TW200413489A - Process for reducing dishing and erosion during chemical mechanical planarization - Google Patents

Process for reducing dishing and erosion during chemical mechanical planarization Download PDF

Info

Publication number
TW200413489A
TW200413489A TW092121396A TW92121396A TW200413489A TW 200413489 A TW200413489 A TW 200413489A TW 092121396 A TW092121396 A TW 092121396A TW 92121396 A TW92121396 A TW 92121396A TW 200413489 A TW200413489 A TW 200413489A
Authority
TW
Taiwan
Prior art keywords
slurry
polishing
substrate
copper
abrasive
Prior art date
Application number
TW092121396A
Other languages
Chinese (zh)
Inventor
Stuart D Hellring
Yu-Zhuo Li
Robert L Auger
Original Assignee
Ppg Ind Ohio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ppg Ind Ohio Inc filed Critical Ppg Ind Ohio Inc
Publication of TW200413489A publication Critical patent/TW200413489A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Weting (AREA)

Abstract

This invention is directed to a slurry system and process of metal removal from a substrate. This invention is useful for polishing a microelectronic device. This invention is especially useful for chemical mechanical planarization of a semiconductor wafer. The slurry system of the present invention includes a first slurry and a second slurry, wherein the first slurry has a higher abrasive concentration than the second slurry. The process of the present invention includes a first polish with the first slurry to partially remove metal from the substrate, and a second polish with the second slurry to further remove metal from the substrate.

Description

200413489 玖、發明說明: I:發明戶斤屬之技術領域3 發明領域 本發明係針對一種自一基板去除金屬的方法。本發明 5 可用於拋光一微電子裝置。本發明特別可用於半導體晶圓 之化學機械平坦化作用。200413489 (1) Description of the invention: I: Technical field of the inventors 3 Field of the invention The present invention is directed to a method for removing metal from a substrate. The present invention 5 can be used for polishing a microelectronic device. The invention is particularly useful for chemical mechanical planarization of semiconductor wafers.

Ji 發明背景 本專利申請案主張2002年8月5曰申請之美國專利申請 10 案序號第60/401,109號的優先權,該優先權案之全文併入本 文以供參考。 【發明内容】 發明概要 本發明係針對一種自一基板去除金屬的方法。本發明 15 可用於拋光一微電子裝置。本發明特別可用於半導體晶圓 之化學機械平坦化作用。 例如半導體晶圓之微電子裝置一般係利用銅互連來製 造。此等銅互連係藉由多步驟金屬鑲嵌方法產生,該方法 包括在一例如二氧化石夕之介電材料中餘刻入溝渠,鑲入一 20 例如钽之阻障薄膜至溝渠内,以及接著利用電鍍銅來充填 溝渠。一般而言,一厚銅覆蓋係放置經充填之溝渠的頂部。 此覆蓋層之應用一般不會造成平坦的表面。相反地,在覆 蓋層中具有對應於下方經充填之溝渠的低下區域,以及對 應於界於溝渠間之空間的高起區域(亦即,“步階高度地 5 形圖 ”(step-height topography))。 為了將另一互連層放置在微電子裝置上,必須去除銅 覆蓋層。化學機械平坦化作用(,,CMP,,)為去除銅覆蓋層 之已知技術。在CMP處理期間,銅覆蓋層係自微電子裝置 之表面清除以顯現出實際的互連圖案。在典型的化學機械 拋光方法中,《子裝置係與—拋光塾接觸。使抛=純 轉,同時對微電子裝置之背側施與一力。通常稱為“漿液” 之含有研磨劑之化學反應溶液係在拋光期間施用至I光墊 上。一般而言,CMP拋光漿液含有例如氧化矽、氧化鋁、 氧化鈽或其混合物之研磨劑材料。拋光處理可藉由當漿液 供應至裝置/減墊界面時,拋級相對於基板的^移 動來增進。拋光仙此方式持續直至去除所欲的膜厚度。 依研磨劑及其他添加物之選擇而定,可配製一抛光激 液以在所欲的抛光速率下對金屬層提供有效的拋光,同時 使表面不良、缺陷、腐缺磨鱗至最低。 使用研磨劑漿液來去除鋼覆蓋層的方法為習知技術領 域中已知者。此等習知方法的缺點包括拋光墊之墨力傾向 將研磨顏粒壓人基板的表面,造成溝渠内的_及基板 上圖案的賴。在此技術領域巾希望將此等_及磨餘降 至最低。因此,在習知技術領域中需要—種有效地去除鋼 覆盍層,同%使溝渠内的表面凹陷及基板上圖案的磨餘作 用降至最低的方法。 而庄思的疋,在本發明說明書及後附的申請專利範圍 中所使用之單數形式,,_,,(,、”,,,⑽,,)及,,此,,與”該,, (’’the”)’除非明白且明確地指—個對象,否則包括複數。 於本發明說明書中,應瞭解到,在所有情況中,除非 另外指明,财錢日月書及巾請專㈣圍Μ於表示組成 分、反應條件等量度的數值皆可由,,約,,_詞來修飾。因此, 除非有相反的表示’在下述說明書内容及後附中請專利範 圍中的數值參數為近似值,其可依據藉由本發_欲尋求 獲得的理想性質來改變。至少並非用於企圖限制均等論在 申請專利範圍之料上的應用’每―數值參數應至少可基 於所呈現之賴數字及藉由應用—般四捨五人技術來解 釋。 儘官本發明之廣範圍中所述的數字範圍及參數為近似 值,在特定實施例中所述的數值是儘可能精確地記載。然 任竹數值本吳上含有因為個別試驗測量所產生的標準 偏差所造成的一定誤差。 …貝示本發明特性之特徵,係特別地在屬於本發明揭露 内谷之一部分的申請專利範圍中指明。本發明之此等及其 他特徵,本發明操作上的優點,以及藉由本發明之用途可 獲得的特定目的,將可藉由下述的詳細說明及操作實施例 而更充分地瞭解。 已發現在第一拋光步驟中,在未清除整個覆蓋層之 下’最好去除鋼覆蓋層的步階高度地形圖(step_height topography ),以致於能進行第二步驟以實質清除相對地無 步P自向度地形圖(step-height topography )的剩餘覆蓋層。 本發明包括一種漿液系統,包含: 200413489 (a) 第一漿液,其包含用於部分地自基板去除金屬的研 磨劑;以及 (b) 第二漿液, 其中該第一漿液的該研磨劑濃度高於該第二漿液。 5 本發明進一步包括一種方法,包含利用第一漿液及一 拋光墊進行第一拋光步驟。該第一拋光步驟可自基板去除 一部分金屬。在完成第一拋光步驟後,殘餘金屬餘留在基 板上。在一非限制性的具體實施例中,殘餘金屬至少能部 分地形成一層或膜。在利用第二漿液及拋光墊的第二拋光 10步驟中,基板可利用第二漿液進一步拋光,該第二漿液的 研磨劑較第一漿液少。第二拋光步驟至少部分地去除在第 一拋光步驟後餘留在基板上的金屬殘餘物。 第一拋光步驟可在自基板去除所有金屬之前終止。當 第一拋光步驟終止時,殘餘金屬餘留在基板上。 15 在一非限制性的具體實施例中,金屬可包括銅、钽、 二氧化矽或其混合物。在一非限制性的具體實施例中,金 屬為銅。 可預期到的是,在拋光過程之第一步驟中,將一研磨 劑漿液用於銅之去除,具有有利於步階高度地形圖 20 ( steP_height topography)中高的區域之傾向,以及藉此留 下可接著藉由研磨劑較少之第二漿液去除的殘餘銅。在本 發明之一具體實施例中,第二漿液可不含研磨劑。 本發明之第一漿液包括一液體及一研磨劑。適用於本 發明之研磨劑可包括金屬氧化物。金屬氧化物之非限制性 8 例子可包括,但不限制於氧化鋁、氧 乳化鈦、4各处 — 鍺、氧化矽、氧化鈽及其混合物。 1、氧化 农第_裝液 劑量可依所選擇之研磨劑而廣泛地改變。7/子在之研磨 具體實施例中,研磨劑之存在量為 非限制性的 比,或〇.5至12.〇重量百分比。在· ^約⑽重量百分 磨劑可為氧化石夕。 纟另-具體實施例中,研 η 口V孔1□吵汉丹眾備方法對% 言為已知。使用於本發明之適當氧化石夕可由習知技=而 的廣泛不同種類中選出。在一非限制性的具體實施 =♦可為沈澱的氧化…同的沈殿氧 項技術者而言為已知。在另-非限制性的 、體4财,歧之氧切可選自於美國專 =第嶋2,549及嶋2,548號中所描述者,該二申= = 20(^年6月14日中請,目前仍在美國專利商標局審 H二中請案之相關部分係併人本說明書中以供參考。 〉、在另-非限制性的具體實施例中,本發明之研磨劑裝 ^括具有主要顆粒聚集體的氧化石夕,該主要顆粒的平均 於僅為至少7奈米,其中該聚集體的聚集體尺寸為至少1 乂米,以及每平分奈米的羥基含量為至少7羥基。 氧化矽可藉由習知技術中已知的廣泛不同方法來製 、一般而言,氧化矽可藉由將可溶性金屬矽酸鹽的水溶 夜與敲組合來製備。此可溶性金屬矽酸鹽可包括一鹼性金 夕酉文鹽,例如但不限制於石夕酸納或石夕酸鉀。適當的酸可 匕括無機酸、有機酸及二氧化碳。矽酸鹽/酸的漿液可被 老化’以及可添加酸或驗至矽酸鹽/酸的漿液中。所得的 氧化秒顆粒可與混合物的液體部分分離。經分離的氧化石夕 可利用水沖洗,可乾燥濕潤的氧化矽以及經乾燥的氧化石夕 可藉由習知技術已知的沖洗、乾燥及分離技術,而與其他 反應產物的殘餘物分離。 在一非限制性的具體實施例中,使用於本發明之氧化 石夕可經過顆粒尺寸減小技術處理。習知技術已知使氧化石夕 内主要顆粒之聚集體破裂成較小的聚集體之技術。在非限 制性之實施例中,包括但不限制於濕式研磨以及流體能研 磨(fluid energy milling )。在另一非限制性的具體實施例 中,可利用WO 00/39056及美國專利第5,720,551號中所揭 路之關於雙贺射胞室法(double_jet cell process ),降低氧化 矽之主要顆粒的聚集體;該等專利文獻的相關部分係併入 本說明書中以供參考。 如上文所述,本發明之第一漿液包括一研磨劑及一液 體。在一非限制性的具體實施例中’第一研磨劑裝液可根 據於2001年6月14日向美國專利商標局提出申請之美國 專利申請案申請序號第〇9/882,549及09/882,548號中所述 的方法製備’該二申請案目剞正在審查中,其中相關部分 内谷係併入本說明書中以供參考。在另一非限制性的具體 實施例中,液體可為水。 除了研磨劑及水之外’漿液可包括一氧化劑及一錯合 劑。存在於漿液中的氧化劑可用於將基板金屬層氧化成其 對應的氧化物、氫氧化物或離子。在一非限制性的具體實 200413489 施例中,氧化劑可用於將鈦氧化成氧化鈦,將鎢氧化成氧 化鎢,將銅氧化成氧化銅,以及將鋁氧化成氧化鋁。含氧 化劑之漿液可使用於拋光金屬以及以金屬為主的成分,包 括但不限制於鈦、氮化鈦、鈕、氮化鈕、銅、鎢、氮化鎢、 5鋁、例如鋁/銅之鋁合金、金、銀、鉑、釕及其各種不同 的混合物及組合物。 廣範圍的氧化劑可使用於本發明之第一漿液中。適當 的氧化劑可包括無機及有機過_化合物(per_C〇mp〇undS), 以及含有一較高氧化態或最高氧化態之元素的化合物。如 10同在本說明書及申請專利範圍中所使用者,“過-化合物 (per-Compounds) ” 一詞意指含有至少一過氧基(_〇_〇_) 的化合物。含有至少一過氧基的非限制性之實施例,可包 括過氧化氫及其加成物,例如過氧化脲及過碳酸鹽、有機 過氧化物,例如過氧化苯、過乙酸,以及二-第三丁基過氧 15化物、單過硫酸鹽(S〇5)、二過硫酸鹽(S2〇0)、過氧化 鈉及其混合物。 含有一較高氧化態之元素的氧化劑的非限制性之實施 例,可包括溪酸'漠酸鹽、氯酸、氯酸鹽、絡酸鹽、峨酸、 碘酸鹽、過破酸、過碳酸鹽、過演酸、過漠酸鹽、過氯酸、 20過氯酸酸、過爛酸、過補鹽、過猛酸鹽、飾(^)化合Background of the Invention This patent application claims the priority of US Patent Application No. 60 / 401,109 filed on August 5, 2002, the entirety of which is incorporated herein by reference. SUMMARY OF THE INVENTION The present invention is directed to a method for removing metal from a substrate. The invention 15 can be used for polishing a microelectronic device. The invention is particularly useful for chemical mechanical planarization of semiconductor wafers. Microelectronic devices such as semiconductor wafers are typically manufactured using copper interconnects. These copper interconnects are produced by a multi-step metal damascene method, which includes indenting trenches in a dielectric material, such as stone dioxide, inlaying a barrier film, such as tantalum, into the trench, and then Trenches are filled with electroplated copper. Generally, a thick copper overlay is placed on top of a filled trench. The application of this cover layer generally does not result in a flat surface. Conversely, the cover layer has a lower area corresponding to the filled trench below, and a raised area corresponding to the space bounded between the trenches (ie, "step-height topography" )). In order to place another interconnect layer on a microelectronic device, the copper overlay must be removed. Chemical mechanical planarization (,, CMP ,,) is a known technique for removing copper overlays. During the CMP process, the copper overlay is removed from the surface of the microelectronic device to reveal the actual interconnection pattern. In a typical chemical mechanical polishing method, the sub-device is in contact with the polishing pad. Make the throw = pure rotation, while applying a force to the back of the microelectronic device. An abrasive-containing chemical reaction solution, commonly referred to as a "slurry," is applied to the I light pad during polishing. Generally, CMP polishing slurries contain abrasive materials such as silicon oxide, aluminum oxide, hafnium oxide, or mixtures thereof. The polishing process can be enhanced by the movement of the polishing stage relative to the substrate when the slurry is supplied to the device / pad interface. The polishing process continues until the desired film thickness is removed. Depending on the choice of abrasives and other additives, a polishing solution can be formulated to provide effective polishing of the metal layer at the desired polishing rate, while minimizing surface defects, defects, and decay scales. Methods of using abrasive slurries to remove steel coatings are known in the art. Disadvantages of these conventional methods include the tendency of the ink power of the polishing pads to press the abrasive particles onto the surface of the substrate, which can lead to the occurrence of the pattern in the trench and the pattern on the substrate. In this technical field, it is desirable to minimize this and the wear and tear. Therefore, there is a need in the conventional technical field for a method for effectively removing the steel clad layer and minimizing the surface depression in the trench and the abrasion effect of the pattern on the substrate. And Zhuang Si 疋, the singular form used in the specification of the present invention and the appended patent application scope ,,,,, (,,,,,,,,,,,) and ,,,,, and "this ,," ("the") "Unless the reference clearly and explicitly refers to an object, it includes the plural. In the description of the present invention, it should be understood that, in all cases, unless otherwise specified, the money, sun and moon books and towels should be exclusively The values surrounding measurements such as composition, reaction conditions, etc. can be modified by the words ,, about, and _. Therefore, unless there is a contrary expression 'in the following description and the appended claims, the numerical parameters in the patent range are approximate, It can be changed according to the ideal properties sought to be obtained by the present invention. At least it is not intended to limit the application of equality theory to the scope of patent applications. Every numerical parameter should be based at least on the presented number and by Use the general rounding technique to explain. The numerical ranges and parameters described in the broad scope of the present invention are approximate values, and the numerical values described in specific embodiments are recorded as accurately as possible. The numerical value of Ren Zhu contains certain errors caused by the standard deviation caused by individual experimental measurements.... The characteristics that show the characteristics of the present invention are specifically indicated in the scope of the patent application which is part of the inner valley of the disclosure of the present invention. These and other features of the present invention, the operational advantages of the present invention, and the specific objects obtainable by the uses of the present invention will be more fully understood by the following detailed description and operating examples. In the first polishing step, it is better to remove the step height topography (step_height topography) of the steel cover layer before the entire cover layer is removed, so that the second step can be performed to substantially clear the relatively non-step P orientation. The remaining cover layer of step-height topography. The present invention includes a slurry system comprising: 200413489 (a) a first slurry containing an abrasive for partially removing metal from a substrate; and (b) a second Slurry, wherein the abrasive concentration of the first slurry is higher than the second slurry. 5 The present invention further includes a method comprising using the first The slurry and a polishing pad perform a first polishing step. The first polishing step can remove a part of the metal from the substrate. After the first polishing step is completed, the residual metal remains on the substrate. In a non-limiting specific embodiment, The residual metal can at least partially form a layer or film. In the second polishing 10 step using the second slurry and the polishing pad, the substrate can be further polished with the second slurry, which has less abrasive than the first slurry. The second polishing step at least partially removes metal residues remaining on the substrate after the first polishing step. The first polishing step may be terminated before all metal is removed from the substrate. When the first polishing step is terminated, the residual metal remains in the 15 In a non-limiting embodiment, the metal may include copper, tantalum, silicon dioxide, or a mixture thereof. In a non-limiting embodiment, the metal is copper. It can be expected that in the first step of the polishing process, the use of an abrasive slurry for the removal of copper has a tendency to favor the high areas in the step height topography 20 (steP_height topography), and thereby leave behind Residual copper can then be removed by a second slurry with less abrasive. In a specific embodiment of the present invention, the second slurry may be free of abrasive. The first slurry of the present invention includes a liquid and an abrasive. Suitable abrasives for use in the present invention may include metal oxides. Non-limiting examples of metal oxides may include, but are not limited to, alumina, oxygen-emulsified titanium, germanium, silicon oxide, hafnium oxide, and mixtures thereof. 1. Oxidation Nongdi_filling liquid The dosage can be widely changed according to the selected abrasive. 7 / 子 的 磨 In specific embodiments, the amount of the abrasive present is a non-limiting ratio, or 0.5 to 12.0 weight percent. The weight of the abrasive can be oxidized stone.纟 Another-In the specific embodiment, the method of researching η port V hole 1 is known. Suitable oxides for use in the present invention can be selected from a wide variety of known techniques. In a non-limiting specific implementation, it can be the oxidation of Shendian ... It is known to those skilled in the art of Shendian oxygen. In another-non-limiting, four-billion-dollar project, Qizhiyang may be selected from those described in US Patent Nos. 嶋 2,549 and 嶋 2,548. The two applications are == 20 (^ June 14, 2014) The relevant part of the application that is still pending in the US Patent and Trademark Office Examination H2 is incorporated in this specification for reference.〉 In another non-limiting specific embodiment, the abrasive of the present invention includes The oxidized stone of the main particle aggregates, the average of the main particles is only at least 7 nanometers, wherein the size of the aggregates of the aggregates is at least 1 mm, and the hydroxyl content per nanometer of the nanoparticles is at least 7 hydroxyl groups. Silicon can be made by a wide variety of methods known in the art. Generally speaking, silicon oxide can be made by combining a water-soluble and a metal silicate with a soluble metal silicate. The soluble metal silicate can include a Basic jinxi runic salts, such as, but not limited to, sodium oxalate or potassium oxalate. Suitable acids can include inorganic, organic, and carbon dioxide. Silicate / acid slurries can be aged 'as well as Add acid or test to silicate / acid slurry. Oxidation obtained The granules can be separated from the liquid portion of the mixture. The separated oxidized stone can be washed with water, and the wet silica can be dried and the dried oxidized stone can be washed by conventional washing, drying and separation techniques, and Separation from the residues of other reaction products. In a non-limiting embodiment, the oxidized stone used in the present invention can be processed by particle size reduction technology. Conventional techniques are known to make Techniques for breaking aggregates into smaller aggregates. In a non-limiting embodiment, including but not limited to wet milling and fluid energy milling. In another non-limiting specific embodiment The double-jet cell process disclosed in WO 00/39056 and US Patent No. 5,720,551 can be used to reduce the aggregates of the main particles of silicon oxide; the relevant parts of these patent documents are This specification is incorporated by reference. As mentioned above, the first slurry of the present invention includes an abrasive and a liquid. In a non-limiting embodiment, the first The abrasive liquid can be prepared according to the methods described in US Patent Application Serial Nos. 09 / 882,549 and 09 / 882,548 filed with the US Patent and Trademark Office on June 14, 2001. In the review, the relevant part of the inner valley system is incorporated in this specification for reference. In another non-limiting specific embodiment, the liquid may be water. In addition to the abrasive and water, the slurry may include an oxidant and an Complexing agent. The oxidant present in the slurry can be used to oxidize the substrate metal layer to its corresponding oxide, hydroxide or ion. In a non-limiting specific embodiment 200413489, the oxidant can be used to oxidize titanium to oxidation Titanium oxidizes tungsten to tungsten oxide, copper to copper oxide, and aluminum to aluminum oxide. Oxidizer-containing slurry can be used for polishing metals and metal-based components, including but not limited to titanium, titanium nitride, buttons, nitride buttons, copper, tungsten, tungsten nitride, 5 aluminum, such as aluminum / copper Aluminum alloy, gold, silver, platinum, ruthenium and various mixtures and compositions thereof. A wide range of oxidants can be used in the first slurry of the present invention. Suitable oxidants may include inorganic and organic per-compounds (per-compounds), and compounds containing an element in a higher oxidation state or the highest oxidation state. As used in this specification and in the scope of patent applications, the term "per-compounds" means compounds containing at least one peroxy group (_〇_〇_). Non-limiting examples containing at least one peroxy group may include hydrogen peroxide and adducts thereof such as urea peroxide and percarbonate, organic peroxides such as benzene peroxide, peracetic acid, and di- Third butyl peroxo 15 compound, monopersulfate (S05), dipersulfate (S200), sodium peroxide and mixtures thereof. Non-limiting examples of oxidants containing an element with a higher oxidation state may include brook acid 'desert salt, chloric acid, chlorate salt, complex acid salt, arsenic acid, iodate salt, peroxy acid, peroxy acid Carbonate, over-acid, per-acid salt, perchloric acid, 20 perchloric acid, rotten acid, over-supplement salt, per-acid salt, (^) compound

