TW200411926A - Structures and fabrication methods trench insulated gate bipolar transistors - Google Patents

Structures and fabrication methods trench insulated gate bipolar transistors Download PDF

Info

Publication number
TW200411926A
TW200411926A TW91137558A TW91137558A TW200411926A TW 200411926 A TW200411926 A TW 200411926A TW 91137558 A TW91137558 A TW 91137558A TW 91137558 A TW91137558 A TW 91137558A TW 200411926 A TW200411926 A TW 200411926A
Authority
TW
Taiwan
Prior art keywords
gate
plug
scope
slot
patent application
Prior art date
Application number
TW91137558A
Other languages
Chinese (zh)
Other versions
TWI222743B (en
Inventor
Yeong-Lin Lai
Chih-Yen Huang
Original Assignee
Yeong-Lin Lai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yeong-Lin Lai filed Critical Yeong-Lin Lai
Priority to TW91137558A priority Critical patent/TWI222743B/en
Publication of TW200411926A publication Critical patent/TW200411926A/en
Application granted granted Critical
Publication of TWI222743B publication Critical patent/TWI222743B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thyristors (AREA)

Abstract

The purpose of the present invention is to provide structures and fabrication methods to protect trench insulated gate bipolar transistors against heavy-ion-induced destructive failures. The present invention uses the horizontal and vertical extension of the p+plug to reduce the lateral resistance of the P-base region and harden the trench insulated gate bipolar transistors against radiation without sacrificing the normal performance of the trench insulated gate bipolar transistors.

Description

200411926 五、發明說明(1) 【發明之技術領域】 本發明在於提供一種槽狀閘極絕緣閘雙極性電晶體的 抗輪射破壞的結構與製作方法,其係利用降低槽狀閘極絕 緣閘雙極性電晶體(Trench Insulated Gate Bipolar200411926 V. Description of the Invention (1) [Technical Field of the Invention] The present invention is to provide a structure and a manufacturing method for anti-rotation damage of a bipolar transistor with a slot-shaped gate insulated gate, which uses a reduction of the slot-shaped gate insulated gate. 1. bipolar transistor

Transistor ; TIGBT)的側向電阻值特性,來達成提高元 件的抗輻射能力。特別是,本發明在不改變槽狀閘極絕 緣閘雙極性電晶體結構與方法,而且不需複雜的製作步 驟,就能夠在不影響元件正常工作之下,改善元件抗輻射 能力。 【先前技術】 近年來絕緣閘雙極性電晶體的效能已經急遽的改善, 成為具高操作電壓的開關元件,使得絕緣閘^極性電i體 的應用範圍已經廣泛的擴展’可與金屬氧化半導於 (Metal Oxide Semiconductor ; M0S)和雔載子 ^blp〇iar )結構一起應用,尤其是在高功率的應用場 己。如:手機通訊領域及衛星通訊方面。而絕緣閘雙極性 電晶體又依其結構的不同劃分成平面閘極絕緣閘性電Transistor; TIGBT) to improve the radiation resistance of the device. In particular, the present invention can improve the anti-radiation ability of the component without affecting the normal operation of the component without changing the structure and method of the bipolar transistor of the gate-shaped gate insulator and without the need for complicated manufacturing steps. [Previous technology] In recent years, the efficiency of the insulated gate bipolar transistor has been rapidly improved, and it has become a switching element with a high operating voltage. (Metal Oxide Semiconductor; MOS) and the carrier blbl0iar structure are used together, especially in high-power applications. Such as: mobile phone communications and satellite communications. Insulated gate bipolar transistors are divided into planar gate insulated gate

晶體、槽狀閘極絕緣閘雙極性電晶體 望 y ^ L ••寺。但JL中所述 之槽狀閘極絕緣閘雙極性電晶體在功率招知士 、 u 亚I , 谓粍方面比傳統的 千面閘極絕緣閘雙極性電晶體有優異的特 的研究發現,絕緣閘雙極性電晶體仍有复丛g ^Crystal, slot-shaped gate insulated gate bipolar transistor Wang y ^ L •• Temple. However, the slot-shaped gate-insulated gate bipolar transistor described in JL has superior research findings in terms of power source, U-I, and so on, compared with the traditional thousand-face gate-insulated gate bipolar transistor. Insulated gate bipolar transistors still have complex clumps g ^

荆、s 7为具缺點存在。以N 型通道的絕緣閘雙極性電晶體(τ I GBT ) Αν, 七如 、 ^马例,由於内部 有寄生閘流體(thyristor)的關係會被曹離 里_子感應一種破 200411926 五、發明說明(2) 壞現象(hearvy - ion-induced destructive failures), 稱為單一事件的閂鎖(single event latch-up,SEL),形 成寄生的ρ _ η - p - n結構於I G B T内部,這會迅速的增加元件 電流。 這是由於槽狀閘極絕緣閘雙極性電晶體設計中並沒有 J F Ε Τ區域的存在,因此其會有較低的導通電阻存在。若環 土兄中有其誘發單一事件的閂鎖(S E L )因素存在,如大量輻 射環境存在,元件内部將被觸發產生閂鎖現象。目前在太 空應用的發展上正遇到上述之問題··絕緣閘雙極性電晶體 内部的寄生閘流體常會因為太空中之輻射效應而被觸發, 進而產生正回授機制,此正回授機制會迅速的增加元件電 流,最後燒毀元件。 如圖二所不,圖二為一般Ν型通道絕緣閘雙極性電晶 體之結構圖,其槽狀閘極絕緣閘雙極性電晶體主要包括 Ν+射極26 (Ν+ emitter)、一射極金屬29、一\_漂移區 域 22(N- drift regi〇n)、—N+緩衝層 21(N+ layer)、-P+基板20(P+ substrate)、一p 基極24(p 與一槽狀閘極(gate)25。其相關位置如圖二所示, ^心的疋如此之結構當有重離子效應感應時,其N -漂移 區域2 2、P基極2 3和N +射極2 β带士、 η=> 環境誘發時如重離子效:二升射成广:=結構’當有 馬4竿田射4,便容易引發SEL 〇 雙極性電晶體的飢現像提出保 ί雔==出,本發明即針對槽狀閘極絕緣 閑雙極性電晶體提出—個可提高抗H射能力的方法。Jing and s 7 are shortcomings. N-channel insulated gate bipolar transistor (τ I GBT) Αν, Qiru, ^ Ma examples, due to the internal parasitic gate fluid (thyristor) relationship will be Cao Lili_zi induction a break 200411926 V. Invention Explanation (2) Hearvy-ion-induced destructive failures, called single event latch-up (SEL), form a parasitic ρ _ η-p-n structure inside the IGBT, which will quickly Increase component current. This is due to the fact that there is no J F ET region in the design of the trough-gate insulated gate bipolar transistor, so it will have a lower on-resistance. If there is a latch-up (S E L) factor in the environment that induces a single event, such as the presence of a large amount of radiation environment, the latch-up phenomenon will be triggered inside the component. The above problems are currently encountered in the development of space applications. The parasitic gate fluid inside the insulated gate bipolar transistor is often triggered by the radiation effect in space, and then a positive feedback mechanism is generated. This positive feedback mechanism will Increase the component current quickly, and finally burn the component. As shown in Figure 2, Figure 2 shows the structure of a general N-channel insulated gate bipolar transistor. The grooved gate insulated gate bipolar transistor mainly includes N + emitter 26 (N + emitter) and an emitter. Metal 29, a drift region 22 (N-drift regi), -N + buffer layer 21 (N + layer), -P + substrate 20 (P + substrate), a p base 24 (p and a slot gate (Gate) 25. Its relevant position is shown in Figure 2. The structure of 心 heart is such that when there is heavy ion effect induction, its N-drift region 2 2, P base 2 3, and N + emitter 2 β band.士 = η = > When the environment is induced, such as heavy ion effect: two liters shot into wide: = structure 'When Arima 4 Kaneda shoots 4, it will easily trigger SEL 〇 Hungry image of bipolar transistor is proposed to protect 雔 雔 == 出The present invention proposes a method for improving the anti-H-radiation capability for the slot-shaped gate insulated bipolar transistor.

