TW200412616A - Exposure device, exposure method, method of making devices, measuring method and measuring device - Google Patents

Exposure device, exposure method, method of making devices, measuring method and measuring device Download PDF

Info

Publication number
TW200412616A
TW200412616A TW092103885A TW92103885A TW200412616A TW 200412616 A TW200412616 A TW 200412616A TW 092103885 A TW092103885 A TW 092103885A TW 92103885 A TW92103885 A TW 92103885A TW 200412616 A TW200412616 A TW 200412616A
Authority
TW
Taiwan
Prior art keywords
exposure
laser beam
laser
optical
optical characteristic
Prior art date
Application number
TW092103885A
Other languages
Chinese (zh)
Inventor
Kiyoshi Motegi
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003001648A external-priority patent/JP2003282430A/en
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW200412616A publication Critical patent/TW200412616A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Abstract

A laser optical characteristic measuring device (16c, 16e) receives a laser beam LB generated by a laser resonant (16a) and measures the optical characteristic of the laser beam to output information related to the optical characteristic. During the exposure, a main control device (50) controls a multiplication energy (an exposure amount) of the laser beam provided to a wafer according to aforementioned information, so as to adjust the exposure amount on the wafer. Therefore, the exposure amount on the wafer can be adjusted according to the optical characteristic. As a result, even though the optical characteristic of the optical laser varies, the exposure amount is not affected, so that a pattern on a mask can be accurately and excellently transferred onto the wafer.

