TW200416900A - Method for fabricating a sublithographic gate structure for field-effect transistors, an associated field-effect transistor and an associated inverter, and associated inverter structure - Google Patents
Method for fabricating a sublithographic gate structure for field-effect transistors, an associated field-effect transistor and an associated inverter, and associated inverter structure Download PDFInfo
- Publication number
- TW200416900A TW200416900A TW92134941A TW92134941A TW200416900A TW 200416900 A TW200416900 A TW 200416900A TW 92134941 A TW92134941 A TW 92134941A TW 92134941 A TW92134941 A TW 92134941A TW 200416900 A TW200416900 A TW 200416900A
- Authority
- TW
- Taiwan
- Prior art keywords
- gate
- layer
- lithographic
- pole
- cover
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 230000005669 field effect Effects 0.000 title claims abstract description 18
- 238000009413 insulation Methods 0.000 claims abstract description 18
- 238000001459 lithography Methods 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 18
- 239000004020 conductor Substances 0.000 claims description 13
- 238000010348 incorporation Methods 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 230000008901 benefit Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 2
- 244000046052 Phaseolus vulgaris Species 0.000 claims 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims 2
- 238000001000 micrograph Methods 0.000 claims 2
- 235000009499 Vanilla fragrans Nutrition 0.000 claims 1
- 244000263375 Vanilla tahitensis Species 0.000 claims 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 claims 1
- 230000010354 integration Effects 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000005530 etching Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 84
- 238000005516 engineering process Methods 0.000 description 12
- 238000000206 photolithography Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 239000012212 insulator Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000011049 filling Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- UMJFGLNAUQKBET-UHFFFAOYSA-N [2,4,5-triacetyloxy-3,6-bis(4-hydroxyphenyl)phenyl] acetate Chemical compound CC(=O)OC=1C(OC(C)=O)=C(C=2C=CC(O)=CC=2)C(OC(=O)C)=C(OC(C)=O)C=1C1=CC=C(O)C=C1 UMJFGLNAUQKBET-UHFFFAOYSA-N 0.000 description 1
- QAKLCUQMLFFUHY-UHFFFAOYSA-N [N].[Pt] Chemical compound [N].[Pt] QAKLCUQMLFFUHY-UHFFFAOYSA-N 0.000 description 1
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 238000005329 nanolithography Methods 0.000 description 1
- -1 nitride nitride Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 102220163706 rs886047595 Human genes 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
- H01L21/2815—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects part or whole of the electrode is a sidewall spacer or made by a similar technique, e.g. transformation under mask, plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823418—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
- H01L21/823425—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures manufacturing common source or drain regions between a plurality of conductor-insulator-semiconductor structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823437—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823468—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28114—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
200416900 五、發明說明π) 本發明關 構,一 及關於 影金屬 範圍。 合 1 0 0 作為阻 所 術的近 米範圍 阻抗材 滿足技 ΐ斤的用 本的。 因 於一種製造方法,用於製造一次微影閘極結 相關聯之場效應電晶體以及一相關聯之反向器,以 一反向器結構,並且特別地關於一種用於製造次微 閑極的方法’其具有一閘極長度低於1 〇 〇奈米的 週的微 奈米範 抗化學 稱作為 一步發 。在這 料;不 術的要 於遮罩 南成本 此,所 種替代此種 法,如 輔助層 罩被加 I虫刻方 法轉移 使用一 ,所述 以移除 法。這 閘 影方法 圍,產 ,遮罩 15 7 展,而 個例子 論大部 求關於 之製造 並且很 稱作為 便利最 種便利 輔助層 ,並且 獲得次 極層, 的發展,用 生特別大的 之製造,以 奈米之微影 用於製造非 中,這些微 份徹底盡力 此小結構。 亦同時需要 困難管理微 次微影之方 適微影技術 的光阻劑, 非等方向性 於是減少尺 微影遮罩結 用於形成有 於製造 問題, 及複雜 技術已 常好的 影技術 ,無阻 在者, ,並且 影系統 法已經 方法。 一種結 地被加 寸,其 構而利 如次微 非常好 特別是 的微影 經達成 結構於 的方法 抗已被 除了這 他們的 因此所 被加以 在這些 構被加 以I虫刻 係利用 用習慣 影閘極 的結構於次 導致由所稱 系統。 光學微影技 次1 0 0奈 要求新颖的 發現完全地 些新材料, 發展是南成 得的結果。 導入而作為 次微影方 以成像在一 ,該阻抗遮 一種等向性 用的蝕刻方 結構之目 利用相同的方式,此種次微影遮罩結構同時能夠利用200416900 V. Description of the invention π) The present invention relates to the scope of shadow metal. The combination of 1 0 0 is used in the near-meter range of the resistance material, which meets the technical requirements. Because of a manufacturing method, it is used to manufacture a field effect transistor associated with a lithographic gate junction and an associated inverter, in an inverter structure, and in particular, it relates to a method for manufacturing a sub-micro leisure pole. The method, which has a nano-nanofan chemical resistance with a gate length of less than 1,000 nanometers, is called a one-step hair. In this case, the operation is not limited to the cost of the mask. Therefore, this method replaces this method, such as the auxiliary layer mask is transferred by using a method of engraving I, as described in the removal method. This method of shadowing envelops, produces, and covers 15 7 exhibitions, and most of the example theory seeks to make it and is known as the most convenient and convenient auxiliary layer, and has obtained the development of the subpolar layer. Manufactured with nano-lithography used to make non-Chinese materials, these micro-components do their best to this small structure. At the same time, it is also difficult to manage photoresist for microlithography, which is suitable for photolithography. The non-isotropic direction reduces the shadow mask mask knots for forming manufacturing problems, and complex technology is often good. There are no obstacles, and the shadow system method has been used. A kind of ground is added, and its structure is very good. The method of lithography is very good. Especially the resistance to the structure has been removed. Therefore, they have been added to these structures. I used the worm to make use of it. The structure of the shadow gate is next caused by the so-called system. Optical lithography technology 100 times required novel discoveries to completely new materials, development is the result of Nancheng. Introduced as a sub-lithographic side for imaging purposes, this impedance masks an isotropic etching structure. In the same way, this sub-lithographic mask structure can be used at the same time.
第6頁 200416900 五、發明說明(2)Page 6 200416900 V. Description of the invention (2)
所稱作間隙物方法被加以形成,首先地,‘’一第一遮罩帶有 實質地垂直的側壁正被加以形成,並且已被加以刻劃有圖 案,其經常地係利用光學的微影技術來達成。之後,一非 常薄的進一步遮罩層被加以沉積在該第一遮罩表面上覆蓋 整個面積而達到預估的厚度。該進一步的遮罩層之水平層 區域隨即地利用非等方向性蝕刻方法被加以移除,使得只 有一次微影遮罩保持在該第一遮罩的側壁。最後地,該第 一遮罩被加以移除並且唯一的帶有其預估厚度以及閘極長 度之次微影遮罩,被加以轉印至該構成基底的下層閘極 層,而用於形成一次微影閘極結構的目的。 然而,在此種習用方法的缺點是在利用此種方式所加 以形成之該次微影閘極結構中臨界尺寸不合意的變異,而 這實質地起源於所被加以使用的阻抗材料,所使用的該阻 抗化學以及所使用的該钱刻加工程序。The so-called gap method is formed. First, `` a first mask with substantially vertical side walls is being formed and has been patterned, often using optical lithography. Technology to achieve. Thereafter, a very thin further mask layer is deposited on the surface of the first mask to cover the entire area to the estimated thickness. The horizontal layer area of the further mask layer is then removed using a non-isotropic etching method such that the lithographic mask remains on the sidewall of the first mask only once. Finally, the first mask is removed and the only secondary lithographic mask with its estimated thickness and gate length is transferred to the lower gate layer constituting the substrate for forming Purpose of lithography gate structure. However, the disadvantage of this conventional method is that the critical dimension is undesirably mutated in the lithographic gate structure formed by this method, and this essentially originates from the impedance material used, which is used. The impedance chemistry and the money engraving process used.
隨著進階積體密度,然而,具有例如小於1 0 0奈米 (如,2 5奈米)之.一閘極長度的半導體結構增加地被加 以要求並且被加以獲得。該閘極長度實現具有對一半導體 物件之電學性質一有意義的影響。再者,具有增加的需要 去積分此種在一慣用的標準加工程序中次微影’’短通 道’’閘極結構,而用於製造微影技術所形成之’’長通 道’’閘極結構,例如,為了能夠形成在該半導體模組上類 比電路以及數位邏輯電路之積體電路。 因此,本發明基於提供一種製造方法的目的,來製造 一次微影閘極結構,一所相關聯的場效應電晶體以及一所As the advanced product density, however, semiconductor structures having, for example, a gate length of less than 100 nanometers (e.g., 25 nanometers) are increasingly required and obtained. The gate length realization has a meaningful impact on the electrical properties of a semiconductor object. In addition, there is an increased need to integrate this sub-lithographic `` short channel '' gate structure in a conventional standard processing procedure, and it is used to manufacture the `` long channel '' gate formed by lithographic technology The structure is, for example, to be able to form an integrated circuit of an analog circuit and a digital logic circuit on the semiconductor module. Therefore, the present invention is based on the purpose of providing a manufacturing method for manufacturing a lithographic gate structure, an associated field effect transistor, and a
第7頁 200416900 五、發明說明(3) 相關聯的反向器,以及一反向器結構,實現於臨界尺寸以 及特別是閘極正被加以減少,並且一與慣用的方法所相結 合而用於製造微影技術閘極結構,而正利用簡單的方式可 能被加以製作。 根據本發明,藉由如申請專利範圍第1項,第1 5 項,以及第1 6項所相關的方法量測並且藉由如申請專利 範圍第7項所相關反向器結構之特徵而被加以達成目的。Page 7 200416900 V. Description of the invention (3) The associated inverter and an inverter structure are realized at the critical size and especially the gate is being reduced and used in combination with the conventional method It can be used to fabricate gate structures for lithography, which are being fabricated in a simple way. According to the present invention, it is measured by a method related to items 1 to 15 of the scope of patent application, and to item 16 and is characterized by the characteristics of an inverter structure related to the 7th scope of patent application. To achieve its purpose.
特別地,利用帶有實質地在一半導體基材表面垂直的 惻壁之一微影技術所刻劃有圖案之遮罩的形成優點,可能 隨即至少在該半導體基材表面構造性形成一閘極絕緣層, 以及隨即至少在該閘極絕緣層與遮罩的側壁表面構造性形 成一問極層。在包含進行一等方向性钱刻方法以及移除該 遮罩之後,製造次微影閘極結構,而其帶有小的臨界尺寸 以及不帶有直接地由一閘極層而來的額外轉印步驟,於是 導致一已被加以改善而與慣用製造微影技術閘極結構方s法 的結合。特別地所被加以使用於邏輯電路中之次微影閘極 結構於是能夠利用相.同的製造方法以特別地簡單的方式被 加以形成,而帶有以微影技術所形成之平常閘極結構,優 選地被加以使用於類比電路中。In particular, the formation of a mask using a patterned lithography technique with a photolithography technique that is substantially a vertical wall on a semiconductor substrate surface may form a gate at least structurally on the surface of the semiconductor substrate. The insulating layer, and then an interrogation layer is formed structurally at least on the surface of the gate insulating layer and the side wall of the mask. After performing a first-order directional coining method and removing the mask, a sub-lithographic gate structure is manufactured with a small critical dimension and without additional transitions directly from a gate layer. The printing step thus leads to a combination that has been improved with the conventional gate fabrication method of lithography. The secondary lithographic gate structure, which is particularly used in logic circuits, can then be formed in a particularly simple manner using the same manufacturing method, with the usual gate structure formed by lithographic technology. Is preferably used in analog circuits.
特別地,當使用一用夾層之金屬材料時,可能對於第 一時間之次微影技術金屬閘極結ί冓直接地被加以形成,結 果該場效應電晶體之電性性質能夠充分地被加以改善。 該閘極層優選地具有一帶有調節閘極層之複數序列, 其直接地被加以形成在該閘極絕緣層上,並且用作為調節In particular, when a metal material using an interlayer is used, the metal gate junction of the lithography technique at the first time may be directly formed, and as a result, the electrical properties of the field effect transistor can be fully applied. improve. The gate layer preferably has a complex sequence with a regulating gate layer, which is directly formed on the gate insulating layer and used as a regulator
第8頁 200416900 五、發明說明(4) 對該個別半 及 工作功 所使用 或是一 特別地,帶 的是去實現 合因子。該 善。 特別地 應電晶體反 場效應電晶 個第二傳導 入區域而在 實質地利用 用此種方式 區域,以及 這個例子中 區域之間接 術閘極結構 該正交次微 該正父次微 最小尺寸之 以實現。 本發明 導體材料以及一優選的金屬所使用之該閘極層 能,隨後該低植入閘極層在其上被加以形成。 的閘極絕緣層優選地為一氧化物,一氧氮化物 具有一相對高介電常數之電介質,在例子中, 有具有一高相對電容率之電介質材料,有可能 一充分南厚度之閘極絕緣層而帶有充分大的偶 漏電流性質能夠利用個方式充分地被加以改 ,對於 向器之 體被加 型態之 該半導 正交的方式被 具有次微影技 相關地 製造 以形成於一第 場效應 體基材 ,一第 一第二 ,被加 4白勺一 之相對 影技術 影技術 非常強 一部份 截面被 以形成 共用的 部份截 閘極結 閘極結 力的反 電晶體被 上。該微 加以形成 截面被加 加以形成 在介於該 閘極接觸 面至另一 構外側, 構内側。 向器結構 術閘極 複數個 井換入 加以形 影技術 在該半 以形成 該第二 第一以 平台區 上。該 以及該 利用這 能夠以 結構之積 第一傳導 區域,以 成於一第 已圖案化 導體基材 在該第一 井推'入^區 及該第二 域連接次 源 >極接觸 沒極接觸 個方式, 最小花費 體場效 型態之 及複數 二井摻 遮罩正 上,利 井按入 域。在 井播入 微影技 只落於 只落於 一具有 而被加 的進一步優點如進一步申請專利範圍所述特Page 8 200416900 V. Description of the invention (4) The individual semi- and work functions are used or a special one is to realize the combination factor. The good. In particular, the second pass-through region of the transistor field-effect transistor is used to substantially use the region in this way, and in this example the gate structure is connected between the orthogonal submicron and the positive submicron minimum dimensions. To achieve. The gate material used in the conductor material of the present invention and a preferred metal is then formed thereon. The gate insulating layer is preferably an oxide, an oxynitride has a dielectric with a relatively high dielectric constant. In the example, there is a dielectric material with a high relative permittivity. The insulating layer with a sufficiently large even leakage current property can be fully modified by using a method, and the semi-conductor orthogonal method for the direction of the body being added to the body is manufactured in a sub-lithographic manner to form On a first field effector substrate, one first and second, the relative shadowing technique is added. The shadowing technique is very strong, and a part of the cross section is formed to form a common partial gate junction. The transistor is turned on. The micro-formed cross-section is formed between the gate contact surface to the outside of the structure and the inside of the structure. A commutator structure, a plurality of wells, and gates are applied with a shadowing technique on the half to form the second and first platform areas. The and the use of this can be a product of the structure of the first conductive region to form a first patterned conductor substrate in the first well and into the second region and the second domain to connect the secondary source > pole contact electrode Touching the way, the minimum cost body field effect type and the plural two wells mixed with the mask are directly on, and the wells are pushed into the field. Into the well, lithography only falls on, only a further advantage is added, as described in the scope of further patent applications.