物,例如但不限制於硕酸飾銨、例如確酸鹽、硫酸鹽、咖A 及檸檬酸鹽之鐵鹽、鐵氰化鉀、三氧化二飢及其=似物, 以及鋁鹽。 在另-非限制性的具體實施例中,氧化劑可為過氧化 11 過氧化氫或其混合物。在另一非限制性的具體實施例 中,氧化劑可為過氧化氫。 存在於第一滎液中的氧化劑可依所選擇之特定氧化劑 而廣泛地改變。一般而言,量應足以使基板金屬層氧化成 5其對應的氧化物、氫氧化物或離子。在另-非限制性的具 體只施例中,氧化劑之存在量可為0.001重量百分比或更 南’或0.01重量百分比或更高,或2〇 〇重量百分或更低, 或17.0重$百分比或更低,或1〇 〇重量百分比或更低。 使用於本發明之適當錯合劑可包括有機酸及有機羥基 10酸。有機酸之非限制性之實施例,可包括但不限制於二羧 酸、二羧酸及聚羧酸、葡萄糖酸、乳酸、檸檬酸、酒石酸、 無基丁一酸、甘醇酸、丙二酸、草酸、丁二酸及苯二曱酸。 有機羥基酸之非限制性之實施例,可包括但不限制於二羧 基髮基&L、二羧基經基酸及聚魏基經基酸。適當錯合劑之 15進一步的非限制性實施例可包括例如甘胺酸、組胺酸、丙 胺酸及天門冬胺酸之胺基酸;例如咄啶甲酸、二吡啶甲酸、 喹啉酸、2-吡嗉羧酸、喳哪啶酸及2_喳喔啉酸之含氮雜環 的羧酸;以及例如聯吡啶衍生物之有機雙配位基。 使用於本發明之錯合劑量可依所選擇之錯合劑而廣泛 20地改變。在一非限制性的具體實施例中,甘胺酸可作為錯 合劑,其含量為漿液之〇」至5重量百分比,或〇·5至^重 量百分比。在另一非限制性的具體實施例中,咄啶甲酸可 用於作為錯合劑,其含量為漿液的0.1至5重量百分比, 或0.5至1重量百分比。 12 200413489 在其他非限制性的具體實施例中,本發明之第一漿液 可包括一或多種下列的添加物··多價陽離子螯合劑、抗蝕 劑、增稠劑、阻化劑、靜態钱刻控制劑(static etch controllers)、加速劑、金屬鹵化合物、穩定劑及金屬螯合 在另一非限制性的具體實施例中,本發明之漿液可包 括多價陽離子螯合劑。使用於本發明之適當的多價陽離子 螯合劑可包括各種不同已知的化合物,其與多價金屬陽離 子結合、錯合或螯合。多價陽離子螯合劑的非限制性實施 10例可包括羧酸及聚羧酸、胺基酸、二胜肽及聚胺基酸、聚 亞胺、磷酸及多磷酸。其他非限制性之實施例可包括甘胺 酸、組胺酸、天門冬胺酸、肌醇六磷酸、熱聚天門冬胺酸 酯、r-胺基-正丁酸、/5-丙胺酸、L_天門冬醯胺、2_胺基 異丁酸、檸檬酸、N-(膦醯基甲基)亞胺二乙酸、聚(二 15 甲基矽氧烷)-接枝-聚丙烯酸、4,5 4,5-_唑二羧酸、胺基三(亞Substances such as, but not limited to, ammonium sulphate, such as iron salts, sulfates, iron salts of coffee A and citrate, potassium ferricyanide, dioxin and its analogs, and aluminum salts. In another non-limiting specific embodiment, the oxidant may be hydrogen peroxide 11 hydrogen peroxide or a mixture thereof. In another non-limiting embodiment, the oxidant may be hydrogen peroxide. The oxidant present in the first mash may vary widely depending on the particular oxidant selected. In general, the amount should be sufficient to oxidize the substrate metal layer to its corresponding oxide, hydroxide or ion. In another non-limiting specific embodiment, the oxidant may be present in an amount of 0.001% by weight or more, or 0.01% by weight or more, or 200% by weight or less, or 17.0% by weight. Or less, or 100 weight percent or less. Suitable complexing agents for use in the present invention may include organic acids and organic hydroxy 10 acids. Non-limiting examples of organic acids may include, but are not limited to, dicarboxylic acids, dicarboxylic acids and polycarboxylic acids, gluconic acid, lactic acid, citric acid, tartaric acid, unsuccinic succinic acid, glycolic acid, malonic acid Acid, oxalic acid, succinic acid and phthalic acid. Non-limiting examples of organic hydroxy acids may include, but are not limited to, dicarboxylic acid & L, dicarboxylic acid and polyweiyl acid. 15 Further non-limiting examples of suitable complexing agents may include, for example, amino acids of glycine, histidine, alanine, and aspartic acid; for example, picolinic acid, dipicolinic acid, quinolinic acid, 2- Nitrogen-containing heterocyclic carboxylic acids of pyridocarboxylic acid, galanic acid, and 2-oxaoxalinic acid; and organic double ligands such as bipyridine derivatives. The dosage of the complex used in the present invention can be widely changed depending on the selected complex. In a non-limiting specific embodiment, glycine can be used as a complexing agent, and its content is from 0 to 5 weight percent of the slurry, or from 0.5 to ^ weight percent. In another non-limiting specific embodiment, picolinic acid can be used as a complexing agent in an amount of 0.1 to 5 weight percent, or 0.5 to 1 weight percent of the slurry. 12 200413489 In other non-limiting specific embodiments, the first slurry of the present invention may include one or more of the following additives: polyvalent cation chelator, resist, thickener, inhibitor, static money Static etch controllers, accelerators, metal halide compounds, stabilizers and metal chelate. In another non-limiting embodiment, the slurry of the present invention may include a polyvalent cation chelator. Suitable polyvalent cation chelating agents for use in the present invention may include a variety of different known compounds that bind, complex or chelate with polyvalent metal cations. Non-limiting examples of multivalent cation chelating agents include carboxylic acids and polycarboxylic acids, amino acids, dipeptides and polyamino acids, polyimines, phosphoric acids, and polyphosphoric acids. Other non-limiting examples may include glycine, histidine, aspartic acid, phytic acid, thermal polyaspartate, r-amino-n-butyric acid, / 5-alanine, L_asparagine, 2-aminoisobutyric acid, citric acid, N- (phosphinofluorenylmethyl) imine diacetic acid, poly (di 15 methylsiloxane) -graft-polyacrylic acid, 4 , 5 4,5-_azoledicarboxylic acid, aminotris

業上可自B.F· Goodrich購得之聚丙烯酸酉旨,商品名為 20 GOOD-RITE K-700, 及其混合物。在非限制性的具體實施 例中,可使用Carb〇O〇l或ππγλτλ ------Polyacrylic acid moieties commercially available from B.F. Goodrich under the trade name 20 GOOD-RITE K-700, and mixtures thereof. In a non-limiting embodiment, CarbOOl or ππγλτλ can be used ------

染色及不穩定性,或處理問題。在另 、腐缺、點腐飯、 非限制性的具體實 13 200413489 細例中’以氧化石夕為主的漿液包含以漿液組成物為基準, 大於〇至5重量百分比之多價陽離子螯合劑,或⑽〇1至! 重量百分比。 在另一非限制性的具體實施例中,本發明之漿液可包 5括-抗腐㈣!或腐餘抑制劑。使用於本發明之腐姓抑制劑 可包括各種不同的已知化合物,其抑制銅之腐钱速率或靜 態餘刻速率,例如但不限制於聚麟、聚胺基酸、胺基酸、 亞胺、吡咯、羧基化吡咯及硫醇。適當之腐蝕抑制劑的非 限制性實施例包括苯並三唑、各羧基苯並三唑、5-羧基苯並 10二唑、熱聚天門冬胺酸酯、組胺酸、巯基苯並三唑、肌醇 六碟酸、商業上可自B.F· Goodrich購得之交聯的聚丙烯 酸,商品名為Carbopol、商業上可自B F G〇〇drich購得之 聚丙烯酸酯,商品名為GOOD_RITEK-70〇,及其混合物。 在一非限制性的具體實施例中,肌醇六磷酸可以不同 15的量使用於本發明中。在另一非限制性的具體實施例中, 肌醇六磷酸的量以漿液為基準,可為至少〇〇1重量百分 比,或至少0·05重量百分比,或由〇·〇5至〇1重量百分比, 或少於0.2重量百分比。適當之商業上可取得的肌醇六磷 酸之非限制性實施例包括水溶性腐敍抑制劑,其在商業上 20 可睛自 King Industries,Incorporated,商品名為 CDI 43〇2、 4303 及 4304,以及 CDX 2128 及 2165。 在一非限制性的具體實施例中’腐蝕抑制劑的存在量 可使靜態蝕刻、腐蝕及點腐蝕適當地降低,但不會過度地 降低銅拋光速率,以及不會過度地增加氧化石夕分散液的染 14 色及不穩定性、過高的成本或處理問題。 在一具體實施例中,使用於本發明之腐蝕抑制劑可用 於作為鈍化膜成形劑,其在待拋光的基板之表面上形成一 鈍化層。腐蝕抑制劑形成一鈍化層於電基板層的表面上。 5 -旦鈍化層形成’可接著散佈鈍化層以獲得—理想的抛光 速率。腐触抑制劑可包括一化合物或化合物的組合,其可 加速金屬層之表面上的金屬鈍化層以及溶解抑制層的形 成。基板金屬表面層的鈍化可防止金屬表面被濕式餘刻。 此類膜成形劑包括含氮雜環化合物,其中化合物包含至少 H) 一具有氮作為環之-部分的5或6元雜環。此類含氣的5 及環化合物的例子包括⑶士坐、三哇、苯並 三嗤、苯並味嗤及苯並嗔0坐,及其等之具有經基、胺基、 亞胺基、雜、録、_基及絲取代的基團、脈、硫 脲及其混合物的衍生物。在本發明之一具體實施例中,純Dyeing and instability, or handling problems. In addition, the specific examples of rotten rice, rotten rice, and non-limiting examples 13 200413489, the slurry consisting mainly of oxidized stone contains polyvalent cationic chelating agents greater than 0 to 5 weight percent based on the composition of the slurry. , Or ⑽〇1 到! Weight percent. In another non-limiting embodiment, the slurry of the present invention may include an anti-corrosive agent or a residual inhibitor. Rotten inhibitors for use in the present invention may include a variety of different known compounds that inhibit the rate of copper spoilage or static rate, such as, but not limited to, polylin, polyamino acid, amino acid, imine , Pyrrole, carboxylated pyrrole and thiol. Non-limiting examples of suitable corrosion inhibitors include benzotriazole, each carboxybenzotriazole, 5-carboxybenzo10diazole, thermal polyaspartate, histidine, mercaptobenzotriazole Phytic acid, crosslinked polyacrylic acid commercially available from BF Goodrich under the trade name Carbopol, commercially available polyacrylic acid ester commercially available from BFG〇drich under the trade name GOOD_RITEK-70. , And its mixtures. In a non-limiting embodiment, phytic acid can be used in the present invention in different amounts. In another non-limiting specific embodiment, the amount of phytic acid is based on the slurry, which may be at least 0.001 weight percent, or at least 0.05 weight percent, or from 0.05 to 0.001 weight. Percent, or less than 0.2 weight percent. Non-limiting examples of suitable commercially available phytates include water-soluble corrosion inhibitors, which are commercially available from King Industries, Incorporated under the trade names CDI 4302, 4303, and 4304, And CDX 2128 and 2165. In a non-limiting specific embodiment, the presence of a corrosion inhibitor can appropriately reduce static etching, corrosion, and pitting, but does not excessively reduce the copper polishing rate, and does not excessively increase the oxide oxide dispersion. Liquid dyeing and instability, excessive cost or handling problems. In a specific embodiment, the corrosion inhibitor used in the present invention can be used as a passivation film forming agent, which forms a passivation layer on the surface of a substrate to be polished. The corrosion inhibitor forms a passivation layer on the surface of the electrical substrate layer. 5-Denier passivation layer formation 'may then be followed by spreading the passivation layer to obtain-an ideal polishing rate. The corrosion inhibitor can include a compound or a combination of compounds that can accelerate the formation of a metal passivation layer and a dissolution inhibiting layer on the surface of the metal layer. The passivation of the metal surface layer of the substrate can prevent the metal surface from being wetted. Such film-forming agents include nitrogen-containing heterocyclic compounds, wherein the compound comprises at least H) a 5- or 6-membered heterocyclic ring having nitrogen as a-part of the ring. Examples of such gas-containing 5- and cyclic compounds include CDS, SAW, benzotrifluorene, benzo miso, and benzofluorene, and the like having a hydroxyl group, an amine group, an imine group, Derivatives of hetero, vinyl, and radical-substituted groups, veins, thioureas, and mixtures thereof. In a specific embodiment of the present invention, pure