Description

200412616 玖、發明說明 (發明。說明應敘明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡 卓曰兌明) =θ 發明所屬之技術頜:¾ 本發明7H有關於一*種曝光裝置,曝光方法,元件製造方 法以及測里方法與測量裝置’且特別是有關於在使用微影 製程來製造半導體元件(例如積體電路)、液晶顯示元件、 薄S旲祕頭與其他微兀件等時所使用的一種曝光裝置與曝光 方法’使用此曝光裝置之元件製造方法,以及使用雷射光 束來測量被偵測光學系統的光學特性之測量方法與測量裝 置。 先前技術 習知技術中,運用各種不同的曝光裝置在用來製造微 元件之微影製程中。近年來,從產能的觀點來看,步進與 重複(step and repeat)方式的縮小投影曝光裝置(換言之, 步進式),以及步進與掃描方式(step and scan)方式之掃描 式投影曝光裝置(稱之爲掃描器或稱爲掃描步進機)等等之 逐次移動式投影曝光裝置做爲主要使用的曝光裝置。 近年來積體電路集積度的提升,微元件的製造上更是 要求解析度的提升。對此要求,在上述的步進機中,也依 序將曝光光束的波長(曝光波長)加以短波長化,如同水銀 燈之g線、I線、KrF準分子雷射光、ArF準分子雷射光等 一般。今後在步進機等之投影曝光裝置中也可以具有在紫 外線領域之振盪波長的任一種光源。例如,利用非線性光 10918pif.doc/008 6 200412616 學結晶之非線性光學現象的光源,也可以被使用。 準分子雷射是利用雷射介質(氣體)中的電氣放電,產 生脈衝發光的雷射。一般準分子雷射之雷射光波長光譜線 寬爲5〇Opm (5χ10_1()公尺)左右,但是在當作半導體曝光裝 置之光源時,爲了要抑止搭載在曝光裝置中的投影光學系 統(投影透鏡)之色差,此光譜線寬,FWHM(半値全幅full width half maximum)必須縮減到lpm以下(窄帶寬化)。波 長的窄帶寬化可以單獨地使用光學棱鏡、Fary_per〇t標準 具(etalon)、光柵(grating)等的波長選擇元件,或者從將該 些複數個元件加以組合使用。利用非線性光學現象的光 源’不使用上述的波長選擇兀件,也可以預料光譜線寬可 以變窄。 投影曝光裝置的解析度R可以曝光波長λ與投影光學 系統的數値孔徑(numerical aperture,Ν·Α·)表示成 R=k)/N.A·;其中,k是稱爲製程係數(process⑶价丨以叫 的比例常數。藉此,使用相同波長的光源,就必須要增大 投影光學系統的Ν·Α·値,以能夠形成更細微的圖案。 在此情形,雷射光的光譜線寬被要求要更窄帶寬彳匕。 在目前,就準分子雷射而言,在FWHM爲〇·3ρηι以下的 超窄帶寬化的雷射已經被開發出來。 在具備將此雷射光光譜線寬加以窄帶寬化機構的淮# 子雷射中,雷射光光譜特性會有長期或短期的變動。伊』女口, 光譜線寬會因爲波長選擇兀件的劣化,而有慢慢變寬@王見 象,充塡在雷射腔(laser chamber)之雷射氣體的氣體混合 10918pif.doc/008 7 200412616 比或充壓比的變化,或者是放電電壓變化產生短期的光譜 線寬變化等等。第9圖是使用FWMH來顯示出準分子雷 射光譜線寬的變化傾向。 由於此雷射光光譜特性的變化,曝光裝置的解析度特 性也產生差異。第10圖繪示在評估曝光裝置的解析度特 性時,一般使用之晶圓(基板)上所形成的感光劑圖案(稱爲 光阻像)的一個例子。第10圖繪示一光阻像的剖面圖,此 光阻像爲寬度wl的五條線(line)與寬度ws之間隙(space) 所構成的線與間隙圖案(line and space pattern,L/S pattern)。在此情形,原版圖案是工作比爲1 : 1之l/S圖 案時’在理想的解析能力下,wl=ws會成立。 當形成如第10圖之光阻像時,例如當感光部使用溶 解在顯影液之正光阻(positive resist)以及與此對應之正型 光罩(十字標記的組合)時,照射在晶圓上之光阻層的雷射 光之在晶圓表面的空間影像分布,會如第11圖所示一般, 呈現出在相當於線之部份爲「暗」而其餘部分爲「明」之 明暗對比。在第11圖所示之照度的空間分布中,線寬WL 與間隙寬WS相等之照度位階(ievei)爲Ethl。另一方面, 光阻具有如第12圖所示之照射的照度與顯影後的殘留率 之特性。照度在Eth以上,光阻會因爲顯影而完全溶解。 爲了讓如第10圖所示之光阻像爲wl=ws,必須控制 曝光照度Dosel,使其如第η圖所示之Ethi = Eth。此時, 在照度跨越第Π圖中的E(h|之位置,光阻溶解,而在的 以下的地方,光阻不會溶解。因此,最後形成如第10圖 8 10918pif.doc/008 200412616 所示之光阻像。 虽雷射光的光譜線寬比第11圖時的還寬時,以姐第η 圖相同的照度Dosel曝光後,對應於晶圓表面之空間影像 的光強度分布會如同第1 3圖所示一般。此乃因爲雷射光 的光譜線寬變寬,由曝光裝置之投影光學系統所具有的像 差(主要爲色像差)所造成之空間影像之明暗部的對比降低 之故。在此情形,在照度Eth之線寬爲WL,(<W1)且間隙寬 爲WS’(<ws)。因此,無法形成所要的圖案。 雖然如此的光譜特性之變化在以前就已經知道,但是 與本來的光譜線寬來比,其變化幅度很小,故還不被認爲 會造成問題。然而,在最近之極窄帶寬化的雷射中,其變 化幅度對於投影光學系統之解析度性能的影響,是令人十 分在意的。另一方面,在利用非線性光學現象之雷射光源 也被預期會因與準分子雷射情形之變化傾向的差異,而引 起光譜線寬的變化。 此外,對於有希望做爲將來曝光光源的氟雷射(輸出 波長:257nm),一般階知道即使不使用將光譜線寬窄帶寬 化的波長選擇元件,也可以顯示出1pm以下的光譜線寬。 但是,其光譜線寬會因爲充塡在雷射管內的氣體(氟氣體 與氨氣等的混合氣體)的壓力或激發強度,造成光譜線寬 產生極大的變化。 再者,利用準分子雷射或非線性光學現象之雷射光源 等,藉由雷射光的中心波長與特定波長之偏移,也會與光 譜線寬變大的情形相同,在空間影像所對應之光強度分布 10918pif.doc/008 9 200412616 產生對比降低是眾所皆知的事實。 此等現象會使ic等的微電子元件的產率降低,並且 在1C等的微電子元件之量產線上,造成使用曝光裝置的 障礙。 發明內容 因此,本發明之第一目爲提供一種曝光裝置與曝光方 法,使得即使在雷射光束的光學特性產生變動,也不會受 到影響,並且可以將光罩上的圖案精確地且優異地轉移到 基板上。 本發明之第二目的係提出一種元件製造方法,其可以 達到改善微電子元件之生產性。 本發明之第三目的係提出一種測量方法與測量裝置, 使得即使在雷射光束的光學特性產生變動,也不會受到影 響’並且可以精確地且優異地測量被測光學系統的光學特 性。 爲達成上述與其他目的,本發明提出一種曝光裝置, 用以將雷射光束(LB)照射在光罩(R)上,並且經由一投影 光學系統(PL),將形成於光罩上的圖案轉移到基板(w)上。 曝光裝置包括:雷射裝置(16a),用以產生雷射光束;雷射 光學特性測量裝置(16c、16e),接收雷射光束並且測量雷 射光束之光學特性,再輸出與光學特性相關的資訊;以及 曝光量控制裝置(50),其依據前述資訊,控制提供給基板 上的雷射光束之乘積能量。 在本說明書中,雷射光束的光學特性爲光譜特性、同 10918pif.doc/008 10 200412616 調特性與波長特性等,並包含雷射光束的所有光學特性。 藉此,利用雷射光學特性測量裝置,接收雷射裝置所 產生的雷射光束,測量其光學特性,並且輸出與光學特性 相關的資訊。之後,利用曝光量控制裝置,依據資訊,控 制提供給基板上的雷射光束之乘積能量(基板的曝光量)。 因此,因爲依據雷射光束之特性,來調整基板的曝光量, 即使雷射光束的光學特性產生短期、暫時或長期的變動, 也不會受到影響,因而可以經由投影光學系統,將形成於 光罩上的圖案精確且優異地轉移到基板上。 在此情形下,當前述資訊爲雷射光束之光譜線寬大於 第一設定値時,曝光量控制裝置可以降低乘積能量。 在上述情形,當前述資訊爲雷射光束之光譜線寬比在 第一設定値以下的第二預定値還小時,曝光量控制裝置可 以增加乘積能量。在此,第二設定値可以是與第一設定値 相同的光譜線寬設定値,也可以比第一設定値小的光譜線 寬設定値。在前者的情形時,當光譜線寬與預定設定値(第 一設定値與第二設定値)不同時,必須利用曝光量控制裝 置改變提供給基板上的雷射光束之乘積能量。在後者的情 形時,只有光譜線寬在以第一設定値爲上限且以第二設定 値爲下限的預定範圍外時,才利用曝光量控制裝置改變提 供給基板上的雷射光束之乘積能量。 在上述各種情形中,當資訊爲該雷射光束之同調長度 比桌二設疋値短時’曝光量控制裝置可以降低乘積能量。 在上述情形中,當資訊爲雷射光束之同調長度比在第 10918pif.doc/008 11 200412616 二設定値以下的第四預定値還長時,曝光量控制裝置可以 增加該乘積能量。在此,第四設定値可以是與第H設定値 相同的同調長度的設定値,也可以比第三設定値大的同調j 長度設定値。在前者的情形時,當同調長度與預定設定値 (第三設定値與第四設定値)不同時,必須利用曝光量控制 裝置改變提供給基板上的雷射光束之乘積能量。在後者的 情形時’只有同調長度在以第四設定値爲上限且以第三設 定値爲下限的預定範圍外時,才利用曝光量控制裝置改變 提供給基板上的雷射光束之乘積能量。 在上述各種情形下,當資訊爲雷射光束之相對於中心 波長或重心波長之目標波長的偏移量大於第五設定値時, 曝光量控制裝置可以降低乘積能量。 在上述情形下,當前述資訊爲雷射光束之相對於中心 波長或重心波長之目標波長的偏移量比在第五設定値以下 的第六預定値還小,曝光量控制裝置可以增加乘積能量。 在此,第六設定値可以是與第五設定値相同的中心或重心 波長的偏移量的設定値,也可以比第五設定値小的中心或 重心波長的偏移量之設定値。在前者的情形時,當中心或 重心波長的偏移量與預定設定値(第五設定値與第六設定 値)不同時,必須利用曝光量控制裝置改變提供給基板上 的雷射光束之乘積能量。在後者的情形時,只有中心或重 心波長的偏移量在以第五設定値爲上限且以第六設定値爲 下限的預定範圍外時’才利用曝光量控制裝置改變提供給 基板上的雷射光束之乘積能量。 10918pif.doc/008 12 200412616 在上述的曝光裝置中,雷射光學特性測量裝置可以使 用Fary-Perot干涉分光計以及光柵分光器的至少其中之 一,並且可以包括光束監控機構(16c),用以檢測從雷射裝 置所輸出的雷射光束之光學特性。 在上述各種情形的曝光裝置中,雷射光學特性測量裝 置可以預定的時序,來測量雷射光束的光學特性,但是卻 不侷限於此。例如,雷射光學特性測量裝置可以接收雷射 光束並且經常地測量雷射光束之該光學特性,並且經常地 將有關於光學特性之資訊輸出到曝光量控制裝置。或者 是,雷射光學特性測量裝置可以接收雷射光束並且經常地 測量雷射光束之光學特性,其中當相對於光學特性的基準 値的變動量到達預定値時,將有關於光學特性之資訊輸出 到曝光量控制裝置。 在上述曝光裝置中’曝光量控制裝置可以依據雷射光 學特性測量裝置所輸出的資訊,監控光學特性的變動,並 且依據監控結果,進行乘積能量之控制。此外,曝光量控 制裝置也可以一預定間隔讀取雷射光學特性測量裝置所輸 出的資訊,以控制乘積能量。 在上述曝光裝置,曝光量控制裝置可以在曝光場域 內,以不均勻方式控制乘積能量。 在上述情形’曝光量控制裝置可以依據有關於投影光 學系統之像差資訊,控制乘積能量爲不均勻分布或程度。 其次,本發明更提出一種元件製造方法,其包括微影 製程。此微影製程可以使用上述所提及之曝光裝置,進行 10918pif.doc/008 13 200412616 曝光。 錯此,在微影製程中,利用上述所提及之曝光裝置, 進行曝光,即使雷射光的光學特性發生變動,也不會受到 影響’並且可以精確且優異地將圖案形成於基板上。因此, 微電子元件的產率可以改善,以可以使生產性改善。 本發明更提出一種曝光方法,其以雷射光束照射在光 卓上’並且經由投影光學系統,將形成於光罩上的圖案轉 移到基板上。此曝光方法包括:產生雷射光束;接收雷射 光束’以測量雷射光束之光學特性,並且輸出有關於光學 特性的資訊;以及依據前述資訊,控制提供給基板上之雷 射光束的乘積能量,以進行圖案之轉移。 藉此,接收產生的雷射光束並且測量其光學特性,再 輸出關於光學特性的資訊。之後,依據前述資訊,控制提 供給基板上之雷射光束的乘積能量(基板的曝光量),以進 行圖案之轉移。因此,因爲依據雷射光束的光學特性來調 整基板的曝光量,故即使雷射光束的光學特性產生短期、 暫時或長期的變動,也不會受到影響,因而可以經由投影 光學系統,將形成於光罩上的圖案精確且優異地轉移到基 板上。在此,雷射光束的光學特性的測量以及前述資訊的 輸出,可以在曝光之前先進行,但也可以在曝光中進行。 在上述的曝光方法中,當前述資訊爲雷射光束之光譜 線寬、以及相對於中心或重心波長的目標値的偏移量的至 少其中之一,並且分別大於預定値時,可以降低乘積能量。 此外’當則述資迅爲雷射光束之同g周長度’並且比預 10918pif.doc/008 14 200412616 定値還短時,可以降低乘積能量。 本發明更提出一種測量方法,用以將雷射光束照射在 被測光學系統,來測量被測光學系統之光學特性。此測量 方法包括:第一工程:用以接收雷射光束,以測量雷射光 束之光學特性,並且輸出關於雷射光束之光學特性;以及 第二工程,依據前述資訊,來修正被測光學系統的光學特 性的測量結果。 藉此,接收雷射光束,以測量雷射光束之光學特性, 並且輸出關於雷射光束之光學特性。並且依據前述資訊, 來修正被測光學系統的光學特性的測量結果。在此,關於 前述光學特性的資訊可以是雷射光束的光學特性,但是並 不侷限於此;例如,也可以是預先以實驗等所求得之光學 特性變動量所對應的被測光學系統的光學特性(像差等)的 變動量資訊等等。在前者的情形,依據與光學特性相關的 資訊,計算出光學特性變動量所對應之被測光學系統的變 動量,再將此計算結果做爲被測光學系統的光學特性的測 量結果修正量。在後者的情形時,輸出的結果做爲被測光 學系統的光學特性的測量結果修正量。不論是哪一個’依 據本發明的話,從被測光學系統的光學特性的計測結果’ 可以修正(減去)雷射光束之光學特性變動所導致的被測光 學系統的光學特性變動,而可獲得正確的被測光學系統的 光學特性。因此,即使雷射光束的光學特性產生變動,也 不會受到影響,並且可以精確且優異地測量被測光學系統 的光學特性。 10918pif.doc/008 15 200412616 在上述之測量方法中,第一工程所測量到的雷射光束 之光學特性可以是雷射光束之光譜特性、同調特性與波長 特性中的至少一個。 此外,本發明更提出一種測量裝置,用以將雷射光束 照射在被測光學系統,藉以測量被測光學系統之光學特 性。此測量裝置包括演算手段,其依據關於雷射光束之光 學特性之資訊,來修正被測光學系統之光學特性的測量結 果。 藉此,演算手段依據前述資訊,來修正被測光學系統 的光學特性的測量結果。在此,關於前述光學特性的資訊 可以是雷射光束的光學特性,但是並不侷限於此;例如, 也可以是預先以實驗等所求得之光學特性變動量所對應的 被測光學系統的光學特性(像差等)的變動量資訊等等。在 前者的情形,依據與光學特性相關的資訊,計算出光學特 性變動量所對應之被測光學系統的變動量,再將此計算結 果做爲被測光學系統的光學特性的測量結果修正量。在後 者的情形時,輸出的結果做爲被測光學系統的光學特性的 測量結果修正量。不論是哪一個’依據本發明的話’從被 測光學系統的光學特性的計測結果’可以修正(減去)雷射 光束之光學特性變動所導致的被測光學系統的光學特性變 動,而可獲得正確的被測光學系統的光學特性。因此’即 使雷射光束的光學特性產生變動,也不會受到影響,並且 可以精確且優異地測量被測光學系統的光學特性。 在此情形,如上述之測量裝置中’雷射光束之光學特 10918pif.doc/008 16 200412616 性可以是雷射光束之光譜特性、同調特性與波長特性中的 至少一個。 爲讓本發明之上述目的、特徵、和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: 實施方式 以下依據第1圖至第5圖來說明本發明的其中之一實 施例。 第1圖槪略繪示實施例之掃描式曝光裝置10。此掃描 式曝光裝置10爲使用雷射光源做爲曝光用光源的步進與 掃描方式之掃描式曝光裝置。 此掃描式曝光裝置10包括含雷射光源16之照射系統 12 ;十字標記載置台RST,用來保持被此照射系統所照射 且做爲罩幕之十字標記R,並且做爲可在預定掃描方向移 動的罩幕載置台;投影光學系統PL,將十字標記R上的 圖案投影到做爲基板的晶圓W上;XY平台14,保持晶圓 W,且在水平面(XY平面內)方向移動;以及上述構件的控 制系統等。 前述照射系統12包括雷射光源16 ;光束整形光學系 統18 ;能量粗調器20 ;光學積分器(optical integrator,如 複眼透鏡、內面式反射型積分器、或繞射光學元件等。第 1圖是使用複眼透鏡,所以以下稱複眼透鏡)22 照射系統 光圈板24 ;分光器(beam splitter)26 ;第一中繼透鏡(傳遞 透鏡,relay lens)28A ;第二中繼透鏡28B ;固定式標記擋 片(reticle blind)30A ;可動式標記擋片30B ;光路彎曲用 10918pif.doc/008 17 200412616 鏡片Μ ;以及聚焦透鏡32等。此外,在以下的敘述中, 構成照射光學系統12之雷射光源16以外的構成部分’適 當地統稱爲照射光學系統。 接著說明照射光學系統12的上述各個構成部分。做 爲雷射光源16的其中之一例子爲使用KrF準分子雷射(振 盪波長爲248nm)。在以下的敘述中,將雷射光源16稱爲 光源單元16。 此外,做爲雷射光源16的當然還可以用ArF準分子 雷射(振盪波長爲193nm)或F2雷射(振盪波長爲157nm)來 取代KrF準分子雷射。此外,也可以使用金屬蒸氣雷射或 YAG雷射,亦或使用半導體雷射之高調波產生裝置等之脈 衝光源。 如第2A圖所示,前述的光源單元16包括做爲雷射裝 置之雷射共振器16a;分光器16b,其配置在雷射共振器16a 所射出之雷射光束LB的光路上,且穿透率約爲97% ;半 反射鏡(half mirror)16g與光束監控機構16c,其依序配置 在分光器16b的反射光路上;能量監控器16h,配置在半 反射鏡16g的反射光路上;雷射控制器I6e,分別接收前 述光束監控器16c與能量監控器16h的輸出訊號;以及雷 射電源部16d等等,其利用雷射控制器I6e來控制電源電 壓等。如第2A圖所示,光源單元16的各個上述構成 (16a〜16h)均容置在一機殻(housing)17中。從雷射共振器 16a射出且穿過分光器16b之雷射光束LB,經由機殻17 的光穿透部,入射至照射光學系統中。 10918pif.doc/008 18 200412616 此外,雷射控制器16e以及雷射電源部16d的任何一 個或兩者等可以配置在機殼17外部。 前述的雷射共振器16a係由下列構件所構成:含放電 電極的準分子雷射管(excimer laser* tube,雷射腔室(laser chamber*)) 202 ;配置在準分子雷射管202後側(在第2A圖 爲圖面的左側)之全反射鏡片(後端鏡片,rear mirror);配 置在準分子雷射管202前側的低反射率鏡片(前端鏡片, front miiro;r)205 ;依序並列配置在準分子雷射管202與後 端鏡片205之間的固定Fabry-Perot型標準具(etalon)203 及可變傾角的Fabry-Perot etalon型標準具204等。 在此情形,藉由後端鏡片201與前端鏡片205,構成 雷射振盪用的共振器,其具備稍微提高同調(coherence)性 的效果。 此外,固定Fabry-Perot型標準具(以下稱標準具)2〇3 及標準具204構成窄帶寬化模組。更詳細地來說,標準具 203、204爲兩枚石央板’以預定的空隙(氣隙(air gap))隔 空且平行相對之物’並且做爲一種帶通濾波器來操作。標 準具203、204中的標準具203是做爲粗調之用,而標準 具204則用爲細調用。標準具203、204將雷射共振器16a 所發出的雷射光束LB縮減到自然振盪光譜寬度的約 1/1000至1/3〇00左右,之後再輸出雷射光束LB。此外, 藉由調整標準具204的傾角,雷射共振器〗6a所發出的雷 射光束LB的波長(中心波長)可以位移到預定範圍中。 此外,例如在第2A圖的雷射共振器16a中,將粗調 19 109l8pif.doc/008 200412616 用的標準具移除,可以做爲波長選擇元件之反射型繞射光 柵(gating)用來取代後端鏡片,並且可以將其傾斜地配置來 構成雷射共振器。在此情形,利用繞射光柵與前端鏡片2〇5 來構成共振器。此外,以繞射光柵與微調用標準具2〇4來 構成具有與上述同樣功能的窄帶寬化模組。在此情形,繞 射光柵是做爲設定波長時的粗調之用,而標準具204則做 爲微調之用。變更標準具204與繞射光柵中的任何一方的 話’可以使雷射共振器16a所發出的雷射光束LB的波長(振 盪波長)在預定範圍內產生變化。 此外’窄帶寬化模組也可以例如搭配稜鏡與繞射光柵 來(grating)構成。 前述能量監控器16h接收配置在被分光器16b反射的 反射光光路上的半反射鏡16g的反射光,並且將其光電轉 換訊號(光量訊號)做爲輸出訊號ES,輸出至雷射控制器 16e。能量監控器16h可以使用例如PIN型光二極體等之 光接收元件,其具有高響應頻率,以檢測出遠紫外線範圍 的脈衝發光。 如第2B圖所不,前述光束監控機構16c可使用 Fabry-Perot型干涉計,其包括依序在前述半反射鏡I6g的 反射光路上所配置的聚光透鏡64、準直透鏡(collimator lens)66、標準具(etalon)68、遙測透鏡(telemeter lens)70 以 及線感測器(line sensor)72等。 標準具68與前述相同,可使用將兩枚部分反射之反 射鏡(如石英板等),以間隔一預定空隙(氣隙air gaP)d,彼 10918pif.doc/008 20 200412616 此相對配置之物。當雷射光束LB入射至標準具68後,部 份反射面上的繞射光(惠更施原理(Hyugen’s principle)之二 次波)會在此氣隙d間來回反覆地反射與穿透。此時,僅 有滿足下面公式(1)的入射角Θ方向的光會穿透標準具68, 並增加強度。藉此,如第2C圖所示,便在遙測透鏡70的 焦平面上形成干涉條紋(邊緣圖案,fringe pattern)。此邊 緣圖案則被配置在遙測透鏡70的焦平面上的線感測器72 檢測出。 2ndcos0=mX (1) 其中,η爲氣隙d的折射率,m爲次數。 從上式(1)可知,假如η、d、m爲一定的話,波長不 同,則在焦平面上所形成的邊緣圖案也不相同。 第3圖是沿著第2C圖之A-A’線,以配置在遙測透鏡 70焦平面上之線感測器72所檢測出的光強度分布。在第 3圖中,橫軸爲焦平面上線感測器72之長邊方向的位置。 此外,在第3圖僅繪示特定的三個干涉條紋。在第3圖中, 符號ω表示相當於各光強度之波峰値的1/2部分。此寬度ω 與前述半値全幅(FWHM)是相同意義的關係。在本發明中, 兩者是呈現比例關係。亦即,滿足下列數式(2)。 FWHM = kco (2) 在第3圖中,對應各光強度分布波峰値之橫軸上的座 標位置,是依據中心波長來訂定的。換句話說,前述的邊 緣圖案爲對應入射光之中心波長與光譜線寬(FWHM)的圖 案。來自線感測器72之邊緣圖案的攝影訊號,則輸出至 10918pif.doc/008 21 200412616 雷射控制器16e。 前述雷射電源部16d包含高壓電源以及脈衝壓縮電路 (開關電路)等,其中脈衝壓縮電路使用此高壓電源,使準 分子雷射管202內部之放電電極(未繪出),以預定的放電 時序來放電。 前述雷射控制器16e包括以預定的訊號處理來對前述 邊緣圖案之攝影訊號與輸出訊號ES進行處理的影像處理 電路(包括AD轉換器與峰値保持電路等),以及用來型預 定演算的微電腦等等。雷射控制器16e利用對邊緣圖案的 攝影訊號施加預定的訊號處理,便可以獲得與輸入到光束 監控機構16c之入射光(雷射光束LB)光學特性的相關資 訊,例如中心波長(或重心波長)λ與光譜線寬(FWHM)之指 標的ω値等之資訊。 雷射控制器16e使用雷射光束LB的中心波長λ ’並依 據下列數式(3),來計算出相對於主控制裝置50所設定& 設定波長λ。的中心波長偏移量(波長偏移量)Δλ ° Δλ = |λ〇 - λ | (3) 此外,雷射控制器16e使用ω値,並依據下列數式(4) ’ 來計算出對應於光譜線寬基準値(例如起始光譜線寬ω())之· ω値變動量Δω。 Δλ = co〇 - co (4) 再者,雷射控制器16e使用上述Δλ與中心波長λ ’並 依據下列數式(5),來計算出雷射光束LB之同調長度L ’ 並且依據下列數式(6),來計算出與上述計算出的同調長度 10918pif.doc/008 22 200412616 L之同調長度基準値(例如起始同調長度LQ)之變動量AL。 L= λ2/ |Δλ| (5) AL = L〇 - L (6) 其次,在本實施例中,光源單元1 6中更配置構成前 述雷射共振器16a的標準具204(或光柵與標準具204,或 光柵與稜鏡)等之分光元件的驅動機構19(參考第2A圖)。 此驅動機構19依據前述之波長偏移量Δλ,被雷射控制器 16e所控制,使中心波長λ被控制在所期望的範圍內。但是, 使用驅動機構可調整的波長偏移Δλ範圍會受到限制,因此 產生超過此範圍的波長偏移量Δλ的可能性是不能否定的。 在本實施例中,當產生上述的波長偏移量Αλ時,便進行後 述的曝光量控制,以抑制因爲波長偏移而導致的圖案空間 像分布之對比降低現象。 此外,在一般曝光時,雷射控制器16e依據前述的能 量監控器16h的輸出訊號ES,依據檢測出的能量功率, 來進行對雷射電源部16d內之高壓電源的電源電壓之回饋 控制,使得雷射共振器16a所輸出之雷射光束LB每一脈 衝的能量,能對應於依據主控制裝置50控制資訊所給予 每一脈衝能量目標値。 此外,雷射控制器16e依據主控制裝置50之控制資 訊,利用控制對雷射電源部16d內之脈衝壓縮電路之觸發 訊號的施加時序或者施加間隔,來控制對於晶圓W上一 拍攝(shot)區域的曝光中脈衝數或脈衝振盪的反覆頻率。 此外,在光源單元16之機殻17內之分光器16b的照 10918pif.doc/008 23 200412616 射光學系統側,更配置快門(shutter)16f,以因應駐控制裝 置50之控制資訊,來遮蓋住雷射光束。 現在回到第1圖,前述的光束整形光學系統18係將 從準分子雷射16脈衝發光之雷射光束LB的剖面形狀整 型,使之有效率地入射到該雷射光束LB之光路後方所設 置的複眼透鏡22。例如以未繪於圖式之柱狀透鏡(cylinder lens)與光束擴散器(beam expander)等所構成。 能量粗條器20配置在光束整形光學系統18後方之雷 射光束LB的光路上。在此,將穿透率(約1-減光率)相異 的複數個(力例如6個)ND濾鏡(在第1圖中,其中的兩個 ND濾鏡以36A、36D表示)配置在旋轉板34的周圍。藉 由以驅動馬達38旋轉此旋轉板34,對於入射的雷射光束 LB之穿透率可以從100%以等比級數方式切換成複數個階 段。驅動馬達38係被後述的主控制裝置50所控制。 前述的複眼透鏡配置在能量粗調器20後方之雷射光 束LB的光路上。爲了能夠以均勻的照度照射十字標記r, 在其出射側的焦平面上形成由多數點光源所構成的面光 源’亦即二次光源。由此二次光源所射出的雷射光束,在 以下的敘述中稱之爲脈衝照射光L。 由圓板狀部才所構成的照射系統光圏板24係配置在 複眼透鏡22的出射面附近,亦即在本實施例中大致與照 射光學系統之目里面一致的出射側焦平面上。照射系統的光 圈24,以等角間隔,配置例如以一般圓形開口所構成的光 圈、由小圓形開口所構成之用來縮小同調因子(c〇herence 10918pif.doc/008 24 200412616 factoOo的光圈、輪帶狀照射用的輪帶狀光圏、以及用於 變形光源用,將複數個開口偏心配置的變形光圈(在第1 圖中僅繪示上述中的兩種光圈)等等。此照明系統光圈24 係利用被後述之主控制系統50所驅動的馬達等的驅動裝 置40來驅動轉動。藉此,任何一個光圈被選擇性地設定 在脈衝照射光IL的光路上。此外,用來替代光圈24或者 與光圈24 —起搭配使用,例如將包含在光學系統內交換 配置的複數個繞射光學元件;沿著照射光學系統之光軸的 可動稜鏡(圓錐稜鏡、多面體稜鏡等),以及可調伸縮(zoom) 光學系統中的至少其中之一的光學單元,配置在光源16 與光學積分器22之間。當光學積分器22爲複眼透鏡時, 改變其入射面上的照射光強度分布,而當光學積分器22 爲表面反射型積分器時,改變相對於入射面的入射角度範 圍等等;藉此,隨著在照明光學系統之瞳面上的照射光的 光量分布(二次光源的大小與形狀),亦即,照射條件的改 變,便可以抑制光亮損失。 反射率小且穿透率大的分光器26配置在照射系統光 圈板24後方的脈衝照射光IL的光路上。在分光器26後 方經過固定式標記擋片30A與可動式標記擋片30B,更配 置由第一中繼透鏡28A與第二中繼透鏡28B所構成的中 繼光學系統。 固定式標記擋片30A配置在些微失焦於相對十字標記 R之圖案面的共軛面的平面上,並且形成矩形開口,以規 定出十字標記R上的照射區域42R。此外,在此固定式標 10918pif.doc/008 25 200412616 記擋片30A附近,配置可動式檫記擋片3〇B,其具有在掃 fe方向之位置與莧度爲可變的開口部。在掃描曝光開始與 結束時,經由可動式標記擋片3〇B來更進一步限制照射區 域42R,藉以防止不需要的曝光。 彎曲反射鏡Μ配置在構成中繼光學系統的第二中繼 透鏡28Β後方的脈衝照射光IL的光路上,用以將通過第 一中繼h鏡28B的脈衝照射光,反射到十字標記r。聚 焦透鏡32配置在此反射鏡M後方之脈衝照射光IL的光路 上。 另一方面,被分光器20反射的脈衝照射光α,經過 聚光透鏡44 ’被由光電轉換元件所構成的整合感測器 (integrator SeriS〇r)46所接收。整合感測器46的光電轉換 訊號經由未繪出的峰値保持電路與A/D轉換器,被提供給 做爲輸出DS(數字/脈衝,digit/pulse)的主控制裝置50。整 合感測器46例如在紫外線區域具有敏感度,並且可以使 用具有高響應頻率之PIN型光二極體等,以檢測出光源單 元16的脈衝發光。此整合感測器46的輸出DS以及晶圓 W表面之脈衝照射光IL的照度(強度)間的相關係數(或相 關函數)則預先被求得,並且儲存於合倂在主控制裝置50 中的記憶體51。此外,前述的能量監控器16h的輸出ES 與整合感測器46的輸出DS間的相關係數(或相關函數)也 預先被求得,並且儲存記憶體51。 十字標記R載置於前述的十字標記載置台RST,透過 未繪出的真空卡盤(vacimm chuck),被吸附固定。十字標 10918pif.doc/008 26 200412616 記載置台RST可以在水平面(χγ平面)內做微小驅動,並 且利用十字標記載置台驅動部48,在掃描方向上以預定的 來回範圍(stroke range)被掃描。掃描中的十字標記載置台 位置,經由固定在十字標記載置台RST上的移動鏡52R, 被外邰的雷射干涉計54R量測。雷射干涉計54R的測量値 則供給主控制裝置50。此外,也可以將十字標記載置台RST 的端面做鏡面處理,以形成雷射干涉計54R的反射面(相 當於前述移動鏡52R的反射面)。 前述的投影光學系統PL可以例如是兩側遠心 (telecentric)的縮小光學系,其使用在Z軸方向具有共通光 軸AX之複數個透鏡元件所構成的折射光學系。此外,投 影光學系統PL的投影倍率δ爲例如1/4或1/5。因此,如 前所述,當以脈衝照射光IL照射十字標記R的照射區域 42R時,利用投影光學系統PL將在十字標記R上形成的 圖案,以投影倍率δ縮小的影像,則形成在表面塗上光阻 之晶圓W上的縫狀曝光區域(與照射區域42R共軛的區 域)。 前述ΧΥ平台14以晶圓載置台驅動部56,在ΧΥ平 面上,沿著掃描方向的Υ軸方向以及與此垂直的X軸方 向(在第1圖中維與圖面垂直的方向),以二維方式被驅動。 Ζ傾斜載置台(Z tilt stage)58搭載於ΧΥ平台14上,晶圓 W經由未繪出的晶圓保持器,以真空吸附等方式,保持於 此Z傾斜載置台58上。Z傾斜載置台58具有調整晶圓W 的Z方向位置(焦距位置)以及調整相對於XY平面之晶圓 10918pif.doc/008 27 200412616 傾斜角的功能。此外,XY平台;14的位置是經由固定在z 傾斜載置台58上的移動鏡52W,以外部的雷射干涉計54W 來進行量測,並且此雷射干涉計54W的測量値供給主控 制裝置50。此外,也可以將Z傾斜載置台58的端面做鏡 面處理,以形成雷射干涉計54W的反射面(相當於前述移 動鏡52W的反射面)。。 再者,雖然圖式上省略,如特開平7-176468號公報 等所揭露一般,在十字標記R的上方,具有CCD等之攝 影元件,並且配置以曝光波長的光(在本實施例中爲脈衝 照射光IL)做爲對準用照射光之影像處理方式的一對十字 標記對準顯微鏡。在此情形,該對十字標記對準顯微鏡是 以對稱於包含投影光學系統PL之光軸AX的YZ平面的配 置方式(左右對稱)來加以配置。此外,此對十字標記對準 顯微鏡爲可以在包含AX軸之XZ平面上,沿著X軸做往 復式移動的構造。 一般而言,該對十字標記對準顯微鏡係在十字標記R 搭載於十字標記載置台RST上的狀態,設定成可以分別觀 察配置在十字標記R的遮光帶外側的一對十字標記對準標 記。 在第1圖中,控制系統主要由主控制系統50所構成。 主控制系統50係由包含CPU(中央處理單元)、ROM(唯讀 記憶體)、RAM(隨機存取記億體)等之微電腦(或迷你電腦) 所構成,並且統一控制如十字標記R與晶圓W的同步掃 描、晶圓W的步進(stepping)以及曝光時序等,使得曝光 10918pif.doc/008 28 200412616 動作可以確實地進行。 具體而言,例如在掃描曝光時,主控制裝置50依據 雷射干涉計54R、54W之測量値’分別經由十字標記載置 台驅動部48與晶圓載置台驅動部56,分別控制十字標記 載置台RST與X載置台14之位置與速度,使得經由χγ 平台14,晶圓W以速度δ·νκ ’在相對於曝光區域42W之-Υ方向(或+Υ方向)被掃描的事件’能夠同步於十字標記R 經由十字標記載置台RST以速度乂&在+¥方向(或-Υ方向) 被掃描的事件。此外,在步進時,主控制裝置50依據雷 射干涉計54W的測量値,經由晶圓載置台驅動部56,控 制ΧΥ平台14的位置。 此外,如前所述,主控制裝置50利用供給控制資訊 給光源單元16,來控制光源單元的發光時序以及發光功率 等。此外,主控制裝置50分別經由馬達38與驅動裝置40 來控制能量粗調器20與照射系統光圈板24,並且同步於 載置台系統的動作資訊,來控制可動標記檔板30Β的開關 動作。在此實施例中,主控制裝置50具有曝光控制器與 載置台控制器的職責。此些控制器當然也可以與主控制器 50分開設置。 當以上述構成在製作曝光裝置時,除了曝光量的控制 方法,以與一般掃描/步進同樣的步驟來進行一連串的曝 光處理動作。以下,以曝光量的控制動作爲中心,進行曝 光裝置10之預定枚數的晶圓曝光時的動作,則是以第4 圖槪略繪示之主控制裝置50內CPU處理演算法的流程圖 10918pif.doc/008 29 200412616 來加以說明。 當由操作人員透過輸出入裝置62輸入曝光條件的設 定資訊(設定曝光量,亦即應照射於晶圓面上(成像面)上每 一點的雷射光束乘積能量(multiplication energy)之劑量, 或者包含曝光量的設定値)、依據其設定資訊做必要的設 定,並且交換十字標記、使用十字標記對準顯微鏡之十字 標記對準以及未繪出的晶圓對準系統的基線測量等的準備 作業以預定程序來進行時,第4圖的流程圖便開始。 首先,在步驟102,對未繪出的晶圓搬運系統指示晶 圓交換,並且以預定時序對光源單元16指示雷是光束LB 之測試發光。藉此,當以晶圓搬運系統來進行晶圓交換(當 Z傾斜載置台58上的晶圓保持器爲搭載時,單純地對晶 圓保持器做晶圓加載的動作)。對光源單元16之測試發光 指示係例如在晶圓交換中,當晶圓保持器上沒有晶圓時才 進行的。或者是,若快門16f關閉的話,晶圓保持器上無 論有無晶圓在,均可以進行。 利用上述之光源單元16的測試發光,雷射光束LB被 能量監控器16h與光束監控機構所接收。能量監控器的輸 出ES及前述邊緣圖案的攝影訊號則供給雷射控制器i6e。 之後,雷射控制器16e進行前述的各種運算,並且輸出其 運昇結果的資日只(包含①、Aco、L、AL、λ、Δλ等等之光學 特性資訊)。 接著在步驟1〇4中,讀取上述光學特性資訊,並儲存 到內部記憶體。 10918pif.doc/008 30 200412616 接著在步驟106,判斷光學特性資訊所包含的ω値是 否大於預先設定的第一設定値% (2ω。)。當此判斷爲肯定 時,便進入步驟Π0,並依據數式(7),計算出曝光量控制 標準値(乘積能量的控制目標値)Ε,並儲存於記憶體內的 一次記憶區域。 Ε = Ε〇·(1+α.Δω) (7) 在此,Ε。爲當ω値等於當作基準之ω値時的曝光 量。例如,工作比1 : 1解析極限附近的L/S圖案的光阻 像成爲工作比1 : 1的L/S圖案時的曝光量爲EQ(mJ/cm2)。 此時的ω値爲。在本實施例中,E。可以由操作員設定爲 定曝光量。此外,α爲正的係數,並預先由實驗來求得, 且儲存於記憶體51中。 此會在下文中詳述,例如,曝光量Dosel的時候,對 應於工作比1:1之預定線寬的L/S圖案之空間影像的光強 度分布,得到如第11圖所示之光強度分布。此時的雷射 光束LB的光譜線寬爲第9圖中的FWHM^SW。,並且依據 來自光束監控機構16c的邊緣圖案攝影訊號所計算出來的 ω値爲ω〇 〇 在此情形,做爲Ε。,光阻像的線寬WL與間隙寬WS 是相等的。亦即,將曝光量設定成使第11圖中的WL=WS。 換句話說,E〇=Dosel。 接著,例如因光源單元16內的波長選擇元件劣化等 所造成的光譜線寬變寬的結果,對應於上述L/S圖案之空 間影像的光強度分布,則如第5圖中以實線所示之光強度 10918pif.doc/008 31 200412616 分布一般加以變化。此時,從第5圖可以明白,對於光阻 完全溶解的照度Eth之光強度分布,線寬”1/<間隔寬度 WS,。此時,對於Dosel,線寬WL,=間隔寬度WS,成立時 爲照度Eth2。 在上述的狀態,一邊慢慢地改變曝光量,每次來求對 應其與空間影像之光強度分布,使到第5圖中以虛線所示 之Dose2爲止的曝光量降低,在照度Eth2下,則線寬WL二 間隔寬度WS。藉由上述說明,第5圖中以實線所繪示之 對應空間影像的光強度分布中, WL=WS之照度Em與光阻完全溶解的照度Eth(大致以光 阻的種類來決定的値)的差AEth,可以表示成光譜特f生的函 數。在此,Eth、Eth2爲ω〇、ω的一次函數,並可以表示成 Eth=q.co。,Eth2=q.co。在下面數式(8)中,q爲正的係婁女。 =ς·(ω-ω〇) 二 q.Aco (δ) 此外,在此情形下,Dosel、Dose2與ΔΕα之間,滿足 下面數式(9)。在數式(9)中,p爲正的係數。200412616 发明 Description of the invention (invention. The description should state: the technical field to which the invention belongs, the prior art, the content, the embodiments and the drawings are simple and clear) = θ The technical jaw to which the invention belongs: ¾ The invention 7H relates to a * An exposure device, an exposure method, a device manufacturing method, and a measuring method and a measuring device ', and more particularly, it relates to the use of a lithography process to manufacture semiconductor devices (such as integrated circuits), liquid crystal display devices, thin S An exposure device and exposure method used for other micro-parts, etc. 'A method for manufacturing a component using this exposure device, and a measurement method and a measurement device for measuring optical characteristics of a detected optical system using a laser beam. In the prior art, various exposure devices are used in the lithography process for manufacturing micro-devices. In recent years, from the viewpoint of productivity, the step-and-repeat method has been used to reduce the projection exposure device (in other words, the step-by-step method), and the step-and-scan method has been used for the step-and-scan method. Devices (called scanners or scanning steppers), etc., are successive exposure projection exposure devices, which are mainly used as exposure devices. In recent years, the integration of integrated circuits has increased, and the manufacturing of micro-components has required an increase in resolution. For this requirement, in the above-mentioned stepper, the wavelength of the exposure beam (exposure wavelength) is also shortened in order, such as the g-line, I-line, KrF excimer laser light, ArF excimer laser light, etc. of the mercury lamp. general. In the future, a projection exposure apparatus such as a stepper may also have any light source with an oscillation wavelength in the ultraviolet field. For example, a light source that uses the nonlinear optical phenomenon of non-linear light 10918pif.doc / 008 6 200412616 can be used. An excimer laser is a pulsed laser that uses electrical discharge in a laser medium (gas). Generally, the laser light wavelength spectrum line width of an excimer laser is about 50 Opm (5 × 10_1 () meters), but when used as a light source for a semiconductor exposure device, in order to suppress the projection optical system (projection) installed in the exposure device Lens), the spectral line width, FWHM (full width half maximum) must be reduced below lpm (narrow bandwidth). The narrowing of the wavelength can be performed by using a wavelength selection element such as an optical prism, a Fary_perot etalon, a grating, or the like alone, or a combination of these plural elements. The light source 'using a non-linear optical phenomenon does not use the aforementioned wavelength selection element, and it is expected that the spectral line width may be narrowed. The resolution R of the projection exposure device can be expressed by the exposure wavelength λ and the numerical aperture (N · A ·) of the projection optical system as R = k) / NA ·; where k is called the process coefficient (process price) It is called a proportional constant. Therefore, when using light sources with the same wavelength, it is necessary to increase the N · A · 値 of the projection optical system in order to form a finer pattern. In this case, the spectral line width of the laser light is required A narrower bandwidth is required. At present, as far as excimer lasers are concerned, ultra-narrow bandwidth lasers with FWHM of 0.3µm or less have been developed. It is now possible to narrow the bandwidth of this laser light spectral line化 机构 的 淮 # sub-laser, the spectral characteristics of the laser light may change in the long or short term. Yi ’s mouth, the spectral line width will gradually widen due to the deterioration of the wavelength selection element @ 王 见 象 , Gas mixture of laser gas filled in the laser chamber 10918pif.doc / 008 7 200412616 ratio or charge voltage ratio change, or short-term changes in spectral line width caused by changes in discharge voltage, etc. Figure 9 Is using FWMH to show The tendency of the molecular laser spectral line width to change. Due to the change in the spectral characteristics of the laser light, the resolution characteristics of the exposure device also differ. Figure 10 shows the wafers generally used when evaluating the resolution characteristics of the exposure device ( An example of a photoresist pattern (referred to as a photoresist image) formed on a substrate). Fig. 10 shows a cross-sectional view of a photoresist image. The photoresist image is formed by five lines of width wl and width ws. A line and space pattern (L / S pattern) formed by a gap. In this case, when the original pattern is an l / S pattern with a working ratio of 1: 1, 'under the ideal resolution, wl = ws will be established. When forming a photoresist image as shown in FIG. 10, for example, when the photosensitive part uses a positive resist dissolved in a developing solution and a corresponding positive mask (a combination of cross marks) is used. The spatial image distribution of the laser light irradiated on the wafer's photoresist layer on the wafer surface will be as shown in FIG. 11, and the portion corresponding to the line is “dark” and the rest is “dark”. The contrast between light and dark in Figure 11. In the spatial distribution of the illuminance shown, the illuminance level (ievei) equal to the line width WL and the gap width WS is Ethl. On the other hand, the photoresist has the characteristics of the illuminance and the residual rate after development as shown in FIG. 12 The illuminance is above Eth, and the photoresist will be completely dissolved due to development. In order to make the photoresistance image as shown in Fig. 10 wl = ws, the exposure illuminance Dosel must be controlled so that Ethi = Eth as shown in Fig. N At this time, the photoresist is dissolved at a position where the illuminance crosses E (h | in Fig. Π, and the photoresist is not dissolved in the following places. Therefore, a photoresist image is finally formed as shown in FIG. 10 10918pif.doc / 008 200412616. Although the spectral line width of the laser light is wider than that in Figure 11, after exposure at the same illuminance Dosel as in Figure η, the light intensity distribution of the spatial image corresponding to the wafer surface will be as shown in Figure 13 . This is because the spectral line width of the laser light is widened, and the contrast between the light and dark parts of the space image caused by the aberration (mainly chromatic aberration) of the projection optical system of the exposure device is reduced. In this case, the line width of the illumination Eth is WL, ( < W1) and the gap width is WS ’( < ws). Therefore, a desired pattern cannot be formed. Although such changes in the spectral characteristics have been known before, the amplitude of the changes is small compared to the original spectral line width, so it is not considered to cause problems. However, in recent lasers with extremely narrow bandwidths, the effect of the magnitude of change on the resolution performance of the projection optical system is very interesting. On the other hand, laser light sources using non-linear optical phenomena are also expected to cause changes in spectral line widths due to differences in their tendency to change in the case of excimer lasers. In addition, for a fluorine laser (output wavelength: 257 nm) that is promising as a future exposure light source, it is generally known that a spectral line width of less than 1 pm can be displayed without using a wavelength selection element that narrows the spectral line width. However, the spectral line width will be greatly changed due to the pressure or excitation intensity of the gas (mixed gas such as fluorine gas and ammonia gas) filled in the laser tube. Furthermore, the use of excimer lasers or laser light sources with non-linear optical phenomena, etc., with the shift of the center wavelength of the laser light from a specific wavelength, will also be the same as when the spectral line width becomes larger, corresponding to the spatial image. Light intensity distribution 10918 pif. doc / 008 9 200412616 It is a well-known fact that contrast reduction occurs. These phenomena reduce the yield of microelectronic components such as ICs, and cause obstacles in the use of exposure devices on the mass production lines of microelectronic components such as 1C. SUMMARY OF THE INVENTION Therefore, a first object of the present invention is to provide an exposure device and an exposure method, so that even if the optical characteristics of the laser beam are changed, it will not be affected, and the pattern on the mask can be accurately and excellently Transfer to the substrate. A second object of the present invention is to provide a method for manufacturing a component, which can improve the productivity of microelectronic components. A third object of the present invention is to provide a measuring method and a measuring device so that even if the optical characteristics of the laser beam are changed, they are not affected 'and the optical characteristics of the optical system to be measured can be accurately and excellently measured. In order to achieve the above and other objectives, the present invention provides an exposure device for irradiating a laser beam (LB) on a photomask (R), and a pattern formed on the photomask through a projection optical system (PL). Transfer to substrate (w). The exposure device includes a laser device (16a) for generating a laser beam, and a laser optical characteristic measuring device (16c, 16e) for receiving the laser beam and measuring the optical characteristics of the laser beam, and then outputting the optical characteristics related Information; and an exposure amount control device (50) that controls the product energy of the laser beam provided on the substrate based on the foregoing information. In this specification, the optical characteristics of the laser beam are spectral characteristics, the same as 10918pif. doc / 008 10 200412616 includes tuning characteristics and wavelength characteristics, and includes all optical characteristics of laser beams. In this way, the laser optical characteristic measuring device is used to receive the laser beam generated by the laser device, measure its optical characteristics, and output information related to the optical characteristics. Then, based on the information, the exposure amount control device controls the product energy (the exposure amount of the substrate) of the laser beam provided on the substrate. Therefore, because the exposure of the substrate is adjusted based on the characteristics of the laser beam, it will not be affected even if the optical characteristics of the laser beam undergo short-term, temporary or long-term changes. The pattern on the cover is transferred to the substrate accurately and excellently. In this case, when the foregoing information indicates that the spectral line width of the laser beam is larger than the first setting value, the exposure amount control device can reduce the product energy. In the above case, when the foregoing information is that the second predetermined threshold of the spectral line width ratio of the laser beam is smaller than the first setting, the exposure amount control device may increase the product energy. Here, the second setting 値 may be the same spectral line width setting 与 as the first setting 値, or may be smaller than the first setting 光谱. In the former case, when the spectral line width is different from the predetermined setting 値 (the first setting 値 and the second setting 値), it is necessary to change the product energy of the laser beam provided to the substrate using the exposure amount control device. In the latter case, the exposure energy control device is used to change the product energy of the laser beam provided to the substrate only when the spectral line width is outside a predetermined range with the first setting 値 as the upper limit and the second setting 値 as the lower limit. . In each of the above cases, when the information is that the coherence length of the laser beam is shorter than that set in Table 2, the exposure amount control device can reduce the product energy. In the above case, when the information is that the coherence length ratio of the laser beam is at 10918 pif. doc / 008 11 200412616 When the fourth predetermined threshold below the second setting is long, the exposure control device can increase the product energy. Here, the fourth setting 値 may be a setting of the same homology length 値 as the Hth setting 値, or may be a coherence j length setting 値 larger than the third setting 値. In the former case, when the coherence length is different from the predetermined setting 値 (the third setting 値 and the fourth setting 値), it is necessary to use an exposure amount control device to change the product energy of the laser beam provided on the substrate. In the latter case, the exposure energy control device is used to change the product energy of the laser beam provided to the substrate only when the coherence length is outside a predetermined range with the fourth setting threshold as the upper limit and the third setting threshold as the lower limit. In each of the above cases, when the information is that the laser beam has an offset from the target wavelength of the center wavelength or the center of gravity wavelength greater than the fifth setting, the exposure amount control device can reduce the product energy. In the above case, when the foregoing information is that the deviation of the target wavelength of the laser beam from the center wavelength or the center of gravity wavelength is smaller than the sixth predetermined value below the fifth setting (the predetermined value), the exposure amount control device may increase the product energy . Here, the sixth setting 値 may be the setting of the center or center of gravity wavelength shift amount which is the same as the fifth setting 値, or it may be a setting of the center or center of gravity wavelength shift amount which is smaller than the fifth setting 値. In the former case, when the shift amount of the center or center of gravity wavelength is different from the predetermined setting 値 (the fifth setting 値 and the sixth setting 値), the product of the laser beam provided to the substrate must be changed by using an exposure amount control device energy. In the latter case, the exposure amount control device is used to change the thunder supplied to the substrate only when the shift amount of the center or center of gravity wavelength is outside a predetermined range with the fifth setting 値 as the upper limit and the sixth setting 値 as the lower limit. The product energy of the beam. 10918pif. doc / 008 12 200412616 In the above exposure device, the laser optical characteristic measuring device may use at least one of a Fary-Perot interference spectrometer and a grating spectroscope, and may include a beam monitoring mechanism (16c) for detecting Optical characteristics of the laser beam output by the laser device. In the exposure devices of the above-mentioned various cases, the laser optical characteristic measuring device can measure the optical characteristics of the laser beam at a predetermined timing, but it is not limited to this. For example, a laser optical characteristic measuring device may receive a laser beam and often measure the optical characteristic of the laser beam, and often output information about the optical characteristic to the exposure amount control device. Alternatively, the laser optical characteristic measuring device can receive the laser beam and often measure the optical characteristics of the laser beam, wherein when the variation amount of the reference 値 relative to the optical property reaches a predetermined value, information about the optical property will be output To the exposure control device. In the above-mentioned exposure device, the 'exposure amount control device can monitor the change in optical characteristics based on the information output by the laser optical characteristic measurement device, and control the product energy based on the monitoring results. In addition, the exposure amount control device can also read the information output by the laser optical characteristic measurement device at a predetermined interval to control the product energy. In the above exposure device, the exposure amount control device can control the product energy in an uneven manner within the exposure field. In the above case, the exposure amount control device can control the product energy to be unevenly distributed or to a degree based on the aberration information about the projection optical system. Secondly, the present invention further provides a component manufacturing method, which includes a lithography process. This lithography process can use the above-mentioned exposure device to carry out 10918pif. doc / 008 13 200412616. Wrong, in the lithography process, the exposure device mentioned above is used for exposure, and even if the optical characteristics of the laser light are changed, it will not be affected 'and the pattern can be accurately and excellently formed on the substrate. Therefore, the yield of the microelectronic element can be improved so that the productivity can be improved. The present invention further proposes an exposure method which irradiates a laser beam with a laser beam 'and transfers a pattern formed on a photomask to a substrate via a projection optical system. The exposure method includes: generating a laser beam; receiving the laser beam to measure the optical characteristics of the laser beam and outputting information about the optical characteristics; and controlling the product energy of the laser beam provided on the substrate according to the foregoing information To transfer the pattern. In this way, the generated laser beam is received and its optical characteristics are measured, and then information about the optical characteristics is output. Then, according to the foregoing information, the product energy (exposure amount of the substrate) of the laser beam provided on the substrate is controlled to perform pattern transfer. Therefore, because the exposure of the substrate is adjusted according to the optical characteristics of the laser beam, it will not be affected even if the optical characteristics of the laser beam change in the short, temporary, or long term, so it can be formed through the projection optical system. The pattern on the photomask is accurately and excellently transferred to the substrate. Here, the measurement of the optical characteristics of the laser beam and the output of the aforementioned information may be performed before the exposure, but may also be performed during the exposure. In the above-mentioned exposure method, when the foregoing information is at least one of the spectral line width of the laser beam and the offset of the target chirp from the center or center-of-gravity wavelength, and each is greater than a predetermined chirp, the product energy can be reduced . In addition, “Dang Zunxun is the same g-period length of the laser beam” and is more than 10918 pif. doc / 008 14 200412616 The fixed energy is short, you can reduce the product energy. The present invention further provides a measurement method for irradiating a laser beam to the optical system under test to measure the optical characteristics of the optical system under test. This measurement method includes: a first project: receiving a laser beam to measure the optical characteristics of the laser beam and outputting the optical characteristics of the laser beam; and a second project to modify the optical system under test based on the foregoing information Measurement results of optical characteristics. Thereby, the laser beam is received to measure the optical characteristics of the laser beam, and the optical characteristics of the laser beam are output. Based on the foregoing information, the measurement results of the optical characteristics of the optical system under test are corrected. Here, the information about the aforementioned optical characteristics may be the optical characteristics of the laser beam, but it is not limited to this; for example, it may be the optical system to be measured corresponding to the optical characteristic variation amount obtained through experiments or the like in advance. Information on changes in optical characteristics (aberrations, etc.), etc. In the former case, based on the information related to the optical characteristics, the variation of the measured optical system corresponding to the variation of the optical characteristics is calculated, and this calculation result is used as the correction amount of the measurement result of the optical characteristics of the measured optical system. In the latter case, the output result is used as the measurement result correction amount of the optical characteristics of the optical system under test. Whichever is the 'measurement result of the optical characteristics of the optical system to be measured according to the present invention', it is possible to correct (subtract) the optical characteristics of the optical system under test caused by the optical characteristics of the laser beam. The correct optical characteristics of the optical system under test. Therefore, even if the optical characteristics of the laser beam are changed, they are not affected, and the optical characteristics of the optical system under test can be accurately and excellently measured. 10918pif. doc / 008 15 200412616 In the above measurement method, the optical characteristics of the laser beam measured by the first project may be at least one of the laser beam's spectral characteristics, coherence characteristics, and wavelength characteristics. In addition, the present invention further provides a measuring device for irradiating the laser beam to the optical system under test, thereby measuring the optical characteristics of the optical system under test. The measuring device includes a calculation means for correcting the measurement result of the optical characteristics of the optical system under test based on the information about the optical characteristics of the laser beam. In this way, the calculation means corrects the measurement result of the optical characteristics of the optical system under test based on the foregoing information. Here, the information about the aforementioned optical characteristics may be the optical characteristics of the laser beam, but it is not limited to this; for example, it may be the optical system to be measured corresponding to the optical characteristic variation amount obtained through experiments or the like in advance. Information on changes in optical characteristics (aberrations, etc.), etc. In the former case, based on the information related to the optical characteristics, the variation of the measured optical system corresponding to the variation of optical characteristics is calculated, and this calculation result is used as the correction amount of the measurement result of the optical characteristics of the measured optical system. In the latter case, the output result is used as the measurement result correction amount of the optical characteristics of the optical system under test. Whichever is 'in accordance with the present invention' from the measurement result of the optical characteristics of the optical system under test, the optical characteristics of the optical system under test can be corrected (minus) by the optical characteristics of the laser beam. The correct optical characteristics of the optical system under test. Therefore, even if the optical characteristics of the laser beam are changed, they are not affected, and the optical characteristics of the optical system to be measured can be accurately and excellently measured. In this case, as in the above-mentioned measuring device, the optical characteristics of the laser beam 10918pif. doc / 008 16 200412616 The property may be at least one of the spectral characteristic, the coherence characteristic and the wavelength characteristic of the laser beam. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the following describes the preferred embodiments in detail with the accompanying drawings as follows: Embodiments are described below based on FIGS. 1 to 5. One embodiment of the present invention will be described. FIG. 1 schematically illustrates a scanning exposure apparatus 10 according to an embodiment. The scanning exposure apparatus 10 is a scanning exposure apparatus of a stepping and scanning method using a laser light source as a light source for exposure. The scanning exposure device 10 includes an irradiation system 12 including a laser light source 16; a cross mark mounting table RST for holding the cross mark R irradiated by the irradiation system and serving as a mask, and used as a predetermined scanning direction. Moving mask stage; projection optical system PL projects the pattern on the cross mark R onto the wafer W as the substrate; XY stage 14 holds the wafer W and moves in the horizontal plane (in the XY plane) direction; And the control system of the above components. The aforementioned illumination system 12 includes a laser light source 16; a beam-shaping optical system 18; an energy coarse adjuster 20; an optical integrator (such as a fly-eye lens, an internal reflection type integrator, or a diffractive optical element.) 1 The figure uses a fly-eye lens, so hereafter called a fly-eye lens) 22 Illumination system aperture plate 24; beam splitter 26; first relay lens (relay lens) 28A; second relay lens 28B; fixed type Marker block (reticle blind) 30A; movable marker block 30B; 10918 pif for light path bending. doc / 008 17 200412616 lens M; and focusing lens 32 and so on. In addition, in the following description, components ′ other than the laser light source 16 constituting the irradiation optical system 12 are appropriately collectively referred to as an irradiation optical system. Next, the above-mentioned respective components of the irradiation optical system 12 will be described. As one example of the laser light source 16, a KrF excimer laser (oscillating wavelength is 248 nm) is used. In the following description, the laser light source 16 is referred to as a light source unit 16. In addition, as the laser light source 16, of course, ArF excimer laser (oscillation wavelength is 193 nm) or F2 laser (oscillation wavelength is 157 nm) may be used instead of KrF excimer laser. In addition, metal vapor lasers or YAG lasers, or pulsed light sources such as high-frequency wave generators for semiconductor lasers can also be used. As shown in FIG. 2A, the aforementioned light source unit 16 includes a laser resonator 16a and a beam splitter 16b as laser devices, which are arranged on the optical path of the laser beam LB emitted by the laser resonator 16a, and pass through The transmittance is about 97%; the half mirror 16g and the beam monitoring mechanism 16c are sequentially arranged on the reflected light path of the beam splitter 16b; the energy monitor 16h is arranged on the reflected light path of the half mirror 16g; The laser controller I6e receives the output signals of the aforementioned beam monitor 16c and energy monitor 16h, and the laser power supply unit 16d, etc., and uses the laser controller I6e to control the power supply voltage and the like. As shown in FIG. 2A, each of the above-mentioned configurations (16a to 16h) of the light source unit 16 is housed in a housing 17. The laser beam LB emitted from the laser resonator 16 a and passed through the beam splitter 16 b passes through a light transmitting portion of the housing 17 and is incident on the irradiation optical system. 10918pif. doc / 008 18 200412616 In addition, any one or both of the laser controller 16e and the laser power supply unit 16d may be disposed outside the cabinet 17. The aforementioned laser resonator 16a is composed of the following components: an excimer laser * tube (laser chamber *) 202 including a discharge electrode; and disposed behind the excimer laser tube 202 Side (in the left side of the figure in Figure 2A) a total reflection lens (rear mirror); a low-reflection lens (front lens, front miiro; r) 205 arranged on the front side of the excimer laser tube 202; A fixed Fabry-Perot etalon 203 and a variable inclination Fabry-Perot etalon etalon 204 are arranged in parallel between the excimer laser tube 202 and the rear lens 205 in this order. In this case, the rear-end lens 201 and the front-end lens 205 constitute a resonator for laser oscillation, which has the effect of slightly improving coherence. In addition, the fixed Fabry-Perot etalon (hereinafter referred to as the etalon) 203 and the etalon 204 constitute a narrow bandwidth module. In more detail, the etalons 203 and 204 are two stone central plates 'separated by a predetermined gap (air gap) and parallel opposites' and operated as a band-pass filter. The etalon 203 of the etalons 203 and 204 is used for coarse adjustment, and the etalon 204 is used for fine adjustment. The etalons 203 and 204 reduce the laser beam LB emitted by the laser resonator 16a to about 1/1000 to 1/300 of the natural oscillation spectral width, and then output the laser beam LB. In addition, by adjusting the inclination of the etalon 204, the wavelength (center wavelength) of the laser beam LB emitted by the laser resonator 6a can be shifted into a predetermined range. In addition, for example, in the laser resonator 16a of FIG. 2A, the coarse adjustment 19 109l8pif. The etalon used in doc / 008 200412616 is removed, and a reflective diffraction grating can be used as a wavelength selection element to replace the rear lens, and it can be arranged obliquely to form a laser resonator. In this case, a diffraction grating and a front lens 205 are used to form a resonator. In addition, a diffraction grating and a micro-calling etalon 204 are used to form a narrow-bandwidth module having the same functions as described above. In this case, the diffraction grating is used for coarse adjustment when setting the wavelength, and the etalon 204 is used for fine adjustment. Changing either of the etalon 204 and the diffraction grating can change the wavelength (oscillation wavelength) of the laser beam LB emitted by the laser resonator 16a within a predetermined range. In addition, the 'narrow bandwidth' module can also be configured with chirping and diffraction gratings, for example. The aforementioned energy monitor 16h receives the reflected light of the half mirror 16g disposed on the reflected light path reflected by the beam splitter 16b, and uses its photoelectric conversion signal (light quantity signal) as the output signal ES and outputs it to the laser controller 16e. . The energy monitor 16h can use a light receiving element such as a PIN type photodiode, which has a high response frequency to detect pulsed light emission in the far ultraviolet range. As shown in FIG. 2B, the aforementioned beam monitoring mechanism 16c may use a Fabry-Perot type interferometer, which includes a condenser lens 64 and a collimator lens arranged in order on the reflection light path of the half mirror I6g. 66, etalon 68, telemeter lens 70, and line sensor 72. The etalon 68 is the same as described above, and two reflecting mirrors (such as quartz plates) can be used to separate a predetermined gap (air gap gaP) d, which is 10918pif. doc / 008 20 200412616 This relative configuration. When the laser beam LB is incident on the etalon 68, the diffracted light on the partially reflecting surface (the second order wave of Hyugen ’s principle) will repeatedly reflect and penetrate through this air gap d. At this time, only the light in the direction of the incidence angle Θ that satisfies the following formula (1) will penetrate the etalon 68 and increase the intensity. Thereby, as shown in FIG. 2C, interference fringes (fringe patterns) are formed on the focal plane of the telemetry lens 70. This edge pattern is detected by a line sensor 72 disposed on the focal plane of the telemetry lens 70. 