第6頁 五、發明說明(3) 【發明内容】 本發明的主要目的在於提供 性電晶體的結構和製作方法,其/裡僧狀閘極絕緣間雙極 閘雙極性電晶體的側向電阻值^寺^、彳用卩牛低槽狀閘極絕緣 工作特性與提高元件的抗輻射能力。’來達成符合元件正常 本發明之另一目的是提供一種 電晶體的結構,在N型通道的絕緣““^絕曰緣閑雙Μ 形成P+ Plug側向及垂直的延伸’以 體中藉由 :極性電晶體P"lug的面積,進而降===閉 發的可能性,0此可以有較高的抗輻射二生閘-體被觸 本發明之再一目的是提供一種槽狀閘極 200411926 五、發明說明(4) 層’最後進行射極金屬化(emitter metaUizati〇n)的 步驟’完成電晶體的製作。 【實施方式】 本發明係利用降低槽狀閘極絕緣閘雙極性雷曰體的你丨 向電阻值特性。如&,就會不因環境中的高;;;;而;1 發閃鎖現象。便可達成符合元件正常工作特性與提高元件 的抗輻射能力。而其中所述之側向電阻值(如圖一結構A所 示)係指在槽狀閘極絕緣閘雙極性電晶體的電洞電流 (hole current)經由P base區域流往N+射極下方,最 後流出emit ter電極所形成的電阻區域。為詳細說明本發 明之電晶體結構,本發明將提供製作N型通道的絕緣閘雙 極性電晶體作為實施例並配合圖示說明之。 首先,參考圖一所示,本發明之實施例中其中所述之 槽狀閘極絕緣閘雙極性電晶體主要包括一 N +射極丨6 ( N + emitter)、一射極金屬 19、一p+基板ι〇(ρ + substrate)、一 p+ 插塞 13 (P+ plug) 、一p 基極 14 (P + b a s e )與一槽狀閘極1 5 ( g a t e )。其製程步驟如下所述: 於石夕基板中進行摻雜步驟,使基板成為p+基板丨〇,接續使 用擴散或離子佈值方式於基板中形成!^+緩衝層11 (N + buffer layer)和N-漂移區 12(N— area),此^ 漂移區1 2作為承受高電壓之用。再下來,利用擴散方式 (diffusion)或離子佈值方式(i〇n impiantati〇n)形成 P+ Plugl3。此p+ piugl3之形成面積即為本發明之重點。Page 6 V. Description of the invention (3) [Summary of the invention] The main purpose of the present invention is to provide the structure and manufacturing method of the sexual transistor, and its side resistance The working characteristics of yak low-groove gate insulation for 寺, ^, and 彳, and to improve the radiation resistance of components. 'To achieve the normal element compliance, another object of the present invention is to provide a transistor structure in the N-type channel insulation "" ^ : The area of the polar transistor P " lug, which further reduces the possibility of hair loss. 0 This can have a high radiation resistance secondary gate. The body is touched. Another object of the present invention is to provide a grooved gate 200411926 V. Description of the invention (4) The layer 'finished the step of emitter metaUization' to complete the production of the transistor. [Embodiment] The present invention uses the characteristics of reducing the resistance of the bidirectional thunder body of the slot-shaped gate insulated gate bipolar thunder body. Such as &, it will not be caused by the high in the environment; and; This can meet the normal working characteristics of the component and improve the radiation resistance of the component. Wherein, the lateral resistance value (as shown in the structure A in FIG. 1) refers to the hole current of the bipolar transistor with a gate-shaped insulating gate flowing through the P base region under the N + emitter. Finally, the resistance area formed by the emit ter electrode flows out. In order to explain the transistor structure of the present invention in detail, the present invention will provide an insulated gate bipolar transistor made of an N-type channel as an example and illustrated with reference to the figure. First, referring to FIG. 1, the grooved gate insulated gate bipolar transistor described in the embodiment of the present invention mainly includes an N + emitter 6 (N + emitter), an emitter metal 19, an p + substrate ι〇 (ρ + substrate), a p + plug 13 (P + plug), a p base 14 (P + base), and a slot gate 15 (gate). The process steps are as follows: A doping step is performed in the Shixi substrate to make the substrate a p + substrate, and then a diffusion or ion distribution method is used to form the substrate in the substrate! + + Buffer layer 11 (N + buffer layer) and N-drift region 12 (N-area), which is used to withstand high voltage. Next, P + Plugl3 is formed by using diffusion or ionization (Ion impiantati). The formation area of p + piugl3 is the focus of the present invention.

200411926200411926

五、發明說明(5) 在N+射極16下方的p+ piUgi3藉著擴散方法一摻雜的低電 阻,如此可將原本在N+射極16下方,由p basel4所形成的 一段濃度低的大電阻,在此結構中P+ plugl3的摻雜濃度 比P basel4高。藉由此p+ piUg13的摻雜可以使得側向電 阻降低,並經由側向及垂直的延伸,加大p+ p 1 1 3的面 積,如同結構A所示。此結構會有較小的橫向電阻值,因 此使得寄生閘流體比較不易被驅動。 其上所述之N+緩衝層11和N-漂移區1 2亦可使用磊晶 方式形成(epi)之。 一 /、中所述之P + P 1 u S1 3右方的橫軸距離,在不影塑到 凡件原有的操作特性和達到最有效的減少橫向電阻原則 I,可向右方做側向延伸,使得抗輻射能力更加提高。而 至、=P 1 ug的深度,在不影響到元件原有的操作特性和達 j,有效的減少橫向電阻原則下,可向下方做垂直延 更传抗輻射能力更加提高。 形成本f明形成P+ PlUgU的目的係將原本由P basel4所 产古的崦度低大電阻區域,變成為P+ p 1 ug丨3所形成的濃 合=j電阻區域’就可以大大的降低側向電阻。也就是含兒 iί子撞擊之後,所產生的短暫電流源,將隨著元件内 向電阻值的降低,使得元件内部的寄生ΝρΝ電晶體更 破驅動,因為此短暫電流源的電洞電流經由射極端 出時,其所流過的範圍皆為小電阻的P+ plugl3,此方 一=卩< 有效的降低原本由p basel 4所形成的大電阻區域, 旦電阻降低後,此N+射極16與P+ piUgl3所形成的小壓V. Description of the invention (5) p + piUgi3 under N + emitter 16 is doped with a low resistance by the diffusion method, so that a low-concentration large resistance formed by p basel4 under N + emitter 16 can be used. In this structure, the doping concentration of P + plugl3 is higher than that of P basel4. By doping with p + piUg13, the lateral resistance can be reduced, and the area of p + p 1 1 3 can be increased by extending laterally and vertically, as shown in structure A. This structure will have a smaller lateral resistance value, making it less likely that the parasitic gate fluid will be driven. The N + buffer layer 11 and the N-drift region 12 described above can also be formed (epi) using an epitaxial method. The distance of the horizontal axis on the right side of P + P 1 u S1 3 mentioned in the above description, without affecting the original operating characteristics of all parts and achieving the most effective principle of reducing lateral resistance I, can be made to the right Extend to make the radiation resistance more improved. To the depth of = P 1 ug, without affecting the original operating characteristics and j of the element, and effectively reducing the lateral resistance, the vertical extension can be made downward to increase the radiation resistance. The purpose of the formation of P + PlUgU is to change the low- and high-resistance area originally produced by P basel4 into a concentration = j resistance area formed by P + p 1 ug 丨 3, which can greatly reduce the side.向 Resistance. That is, the transient current source generated after the impact of the child Iί will reduce the inward resistance of the element, making the parasitic NρN transistor inside the element more broken, because the hole current of this transient current source passes through the emitter terminal. When it exits, the range it flows through is P + plugl3 with small resistance. This one = 卩 < effectively reduces the large resistance area originally formed by p basel 4. Once the resistance decreases, the N + emitter 16 and Small pressure formed by P + piUgl3

200411926200411926

降,將會大 寄生閘流體 性。如此當 擊)刺激或 體,產生正 效應。 大的降低此 被重離子觸 元件受到外 内部所引發 回授機制皆 二極體的順 發的可能性 界(如照光 的大電流, 可以引用此 偏電壓,因 ,達到有效 或是受到該 只要是驅動 結構減低寄 此可以提高 的抗輻射特 重離子撞 其寄生閘流 生閘流體的 接續,如圖一所示,採用離子佈值方式 (implantation)形成 P-weU :即為 p_ba^e 區域 14。 續採用乾氧化方式於基板中形成閘氧化層丨8 ( g a七e oxide)、使用低壓化學氣相沈積方式(L〇w以“叫” chemical Vapor deposition ; LPCVD )沉積多晶矽材質以 製作.成槽狀閘極1 5 ( p ο 1 y g a t e )、用濺渡方式 、 (sputter)或物理氣相沈積方式(physical vaper deposition ;PVD)沉積金屬鋁矽銅形成N+射極16 (emitter )和用乾氧化方式形成gafe上層的氧化層I? (oxide layer )。最後,使用射極金屬化(emitter metallization)之步驟形成射極金屬19。 如此製作之電晶體,如前所述可降低寄生閘流體射極 與基極接面的側向電阻,如此會有穩定表現於衛星的電源 供應系統或高海拔的飛機等重離子環境之下。根據本發明 之重點’其中該槽狀閘極絕緣閘雙極性電晶體可型5"通 道槽狀閘極絕緣閘雙極性電晶體或Ρ型通道槽狀閘極絕緣 閘雙極性電晶體。而本發明之實施例僅說明Ν型通道槽狀 閘極絕緣閘雙極性電晶體之製作方式。It will greatly reduce the fluidity of the parasitic gate. Such a shock) stimulates the body or has a positive effect. It greatly reduces the possibility that this heavy ion touch element is subject to the external and internal feedback mechanisms of both diodes. (For large currents of light, this bias voltage can be cited, because it is effective or affected by the The driving structure reduces the continuity of the radiation-resistant extra-heavy ions that hit the parasitic sluice to generate sluice fluid. As shown in Figure 1, P-weU is formed by ion implantation: the p_ba ^ e region. 14. Continue to use a dry oxidation method to form a gate oxide layer in the substrate (Ga7e oxide), using low-pressure chemical vapor deposition (Low called "chemical Vapor deposition; LPCVD) deposition of polycrystalline silicon material to produce. Slot-shaped gate electrode 15 (p ο 1 ygate), sputter or physical vaper deposition (PVD) deposition of metal aluminum silicon copper to form N + emitter 16 (emitter) and The oxide layer I? Above the Gafe is formed by dry oxidation. Finally, the emitter metallization step is used to form the emitter metal 19. The thus-produced transistor is as previously described. It can reduce the lateral resistance of the parasitic gate fluid emitter and base interface, so it will be stable in heavy ion environments such as satellite power supply systems or high-altitude aircraft. Gate Insulated Gate Bipolar Transistor Type 5 " Channel Slotted Gate Insulated Gate Bipolar Transistor or P-type Channel Slotted Gate Insulated Gate Bipolar Transistor. The embodiments of the present invention only describe N-type channel slots The manufacturing method of the bipolar transistor with the shape of gate.

200411926 五、發明說明(7) 本發明實施例中所述之槽狀閘極絕緣閘雙極性電晶體 閘極並不侷限其尺寸’其尺寸可為次微米(s u b 一 m icron)、 深次微米(deep-sub-micron)或奈米(nano-meter)。 在本發明之實施例亦與傳統方式所製作出的槽狀閘極 絕緣閘雙極性電晶體(如圖二所示)或相似結構之電晶體 (如圖三所示)作一系列試驗比較其工作電壓情況(如圖 四所示)、在重離子撞擊後其SEL現象的敏感程度(如圖 五所示)和於電晶體相同位置經撞擊後其SEL現象的敏感 程度(如圖六所示)等狀況。 首先,先說明其參與試驗之電晶體結構。 I .結構A ··如圖一所示,為本發明之實施例。 Π ·結構B ··如圖二所示,為基本的槽狀閘極絕緣閘雙極性 電晶體結構B的垂直結構圖。 m ·結構c :如圖三所示,其係為在槽狀閘極絕緣閘雙極性 電晶體元件内,以類似DM0S的方式,但附加形成一層 P+擴散區域33 (以結構C代表之),但此p+擴散區域的深 度較圖一結構A淺。此結構包含包括一N+射極36 (N + emitter)、一射極金屬 39(Emitter metal) ' — p+基 板30(P+ substrate)、一P+ 插塞33 (P+ plug)、一p 基極3 4 (P+ base )、一槽狀閘極35 (gate )、一閘氧 化層38、一上氧化層37、N+緩衝層31 (N+ buffer layer)和N-漂移區32(N- drift area)。此結構的形 成主要是因為重離子撞擊元件後,其電洞電流將不只 疋會垂直的流,也會有側向的流,因此此結構可以達200411926 V. Description of the invention (7) The grooved gate insulated gate bipolar transistor gate described in the embodiment of the present invention is not limited in its size, and its size may be sub-micron, deep sub-micron (Deep-sub-micron) or nano-meter. In the embodiment of the present invention, a series of experiments are compared with the slot-shaped gate insulated gate bipolar transistor (shown in FIG. 2) or a similar structure transistor (shown in FIG. 3) made in the conventional manner. The working voltage (as shown in Figure 4), the sensitivity of the SEL phenomenon after the impact of heavy ions (as shown in Figure 5) and the sensitivity of the SEL phenomenon after the impact at the same position of the transistor (as shown in Figure 6) ) And other conditions. First, the transistor structure involved in the experiment will be described. I. Structure A. As shown in FIG. 1, it is an embodiment of the present invention. Π · Structure B ········································ • ············································· The direction is shown in Figure 2. m · Structure c: As shown in Figure 3, it is in a trench-gate insulated bipolar transistor element in a similar manner to DMOS, but additionally forms a layer of P + diffusion region 33 (represented by structure C), However, the depth of this p + diffusion region is shallower than the structure A of FIG. 1. This structure includes an N + emitter 36 (N + emitter), an emitter metal 39 '— p + substrate 30 (P + substrate), a P + plug 33 (P + plug), and a p base 3 4 (P + base), a trench gate 35, a gate oxide layer 38, an upper oxide layer 37, an N + buffer layer 31, and an N-drift area 32. The formation of this structure is mainly due to the fact that after heavy ions strike the element, the hole current will not only flow vertically but also laterally, so this structure can reach

200411926200411926

五、發明說明(8) 成歐米接觸(Ohmir r + 、 極性電晶體元件内 ct)與減父槽狀閘極絕緣閘雙 牛内部的側向壓降的目的。 具結果如下所ϋ · 結構的集極電流對先知 > 閱圖四,結構Α〜C三種不同 2。”,從此壓的曲線(固定集極電壓為 曲線,因此本荦的疒f 構八、B、C有相似的正常工作 電曰# I柞i f +昌射所採用的結構(結構〇與一般之 目同’並不會影響到其原始的操作特性。 電壓m使用^同的結構(結構b、c) ’使用固定集極 i中相同位晋用重離子(let=〇. 4pc/ #ffl)撞擊電晶 n… (一1 4以m ),觀察結構B、C對SEL·現象的敏 ί ^ 2彳之此圖中,可以看到結構c沒有發生SEL·現象,因 =^極電流錢著時間下降的,其最後會回到原先平衡 片=的漏電流值,也就是說在此結構之下,重離子並沒有 传槽狀閘極絕緣閘雙極性電晶體内部產生永久性破壞, 凡件會回到原始狀態。反之,從此張圖中,可看出結構b 内邛有大電流的產生,此大電流即為SEL電流,將會燒毀 =件。由此可知,本發明所提P+擴散區域卻有其存在之功 能0 接續,請參閱圖六,以重離子(LET=:0.4pC/ 撞擊 結構A和結構C的相同位置(Χ=14 “η),其中使用相同集極 偏壓(VO200V),然後可以看出,結構c已經引發了 SEL現 ,’、但結構A並沒有引發SEL現象。這是由於結構a的p+井 區域的截面積變大,因而可以降低橫向電阻值,.情 下表示其可以容許有較多的電流流往結構α =V. Description of the invention (8) The purpose of forming the Omega contact (Ohmir r +, ct in the polar transistor element) and reducing the lateral pressure drop inside the double slot trench gate insulated gate double gate. The results are as follows: · The collector current of the structure versus the prophet > ", From this curve (the fixed collector voltage is a curve, so the 荦 f structure of this frame, B, C have similar normal working electricity. # I 柞 if + 昌 射 The structure used (structure 0 and general "The same" does not affect its original operating characteristics. The voltage m uses the same structure (structures b, c), and uses the same position in the fixed collector i to use heavy ions (let = 0.4pc / #ffl) Hit the transistor n ... (1 to 14 m), observe the sensitivity of the structures B and C to the SEL · phenomenon. ^ 2 彳 In this figure, you can see that the structure c does not have the SEL · phenomenon, because = ^ pole current money As time goes by, it will eventually return to the leakage current value of the original balance sheet =, that is to say, under this structure, heavy ions do not pass through the slot-shaped gate insulated gate bipolar transistor to cause permanent damage. Where The component will return to the original state. Conversely, from this picture, it can be seen that a large current is generated in the structure b. This large current is the SEL current and will be burned = pieces. From this, it can be seen that the P + diffusion region proposed by the present invention But it has its own function. 0 Continuation, please refer to Figure 6, using heavy ions (LET =: 0.4pC / impact Structure A and Structure C are at the same position (X = 14 "η), where the same collector bias voltage (VO200V) is used, and then it can be seen that Structure c has triggered the SEL phenomenon, but Structure A does not trigger the SEL phenomenon. This is because the cross-sectional area of the p + well region of the structure a becomes larger, so the lateral resistance value can be reduced. In the case, it indicates that it can allow more current to flow to the structure α =

200411926 五、發明說明(9) -- 亚且不會驅動寄生的^^!^雙載子電晶體。也就是說,當有 部份的電流流經N+ emitter區域下方的p+井區域時,曰因 結構A的P+井區域比結構c的?+井區域大,所以使得社構a 的橫向電阻值小於結構C,最後橫向壓降也會跟著減少。 最後,便以表格來整理出結構A、B、c,在不同偏壓、 不同離子撞擊位置時,其有無發生SEL現象,來證明本案 所採用之結構(結構A)確實可以有效的達成提高槽狀閘極 絕緣閘雙極性電晶體的抗輻射能力,其結果請參閱表一、 表二和表三。 表一係顯示本發明之結構A經不同集極偏壓、在不同 位置疋否發生SEL現象進行量測之結果。從此表中可看 出,當以重離子(LET = 0.4 PC///m)撞擊在不同集極偏壓下 結構A的不同位置,只有當集極偏壓大於24(^的時候才會發 生SEL現象。要完成此表,可以依循兩個方法,第一個是 先固定離子撞擊的位置,再以結構Α的集極電壓為回圈, 從2 6 0V掃到l70V,然後觀察其集極電流對時間的曲線,如 果集極電流有大電流的現象發生,則將其記錄為¥(即為有 SEL現象的發生),反過來說,如果集極電流 回復到平衡狀態的漏電流,則將其記錄為"即為無SEL現 象的發生),第二個是以先固定結構A的集極電壓,铁後改 變離子的撞擊位置(x=2//m、6//m、10//m、14#m)7然後 按照上一個方法中記錄其有無發生SEL現象。 .、 表二中係以重離子(LET = 0.4 pC///m)撞擊在不同隼極 偏壓下結構B的不同位置,當集極偏壓大於8〇v的時候便會200411926 V. Description of the invention (9)-^^! ^ Double-carrier transistor that is sub- and does not drive parasitics. That is, when a part of the current flows through the p + well region below the N + emitter region, is the P + well region of the structure A better than that of the structure c? The + well area is large, so that the lateral resistance value of the structure a is smaller than that of the structure C, and finally the lateral pressure drop will also decrease. Finally, the structures A, B, and c are sorted out in a table. Whether the SEL phenomenon occurs under different bias voltages and different ion impact positions, to prove that the structure (structure A) used in this case can indeed effectively improve the groove. The bipolar transistor's radiation resistance ability is shown in Table 1, Table 2 and Table 3. Table 1 shows the measurement results of the structure A of the present invention with different collector bias and no SEL phenomenon at different locations. As can be seen from this table, when heavy ions (LET = 0.4 PC /// m) are struck at different positions of structure A under different collector biases, they only occur when the collector bias is greater than 24 (^ SEL phenomenon. To complete this table, two methods can be followed, the first is to first fix the position where the ions strike, and then use the collector voltage of structure A as a loop, sweeping from 260V to l70V, and then observe the collector The current vs. time curve, if the collector current has a large current phenomenon, it will be recorded as ¥ (that is, the occurrence of the SEL phenomenon). On the other hand, if the collector current returns to the equilibrium leakage current, then Record it as "No occurrence of SEL phenomenon", the second is to fix the collector voltage of structure A first, then change the impact position of ions after iron (x = 2 // m, 6 // m, 10 // m, 14 # m) 7 Then record whether there is SEL phenomenon according to the previous method. .. In Table 2, heavy ions (LET = 0.4 pC /// m) are struck at different positions of structure B under different 隼 biases. When the collector bias is greater than 80 volts,

200411926 五、發明說明(ίο) 發生SEL現象。完成此表,可以依循兩個方法,與表一操 作方式相同,僅將電壓範圍改成從掃到80 V。 表三中係以重離子(LET = 0.4 pC//zm)撞擊在不同集極 偏壓下結構C的不同位置,當集極偏壓大於1 7 0.V的時候會 發生SEL現象。完成此表,可以依循兩個方法,與表一操 作方式相同,僅將電壓範圍改成從220V掃到170V,然後觀 察其集極電流對時間的曲線。比較以上的表格(表一、表 二和表三),玎以發現結構A的確可以改善SEL現象的觸發 偏壓。 此外,從表一、表二和表三中也可以發現離子撞擊在 比較接近通道地方的位置下,結構比較容易會有SEL現象 的發生,然而’這種SEL現象卻沒有發生在比較遠離通道 地方。 圖七爲界 一々二 < 您、邗,係為離子撞擊在結構 A、B、C的不同及極偏壓下的不同的離子撞擊位置,^疚 其對SEL現象的敏感程度;可發現結構A操作情形最作規察 發SEL產生的電壓最高。 土’誘 本發明所述之參考例子係在特定領域中之特定每> 例,因此熟知此技藝的人士應能明瞭本發明要義疋貝施 行適當、些微的調整和應用,仍將不失本發明之在,進 在。接續的申請專利範圍中係包含在本發^中张=義所 應用、調整。 所有此類的200411926 V. Description of the Invention (ίο) SEL phenomenon occurred. To complete this table, you can follow two methods. The operation is the same as in Table 1. Only the voltage range is changed from sweep to 80 V. In Table 3, heavy ions (LET = 0.4 pC // zm) impinge on different positions of structure C under different collector biases. When the collector bias is greater than 170.V, the SEL phenomenon occurs. To complete this table, you can follow two methods. The operation is the same as in Table 1. Only the voltage range is changed from 220V to 170V, and then the collector current versus time is observed. Comparing the above tables (Table 1, Table 2 and Table 3), it is found that the structure A can indeed improve the trigger bias of the SEL phenomenon. In addition, from Tables 1, 2, and 3, it can also be found that the ions collide at a position closer to the channel, and the structure is more likely to have a SEL phenomenon. However, 'this SEL phenomenon does not occur in a place far from the channel. . Figure 7 shows the bounds of I and II. You and Y are the different ion impact positions of the ions impinging on the structures A, B, and C and the extreme bias voltage, and their sensitivity to the SEL phenomenon; the structure can be found. A operating situation is the most regulated. The voltage generated by the SEL is the highest. The reference examples described in the present invention are specific examples in a specific field, so those skilled in the art should be able to understand the proper and slight adjustments and applications of the present invention. It will still be cost-effective. Invented, in. The scope of subsequent patent applications is included in this publication. All such

200411926 圖式簡單說明 【圖示簡單說明】 圖一係為本發明實施 圖一係為本發明實施 圖二係為本發明實施 圖四係為本發明實施 集極電流對閘極電壓的曲 圖五係為本發明實施 偏壓’並撞擊在結構B、◦ 現象的敏感程度。 圖六係為本發明實施 偏 壓’並撞擊在結構a SEL現象的敏感程度。 表一係為本發明實施 極偏壓下的不同位置,觀 表二係為本發明實施 極偏壓下的不同位置,觀 表二係為本發明實施 極偏壓下的不同位置,觀 圖七係為本發明實施 不同汲極偏壓下的不同位 度。 例中結構A之垂直剖面圖。 例中結構B之垂直剖面圖。 例中結構C之垂直剖面圖。 例中結構A〜C三種之不同結構的 線。200411926 Schematic description of the diagram [Simplified illustration of the diagram] Figure 1 is the implementation of the invention Figure 1 is the implementation of the invention Figure 2 is the implementation of the invention Figure 4 is the curve diagram of the collector current versus gate voltage of the implementation of the invention 5 It is the sensitivity degree of the phenomenon of biasing and impacting the structure B, ◦ according to the present invention. Figure 6 shows the sensitivity of the SEL phenomenon when the bias voltage is applied to the structure and the impact is applied to the structure a. Table 1 shows the different positions under the extreme bias of the present invention. Table 2 shows the different positions under the extreme bias of the present invention. Table 2 shows the different positions under the extreme bias of the present invention. The different positions under different drain bias voltages are implemented in the present invention. Vertical sectional view of structure A in the example. Vertical sectional view of structure B in the example. Vertical sectional view of structure C in the example. In the example, the structures A to C are three different structures.

例中使用相同的重離子、相同的 的相同位置,而結構B、C對SEL 例中使用相同的重離子、相同的 、C的相同位置,而結構A、C對 例中離子撞擊在結構A的不同集 察其對SEL現象的敏感程度。 例中離子撞擊在結構B的不同集 察其對SEL現象的敏感程度。 例中離子撞擊在結構C的不同集 察其對S E L現象的敏感程度。 例中離子撞擊在結構A、B、C的 置,觀察其對SEL現象的敏感程 圖號說明: 10 P+基板 11 N+緩衝層 12 N-漂移區域In the example, the same heavy ion and the same position are used, and the structures B and C are paired with the SEL. In the example, the same heavy ion, the same and the same position with C are used, and in the structure A and C, the ions collide with the structure A in the example. Different sets of observations of their sensitivity to the SEL phenomenon. In the example, the ions impinge on different sets of structure B to observe their sensitivity to the SEL phenomenon. In the example, the ions impinge on different sets of structure C to observe their sensitivity to the S EL phenomenon. In the example, the ions impinge on the structures A, B, and C, and observe their sensitivity to the SEL phenomenon. Drawing number description: 10 P + substrate 11 N + buffer layer 12 N- drift region

第15頁 200411926 圖式簡單說明 13 P+ plug 區域 16 N +射極 19 射極金屬 2 2 N -漂移區域 2 6 N +射極 2 9 射極金屬 3 2 N -漂移區域 3 5 槽狀閘極 3 8閘氧化層 14 P基極 1 7 上氧化層 2 0 P +基板 2 4 P基極 2 7 上氧化層 3 0 P +基板 33 P+ plug 區域 3 6 N +射極 3 9 射極金屬 1 5槽狀閘極 1 8閘氧化層 21 N+緩衝層 2 5槽狀閘極 28 閘氧化層 31 N+緩衝層 3 4 P基極 37 上氧化層Page 15 200411926 Simple description of the diagram 13 P + plug region 16 N + emitter 19 emitter metal 2 2 N-drift region 2 6 N + emitter 2 9 emitter metal 3 2 N-drift region 3 5 slot gate 3 8 gate oxide layer 14 P base electrode 1 7 upper oxide layer 2 0 P + substrate 2 4 P base electrode 2 7 upper oxide layer 3 0 P + substrate 33 P + plug area 3 6 N + emitter 3 9 emitter metal 1 5 slot gate 1 8 gate oxide layer 21 N + buffer layer 2 5 slot gate 28 gate oxide layer 31 N + buffer layer 3 4 P base 37 upper oxide layer

第16頁 200411926 圖式 、却 age (V) 270 260 250 240 230 220 210 200 m ISO 170 X (μιίϊ)\ 2 一 Ν Ν Ν Ν Ν Ν Ν N _M Ν 6 一 Ν Ν Ν Ν Ν Ν Ν N Ν Ν 10 — Ν Ν Ν Ν Ν Ν Ν N Ν Ν 14 — Υ Υ Ν Ν Ν Ν Ν N Ν Ν 表一Page 16 200411926 Schema, but age (V) 270 260 250 240 230 220 210 200 m ISO 170 X (μιίϊ) \ 2-Ν Ν Ν Ν Ν Ν Ν N _M Ν 6-Ν Ν Ν Ν Ν Ν Ν N N Ν Ν 10 — Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν 14-Υ Υ Ν Ν Ν Ν Ν N Ν Ν Ν Table 1

^^Itage (V) Χ(μώ)\ 190 18» 170 160 150 140 130 120 110 100 90 so 2 一 一 Ν Ν Ν Ν Ν Ν X Ν Ν N 6 一 一 Ν Ν Ν Ν Ν Ν Ν Ν Ν N 10 一 一 Υ Υ Υ Υ Υ Υ Υ Υ Ν N 14 一 一 Υ 1 Υ Υ Υ Υ Υ Υ Υ Υ N 表 "Wtage(V) XijiraK. 270 260 2550 24Π 2^0 22Λ 210 20Π 190 m Ι7Π 2 Ν Ν Ν Ν Ν Ν 6 Ν Ν Ν Ν Ν Ν 10 Ν Ν Ν Ν Ν Ν 14 Υ Υ Υ Υ Υ Ν 表 第頁^^ Itage (V) Χ (μώ) \ 190 18 »170 160 150 140 130 120 110 100 90 so 2-one Ν Ν Ν Ν Ν X Ν Ν N 6-one Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν N N 10 一一 Υ Υ Υ Υ Υ Υ Υ Υ Ν N 14 11Υ1 Υ Υ Υ Υ Υ Υ Υ 表 Υ N Table " Wtage (V) XijiraK. 270 260 2550 24Π 2 ^ 0 22Λ 210 20Π 190 m Ι7Π 2 Ν Ν Ν Ν Ν Ν Ν 6 Ν Ν Ν Ν Ν Ν 10 Ν Ν Ν Ν Ν Ν Ν 14 Υ Υ Υ Υ Υ Ν table page

Claims (1)

200411926 六、申請專利範圍 1 · 一種槽狀閘極絕緣閘雙極性電晶體的製作方法係包括步 驟: (a) 取一半導體基板經摻雜步驟後形成一 p +基板 (P+substrate); (b) 使用擴散方式(diffusi〇n)於所述之p+基板中形成一 P +插塞(P+ plug); (c) 使用離子佈值方式(impiantati〇n)於所述p+插塞 旁形成一 P-well,其中所述之p — wen即為p-base區 域; (d) 於所述P-base區域旁形成一閘氧化層(gate oxide )作為多晶矽閘極(p〇ly以忱)之下層的氧 化層; (e) 於所述閘氧化層上製作出所述多晶矽閘極; (f) 於所述P-base區域上形成一 N+射極(N + emitter); (=於所述多晶%閘極上方形成±層的氧化層;和 ⑴於戶:base區域上方進行射極金 emmer metallization )。 2 ·::: : ί : Ϊ 2二述“1極絕緣閘雙極性電 P-base # # ^ ^ ^ 使得側向電阻降低。 人 P1 ug的开> 成 3.如申請專利範圍第丨項所述槽狀 晶體的製作方法,其中該p+ =、、、邑緣閘雙極性電 g的面積的大小與該槽 ZUU^li^ZO 六、申請專利範圍 狀閘極絕緣閘 '、〜 關係,因此,火蛋也電晶體所產生的橫向電阻值成 比較不易被驅^ 4p+ Plug面積增大時,其寄生閘流比 4. 如申請專利範園第3 體的製作方法,* 3項所述槽狀閘極絕緣閘雙極性 plug右方的槔輛,大該p+ Plug面積方式可增加該p+晶 和達到最有效的;離’在不影響到元件原有的操作特性 延伸’使得抗轉向電阻原則下,可向右方做側向 5. 如申請專利範圍第二力更加提高。 體的製作方年 ^項所述槽狀閘極絕緣閘雙極性雷曰 床,择士 丨工电曰曰 plug區域的深声9人该P+ Plug面積方式可增加該p + 到最有效的減二样在不影響到元件原有的操作特性和達 伸’使得抗輻i::電阻原則下’可向下方做垂直延 6. 如申請專利範圍J更加提高。 體的製作方法,^項所述槽狀閘極絕緣閘雙極性電晶 為η型通道枰狀,„、代中々該槽狀閘極絕緣閘雙極性電晶體可 俨Iί ^利视圍帛1項所述槽⑼閘極絕緣閘雙極性電晶 乍方法,其中步驟(a)中該ρ+基板係包含Ν+緩 r 品 + buf fer layer)和 N-漂移區(N_ drift region ) 〇 8 ·如申睛專利範圍第1項所述槽狀閘極絕緣閘雙極性電晶 體的製作方法,其中步驟(b)中形成之?+插塞亦可採用 離子佈值方式(ion implantati〇n、 Hi 第18頁 200411926200411926 6. Scope of patent application1. A method for manufacturing a trough-gate insulated bipolar transistor includes the steps of: (a) taking a semiconductor substrate to form a p + substrate after doping; b) forming a P + plug in the p + substrate using a diffusion method (diffusion); (c) forming a p + plug beside the p + plug using an ion distribution method (impiantati) P-well, where p-wen is the p-base region; (d) a gate oxide is formed next to the P-base region as a polysilicon gate A lower oxide layer; (e) fabricating the polysilicon gate on the gate oxide layer; (f) forming an N + emitter on the P-base region; (= on the An oxide layer of ± layer is formed above the polycrystalline gate; and the emitter metal emmer metallization is performed above the base region. 2 · :::: ί: Ϊ 2 Describing "1 pole insulated gate bipolar electricity P-base # # ^ ^ ^ makes the lateral resistance lower. The opening of the person P1 ug > becomes 3. As the scope of patent application The method for manufacturing a trough-shaped crystal as described in the above item, wherein the size of the area of the p + = ,,, and bipolar electrical g of the edge gate and the slot ZUU ^ li ^ ZO Therefore, the lateral resistance value generated by the fire egg transistor is relatively difficult to be driven ^ 4p + Plug area increases, its parasitic sluice ratio 4. Such as the method of making a patent application Fanyuan body 3, * 3 The slot-shaped gate insulation gate bipolar plug is to the right of the car. Larger p + Plug area method can increase the p + crystal sum to achieve the most effective; away from the 'extending without affecting the original operating characteristics of the element' makes anti-steering Under the principle of resistance, the lateral direction can be done to the right. 5. If the scope of the patent application is applied, the second force will be further increased. 9 deep voices in the plug area The P + Plug area method can increase the p + to the most effective minus two Does not affect the original operating characteristics and reach of the element 'makes the anti-radiation i :: resistance principle' can be extended downward vertically. If the scope of the patent application J is further increased. The gate-insulated gate bipolar transistor is a η-shaped channel, and the groove-shaped gate-insulated gate bipolar transistor can be used in the generation of the gate electrode. An electro-crystal method, wherein in step (a), the ρ + substrate system includes N + retarder + buf fer layer) and N-drift region 〇8. Method for manufacturing a slot-shaped gate insulated gate bipolar transistor, which is formed in step (b)? + Plugs can also be ion implanted (ion implantati, Hi, page 18 200411926 六、申請專利範圍 9· 一種槽狀閘極絕緣閘雙極性電晶體(Treneh lnsuiated gate Bipolar Transistor ;TIGBT)結構主要包括: 一P +基板(P+ substrate); 一槽狀閘極(gate)於該P+基板之中 一N+射極(N+ emitter)於該P+基板中並與該槽狀閘極相 連; 一P基極(P base)於該N+射極之下並與該槽狀閘極相連 一 P+插塞(P+ plug)與該N+射極和P基極相連; 10.如申請專利範圍第9項所述槽狀閘極絕緣閘雙極性 =體結構,該P+ Plug面積的大小與該槽狀閘極絕緣間 又極性電晶體所產生的橫向電阻值成反比關係;因 此,當該P+ plug面積增大時,置審 被驅動。 -寄生閑流體比較不易 11.如申請專利範圍 晶體結構,該P + pi ug大小可選擇 伸之一方式,使 1 2.如申請專利範圍 晶體結構,該P + (diffusion ) 1 3.如申請專利範圍 晶體結構,該P + implantation ) 14.如申請專利範圍 ^ "ππ述價狀閘極絕緣閘雙極性電 Plug在不影響原有之操作特性下,ρ + 方做側向延伸牙口向下方做垂直延 =抗輻射能力更加提高。 第9項所述槽狀閘極絕緣閘雙極性電 “叫的掺雜採用擴散方式又才欧電 形成。 第9項所述槽狀閘極絕 一的摻雜採用離子佈值方式(lon 第9項所述槽狀閘極絕緣閘雙極性電 2004119266. Scope of patent application 9. A trough gate insulated gate bipolar transistor (TIGBT) structure mainly includes: a P + substrate (P + substrate); a slot gate An N + emitter in the P + substrate is in the P + substrate and is connected to the slot gate; a P base is under the N + emitter and is connected to the slot gate. P + plug (P + plug) is connected to the N + emitter and P base; 10. Slot-shaped gate insulation gate bipolar = body structure as described in item 9 of the scope of patent application, the size of the P + Plug area is the same as the slot The lateral resistance value generated by the polar transistor between the gate-like insulation is inversely related; therefore, when the area of the P + plug increases, the review is driven. -Parasitic free fluid is not easy 11. If the scope of the patent application is for a crystal structure, the P + pi ug size can be selected to be extended to make 1 2. If the scope of the patent is for a crystal structure, the P + (diffusion) 1 3. If the patent is applied for Range crystal structure, the P + implantation) 14. According to the scope of patent application ^ " ππ valence gate insulated gate bipolar electric plug does not affect the original operating characteristics, ρ + square side extension teeth downward Do vertical extension = radiation resistance is more improved. The bipolar electricity of the slotted gate insulation gate described in item 9 is formed by the diffusion method and then formed by European electricity. The doping of the grooved gate electrode described in item 9 is the ion distribution method (lon Slot-shaped gate insulated gate bipolar electricity as described in 9 items 晶體結構 灸的摻雜採用離子佈值方式 (implant ion )形成 1 5·如申請專利範圍第9項 晶體結構,苴中今P+ nl槽狀閘極絕緣閘雙極性電 -T pi ug所摻雜 古 區域之摻雜濃度,如此可藉由的,度阿於该p—base 向電阻降低。 x p1 Ug的形成使得側 1 6.如申請專利範圍第9項所述 曰舻& Μ ^ & 岍迷槽狀閘極絕緣閘雙極性電 曰曰體“冓,该槽狀閘極係為上 極和下層氧化層所構成。 匕層夕曰曰矽閘The crystal structure of moxibustion is doped by implant ion. 15 · As in the ninth crystal structure of the patent application scope, the P + nl slot-shaped gate insulated gate bipolar galvanic -T pi ug doped The doping concentration in the ancient region can be reduced by the degree of the p-base resistance. The formation of x p1 Ug makes the side 1 6. As described in item 9 of the scope of the patent application, 舻 & Μ ^ & 岍 slotted gate insulated gate bipolar electric body "冓, the slotted gate system It is composed of the upper electrode and the lower oxide layer. 17. —種槽狀閘極絕緣閘雙極性電晶體。的以〗Mulat gate Bipolar Transist〇r ;TIGBT)結構主要 一 N +基板(N+ substrate); 中並與該槽狀閘極 一槽狀閘極(gate)於該N+基板之中 一 P +射極(P+ emitter)於該N+基板 相連; 一N基極(N base)於該P+射極之下並與該槽狀閘極相 一 N+插塞(N+ plug)與該P+射極和n基極相連。17. —Slot-shaped gate insulated gate bipolar transistor. The structure of the Mulat gate Bipolar Transistor (TIGBT) is mainly an N + substrate (N + substrate); and a slot gate is gated in the N + substrate with a P + emitter. (P + emitter) is connected to the N + substrate; an N base is under the P + emitter and is in phase with the slot gate; an N + plug is connected to the P + emitter and the n base Connected. 18.如申請專利範圍第17項所述槽狀閘極絕緣閘雙極性電 晶體結構,該N+ plug面積的大小與該槽狀閘極絕緣 雙極性電晶體所產生的橫向電阻值成反比關係;因甲 此’當該N+ plug面積增大時,其寄生閘流體比較不易 被驅動。 1 9·如申請專利範圍第i 7項所述槽狀閘極絕緣閘雙極性電 晶體結構,該N + p 1 ug在不影響原有之操作特性下,N +18. The grooved gate insulated bipolar transistor structure according to item 17 of the scope of the patent application, the size of the N + plug area is inversely proportional to the lateral resistance value generated by the grooved gate insulated bipolar transistor; Because of this, when the area of the N + plug increases, its parasitic brake fluid is relatively difficult to be driven. 1 9 · As stated in item i 7 of the scope of the patent application, the grooved gate insulated gate bipolar transistor structure, the N + p 1 ug, without affecting the original operating characteristics, N + 第 20 頁 一 ~~ -- 200411926 六、申請專利範圍 plug大小可選擇朝右方做側向 伸之-方式,使得抗轄射能力方做垂直延 利;:V7項戶:述槽狀二^ ,體構別+ _的捧雜採用擴散 (diffusion)形成 。 、 21 如申請專利範圍第1 7項所述榫 曰舻社爐,兮^疋糟狀閘極絕緣閘雙極性電 日日體、、.口構桃Plug的摻雜採用離 implantation ) 〇 22.如申請專利範圍第丨7項所述 曰栌灶谌,兮α k僧狀閘極絕緣閘雙極性電 曰曰體釔構,该N基極的摻雜採用離子佈值 (implant ion )形成。 式 23·如申請專利範圍第I?項所述 曰浐社燼,立由# λΐ , k價狀閘極絕緣閘雙極性電 曰日體結構,其中该N+ pUg所摻雜 F访夕谈邱:、、曲命 , J /辰没间於该P —base &域之摻隸艰度,如此可藉由該^ 向電阻降低。 μ 1 u§的形成使付側 24·如申請專利範圍第1 7項所梓 曰舻壯μ _ ^ „ 义僧狀閑極絕緣閘雙極性電 日日體I口構,该槽狀問極係為上層閉氧化芦 極和下層氧化層所構成。 曰 夕日日夕閘Page 20 I ~~-200411926 VI. The scope of the patent application plug can be chosen to extend to the right side-to-side way, so that the anti-radiation ability can be vertically extended; Formation + _ is formed by diffusion. 21, as described in the scope of patent application No. 17 of the tenon, said 舻 舻 community furnace, Xi 疋 疋 闸 shape gate insulation gate bipolar electric sun body,.. Doped peach plug doping using implantation) 〇 22. As described in item 7 of the scope of the patent application, the α k monk gate insulated gate bipolar electric body is yttrium structure, and the N base is doped with implant ion. Equation 23: As described in item I of the scope of the application for patent, the company ’s embroidery is called # λΐ, a k-valent gate insulated gate bipolar electric solar structure, where the N + pUg is doped with F. : ,, Qu Ming, J / Chen is not in the P-base & domain, the difficulty is mixed, so the resistance can be reduced by the ^ direction. The formation of μ 1 u§ makes the secondary side 24. As described in item 17 of the scope of patent application, the strong side μ _ ^ „The monk-like leisure pole insulation gate bipolar electric solar heliostat I port structure, the slot-shaped question pole It is composed of the upper closed oxide pole and the lower oxide layer.
TW91137558A 2002-12-23 2002-12-23 Structures and fabrication methods trench insulated gate bipolar transistors TWI222743B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91137558A TWI222743B (en) 2002-12-23 2002-12-23 Structures and fabrication methods trench insulated gate bipolar transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91137558A TWI222743B (en) 2002-12-23 2002-12-23 Structures and fabrication methods trench insulated gate bipolar transistors

Publications (2)

Publication Number Publication Date
TW200411926A true TW200411926A (en) 2004-07-01
TWI222743B TWI222743B (en) 2004-10-21

Family

ID=34546073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91137558A TWI222743B (en) 2002-12-23 2002-12-23 Structures and fabrication methods trench insulated gate bipolar transistors

Country Status (1)

Country Link
TW (1) TWI222743B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424564B (en) * 2011-01-13 2014-01-21 Anpec Electronics Corp Insulator gate with high operational response speed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570916B (en) * 2014-11-17 2017-02-11 旺宏電子股份有限公司 Semiconductor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424564B (en) * 2011-01-13 2014-01-21 Anpec Electronics Corp Insulator gate with high operational response speed

Also Published As

Publication number Publication date
TWI222743B (en) 2004-10-21

Similar Documents

Publication Publication Date Title
TWI225285B (en) Low voltage high density trench-gated power device with uniformly doped channel and its edge termination technique
TWI453919B (en) Diode structures with controlled injection efficiency for fast switching
JP2868728B2 (en) MOS gate type power transistor and method of manufacturing the same
CN104183645B (en) Vertical trench junction type SiC power fet and its manufacturing method
US9450056B2 (en) Lateral DMOS device with dummy gate
TW588460B (en) Trench power MOSFET and method of making the same
US6137139A (en) Low voltage dual-well MOS device having high ruggedness, low on-resistance, and improved body diode reverse recovery
TWI388011B (en) Semiconductor device and method of forming a semiconductor device
US20160181391A1 (en) Diode structures with controlled injection efficiency for fast switching
US20130228823A1 (en) Reverse-conducting semiconductor device
US9412811B2 (en) Semiconductor device having localized charge balance structure and method
EP2525410A1 (en) Insulated gate bipolar transistor and manufacturing method thereof
US10686038B2 (en) Reverse conducting IGBT incorporating epitaxial layer field stop zone
CN109979935A (en) The manufacturing method of semiconductor device and semiconductor device
JP2007095997A (en) Semiconductor device and its manufacturing method
TWI229941B (en) High voltage metal-oxide semiconductor device
US11749716B2 (en) Semiconductor device incorporating epitaxial layer field stop zone
TW201114029A (en) IGBT with fast reverse recovery time rectifier and manufacturing method thereof
CN101783295B (en) High-voltage LDMOS device and manufacturing method thereof
CN106298939A (en) A kind of accumulation type DMOS with complex media Rotating fields
TWI739252B (en) Trench mosfet and manufacturing method of the same
CN102938375B (en) Field effect transistor and forming method thereof
KR20150051067A (en) Power semiconductor device and method of fabricating the same
CN107516679B (en) Deep-groove super-junction DMOS device
CN102117834B (en) Multiple source MOS transistor with impurity segregation and production method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees