層爲lnm〜100nm厚度。 1 2.如申請專利範圍第1項之光資訊媒體之製造方法,其中 一 43- 200423111 光透過層爲l〇//m〜300//m厚度。 1 3 · —種光資訊媒體之製造方法,其係於光透過性支持基體 之一側面上至少具有記錄層,於光透過性支持基體之另 一側面上依序具有硬被覆層及表面層之光資訊媒體之製 造方法,其包括: 在光透過性支持基體之另一側面上,塗布包含活性 能量線束硬化性成分之硬被覆劑組成物而形成未硬化之 硬被覆層, 在未硬化之硬被覆層上,使包含具有潤滑及/或防污 機能之活性能量線束硬化性成分之表面層用材料成膜而 形成未硬化之表面層, 照射電子線束於所形成之未硬化之硬被覆層及未硬 化之表面層,然後照射紫外線來硬化該二層,以形成硬 化之硬被覆層及硬化之表面層。200423111 Scope of patent application: 1 · A method for manufacturing optical information media, which is a method for manufacturing an optical information medium with at least a recording layer, a light transmitting layer, a hard coating layer and a surface layer in order on a supporting substrate, including: : Applying a hard coating composition containing an active energy beam hardening component to the light-transmitting layer to form an unhardened hard coating layer. The unhardened hard coating layer contains a lubricant and / or antifouling function. 'The surface layer of the active energy beam hardening component is formed into a film to form an uncured surface layer, and the formed uncured hard coating layer and the uncured surface layer are irradiated with an electron beam', and then the two layers are cured by irradiating ultraviolet rays. To form a hardened hard coating layer and a hardened surface layer. 2. The manufacturing method of the optical information medium according to item 1 of the scope of patent application, wherein the active energy beam hardening component contained in the hard coating composition is a ultraviolet hardening component. 3. The manufacturing method of the optical information medium according to item 1 of the scope of patent application, wherein the active energy beam-hardening component contained in the surface layer material is an electron beam-hardening component. 4 · The manufacturing method of the optical information medium according to item 1 of the scope of patent application, wherein the active energy beam-hardening component contained in the surface material is an electron beam-hardening component, and has a polysiloxane-based substituent and / or a fluorine-based component. Substituent group 05 · The manufacturing method of the optical information medium as described in the first item of the patent application, wherein after forming an unhardened hard coating layer, it can be dried as required, and irradiated with-4 2-200423111 UV to become hardened in a semi-hardened state. The coating layer is then formed on the semi-hardened hard coating layer to form a film of the surface layer material to form an unhardened surface layer. 6. The method for manufacturing an optical information medium according to item 5 of the scope of patent application, wherein the uncured hard coating layer is irradiated with ultraviolet rays and then annealed (thermally tempered). 7 · The manufacturing method of the optical information medium according to item 1 of the scope of patent application, wherein the material for the surface layer is formed by coating and the material for the surface layer is coated, followed by heat treatment. 8 · The manufacturing method of the optical information medium according to item 1 of the patent application scope, wherein the recording layer is coated with an active energy beam hardening material, and is irradiated with ultraviolet rays to form a semi-hardened or hardened light transmission layer, and then semi-hardened Or, a hard coating agent composition is coated on the light-transmitting layer in a hardened state to form an unhardened hard coating layer. 9. The manufacturing method of the optical information medium according to item 8 of the patent application scope, wherein the light transmission layer is irradiated with ultraviolet rays and then subjected to an annealing treatment (heat relaxation treatment). 1 〇 · The manufacturing method of the optical information medium according to item 1 of the patent application scope, wherein a resin sheet is used to form a light transmitting layer on the recording layer, and then a hard coating agent composition is coated on the light transmitting layer to form an unhardened material. Hard coating layer 01. The manufacturing method of the optical information medium according to item 1 of the patent application, wherein the surface layer has a thickness of 1 nm to 100 nm. 1 2. The manufacturing method of the optical information medium according to item 1 of the scope of patent application, wherein a 43-200423111 light transmission layer has a thickness of 10 // m to 300 // m. 1 3 · — A method for manufacturing an optical information medium, which is provided with at least a recording layer on one side of a light-transmitting supporting substrate, and a hard coating layer and a surface layer in order on the other side of the light-transmitting supporting substrate. A method for manufacturing an optical information medium, comprising: coating a hard coating agent composition containing an active energy beam hardening component on the other side of a light-transmitting supporting substrate to form an unhardened hard coating layer; On the coating layer, a material for a surface layer containing an active energy beam hardening component having a lubricating and / or antifouling function is formed into a film to form an unhardened surface layer, and an electron beam is irradiated onto the formed unhardened hard coating layer and The unhardened surface layer is then irradiated with ultraviolet rays to harden the two layers to form a hardened hard coating layer and a hardened surface layer. 一 44一One 44 one
TW092136471A 2002-12-27 2003-12-23 The method to produce photo data medium TW200423111A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380301 2002-12-27