2ndcos0 = mX (1) where η is the refractive index of the air gap d, and m is the degree. From the above formula (1), if η, d, and m are constant and the wavelengths are different, the edge patterns formed on the focal plane are also different. Fig. 3 is a light intensity distribution detected by the line sensor 72 disposed on the focal plane of the telemetry lens 70 along line A-A 'of Fig. 2C. In Fig. 3, the horizontal axis is the position in the longitudinal direction of the line sensor 72 on the focal plane. In addition, only three specific interference fringes are shown in FIG. 3. In FIG. 3, the symbol ω represents a half of the peak value 値 corresponding to each light intensity. This width ω has the same meaning as the aforementioned half-width full-frame (FWHM). In the present invention, the two are in a proportional relationship. That is, the following formula (2) is satisfied. FWHM = kco (2) In Figure 3, the coordinate position on the horizontal axis corresponding to the peaks 値 of each light intensity distribution is determined based on the center wavelength. In other words, the aforementioned edge pattern is a pattern corresponding to the central wavelength and the spectral line width (FWHM) of the incident light. The photographic signal from the edge pattern of the line sensor 72 is output to 10918pif. doc / 008 21 200412616 Laser controller 16e. The aforementioned laser power supply section 16d includes a high-voltage power supply and a pulse compression circuit (switching circuit). The pulse compression circuit uses this high-voltage power supply to make the discharge electrodes (not shown) inside the excimer laser tube 202 at a predetermined discharge timing. To discharge. The laser controller 16e includes an image processing circuit (including an AD converter and a peak hold circuit, etc.) for processing the photographic signal and the output signal ES of the edge pattern by a predetermined signal processing, and a predetermined calculation algorithm. Microcomputers and more. The laser controller 16e obtains information related to the optical characteristics of the incident light (laser beam LB) input to the beam monitoring mechanism 16c by applying predetermined signal processing to the photographic signal of the edge pattern, such as the center wavelength (or the center of gravity wavelength) ) Λ and the information of spectral line width (FWHM) index ω 値 and so on. The laser controller 16e uses the center wavelength λ 'of the laser beam LB and calculates the set wavelength λ with respect to the set & set wavelength of the main control device 50 according to the following formula (3). The center wavelength offset (wavelength offset) of Δλ ° Δλ = | λ〇- λ | (3) In addition, the laser controller 16e uses ω 値 and calculates the value corresponding to the following formula (4) ' Spectral line width reference 値 (e.g., the starting spectral line width ω ()). Δλ = co〇- co (4) In addition, the laser controller 16e uses the above Δλ and the central wavelength λ 'and calculates the coherence length L' of the laser beam LB according to the following formula (5). Equation (6) to calculate the homology length 10918 pif calculated above. doc / 008 22 200412616 L The amount of change in the homology length reference 値 (such as the initial homology length LQ). L = λ2 / | Δλ | (5) AL = L〇- L (6) Secondly, in this embodiment, the light source unit 16 is further provided with an etalon 204 (or a grating and a standard) constituting the laser resonator 16a. The driving mechanism 19 (see FIG. 2A) of the light separating element such as a grating 204 or a grating and a chirp). This driving mechanism 19 is controlled by the laser controller 16e according to the aforementioned wavelength shift amount Δλ, so that the center wavelength λ is controlled within a desired range. However, the range of the wavelength shift Δλ that can be adjusted using the driving mechanism is limited, so the possibility of generating a wavelength shift amount Δλ beyond this range cannot be denied. In this embodiment, when the above-mentioned wavelength shift amount Aλ is generated, the exposure amount control described later is performed to suppress the decrease in the contrast of the pattern space image distribution caused by the wavelength shift. In addition, during normal exposure, the laser controller 16e performs feedback control on the power supply voltage of the high-voltage power supply in the laser power supply section 16d based on the output signal ES of the aforementioned energy monitor 16h and the detected energy power. The energy of each pulse of the laser beam LB output by the laser resonator 16 a can correspond to the energy target of each pulse given by the control information of the main control device 50. In addition, according to the control information of the main control device 50, the laser controller 16e controls the application timing or interval of the trigger signal to the pulse compression circuit in the laser power supply section 16d to control the last shot of the wafer W (shot The number of pulses or the repetitive frequency of pulse oscillation in the exposure of the) area. In addition, a photo of the beam splitter 16b in the housing 17 of the light source unit 16 is 10918 pif. doc / 008 23 200412616 The shutter optical system is further equipped with a shutter 16f to cover the laser beam according to the control information of the resident control device 50. Returning now to FIG. 1, the aforementioned beam-shaping optical system 18 shapes the cross-sectional shape of the laser beam LB that emits 16 pulses from the excimer laser, so that it is efficiently incident behind the optical path of the laser beam LB. The set fly-eye lens 22. For example, a cylindrical lens and a beam expander (not shown) are used. The energy sliver 20 is arranged on the optical path of the laser beam LB behind the beam shaping optical system 18. Here, a plurality of (forces such as 6) ND filters having different transmittances (about 1-light reduction rate) are arranged (in the first figure, two of the ND filters are represented by 36A and 36D) Around the rotating plate 34. By rotating the rotating plate 34 by the driving motor 38, the transmittance of the incident laser beam LB can be switched from 100% to a plurality of stages in a proportional series. The drive motor 38 is controlled by a main control device 50 described later. The aforementioned fly-eye lens is arranged on the optical path of the laser beam LB behind the coarse energy adjuster 20. In order to be able to illuminate the cross mark r with a uniform illuminance, a surface light source 'composed of a plurality of point light sources, that is, a secondary light source is formed on a focal plane on the exit side thereof. The laser beam emitted by the secondary light source is referred to as pulsed irradiation light L in the following description. The illumination system optical diaphragm 24 composed of a disc-shaped portion is arranged near the exit surface of the fly-eye lens 22, that is, on the exit-side focal plane that is approximately the same as the inside of the illumination optical system in this embodiment. The aperture 24 of the illumination system is arranged at equal angular intervals, for example, an aperture formed by a general circular opening and a small circular opening are used to reduce the coherence factor (coherence 10918 pif. doc / 008 24 200412616 factoOo's diaphragm, wheel-shaped diaphragm for wheel-shaped irradiation, and deformed diaphragm for deformed light source, with multiple openings eccentrically arranged (only two of the above are shown in Figure 1) Kind of aperture) and so on. The illumination system diaphragm 24 is driven to rotate by a driving device 40 such as a motor driven by a main control system 50 described later. Thereby, any one of the apertures is selectively set on the optical path of the pulse irradiation light IL. In addition, it is used instead of or in conjunction with the aperture 24, for example, a plurality of diffractive optical elements that are included in the optical system and arranged interchangeably; and a movable chirp (cone 稜鏡, Polyhedrons, etc.), and an optical unit of at least one of the adjustable zoom optical systems, is disposed between the light source 16 and the optical integrator 22. When the optical integrator 22 is a fly-eye lens, the illumination light intensity distribution on its incident surface is changed, and when the optical integrator 22 is a surface reflection type integrator, the angle of incidence range with respect to the incident surface is changed, etc .; With the light quantity distribution (the size and shape of the secondary light source) of the irradiated light on the pupil surface of the illumination optical system, that is, the change in the irradiation conditions, the light loss can be suppressed. The spectroscope 26 having a small reflectance and a large transmittance is arranged on the optical path of the pulsed irradiation light IL behind the diaphragm plate 24 of the irradiation system. Behind the beam splitter 26, a relay optical system consisting of a first relay lens 28A and a second relay lens 28B is further arranged through the fixed marker block 30A and the movable marker block 30B. The fixed mark stopper 30A is disposed on a plane slightly out of focus with respect to the conjugate surface of the pattern surface of the cross mark R, and forms a rectangular opening to define the irradiation area 42R on the cross mark R. In addition, the stationary label is 10918pif. doc / 008 25 200412616 Near the stopper 30A is a movable stopper 30B, which has an opening in a position and a variable degree in the direction of the scanning direction. At the start and end of the scanning exposure, the movable area 42R is further restricted by the movable mark stopper 30B to prevent unnecessary exposure. The curved mirror M is disposed on the optical path of the pulse irradiation light IL behind the second relay lens 28B constituting the relay optical system, and reflects the pulse irradiation light passing through the first relay h mirror 28B to the cross mark r. The focusing lens 32 is arranged on the optical path of the pulse irradiation light IL behind the mirror M. On the other hand, the pulse irradiation light α reflected by the beam splitter 20 passes through the condenser lens 44 'and is received by an integrated sensor 46 composed of a photoelectric conversion element. The photoelectric conversion signal of the integrated sensor 46 is supplied to a main control device 50 which outputs DS (digit / pulse) via an unillustrated peak-to-peak holding circuit and an A / D converter. The integrated sensor 46 has a sensitivity in the ultraviolet region, for example, and can use a PIN-type photodiode having a high response frequency to detect the pulsed light emission of the light source unit 16. The correlation coefficient (or correlation function) between the output DS of the integrated sensor 46 and the illuminance (intensity) of the pulse irradiation light IL on the surface of the wafer W is obtained in advance and stored in the main control device 50 Of memory 51. In addition, the correlation coefficient (or correlation function) between the output ES of the energy monitor 16h and the output DS of the integrated sensor 46 is also obtained in advance, and the memory 51 is stored. The cross mark R is placed on the aforementioned cross mark mounting table RST, and is sucked and fixed through a vacuum chuck (not shown). Cross mark 10918pif. doc / 008 26 200412616 describes that the mounting table RST can be micro-driven in a horizontal plane (χγ plane), and the cross mark mounting table driving unit 48 is used to scan in a predetermined stroke range in the scanning direction. The position of the cross mark mounting stage during scanning was measured by a laser interferometer 54R via a moving mirror 52R fixed to the cross mark mounting stage RST. The measurement volume of the laser interferometer 54R is supplied to the main control device 50. In addition, the end surface of the cross mark mounting table RST may be mirror-finished to form a reflecting surface of the laser interferometer 54R (equivalent to the reflecting surface of the moving mirror 52R). The aforementioned projection optical system PL may be, for example, a telecentric reduction optical system on both sides, and uses a refractive optical system composed of a plurality of lens elements having a common optical axis AX in the Z-axis direction. The projection magnification δ of the projection optical system PL is, for example, 1/4 or 1/5. Therefore, as described above, when the irradiation area 42R of the cross mark R is irradiated with the pulsed illumination light IL, the image formed on the cross mark R by the projection optical system PL is formed on the surface with a reduced image at the projection magnification δ. A slit-shaped exposure region (a region conjugated to the irradiation region 42R) on the wafer W coated with the photoresist. The XY stage 14 uses the wafer mounting table driving unit 56 on the XY plane, along the Y axis direction of the scanning direction and the X axis direction perpendicular thereto (the direction perpendicular to the drawing in FIG. 1). Dimensional mode is driven. The Z tilt stage 58 is mounted on the XY stage 14, and the wafer W is held on the Z tilt stage 58 by a vacuum suction or the like through a wafer holder (not shown). The Z tilt mounting table 58 has a position in the Z direction (focus position) for adjusting the wafer W and a wafer 10918 pif relative to the XY plane. doc / 008 27 200412616 The function of the tilt angle. In addition, the position of the XY stage; 14 is measured through a moving mirror 52W fixed on the z-tilt mounting table 58 with an external laser interferometer 54W, and the measurement of this laser interferometer 54W is supplied to the main control device 50. In addition, the end surface of the Z-tilt mounting table 58 may be mirror-finished to form a reflecting surface of the laser interferometer 54W (equivalent to the reflecting surface of the aforementioned moving mirror 52W). . In addition, although omitted from the drawings, as disclosed in Japanese Patent Application Laid-Open No. 7-176468, there is a photographing element such as a CCD above the cross mark R, and light of an exposure wavelength (in this embodiment, A pair of cross-marker alignment microscopes are used as an image processing method of alignment irradiation light. In this case, the pair of cross-mark alignment microscopes are arranged in a configuration (left-right symmetry) symmetrical to the YZ plane including the optical axis AX of the projection optical system PL. In addition, the pair of cross-mark alignment microscopes have a structure capable of traversing along the X axis on the XZ plane including the AX axis. Generally speaking, the pair of cross-mark alignment microscopes are set in a state where the cross-mark R is mounted on the cross-mark mounting table RST, and are set to be able to observe a pair of cross-mark alignment marks arranged outside the light-shielding band of the cross-mark R. In FIG. 1, the control system is mainly composed of a main control system 50. The main control system 50 is composed of a microcomputer (or minicomputer) including a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory), and uniformly controls such as the cross mark R and The synchronous scanning of the wafer W, the stepping of the wafer W, and the exposure timing make the exposure 10918 pif. doc / 008 28 200412616 The action can be performed reliably. Specifically, for example, during scanning exposure, the main control device 50 controls the cross mark mounting table RST through the cross mark mounting table driving section 48 and the wafer mounting table driving section 56 based on the measurement of the laser interferometers 54R and 54W, respectively. The position and speed of X and X mounting table 14 allow the wafer W to be scanned at a speed δ · νκ 'in the -Υ direction (or + Υ direction) relative to the exposure area 42' via the χγ stage 14, which can be synchronized with the cross The mark R is an event scanned at a speed 乂 & (or -Υ direction) via the cross mark mounting table RST. In addition, during the stepping, the main control device 50 controls the position of the XY stage 14 through the wafer stage driving unit 56 based on the measurement of the laser interferometer 54W. In addition, as described above, the main control device 50 uses the supply control information to the light source unit 16 to control the light emission timing, light emission power, and the like of the light source unit. In addition, the main control device 50 controls the energy coarse adjuster 20 and the illumination system diaphragm plate 24 via the motor 38 and the driving device 40, respectively, and controls the opening and closing operations of the movable marker stopper 30B in synchronization with the operation information of the mounting table system. In this embodiment, the main control device 50 has the roles of an exposure controller and a stage controller. These controllers may of course be provided separately from the main controller 50. When an exposure device is manufactured with the above configuration, a series of exposure processing operations are performed in the same steps as in general scanning / stepping except for a method of controlling the exposure amount. In the following, the operation when the predetermined number of wafers of the exposure device 10 are exposed is centered on the control operation of the exposure amount, which is a flowchart of a CPU processing algorithm in the main control device 50, which is schematically shown in FIG. 10918pif. doc / 008 29 200412616. When the operator inputs the setting information of the exposure conditions through the input / output device 62 (the exposure amount is set, that is, the dose of the multiplication energy of the laser beam that should be irradiated to each point on the wafer surface (imaging surface), or Including exposure setting 値), make necessary settings based on its setting information, and exchange preparations for cross marks, cross mark alignment using cross mark alignment microscopes, and baseline measurement of unillustrated wafer alignment systems When the predetermined program is performed, the flowchart of FIG. 4 is started. First, in step 102, a wafer exchange system is instructed to an unillustrated wafer handling system, and the light source unit 16 is instructed to emit light at a predetermined timing when the lightning is the light beam LB. As a result, when wafer exchange is performed using a wafer transfer system (when the wafer holder on the Z tilt mounting table 58 is mounted, the wafer loading operation is simply performed on the wafer holder). The test light-emitting indication of the light source unit 16 is performed, for example, when there is no wafer on the wafer holder during wafer exchange. Alternatively, if the shutter 16f is closed, it can be performed regardless of the presence or absence of a wafer on the wafer holder. Using the test light emission of the light source unit 16 described above, the laser beam LB is received by the energy monitor 16h and the beam monitoring mechanism. The output ES of the energy monitor and the photographic signal of the aforementioned edge pattern are supplied to the laser controller i6e. After that, the laser controller 16e performs the aforementioned various operations and outputs only the data of the lifting result (including the optical characteristic information of ①, Aco, L, AL, λ, Δλ, etc.). Then, in step 104, the optical characteristic information is read and stored in the internal memory. 10918pif. doc / 008 30 200412616 Next, in step 106, it is determined whether ω 値 included in the optical characteristic information is greater than a preset first setting 値% (2ω.). When this judgment is affirmative, it proceeds to step Π0, and calculates the exposure amount control standard 値 (control target of product energy Ε) Ε according to equation (7), and stores it in the primary memory area in the memory. Ε = Ε〇 · (1 + α. Δω) (7) Here, E. Is the exposure when ω 値 is equal to ω 値 as a reference. For example, the exposure amount when the photoresist image of the L / S pattern in the vicinity of the operating ratio of 1: 1 becomes the L / S pattern in the operating ratio of 1: 1 is EQ (mJ / cm2). Ω 値 at this time is. In this embodiment, E. Can be set to a fixed exposure by the operator. In addition, α is a positive coefficient, which is obtained by experiments in advance, and is stored in the memory 51. This will be described in detail below. For example, when the exposure is Dosel, the light intensity distribution of a spatial image corresponding to an L / S pattern with a predetermined line width of 1: 1 working ratio is obtained as shown in FIG. 11 . The spectral line width of the laser beam LB at this time is FWHM ^ SW in FIG. 9. And ω 値 calculated based on the edge pattern photographing signal from the beam monitoring mechanism 16c is ω〇 〇 In this case, it is taken as E. , The line width WL and the gap width WS of the photoresist image are equal. That is, the exposure amount is set so that WL = WS in FIG. 11. In other words, E0 = Dosel. Next, for example, the result of the widening of the spectral line width caused by the deterioration of the wavelength selection element in the light source unit 16 corresponds to the light intensity distribution of the spatial image of the L / S pattern as shown by the solid line in FIG. 5 The light intensity shown is 10918 pif. doc / 008 31 200412616 The distribution generally changes. At this time, it can be understood from FIG. 5 that for the light intensity distribution of the illuminance Eth where the photoresist is completely dissolved, the line width is “1 / < space width WS ,. At this time, for Dosel, the line width WL, = the interval width WS, and the illuminance Eth2 when it holds. In the above state, while slowly changing the exposure amount, each time to find the light intensity distribution corresponding to the space image, reduce the exposure amount up to Dose2 shown by the dotted line in Figure 5, and under the illuminance Eth2, Then the line width WL and the interval width WS. Based on the above description, in the light intensity distribution of the corresponding spatial image shown by the solid line in FIG. 5, the illuminance Em of WL = WS and the illuminance Eth in which the photoresist is completely dissolved (approximately determined by the type of photoresistance 値The difference AEth) can be expressed as a function of the spectral characteristics. Here, Eth and Eth2 are linear functions of ω0 and ω, and can be expressed as Eth = q.co. , Eth2 = q.co. In the following formula (8), q is a positive female. = ς · (ω-ω〇) q.Aco (δ) In addition, in this case, between Dosel, Dose2, and ΔΕα, the following formula (9) is satisfied. In Equation (9), p is a positive coefficient.