三唑(,,BTA,,)、1,2,3_三唑、Triazole (,, BTA ,,), 1,2,3-triazole,

在基板之金屬層的表面上,形成金屬 抑制層,可有用地使金屬表面的濕式 ’形成金屬之純化層及溶解 的濕式蝕刻減至最低或防止 15 200413489 金屬表面的濕式餘刻。 在另一非限制性的具體實施例中,本發明之漿液可包 括一稠化劑。適當的稠化劑可包括廣泛不同之習知技術已 知的稠化劑。一般而言,適當的稠化劑包括穩定化氧化矽 5為主的漿液以防止沈降的物質。非限制性之實施例可包括 但不限制於聚乙烯醇、聚丙烯酸、多_、經乙基纖維素及 改質之經乙基纖維素、聚乙烯二醇、聚丙晞二醇、聚乙烯 及聚丙烯二醇的共聚物、烧基化聚乙烯及聚丙烯二醇,聚 乙烯亞胺、聚胺基酸、聚丙稀醯胺,以及聚醯胺酸。此類 10 適當之陰離子性聚合物的非限制性實施例可包括商業上可 自B.F· Goodrich購得之交聯的聚丙烯酸,商品名為 Carbopol ;商業上可自B.F. Goodrich購得之聚丙烯酸酯, 商品名為GOOD_RITEK-700 ;商業上可自CPKelco購得 的KelzanAR三仙膠多醣;商業上可自Hercules購得的 15 Natrosol 250 MMR羥乙基纖維素;商業上可自Air Products 購得的Airvol 523聚乙烯醇;以及商業上可自union Carbide購得之P〇lyOX 3333聚環氧乙烷,或其混合物。 稠化劑的存在量可使沈降速率適當地降低,但黏度不 會過度地增加,以致於可泵抽性及可過濾性可妥協,或在 20 拋光期間產生的熱對漿液性能有害。稠化劑之使用量可依 所選擇的稠化劑而改變。在另一非限制性的具體實施例 中,稠化劑的存在量可為大於〇至5重量%,或自o.ooi 至1重量%。在另一非限制性的具體實施例中,可作為稠 化劑之Carbopol的存在量為小於〇·5重量%。 16 200413489 在另一非限制性的具體實施例中, —从—丄、 ^ 狗化劑可為剪切穩 疋的。在本說明書及申請專利範圍中 固r所使用之“剪切耨定 的,,一詞,意指在拋光的剪切作用下, \ 稍化劑的黏度將不 曰充为地降低(例如與拋光前的黏度相較,降低不超過乃 %)〇 在本發明之另-非限制性的具體實施例中,在如前文 所述般之研純㈣顧及/錢小氧切的顆粒尺寸 日夺’或研磨氧化石夕及/或減小氧化石夕的顆粒已完成時,將 多價陽離子螯合劑、腐餘抑制劑,以及視需要之祠化劑可 10 添加至氧化石夕中。 在本發明之-非限制性的具體實施例中,多價陽離子 聲合劑、腐蚀抑制劑,及視需要_化劑,可添加讀液 中。在另一非限制性的具體實施例中’多價陽離子螯合劑、 腐蝕抑制劑及/或稠化劑係在輕度攪拌下組合並接著添加 15至襞液中。 在另一非限制性的具體實施例中,本發明之漿液可包 括至少一阻止化合物。此阻止化合物可與基板之金屬層、 Ιέ附層,及/或介電層相互作用,以及抑制被拋光層的下 方層之去除速率。結果可使漿液拋光基板的第一層且可實 2〇 ϊτΐτ 貝上阻止拋光位在第一層下方的第二層。使用於本發明之 適當阻止化合物可包括習知技術已知的廣泛不同種類,例 如但不限制於極性化合物或聚合物,其含有極性部分,例 如羥基、胺基、含氮雜環、羧基、羰基、醚、磺醯基或膦 驢基部分。非限制性之實施例可包括聚乙烯醇、聚乙烯口比 17 、元酉同、聚乙浠吼。定、聚%氧乙烧、二醇或聚二醇、聚羧 酉文竹生物,例如聚丙烯酸聚甲基丙烯酸酯。在本說明書及 申叫專利範圍中所使用之“實質阻止,,一詞意指拋光組成 物或漿液之第一層相對於第二層的拋光選擇性為約5 : 1, 或至J為10 : 1,或100 : 1。阻止化合物的選擇可依化學 安定性、與漿液中其他成分的相互作用,以及其對於任何 所應用之研磨劑顆粒的膠態穩定性之影響而定。 在一非限制性的具體實施例中,本發明之漿液中的研 磨劑存在量可為〇至20.0重量百分比,抗蝕劑的存在量可 為〇至1重量百分比,以及阻止化合物的存在量可為〇至1 重量百分比。 在另一非限制性的具體實施例中,漿液可包括一分散 劑。適當之分散劑的非限制性之實施例包括聚羧酸,例如 聚丙烯酸、交聯之聚丙烯酸,以及聚甲基丙烯酸;膦酸, 15 例如但不限制於烷基膦酸、芳基膦酸、聚膦酸,以及烷基 胺基膦酸;聚胺基酸,例如但不限制於聚天門冬胺酸。 在另一非限制性的具體實施例中,漿液可包括一界面 活性劑。使用於本發明之適當界面活性劑可包括陽離子 性、陰離子性及非離子性界面活性劑。適當之陽離子性界 20面活性劑可包括但不限制於脂族胺及脂族銨鹽。陰離子性 界面活性劑的非限制性之實施例可包括羧酸,例如但不阳 制於脂肪酸皂、烷基醚羧酸鹽;烷基及芳基磺酸鹽,例如 來自烧基苯%酸、烧基萘績酸及Λ _烯煙績酸的鹽類。险離 子性界面活性劑的非限制性之實施例,可包括但不限制於 18 200413489 例如高級醇續酸酯、院基醚績酸確酸醋的鹽類,以及聚氧 乙烯烧基苯基謎之石黃酸酉旨鹽類。在—非限制性的具體實施 例中,陰離子性界面活性劑可包括碟酸醋的鹽類,該^ 醋包括但不限制於烧基磷酸及芳基磷酸醋。在非離子性界 5面活性劑的非限制性之實施例可包括但不限制於鍵類,例 如聚乙烯院基崎、例如甘油醋之聚氧乙稀醚的職類,以 及例如甘油酯及脫水山梨糖醇酯的酯類。 在一非限制性的具體實施合,本發明的裝液可包括 -安定劑。適當的安定劑可包括乙醯苯胺,氧化錫,以及 10自由基抑制劑,其例如但不限制於無機及有機氮氧化物。 適當之分散劑包括例如聚丙烯酸、交聯之聚丙烯酸, 以及聚甲基丙烯酸之聚羧酸類;例如但不限制於烷基膦 酸、芳基膦酸、聚膦酸,以及烷基胺基膦酸之膦酸類;以 及例如聚天門冬胺酸之聚胺基酸類。 15 在一非限制性的具體實施例中,氧化劑與其他非研磨 劑組分’可混合至例如去離子水或蒸餾水之液態介質中, 其係在剪切條件下進行,直至該非研磨劑組分充分溶解在 該介負中為止。氧化矽可接著添加至介質中。在一非限制 性的具體實施例中,氧化矽可為沈澱的氧化矽。組成物接 20著可分散於例如水之液體中,以製備本發明之漿液。 於本發明中,在使用第一漿液之第一拋光步驟中,銅 之去除量可依第一漿液的組成、拋光時間的長度及拋光條 件而廣範圍地改變。在一非限制性的具體實施例中,第一 漿液可去除少於100%之銅,以致能保留殘餘銅。在另一 19 200413489 非限制性的具體實施例中,第一漿液可自基板去除10%至 95%的銅,或20%至90%的銅,或25%至85%的銅。在 另一非限制性的具體實施例中,殘餘銅可至少部分地為層 或膜的形式。 5 在第一步驟中,銅之去除速率可依第一漿液的組成、 拋光時間的長度及拋光條件而廣範圍地改變。在另一非限 制性的具體實施例中,在第一步驟中的銅去除速率可為至 少2,500埃/分鐘,或小於1〇,〇〇〇埃/分鐘,至少5,〇〇〇 埃/分鐘’或小於8,000埃/分鐘。 10 在第一拋光步驟中的靜態蝕刻速率可廣範圍地改變。 在一非限制性的具體實施例中,靜態蝕刻速率可為銅去除 速率之0%至20%,或銅去除速率之0.1%至15%,或銅 去除速率之1%至10%。 在本發明中,於第一拋光步驟實質終止後,可於第二 15拋光步驟中使用第二漿液。在一非限制性的具體實施例 中,利用第一漿液之第一拋光可終止以及利用第二敷液之 第二拋光可在未自基板及/或拋光墊清除第_聚液之下門 始0 前文中描述之用於本發明之第一漿液各種不同的研磨 2〇劑及其製備方法可應用於第二漿液中。在一非限制性的具 體實施例中,在第二漿液中的研磨劑濃度可小於第一毁夜 中的研磨劑濃度。在另一非限制性的具體實施例中,在第 二漿液中的研磨劑濃度,以第二漿液的重量為基準,可為〇 %或更高,或10%或更低,或0.1%或更高,或1%或更高, 20 200413489 或5 %或更低。 在另一非限制性的具體實施例中,前文中插述 本發明之第一漿液各種不同氧化劑、錯合劑及其他“於 選用的添加劑,可包括於第二漿液中。 藏要 5 在一非限制性的具體實施例中,除了第 磨劑濃度小於第一漿液中的研磨劑濃度之外 組成可與第一漿液的組成相同。 漿液中的研 第二漿液的 在另一非限制性的具體實施例中 磨劑。 第二漿液可不含研 10 15 20 從罘一拠无步驟的第二漿液可於利用第一將、 第一拋光步驟終止後,用於去除餘留在基板上的殘之 賴拋光墊的研磨度及來自使用於第一拋光步驟之第:將仰 的殘餘研磨劑以去除銅。在一非限制性的具體實施仞水液 利用第二漿液以去除殘餘銅的銅去除速率可小於利 衆液的銅去除速率。在另—非限職的具體實施例中弟 用第二漿液去除殘餘銅的銅去除速率,小於之 ★ 一漿液的銅去除速率,或小於35%之使用第一二 除速率’或小於25%之使用第—製液的銅去除速率,或小 於10%之使用第一漿液的銅去除速率。 使用第二衆液之第二拋光步驟的靜態蚀劑速率可小於 使用第—漿液的靜祕刻速率。在另-非限制性的具體實 施例中’㈣第二驗的靜_刻速率可為G至鳩之使 用第-聚液的靜態_速率,或至少為娜之使用第一聚 21 200413489 液的靜態蝕刻速率,或至少20%之使用第一漿液的靜態蝕 刻速率,或小於70%之使用第一漿液的靜態蝕刻速率。 在一非限制性的具體實施例中,本發明之漿液可使用 於例如半導體晶圓之基板的化學機械平坦化(CMP)。在此 5 具體實施例中,本發明之第一漿液可應用至晶圓基板,以 及晶圓可藉由使用習知技術已知的拋光設備及拋光塾的習 用裝置來拋光。使用於本發明之適當CMP設備可包括但不 限制於 IPEC 472,Applied Materials Mirra Mesa 或 Reflexion,Speedfam 676,Novellus Momentum,Lam Terres 10 及Nikon CMP系統NPS 2301。再者,拋光墊的選擇可包 括 Rodel’s IC1400、堆疊在 SUBA IV 上的 IC1000、Polytex 或 PPG’s Fast 墊。 在一非限制性的具體實施例中,本發明之第一漿液可 在高速下拋光銅,同時呈現對鈕及其他黏附層、介電層或 15金屬層呈現低拋光速率。第二漿液可接著施用至經部分拋 光的基板。第二漿液可在較低速率下拋光銅,同時對钽及 其他黏附層、介電層或金屬層呈現較高的拋光速率。吾人 可預期到,選擇一或多種添加劑可在拋光特定金屬層、黏 附層或氧化物層時,將所欲的去除速率控制在所欲的高或 20 低速率下。 在兀成使用本發明之漿液的拋光製程之後,可利用去 離子水或其他溶劑清洗基板,以供自基板去除拋光漿液。 在一非限制性的具體實施例中,清洗步驟可在使用第二漿 液之前完成。在完成第二拋光步驟後,可利用去離子水或 22 200413489 其他溶劑清洗基板,以供自基板去除第二漿液,以及基板 可準備就緒以供進一步加工。 在二拋光步驟中,拋光漿液可直接應用至基板,直接 應用至拋光塾’或在基板拋光期間,以控制的方式應用至 5基板及拋光墊二者。在一非限制性的具體實施例中,漿液 可應用至拋光墊,拋光墊可接著靠抵放置在基板上,以及 拋光墊可相對於基板移動以完成基板拋光。 本發明之漿液及方法可用於在所欲的拋光速率下,提 供有效的拋光,同時使表面不完全及缺陷最小化。再者, 10當在拋光時提供高材料去除速率,同時維持低靜態蝕劑速 率以使包埋之特徵結構的表面凹陷及磨蝕作用最小化為所 希望者時,本發明之漿液及方法特別有用。 t實施方式;J 實施例 15 在實驗中,利用直徑2·4公分之銅圓盤作為金屬樣品, 圓盤的平均重量損失係用於計算銅的去除速率。待拋光之 圓盤係在拋光前稱重。於抛光後,將圓盤再次稱重並以二 稱重值之差用於計算由於抛光造成的重量損失。以三個圓 盤的平均重量損失來計算銅的去除速率。每分鐘的平均重 2〇 Ϊ知失係利用將平均重量損失除以平均抛光時間(以分鐘 來计异。圓盤的截面積及銅的密度係用於將每分鐘之 平均重里抽失換算成去除速率(以奈米/分鐘或埃/分鐘 計。 23 200413489 使用Stuers LabPol-V TM拋光器來拋光圓盤。搬運機及 拋光台皆逆時針旋轉且速度維持在60 rpm。圓盤係由30 N (約9.8 psi)的向下力所固持。用於圓盤拋光的漿液係固 定的流速,供應至位在圓盤中心的拋光器。使用聚胺基甲 5 酸酯拋光墊進行所有拋光實驗。On the surface of the metal layer of the substrate, the formation of a metal suppression layer can effectively minimize the formation of a metal's purified layer and wet etching by dissolving or preventing the wet etching of the metal surface. In another non-limiting embodiment, the slurry of the present invention may include a thickening agent. Suitable thickeners may include thickeners that are widely known in the art. In general, suitable thickeners include substances that stabilize a slurry based on silica 5 to prevent settling. Non-limiting examples may include, but are not limited to, polyvinyl alcohol, polyacrylic acid, polyether, ethyl cellulose and modified ethyl cellulose, polyvinyl glycol, polypropylene glycol, polyethylene, and Copolymers of polypropylene glycol, calcined polyethylene and polypropylene glycol, polyethyleneimine, polyurethane, polypropylene, and polyamide. Non-limiting examples of such 10 suitable anionic polymers may include cross-linked polyacrylic acid commercially available from BF Goodrich under the trade name Carbopol; polyacrylates commercially available from BF Goodrich , Trade name GOOD_RITEK-700; KelzanAR Sanxan polysaccharide commercially available from CPKelco; 15 Natrosol 250 MMR hydroxyethyl cellulose commercially available from Hercules; Airvol commercially available from Air Products 523 polyvinyl alcohol; and PolyOX 3333 polyethylene oxide, or a mixture thereof, commercially available from Union Carbide. The presence of the thickening agent can appropriately reduce the sedimentation rate, but the viscosity should not be excessively increased, so that pumpability and filterability can be compromised, or heat generated during polishing can be detrimental to slurry performance. The amount of thickener used can vary depending on the selected thickener. In another non-limiting specific embodiment, the thickener can be present in an amount of greater than 0 to 5 weight percent, or from o.ooi to 1 weight percent. In another non-limiting embodiment, Carbopol can be present as a thickener in an amount of less than 0.5% by weight. 16 200413489 In another non-limiting specific embodiment, the slave can be shear stable. In the present specification and the scope of the patent application, the term "shear-determined" is used to mean that under the action of polishing shear, the viscosity of the thinner will be reduced substantially (such as with The viscosity before polishing is reduced by no more than%). In another non-limiting specific embodiment of the present invention, the particle size of the purely negligible and / or small oxygen-cut particles is reduced as described above. 'Or when grinding the oxide stone and / or reducing the particles of the oxide stone, the multivalent cationic chelating agent, the residue inhibitor, and the cercifying agent as needed may be added to the oxide stone. 10 Inventive-non-limiting specific embodiment, a polyvalent cation phonogen, a corrosion inhibitor, and a chemical agent as needed, may be added to the reading solution. In another non-limiting specific embodiment, the 'multivalent cation Chelating agents, corrosion inhibitors and / or thickeners are combined under mild agitation and then added to the mash. 15 In another non-limiting embodiment, the slurry of the invention may include at least one blocking compound This blocking compound can interact with the metal layer of the substrate, Interlayer, and / or dielectric layer interaction, and suppress the removal rate of the layer under the polishing layer. As a result, the first layer of the substrate can be polished by the slurry, and the polishing layer can be prevented on the first layer by 20ϊτΐτ. The second layer below. Suitable blocking compounds for use in the present invention may include a wide variety of species known in the art, such as, but not limited to, polar compounds or polymers containing polar moieties such as hydroxyl, amine, nitrogen-containing Heterocyclic, carboxyl, carbonyl, ether, sulfonyl, or phosphonyl moieties. Non-limiting examples may include polyvinyl alcohol, polyvinyl alcohol ratio 17, polyisocyanate, polyethylenoxide, fixed, poly% oxygen Ethyl alcohol, diols or polyglycols, polycarboxylates, such as polyacrylic acid polymethacrylate. The term "substantially impeded," as used in this specification and in the claims, refers to a polishing composition Or, the polishing selectivity of the first layer relative to the second layer of the slurry is about 5: 1, or until J is 10: 1, or 100: 1. The choice of blocking compound may depend on chemical stability, interaction with other ingredients in the slurry, and its effect on the colloidal stability of any abrasive particles used. In a non-limiting specific embodiment, the amount of the abrasive in the slurry of the present invention may be 0 to 20.0 weight percent, the amount of the resist may be 0 to 1 weight percent, and the amount of the blocking compound may be 0 to 1 weight percent. In another non-limiting embodiment, the slurry may include a dispersant. Non-limiting examples of suitable dispersants include polycarboxylic acids such as polyacrylic acid, crosslinked polyacrylic acid, and polymethacrylic acid; phosphonic acids, 15 such as, but not limited to, alkylphosphonic acid, arylphosphonic acid , Polyphosphonic acid, and alkylaminophosphonic acid; polyamino acids, such as, but not limited to, polyaspartic acid. In another non-limiting embodiment, the slurry may include a surfactant. Suitable surfactants for use in the present invention may include cationic, anionic, and nonionic surfactants. Suitable cationic surfactants may include, but are not limited to, aliphatic amines and aliphatic ammonium salts. Non-limiting examples of anionic surfactants can include carboxylic acids, such as but not made from fatty acid soaps, alkyl ether carboxylates; alkyl and aryl sulfonates, such as from benzene benzene% acid, Alkyl naphthoic acid and salts of Λ_ene nicotinic acid. Non-limiting examples of dangerous ionic surfactants may include, but are not limited to, 18 200413489 such as higher alcohol esters, novolac ethers and acid salts, and polyoxyethylene alkyl phenyl mysteries The salt of lutein acid. In a non-limiting specific embodiment, the anionic surfactant may include salts of acetic acid vinegar, which includes, but is not limited to, benzyl phosphate and aryl phosphate. Non-limiting examples of surfactants in the nonionic world may include, but are not limited to, bonds such as the class of Polyethylene Gyizaki, the class of polyoxyethylene ethers such as glycerol, and glycerides and Esters of sorbitan esters. In a non-limiting embodiment, the filling solution of the present invention may include a stabilizer. Suitable stabilizers may include acetanilide, tin oxide, and free radical inhibitors such as, but not limited to, inorganic and organic nitrogen oxides. Suitable dispersants include, for example, polyacrylic acid, crosslinked polyacrylic acid, and polycarboxylic acids of polymethacrylic acid; such as, but not limited to, alkylphosphonic acid, arylphosphonic acid, polyphosphonic acid, and alkylaminophosphine Phosphonic acids of acids; and polyamino acids such as polyaspartic acid. 15 In a non-limiting embodiment, the oxidant and other non-abrasive components may be mixed into a liquid medium such as deionized water or distilled water, which is performed under shear conditions until the non-abrasive component Dissolve sufficiently in this mediator. Silicon oxide can then be added to the medium. In a non-limiting embodiment, the silicon oxide may be a silicon oxide of Shendian. The composition is then dispersible in a liquid such as water to prepare a slurry of the present invention. In the present invention, in the first polishing step using the first slurry, the amount of copper removed can be widely changed depending on the composition of the first slurry, the length of the polishing time, and the polishing conditions. In a non-limiting embodiment, the first slurry can remove less than 100% of copper, so that residual copper can be retained. In another 19 200413489 non-limiting embodiment, the first slurry can remove 10% to 95% copper, or 20% to 90% copper, or 25% to 85% copper from the substrate. In another non-limiting embodiment, the residual copper may be at least partially in the form of a layer or a film. 5 In the first step, the removal rate of copper can be widely changed according to the composition of the first slurry, the length of the polishing time and the polishing conditions. In another non-limiting specific embodiment, the copper removal rate in the first step may be at least 2,500 Angstroms / minute, or less than 10,000 Angstroms / minute, at least 5,000 Angstroms / minute 'Or less than 8,000 Angstroms / minute. 10 The static etch rate in the first polishing step can vary widely. In a non-limiting embodiment, the static etch rate may be 0% to 20% of the copper removal rate, or 0.1% to 15% of the copper removal rate, or 1% to 10% of the copper removal rate. In the present invention, after the first polishing step is substantially terminated, the second slurry can be used in the second 15 polishing step. In a non-limiting specific embodiment, the first polishing using the first slurry can be terminated and the second polishing using the second varnish can be started before the first liquid is removed from the substrate and / or the polishing pad. 0 The various grinding agents used in the first slurry of the present invention described in the foregoing and their preparation methods can be applied to the second slurry. In a non-limiting specific embodiment, the abrasive concentration in the second slurry may be less than the abrasive concentration in the first night. In another non-limiting specific embodiment, the abrasive concentration in the second slurry, based on the weight of the second slurry, may be 0% or higher, or 10% or lower, or 0.1% or Higher, or 1% or higher, 20 200413489 or 5% or lower. In another non-limiting specific embodiment, various oxidants, complexing agents, and other additives used in the first slurry of the present invention are inserted into the second slurry, as described above. In a limited embodiment, the composition of the second slurry may be the same as that of the first slurry except that the concentration of the first abrasive is less than the concentration of the abrasive in the first slurry. Abrasive in the embodiment. The second slurry can be free of grinding 10 15 20 The second slurry without a step can be used to remove the remaining residue on the substrate after the first polishing step is terminated. The polishing degree of Lai polishing pads and the copper removal rate from the first polishing step: removing the residual abrasive from Yang. Copper is used in a non-limiting implementation of the second slurry to remove residual copper in the water solution. It can be less than the copper removal rate of Lizhong Liquid. In another-non-limiting specific embodiment, the copper removal rate of the second slurry to remove residual copper is less than the ★ ★ The copper removal rate of one slurry, or less than 35%. The first two removal rate 'or less than 25% of the copper removal rate using the first liquid, or less than 10% of the copper removal rate using the first slurry. The static etchant rate of the second polishing step using the second liquid It may be less than the quietness rate of using the first slurry. In another non-limiting embodiment, the quietness rate of the second test may be the static rate of the first polymerization solution from G to the dove, or A static etching rate of at least 20% using the first poly 21 200413489 fluid, or a static etching rate of at least 20% using the first slurry, or a static etching rate of less than 70% using the first slurry. In specific embodiments, the slurry of the present invention can be used for chemical mechanical planarization (CMP) of substrates such as semiconductor wafers. In this 5 specific embodiment, the first slurry of the present invention can be applied to wafer substrates, and crystals The circle may be polished by using conventional polishing equipment and polishing equipment known in the art. Suitable CMP equipment for use in the present invention may include, but is not limited to, IPEC 472, Applied Materials Mirra Mesa or Reflexion, Speedfa m 676, Novellus Momentum, Lam Terres 10 and Nikon CMP system NPS 2301. Furthermore, the choice of polishing pads can include Rodel's IC1400, IC1000 stacked on SUBA IV, Polytex or PPG's Fast pads. In a non-limiting specific implementation For example, the first slurry of the present invention can polish copper at high speed, while exhibiting a low polishing rate for buttons and other adhesion layers, dielectric layers or 15 metal layers. The second slurry can then be applied to a partially polished substrate. The second slurry can polish copper at a lower rate while exhibiting a higher polishing rate for tantalum and other adhesion layers, dielectric layers or metal layers. We can expect that choosing one or more additives can control the desired removal rate at the desired high or low rate when polishing a specific metal layer, adhesion layer or oxide layer. After Wu Cheng uses the slurry polishing process of the present invention, the substrate may be cleaned with deionized water or other solvents for removing the polishing slurry from the substrate. In a non-limiting embodiment, the washing step may be completed before the second slurry is used. After the second polishing step is completed, the substrate may be cleaned with deionized water or other solvents for removal of the second slurry from the substrate, and the substrate may be ready for further processing. In the second polishing step, the polishing slurry can be applied directly to the substrate, directly to the polishing pad, or during substrate polishing, in a controlled manner to both the 5 substrate and the polishing pad. In a non-limiting embodiment, the slurry may be applied to a polishing pad, the polishing pad may then be placed against the substrate, and the polishing pad may be moved relative to the substrate to complete the polishing of the substrate. The slurry and method of the present invention can be used to provide effective polishing at a desired polishing rate while minimizing surface incompleteness and defects. Furthermore, the slurry and method of the present invention are particularly useful when providing a high material removal rate during polishing while maintaining a low static etchant rate to minimize the surface depression and abrasion effects of embedded feature structures. . t EMBODIMENT; J Example 15 In the experiment, a copper disc with a diameter of 2.4 cm was used as the metal sample. The average weight loss of the disc was used to calculate the copper removal rate. The discs to be polished are weighed before polishing. After polishing, the disc was weighed again and the difference between the two weighing values was used to calculate the weight loss due to polishing. The average weight loss of the three discs was used to calculate the copper removal rate. The average weight per minute is 20%. The weight loss is calculated by dividing the average weight loss by the average polishing time (varies in minutes. The cross-sectional area of the disc and the density of copper are used to convert the average weight loss per minute into Removal rate (in nanometers / minutes or angstroms / minute. 23 200413489 Stuers LabPol-V TM polisher is used to polish the disc. Both the conveyor and the polishing table are rotated counterclockwise and the speed is maintained at 60 rpm. The disc system consists of 30 N (approximately 9.8 psi) is held down. The slurry used for disc polishing is supplied at a fixed flow rate and is supplied to the polisher located in the center of the disc. All polishing experiments were performed using a polyurethane 5 pad .

在本說明書中所使用之“墊調整”一詞係用於去除剩 餘的漿液及在拋光墊上的拋光產物。在無墊調整之下,由 於鑲嵌效應,拋光速率會降低。可使用各種不同之習知技 術已知的調整技術。 10 使用SUBATM 500拋光墊並對其進行拋光墊的調整。拋The term "pad adjustment" used in this specification is used to remove the remaining slurry and polishing products on the polishing pad. With padless adjustment, the polishing rate is reduced due to the mosaic effect. Various adjustment techniques known in the art can be used. 10 Use a SUBATM 500 polishing pad and adjust the polishing pad. throw

光墊調整順序係由下述步驟組成:利用去離子水清洗1分 鐘,利用過氧化氫調整30秒,利用去離子水清洗1分鐘, 利用檸檬酸調整30秒,以及利用去離子水清洗1分鐘。 在此等實驗中,使用200-毫米銅毯覆式晶圓及圖案化 15 晶圓’利用具有Rodel IC1400-A2抛光塾之Westech 372M 旋轉式CMP工具來抛光晶圓。在每一晶圓抛光之間,利用 去離子水及金剛砂調整輪進行拋光墊調整(移地調整)。The light pad adjustment sequence consists of the following steps: washing with deionized water for 1 minute, hydrogen peroxide for 30 seconds, washing with deionized water for 1 minute, citric acid for 30 seconds, and washing with deionized water for 1 minute. . In these experiments, 200-mm copper blanket wafers and patterned 15 wafers were used to polish the wafers using a Westech 372M rotary CMP tool with a Rodel IC1400-A2 polishing pad. Between each wafer polishing, the polishing pad is adjusted (ex-situ adjustment) using deionized water and diamond adjustment wheels.

International Sematech 或 Montco Silicon Technologies,Inc. 的銅毯覆式晶圓係應用於作為速率監視器。Sematech 20 854-006的圖案化晶圓係用於地形圖的評估。所有化學品皆 為ACS試劑等級。所有溶液皆用去離子水製備。膜厚度及 銅晶圓的輪廓係利用Prometrix® RS-35四點探針量測工具 及配備有半徑2.5微米尖端之針的輪廓曲線儀。 24 2〇〇4l3489 實施例1 將包含苯並三峻、甘胺酸及過氧化氮(未添加氧化石夕) 之黎液,樣口口口 1,與除了改變氧化石夕濃度之外,具有相同組 成的漿液相比較。在60毫升//分鐘之漿液進料速率下,拋 5光圓盤3分鐘。數據證實含有氧化石夕之樣品的銅去除速率 高於不含氧化石夕之樣品的銅去除速率。抛光銅圓盤的鋼去 除速=係記载於表i中。確認到表工顯示的銅去除速率並 非隨著氧化石夕濃度的增加而線性地減小。吾人相信在此實 施例中證實氧化石夕濃度及銅去除速率之間的關係至少部分 10起因於樣品中pH的變動。 表1Copper blanket wafers from International Sematech or Montco Silicon Technologies, Inc. are used as rate monitors. Sematech 20 854-006 patterned wafers are used for the evaluation of topographic maps. All chemicals are ACS reagent grade. All solutions were prepared with deionized water. The film thickness and the contour of the copper wafer were measured using a Prometrix® RS-35 four-point probe measurement tool and a profilometer equipped with a 2.5 micron tip needle. 24 2040013 Example 1 A liquid sample containing benzotrimethylene oxide, glycine, and nitrogen peroxide (without added oxidized stone), sample port 1 and, in addition to changing the concentration of oxidized stone, have Comparison of plasma and liquid phases of the same composition. At a slurry feed rate of 60 ml / min, a 5-light disc was thrown for 3 minutes. The data confirmed that the copper removal rate was higher in the samples containing oxidized stone than in the samples without oxidized stone. The removal rate of steel for polished copper discs is shown in Table i. It was confirmed that the copper removal rate shown by the watchmaker did not decrease linearly with the increase in the concentration of the oxide. We believe that the relationship between the concentration of oxidized stone and the rate of copper removal in this example is at least partly due to a change in pH in the sample. Table 1

實施例2 將包含苯並, 將 > 唾、甘胺酸及過氧化氫(未添加氧化石夕) 之漿液’樣品1,與含有增加之氣化 1矽濃度的類似溶液的漿 25 液比較。以100宅升/分鐘之漿液進料速率拋光圓盤丨分 鐘。與前述實施例相同地,數據證實含有氧化矽之樣品的 鋼去除速率高於不含氧化矽之樣品的銅去除速率。拋光銅 圓盤的銅去除速率係記載於表2中。確認到表丨顯示的銅 去除速率並非隨著氧化矽濃度的增加而線性地減小。吾人 相信在此實施例中證實氧化矽濃度及銅去除速率之間的關 係至少部分起因於樣品中PH的變動。再者,銅去除速率證 實係隨著漿液流速的增加而減小。 表2 -----Example 2 A slurry 'Sample 1' containing benzo,> sial, glycine, and hydrogen peroxide (without added oxidized stone) was compared with a slurry 25 containing a similar solution with increased silicon concentration in gasification 1 . The disc was polished at a feed rate of 100 liters / minute for 丨 minutes. As in the previous examples, the data confirms that the steel removal rate of samples containing silicon oxide is higher than the copper removal rate of samples without silicon oxide. The copper removal rate of polished copper discs is shown in Table 2. It was confirmed that the copper removal rate shown in Table 丨 did not decrease linearly with increasing silicon oxide concentration. I believe that in this example it was confirmed that the relationship between the silicon oxide concentration and the copper removal rate is due at least in part to a change in pH in the sample. Furthermore, the copper removal rate proved to decrease as the slurry flow rate increased. Table 2 -----

樣品 氧化碎 1 0.0 6.08 2 0.1 6.34 3 0.2 6.49 4 0.3 6.65 5 0.5 6.79 6 1.0 7.02 7 2.0 7.14 8 3.0 7.21 9 4.0 7.25 10 5.0 7.39 實施例3 在本實施例中的漿液係與前述實施例2之漿液類似, 除了當不含氧化矽時,增加過氧化氫的濃度(3重量%至5 重1%)以降低銅去除速率。含有苯並三唾、甘胺酸及過 26 10 ,丄3489 氣化氧(未添加氧化梦)之溶液’樣品1 ’係與含有增加之 氧化矽濃度的類似溶液的漿液比較。以60毫升/分鐘之裝 液進料速率拋光圓盤3分鐘。數據證實含有氧化矽之樣品 的鋼去除速率高於不含氧化矽之樣品的銅去除速率。’: 5外,僅含1重量百分比之氧化石夕之漿液的銅去除速率盘含 有8重量百分比之氧化石夕之聚液的銅去除速率無顯著的差 別。拋光銅圓盤的銅去除速率係記载於表3中。 表3 樣品 1 2 3 4 5 6 7 8 9 氧化石夕 (重量 1 2 3 4 5 6 7 8 PH4〇g [H30+] 5.67 6.39 6.61 6.71 6.67 6.81 6.74 6.72 6.68 過氣化氫BTA銅去除速率 i重,%) (mM) (nm/min) 5Sample oxidized fragment 1 0.0 6.08 2 0.1 6.34 3 0.2 6.49 4 0.3 6.65 5 0.5 6.79 6 1.0 7.02 7 2.0 7.14 8 3.0 7.21 9 4.0 7.25 10 5.0 7.39 Example 3 The slurry system in this example is the same as in the previous example 2. The slurry is similar, except that when there is no silicon oxide, the concentration of hydrogen peroxide (3% to 5% by weight) is increased to reduce the copper removal rate. A solution 'Sample 1' containing benzotrisialyl, glycine and peroxo 10, 103489 vaporized oxygen (without added oxidized dreams) was compared with a slurry containing a similar solution with increased silica concentration. The disc was polished for 3 minutes at a liquid feed rate of 60 ml / min. The data confirmed that the rate of steel removal was higher in the samples containing silicon oxide than in the samples without silicon oxide. ': In addition to 5, there is no significant difference in the copper removal rate of the copper oxide removal rate disk containing only 1 weight percent of the oxide stone oxide slurry. The copper removal rate of polished copper discs is described in Table 3. Table 3 Sample 1 2 3 4 5 6 7 8 9 Stone oxide (weight 1 2 3 4 5 6 7 8 PH4〇g [H30 +] 5.67 6.39 6.61 6.71 6.67 6.81 6.74 6.72 6.68 Copper removal rate of hydrogenated BTA i ,%) (MM) (nm / min) 5

5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 94 400 351 332 291 279 302 325 3905 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 94 400 351 332 291 279 302 325 390

實施例4 10 此實施例中的漿液係根據實 pH # W ^ ⑪例1來製備,除了調整 維持定值之外。pH值的市 鈉來進行。备將Μ 整係·硫酸或氮氧化 唑(1毫箪且、 U重量百分比)、苯並三 值下之氧化> 過氧_(3重量百分比)。不同阳 化夕濃度對銅去除速率的影響,係藉由以60毫升 27 200413489 /分鐘之漿液進料速率拋光銅圓盤1分鐘來評估。結果證 實對一特定的氧化矽濃度而言,銅去除速率係隨著pH的濃 度而改變。 表4 結果顯示於表4中。 氧化矽 (重量%) 銅 去除速率(人/min) pH 3 pH 4 pH 5 pH 6 0 259 106 176 151 1 434 488 412 342 2 597 537 483 393 3 705 617 528 451 4 801 644 565 520 5 實施例5 對200 mm銅毯覆式晶圓進行二階段的銅拋光。此等 晶圓係由具有薄膜層堆疊物之矽金屬晶圓所組成。堆疊物 係由在石夕金屬上的熱氧化物層(5,000人)、在熱氧化物上 的钽金屬層(250A),以及在頂部的銅層(15,000人)所組 10 成。在每一例子中,晶圓在第一階段係利用含有氧化矽(8 重量百分比)、苯並三唑(1毫莫耳)、甘胺酸(1重量百 分比)及過氧化氫(3重量百分比)的漿液水溶液(200毫 升/分鐘)進行拋光60秒。於第一階段拋光後,終止漿液 流,以及利用去離子水或含有苯並三唑(1毫莫耳)、甘胺 15 酸(1重量百分比)及過氧化氫(3重量百分比)但不含氧 化石夕的水溶液持續拋光。所有拋光皆利用4 psig之向下力、 1 psig搬運機反壓,以及60 rpm之拋光台速度來行。使用 28 邮姻4_點探針測定銅去 :::Γ49個測量值之平均值記載於表5中。此等:: ^而2階段中’藉由利用水之持續拋光去除極少量。 = 中,藉由不具有研磨劑的化學溶液抛光 第ρ比^的銅去除速率,且此顯著的銅去除速率係仰賴 弟—階段中抛缝上的殘餘研磨劑。 嗜 表5Example 4 10 The slurry in this example was prepared according to the actual pH #W ^ Example 1 except that the constant value was adjusted and maintained. The pH of sodium is used. Prepare the entire system. Sulfuric acid or oxazole (1 millifluorene, U weight percent), benzotrioxide oxidation > peroxy _ (3 weight percent). The effect of different anode concentrations on copper removal rate was evaluated by polishing the copper discs at a slurry feed rate of 60 ml 27 200413489 / min for 1 minute. The results confirm that for a particular silicon oxide concentration, the copper removal rate varies with the pH concentration. Table 4 The results are shown in Table 4. Silicon oxide (wt%) Copper removal rate (person / min) pH 3 pH 4 pH 5 pH 6 0 259 106 176 151 1 434 488 412 342 2 597 537 483 393 3 705 617 528 451 4 801 644 565 520 5 Examples 5 Two-stage copper polishing of 200 mm copper blanket wafers. These wafers consist of silicon metal wafers with thin film layer stacks. The stack consists of a thermal oxide layer (5,000 persons) on Shixi Metal, a tantalum metal layer (250A) on thermal oxide, and a copper layer (15,000 persons) on top. In each example, the wafers in the first stage were made using silicon oxide (8 weight percent), benzotriazole (1 mmol), glycine (1 weight percent), and hydrogen peroxide (3 weight percent). ) The slurry aqueous solution (200 ml / min) was polished for 60 seconds. After the first stage of polishing, stop the slurry flow and use deionized water or contain benzotriazole (1 millimolar), glycine 15 acid (1 weight percent) and hydrogen peroxide (3 weight percent) but not The aqueous solution of the oxidized stone is continuously polished. All polishing was performed using a downward force of 4 psig, a back pressure of a 1 psig conveyor, and a polishing table speed of 60 rpm. Table 5 shows the average value of the 49 measured values of the copper ::: Γ using a 28-point 4-point probe. These :: ^ And in the 2nd stage ', a very small amount is removed by continuous polishing with water. =, The copper removal rate of ρr ^ is polished by a chemical solution without an abrasive, and this significant copper removal rate is dependent on the residual abrasive on the slot in the younger stage. Addiction Table 5

實施例6 對200 mm銅毯覆式晶圓進行二階段的銅拋光。此等 10日日圓係由具有薄膜層堆疊物之石夕金屬晶圓所組成。堆疊物 係由在矽金屬上的熱氧化物層(5,〇〇〇A)、在熱氧化物上 的纽金屬層(25〇人),以及在頂部的銅層⑴侧入)所組 成。在每一例子中,晶圓在第一階段係利用含有氧化矽(11 重里百分比)、苯並三唑(1毫莫耳)、甘胺酸(丨重量百 15分比)及過氧化氳(5重量百分比)的漿液水溶液進行拋光 60秒。於第一階段拋光後,終止漿液流,以及利用去離子 水或含有苯並三唑、甘胺酸及過氧化氫但不含氧化矽的水 溶液持續拋光。用於第二階段之溶液的不含氧化矽化學組 29 彳匕%表6所示。在整個二拋光階段中,拋光條件及 /夜體PH值係維持定值(向下力4psig、拋光台速度70rpm、 搬運機速度68 rpm、搬運機反壓〇 pSig、漿液流速19〇 ml/min 及 pH 5 )。使用 prometrix rs_35tm 4-點探針測定銅 5去除速率’並以自通過晶圓直徑的49個測量值之平均值記 載於表6中。此等結果證實在此實施例中,在第二階段中, 在無氧化石夕之下持續拋光未顯著增加額外的銅去除量。結 果亦證實’在第二階段(亦即第二拋光步驟)中的銅去除Example 6 Two-stage copper polishing was performed on a 200 mm copper blanket wafer. These 10-day Japanese yen consist of a shiyu metal wafer with a thin-film layer stack. The stack consists of a thermal oxide layer (5,000 A) on silicon metal, a button metal layer (250,000 people) on thermal oxide, and a copper layer on the top (side in). In each example, the wafers used in the first stage contained silicon oxide (11% by weight), benzotriazole (1 millimolar), glycine (丨 weight percent 15%), and thorium peroxide ( 5 weight percent) of the slurry aqueous solution was polished for 60 seconds. After the first stage of polishing, the slurry flow is stopped, and polishing is continued using deionized water or an aqueous solution containing benzotriazole, glycine and hydrogen peroxide, but without silica. The silicon oxide-free chemical group used in the second-stage solution is shown in Table 6. Throughout the two polishing stages, the polishing conditions and the pH value of the body are maintained at a fixed value (downforce 4 psig, polishing table speed 70 rpm, conveyor speed 68 rpm, conveyor back pressure 0 pSig, slurry flow rate 19 ml / min And pH 5). The copper 5 removal rate 'was measured using a prometrix rs_35tm 4-point probe and is shown in Table 6 as the average of 49 measured values from the wafer diameter passed. These results confirm that in this embodiment, in the second stage, continuous polishing under the absence of oxidized stones does not significantly increase the amount of additional copper removal. The results also confirm that the copper removal in the second stage (i.e., the second polishing step)