第9頁 200416900 五、發明說明(5) 徵。 本發明參考圖示並利用實施例來作更詳細的描述 圖1 A以 被圖案化之遮 例如被加以要 根據圖1 材1利用一種 中,利 別的一 的摻入 中。單 當然是 S〇I 用離子 之 後作為 以形成 施例的 即,具 者是形 用實施 凹陷溝 ,並且 晶矽優 有可能 基材等 轟擊或 後,一 微影閘 於半導 方法, 有一高 成。為 及圖1 罩的製 求而用 A,利 相對應 例的方 槽隔離 同時複 選地被 去使用 而作為 者是由 用於微 極絕緣 體基材 二氧化 的相對 了在該 B顯示 造中實 於根據 用一標 的方式 法,有 (S 丁 數個井 加以使 替代材 合I]女α半 氣相擴 影閘極 層2 - 1的表 矽,氧 電容率 微影閘 用於圖 質的方 本發明 準方法 而被加 可能去 I ), 摻入區 用作為 料例如 導體基 散或者 結構L 而之後 面,在 氮化物 之電介 極結構 解說明在一微影技術已 法步驟的簡化剖面圖, 之次微影閘極結構。 ,首先地,一半導體基 以製備,在這例子子 形成一溝槽隔離以及特Page 9 200416900 V. Description of Invention (5) Sign. The present invention will be described in more detail with reference to the drawings and the embodiments. Fig. 1A is masked with a pattern, for example, to be added according to Fig. 1. Material 1 is used, and the other one is incorporated. Of course, S0I is used to form an example after using ions, that is, a recessed trench is implemented, and the crystal silicon may be bombarded by a substrate or the like. to make. A is used for the manufacture of the cover in Fig. 1, and the square groove isolation of the corresponding example is used at the same time, and it is selected to be used in the same way. In fact, according to the method of using a standard, there are (S, several wells to replace the material I) female α semi-gas phase expansion gate layer 2-1 silicon, oxygen permittivity lithography gate is used for picture quality The method of the present invention may be added to I), and the doping region is used as a material such as a conductor matrix or a structure L. Then, the solution of the dielectric structure of the nitride illustrates the steps of a lithography technique. Simplified sectional view, followed by lithography gate structure. First, a semiconductor substrate is prepared. In this example, a trench isolation and special
半導體基材 域在該半導 半導體基材 ,I I I 材。一摻入 是一固態材 G之層一被 被加以形成 其中的例子 稱作為高介 質,以熱來 絕緣層2的 1之一基本 體基材之 1 ,其同時 V半導體, 可以例如利 料。 ‘ 加以指定此 ,而其被加 中,利用實 電材料’意 加以沉積或 表面形成微The semiconductor substrate is in the semiconductor semiconductor substrate, I I I material. A dopant is a layer of a solid material G which is formed. An example of this is called high dielectric, which heats one of the base substrates 1 of the insulating layer 2, and at the same time V semiconductors can be, for example, materials. ‘Specify this, and it ’s added, using solid materials’ to deposit or surface
第10頁 200416900 五、發明說明(6) 著習慣性光阻材料之使用,這獲得光學微影製造的閘極儲 存或者是具有一由中等到大的閘極長度閘極結構L G ,而 如特別在類比電路中所被加以使用的。 最後地,一遮罩層Μ〇被加以形成而覆蓋在微影閘極 絕緣層2以及微影閘極結構L G之整個面積上,以及一平 面化被加以進行以為了不覆蓋微影閘極結構L G,結果如 圖1 Α所圖解說明之剖面圖被獲得。 由這個傳統層序列之程序,利用複數個標準方法被加 以生成,在此有可能去實現該次微影閘極結構。Page 10 200416900 V. Description of the invention (6) The use of custom photoresist materials, which is obtained by optical lithography gate storage or has a gate structure LG with a medium to large gate length LG, and such as special Used in analog circuits. Finally, a masking layer MO is formed to cover the entire area of the lithographic gate insulation layer 2 and the lithographic gate structure LG, and a planarization is performed so as not to cover the lithographic gate structure. For LG, the results are obtained as illustrated in the cross-sectional view illustrated in FIG. 1A. The program of this traditional layer sequence is generated using a plurality of standard methods, and it is possible to realize the sub-lithographic gate structure here.
根據圖1 B ,在這個例子之中,使用一額外的光學微 影方式,一進一步的光阻遮罩(未被示於圖示中)被加以 形成,並且一特定的部份區域被加以暴露,因一光阻構能 夠被加以剝除至少在一微影技術閘極結構L G以及一因而 為被加以覆蓋的微影技術閘極結構,利用共用蝕刻之方法 而被加以移除。利用相同的方式,該微影技術閘極絕緣層 2同樣地在這個位置被加以移除,結果該開口〇或者是如 在圖1 B所·圖示說明之微影技術地被加以圖案化的負型遮 單被加以獲得。According to Figure 1B, in this example, using an additional optical lithography method, a further photoresist mask (not shown) is formed, and a specific partial area is exposed Because a photoresist structure can be stripped at least one of the lithography gate structure LG and one of the lithography gate structures thus covered are removed by a common etching method. In the same way, the lithography gate insulation layer 2 is also removed at this position. As a result, the opening is patterned by the lithography technique as illustrated in FIG. 1B. Negative masks are obtained.
因此,利用特別簡單的方式,有可能的去製造具有一 中等以及一大閘極長度之閘極結構,並同時利用一種製造 方法製造次微影技術閘¥結構。 只有該開口〇的區域被加以圖示如下,在其中的例子 中相對應圖1B之一微影技術已圖案化負型遮罩Μ〇放大 圖根據圖2而被加以圖示說明,並且維持參考符號來標註Therefore, it is possible to manufacture a gate structure having a medium and a large gate length by using a particularly simple method, and simultaneously use a manufacturing method to fabricate a sublithography gate structure. Only the area of the opening 0 is illustrated as follows. In the example therein, the negative mask M0 patterned corresponding to one of the lithographic techniques of FIG. 1B is illustrated in FIG. 2 and maintained for reference. Symbols to mark
-第11頁 200416900 五、發明說明(7) 元件以及層,為了這個理由 下。 該微影技術已 正型遮罩Μ 重覆的描述被加以說明如 中 圖案 的負 物玻 基材 藉由 物, 料) 平常 、卜-、·拜 千寺 置被 〇一 I 遮罩或 序而定 的元件 如下 。 至圖4 用來圖 構製造 圖1至 述正被 4,一 構性地 Μ〇上 者是一 面上, 中的方 物,及 沉積而 操作, 1的開 成。 D顯 解說 中之 圖3 力口以 閘極 被加 ,而 -被加 即帶 圖案化遮罩可以利用相同方式同樣建構 如圖3所加以圖示說明的。在這個例子 者是一負型遮罩實質地依據該標準可使 。相同的參考符號再次地標註相同的或 ,為了這個理由,一詳細的描述再次地 了的 於場 方法 些相 下。 3 ( 在被 -例女0 的氧 參考 電介 有南 It個 能地 閘極 剖面圖以及一簡化了的 效應電晶體之一次微影 步驟相同的參考符號標 同或者是相對應,並且 積 正型 用的加工程 者是相對應 被加以說明 圖4 A 平面圖,而 技術閘極結 註元件與在 一重覆的描 根據圖 化)結 型遮罩 璃)或 1的表 實施例 氧氮化 被力口以 的沉積 體基材 加以形 示簡化 明在用 實質的 中之那 說明如 絕緣層 以形成 這包含 以沉積 有由其 法,一閘極 /或是一具 覆蓋整個在 然而亦有可 放位置’該 要次微影技 加以微影技 B P S G ( 化物,至少 表面所生相 質材料例如 的相對電容 例子中之面 去形成一熱 絕緣層3只 術地被加以 術地歐案化 硼磷矽氧化 在該半導體 同的厚度。 矽的氧化 率(高K材 it匕夕卜一 氧化物在該 有在這些位-Page 11 200416900 V. Description of the invention (7) Elements and layers, for this reason. The lithography technique has been described repeatedly with the positive mask M, such as the negative pattern glass substrate with a medium pattern (material). Normal, Bu-, Baiqian Temple is covered by a mask or sequence. The specific components are as follows. Figure 4 to Figure 4 are used to construct the fabric. Figure 1 to the description are being constructed. The first is a structure, the surface is in the middle, and the deposition and operation are performed. In the explanation of D, Fig. 3 The force mouth is added with the gate, and-is added, that is, the patterned mask can be similarly constructed in the same way as illustrated in Fig. 3. In this example, a negative mask can be made substantially according to the standard. The same reference symbols are marked again with the same or. For this reason, a detailed description of the field method is given below. 3 (In the oxygen reference dielectric of the female example 0 there are cross sections of the ground gates of the South It and a simplified photolithography step of a simplified effect transistor. The same reference symbols are identified or corresponded, and the product is positive. The processing engineer used for the type is correspondingly illustrated in FIG. 4A, and the technical gate junction element and a repeated description according to the figure) junction type mask glass) or 1 of the embodiment of the table Likou's deposition body substrate is shown in simplified form. It is explained in practical terms such as an insulating layer to form this. This includes depositing by its own method, a gate and / or a cover covering the whole. However, it is also possible. Put the position 'the secondary lithography technique and the lithography technique BPSG (chemical, at least the surface of the material produced on the surface, for example, the surface of the relative capacitance example) to form a thermal insulation layer. Phosphorus silicon is oxidized at the same thickness as the semiconductor. Oxidation rate of silicon