Dose 1 -Dose2=-p*AEth (9) 上述p、q係數可以從實驗中求取。Dose 1 -Dose2 = -p * AEth (9) The above p and q coefficients can be obtained from experiments.

Dosel爲EQ,Dose2爲獲得最佳解析度的曝光量。因 此,把Dose2置換成曝光量控制目標値E後,數式(9)可 以表示成下面數式(9),。 E-E〇=-p.AEth iQ、, 10918pif.doc/008 32 200412616 由數式(8)與數式(9)’,可以得到下面數(10)的關係。 E-E〇=-p*AEth =ρ·ς·Δω (10) 在此,從實驗結果,當P_q與EG有關時,ρ·ς =α·Ε()。 利用將數式(1〇)變化,可以得到前述的數式(7)。因此,依 據由數式(7)所計算出的曝光量目標値(乘積能量的控制目 標値)Ε,來控制曝光量(照射在晶圓表面之雷射光束的乘 積能量)的話,便可以不必受到光譜線寬變化的影響,並 且可以將期望的線寬圖案精確地且優異良地轉移形成在晶 圓上。 此外,當P,q與Ε。無關時,利用將數式(10)變化,可 以得到下面數式(11)。在此,%爲正的係數。 Ε= Ε0+α2·Δω (11) 但是,一般而言,因爲E-Ε。並不限定與Δω成比例, 因此以實驗來求如下數式(12)所示之Δω的函數ί^(Δω)也可 以。 Ε= Ε〇+ ^(Δω) (12) 回到第4圖之流程圖的說明。在上述步驟110的處理 結束後,進行步驟122。 另一方面,當上述步驟106之判斷爲否定時,便進行 步驟108,判斷包含於光學特性資訊的ω値是否小於預先 設定的第二設定値ω2 ^ωι)。當此判斷爲肯定時,便 進行步驟110,在執行與前述相同的處理後,進入步驟122。 在此,當光譜線寬比預定還小時,投影光學系統PL的色 10918pif.doc/008 33 200412616 差會變小。但是,因爲是曝光不足,需要對此進行補正。 在本實施例中,在此情形也可算出新的曝光量控制目標 値。 換句話說,在本實施例,當ω値在0^0^(20^)的範圍時, 依據Δω(=ω-ω。),使曝光量控制目標値比E。小。當ω値在 ω<ω2(^ω〇 的範圍時,依據Δω(=ω-ω〇),使曝光量控制 目標値比EG大。特別是當0^=0)2=00 0時,若ω>ω〇,則Ε<Ε0, 而當若ω<ω。,則E>EQ。 與上述相反,當步驟108的判斷爲否定時,ω値爲 co^coSc^的容許範圍。因爲不需要依據光譜線寬的變化來 改變曝光量控制目標値,所以進行步驟112。特別是,當 ω丨=ω2(=ω0)時,在步驟108之判斷爲否定係ω=ω丨=ω2=ω〇的 情形。因爲Δω=0,曝光量控制目標値的變更是很明顯地不 需要。 在步驟112,判斷光學特性資訊所包含的同調長度L 是否大於預先設定的第三設定値h (2%)。當此判斷爲肯 定時,便進入步驟116,並依據下面數式(13),計算出曝 光量控制標準値E,並儲存於記憶體內的一次記憶區域。 之後,進入步驟122。此外,LQ爲雷射光LB的同調長度 的起始値。 L = L0.(1-P.AL) (13) 數式(Π)與前述數式(7)同樣地來決定。因此,正的係 數β是利用實驗來求得。此外,在此情形,E-E()與AL成比 例關係,但其比例常數與Ε。有關。 10918pif.doc/008 34 200412616 在此情形’假如E—E。與AL成比例關係並且其比例常 數與E〇無關,在步驟Π6也可以用下面數式(丨4)來取代上 述數式(13)。其中,β2爲正的係數。 Ε = Ε〇-β2*Δί (μ) 當Ε-Εο與不是成比例關係時,以實驗來求如下數 式(丨5)所示之AL的函數fJAL)也可以。 E= E〇+ f2(AL) (15) 另一方面,當上述步驟Π2之判斷爲否定時,便進行 步驟114,判斷包含於光學特性資訊的同調職L値是否小 於預先設定的第四設定値L2 GL() ^Ll)。當此判斷爲肯定 時,便進行步驟116,在執行與前述相同的處理後,進入 步驟122。在此,當同調長度L比預定還小時,會成爲曝 光過度,所以需要對此進行補正,以計算出新的曝光量控 制目標値° 換句話§兌’在本貫施例’當问I周長L在LsLJ^Lo)的 範圍時,依據AL(=LQ-L),使曝光量控制目標値比E。大。 當同調長L在L<L2(<L〇 <L1)的範圍時,依據AL,使曝光 量控制目標値比E。小。特別是當LfLfL時,若L>L〇, 則E<E〇,而當若L<LG,則E〉E0。 與上述相反,當步驟114的判斷爲否定時,同調長度 L爲的谷g午範圍。因爲不需要依據同調長度的變 化來改變曝光量控制目標値,所以進行步驟Π8。特別是, 當時,在步驟114之判斷爲否定係L=Li = L2==L〇 的情形。因爲AL==〇,曝光量控制目標値的變更是很明顯地 10918pif.doc/008 35 200412616 步需要。 在步驟118,判斷光學特性資訊所包含的波長偏移 Δλ(絕對値)是否大於預先設定的第五設定値Δλ, (^Δλ^Ο)。當此判斷爲肯定時,便進入步驟120,並依據 下面數式(16),計算出曝光量控制標準値Ε,並儲存於記 憶體內的一次記憶區域。之後,進入步驟122。此外,Δλ。 爲相對於雷射光LB的中心波長之目標波長的偏移量(波長 偏移)的起始値。 Ε = Ε〇·(1-γ·Δλ) (16) 數式(16)是以與前述數式(7)同樣的方式來決定。因 此,正的係數γ是利用實驗來求得。此外,在此情形,Ε-Ε0 與Δλ成比例關係,但其比例常數與有關。 在此情形,假如Ε-Ε^與从成比例關係並且其比例常 數與Ε。無關,在步驟120也可以用下面數式(17)來取代上 述數式(16)。其中,γ2爲正的係數。 Ε = Ε0,γ2·Δί (17) 當Ε-Ε。與从不是成比例關係時,也可以以實驗來求 如下數式(18)所示之Δλ的函數ί*3(Δλ)。 Ε= Ε〇- ί3(Δλ) (18) 在步驟122,使用記憶體內的依次記憶區域所儲存的 Ε値,來更新曝光量控制目標値Ε後,便進入步驟124。 另一方面,當上述步驟Π8之判斷爲否定時,因爲曝 光量控制目標値得更新式不需要的,所以直接進入步驟 124。此乃因爲在步驟118之判斷爲否定係、 10918pif.doc/008 36 200412616 L4LSL,以及么人“人丨的三個條件同時滿足。 此外,因爲不考慮Δλ<起始値λ^^Ο)的情形,所以波 長偏移Δλ僅設定上限値λ〆 在步驟124,執行例如特開昭61-44429號公報等所揭 露之EGA(enhanced global alignment)方式的晶圓對準,並 且依據該晶圓對準結果與曝光量控制目標値,以下面的順 序,用步進與掃描方式在晶圓上的複數個拍攝區域,依序 轉移十字標記R的圖案。 首先,依據晶圓對準的結果,監控雷射干涉計54W 的測量値,並且經由晶圓載置台驅動部56,移動XY平台 14到做爲晶圓W之第一拍攝區域之曝光的掃描開始位置 (加速開始位置)。 接著,開始在十字標記R(十字標記載置台RST)與晶 圓(XY平台14)之Y軸方向的掃描。之後,當兩載置台rST、 14分別達到目標掃描速度後,開始以脈衝照射光il來照 射十字標記R的圖案區域。 接著,以紫外線脈衝光,依序照射十字標記R上之圖 案相異區域。在對整個圖案區域的照射結束後,結束晶圓 W上之第一拍攝的掃描曝光。藉此,十字標記R的電路圖 案便經由投影光學系統PL,被縮小轉移到第一拍攝。 在上述的掃描曝光時,利用調整每一個從光源單元16 照射到成像面(晶圓W表面)之一個脈衝的能量、脈衝重複 頻率、照射區域之掃描方向的寬度(亦即縫寬)以及兩載置 台RST、14之掃描速度的至少一個,來進行調整(控制), 37 10918pif.doc/008 200412616 使得在成像面的曝光劑量(乘積能量、曝光量)能與曝光量 控制目標値一致。 接著,第二拍攝也以上述相同的方式進行掃描曝光。 如上所述,反覆地進行晶圓w上的拍攝區域的掃描 曝光與下一拍攝區域曝光的步進動作,十字標記R上的電 路圖案會依序轉移到晶圓W上的所有曝光對象拍攝區域。 如上所述,在對晶圓W之步進與掃描方式的曝光結 束後,進入步驟126,並判斷預定片數的晶圓W的曝光受 否已經結束。當此判斷爲否定時,回到步驟102,反覆地 進行步驟102至步驟106的處理。之後,當預定片數的晶 圓W的曝光結束,步驟126的判斷爲肯定,本流程的一 連串處理便結束。 由到目前爲止的說明可以了解,在本實施例中,光源 單元16內部的光束監控機構16c、雷射控制器16e構成雷 射光學特性測量裝置。此外,曝光量控制裝置由主控制裝 置50所構成。 如上述之說明,依據本實施例的曝光裝置10的話, 利用構成雷射光學特性測量裝置之光束監控機構16c接收 雷射光束LB,利用構成雷射光學特性測量裝置之雷射控 制器16e測量雷射光束LB的光學特性,並輸出有關於該 光學特性的資訊(包含前述的ω、Δω、L、AL、Αλ等的光學 特性資訊)。在曝光處理流程中,以主控制裝置50來執行 沿著第4圖的流程處理。此時,依據關於前述之光學特性 資訊,來進行控制,使給予晶圓W上之雷射光乘積能量(晶 38 10918pif.doc/008 200412616 圓w的曝光量)能夠獲得最佳的解析度性能。因此,即使 有短期、暫時或長期的變動,雷射光的光學特性也不會受 到影響,故可以將十字標記R的圖案,經過投影光學系統, 精確地且優異地轉移到晶圓W上。 此外,在上述實施例中,當雷射光束LB的光譜半幅 値、同調長度以及從中心波長(或重心波長)等之目標値的 偏移(波長偏移)的任何一個在容許範圍外或者與預期値不 同的情形時,藉由將晶圓W的曝光量做最佳化,,便不 會受到雷射光束LB的光譜半幅値、同調長度以及從波長 偏移的任何一個因素的影響,可以時常以最佳的解析度進 f了曝光。 但是,構成本發明曝光裝置之雷射光學特性測量裝 置,也可以僅測量雷射光束LB的光譜半幅値、同調長度 以及從波長偏移的任一個或任兩個,而曝光量控制系統(在 上述實施例爲主控制裝置50)依據此測量到的雷射光光學 特性,來控制曝光量。與習知的曝光裝置相比,即使在此 情形,也可以有高精確度的曝光。 此外,在上述實施例中,以光源單元16內部的光束 監控機構16c與雷射控制器i6e構成雷射光學特性測量裝 置,以及以主控制裝置50構成曝光量控制裝置的情形來 做說明。但是此等方式當然不是用來限制本發明的實施。 換句話說,例如也可以將光束監控機構16c的輸出直 接供給主控制裝置50。在此情形,僅以光束監控機構 構成雷射光學特性測量裝置。在此情形下,主控制裝置5〇 10918pif.doc/008 39 200412616 也可以具備與上述實施例之雷射控制器16e相同的有關光 學特性的各種演算功能。此時,雷射控制器16e仍然可以 留在光源單元16的內部,也可以把它移除。在後者的情 形’可以將能量監控器1 6h的輸出供給主控制裝置5〇,並 且利用主控制裝置來進行雷射電源部16d與驅動部19的 控制。 此外,在上述實施例中,相對於雷射光束LB之中心 波長(或重心波長)的目標波長,波長偏移Δλ的起始値爲〇。 並且對波長偏移Δλ只設定上限値(第五設定値)△、。只有 在Δλ大於Δλ1的情形,主控制裝置50才會降低曝光量(提 供給基板的雷射光束的乘積能量)。但是,例如在投影光 學系統PL的色差非常小等等的情形,也可以對波長偏移Δλ 設定下限値(第六設定値)Δλ办Δλ〇。在此情形,Δλ^Δλ^^ 範圍的中心値之ΔλαΚλβλΟ/〗時,調整到可獲得最佳解析 度係能的曝光量Ε〇,僅有在Δλ偏離範圍,爲 了防止因波長偏移所造成的曝光不足或曝光過度,才控制 曝光量也可以。例如,中心波長或重心波長λ的偏移量Δλ(絕 對値)比Ali大時,爲了防止曝光過度(以及空間影像之光 強度分布的對比降低),將曝光量減少;而當比Δλ,小時, 爲了防止曝光不足,將曝光量增加。 在此情形,可以Δλι=Δλβ(=Δλ〇)。在此情形’若Δλ從 △λο產生變化時,比需改變提供給基板之雷射光的乘積能 量。 此外,在上述實施例’構成雷射光光學特性測量機構 10918pif.doc/008 40 200412616 的光束監控機構是以Fai*y-Per〇t干涉分光計來形成的情形 做說明。但是,並不侷限於此,也可以使用光柵分光器等 來構成光束監控機構。 此外在上述實施例中,雷射光學特性測量裝置(16c、 16e)可以預先設定的測定時序來測定雷射光束LB的光學 特性,但是並不以此爲限。例如,雷射光學特性測量裝置 可以接受雷射光束LB,經常地測量其光學特性。在後者 的情形下,雷射光學特性測量裝置可以經常地輸出有關光 學特性之資訊,並且可以僅在雷射光束LB的光學特性與 基準値間的變動量達到預定値時,將關於光學特性的資訊 輸出至曝光量控制裝置(在上述實施例中相當於主控制系 統 50)。 此外,在上述實施例中,爲了控制提供給晶圓上的雷 射光束之乘積能量,主控制裝置50以預定的間隔,具體 來說是每次交換晶圓的時候,讀取從雷射光學特性測量裝 置(16c、16e)所輸出的光學特性資訊,但是並不侷限於此。 也可以在預定的片數,例如每次加載的晶圓曝光結束後, 讀取光學特性資訊。此外,主控制裝置50等的曝光量控 制裝置也可以經常地讀取雷射光學特性測量裝置所輸出的 資訊,監控光學特性的變動,在依據此結果進行前述乘積 能量的控制。在此情形,可以達到即時控制的目的,其依 據曝光中的雷射光束之光學特性的變動,經常地可獲得最 佳解析度能力之曝光量。 此外,在上述實施例的曝光裝置中,以光譜線寬的變 10918pif.doc/008 41 200412616 化里做爲篸數之曝光毚補正函數ίι(Δω)、以同調長度的變 化莖做爲篸數之曝光襲補正函數^(Δί)、與以中心波長或 重心波長的偏移量做爲參數之曝光量補正函數Γ3(Δλ)等, 可以在每一光阻種類或形成圖案,或每一照射條件,預先 設定。 在上述實施例中,曝光量的調整(變化)爲在曝光場域 (exposure field前述的曝光區域)內,與場域無關地均勻地 增減曝光量的調整。亦即,如第l4A圖所示的圖像,對某 個曝光量A增加曝光量時,在場域內(曝光區域內)將曝光 量均勻地增加α(在第14A圖中,曝光量A4曝光量Α+α); 反之’在降低曝光量時,在場域內(曝光區域內)將曝光量 均勻地減少α(在第14Α圖中,曝光量Α +曝光量Α-α)。雖 然以上述的方法還說明,但是本發明的曝光量調整方法並 不侷限於第14Α圖一般,在場域內均勻地增減曝光量。例 如在上述實施例中,也可以將曝光量補正成使在晶圓W 上的曝光場域內具有曝光量分布。此乃 因應越靠近曝光場域(曝光區域)的周邊,曝光裝置之投影 光學系統所具有的像差(主要是色像差)的影響越大的一種 曝光量調整辦法。如第14Β圖所示的圖像,在上述實施例 中,當需要增加曝光量的時候,依據從拍攝區域的中央的 距離,來增加曝光量(參考第14Β圖中的不均勻過度補正), 反之,當需要減少曝光量的時候,依據從拍攝區域的中央 的距離,來減少曝光量(參考第MB圖中的不均勻不足補 正)。 10918pif.doc/008 42 200412616 當進行上述場域內(曝光區域內)不均勻曝光量調整 時,在照射系統12中加裝新的光學瀘鏡,或者可以設置 一機構,其使用中繼透鏡28A或中繼透鏡28B的光學特 性(光斑(optical blur)),可以從十字標記R的中心到期週 邊,調整十字標記&上的照射光量。 此外,上述的光學濾鏡可以考慮如穿透率可以依據曝 光場域內的位置而變化的濾鏡。例如,越靠近曝光場域內 的中央,穿透率越高,而越向場域內週邊則穿透率越低的 濾鏡(不均勻不足補正用)。或者相反地,越向場域內週邊 則穿透率越商’而越罪近曝光場域內的中央,穿透率越低 的濾鏡(不均勻過度補正用)。此外,在進行上述不均勻補 正時,可以依據預先儲存在曝光裝置內的記憶體的投影光 學系統的像差資訊(或者測量到的投影光學系統的像差資 訊),來決定曝光量的不均勻控制(不均勻分布或程度等)。 例如依據像差,從具備各種不均勻穿透率特性的複數個中 選擇濾鏡。 上述實施例是說明將雷射光學特性資訊(光譜特性、 同調特性與波長特性等)用於曝光量控制的情形。但是’ 此雷射光的光學特性除了在上述情形外,也可以有效地運 用。例如,在測量被檢測光學系統(如投影光學系統)的各 種光學特性(包含球面像差、慧形像差與非點像差等各種 像差資訊,或者是聚焦資訊等等)時,也可以使用雷射光 的光學特性資訊。 在這種利用情形下,對於檢測光學系統的光學特性的 10918pif.doc/008 43 200412616 測量結果,可以考慮依據雷射光的光學特性資訊來增加補 正。在此情形,考慮(降低)雷射光的光學特性的變動影響, 可以求得(計算)更正確的被檢測光學系統的光學特性資 訊。 : 此補正係以預先模擬或實驗等的方式,來求雷射光的 光學特性以及檢測光學系統的光學特性資訊的變動關係 (關係式或對照表)。並且依據求到的關係,從被檢測光學 系統的光學特性的測量結果,降低(大致排除)雷射光的光 學特性變動的影響因素,而求到的純粹被檢測光學系統的 光學特性資訊。 如果更具體地來說明此方法,例如做爲投影光學系統 的測量對象之光學特性是聚焦資訊時,以預先模擬或實驗 等的方式,經由幾乎沒有像差的光學系統,來求取’當慢 慢地變化雷射光的光學特性時的聚焦資訊的變化。實際 上,測量投影光學系統的聚焦資訊時,當雷射光學特性變 動產生時,對此時的聚焦測量結果,依據上述求得的關係, 扣除補正値(相當(對應)於雷射光學特性變動量之聚焦變動 量),以進行補正運算。 如上所述’在測量被檢測光學系統的各種光學特性 時,若考慮到測量(監控)的雷射光光學特性資料(光譜特性 等)’被檢測光學系統的光學特性的測量可以更正確地進 行。 在曝光裝置中,依據上述所測量的投影光學系統的光 學特性資訊,來驅動如構成投影光學系統的一部份光學元 10918pif.doc/008 44 200412616 件’控制光學兀件間的氣壓,或者是藉由位移雷射光的波 長本身,來調整投影光學系統的光學特性。因爲透過調整 過的投影光學系統來進行投影曝光,所以可以形成高精確 度的圖案。 此外,在本實施例中,係以適用於步進與掃描型曝光 裝置的情形來做說明,但是並不侷限於此。本發明也可以 適用於步進與重複方式的曝光裝置(也就是步進機)或者是 步進與縫線(step and stitch)方式的曝光裝置。。在本發明 適用於步進機等的情形時,可以從每一個從雷射裝置所輸 出脈衝的能量値爲一定,來調整照射在晶圓上一點的雷射 脈衝數的方法、將照射脈衝値設爲固定値,改變每個脈衝 的能量値的方法、或者是將其組合的控制方法等等中任意 採用一種,來控制對晶圓的曝光量。 此外,曝光裝置的用途並不限定於半導體製造用的曝 光裝置。例如,可以廣泛應用於將液晶顯示元件圖案轉移 至方形的玻璃基板上之液晶用曝光裝置,或用來製造薄膜 磁頭、微機械與DNA晶片等的曝光裝置等。此外,不僅 是半導體元件等的微電子元件,本發明也適用於用來製造 如光曝光裝置、EUV曝光裝置、X射線曝光裝置以及電子 束曝光裝置等所使用的十字標記或光罩等,將電路圖案轉 移到玻璃基板或矽晶圓等之曝光裝置。 此外’在上述實施例中,雷射光可以使用從DFB半 _體雷射或光纖雷射振盪的紫外線區域或可見光區域的單 一波長雷射’或可以使用以摻餌(或餌與銦兩種)光纖放大 10918pif.doc/008 45 200412616 器放大,且使用非線性光學結晶轉換到紫外線波長的高調 波等。 例如,當振盪波長在1.03至1.12μηι的範圍內時,會 輸出產生波長爲147至160nm範圍內的七倍高調波。特別 是當振盪波長在1.09至1.106μηι的範圍內時,產生波長 爲157至158nm範圍內的七倍高調波,亦即可以得到約與 F2雷射同一波長的紫外光。此外,單一波長振盪雷射爲使 用摻餌光纖雷射。 此外,雷射光源可以使用例如波長146nm的Kr2雷射 (氪二聚物(krypton dimmer)雷射)、波長126nm的Ar2雷射 (氬二聚物(argon dimmer)雷射)等之產生真空紫外線的光 源。· 此外,投影光學系統的倍率不僅爲縮小系,等倍率或 放大系的任何一種也都可以。 «元件製造方法》 接著,說明元件製造方法的實施例,其使用以上所說 明的曝光裝置10及其曝光方法。 第6圖繪示元件(例如1C或LSI等的半導體晶片、液 晶面板、CCD、薄膜磁頭以及微機械等)的製造例的流程 示意圖。如第6圖所示,首先在步驟301(設計步驟),進 行元件之功能與性能設計(例如半導體元件的電路設計), 並且設計用來實現該功能之圖案。接著,在步驟302(光罩 製作步驟),製作已經形成設計之電路圖案的光罩。另一 10918pif.doc/008 46 200412616 方面,在步驟3〇3(晶圓製造步驟),使用矽等之材料,製 造晶_。 接著,在步驟304(晶圓處理步驟),使用步驟3〇丨至 步驟303所準備的光罩與晶圓,如後述一般,利用微影倉虫 刻技術,在晶圓上形成實際的電路等◦接著,在步驟3〇5(元 件組裝步驟),使用步驟304所處理的晶圓,進行元件的 組裝。在步驟305,依據所需,可以包含晶粒切割製程、 拉線製程以及封裝製程(將晶片封入)等等之製程。 最後,在步驟306(檢查步驟),進行在步驟3〇5所製 作的元件之操作確認測試、耐用性測試等等的檢查。在經 過此工程後,便完成元件,並將其出貨。 第7圖繪示在半導體元件的情形下,上述步驟304的 詳細流程例。如第7圖所示,在步驟311(氧化步驟),使 晶圓的表面氧化。在步驟312(CVD步驟),在晶圓表面形 成絕緣層。在步驟313(電極形成步驟),以蒸鍍法,在晶 圓上形成電極。在步驟314(離子植入步驟),將離子打入 晶圓內。以上的步驟311至步驟3 I4分別構成晶圓處理的 各階段的前處理製程。各階段乃依據所需,被選擇執行。 在晶圓處理的各階段,當上述的前處理製程結束後, 便進行以下的後處理製程。在後處理製程中,首先在步驟 315(光阻形成步驟),將感光劑塗布在晶圓上。接著,在步 驟316(曝光步驟),利用上述各實施例的曝光裝置與曝光 方法,將光罩的電路圖案轉移到晶圓上。接著,在步驟 3Π(顯影步驟),將曝光的晶圓顯影。在步驟318(蝕刻步 10918pif.doc/008 47 200412616 驟),利用蝕刻,將光阻殘留部分以外的部分之暴露部材 去除。在步驟319(光阻去除步驟),蝕刻完成後,去除不 需要的光阻。 利用反覆地進行上述前處理製程與後處理製程,電路 圖案便多次地形成於晶圓上。 如以上所述,依據本發明的元件製造方法的話,在曝 光步驟中,因爲使用上述實施例的曝光裝置與曝光方法, 故即使雷射光lb的光學特性(光譜線寬、同調特性、中心 或重心波長的光譜特性等等)有變動,也不會受到影響, 並且因爲以可獲得最佳解析度性能之曝光量來進行曝光, 故圖案可以精確地且優異地形成在晶圓上各拍攝區域。藉 此,微電子元件的產率可以提升,也因此生產性得以改善。 如上所述,依據本發明之曝光裝置與曝光方法的話, 可以達到下述效果:即使雷射光的光學特性有變動,也不 會受到影響’並且光罩上的圖案可以精確地且優異地轉移 到基板上。 此外’依據本發明的元件製造方法的話,可以達到微 電子元件的生產性得以改善之效果。 此外’依據本發明之測量方法與測量裝置的話,可以 _到下述效果:即使雷射光的光學特性有變動,也不會受 到影響’並且被檢測光學系統的光學特性可以精確地且優 良地測量。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明,任何熟習此技藝者,在不脫離本 10918pif.doc/008 48 200412616 發明之精神和範圍內,當可作各種之更動與潤飾,因此本 發明之保護範圍當視後附之申請專利範圍所界定者爲準。 圖式簡單說 第1圖依據本發明之實施例所繪示的曝光裝置示意 圖; 第2A圖繪示第1圖之光源單元的內部構造的方塊示 意圖例,第2B圖繪示包含Fary-Perot干涉計之光束監控 機構的構造示意圖例’第2C圖繪不第2B圖之遙測透鏡之 焦平面上所形成的干涉條紋; 第3圖繪示省略部分之相對於第2C圖的干涉條紋的 光強度分布曲線圖; 第4圖繪示在進行預定片數之晶圓的曝光時,主控制 裝置內之CPU的處理演算的槪略流程示意圖; 第5圖繪示第1圖之曝光控制原理的說明曲線圖; 第6圖依據本發明實施例所繪示之元件製造方法的流 程示意圖; 第7圖繪示第6圖中之步驟304的處理流程示意圖; 第8圖繪示極窄帶寬化雷射之雷射光的光譜分布的曲 線圖例; 第9圖繪示雷射光之光譜特性(FWHM)之變化的曲線 圖例; 第10圖繪示晶圓上所形成之光阻像的示意圖例; 第η圖繪示當形成第ίο圖之光阻像時,以適當的照 度Dosel,相對於成像面之空間影像的光強度分布曲線圖; 10918pif.doc/008 49 200412616 第12圖繪示光阻特性的曲線圖; 第13圖繪示在第11圖的情形,雷射光的光譜線寬變 粗’以相同的照度Dosel,相對於成像面之空間影像的光 強度分布曲線圖;以及 第14A圖繪示在曝光區域(曝光場域)內進行均勻曝光 量補正(乘積能量補正)時的圖像,第14B圖繪示進行不均 勻曝光量補正的圖像。 圖式標號說明 1〇曝光裝置 12照射系統 14 XY平台 16雷射光源 18光束整形光學系統20能量粗調器 22光學積分器 24照射系統光圈板 26分光器 28A/28B中繼透鏡 30A/30B固定式標記擋片 32聚焦透鏡 34旋轉板 36AND濾鏡 36DND濾鏡 38驅動馬達 40驅動裝置 42R照射區域 42W 44聚光透鏡 46整合感測器 48十字標記載置台驅動部 50主控制裝置 51記憶體 52R移動鏡 52W移動鏡 54R雷射干涉計 54W雷射干涉計 56晶圓載置台驅動部58Z傾斜載置台 50 10918pif.doc/008 200412616 62輸出入裝置 17機殼 16a雷射共振器 16b分光器 16c光束監控器 16d雷射電源部 16e雷射控制器 16f快門 16g半反射鏡 16h能量監控器 19驅動機構 2 01後ϋ而鏡片 202準分子雷射管 203固型標準具 204可變傾角型標準具 205後端鏡片 64聚光透鏡 66準直透鏡 68標準具 70遙測透鏡 72線感測器 十字標記R RST十字標記載置台 W晶圓 PL投影光學系統 LB雷射光束 IL脈衝照射光 ES/DS輸出訊號 10918pif.doc/008 51Dosel is EQ, and Dose2 is the exposure for the best resolution. Therefore, after replacing Dose2 with the exposure amount control target 値 E, Equation (9) can be expressed as Equation (9) below. E-E〇 = -p.AEth iQ ,, 10918pif.doc / 008 32 200412616 From the formula (8) and the formula (9) ', the relationship of the following number (10) can be obtained. E-E〇 = -p * AEth = ρ · ς · Δω (10) Here, from the experimental results, when P_q is related to EG, ρ · ς = α · Ε (). By changing the equation (10), the aforementioned equation (7) can be obtained. Therefore, it is not necessary to control the exposure amount (the product energy of the laser beam irradiated on the wafer surface) based on the exposure amount target 値 (the control target of the product energy) E calculated by the equation (7). Affected by the change in spectral line width, a desired line width pattern can be accurately and excellently transferred and formed on a wafer. In addition, when P, q and Ε. When irrelevant, the following formula (11) can be obtained by changing the formula (10). Here,% is a positive coefficient. Ε = Ε0 + α2 · Δω (11) However, in general, because E-Ε. It is not limited to be proportional to Δω. Therefore, experimentally, a function Δ ^ (Δω) of Δω shown in the following formula (12) may be used. Ε = Ε〇 + ^ (Δω) (12) Return to the explanation of the flowchart in FIG. 4. After the processing of step 110 is completed, step 122 is performed. On the other hand, when the determination in step 106 is negative, step 108 is performed to determine whether ω 値 included in the optical characteristic information is smaller than a preset second setting (ω2 ^ ωι). When the determination is affirmative, step 110 is performed, and after performing the same processing as described above, the process proceeds to step 122. Here, when the spectral line width is smaller than predetermined, the color difference of the projection optical system PL 10918pif.doc / 008 33 200412616 becomes smaller. However, because it is underexposed, it needs to be corrected. In this embodiment, a new exposure amount control target 値 can also be calculated in this case. In other words, in this embodiment, when ω 値 is in the range of 0 ^ 0 ^ (20 ^), the exposure amount is controlled to the target 値 ratio E according to Δω (= ω-ω.). small. When ω 値 is in the range of ω < ω2 (^ ω〇), according to Δω (= ω-ω〇), make the exposure amount control target 大 larger than EG. Especially when 0 ^ = 0) 2 = 00 0, if ω > ω〇, then E < E0, and if ω < ω. , Then E > EQ. Contrary to the above, when the determination in step 108 is negative, ω 値 is the allowable range of co ^ coSc ^. Since it is not necessary to change the exposure amount control target 依据 according to the change of the spectral line width, step 112 is performed. In particular, when ω 丨 = ω2 (= ω0), the judgment at step 108 is a case where the negative system is ω = ω 丨 = ω2 = ω0. Since Δω = 0, the change of the exposure amount control target 値 is obviously unnecessary. In step 112, it is determined whether the homology length L contained in the optical characteristic information is greater than a preset third setting 値 h (2%). When it is judged to be yes, it proceeds to step 116, and calculates the exposure control standard 値 E according to the following formula (13), and stores it in the primary memory area in the memory. Then, it progresses to step 122. In addition, LQ is the initial chirp length of the laser light LB. L = L0. (1-P.AL) (13) The formula (Π) is determined in the same manner as the above formula (7). Therefore, the positive coefficient β is obtained experimentally. Furthermore, in this case, E-E () is proportional to AL, but its proportionality constant is related to E. related. 10918pif.doc / 008 34 200412616 In this case, 'suppose E-E. It is proportional to AL and its proportionality constant has nothing to do with E0. In step Π6, the following formula (4) may be used instead of the formula (13). Among them, β2 is a positive coefficient. Ε = Ε〇-β2 * Δί (μ) When Ε-Εο is not in a proportional relationship, it is also possible to experimentally find the function of AL (fJAL) shown in the following formula (5). E = E〇 + f2 (AL) (15) On the other hand, when the judgment of the above step Π2 is negative, then step 114 is performed to determine whether the homology job L 値 included in the optical characteristic information is less than a preset fourth setting値 L2 GL () ^ Ll). When the determination is affirmative, step 116 is performed, and after the same processing as described above is performed, the process proceeds to step 122. Here, when the coherence length L is smaller than the predetermined length, it will become overexposed, so it needs to be corrected to calculate a new exposure control target. In other words, §I’m asked in the current example. When the perimeter L is in the range of LsLJ ^ Lo), the exposure ratio is controlled to the target aspect ratio E based on AL (= LQ-L). Big. When the coherence length L is in the range of L < L2 (< L0 < L1), the exposure amount is controlled to the target ratio E in accordance with AL. small. Especially when LfLfL, if L > L0, then E < E0, and when L < LG, E > E0. Contrary to the above, when the determination at step 114 is negative, the coherence length L is the valley g-day range. Since it is not necessary to change the exposure amount control target 依据 according to the change of the coherence length, step Π8 is performed. In particular, at that time, the judgment in step 114 is negative when L = Li = L2 == L0. Because AL == 〇, the change of exposure control target 値 is obviously 10918pif.doc / 008 35 200412616. In step 118, it is determined whether the wavelength offset Δλ (absolute 値) included in the optical characteristic information is greater than a preset fifth setting 値 Δλ, (^ Δλ ^ Ο). When this judgment is affirmative, it proceeds to step 120, and calculates the exposure amount control standard 値 according to the following formula (16), and stores it in the primary memory area in the memory. Then, it progresses to step 122. In addition, Δλ. This is the starting point of the target wavelength offset (wavelength offset) from the center wavelength of the laser light LB. Ε = Ε〇 · (1-γ · Δλ) (16) Equation (16) is determined in the same manner as in Equation (7). Therefore, a positive coefficient γ is obtained experimentally. Furthermore, in this case, E-E0 is proportional to Δλ, but its proportionality constant is related. In this case, suppose that E-E ^ is proportional to S and its proportionality constant is related to E. Regardless, at step 120, the following formula (17) may be used instead of the above formula (16). Among them, γ2 is a positive coefficient. Ε = Ε0, γ2 · Δί (17) When Ε-Ε. When the relationship is never proportional to, the function of Δλ shown in the following formula (18) can also be determined experimentally: * 3 (Δλ). Ε = Ε〇-ί3 (Δλ) (18) In step 122, the exposure amount control target Ε is updated using the Ε stored in the sequential memory area in the memory, and then the process proceeds to step 124. On the other hand, when the judgment of the above step Π8 is negative, because the exposure amount control target is not needed for the update type, it proceeds directly to step 124. This is because the judgment at step 118 is a negative system, 10918pif.doc / 008 36 200412616 L4LSL, and the three conditions of "people" are satisfied at the same time. In addition, because Δλ < starting 値 λ ^^ Ο) is not considered In this case, only the upper limit λλ is set for the wavelength shift Δλ. In step 124, wafer alignment in the EGA (enhanced global alignment) method disclosed in, for example, Japanese Unexamined Patent Publication No. 61-44429 is performed. The quasi-result and exposure control targets 値, in the following order, step and scan the multiple shooting areas on the wafer to sequentially transfer the pattern of the cross mark R. First, based on the wafer alignment results, monitor The laser interferometer 54W measures 値, and moves the XY stage 14 to the scan start position (acceleration start position) as the exposure of the first imaging area of the wafer W via the wafer mounting table driving unit 56. Then, it starts at the cross Scanning in the Y-axis direction of the mark R (cross mark mounting table RST) and the wafer (XY stage 14). After the two mounting tables rST, 14 reach the target scanning speeds, respectively, they are irradiated with pulse light il The pattern area of the word mark R. Next, the pattern difference areas on the cross mark R are sequentially irradiated with ultraviolet pulse light. After the entire pattern area is irradiated, the first scanning scan exposure on the wafer W is ended. Thereby, the circuit pattern of the cross mark R is reduced and transferred to the first shooting through the projection optical system PL. During the above-mentioned scanning exposure, each of the light source unit 16 is adjusted to illuminate the imaging surface (the surface of the wafer W) from the light source unit 16. Adjust (control) at least one of the energy of a pulse, the pulse repetition frequency, the width in the scanning direction of the irradiation area (that is, the slit width), and the scanning speed of the two mounting tables RST and 14, 37 10918pif.doc / 008 200412616 Make the exposure dose (product energy, exposure amount) on the imaging surface consistent with the exposure amount control target. Then, the second shot is also scanned and exposed in the same manner as described above. As described above, the wafer w is repeatedly performed. The stepwise action of the scanning exposure of the shooting area and the exposure of the next shooting area, the circuit pattern on the cross mark R will be sequentially transferred to all the places on the wafer W. There is an exposure target shooting area. As described above, after the exposure of the wafer W in the stepping and scanning methods is ended, it proceeds to step 126 and determines whether the exposure of the predetermined number of wafers W has been completed. When this is judged as If not, return to step 102, and repeat the processing from step 102 to step 106. After that, when the exposure of the predetermined number of wafers W is completed, the judgment of step 126 is affirmative, and a series of processing of this flow ends. It can be understood from the description so far that in this embodiment, the beam monitoring mechanism 16c and the laser controller 16e inside the light source unit 16 constitute a laser optical characteristic measurement device. The exposure amount control device is constituted by a main control device 50. As described above, according to the exposure device 10 of this embodiment, the laser beam monitoring mechanism 16c constituting the laser optical characteristic measuring device receives the laser beam LB, and the laser controller 16e constituting the laser optical characteristic measuring device measures the laser. The optical characteristics of the radiation beam LB are output with information about the optical characteristics (including the aforementioned optical characteristic information of ω, Δω, L, AL, Aλ, etc.). In the flow of the exposure processing, the main control device 50 executes the processing along the flow of Fig. 4. At this time, based on the aforementioned information about the optical characteristics, control is performed so that the laser beam product energy (the exposure amount of crystal 38 10918pif.doc / 008 200412616 circle w) given to the wafer W can obtain the best resolution performance. Therefore, even if there are short-term, temporary, or long-term variations, the optical characteristics of the laser light are not affected. Therefore, the pattern of the cross mark R can be accurately and excellently transferred to the wafer W through the projection optical system. In addition, in the above embodiment, when any one of the spectral half width chirp of the laser beam LB, the coherence length, and the offset (wavelength shift) from the target chirp of the center wavelength (or the center of gravity wavelength) is outside the allowable range or with It is expected that in different situations, by optimizing the exposure of wafer W, it will not be affected by any of the factors of the spectral half width of the laser beam LB, the coherence length, and the wavelength offset. Frequently exposures are performed with the best resolution. However, the laser optical characteristic measuring device constituting the exposure device of the present invention can also measure only one or both of the spectral half-width chirp, the coherence length, and the wavelength deviation from the laser beam LB, and the exposure amount control system (in In the above embodiment, the main control device 50) controls the exposure amount based on the measured optical characteristics of the laser light. Compared with the conventional exposure device, even in this case, a high-precision exposure is possible. Further, in the above embodiment, the case where the beam monitoring mechanism 16c inside the light source unit 16 and the laser controller i6e constitute a laser optical characteristic measurement device, and the case where the main control device 50 constitutes an exposure amount control device will be described. However, these methods are not intended to limit the implementation of the present invention. In other words, for example, the output of the beam monitoring mechanism 16c may be directly supplied to the main control device 50. In this case, the laser optical characteristic measuring device is constituted only by the beam monitoring mechanism. In this case, the main control device 50 10918pif.doc / 008 39 200412616 may also have various calculation functions related to optical characteristics similar to the laser controller 16e of the above embodiment. At this time, the laser controller 16e may remain inside the light source unit 16, or it may be removed. In the latter case, the output of the energy monitor 16h can be supplied to the main control device 50 and the main control device can be used to control the laser power supply unit 16d and the drive unit 19. In addition, in the above-mentioned embodiment, with respect to the target wavelength of the center wavelength (or the center-of-gravity wavelength) of the laser beam LB, the start of the wavelength shift Δλ is 0. And only the upper limit 値 (the fifth setting 値) Δ, is set for the wavelength shift Δλ. Only when Δλ is larger than Δλ1, the main control device 50 reduces the exposure amount (the product energy of the laser beam supplied to the substrate). However, for example, when the chromatic aberration of the projection optical system PL is very small, it is also possible to set a lower limit 値 (sixth setting 値) Δλ to Δλ〇 for the wavelength offset Δλ. In this case, when the center of the Δλ ^ Δλ ^^ range 値 λακκλβλΟ / is adjusted to the exposure amount EO that can obtain the best resolution, only in the Δλ deviation range, in order to prevent the wavelength shift caused by Underexposure or overexposure can also be controlled. For example, when the shift amount Δλ (absolute 中心) of the center wavelength or the center of gravity wavelength λ is larger than Ali, in order to prevent overexposure (and the contrast of the light intensity distribution of the spatial image is reduced), the exposure amount is reduced; To prevent underexposure, increase the exposure. In this case, Δλι = Δλβ (= Δλ〇) may be used. In this case, 'if Δλ changes from Δλο, it is necessary to change the product energy of the laser light supplied to the substrate. In addition, in the above-mentioned embodiment ', the case where the beam monitoring mechanism constituting the laser light optical characteristic measuring mechanism 10918pif.doc / 008 40 200412616 is formed using a Fai * y-Perot interference spectrometer will be described. However, the present invention is not limited to this, and a beam splitter or the like may be used to constitute the beam monitoring mechanism. In addition, in the above embodiments, the laser optical characteristic measuring devices (16c, 16e) can measure the optical characteristics of the laser beam LB in a predetermined measurement timing, but it is not limited to this. For example, a laser optical characteristic measuring device can receive a laser beam LB and constantly measure its optical characteristics. In the latter case, the laser optical characteristic measurement device can often output information about optical characteristics, and can only change the optical characteristics when the amount of variation between the optical characteristics of the laser beam LB and the reference frame reaches a predetermined value. The information is output to the exposure amount control device (corresponding to the main control system 50 in the above embodiment). In addition, in the above-mentioned embodiment, in order to control the product energy of the laser beam provided on the wafer, the main control device 50 reads the laser light at a predetermined interval, specifically, every time the wafer is exchanged. The optical characteristic information output by the characteristic measurement devices (16c, 16e) is not limited thereto. It is also possible to read the optical characteristic information after a predetermined number of wafers, for example, after the exposure of each loaded wafer is finished. In addition, the exposure amount control device such as the main control device 50 can often read the information output by the laser optical characteristic measurement device, monitor the change of the optical characteristic, and perform the aforementioned control of the product energy based on the result. In this case, the purpose of real-time control can be achieved, which often obtains the exposure amount with the best resolution capability according to the change in the optical characteristics of the laser beam during exposure. In addition, in the exposure apparatus of the above-mentioned embodiment, the variation of the spectral line width is 10918 pif.doc / 008 41 200412616 as the exposure correction function of the number, and the change stem of the homology length is used as the number. The exposure correction function ^ (Δί), and the exposure correction function Γ3 (Δλ) with the offset of the center wavelength or the center of gravity wavelength as a parameter, etc., can be formed for each photoresist type or pattern, or for each irradiation. Conditions are set in advance. In the above-mentioned embodiment, the adjustment (change) of the exposure amount is an adjustment that uniformly increases or decreases the exposure amount within the exposure field (the exposure area described above in the exposure field). That is, in the image shown in FIG. 14A, when the exposure amount is increased to a certain exposure amount A, the exposure amount is uniformly increased by α in the field (in the exposure area) (in FIG. 14A, the exposure amount A4 Exposure A + α); Conversely, when the exposure is reduced, the exposure is uniformly reduced by α in the field (exposure area) (in FIG. 14A, the exposure A and the exposure A-α). Although the method described above is also described, the exposure amount adjustment method of the present invention is not limited to FIG. 14A, and the exposure amount is uniformly increased or decreased in the field. For example, in the above-mentioned embodiment, the exposure amount may be corrected so that the exposure amount distribution in the exposure field on the wafer W is provided. This is a method of adjusting the exposure amount as the effect of the aberration (mainly chromatic aberration) of the projection optical system of the exposure device becomes closer to the periphery of the exposure field (exposure area). As shown in FIG. 14B, in the above embodiment, when it is necessary to increase the exposure amount, the exposure amount is increased according to the distance from the center of the shooting area (refer to the unevenness overcorrection in FIG. 14B), Conversely, when it is necessary to reduce the exposure amount, the exposure amount is reduced according to the distance from the center of the shooting area (refer to the unevenness correction in the MB chart). 10918pif.doc / 008 42 200412616 When adjusting the uneven exposure amount in the above field (in the exposure area), install a new optical lens in the illumination system 12, or you can set up a mechanism that uses the relay lens 28A Or the optical characteristics (optical blur) of the relay lens 28B can be adjusted from the center of the cross mark R to the periphery, and the amount of light on the cross mark & can be adjusted. In addition, the above-mentioned optical filter may be a filter whose transmittance can be changed according to the position in the exposure field. For example, the closer to the center of the exposure field, the higher the transmittance, and the closer to the periphery of the field, the lower the filter (the unevenness is insufficient for correction). Or conversely, the more the perimeter in the field, the more quotient the transmissivity ’is, and the closer it is to the center of the exposure field, the lower the transmissivity filter (for uneven overcorrection). In addition, when performing the above-mentioned unevenness correction, the unevenness of the exposure amount can be determined based on the aberration information of the projection optical system of the memory stored in the exposure device (or the measured aberration information of the projection optical system). Control (uneven distribution or degree, etc.). For example, based on aberrations, filters are selected from a plurality of filters having various non-uniform transmittance characteristics. The above-mentioned embodiment describes the case where the laser optical characteristic information (spectral characteristic, coherent characteristic, wavelength characteristic, etc.) is used for the exposure amount control. However, the optical characteristics of this laser light can be effectively used in addition to the above cases. For example, when measuring various optical characteristics (including aberration information such as spherical aberration, coma aberration and astigmatism, or focusing information, etc.) of the optical system to be detected (such as a projection optical system), Information on the optical properties of using laser light. In this use case, for the measurement results of 10918pif.doc / 008 43 200412616 for detecting the optical characteristics of the optical system, it may be considered to add correction based on the optical characteristic information of the laser light. In this case, considering (decreasing) the influence of changes in the optical characteristics of the laser light, a more accurate optical characteristic information of the optical system to be detected can be obtained (calculated). : This correction is based on the simulation or experiment to find the optical characteristics of the laser light and the relationship between the optical characteristics of the detection optical system (relationship or comparison table). And based on the relationship obtained, from the measurement results of the optical characteristics of the optical system under test, the influencing factors of the optical characteristics of the laser light are reduced (substantially excluded), and the optical characteristics information of the pure optical system under test is obtained. If this method is explained in more detail, for example, when the optical characteristics of the measurement object used as the projection optical system is focus information, the method of pre-simulation or experiment is used to obtain the 'on time' through the optical system with almost no aberration. Changes in focus information when the optical characteristics of laser light are slowly changed. In fact, when measuring the focus information of the projection optical system, when the laser optical characteristics change, the focus measurement results at this time, based on the relationship obtained above, subtract the correction chirp (equivalent (corresponding) to the laser optical characteristic changes) The amount of focus change). As described above, when measuring various optical characteristics of the optical system to be detected, if the measurement (monitoring) of the optical characteristics of the laser light (spectral characteristics, etc.) is taken into account, the optical characteristics of the optical system to be detected can be measured more accurately. In the exposure device, based on the above-mentioned measured optical characteristics of the projection optical system, to drive, for example, part of the optical elements constituting the projection optical system 10918pif.doc / 008 44 200412616 pieces' control the air pressure between the optical elements, or The optical characteristics of the projection optical system are adjusted by shifting the wavelength of the laser light itself. Since the projection exposure is performed through the adjusted projection optical system, a highly accurate pattern can be formed. In addition, in this embodiment, a case where the stepping and scanning type exposure apparatus is applied is described, but it is not limited to this. The present invention can also be applied to an exposure device in a step and repeat method (ie, a stepper) or an exposure device in a step and stitch method. . When the present invention is applied to a stepper or the like, the method of adjusting the number of laser pulses irradiated on one point of the wafer from the energy of each pulse output from the laser device can be adjusted, and the irradiation pulses can be adjusted. Any one of a method of setting a fixed chirp, changing the energy chirp of each pulse, or a combination control method, etc., is used to control the exposure amount to the wafer. The application of the exposure device is not limited to an exposure device for semiconductor manufacturing. For example, it can be widely applied to an exposure device for liquid crystals that transfers a pattern of a liquid crystal display element to a square glass substrate, or an exposure device for manufacturing thin-film magnetic heads, micromachines, and DNA wafers. In addition to microelectronic components such as semiconductor devices, the present invention is also applicable to the manufacture of cross marks or photomasks used in, for example, light exposure devices, EUV exposure devices, X-ray exposure devices, and electron beam exposure devices. The circuit pattern is transferred to an exposure device such as a glass substrate or a silicon wafer. In addition, in the above embodiment, the laser light may use a single wavelength laser from the ultraviolet region or the visible light region oscillating from a DFB half-body laser or an optical fiber laser, or may be used with bait (or bait and indium) Fiber amplification 10918pif.doc / 008 45 200412616 amplifier, and the use of non-linear optical crystals to convert to high-frequency waves such as ultraviolet wavelengths. For example, when the oscillating wavelength is in the range of 1.03 to 1.12 μm, a seven-fold high-frequency wave having a wavelength in the range of 147 to 160 nm is output. Especially when the oscillating wavelength is in the range of 1.09 to 1.106 μm, a seven-fold high-frequency wave having a wavelength in the range of 157 to 158 nm is generated, that is, ultraviolet light having the same wavelength as that of the F2 laser can be obtained. In addition, a single-wavelength lasing laser uses a bait-doped fiber laser. In addition, the laser light source may use, for example, a Kr2 laser (krypton dimmer laser) with a wavelength of 146 nm, an Ar2 laser (argon dimmer laser) with a wavelength of 126 nm, or the like, which generates vacuum ultraviolet rays Light source. • In addition, the magnification of the projection optical system is not limited to the reduction system, and any of the equal magnification and the magnification system may be used. «Element Manufacturing Method» Next, an example of a component manufacturing method using the exposure apparatus 10 and the exposure method described above will be described. FIG. 6 is a flowchart showing a manufacturing example of a device (such as a semiconductor wafer such as 1C or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, and a micromachine). As shown in FIG. 6, first in step 301 (design step), the function and performance of the device are designed (for example, the circuit design of a semiconductor device), and a pattern is designed to realize the function. Next, in step 302 (photomask making step), a photomask having a designed circuit pattern is formed. In another aspect of 10918pif.doc / 008 46 200412616, in step 303 (wafer manufacturing step), a material such as silicon is used to produce a crystal. Next, in step 304 (wafer processing step), the photomask and wafer prepared in steps 30 to 303 are used. As described later, the lithography technique is used to form actual circuits on the wafer. ◦Next, in step 305 (component assembly step), the wafer processed in step 304 is used to assemble the components. In step 305, as required, a die cutting process, a wire drawing process, a packaging process (sealing the wafer), and the like may be included. Finally, in step 306 (inspection step), an inspection of the operation confirmation test, the durability test, and the like of the element prepared in step 305 are performed. After this process, the components are completed and shipped. Fig. 7 shows a detailed flow example of the above step 304 in the case of a semiconductor device. As shown in Fig. 7, in step 311 (oxidation step), the surface of the wafer is oxidized. In step 312 (CVD step), an insulating layer is formed on the surface of the wafer. In step 313 (electrode formation step), an electrode is formed on the wafer by a vapor deposition method. In step 314 (ion implantation step), ions are driven into the wafer. The above steps 311 to 3 I4 respectively constitute a pre-processing process in each stage of the wafer processing. Each stage is selected to be executed as required. In each stage of wafer processing, after the above-mentioned pre-processing process is completed, the following post-processing process is performed. In the post-processing process, first, in step 315 (photoresist formation step), a photosensitive agent is coated on the wafer. Next, in step 316 (exposure step), the circuit pattern of the photomask is transferred to the wafer by using the exposure apparatus and exposure method of each of the above embodiments. Next, in step 3Π (development step), the exposed wafer is developed. In step 318 (etching step 10918pif.doc / 008 47 200412616 step), the exposed parts other than the photoresist remaining part are removed by etching. In step 319 (photoresist removal step), after the etching is completed, the unnecessary photoresist is removed. By repeatedly performing the above-mentioned pre-processing process and post-processing process, a circuit pattern is repeatedly formed on the wafer. As described above, according to the element manufacturing method of the present invention, in the exposure step, since the exposure device and the exposure method of the above embodiment are used, even the optical characteristics (spectral line width, coherence characteristics, center or center of gravity) of the laser light lb The spectral characteristics of the wavelength, etc.) will not be affected, and because the exposure is performed with an exposure amount that can obtain the best resolution performance, the pattern can be accurately and excellently formed in each shooting area on the wafer. Thereby, the yield of the microelectronic element can be improved, and thus the productivity can be improved. As described above, according to the exposure apparatus and exposure method of the present invention, the following effects can be achieved: even if the optical characteristics of the laser light are changed, it will not be affected 'and the pattern on the photomask can be accurately and excellently transferred to On the substrate. In addition, according to the device manufacturing method of the present invention, the effect of improving the productivity of a microelectronic device can be achieved. In addition, according to the measuring method and measuring device of the present invention, the following effects can be achieved: even if the optical characteristics of the laser light are changed, the optical characteristics of the detected optical system can be accurately and excellently measured. . In summary, although the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit the present invention. Any person skilled in the art will not depart from the spirit and scope of the invention at 10918pif.doc / 008 48 200412616. Various modifications and retouching can be made, so the protection scope of the present invention shall be determined by the scope of the attached patent application. The diagram briefly illustrates the schematic diagram of the exposure device shown in FIG. 1 according to the embodiment of the present invention. FIG. 2A shows an example of a block diagram of the internal structure of the light source unit in FIG. 1 and FIG. Figure 2C shows an example of the structure of a beam monitoring mechanism. Figure 2C shows the interference fringes formed on the focal plane of the telemetry lens in Figure 2B. Figure 3 shows the light intensity of the omitted part relative to the interference fringes in Figure 2C. Distribution curve diagram; Figure 4 shows a schematic flow chart of the processing calculation of the CPU in the main control device when the wafer of a predetermined number of wafers is exposed; Figure 5 shows the explanation of the exposure control principle of Figure 1 Graphs; FIG. 6 is a schematic flow chart of a component manufacturing method according to an embodiment of the present invention; FIG. 7 is a schematic flow chart of processing in step 304 in FIG. 6; FIG. 8 is an extremely narrow bandwidth laser Fig. 9 is a graph example of the spectral distribution of laser light; Fig. 9 is a graph example showing the change in the spectral characteristic (FWHM) of laser light; Fig. 10 is a schematic example of a photoresist image formed on a wafer; Drawing when formed ίο When the photoresist image in the figure, the light intensity distribution curve of the spatial image with respect to the imaging surface with the appropriate illuminance Dosel; 10918pif.doc / 008 49 200412616 FIG. 12 is a graph showing the photoresistance characteristics; FIG. 13 The situation shown in Fig. 11 shows that the spectral line width of the laser light becomes thicker. At the same illuminance Dosel, the light intensity distribution curve of the spatial image with respect to the imaging plane; and Fig. 14A shows the exposure area (exposure field). Range), the image when the uniform exposure amount correction (product energy correction) is performed, and FIG. 14B shows the image with the uneven exposure amount correction. Description of drawings: 10 exposure device 12 illumination system 14 XY stage 16 laser light source 18 beam shaping optical system 20 energy coarse adjuster 22 optical integrator 24 illumination system aperture plate 26 beam splitter 28A / 28B relay lens 30A / 30B fixed Type mark stopper 32 focus lens 34 rotating plate 36AND filter 36DND filter 38 drive motor 40 drive device 42R irradiation area 42W 44 condenser lens 46 integrated sensor 48 cross mark stage driving unit 50 main control device 51 memory 52R Moving mirror 52W Moving mirror 54R Laser interferometer 54W Laser interferometer 56 Wafer stage driving unit 58Z Tilt stage 50 10918pif.doc / 008 200412616 62 I / O device 17 Chassis 16a Laser resonator 16b Beam splitter 16c Beam monitoring 16d laser power unit 16e laser controller 16f shutter 16g half mirror 16h energy monitor 19 drive mechanism 2 01 rear lens and lens 202 excimer laser tube 203 solid etalon 204 variable tilt type etalon 205 End lens 64 Condensing lens 66 Collimation lens 68 Etalon 70 Telemetry lens 72 Line sensor Cross mark R RST Cross mark mount W wafer PL projection optical system LB laser beam IL pulsed light ES / DS output signal 10918pif.doc / 008 51

Claims (1)

200412616 拾、申請專利範圍 1. 一種曝光裝置,用以將一雷射光束照射在一光罩上, 並且經由一投影光學系統,將形成於該光罩上的一圖案轉 移到一基板上,該曝光裝置包括: 一雷射裝置,用以產生該雷射光束; 一雷射光學特性測量裝置,接收該雷射光束,並且測 量該雷射光束之一光學特性,再輸出與該光學特性相關的 資訊;以及 一曝光量控制裝置,依據該資訊,控制提供給該基板 上的該雷射光束之一乘積能量。 2. 如申請專利範圍第1項所述之曝光裝置,其中當該 資訊爲該雷射光束之光譜線寬大於一第一設定値時,該曝 光量控制裝置降低該乘積能量。 3. 如申請專利範圍第2項所述之曝光裝置,其當該資 訊爲該雷射光束之光譜線寬比在該第一設定値以下的一第 二預定値還小時,該曝光量控制裝置增加該乘積能量。 4. 如申請專利範圍第1項所述之曝光裝置,其中當該 資訊爲該雷射光束之同調長度比一第三設定値短時,該曝 光量控制裝置降低該乘積能量。 5. 如申請專利範圍第4項所述之曝光裝置,其中當該 資訊爲該雷射光束之同調長度比在該第三設定値以下的一 第四預定値還長時,該曝光量控制裝置增加該乘積能量。 6. 如申請專利範圍第1項所述之曝光裝置,其中當該 10918pif.doc/008 52 200412616 資訊爲該雷射光束之相對於中心波長或重心波長之目彳票# 長的偏移量大於一第五設定値時,該曝光量控制裝置降{氏 該乘積能量。 ~ 7.如申請專利範圍第6項所述之曝光裝置,其中當該 資爲該雷射光束之相對於中心波長或重心波長之目標波 長的偏移量比在該第五設定値以下的一第六預定値還小, 該曝光量控制裝置增加該乘積能量。 8·如申請專利範圍第1項所述之曝光裝置,其中該雷 射光學特性測量裝置爲使用Fary-Perot干涉分光計以及光 柵分光器的至少其中之一,並且包括一光束監控機構,用 以檢測從該雷射裝置所輸出的該雷射光束之該光學特性。 9·如申請專利範圍第1項所述之曝光裝置,其中該雷 射光學特性測量裝置接收該雷射光束並且經常地測量該雷 射光束之該光學特性,並且經常地將有關於該光學特性之 資訊輸出到該曝光量控制裝置。 10·如申g靑專利範圍第丨項所述之曝光裝置,其中該雷 射光學特性測量裝置接收該雷射光束並且經常地測量該雷 射光束之該光學特性,其中當相對於該光學特性的一基準 値的變動量到達一預定値時,將有關於該光學特性之資訊 輸出到該曝光量控制裝置。 11 ·如申請專利範圍第9項所述之曝光裝置,其中該曝 光量控制裝置依據該雷射光學特性測量裝置所輸出的該資 訊’監控該光學特性的變動,並且依據該監控結果,進行 該乘積能量之控制。 10918pif.doc/008 53 200412616 12.如申請專利範圍第9項所述之曝光裝置,其 光量控制裝置以一預定間隔讀取該雷射光學特性測if曝 所輸出的該資訊,以控制該乘積能量。 -奥裝置 13·如申請專利範圍第丨項所述之曝光裝置,其 、, 量控制裝置在一曝光場域內,以不均勻方式抨=曝光 暑。 力即工制該乘積能 14·如申請專利範圍第13項所述之曝光裝置,意 光量控制裝置依據有關於該投影光學系統之像芦& =中曝 制該乘積能量爲不均勻分布或程度。 = 15· —種元件製造方法’包括一微影製程,該微影製程 使用申請專利範圍第1項至第14項中的任何一項所 曝光裝置,進行曝光。 k 16·—種曝光方法,將一雷射光束照射在一光罩上,並 且經由一投影光學系統,將形成於該光罩上的一圖案轉移 到一基板上,該曝光方法包括: 產生該雷射光束; 接收該雷射光束,以測量該雷射光束之一光學特性, 並且輸出有關於該光學特性的資訊;以及 依據該資訊,控制提供給該基板上之該雷射光束的一 乘積能量,以進行該圖案之轉移。 17·如申請專利範圍第16項所述之曝光方法,其中當 該資訊爲該雷射光束之光譜線寬、以及相對於中心或重心 波長的目標値的偏移量的至少其中之一,並且分別大於一 預定値時,降低該乘積能量。 10918pif.doc/008 54 200412616 18. 如申請專利範圍第16項所述之曝光方法,其中當 該資訊爲該雷射光束之同調長度,並且比一預定値還短 時,降低該乘積能量。 19. 一種測量方法,用以將一雷射光束照射在一被測光 學系統,來測量該被測光學系統之一光學特性,該測量方 法包括: 一第一工程,用以接收該雷射光束,以測量該雷射光 束之一光學特性,並且輸出關於該雷射光束之該光學特 性;以及 一第二工程,依據該資訊,來修正該被測光學系統的 該光學特性的測量結果。 20. 如申請專利範圍第19項所述之測量方法,其中該 第一工程所測量到的該雷射光束之該光學特性爲該雷射光 束之光譜特性、同調特性與波長特性中的至少一個。 21. —種測量裝置,用以將一雷射光束照射在一被測光 學系統,來測量該被測光學系統之一光學特性,該測量裝 置包括: 一演算手段,依據關於該雷射光束之光學特性之資 訊,來修正該被測光學系統的該光學特性的測量結果。 22. 如申請專利範圍第21項所述之測量裝置,其中該 雷射光束之該光學特性爲該雷射光束之光譜特性、同調特 性與波長特性中的至少一個。 10918pif.doc/008 55200412616 Patent application scope 1. An exposure device for irradiating a laser beam on a photomask, and transferring a pattern formed on the photomask to a substrate via a projection optical system, the The exposure device includes: a laser device for generating the laser beam; a laser optical characteristic measuring device for receiving the laser beam, and measuring an optical characteristic of the laser beam, and outputting a laser beam related to the optical characteristic Information; and an exposure control device that controls the product energy of one of the laser beams provided to the substrate based on the information. 2. The exposure device according to item 1 of the scope of patent application, wherein when the information is that the spectral line width of the laser beam is greater than a first set value, the exposure amount control device reduces the product energy. 3. The exposure device as described in item 2 of the scope of the patent application, wherein when the information is that the spectral line width ratio of the laser beam is a second predetermined time below the first setting 値 is still small, the exposure control device Increase the product energy. 4. The exposure device according to item 1 of the scope of patent application, wherein when the information is that the coherence length of the laser beam is shorter than a third setting, the exposure amount control device reduces the product energy. 5. The exposure device as described in item 4 of the scope of patent application, wherein when the information is that the coherent length of the laser beam is longer than a fourth predetermined 値 below the third setting 値, the exposure control device Increase the product energy. 6. The exposure device as described in item 1 of the scope of patent application, wherein when the information of 10918pif.doc / 008 52 200412616 is the laser beam relative to the center wavelength or the center of gravity wavelength, the number of offsets is greater than When a fifth setting is set, the exposure control device reduces the product energy. ~ 7. The exposure device according to item 6 of the scope of the patent application, wherein when the laser beam is an offset ratio of the laser beam with respect to the center wavelength or the center wavelength of the target wavelength, The sixth predetermined threshold is still small, and the exposure amount control device increases the product energy. 8. The exposure device according to item 1 of the scope of patent application, wherein the laser optical characteristic measuring device is at least one of a Fary-Perot interference spectrometer and a grating spectrometer, and includes a beam monitoring mechanism for Detect the optical characteristics of the laser beam output from the laser device. 9. The exposure device according to item 1 of the scope of patent application, wherein the laser optical characteristic measuring device receives the laser beam and frequently measures the optical characteristic of the laser beam, and often will be related to the optical characteristic The information is output to the exposure control device. 10. The exposure device as described in item 1 of the patent scope, wherein the laser optical characteristic measuring device receives the laser beam and frequently measures the optical characteristic of the laser beam, wherein when compared with the optical characteristic When the amount of variation of a reference frame reaches a predetermined frame, information about the optical characteristics is output to the exposure amount control device. 11 · The exposure device according to item 9 of the scope of patent application, wherein the exposure amount control device monitors changes in the optical characteristics based on the information output from the laser optical characteristic measurement device, and performs the monitoring based on the monitoring results. Control of product energy. 10918pif.doc / 008 53 200412616 12. The exposure device according to item 9 of the scope of patent application, the light quantity control device reads the information output by the laser optical characteristic test if exposure at a predetermined interval to control the product energy. -Austrian device 13. The exposure device as described in item 丨 of the scope of the patent application, wherein the amount control device is exposed in an uneven manner in an exposure field. The product energy can be produced by the force. 14. The exposure device as described in item 13 of the scope of the patent application, meaning that the light quantity control device is based on the image of the projection optical system. The product energy is unevenly distributed or degree. = 15 · —A kind of component manufacturing method ’includes a lithography process, which uses the exposure device in any one of the scope of claims 1 to 14 of the patent application for exposure. k 16 · —An exposure method in which a laser beam is irradiated on a mask, and a pattern formed on the mask is transferred to a substrate via a projection optical system. The exposure method includes: generating the A laser beam; receiving the laser beam to measure an optical characteristic of the laser beam and outputting information about the optical characteristic; and controlling a product of the laser beam provided to the substrate based on the information Energy to transfer the pattern. 17. The exposure method according to item 16 of the scope of patent application, wherein the information is at least one of a spectral line width of the laser beam and an offset from a target chirp of a center or center of gravity wavelength, and When each is larger than a predetermined threshold, the product energy is reduced. 10918pif.doc / 008 54 200412616 18. The exposure method described in item 16 of the scope of patent application, wherein when the information is the coherent length of the laser beam and is shorter than a predetermined chirp, the product energy is reduced. 19. A measurement method for irradiating a laser beam on an optical system under test to measure an optical characteristic of the optical system under test, the measurement method comprising: a first process for receiving the laser beam To measure an optical characteristic of the laser beam and output the optical characteristic of the laser beam; and a second project to correct the measurement result of the optical characteristic of the optical system under test based on the information. 20. The measuring method according to item 19 of the scope of patent application, wherein the optical characteristic of the laser beam measured by the first project is at least one of a spectral characteristic, a coherence characteristic, and a wavelength characteristic of the laser beam . 21. A measuring device for irradiating a laser beam to a measured optical system to measure an optical characteristic of the measured optical system, the measuring device includes: a calculation method based on The optical characteristic information is used to modify the measurement result of the optical characteristic of the optical system under test. 22. The measuring device according to item 21 of the scope of the patent application, wherein the optical characteristic of the laser beam is at least one of a spectral characteristic, a coherence characteristic, and a wavelength characteristic of the laser beam. 10918pif.doc / 008 55
TW092103885A 2003-01-08 2003-02-25 Exposure device, exposure method, method of making devices, measuring method and measuring device TW200412616A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001648A JP2003282430A (en) 2002-01-21 2003-01-08 Aligner and exposure method, device manufacturing method, and measurement method and apparatus

Publications (1)

Publication Number Publication Date
TW200412616A true TW200412616A (en) 2004-07-16

Family

ID=32708825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092103885A TW200412616A (en) 2003-01-08 2003-02-25 Exposure device, exposure method, method of making devices, measuring method and measuring device

Country Status (3)

Country Link
AU (1) AU2003236345A1 (en)
TW (1) TW200412616A (en)
WO (1) WO2004064127A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387073B2 (en) 2020-03-24 2022-07-12 Applied Materials, Inc. In situ angle measurement using channeling
TWI774875B (en) * 2017-11-17 2022-08-21 日商濱松赫德尼古斯股份有限公司 adsorption method
TWI796907B (en) * 2021-12-28 2023-03-21 宏碁股份有限公司 Light curing apparatus and method for manufacturing display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290084B2 (en) 2012-08-23 2018-03-07 ギガフォトン株式会社 Light source device and data processing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106426A (en) * 1987-10-19 1989-04-24 Canon Inc Aligner
JPH02207522A (en) * 1989-02-07 1990-08-17 Canon Inc Aligner
JPH09199403A (en) * 1996-01-14 1997-07-31 Nikon Corp Peojection aligner
JPH1038757A (en) * 1996-07-25 1998-02-13 Nikon Corp Method and equipment for measuring wave aberration of lens for excimer laser light
JPH10256146A (en) * 1997-03-13 1998-09-25 Canon Inc Aligner and manufacture of device
JPH11243050A (en) * 1998-02-24 1999-09-07 Canon Inc Aligner
US6408260B1 (en) * 2000-02-16 2002-06-18 Cymer, Inc. Laser lithography quality alarm system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774875B (en) * 2017-11-17 2022-08-21 日商濱松赫德尼古斯股份有限公司 adsorption method
US11947140B2 (en) 2017-11-17 2024-04-02 Hamamatsu Photonics K.K. Suctioning method
US11387073B2 (en) 2020-03-24 2022-07-12 Applied Materials, Inc. In situ angle measurement using channeling
TWI779524B (en) * 2020-03-24 2022-10-01 美商應用材料股份有限公司 Incident angle measurement system
TWI796907B (en) * 2021-12-28 2023-03-21 宏碁股份有限公司 Light curing apparatus and method for manufacturing display device

Also Published As

Publication number Publication date
WO2004064127A1 (en) 2004-07-29
AU2003236345A1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
KR101302244B1 (en) Exposure apparatus, exposure method, device manufacturing method, and system
JP3235078B2 (en) Scanning exposure method, exposure control device, scanning type exposure device, and device manufacturing method
TWI427878B (en) Active spectral control of optical source
EP1347501A1 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
JPWO2002103766A1 (en) Scanning exposure method, scanning type exposure apparatus, and device manufacturing method
JPH08250402A (en) Method and device for scanning exposure
US7154922B2 (en) Laser beam source control method and unit, exposure method and apparatus, and device manufacturing method
US9891525B2 (en) Exposure method, exposure apparatus, and article manufacturing method
TW595057B (en) Laser apparatus, exposure apparatus and method
TW200827940A (en) Exposure apparatus and device manufacturing method
JP2011171521A (en) Evaluating method for laser light source, and exposure method and device
TW200412616A (en) Exposure device, exposure method, method of making devices, measuring method and measuring device
JP2000235945A (en) Scanning type aligner and its method
JP2007294550A (en) Exposure method and apparatus, and device manufacturing method
JP2011109014A (en) Scanning exposure apparatus
JP2008166612A (en) Laser device, aligner, control method, exposure method, and device manufacturing method
JP2003282430A (en) Aligner and exposure method, device manufacturing method, and measurement method and apparatus
JP4253915B2 (en) Exposure apparatus, exposure method, and laser light source
JP2009038383A (en) Laser light source and exposure method
JP3344477B2 (en) Scanning exposure method, laser device, scanning type exposure device, and device manufacturing method
JP3296484B2 (en) Scanning exposure method, scanning type exposure apparatus, and device manufacturing method
JP2004095667A (en) Method for measuring correction information, exposure method, aligner, exposure system, and method for manufacturing device
JP3884968B2 (en) Exposure apparatus, exposure method, device manufacturing method, and device
JP2001118784A (en) Exposure, system and method of correcting difference of density line width in that exposure, system and exposure method
JP2004327647A (en) Exposure method and aligner, and device manufacturing method