速率的變化可能與第一階段(第一拋光步驟)的銅去除速 10 率無關。 表6 策品 第二階段拋光 時間(秒) 甘胺酸 (重量%) 過氧化氫 (重量%) ΒΤΑ (mM) 去離子 水 銅去除 量(A) 之銅去除速率 1 睡 - - - 6023 2 60 - - 100% 6485 462 3 60 1 5 1 主體 9314 3291 4 60 1 5 3 主體 8569 2546 5 60 1 8 1 主體 9488 3465 6 60 1 8 3 主體 7815 1792 7 60 1 6.5 2 主體 8287 2264 實施例7 對200 mm銅毯覆式晶圓進行二階段的銅拋光。此等 晶圓係由具有薄膜層堆疊物之矽金屬晶圓所組成。堆疊物 15 係由在矽金屬上的熱氧化物層(5,0〇〇Λ)、在熱氧化物上 的钽金屬層(250Α),以及在頂部的銅層(ΐ5,〇〇〇Α)所組 30 200413489 ^旦在母_例子中,晶圓在第—階段係利用含有氧化石夕(Η 八里百分比)、苯並三唾(1毫莫耳)、甘胺酸(ι重量百 及過氧化氫(5重量百分比)㈣液水溶液進行拋光 5 、,_"。於第一階段拋光後,終止漿液流,以及利用含有苯 5 甘舰及縣減但不含氧切的讀^賴 ‘ 、> 。用於第二階段之溶液的不含氧化石夕化學組成的變 化如表7所示。在整個二拋光階段中,拋光條件及液體pH · 值係維持定值(向下力3 psig、拋光台速度70 rpm、搬運 機速度68 rpm、搬運機反壓〇 psig、漿液流速19〇 mi/min _ 10及PH5)。使用PrometrixRS-35TM4-點探針測定鋼去除速 率’並以自通過晶圓直徑的49個測量值之平均值記載於表 中此專結果證實在在第二階段(亦即第二拋光步驟)中 的銅去除速率的變化可能與第一階段(第一拋光步驟)的 銅去除速率無關。 15表7 酸過^k bta 去離'The rate change may be independent of the copper removal rate in the first stage (first polishing step). Table 6 Polishing time of the second stage of the product (seconds) Glycine (wt%) Hydrogen peroxide (wt%) ΒΤΑ (mM) Copper removal rate of deionized water copper removal (A) 1 Sleep---6023 2 60--100% 6485 462 3 60 1 5 1 main body 9314 3291 4 60 1 5 3 main body 8569 2546 5 60 1 8 1 main body 9488 3465 6 60 1 8 3 main body 7815 1792 7 60 1 6.5 2 main body 8287 2264 Example 7 Two-stage copper polishing of 200 mm copper blanket wafers. These wafers consist of silicon metal wafers with thin film layer stacks. Stack 15 consists of a thermal oxide layer on silicon metal (5,00〇Λ), a tantalum metal layer on thermal oxide (250A), and a copper layer on the top (5,000,000) Group 30 200413489 ^ In the mother_example, the wafer in the first stage is based on the use of oxidized stone (%), benzotrisial (1 mmol), glycine (100% and over Polishing aqueous solution of hydrogen oxide (5% by weight) mash solution 5, and "." After the first stage of polishing, the slurry flow was terminated, and the use of reading containing benzene 5 Gan Jian and the county minus but not oxygen cutting read Lai ', >. The chemical composition of the solution used in the second stage without oxidized stone is shown in Table 7. Throughout the second polishing stage, the polishing conditions and the pH of the liquid were maintained at a constant value (downforce 3 psig , Polishing table speed 70 rpm, conveyor speed 68 rpm, conveyor back pressure 0 psig, slurry flow rate 190 mi / min _ 10 and PH5). The steel removal rate was measured using a Prometrix RS-35TM 4-point probe and passed through The average value of the 49 measured values of the wafer diameter is recorded in the table. This result is confirmed in the second stage. Copper removal rate of change (i.e., a second polishing step) is probably not related to the first stage (first polishing step) of copper removal rate. Table 7 15 ^ k bta acid Deionized too '

•U 拋:^間(重量%)(重量%) (mM)子水(人) 2 3 4 5 60 60 60 60 5 8 8 6.5 3 2 5122 主體 6250 主體 7383 主體 6022 主體 6209 1128 2261 880 1087 31 200413489 實施例8 a.• U throw: ^ (weight%) (weight%) (mM) water (person) 2 3 4 5 60 60 60 60 5 8 8 6.5 3 2 5122 main body 6250 main body 7383 main body 6022 main body 6209 1128 2261 880 1087 31 200413489 Example 8 a.

對200 mm銅毯覆式晶圓進行二階段的銅拋光。此等 晶圓係由具有薄膜層堆豐物之秒金屬晶圓所組成。堆疊物 係由在矽金屬上的熱氧化物層(5,o〇〇A)、在熱氧化物上 5 的组金屬層(250人),以及在頂部的銅層(15,000A)所組 成。在每一例子中,晶圓在第一階段係利用含有氧化石夕(U 重量百分比)、苯並三峻(1毫莫耳)、甘胺酸(1重量百 分比)及過氧化氫(5重量百分比)的漿液水溶液進行拋光 60秒。於第一階段拋光後,終止漿液流,以及利用去離子 10水或含有苯並三峻(3毫莫耳)、甘胺酸(1重量百分比) 及過氧化氫(8重量百分比)但不含氧化;5夕的水溶液持續拋 光。在整個_拋光階段中,拋光條件及液體pH值係維持定 值(向下力3 psig、拋光台速度70 rpm、搬運機速度68 rpm、搬運機反壓〇 Psig、漿液流速190 ml/min及PH 5)。 15在每一第二階段的時間區間拋光個別晶圓。使用prometrix RS_35™ 4-點探針測定銅去除速率,並以自通過晶圓直徑的 49個測量值之平均值記載於表8中。此等數據顯示在第一 P白丰又(亦即第一抛光步驟)之拋光條件下,餘留足量的研 磨劑’以致能在第二階段(亦即第二拋光步驟)中維持相 20對固定去除速率至少4分鐘。 32 表8 銅去除量 (A) 5122 6002 6972 7707 8537 第二階段時間 (分) 5——-- 0 1 2 3 4 增加之銅去除量 (A/min) 880 925 862 854 33 200413489 表9 5—5 10一1〇 2〇—20 50—50 1〇〇 1〇〇 特徵結構 銅線寬—氧化物線寬(μηι) ~S U63 15ΐΓϋ5ΓϋΤΤ~Βπ 表面凹陷標準偏差(A) 316 379 379 609 869Two-stage copper polishing of 200 mm copper blanket wafers. These wafers consist of a second metal wafer with a thin film stack. The stack consists of a thermal oxide layer (5,00A) on silicon metal, a group of metal layers (250 persons) on thermal oxide, and a copper layer (15,000A) on top. In each example, the wafers in the first stage were made of oxidized stone (U weight percent), benzotrimethylene (1 mmol), glycine (1 weight percent), and hydrogen peroxide (5 weight Percent) of the aqueous slurry solution was polished for 60 seconds. After the first stage of polishing, stop the slurry flow, and use deionized 10 water or contain benzotrimethylene (3 mmol), glycine (1 weight percent) and hydrogen peroxide (8 weight percent) but not Oxidation; the aqueous solution of May is continuously polished. Throughout the polishing phase, the polishing conditions and the pH of the liquid are maintained at a constant value (downforce of 3 psig, polishing table speed of 70 rpm, conveyor speed of 68 rpm, conveyor back pressure of 0 psig, slurry flow rate of 190 ml / min, and PH 5). 15 Polish individual wafers during each second stage time interval. The copper removal rate was measured using a prometrix RS_35 ™ 4-point probe, and is shown in Table 8 as the average of 49 measured values from the wafer diameter. These data show that under the polishing conditions of the first P Baifeng (that is, the first polishing step), a sufficient amount of abrasive is left, so that the phase can be maintained in the second stage (that is, the second polishing step). For a fixed removal rate of at least 4 minutes. 32 Table 8 Copper removal (A) 5122 6002 6972 7707 8537 Second stage time (minutes) 5 ----0 1 2 3 4 Increased copper removal (A / min) 880 925 862 854 33 200413489 Table 9 5 —5 10—10—20—20—50—50—001—00 Feature structure copper line width—oxide line width (μηι) ~ S U63 15ΐΓϋ5ΓϋΤΤ ~ Βπ Standard deviation of surface depression (A) 316 379 379 609 869

實施例10Example 10

•U 使用於本實施例的研磨劑為氧化矽,其係藉由與二氯 二甲基石夕烧反應來進行表面改質。利用一漿液拋光 5 SEMATECH 854圖案化晶圓95秒,該漿液係由表面改質之 氧化矽(11重量百分比)、過氧化氫(5重量百分比)、 甘胺酸(1重量百分比)及苯並三唑(i毫莫耳)所組成。 利用一液體額外拋光275秒,該液體係由過氧化氫(8重量 百分比)、甘胺酸(1重量百分比)及苯並三唑(3毫莫耳) 1〇所組成,但不含表面改質之氧化矽。目視檢查結果呈現出 自晶圓清除大於95%之銅覆蓋層。表面凹陷係由跨過晶圓 表面之直徑的9個個別晶粒的數個特徵結構來測定。此等 特徵結構的平均表面凹陷值係描述於表1〇中。結果證實在 鋼抛光之第一階段中使用表面改質之研磨劑,當與利用未 15改質之研磨劑的類似拋光相較’可進一步降低線表面凹 陷。在晶圓半徑中間之晶粒上一 50—50微米特徵結構所獲 得的數據,指出在第二僅含液體階段中拋光215秒後,^ 面凹陷約為275秒後最終值的52%。此等數據意指多階段 方法具有廣的過度拋光窗。 34 200413489 表10 特徵5ΙΓ"^—Γο 20—20 50—50 100一 100 銅線寬—氧化物線寬(μηι) 一 - — 平均表面凹陷(人) 697 887 830 1001 1611 表面凹陷標準偏差(人) 372 320 342 543 785• U The abrasive used in this example is silicon oxide, which undergoes surface modification by reacting with dichlorodimethylsulfite. The 5 SEMATECH 854 patterned wafer was polished with a slurry for 95 seconds. The slurry was surface-modified silicon oxide (11 weight percent), hydrogen peroxide (5 weight percent), glycine (1 weight percent), and benzo. Triazole (i millimolar). Using a liquid for an additional 275 seconds, the liquid system consists of hydrogen peroxide (8 weight percent), glycine (1 weight percent), and benzotriazole (3 mmol), but does not include surface modification. Quality silicon oxide. Visual inspection results showed that the copper overlay was removed from the wafer by more than 95%. Surface depressions are determined from several characteristic structures of nine individual grains across the diameter of the wafer surface. The average surface depression values of these characteristic structures are described in Table 10. The results confirm that the use of surface-modified abrasives in the first stage of steel polishing can further reduce the line surface depression when compared with similar polishing using non-modified abrasives. Data obtained on a 50-50 micron feature on a die in the middle of the wafer radius indicates that after polishing for 215 seconds in the second liquid-only stage, the surface depression is approximately 52% of the final value after 275 seconds. These data imply that the multi-stage method has a wide over-polished window. 34 200413489 Table 10 Characteristics 5 IΓ " ^ — Γο 20—20 50—50 100—100 Copper line width — oxide line width (μηι) — — — average surface depression (person) 697 887 830 1001 1611 surface deviation standard deviation (person ) 372 320 342 543 785

J 實施例11 10 利用一漿液水溶液及4.5 psig之向下力拋光Sematech 854圖案化晶圓1〇5秒,該漿液水溶液係由氧化石夕(η重 量百分比)、過氧化氫(4重量百分比)、甘胺酸(1重量 百分比)及苯並三唑(1毫莫耳)所組成。利用相同的漿液 水溶液及1 psig之向下力再持續拋光9〇秒。目視檢查結果 呈現出自晶圓清除大於95%之銅覆蓋層。表面_係由跨 過晶圓表面之直徑的3個個別晶粒的數個特徵結構來測 定。此等特徵結構的平均表面凹陷值係描述於表丨丨中。此 等結果證㈣二階段拋光去除哺制,其巾僅藉由降低 機械力使拋祕件逐漸地緩和,但在整健光過程中皆岸 用含有氧切的驗,產生較高的表面凹陷。 ^ 35 200413489 表11未處理 特徵結福 -10一10 50一50 100—100 銅線寬_氧化物線寬(μπι) 丨-… — · 平均表面凹陷(Α) 2915 2982 3227 表面凹陷標準偏差(Α) 321 633 587 實施例12 使用於本實施例的研磨劑為氧化砍,其係藉由與二氯 二甲基矽烧反應來進行表面改質。利用一漿液水溶液及3.5 5 Psis之向下力拋光SEMATECH 854圖案化晶圓90秒,該漿 液水溶液係由表面改質之氧化矽(U重量百分比)、過氧 化氫(5重量百分比)、甘胺酸(1重量百分比)及苯並三 唑(1毫莫耳)所組成。利用相同之漿液水溶液及丨psig 之向下力持續額外拋光120秒。目視檢查結果呈現出自晶 1〇圓清除大於95%之銅覆蓋層。表面凹陷係由跨過晶圓表面 之直徑的3個個別晶粒的數個特徵結構來測定。此等特徵 結構的平均表面凹陷值係描述於表12中。此㈣果證實以 又拋光去除銅覆蓋層’其巾僅藉由降低機械力使抛光 條件逐漸地緩和,但在整個拋光過程中皆應用含有氧化石夕 15的聚液’產生較高的表面凹陷。 36 200413489 表12 特徵結構 10—10 50—50 100—100 銅線寬度_氧化物線寬度(μιη) ¥^表面凹陷 265ΓΤ152 2824~ 表面凹陷標準偏差(人) 932 870 1265 使用於拋光實施例之漿液也靜態姓刻速率 實施例13 5 將包含過氧化氫(8重量百分比)、過氧化氫(4重量 百分比)、甘胺酸(1重量百分比)及苯並三唑(1毫莫耳) 之pH 5的漿液(400毫升)倒入玻璃皿(30x22X6 cm)中。 利用磁棒稅拌漿液並利用購自Thermolyne Company Nm>vaTM之可加熱攪拌板加熱。調整溫度且容許當以溫度計 10 (_l〇°C至l〇〇°C範圍)測量時平衡於23°C。停止攪拌漿液。 將200 mm毯覆式銅晶圓在購自Denver Instruments之預先 在TR-2102TM秤上預稱重,並置入漿液中。於維持2〇分鐘 後,自漿液移出晶圓,利用去離子水沖洗,利用異丙醇沖 洗,乾燥,並在相同秤上再稱重。藉由晶圓預稱重及再稱 15重之間的重量差測定重量損失。晶圓重量損失為140 mg, 其對應於250 A/min之銅厚度損失。 實施例14 將包含氧化矽(11重量百分比)、過氧化氫(4重量 百分比)、甘胺酸(1重量百分比)及苯並三唑(1毫莫耳) 37 200413489 之pH 5的漿液(400毫升)倒入玻璃皿(30x22x6 cm)中。 利用磁棒授:拌漿液並利用購自Thermolyne Company Nuova™之可加熱攪拌板加熱。調整溫度且容許當以溫度計 (-10°C至l〇〇°C範圍)測量時平衡於55°C。停止攪拌漿液。 5 將200 mm毯覆式銅晶圓在購自Denver Instruments之預先 在TR-2102TM秤上預稱重,並置入漿液中。於維持5分鐘 後,自漿液移出晶圓,利用去離子水沖洗,利用異丙醇沖 洗,乾燥,並在相同秤上再稱重。藉由晶圓預稱重及再稱 重之間的重量差測定重量損失。晶圓重量損失為1〇〇 mg, 10 其對應於710人/min之銅厚度損失。 實施例15 將包含過氧化氫(8重量百分比)、甘胺酸(1重量百 分比)及苯並三唑(3毫莫耳)之PH 5的漿液(400毫升) 倒入玻璃皿(30x22x6 cm)中。利用磁棒攪拌漿液並利用 15購自Thermolyne Company Nuova™之可加熱攪拌板加熱。 調整溫度且容許當以溫度計(_1〇。(3至1〇〇它範圍)測量時 平衡於23°c。停止攪拌漿液。將200 mm毯覆式銅晶圓在 購自Denver Instruments之預先在TR-2102TM秤上預稱重, 並置入漿液中。於維持20分鐘後,自漿液移出晶圓,利用 2〇去離子水沖洗,利用異丙醇沖洗,乾燥,並在相同秤上再 稱重。藉由晶圓預稱重及再稱重之間的重量差測定重量損 失。晶圓重量損失為10 mg,其對應於18 A/mini銅厚度 損失。 38 200413489 實施例16 將包含過氧化氫(8重量百分比)、甘胺酸(1重量百分比) 及苯並三唑(1毫莫耳)之pH 5的漿液(4〇〇毫升)倒入玻 璃皿( 30x22x6 cm)中。利用磁棒攪拌漿液並利用購自 5 Thermolyne Company NuovaTM之可加熱攪拌板加熱。調整 溫度且容許當以溫度計(-HTC至10(TC範圍)測量時平衡 於55°C。停止攪拌漿液。將200 mm毯覆式銅晶圓在購自 Denver Instruments之預先在TR-2102™秤上預稱重,並置入 漿液中。於維持5分鐘後,自漿液移出晶圓,利用去離子水 10沖洗,利用異丙醇沖洗,乾燥,並在相同秤上再稱重。藉 由晶圓預稱重及再稱重之間的重量差測定重量損失。晶圓 重篁損失為10 mg ’其對應於71人/以化之銅厚度損失。 【圖式^簡翠^ 明】 :•甸 15 【囷式之主要元件代表符號表】··無 39J Example 11 10 Sematech 854 patterned wafer was polished with a slurry solution and a downward force of 4.5 psig for 105 seconds. The slurry solution was composed of oxidized stone (η weight percent) and hydrogen peroxide (4 weight percent). , Glycine (1% by weight) and benzotriazole (1mmol). Using the same slurry aqueous solution and a downward force of 1 psig, the polishing was continued for another 90 seconds. The results of the visual inspection showed that more than 95% of the copper coating was removed from the wafer. Surface_ is determined from several characteristic structures of 3 individual grains across the diameter of the wafer surface. The average surface depression values of these characteristic structures are described in Table 丨 丨. These results show that the two-stage polishing removes feeding, and the towel gradually relaxes only by reducing the mechanical force. However, in the process of health light, the test containing oxygen cutting is used to produce a high surface depression. . ^ 35 200413489 Table 11 Unprocessed Features Jiefu-10 ~ 10 50 ~ 50 100-100 Copper Wire Width_Oxide Line Width (μπι) 丨-… — · Average Surface Depression (Α) 2915 2982 3227 Standard Deviation of Surface Depression ( A) 321 633 587 Example 12 The abrasive used in this example is oxidized chopping, which is surface modified by reaction with dichlorodimethylsilicon. Polish a SEMATECH 854 patterned wafer with a slurry solution and 3.5 5 Psis downward force for 90 seconds. The slurry solution is a surface modified silicon oxide (U weight percentage), hydrogen peroxide (5 weight percentage), glycine Acid (1 weight percent) and benzotriazole (1 mmol). Using the same slurry solution and downward force of psig for an additional 120 seconds. The results of visual inspection showed that more than 95% of the copper coating was removed from the crystal 10 circle. Surface depressions are determined from several characteristic structures of three individual grains across the diameter of the wafer surface. The average surface depression values of these characteristic structures are described in Table 12. This result confirms that the copper cover layer is removed by polishing again. Its towel only gradually reduces the polishing conditions by reducing the mechanical force, but a polymer solution containing oxidized stone 15 is used throughout the polishing process to produce a higher surface depression. . 36 200413489 Table 12 Characteristic structure 10—10 50—50 100—100 Copper wire width_oxide line width (μιη) ¥ ^ Surface depression 265ΓΤ152 2824 ~ Standard deviation of surface depression (person) 932 870 1265 Used in the slurry of the polishing example Also the static rate of Example 13 5 will include the pH of hydrogen peroxide (8 weight percent), hydrogen peroxide (4 weight percent), glycine (1 weight percent) and benzotriazole (1 mmol) 5 of the slurry (400 ml) was poured into a glass dish (30x22X6 cm). The slurry was stirred with a magnetic rod and heated with a heatable stir plate purchased from Thermolyne Company Nm > vaTM. The temperature was adjusted and allowed to equilibrate at 23 ° C when measured with a thermometer 10 (range -100 ° C to 100 ° C). Stop stirring the slurry. A 200 mm blanket copper wafer was pre-weighed on a TR-2102TM scale previously purchased from Denver Instruments and placed into the slurry. After maintaining for 20 minutes, the wafer was removed from the slurry, rinsed with deionized water, rinsed with isopropanol, dried, and weighed again on the same scale. The weight loss was determined by the weight difference between wafer pre-weighing and reweighing. Wafer weight loss was 140 mg, which corresponds to a copper thickness loss of 250 A / min. Example 14 A slurry of pH 5 (400 containing silicon oxide (11% by weight), hydrogen peroxide (4% by weight), glycine (1% by weight), and benzotriazole (1mmol) was used. Ml) into a glass dish (30x22x6 cm). The slurry was transferred using a magnetic bar and heated using a heatable stir plate purchased from Thermolyne Company Nuova ™. The temperature is adjusted and allowed to equilibrate at 55 ° C when measured with a thermometer (range -10 ° C to 100 ° C). Stop stirring the slurry. 5 200 mm blanket copper wafers were pre-weighed on a TR-2102TM scale previously purchased from Denver Instruments and placed into the slurry. After 5 minutes, the wafer was removed from the slurry, rinsed with deionized water, rinsed with isopropanol, dried, and weighed again on the same scale. Weight loss is determined by the weight difference between wafer pre-weighing and reweighing. Wafer weight loss was 100 mg, 10 which corresponds to a copper thickness loss of 710 persons / min. Example 15 A slurry (400 ml) of hydrogen peroxide (8% by weight), glycine (1% by weight), and benzotriazole (3 millimoles) at pH 5 was poured into a glass dish (30x22x6 cm) in. The slurry was agitated with a magnetic bar and heated using a heatable stir plate purchased from Thermolyne Company Nuova ™. The temperature was adjusted and allowed to equilibrate at 23 ° C when measured with a thermometer (-10. (Range from 3 to 100). Stop stirring the slurry. 200 mm blanket-coated copper wafers were purchased from Denver Instruments in advance at TR Pre-weighed on the -2102TM scale and placed in the slurry. After maintaining for 20 minutes, remove the wafer from the slurry, rinse with 20 deionized water, rinse with isopropanol, dry, and weigh again on the same scale Weight loss is determined by the weight difference between wafer pre-weighing and re-weighing. Wafer weight loss is 10 mg, which corresponds to 18 A / mini copper thickness loss. 38 200413489 Example 16 will include hydrogen peroxide (8% by weight), glycine (1% by weight) and benzotriazole (1 mmol) at pH 5 (400 ml) were poured into a glass dish (30x22x6 cm). Stir with a magnetic rod The slurry was heated using a heatable stir plate purchased from 5 Thermolyne Company NuovaTM. The temperature was adjusted and allowed to equilibrate at 55 ° C when measured with a thermometer (-HTC to 10 (TC range). Stop stirring the slurry. Cover the 200 mm blanket Copper wafers are pre-purchased from Denver Instruments Pre-weighed on the TR-2102 ™ scale and placed in the slurry. After maintaining for 5 minutes, remove the wafer from the slurry, rinse with deionized water 10, rinse with isopropanol, dry, and weigh again on the same scale Weight. The weight loss was determined by the weight difference between the wafer pre-weighing and re-weighing. The wafer weight loss was 10 mg 'which corresponds to a copper thickness loss of 71 people per liter. [Figure ^ Jiancui ^ Ming]: • Dian 15 [List of Symbols for the Main Components of 囷] ·· 39

Claims (1)

200413489 拾、申請專利範圍: 1 . 一種用於自基板去除金屬之漿液系統,包含: (a)第一漿液,其包含研磨劑且可供部分地自該 基板去除該金屬;以及 5 (b)第二漿液,其可供進一步地自該基板去除該 金屬, 其中該第一漿液之該研磨劑濃度高於該第二漿液。 2.如申請專利範圍第1項之漿液系統,其中該金屬係選 自於銅、鈕、二氧化矽或其混合物。 10 3.如申請專利範圍第1項之漿液系統,其中該金屬為銅。 4. 如申請專利範圍第1項之漿液系統,其中該第二漿液 不含研磨劑。 5. 如申請專利範圍第1項之漿液系統,其中該研磨劑係 選自於氧化铭、氧化鈦、氧化錯、氧化鍺、氧化石夕、 15 氧化鈽或其混合物。200413489 Scope of patent application: 1. A slurry system for removing metal from a substrate, comprising: (a) a first slurry containing an abrasive and capable of partially removing the metal from the substrate; and 5 (b) A second slurry for further removing the metal from the substrate, wherein the abrasive concentration of the first slurry is higher than the second slurry. 2. The slurry system according to item 1 of the patent application scope, wherein the metal is selected from copper, button, silicon dioxide or a mixture thereof. 10 3. The slurry system according to item 1 of the patent application scope, wherein the metal is copper. 4. The slurry system according to item 1 of the patent application scope, wherein the second slurry contains no abrasive. 5. The slurry system according to item 1 of the patent application scope, wherein the abrasive is selected from the group consisting of oxide, titanium oxide, oxide, germanium oxide, stone oxide, 15 hafnium oxide, or a mixture thereof. 6. 如申請專利範圍第3項之漿液系統,其中該研磨劑為 氧化石夕。 7. 如申請專利範圍第4項之漿液系統,其中該研磨劑為 沈澱之氧化矽。 20 8.如申請專利範圍第1項之漿液系統,其中該研磨劑之 存在量,以該第一漿液為準,為0.1至30重量百分比。 9.如申請專利範圍第4項之漿液系統,其中該氧化矽具 有主要顆粒之聚集體,該主要顆粒的平均直徑為至少7 40 200413489 奈米,其中該聚集體的聚集體尺寸小於1微米,以及 羥基含量為至少7羥基/平分奈米。 10.如申請專利範圍第1項之漿液系統,其中該第一漿液 及第二漿液中至少一者進一步包含一氧化劑。 5 11.如申請專利範圍第8項之漿液系統,其中該氧化劑係 選自於無機及有機過-化合物、棚酸、氯酸、硝酸鹽、 硫酸鹽或其混合物。 12.如申請專利範圍第8項之漿液系統,其中該氧化劑係 選自於過氧化氫、脈-過氧化氫或其混合物。 10 13.如申請專利範圍第1項之漿液系統,其中該第一漿液 及第二漿液中至少一者進一步包含選自於錯合劑、抗 腐#劑、阻止化合物、多價陽離子螯合劑、稠化劑或 其混合物的物質。 14. 如申請專利範圍第1項之漿液系統,其中該第一漿液 15 及第二漿液中至少一者進一步包含選自於吡啶甲酸、 二吼啶甲酸、喳啉酸及其混合物之酸。 15. 如申請專利範圍第1項之漿液系統,其中該第一漿液 及第二漿液中至少一者進一步包含一多價陽離子螯合 劑及一抗腐#劑。 20 16.如申請專利範圍第1項之漿液系統,其中該第一漿液 及第二漿液中至少一者進一步包含一多價陽離子螯合 劑、一抗腐#劑及一稠化劑。 17.如申請專利範圍第1項之漿液系統,其中該第一漿液 餘留殘餘金屬在該基板上。 肩 ·〇6. The slurry system as claimed in claim 3, wherein the abrasive is oxidized stone. 7. The slurry system according to item 4 of the patent application, wherein the abrasive is precipitated silica. 20 8. The slurry system according to item 1 of the scope of patent application, wherein the abrasive is present in an amount of 0.1 to 30% by weight based on the first slurry. 9. The slurry system according to item 4 of the patent application, wherein the silica has aggregates of primary particles, and the average diameter of the primary particles is at least 7 40 200413489 nanometers, wherein the size of the aggregates is less than 1 micron, And the hydroxyl content is at least 7 hydroxyl / division nanometer. 10. The slurry system according to item 1 of the patent application scope, wherein at least one of the first slurry and the second slurry further comprises an oxidant. 5 11. The slurry system according to item 8 of the application, wherein the oxidant is selected from the group consisting of inorganic and organic per-compounds, shed acids, chloric acids, nitrates, sulfates, or mixtures thereof. 12. The slurry system according to claim 8 in which the oxidant is selected from the group consisting of hydrogen peroxide, vein-hydrogen peroxide, or a mixture thereof. 10 13. The slurry system according to item 1 of the patent application scope, wherein at least one of the first slurry and the second slurry further comprises a compound selected from a complexing agent, an anticorrosive agent, a blocking compound, a polyvalent cation chelating agent, and a thickener. Substance or mixture of substances. 14. The slurry system according to item 1 of the patent application scope, wherein at least one of the first slurry 15 and the second slurry further comprises an acid selected from the group consisting of picolinic acid, aramidic acid, gadolinic acid and mixtures thereof. 15. The slurry system according to item 1 of the patent application scope, wherein at least one of the first slurry and the second slurry further comprises a polyvalent cation chelating agent and an anticorrosive agent. 20 16. The slurry system according to item 1 of the patent application scope, wherein at least one of the first slurry and the second slurry further comprises a polyvalent cation chelating agent, an anticorrosive agent, and a thickening agent. 17. The slurry system of claim 1 in the patent application scope, wherein the first slurry has residual metal left on the substrate. Shoulder m 41 200413489 5 10 15 20 18. 如申請專利範圍第3項之漿液系統,其中該第一漿液 餘留殘餘銅在該基板上。 19. 如申請專利範圍第17項之漿液系統,其中該第二漿液 至少部分地自該基板去除殘餘金屬。 20. 如申請專利範圍第18項之漿液系統,其中該第二漿液 至少部分地自該基板去除殘餘銅。 21. —種去除銅之方法,包含下述步驟: (a) 將包含一研磨劑之第一槳液施用至一基板上; (b) 於該基板上施用第二漿液; 其中該第一漿液的該研磨劑濃度高於該第二漿液。 22. 如申請專利範圍第21項之方法,其中該第一漿液自該 基板去除一部分銅,並餘留殘餘銅在該基板上。 23. 如申請專利範圍第21項之方法,其中該第二漿液至少 部分地自該基板去除該殘餘銅。 24. —種用於拋光微電子基板之方法,包含: (a) 利用第一漿液及拋光墊進行第一拋光,其中 該第一漿液包含研磨劑;以及 (b) 利用第二漿液及拋光墊進行第二拋光, 其中該第一漿液的該研磨劑濃度高於該第二漿液。 25. 如申請專利範圍第24項之方法,其中該第一拋光提供 部分地自該基板去除金屬,並餘留殘餘部分之金屬在m 41 200413489 5 10 15 20 18. The slurry system according to item 3 of the patent application, wherein the first slurry has residual copper left on the substrate. 19. The slurry system of claim 17 in which the second slurry removes residual metal at least partially from the substrate. 20. The slurry system of claim 18, wherein the second slurry removes residual copper from the substrate at least partially. 21. A method for removing copper, comprising the following steps: (a) applying a first paddle liquid containing an abrasive to a substrate; (b) applying a second slurry on the substrate; wherein the first slurry The concentration of the abrasive is higher than the second slurry. 22. The method of claim 21, wherein the first slurry removes a portion of copper from the substrate and leaves a residual copper on the substrate. 23. The method of claim 21, wherein the second slurry removes the residual copper from the substrate at least partially. 24. A method for polishing a microelectronic substrate, comprising: (a) performing a first polishing using a first slurry and a polishing pad, wherein the first slurry includes an abrasive; and (b) using a second slurry and a polishing pad A second polishing is performed, wherein the abrasive concentration of the first slurry is higher than the second slurry. 25. The method of claim 24, wherein the first polishing provides a partial removal of metal from the substrate and leaves a residual portion of the metal in the ·〇· 〇 康 該基板上。 26.如申請專利範圍第25項之方法,其中該第二拋光提供 至少部分地自該基板去除該殘餘部分之金屬。 42 200413489 27. 如申請專利範圍第25項之方法,其中該金屬係選自於 銅、组及二氧化矽。 28. 如申請專利範圍第24項之方法,其中該第一拋光係在 施用該第二漿液之前完成。 5 29.如申請專利範圍第24項之方法,進一步包含下述步 驟:在完成該第一拋光後及開始該第二拋光之前,清 洗該基板。Kang on the substrate. 26. The method of claim 25, wherein the second polishing provides removal of the residual metal at least partially from the substrate. 42 200413489 27. The method of claim 25, wherein the metal is selected from the group consisting of copper, group, and silicon dioxide. 28. The method of claim 24, wherein the first polishing is completed before the second slurry is applied. 5 29. The method of claim 24, further comprising the steps of: cleaning the substrate after completing the first polishing and before starting the second polishing. ΛΛ 參 43 200413489 柒、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件代表符號簡單說明:無 扬J、本案若有化學式時,請揭示最能顯示發明特徵的化學式:Reference 43 200413489 柒 Designated representative map: (1) The designated representative map in this case is: None (II) The component representative symbols of this representative map are simply explained: Wu Yang J. If there is a chemical formula in this case, please disclose the one that best shows the characteristics of the invention Chemical formula:
TW092121396A 2002-08-05 2003-08-05 Process for reducing dishing and erosion during chemical mechanical planarization TW200413489A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40110902P 2002-08-05 2002-08-05
US10/627,775 US20040077295A1 (en) 2002-08-05 2003-07-28 Process for reducing dishing and erosion during chemical mechanical planarization

Publications (1)

Publication Number Publication Date
TW200413489A true TW200413489A (en) 2004-08-01

Family

ID=31498656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092121396A TW200413489A (en) 2002-08-05 2003-08-05 Process for reducing dishing and erosion during chemical mechanical planarization

Country Status (8)

Country Link
US (2) US20040077295A1 (en)
EP (1) EP1543084A2 (en)
JP (1) JP2006511931A (en)
KR (1) KR20050029726A (en)
CN (1) CN100412153C (en)
AU (1) AU2003257147A1 (en)
TW (1) TW200413489A (en)
WO (1) WO2004013242A2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279119B2 (en) * 2001-06-14 2007-10-09 Ppg Industries Ohio, Inc. Silica and silica-based slurry
JP3692067B2 (en) * 2001-11-30 2005-09-07 株式会社東芝 Polishing slurry for copper CMP and method of manufacturing semiconductor device using the same
JP4083502B2 (en) * 2002-08-19 2008-04-30 株式会社フジミインコーポレーテッド Polishing method and polishing composition used therefor
EP1477538B1 (en) * 2003-05-12 2007-07-25 JSR Corporation Chemical mechanical polishing agent kit and chemical mechanical polishing method using the same
JP4649871B2 (en) * 2003-05-12 2011-03-16 Jsr株式会社 Chemical mechanical polishing method using chemical mechanical polishing kit
US7153335B2 (en) * 2003-10-10 2006-12-26 Dupont Air Products Nanomaterials Llc Tunable composition and method for chemical-mechanical planarization with aspartic acid/tolyltriazole
JP2005340328A (en) * 2004-05-25 2005-12-08 Fujitsu Ltd Method of manufacturing semiconductor device
KR100672940B1 (en) * 2004-08-03 2007-01-24 삼성전자주식회사 Metal slurry for cmp and metal cmp method using the same
US20060124026A1 (en) * 2004-12-10 2006-06-15 3M Innovative Properties Company Polishing solutions
US7538035B2 (en) * 2005-03-18 2009-05-26 Hitachi Global Storage Technologies Netherlands B.V. Lapping of gold pads in a liquid medium for work hardening the surface of the pads
KR101126124B1 (en) 2005-05-30 2012-03-30 주식회사 동진쎄미켐 Cerium Oxide Chemical Mechanical Polishing Slurry Composition that enhanced Polishing Non-uniformity
US7435162B2 (en) * 2005-10-24 2008-10-14 3M Innovative Properties Company Polishing fluids and methods for CMP
US7265055B2 (en) * 2005-10-26 2007-09-04 Cabot Microelectronics Corporation CMP of copper/ruthenium substrates
US20070179072A1 (en) * 2006-01-30 2007-08-02 Rao Madhukar B Cleaning formulations
US8551202B2 (en) * 2006-03-23 2013-10-08 Cabot Microelectronics Corporation Iodate-containing chemical-mechanical polishing compositions and methods
US7772128B2 (en) * 2006-06-09 2010-08-10 Lam Research Corporation Semiconductor system with surface modification
US9058975B2 (en) * 2006-06-09 2015-06-16 Lam Research Corporation Cleaning solution formulations for substrates
US20080149591A1 (en) * 2006-12-21 2008-06-26 Junaid Ahmed Siddiqui Method and slurry for reducing corrosion on tungsten during chemical mechanical polishing
US8541310B2 (en) * 2007-05-04 2013-09-24 Cabot Microelectronics Corporation CMP compositions containing a soluble peroxometalate complex and methods of use thereof
US8008202B2 (en) * 2007-08-01 2011-08-30 Cabot Microelectronics Corporation Ruthenium CMP compositions and methods
US20090056231A1 (en) * 2007-08-28 2009-03-05 Daniela White Copper CMP composition containing ionic polyelectrolyte and method
US7915071B2 (en) * 2007-08-30 2011-03-29 Dupont Air Products Nanomaterials, Llc Method for chemical mechanical planarization of chalcogenide materials
US7803711B2 (en) * 2007-09-18 2010-09-28 Cabot Microelectronics Corporation Low pH barrier slurry based on titanium dioxide
US20090090696A1 (en) * 2007-10-08 2009-04-09 Cabot Microelectronics Corporation Slurries for polishing oxide and nitride with high removal rates
US20090215266A1 (en) * 2008-02-22 2009-08-27 Thomas Terence M Polishing Copper-Containing patterned wafers
US8697576B2 (en) * 2009-09-16 2014-04-15 Cabot Microelectronics Corporation Composition and method for polishing polysilicon
KR101396232B1 (en) * 2010-02-05 2014-05-19 한양대학교 산학협력단 Slurry for polishing phase change material and method for patterning polishing phase change material using the same
DE102010010885B4 (en) * 2010-03-10 2017-06-08 Siltronic Ag Method for polishing a semiconductor wafer
JP5877940B2 (en) * 2010-04-08 2016-03-08 株式会社フジミインコーポレーテッド Method for polishing a wafer with copper and silicon exposed on the surface
US9040473B1 (en) 2010-07-21 2015-05-26 WD Media, LLC Low foam media cleaning detergent with nonionic surfactants
WO2012099845A2 (en) * 2011-01-21 2012-07-26 Cabot Microelectronics Corporation Silicon polishing compositions with improved psd performance
KR101630218B1 (en) 2011-06-30 2016-06-14 생-고뱅 어브레이시브즈, 인코포레이티드 Coated abrasive aggregates and products containing same
US20140134778A1 (en) * 2011-08-09 2014-05-15 Basf Se Aqueous alkaline compositions and method for treating the surface of silicon substrates
US9097994B2 (en) * 2012-01-27 2015-08-04 Sematech, Inc. Abrasive-free planarization for EUV mask substrates
TWI573864B (en) * 2012-03-14 2017-03-11 卡博特微電子公司 Cmp compositions selective for oxide and nitride with high removal rate and low defectivity
US9029308B1 (en) 2012-03-28 2015-05-12 WD Media, LLC Low foam media cleaning detergent
US9005999B2 (en) 2012-06-30 2015-04-14 Applied Materials, Inc. Temperature control of chemical mechanical polishing
CN102786879B (en) * 2012-07-17 2014-04-23 清华大学 Barium titanate chemico-mechanical polishing aqueous composition and its application
SG11201502768UA (en) * 2012-11-02 2015-05-28 Fujimi Inc Polishing composition
SG11201509209VA (en) * 2013-05-15 2015-12-30 Basf Se Chemical-mechanical polishing compositions comprising polyethylene imine
US9227294B2 (en) * 2013-12-31 2016-01-05 Taiwan Semiconductor Manufacturing Company Ltd. Apparatus and method for chemical mechanical polishing
US10570313B2 (en) * 2015-02-12 2020-02-25 Versum Materials Us, Llc Dishing reducing in tungsten chemical mechanical polishing
US10636673B2 (en) * 2017-09-28 2020-04-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming semiconductor device structure
US10676647B1 (en) 2018-12-31 2020-06-09 Cabot Microelectronics Corporation Composition for tungsten CMP
KR20210018607A (en) * 2019-08-06 2021-02-18 삼성디스플레이 주식회사 Polishing slurry, method for manufacturing a display device using the same and disple device
KR20210076571A (en) * 2019-12-16 2021-06-24 주식회사 케이씨텍 Slurry composition for sti process

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US94593A (en) * 1869-09-07 John h
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing
US5571373A (en) * 1994-05-18 1996-11-05 Memc Electronic Materials, Inc. Method of rough polishing semiconductor wafers to reduce surface roughness
US5720551A (en) * 1994-10-28 1998-02-24 Shechter; Tal Forming emulsions
MY133700A (en) * 1996-05-15 2007-11-30 Kobe Steel Ltd Polishing fluid composition and polishing method
US6068787A (en) * 1996-11-26 2000-05-30 Cabot Corporation Composition and slurry useful for metal CMP
US5985748A (en) * 1997-12-01 1999-11-16 Motorola, Inc. Method of making a semiconductor device using chemical-mechanical polishing having a combination-step process
US6217416B1 (en) * 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
FR2785614B1 (en) * 1998-11-09 2001-01-26 Clariant France Sa NOVEL SELECTIVE MECHANICAL CHEMICAL POLISHING BETWEEN A SILICON OXIDE LAYER AND A SILICON NITRIDE LAYER
US6083840A (en) * 1998-11-25 2000-07-04 Arch Specialty Chemicals, Inc. Slurry compositions and method for the chemical-mechanical polishing of copper and copper alloys
JP3206654B2 (en) * 1998-12-03 2001-09-10 日本電気株式会社 Method for manufacturing semiconductor device
US6555466B1 (en) * 1999-03-29 2003-04-29 Speedfam Corporation Two-step chemical-mechanical planarization for damascene structures on semiconductor wafers
JP4264781B2 (en) * 1999-09-20 2009-05-20 株式会社フジミインコーポレーテッド Polishing composition and polishing method
US6368955B1 (en) * 1999-11-22 2002-04-09 Lucent Technologies, Inc. Method of polishing semiconductor structures using a two-step chemical mechanical planarization with slurry particles having different particle bulk densities
US6451697B1 (en) * 2000-04-06 2002-09-17 Applied Materials, Inc. Method for abrasive-free metal CMP in passivation domain
US6409781B1 (en) * 2000-05-01 2002-06-25 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
JP2002155268A (en) * 2000-11-20 2002-05-28 Toshiba Corp Slurry for chemical and mechanical polishing and method for producing semiconductor device
US20020155795A1 (en) * 2001-04-24 2002-10-24 Mark Ferra Optical endpoint detection for buff module on CMP tool
US20030094593A1 (en) * 2001-06-14 2003-05-22 Hellring Stuart D. Silica and a silica-based slurry
US6800218B2 (en) * 2001-08-23 2004-10-05 Advanced Technology Materials, Inc. Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same

Also Published As

Publication number Publication date
CN1675327A (en) 2005-09-28
WO2004013242A3 (en) 2004-06-03
AU2003257147A8 (en) 2004-02-23
US20080090500A1 (en) 2008-04-17
AU2003257147A1 (en) 2004-02-23
KR20050029726A (en) 2005-03-28
US20040077295A1 (en) 2004-04-22
CN100412153C (en) 2008-08-20
WO2004013242A2 (en) 2004-02-12
EP1543084A2 (en) 2005-06-22
JP2006511931A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
TW200413489A (en) Process for reducing dishing and erosion during chemical mechanical planarization
JP5539934B2 (en) Chemical mechanical polishing slurry useful for copper substrate
EP1098948B1 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrate
TW419714B (en) Chemical mechanical polishing slurry useful for copper substrates
EP1090083B1 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrates
EP1218464B1 (en) Chemical mechanical polishing systems and methods for their use
US6126853A (en) Chemical mechanical polishing slurry useful for copper substrates
EP2357059B1 (en) Method for chemical mechanical planarization of a tungsten-containing substrate
TWI286157B (en) Bicine/tricine containing composition and method for chemical-mechanical planarization
JP2002519471A5 (en)
TW200831654A (en) Compositions for chemical mechanical planarization of copper