il_fcil_fc
第12頁 200416900 五、發明說明(8) 然而,優選地被加以影響的是特別在所稱作是高K材 料之一整個面積的沉積,該高K材料意即是具有高的相對 電容率電介質。此種電介質的例子為二氧化金合(H f〇 〇 ),金合矽氧氮化物(Hf Si ON)等。相反於平常 的二氧化矽,此種材料,帶有相同或者是以被加以改良了 的閘極偶合性質,意即是,以被加以減少了的控制電壓, 可以具有充分地高的厚度,為了這個理由,特別地漏電流 可以充分地被加以減少。 之後,一閘極層4結構性地被加以形成至少在該閘極 絕緣層3的表面,意即是,帶有實質地相同的厚度。並 且,為了此例子,該閘極絕緣層只有在該半導體表面被加 以形成,而在該遮罩Μ〇之側壁。利用實施例的方法,一 結構性的沉積操作被加以影響於這個例子中,藉由一濺渡 法原 或 加, 積是 度釕被外導 沉或 寬,地之電 相\ 的}選料的 氣及 小Ν優材高 學ο 常a等體地 化法 非T }導分 一 D 。 一 i t 半充 ,L }有妲P性一 } A法具化C晶有 法c D 只氮鉑結具 D法V後如,據料 V積C 之例}之材 P 沉L化,〇入性 C 層A案料 屬 法子C圖材R 已、金 積原法在性彳的種 沉一積4屬釕高此 相,沉層金化了。 氣}相極,氧除4 理法氣閘時,而層 物D學該度},極 是V化當厚 U 用閘 者C 層 是R 使該 或{子 者{以如Page 12 200416900 V. Description of the invention (8) However, what is preferably affected is the deposition over the entire area, which is known as one of the high-K materials, which means a dielectric with a high relative permittivity . Examples of such a dielectric are alumina dioxide (H f 00), aluminized silicon oxynitride (Hf Si ON), and the like. In contrast to ordinary silicon dioxide, this material has the same or modified gate coupling properties, meaning that it can have a sufficiently high thickness with a reduced control voltage. For this reason, in particular, the leakage current can be sufficiently reduced. Thereafter, a gate layer 4 is structurally formed at least on the surface of the gate insulating layer 3, that is, with substantially the same thickness. And, for this example, the gate insulating layer is formed only on the semiconductor surface and on the sidewall of the mask MO. Using the method of the embodiment, a structured deposition operation is affected in this example. By a sputtering method or addition, the product is the degree of ruthenium to be sunk or widened, and the electrical phase of the ground is selected. Qi and small N excellent material high school ο Chang a isomorphic method non-T} derivative-D. One it is half-charged, L} has 妲 P properties one} A method with C crystals with methods c D nitrogen-platinum junction with D method V, such as, according to the example of the product of V and C}, the material P sinks, The case C layer A is expected to belong to the method C drawing R, and the original gold deposit method in the sex sacrifice is a genus of 4 ruthenium. This phase is high, and the deposit is golden. Gas} phase pole, when the oxygen is removed by a 4 method airlock, and the layer D learns the degree}, the pole is V when the thick U is used, the C layer is R, and the or {子 者 {以 如
場。料 一後材 得之屬field. Material
而 功 第13頁 200416900 五、發明說明(9) 能而定或者 以選擇。該 數而定,該 最終厚度, 該次微影技 被加以定義 利用相 禾J用不同的 地,一合適 成在該閘極 目的,並且 上。 原則上 的材料被加 電晶體之各 數個結構’ 同時而可想 根據圖 厚度之氧氮 層3而覆蓋 導體1的表 極層4例如 積,其具有 節一工作功 ,它必 以使用 個鞘電 以及用 而知。 4 A, 化物層 在該半 面以及 可以利 大約1 能到該 具有大約一奈米 是依據各半導體材料之摻入而定的方式而被加 金屬性閘極層的厚度更進一步地依據複數個參 等參數例如一所意欲的閘極長度,一所意欲的 以及同時依據該金屬沉積操作的接構性而定。 術閘極結構的一閘極長度實質地利用其厚度而 〇 同的方式,複數個序列同時可以在該閘極層4 沉積方法而被加以形成。在這個例子中,特別 的閘極層(未加以圖示說明)直接地被加以形 絕緣層3的表面上,而為了調整一工作功能的 一具有最低可能阻抗之閘極層被加以沉積於其 須在這個例子中被加以點出的是相對應 於調整該工作功能或者是用於定義各個 壓,帶有複數層而用於調整工作功能複 於實現加以要求之高電導度之進一步層 利用實施例的方式 (S 1〇N )被加以形成如該閘極絕緣 導體晶圓上或者是在該遮罩Μ〇’該半 在其中垂直的相1i壁上之整個面積。該閘 用一 T a N調節閘極層的形式被加以沉 〇奈米至5 0奈米的厚度,並且提供調 丰導體材料上,而這隨著有一具有5 0And the function Page 13 200416900 V. Description of invention (9) Can be determined or selected. Depending on the number, the final thickness, the lithography technique is defined using phases and different grounds, one suitable for the gate purpose, and the other. The material is in principle several structures of the power crystal. At the same time, it is conceivable to cover the surface layer 4 of the conductor 1 according to the thickness of the oxygen and nitrogen layer 3 of the figure. For example, it has a work function, it must use a Sheath electricity is well known. 4 A, the thickness of the metal gate layer on the half surface and the thickness of the metal gate layer can be about 1 nm to about 1 nm according to the manner of the incorporation of each semiconductor material. The parameters such as a desired gate length, a desired and at the same time depend on the connectivity of the metal deposition operation. A gate length of the surgical gate structure is substantially the same using its thickness, and a plurality of sequences can be formed simultaneously on the gate layer 4 deposition method. In this example, a special gate layer (not illustrated) is directly formed on the surface of the insulating layer 3, and a gate layer having the lowest possible impedance is deposited thereon in order to adjust a working function. What needs to be pointed out in this example is the implementation of further layers corresponding to the adjustment of the working function or for defining the individual pressures, with multiple layers and for adjusting the working function to achieve the required high conductivity. The example method (S10N) is formed as the entire area of the gate insulated conductor wafer or the phase 1i wall in which the half of the mask M0 is vertical. The gate is deposited in the form of a T a N gate electrode layer with a thickness of 0 nanometers to 50 nanometers, and is provided on a conductive conductor material, which in turn has a thickness of 50
第14頁 200416900 五、發明說明uo) 到1 0 0奈米厚度之鎢(W )或者是矽化鎢(W S i )層 而作為低電容率閘極層。 根據圖4 B ,在一附隨發生的方法步驟之中,一非等 方向性蝕刻方法被加以實行為了去形成該次微影閘極結構 S G至少沿著該遮罩Μ〇的側壁。該非等方向性敍刻方法 優選地利用反應性離子蝕刻(R I Ε反應性離子蝕刻法) 的方式在該金屬閘極層4而被加以進行,結果所意欲次微 影間隙物或者是閘極結構S G被加以獲得而帶有臨界尺寸 之最小功能。 之後,該閘極絕緣層3同時可以在未被次微影閘極結 構S G覆蓋的區域而被加以移除。一濕式化學移除正被加 以進行而其例如是利用兩步驟法。利用相同的方式,該閘 極層4以及該絕緣層3同時可以利用一單一方法之步驟或 者是利用複數方法之步驟如圖4 Β所圖示說明地被加以圖 案化。該閘極絕緣層3可選擇地同時可以維持如遮蔽層而 用於一離子植入,而隨及第被加以進行。 最後地,·根據圖4 C ,該硬遮罩Μ〇同時以及構成基 底的微影技術閘極絕緣層2在該開口〇的區域中被加以移 除,結果該次微影閘極結構S G不被加以覆蓋。在這個例 子中,為了進一步的加工程序,可能存在知一閘極絕緣層 3可以保持在該次微影i術閘極結構S G的側壁。 