Publications (1)

Publication Number Publication Date
TW200423111A true TW200423111A (en) 2004-11-01

Family

ID=32708432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092136471A TW200423111A (en) 2002-12-27 2003-12-23 The method to produce photo data medium

Country Status (4)

Country Link
JP (1) JP4185496B2 (en)
AU (1) AU2003289353A1 (en)
TW (1) TW200423111A (en)
WO (1) WO2004061836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113278A1 (en) * 2008-03-10 2009-09-17 パナソニック株式会社 Manufacturing method for optical information recording medium and optical information recording medium

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113433A (en) * 1981-01-07 1982-07-14 Mitsubishi Rayon Co Ltd Manufacture of imformation recording body
JPH0419839A (en) * 1990-05-14 1992-01-23 Kao Corp Production of recording medium
JPH06162568A (en) * 1992-11-19 1994-06-10 Sony Corp Optical recording medium
JPH06329819A (en) * 1993-05-20 1994-11-29 Three Bond Co Ltd Coating of antistatic protection film
JPH07254169A (en) * 1994-03-15 1995-10-03 Kao Corp Surface-treated substrate
JPH0863784A (en) * 1994-06-13 1996-03-08 Matsushita Electric Ind Co Ltd Optical recording medium and method for using same
JPH10110118A (en) * 1996-08-13 1998-04-28 Toray Ind Inc Antifouling hard coat agent and optical recording media
JPH10287974A (en) * 1997-04-15 1998-10-27 Matsushita Electric Ind Co Ltd Formation of thin coating and thin coating forming device
JP3656420B2 (en) * 1997-07-29 2005-06-08 日本ビクター株式会社 Information recording carrier and manufacturing method thereof
JP2001344821A (en) * 2000-05-31 2001-12-14 Asahi Glass Co Ltd Optical disk with hard coat layer and method for producing the same
JP2002157782A (en) * 2000-09-05 2002-05-31 Tdk Corp Optical information medium and method for testing the same
JP2002157784A (en) * 2000-11-20 2002-05-31 Asahi Glass Co Ltd Blue laser disk having hard coating layer and method of manufacturing the same
JP2002230837A (en) * 2001-01-30 2002-08-16 Asahi Glass Co Ltd Blue laser disk (r) having hard coating layer and method of manufacturing for the same
JP2002269821A (en) * 2001-03-06 2002-09-20 Fuji Photo Film Co Ltd Optical information recording medium
JP4061095B2 (en) * 2001-03-23 2008-03-12 松下電器産業株式会社 Optical information recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
WO2004061836A1 (en) 2004-07-22
AU2003289353A1 (en) 2004-07-29
JP4185496B2 (en) 2008-11-26
JPWO2004061836A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4590849B2 (en) Hard coating agent composition and optical information medium using the same
JP4779293B2 (en) Hard coating agent composition and optical information medium using the same
JP4319522B2 (en) Optical information medium
US7452609B2 (en) Article having composite hard coat layer and method for forming composite hard coat layer
KR100646556B1 (en) Object with composite hard coating layer and method of forming composite hard coating layer
KR100646557B1 (en) Object with composite hard coating layer and method of forming composite hard coating layer
JP2002260280A (en) Optical recording medium and its evaluation
JP2009096927A (en) Active energy ray-curable resin composition and laminated body thereof
TW200423109A (en) Optical disc having hard-coating layer to which surface lubricity is imparted
JP4496766B2 (en) Method for forming protective layer and method for manufacturing optical information medium
WO2003071315A1 (en) Article with composite hard coat layer and method for forming composite hard coat layer
US7153558B2 (en) Optical information medium and production method therefor
JP4111818B2 (en) Object with composite hard coat layer and method for forming composite hard coat layer
JP2003315503A (en) Article with composite hard coat layer and method for forming composite hard coat layer
TW200423111A (en) The method to produce photo data medium
JP2008287883A (en) Optical information medium
JP4794116B2 (en) Optical information medium
JP2004082713A (en) Object having composite hard coat layer and process for forming composite hard coat layer
JP2005011441A (en) Optical recording disk
JP2005011445A (en) Optical recording disk
JP2005011443A (en) Optical recording disk
JP2004055093A (en) Active energy ray hardenable resin composition for optical information medium and optical information medium using the same
JP2004335021A (en) Optical recording disk
JP2005011446A (en) Optical recording disk
JP2005011440A (en) Optical recording disk