圖4 D顯示一進一步次微影技術閘極結構S G之微影 技術圖案化步驟的簡化平面圖,其係利用一用於分割機體 此微影技術閘極結構S G成複數個次微影技術閘極結構的Page 14 200416900 V. Description of the invention The tungsten (W) or tungsten silicide (W S i) layer with a thickness of 100 nm to 100 nm is used as the low-permittivity gate layer. According to FIG. 4B, in an accompanying method step, a non-isotropic etch method is implemented to form the sub-lithographic gate structure SG at least along the sidewall of the mask MO. The non-isotropic engraving method is preferably performed on the metal gate layer 4 by using a reactive ion etching method (RI E Reactive Ion Etching Method). As a result, the intended lithography of the interstitial spacer or the gate structure is performed. SG is obtained with minimal functionality in critical dimensions. Thereafter, the gate insulating layer 3 can be removed at the same time in an area not covered by the sub-lithographic gate structure SG. A wet chemical removal is being performed and it is, for example, using a two-step process. In the same way, the gate layer 4 and the insulating layer 3 can be simultaneously patterned using a single method step or a plurality of method steps as illustrated in FIG. 4B. The gate insulating layer 3 can optionally be simultaneously maintained as a shielding layer for an ion implantation, and can be performed as soon as possible. Finally, according to FIG. 4C, the hard mask MO and the lithography gate insulator layer 2 constituting the substrate are removed in the region of the opening 〇. As a result, the lithography gate structure SG does not Be covered. In this example, for further processing procedures, there may be a known gate insulation layer 3 that can be held on the side wall of the gate structure SG of this sublithography process. Figure 4D shows a simplified plan view of the lithography patterning step of the further lithography gate structure SG, which uses a lithography gate structure for dividing the body into a plurality of sub-lithography gates Structural
第15頁 200416900 五、發明說明πι) 切刻遮罩C Μ來進行。這個步驟可以例如在根據如圖4 Β 所示知方法步驟之後被加以影響,同時也可能可選擇性地 用於這個步驟而藉由次微影閘極結構S G之間為覆蓋區域 之填充以及平面化而被加以實行,而其用於保護的目的。 根據圖4 D ,利用實施例的方法,只有在帶有保持閘 極絕緣層3之正交次微影技術閘極結構S G的中心區域藉 由該切刻遮罩C Μ而被加以覆蓋。為了這個理由,未被覆 蓋的區域能夠利用平常#刻方法而被加以移除。兩個相反 或者是平行次微影技術閘極結構部份利用這個方式被加以 獲得。 例如為了利用這個方式完成形成具有次微影技術閘極 結構S G之場效應電晶體,進一步可能進行有關圖4 Ε至 圖4 G方法之步驟,相同參考符號再次標註相同的元件或 者是曾,為了這個理由,一重覆的描述被加以說明如下。 相關地,根據圖4 Ε ,在該硬遮罩Μ〇移除之後,例 如藉由一濕式蝕刻方法或者是一氧化物蝕刻方法,一侧壁 絕緣層5可以在該次微影技術閘極結構S G的側壁被加以 形成,並且,在此一例子之中,同時在該閘極絕緣層3的 後側被加以形成。在這個例子之中,利用實施例的方式, 一絕緣層在次地被加以結構性地沉積而覆蓋整個面積以及 隨即地非等方向性被加以蝕刻回來。1 之後,所稱作連接摻入區域6 (延伸)在該半導體基 材1的表面使用次微影技術閘極結構S G而被加以形成, 該惻壁絕緣層5同時與該閘極絕緣體3可能地垂直地存在Page 15 200416900 V. Description of the invention π) Cut the mask CM to perform. This step can be influenced, for example, after the method steps shown in FIG. 4B, and may also be selectively used in this step by filling and covering the coverage area between the sub-lithographic gate structures SG. It is carried out for protection purposes. According to FIG. 4D, using the method of the embodiment, only the central area of the gate structure S G of the orthogonal sub-lithography technology with the holding gate insulating layer 3 is covered by the cut mask C M. For this reason, uncovered areas can be removed using the usual #engraving method. Two opposite or parallel sublithographic gate structures were obtained in this way. For example, in order to use this method to complete the formation of a field effect transistor with a sub-lithography gate structure SG, it is further possible to perform the steps related to the method of FIG. 4E to FIG. 4G. The same reference symbols are used to mark the same elements or once again. For this reason, repeated descriptions are explained as follows. Relatedly, according to FIG. 4E, after the hard mask MO is removed, for example, by a wet etching method or an oxide etching method, a sidewall insulating layer 5 can be formed at the gate of the sub-lithography technology. The side wall of the structure SG is formed, and in this example, is also formed on the rear side of the gate insulating layer 3 at the same time. In this example, using the method of the embodiment, an insulating layer is structurally deposited on the ground to cover the entire area and then anisotropically etched back. After that, the so-called connection doped region 6 (extension) is formed on the surface of the semiconductor substrate 1 using a sub-lithography gate structure SG. The wall insulation layer 5 and the gate insulator 3 may be formed at the same time. Ground exists vertically
第16頁 200416900 五、發明說明(12) 而作為一遮罩,一連接的植入I A優選地正被加以進行。 ί則如,一氧化物被加以使用而作為用於該第一側壁絕緣層 5之材料。 根據圖4 F ,一第二側壁絕緣層7隨即地利用與該第 一側壁絕緣層5之相同的方式而被加以形成在該第一側壁 絕緣層5的側壁,例如氮化石夕(S i 3 Ν 4 )正被加以使用 而作為絕緣體材料。使用這個第二間隙物或者是側壁絕緣 層7同時與帶有閘極絕緣層3該第一側壁絕緣層5以及該 次微影技術閘極結構S G,源極/汲極摻入區域8隨即被 力口以占力'主墓其士士 1 夕由 ,-^、:/5搞/、:芬連隹·?•姑入 I s / D優選地被加以進行。 最後地,根據圖4 G,一純化層9 ,利用一平面化步 驟以及次微影閘極結構S G最後為了形成所要求的源極、 汲極以及閘極接觸而被加以形成在整個區域,並且被加以 拉回,而其用於連接該源極/汲極摻入區域8同‘時與該次 微影技術閘極結構S G。利用實施例的方式,B P S G (硼磷矽氧化·物玻璃)或者是一氧化物可以被加以使用而 作為該鈍化層9 。 利用這個方式,帶有次微影閘極結構結構之該所意欲 的场效應電晶體在遠圖1 B之區域〇中被加以獲得。 這個新穎的製造方法1的優點,特別地,事實上,在利 用微影技術所形成於一硬遮罩側壁上之一間隙物,不作為 用於隨即蝕刻步驟之一進一步硬遮罩,而該步驟用於製造 一次微影閘極結構但相當於已經建構最終次微影閘極結Page 16 200416900 V. Description of the invention (12) As a mask, a connected implantation I A is preferably being performed. For example, an oxide is used as a material for the first sidewall insulating layer 5. According to FIG. 4F, a second sidewall insulation layer 7 is then formed on the sidewall of the first sidewall insulation layer 5 in the same manner as the first sidewall insulation layer 5, such as nitride nitride (S i 3 N 4) is being used as an insulator material. Using this second spacer or the sidewall insulation layer 7 simultaneously with the gate insulation layer 3, the first sidewall insulation layer 5 and the sub-lithography gate structure SG, the source / drain doped region 8 is immediately Likou Yizhan 'the main tomb of the priests in the tomb 1 night,-^,: / 5, /,: Fin Lianyi ·? • Gu Is / D is preferably performed. Finally, according to FIG. 4G, a purification layer 9, using a planarization step and a sub-lithographic gate structure SG, is finally formed over the entire area in order to form the required source, drain, and gate contacts, and It is pulled back, and it is used to connect the source / drain doped region 8 at the same time as the gate structure SG of the sublithography technique. By way of example, B P S G (borophosphosilicate oxide glass) or an oxide may be used as the passivation layer 9. In this way, the desired field effect transistor with the sub-lithographic gate structure is obtained in the region 0 far from FIG. 1B. The advantages of this novel manufacturing method 1, in particular, the fact that a spacer formed on the side wall of a hard mask using lithography technology is not used as a further hard mask for one of the subsequent etching steps, and this step Used to make a primary lithographic gate structure but equivalent to the final secondary lithographic gate junction
第.17頁 200416900 五、發明說明(13) 構。相關地,一第二I虫刻加工程序不被加以要求,為了這 個理由,臨界尺寸的設定以及精卻性充分地被加以改善。 用於特別地範圍介於1 0奈米至5 0奈米之間以及特 別地低於1 0奈米之超短次微影技術閘極結構的此種製造 方法是重要的。P.17 200416900 V. Description of Invention (13) Structure. Relatedly, a second I engraving process is not required, and for this reason, the setting of the critical size and the refinement are sufficiently improved. This method of manufacture is particularly important for ultrashort-order lithography gate structures ranging in particular from 10 to 50 nanometers and particularly below 10 nanometers.
所稱作”閘極修整”的加工程序不再被加以要求在這 個例子中,同時原則上有可能地去製造具有不同量的次微 影閘極長度之平面電晶體。再者,特別地,對於以4 5度 被加以排列的結構線,例如,以這個方法,使得能夠實現 對於所有點範圍帶有一最小的間隔以及最高的可能精確 性。相關地,一製造方法能夠被加以使用而形成閘極結 構,而其同時具有非常大以及中等以及次微影超短閘極長 度。 當在利用一閘極接觸製造接觸時如前面所描述的次微 影閘極結構出現問題,用來製造所稱作閘極接觸平台區域 (平台璺)的方法被加以描述如下。The so-called "gate trimming" process is no longer required. In this case, it is also possible in principle to manufacture planar transistors with different amounts of sub-lithographic gate lengths. Furthermore, in particular, for structural lines arranged at 45 degrees, for example, in this way, it is possible to achieve a minimum interval for all point ranges and the highest possible accuracy. Relatedly, a manufacturing method can be used to form a gate structure, which simultaneously has very large and medium and sub-lithographic ultra-short gate lengths. When a gate contact is used to make a contact, a problem arises in the sublithographic gate structure as described above. The method used to make the gate contact platform area (platform 璺) is described below.
圖5 A以及圖5 B顯.示一帶有調節閘極絕緣層3之正 交次微影結構S G的簡化平面圖,而用於圖示說明有關一 第一實驗例之此種閘極接觸平台區域製造之中實質的方法 步驟,相同的參考符號標註相同的或者是相對應的元件以 及一重覆了的描述被加以說明如下。、 根據圖5 A,仍在根據圖4 D之次微影技術閘極結構 S G的切割之前,以及特別地同時在該遮罩Μ〇之前,有 可能的去形成一閘極接觸平台區域,而用於在該正交次微5A and 5B show a simplified plan view of an orthogonal sub-lithographic structure SG with a regulating gate insulating layer 3 for illustrating the gate contact platform area of the first experimental example. The essential method steps in manufacturing, the same reference symbols are used to identify the same or corresponding components, and a repeated description is explained below. According to FIG. 5A, it is still possible to form a gate contact platform area before cutting the gate structure SG according to the lithography technique of FIG. 4D, and especially at the same time before the mask M0. Used in the orthogonal sub-micro
第18頁 200416900 五、發明說明(14,) '影技術閘極結構S G之一個別的長邊。Page 18 200416900 V. Description of the invention (14,) 'One of the individual long sides of the shadow gate structure SG.
相關地,藉由利用一光學遮遮罩P Μ — A ,實質地正 方開口〇A在每個例子中都被加以形成於該次微影結構閘 極結構S G的一區域之中。該微影技術被加以圖案化之遮 遮罩Μ〇同時與該填充層使用所述的遮罩P Μ — A而被加 以移除,其中該填充層可選擇性地被加以填充在該次微影 劑設閘極結構S G之間,因而,在所述開口〇A中區域之 次微影技術閘極結構完全地不被加以覆蓋。之後,該開口 〇A藉由利用一電性傳導材料而被加以填充,金屬材料優 選地被加以沉積並且隨即地被加以平面化而與該遮罩Μ〇 一樣遠。在這個優選地C Μ Ρ (化學機械研磨)方法之 後,如圖5所加以圖解說明之次微影閘極結構S G之平面 圖被加以獲得,所被稱作為閘極接觸平台區域1 〇 Α在此 正被加以形成於早先開口〇A的區域之中,而這使得接觸 利用一簡單的方式以該次微影技術閘極結構S G而被加以 製作。 然而,有關·於此種方法之缺點特別地為用於光學遮罩 Ρ Μ — A對準的精準性所相關的高度要求。Relatedly, by using an optical mask PM_A, a substantially square opening OA is formed in each example in a region of the sub-lithographic structure gate structure SG. The lithography technique is patterned with a masking mask MO and removed simultaneously with the filling layer using the mask P M — A, wherein the filling layer can be selectively filled in the submicron The shadowing agent is provided between the gate structures SG, and therefore, the gate structure of the secondary lithography technology in the area in the opening OA is not completely covered. Thereafter, the opening OA is filled by using an electrically conductive material, and the metallic material is preferably deposited and then planarized as far as the mask MO. After this preferred CMP (Chemical Mechanical Polishing) method, a plan view of the lithographic gate structure SG illustrated in FIG. 5 is obtained, which is referred to as the gate contact platform area 1 〇Α here It is being formed in the area where the OA was opened earlier, and this allows the contact to be fabricated in a simple manner with the lithography gate structure SG. However, the disadvantages associated with this method are particularly high requirements related to the accuracy of the alignment of the optical masks PM-A.
圖6 A以及圖6 B因此表示一剖面圖以及一已被加以 簡化的平面圖,而這用來圖解說明製造根據一被加以簡化 的第二實驗例中閘極接觸平’台區域,相同的參考符號再次 標註相同的元素或者是層,為了這個理由,一重覆了的描 述被加以說明如下。 根據圖6 A ’根據該弟二貫驗例該光學微影遮罩Ρ Μ6A and 6B thus show a cross-sectional view and a simplified plan view, which are used to illustrate the gate contact flat stage area in the manufacturing according to a simplified second experimental example, the same reference The symbols again label the same elements or layers, and for this reason, repeated descriptions are explained below. According to FIG. 6 A ′ according to the second test case of the optical lithography mask PM
第19-頁 200416900 五、發明說明(15) 一 B在此不具有個別的開口〇A , 但是相當具有一單一 加長開口,其達到超過該次微影技術閘極結構S G兩個長 惻壁。這個開口〇B優選地具有一與該次微影閘極結構S G對面長側壁之間的距離充分地較大長度,因此充分地減 少由光學微影技術遮罩P Μ — Β設置精確性的要求。 為了能避免在該閘極接觸平台區域1 0 Β之間的一短 電路,而在該次微影閘極結構S G側壁,然而一替代性的 填充方法在此被加以進行。Page 19-200416900 V. Description of the invention (15) A B does not have individual openings 0A, but rather has a single elongated opening, which reaches two long walls that exceed the gate structure SG of the sublithographic technique. This opening OB preferably has a sufficiently large distance from the long side wall opposite to the secondary lithography gate structure SG, thereby sufficiently reducing the requirement for the accuracy of the optical lithography mask P M — Β to be set. . In order to avoid a short circuit between the gate contact platform region 10B and the lithographic gate structure SG side wall, an alternative filling method is performed here.
根據圖6 Β ,利用實施例的方式,有可能去進行一化 學氧化或者是一選擇性的氧化物沉積於一閘極接觸絕緣層 2 Α之中,該絕緣層帶有1 〇奈米的厚度,例如,在該半 導體基材1上。為了這個例子,其中該閘極接觸平台區域 1 0 B被加以形成於一半導體區域之中,而其已經具有溝 隔離體(例如,S 丁 I ,淺溝隔離體),此種閘極接觸絕 緣層2 A能夠被加以獲得。According to FIG. 6B, it is possible to perform a chemical oxidation or a selective oxide deposition in a gate contact insulating layer 2 A using the embodiment, and the insulating layer has a thickness of 10 nm. For example, on the semiconductor substrate 1. For this example, where the gate contact platform region 10 B is formed in a semiconductor region, and it already has a trench insulator (for example, Sing I, shallow trench insulator), this gate contact insulation Layer 2 A can be obtained.
之後,一電性傳導層再次地被加以形成,並且優選地 選擇性地被加以沉積在該次微影閘極結構S G之閘極層, 一金屬層或者是一高度地被加以摻入的聚隙層再次地正被 加以沉積覆蓋在整個面積。最後地,一種非等方向性蝕刻 方法被加以進行為了形成該間隙物。為了形成間隙物結構 如圖6 B所加以圖解說明_,因而防止介於該個別的閘極接 觸平台區域1 0 B以及增加一充分大的平台墊。 因當這個加工程序自行對齊,對齊精確度所生之要求 在這第二實驗例之例子中被充分地加以減小。Thereafter, an electrically conductive layer is formed again, and is preferably selectively deposited on a gate layer, a metal layer or a highly doped polymer layer of the sub-lithographic gate structure SG. The interstitial layer is once again being deposited to cover the entire area. Finally, a non-isotropic etching method is performed in order to form the spacer. In order to form the spacer structure, it is illustrated in Figure 6B, thus preventing the individual gates from contacting the platform area 10B and adding a sufficiently large platform pad. Because this processing procedure aligns itself, the requirements imposed by the alignment accuracy are sufficiently reduced in the example of this second experimental example.
第20頁 200416900 五、發明說明(16 ) 圖7 A到圖7 C顯示一些簡化平面圖而用來解釋說明 在製造積體場一效應電晶體反向器結構之實質的方法步 驟,如前面所描述之該次微影技術閘極結構被加以使用。 這裡所被加以描述的方法是特別地適合S〇I (矽在絕緣 體上)晶圓,因而相同閘極材料且特別的是相同金屬能夠 在這個例子中對各種不同F E T s而被加以使用。 在根據圖7 A,首先地,該第一傳導型態η之一第一 井摻入區域1 1 ,以及在後面一第二晶摻入區域1 2於該Page 20 200416900 V. Description of the invention (16) Figures 7A to 7C show some simplified plan views to explain the essential method steps in manufacturing the integrated field-effect transistor inverter structure, as described above. This time the lithography gate structure was used. The method described here is particularly suitable for SOI (silicon on insulator) wafers, so that the same gate material and especially the same metal can be used in this example for a variety of different F E T s. According to FIG. 7A, firstly, one of the first conduction patterns η is doped in the first well region 1 1, and a second crystal is doped in the region 1 2 later.
第二傳導型態ρ ,相對該第一傳導型態而而被加以形成於 該半導體積材1之中。如前所加以描述之微影技術地已被 加以刻化圖案的正型遮罩Μ〇一 I在這個例子中利用正交 的方式被加以形成在該半導體積材1上,利用此種方式, 一第一部份截面被加以形成在該第一井摻入區域1 1上, 並且該第二部份截面被加以形成在該第二井摻入區域 1 2 。根據圖1Α,由一正行遮罩Μ〇一 I製造之使用, 在其中,實質地一半落於該井摻入區域1 1中以及其另外 一半落於該第二井摻入區域1 2中。A second conductivity type ρ is formed in the semiconductor material 1 with respect to the first conductivity type. As described earlier, the lithographic technique has been patterned with a positive mask M01. In this example, it is formed on the semiconductor material 1 in an orthogonal manner, using this method, A first partial cross section is formed on the first well incorporation region 1 1, and a second partial cross section is formed on the second well incorporation region 1 2. According to FIG. 1A, the use is made by a forward mask MOI, in which substantially half falls in the well-incorporating region 11 and the other half falls in the second-well incorporation region 12.
根據圖7 Β ,之後,根據如前面所描述的方法步驟, 一正交的次微影閘極結構S G帶有其閘極絕緣層3 ,在該 正型遮罩Μ〇一I的側壁被加以形成,並且該遮罩隨及第 被加以移除◦然而’該次微影閘極結構S G的分割不被加 以進行。 之後,如前面所加以描述的,汲極摻入區域實質地被 加以形成在該正交閘極結構SG之中,以及源極摻入區域According to FIG. 7B, after that, according to the method steps described above, an orthogonal sub-lithographic gate structure SG with its gate insulating layer 3 is applied on the side wall of the positive mask MOI. Is formed, and the mask is removed at first. However, the segmentation of the lithographic gate structure SG is not performed. Thereafter, as described previously, the drain-doped region is substantially formed in the orthogonal gate structure SG, and the source-doped region is formed.
第21頁- 200416900 五、發明說明(17) 實質地被加以形成在該正交閘極結構S G之外側,而在該 第一以及第二景摻入區域2 2以及1 2之中,當然地,源 極以及汲極摻入區域對於個別井摻入區域具有相對應相對 推入。 一共用的閘極接觸平台區域1 0 C在此被加以形成在 介於該第一以及第該第二井摻入區域1 1以及1 2之間一 接合處的區域之中,在一例子中,然而,次微影值閘極結 構S G之長側之相對的部份,在此被加以允許而電性地連 接到另一。最後地,為了與該源極摻入區域接觸,源極S 只在該垂直的次微影閘極結構S G外側被加以形成,以及 用於與汲極摻入區域相接觸之汲極接觸D,只有在該垂直 的次微影閘極結構S G之中被加以形成,一閘極接觸G正 在該共用的閘極接觸平台區域1 0 C被加以形成。 這得到該場效應電晶體反向器,而其被加以圖示解說 如在圖8之中利用簡化形式之等電流圖,以及具有一特別 地簡單以及省空間的構造。 本發明基於一垂直的次微影閘極結構已經被加以描述 於上。然而,它並不被加以設限於此,並且同時包含替代 的形式,或者是利用這個方式的結構。 再者,一反向器結構已經被加以描述有及極摻入區 域,以及所相關聯的汲極接觸,其落於垂直的閘極結構 之中。然而,利用這個方式這些同時可以落於該垂直閘極 結構外側,因此該源極摻入區域以及所相關聯的源極接觸 向内移動。Page 21-200416900 V. Description of the invention (17) is substantially formed on the outside of the orthogonal gate structure SG, and the first and second scenes are incorporated into the regions 22 and 12, of course. The source and drain doping regions have corresponding insertions for individual well doping regions. A common gate contact platform region 1 0 C is formed here in a region between a junction between the first and second well doped regions 11 and 12, in one example However, the opposite part of the long side of the sub-lithographic gate structure SG is allowed here to be electrically connected to another. Finally, in order to make contact with the source doped region, the source S is formed only outside the vertical sub-lithographic gate structure SG, and a drain contact D for contact with the drain doped region, Only in the vertical sub-lithographic gate structure SG is formed, and a gate contact G is formed in the common gate contact platform area 10 C. This results in the field-effect transistor inverter, which is illustrated diagrammatically as in FIG. 8 using a simplified form of an equivalent current diagram, and having a particularly simple and space-saving construction. The present invention has been described above based on a vertical sub-lithographic gate structure. However, it is not limited to this, and it also contains alternative forms or structures that make use of this approach. Furthermore, an inverter structure has been described with the gate doped region and the associated drain contact, which falls into the vertical gate structure. However, in this way these can also fall outside the vertical gate structure at the same time, so the source incorporation region and the associated source contacts move inward.
第22頁 200416900 圖 圖 案 圖 圖 圖 的 圖 造 圖 構 圖 圖 之 圖 圖 之 圖 圖 圖 簡單說明 1 A以及圖1 B顯示用於圖解說明在一微影技術已被圖 化之遮罩的製造中實質的方法步驟的簡化剖面圖。 2顯示微影技術已圖案化之負型遮罩的放大頗面圖。 3顯示微影技術已圖案化之正型遮罩的放大頗面圖。 4 A到圖4 C顯示用於圖解說明在一次微影閘極結構之 製造中實質的方法步驟的簡化剖面圖。 4 D顯示用於圖解說明在一次微影閘極結構之裁切的製 中實質的方法步驟的簡化剖面圖。 4 E到圖4 G顯示用於圖解說明在一具有次微影閘極結 之場效應電晶體的製造中實質的方法步驟的簡化剖面 〇 5 A以及圖5 B顯示用於圖解說明在一關於第一實施例 閘極接觸平台區域的製造中實質的方法步驟的簡化剖面 0 6 A以及圖6 B顯示用於圖解說明在一關於第二實施例 閘極接觸平台區域的製造中實質的方法步驟的簡化剖面 C - 7 A到圖7 C顯示用於圖解說明在一場效應反向器的製 中實質的方法步驟的簡化平面圖。 8顯示如圖7圖解說明之場效應反向器的簡等電路圖。 2 微影技術閘極絕緣層 4 閘極層 元件符號說明: 1 半導體基材 3 閘極絕緣層 邏圓 mPage 22 200416900 Figures Patterns Figures Figures Drawings Drawings Drawings Drawings Drawings Drawings Brief Description 1 A and Figure 1 B are used to illustrate the manufacture of a mask in which a lithography technique has been patterned Simplified sectional view of essential method steps. 2 shows a magnified view of a negative mask patterned by lithography. 3 Shows a magnified view of a positive mask that has been patterned by lithography technology. 4A to 4C show simplified cross-sectional views illustrating the essential method steps in the fabrication of a lithographic gate structure. 4D shows a simplified cross-sectional view illustrating the essential method steps in the fabrication of a lithographic gate structure. 4 E to 4 G show simplified cross-sections illustrating the essential method steps in the fabrication of a field effect transistor with a sub-lithographic gate junction. 5 A and FIG. 5 B show diagrams illustrating Simplified cross-sections of substantial method steps in the manufacture of the gate contact platform region of the first embodiment 0 6 A and FIG. 6B show schematic method steps used in the manufacture of a gate contact platform region of the second embodiment The simplified cross sections C-7 A to 7 C show simplified plan views illustrating the essential method steps in the construction of a field effect inverter. 8 shows a simplified circuit diagram of a field effect inverter as illustrated in FIG. 7. 2 Lithography Technology Gate Insulation Layer 4 Gate Layer Element Symbol Description: 1 Semiconductor substrate 3 Gate insulation layer Logical circle m
200416900 圖式簡單說明 5 第一側壁絕緣層 6 連接掺入區域 7 第二惻壁絕緣層 8 源極/汲極摻入區域 9 鈍化層 1 0 A、1 〇 B 、1 〇 C 閘極接觸點平台區域 11、12 第一,第二井摻入區域 S G 次微影技術閘極結構 L G 微影技術閘極結構 〇、〇A 、〇B 遮罩開口 Μ〇、Μ〇一I 微影技術已圖案化遮罩 Ρ Μ — A、Ρ Μ — Β 光學微影技術遮罩 C Μ 裁切遮罩 S 源極接觸點 D 汲極接觸點 G 閘極接觸點200416900 Brief description of the drawing 5 First sidewall insulation layer 6 Connection doped region 7 Second dart wall insulation layer 8 Source / drain doped region 9 Passivation layer 1 0 A, 1 〇B, 1 〇C Gate contact Platform area 11, 12 First and second well doped areas SG sub-lithography gate structure LG lithography gate structure 0, 0A, 0B Mask openings M0, M0-I Patterned masks P M — A, P M — B Optical lithography technology mask C M Cutout mask S source contact point D drain contact point G gate contact point
第24頁Page 24
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2002160234 DE10260234A1 (en) | 2002-12-20 | 2002-12-20 | Method for producing a sublithographic gate structure for field effect transistors, an associated field effect transistor, an associated inverter and an associated inverter structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200416900A true TW200416900A (en) | 2004-09-01 |
TWI264071B TWI264071B (en) | 2006-10-11 |
Family
ID=32519238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92134941A TWI264071B (en) | 2002-12-20 | 2003-12-10 | Method for fabricating a sublithographic gate structure for field-effect transistors, an associated field-effect transistor and an associated inverter, and associated inverter structure |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU2003289828A1 (en) |
DE (1) | DE10260234A1 (en) |
TW (1) | TWI264071B (en) |
WO (1) | WO2004057660A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007038399A2 (en) | 2005-09-26 | 2007-04-05 | Cabot Microelectronics Corporation | Metal cations for initiating chemical mechanical polishing |
US7528065B2 (en) * | 2006-01-17 | 2009-05-05 | International Business Machines Corporation | Structure and method for MOSFET gate electrode landing pad |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358340A (en) * | 1980-07-14 | 1982-11-09 | Texas Instruments Incorporated | Submicron patterning without using submicron lithographic technique |
US4419809A (en) * | 1981-12-30 | 1983-12-13 | International Business Machines Corporation | Fabrication process of sub-micrometer channel length MOSFETs |
JPS6066861A (en) * | 1983-09-22 | 1985-04-17 | Toshiba Corp | Manufacture of semiconductor device |
JPS60182171A (en) * | 1984-02-29 | 1985-09-17 | Oki Electric Ind Co Ltd | Manufacture of semiconductor device |
FR2718287B1 (en) * | 1994-03-31 | 1996-08-02 | Alain Straboni | Method for manufacturing an insulated gate field effect transistor, in particular of reduced channel length, and corresponding transistor. |
DE19536523A1 (en) * | 1995-09-29 | 1997-04-03 | Siemens Ag | Method of manufacturing a gate electrode |
US5817561A (en) * | 1996-09-30 | 1998-10-06 | Motorola, Inc. | Insulated gate semiconductor device and method of manufacture |
US5950091A (en) * | 1996-12-06 | 1999-09-07 | Advanced Micro Devices, Inc. | Method of making a polysilicon gate conductor of an integrated circuit formed as a sidewall spacer on a sacrificial material |
US6124174A (en) * | 1997-05-16 | 2000-09-26 | Advanced Micro Devices, Inc. | Spacer structure as transistor gate |
JP4527814B2 (en) * | 1997-06-11 | 2010-08-18 | 富士通セミコンダクター株式会社 | Manufacturing method of semiconductor device |
US6008087A (en) * | 1998-01-05 | 1999-12-28 | Texas Instruments - Acer Incorporated | Method to form high density NAND structure nonvolatile memories |
US6225201B1 (en) * | 1998-03-09 | 2001-05-01 | Advanced Micro Devices, Inc. | Ultra short transistor channel length dictated by the width of a sidewall spacer |
TW561530B (en) * | 2001-01-03 | 2003-11-11 | Macronix Int Co Ltd | Process for fabricating CMOS transistor of IC devices employing double spacers for preventing short-channel effect |
-
2002
- 2002-12-20 DE DE2002160234 patent/DE10260234A1/en not_active Withdrawn
-
2003
- 2003-12-09 AU AU2003289828A patent/AU2003289828A1/en not_active Abandoned
- 2003-12-09 WO PCT/DE2003/004046 patent/WO2004057660A2/en not_active Application Discontinuation
- 2003-12-10 TW TW92134941A patent/TWI264071B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2004057660A3 (en) | 2005-03-31 |
AU2003289828A1 (en) | 2004-07-14 |
TWI264071B (en) | 2006-10-11 |
AU2003289828A8 (en) | 2004-07-14 |
WO2004057660A2 (en) | 2004-07-08 |
DE10260234A1 (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI374509B (en) | Method for forming semiconductor device | |
JP4256772B2 (en) | Method for manufacturing intermediate structure of dual gate logic device | |
TWI627759B (en) | Integrated circuits with capacitors and methods for producing the same | |
US9406669B2 (en) | Method and structure for vertical tunneling field effect transistor and planar devices | |
TW201005875A (en) | Methods of providing electrical isolation and semiconductor structures including same | |
CN101180725A (en) | Method for fabricating soi device | |
JP4511350B2 (en) | Manufacturing method of short channel field effect transistor | |
TW200805564A (en) | Method for forming self-aligned contacts and local interconnects simultaneously | |
TWI277153B (en) | Semiconductor device with recessed channel and method of fabricating the same | |
US10367076B1 (en) | Air gap spacer with controlled air gap height | |
CN105990359A (en) | Separating gate type flash memory device and preparation method thereof | |
JP3358544B2 (en) | Method for manufacturing field effect transistor | |
WO2022106329A1 (en) | Ferroelectric field effect transistor with nanowire core | |
TWI399835B (en) | Methods of manufacturing memory devices | |
US10741681B2 (en) | Increased source and drain contact edge width in two-dimensional material field effect transistors by directed self-assembly | |
TWI287856B (en) | Method of manufacturing a semiconductor device and semiconductor device obtainable with such a method | |
CN110246804A (en) | Contact structures | |
TW200416900A (en) | Method for fabricating a sublithographic gate structure for field-effect transistors, an associated field-effect transistor and an associated inverter, and associated inverter structure | |
CN102709192A (en) | Manufacturing method of MOS (Metal Oxide Semiconductor) transistor structure integrated with resistive random access memory | |
CN107808881A (en) | Selective SAC coverings and correlation technique in fin formula field effect transistor structure | |
TWI233643B (en) | Method of manufacturing semiconductor device | |
CN114242577A (en) | Manufacturing method of trench gate | |
JP2005019984A (en) | Ultra-short channel field effect transistor and method of fabricating the same | |
TWI737535B (en) | Semiconductor device and manufacturing method of the same | |
TW471034B (en) | Method of forming lightly doped drain and source/drain for field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |