TW200308030A - Semiconductor package and method of preparing same - Google Patents

Semiconductor package and method of preparing same Download PDF

Info

Publication number
TW200308030A
TW200308030A TW092107882A TW92107882A TW200308030A TW 200308030 A TW200308030 A TW 200308030A TW 092107882 A TW092107882 A TW 092107882A TW 92107882 A TW92107882 A TW 92107882A TW 200308030 A TW200308030 A TW 200308030A
Authority
TW
Taiwan
Prior art keywords
silicone
semiconductor package
item
patent application
component
Prior art date
Application number
TW092107882A
Other languages
Chinese (zh)
Other versions
TWI265578B (en
Inventor
Stanton Dent
Lyndon Larson
Robert Nelson
Debra Soliz
Original Assignee
Dow Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning filed Critical Dow Corning
Publication of TW200308030A publication Critical patent/TW200308030A/en
Application granted granted Critical
Publication of TWI265578B publication Critical patent/TWI265578B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A semiconductor package includes a semiconductor wafer having an active surface including at least one integrated circuit, wherein each integrated circuit has a plurality of bond pads. At least one cured silicone member covers at least a portion of the active surface. At least a portion of each bond pad is not covered by the silicone member. The silicone member has a coefficient of linear thermal expansion of from 60 to 280 μ m/m DEG C between-40 and 150 DEG C and a modulus of from 1 to 300 MPa at 25 DEG C , and the silicone member is prepared by the method of the invention.

Description

200308030 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導髀封世 ^ α ^ 干导把封裝,更明確地說,係關於一 種含有一固化的碎@同構件夕曰同Λ # 褥仟炙日曰圓級半導體封裝。本發明也 關於一種製備該半導體封裝的方法。 【先前技術】 積體電路(ic)晶片戎晶# θ )日曰万卵粒通常是在組裝於一印刷電路板 (PWB)之前就進行封奘。^ 订對裝封裝具有幾個重要的功能,包含 内連線(電力和訊號傳輪11四、 )機械和裱境的保護以及散熱。此 卜封裝的作用為將積體電路晶片上緊密間隔(焊塾之間中 心點對中心點的距離)的連線『分散開—⑴』成 為仃:P刷私路板製造商所需要的相對寬的間隔之機制。 ^高,競爭的電子封裝市場中,效能、產量、成本以及 可非度等因素對封裝技術有重要的影響。雖然封裝通常在 個別的積體電路晶片上埶 设 執订’仁疋對於發展晶圓級(也就是 在從晶圓切斷個別的H g、 岍如別的日日片之前)封裝積體電路的方法有越 來越濃厚的興趣。血個則曰 、、 ,、固別卵片封裝相較,晶圓級封裝可以 達到較向的產量、妨* —p j^.. 座里較回的可靠度以及較低的成本。 積目"路封裝的可靠度常常被晶粒和封裝基材之間或封 裝和印刷電路板之間内連線元件(例如焊點、銲線)的失效所 限制。這樣的失效通常肇因於封裝組裝期間引發的機械應 力及/或秒晶粒和基材材料之間熱膨脹係數(CTE)的差異。 因此’多種最小化丰壤触 、、 牛導隨封裝中機械或熱力謗發之應力的 方法已被揭示。例., 核准予Cagan等的美國專利第 200308030 5,171,7 16號揭示一種含有一應力釋放層的半導體裝置,該 應力釋放層的玻璃轉換溫度低於15〇°C。200308030 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a semi-conducting seal ^ α ^ dry guide package, more specifically, relates to a kind of Λ # Mattress is a round-level semiconductor package. The invention also relates to a method for manufacturing the semiconductor package. [Prior art] Integrated circuit (ic) wafers Rongjing # θ) The 10,000 eggs are usually sealed before being assembled on a printed circuit board (PWB). ^ The tailor-made package has several important functions, including the protection of internal wiring (electricity and signal transmission wheel 11), mechanical and environmental protection, and heat dissipation. The role of this package is to distribute the connection between the closely spaced (the distance from the center point to the center point between the solder pads) on the integrated circuit chip. Wide interval mechanism. ^ High, in the competitive electronic packaging market, factors such as efficiency, yield, cost, and feasibility have a significant impact on packaging technology. Although the package is usually set on individual integrated circuit wafers, it is necessary for the development of wafer-level (that is, before cutting individual H g from the wafer, such as before other Japanese and Japanese wafers) to package integrated circuits. There is growing interest in the method. Compared with the package packaging of solid, ovoid, wafer-level packaging, wafer-level packaging can achieve a more targeted yield, better reliability and lower cost. Reliability of package is often limited by the failure of interconnect components (such as solder joints, wires) between the die and the packaging substrate or between the package and the printed circuit board. Such failures are usually due to mechanical stress and / or differences in coefficient of thermal expansion (CTE) between the die and the substrate material that are induced during package assembly. Therefore, a variety of methods for minimizing stress caused by mechanical contact or thermal stress in the package have been revealed. For example, U.S. Patent No. 200308030 5,171,7,16 issued to Cagan et al. Discloses a semiconductor device containing a stress release layer, the glass transition temperature of which is below 15 ° C.

Kang等教示利用含有高熱膨脹係數/模數的介電聚合物 來做為應力緩衝層之晶圓級晶片尺寸封裝(電子構件和技 術研討會記錄,2000,87-92)。Kang et al. Taught the use of a dielectric polymer with a high coefficient of thermal expansion / modulus as a wafer-level wafer-scale package for stress buffering (Records of Electronic Components and Technology Seminar, 2000, 87-92).

Strandjord等教示一種利用光敏性苯環丁稀· (benzocyclobutene)之用來做應力緩衝和被動應用的單光罩 製程(one mask process)(IEMT/IMC研討會記錄,1997,261-266)。 核准予Un的美國專利第6,103,552號揭示一種晶圓尺寸 封裝的製程和封裝。該製程包含在一晶片表面上沈積一層 聚合物材料’例如聚亞醯胺(polyimide)、碎酮彈性體 (silicone elastomer)或苯環丁缔。該’552號專利進一步教示 該聚合物的溫度膨脹係數應該要低以配合封裝内的金屬鑲 入層(metal stud),從而在該鑲入層-聚合物介面處最小化局 部應力。 核准予Kung等的美國專利第6,197,613揭示形成一種晶 圓級封裝的方法,其中提供一絕緣彈性材料層來做為一多 重金屬軌跡的基礎層,其中為了做為一應力緩衝層,該彈 性材料具有足夠低的楊氏模數(Young’s modulus)。 核准予Kung等的美國專利第6,277,669號揭示一種製造 一晶圓級封裝的方法,其中一彈性體材料層先利用印刷、 塗佈或層積法沈積在一被動層上方以形成複數個分離的分 隔區(island) 〇 200308030 且有-徊r ^及的半導體封裝方法所提供的封裝之熱性質 了 一圍’但是域對具有㈣㈣穩定性和可靠度 足半導體封裝有持續的需要。 【發明内容】 本發明係針對一種半導體封裝,包含: 一半導體晶圓,且右一本古;^丨、/ . 、 八百 口有至少一個積體電路的主動區 域,其中每一個積體電路都具有複數個焊墊;以及 至少一固化的矽酮構件,覆蓋該主動表面的至少一部 刀/、中每個焊墊有至少一邵份沒有為該矽酮構件所覆 -3碎酮構件在_4〇和! 50。〇之間時的線性熱膨腺係數介 於6〇至280微米/米。C(# 之間,並且在25°C時其模數 介於1至300百萬帕(MPa)之間,此外該矽酮構件係由一種包 含如下步騾的方法來製備: (i)印刷一矽酮組成在該主動表面上以形成一矽酮沈 積,其中該矽酮組成含有: (A) 一有機聚秒氧燒(organopolysiloxane),每一個分 子含有平均至少兩個鍵結矽的烯屬烴基(alkenyl groups), (B) — 有機氫碎氧娱:(organohydrogensiloxane),每一個 分子含有平均至少兩個键結矽的氫原子,其薄度足以固 化該組成, (C) 一有效數量的無機填充物,具有小於25平方公尺/ 克(m2/g)的表面積;以及 (D) —可引起催化作用之數量的矽氫化反應 200308030 (hydrosilylation)催化劑;以及 ⑻加熱該知沈積—段足㈣時間以形成該固化的發 酮構件。 本發明進-步指向—種製備—半導體封裝的方法,該方 法含有如下步驟: ⑴印刷-矽酮組成在一半導體晶圓之一主動表面的至 少-部份上以形成至少—㈣沈積,其中該主動表面至少 ^有-個積體電路,每—個積體電路都具有複數個焊整, 母一個焊塾有至少—部份沒有被該㈣沈積所覆蓋,並且 該碎酮組成含有: (A) —有機聚矽氧烷(〇rgan〇p〇lysil〇xane),每一個分 子含有平均至少兩個鍵結矽的缔屬烴基 groups), (B) —有機矽化合物,每一個分子含有平均至少兩個 鍵結矽的氫原子,其濃度足以固化該組成, (C) 一有效數量的無機填充物,具有小於以平方公尺/ 克(m2/g)的表面積;以及 (D) —可引起催化作用之數量的矽氫化反應 (hydrosilylation)催化劑;以及 (11)加熱該矽酮沈積一段足夠的時間以形成一固化的矽 銅構件’ S中該構件介於·4_15〇χ:之間時的線性熱膨脹 係數在60至280微米/米。c(/zm/na)之間,並且在25它時其 模數介於1至3〇〇百萬帕(MPa)之間。 、 本發明之半導體封裝展現出在一大範圍溫度下之良好的 200308030 熱穩定性以及!好的環境耐受力(resistanee)。並且,該 導體封裝允許同步測試在一晶圓上所有的積體電路: 外,個別的晶片可以從該晶圓級半導體封裝中被切斷以 割),、以每一個晶片只比該積體電路本身稍微大-點的: 寸。这些『晶片尺寸封裝』,其與習知的積體電路封裝相 比較輕、較小並且較薄,是料相於高密度制上的。 本發明製備該半導體封裝的方法可延伸成為—高產 產製私f要的疋’孩万法提供同步封裝一晶圓上的所有 積體電路。此外,該方法運用習知的模板印刷設備和方法。 與運用傳統的旋轉塗佈技術之封裝方法相比,本方法有垆 y的液費(碎嗣組成)和較少的製程步驟。 、 本發明的半導體封裝可以用來製備個別的積體電路晶片 封裝。晶片封裝對於生產印刷電路板是有用的。其可以被 併入電子設備中,例如計算機、電話、電視 和個人電腦。 %如 本發明〈免些及其他特徵、觀點、和優勢藉由參考如下 的敘述、附加的Φ諸4名丨々 底的瞭解。申4㈣以及伴隨的圖示將會被更徹 【實施方式】 根據本發明之半導體封裝包含: 一半導體晶圓,且有一各古谷丨, /、有。有至少一傭積體電路的主動屆 域、、中母-個積體電路都具有複數個焊墊;以及 至:二固化的構件,覆蓋該主動表面的至少一•丨 有至少—部份沒有為•酮構件所潜 200308030 蓋,該矽酮構件在-40和150°C之間時的線性熱膨脹係數介 於60至280微米/米它(// m/m°C)之間,並且在25°C時其模數 介於1至300百萬帕(MPa)之間,此外該矽酮構件係由一種包 含如下步騾的方法來製備: (i) 印刷一矽酮組成在該主動表面上以形成一矽酮沈 積,其中該矽酮組成含有: (A) —有機聚碎氧燒(organopolysiloxane),每一個分子含 有平均至少兩個键結碎的錦τ屬烴基(alkenyl groups), (B) —有機氫碎氧燒(organohydrogensiloxane),每一個分 子含有平均至少兩個鍵結矽的氫原子,其濃度足以固化該 組成, (C) 一有效數量的無機填充物,具有小於25平方公尺/克 (m2/g)的表面積,以及 (D) —可引起催化作用之數量的矽氫化反應 (hydrosilylation)催化劑;以及 (ii) 加熱該石夕酮沈積一段足夠的時間以形成該固化的秒 酮構件。 該半導體晶圓含有一半導體材料,例如矽和砷化鎵。該 半導體晶圓的主動表面含有至少一個,通常多於100個的積 體電路。積體電路的例子包含,但不限於,動態隨機存取 記憶體(DRAM)、快閃記憶體(FLASH)、靜態隨機存取記憶 體(SRAM)以及邏輯(LOGIC)裝置。每一個積體電路都具有 複數個焊墊(即輸入/輸出端),通常位於積體電路的周邊 上。每一個積體電路之焊墊的數量範圍可以是約4個至約 200308030 2_個’取決於該電路的複雜度。該等坪#係由導電金屬 所構成,通常是鋁、銅或其合金。 該半導體晶圓可以進-步包含—覆蓋該晶圓除了該等坪 墊I外的王動表面的被動層。適於做為被動層材料的例子 包含聚亞醯胺(polyimide)、苯環丁埽(benz〇cycl〇butene)以 及聚苯嗔吐(p〇lybenzoxazole)。此外,該半導體晶圓可以包 含溝槽(streets)或切割線,沿著晶圓可以被分割成為個別晶 片處。在半導體晶圓上製造積體電路的方法在技藝中是熟 知的。 該固化的矽酮構件可以具有數種型式,包含但不限於, 穹頂(dome)、層(layer)、圓柱(cylinder)、球形(sphere)、半 球形(hemisphere)、圓錐形(cone)、立方體(cube)、橢圓形 (ellipse)、7T 邊形(hexagon)、卵形(ovai)、三角錐(pyramid)、 楔形(wedge)、多邊形(polyhedr〇n)以及圓盤狀(disc)。具體 的型式取決於未固化的矽酮組成的流變性質、模板(stencil) 或網板(screen)内孔隙的尺寸和形狀以及印刷條件。該矽酮 構件的厚度(或高度)可以是10至250微米,或者1〇至2〇〇微 米、或10至50微米。 該固化的矽酮構件的線性熱膨脹係數是6〇至28〇微米/米 °C,或者是60至180微米/米。c,或是150至180微米/米。C, 當介於-40和150°C之間時。此外,該固化的矽g同構件的模 數是1至300百萬帕(MPa),或者是1至1〇〇百萬帕,或是!至 20百萬帕,當在25°C下時。該固化的矽酮構件的熱膨脹係 數和模數係由如下所述的實例來決定。 -12- 200308030 該固化的矽酮構件係利用一矽酮組成來製備,該戲酮組 成含有(A)—有機聚碎氧燒(organ〇p〇iysii〇xane),每一個分 子含有平均至少兩個鍵結矽的烯屬烴基(alkenyl gr〇ups), (B) —有機氫碎氧燒(organohydrogensiloxane),每一個分子 含有平均至少兩個鍵結矽的氫原子,其濃度足以固化該組 成’(C) 一有效數量的無機填充物以及(D) 一可引起催化作 用之數量的碎氫化反應(hydrosilylation)催化劑。 成分(A)係至少一種有機聚矽氧烷,每一個分子含有平均 至少兩個键結矽的烯屬烴基。該有機聚矽氧烷可以具有一 線性或支鏈結構。該有機聚矽氧烷可以是一同質聚合物 (homopolymer)或一共聚物。該烯屬烴基可以具有2至1〇個 碳原子並且具體實例係,但不限於,乙婦基(vinyl)、晞丙基 (allyl)、丁缔基(butenyl)和己婦基(hexenyl)。在該有機聚碎 氧4元内的缔屬經基可以安置在末端、侧邊(penJant)或末端 和侧邊位置兩者。該有機矽氧烷内其餘的鍵結矽的有機基 係獨立地選自一價的烴類和沒有不飽和脂肪族之一價的_ 化烴類。這些一價基可以具有1至20個碳原子或者是1至10 個碳原子’並且具體實例係,但不限於,燒基,例如甲基、 乙基、丙基、戊基、辛基、十一基以及十八基;環烷基,例 如環己基;芳基,例如苯基、甲苯基、二曱基苯基(xylyl)、 苄基(benzyl)以及2-苯乙基(2-phenylethyl);以及鹵化烴基, 例如 3,3,3_ 三氟丙基(3,3,3-trifluoropropyl)、3_ 氯丙基 (3-chloropropyl)以及二氯苯基(dichlorophenyl)。 該有機聚矽氧烷的黏度在25°C時,其隨著分子量和結構 200308030 而改變,可以是0.002至60帕·秒(Pa · s),或者是0.002至50 帕·秒,或是0.1至10帕·秒。 可以使用在該矽酮組成中的有機聚矽氧烷的實例包括, 但不限於,具有如下分子式的聚二有機矽氧烷 (polydiorganosiloxanes) ·Strandjord et al. Taught a one mask process using photosensitive benzocyclobutene for stress buffering and passive applications (IEMT / IMC Workshop Record, 1997, 261-266). U.S. Patent No. 6,103,552, issued to Un, discloses a wafer size package process and packaging. The process involves depositing a layer of a polymer material ' such as polyimide, silicone elastomer or phencyclidine on a wafer surface. The '552 patent further teaches that the temperature expansion coefficient of the polymer should be low to match the metal stud in the package, thereby minimizing local stresses at the embedding-polymer interface. U.S. Patent No. 6,197,613 issued to Kung et al. Discloses a method for forming a wafer-level package in which a layer of insulating elastic material is provided as a base layer for a multi-metal track, and in order to serve as a stress buffer layer, the The material has a sufficiently low Young's modulus. U.S. Patent No. 6,277,669, issued to Kung et al., Discloses a method of manufacturing a wafer-level package in which a layer of elastomeric material is first deposited over a passive layer using printing, coating, or lamination to form a plurality of separate partitions The island has the thermal properties of the package provided by the semiconductor packaging method mentioned above, but the domain has a continuing need for semiconductor packaging with stability and reliability. [Summary of the Invention] The present invention is directed to a semiconductor package including: a semiconductor wafer, and an ancient right; ^ 丨, /., 800 ports have at least one integrated circuit active area, each of which is an integrated circuit Each has a plurality of solder pads; and at least one cured silicone member, at least one of each of the pads covering the active surface has at least one portion not covered by the silicone member-3 broken ketone members _4〇 and! 50. The linear thermal expansion coefficient between 0 and 60 is between 60 and 280 microns / meter. Between C (#, and at 25 ° C, its modulus is between 1 and 300 million Pascals (MPa). In addition, the silicone component is prepared by a method including the following steps: (i) Printing A silicone composition is formed on the active surface to form a silicone deposit, wherein the silicone composition contains: (A) an organopolysiloxane, each molecule containing an average of at least two olefinic bonds to silicon Alkenyl groups, (B) — organohydrogensiloxane, each molecule contains an average of at least two hydrogen atoms bonded to silicon, thin enough to solidify the composition, (C) an effective amount of An inorganic filler having a surface area of less than 25 square meters per gram (m2 / g); and (D) —amount of catalytically induced hydrosilylation catalyst 20030830 (hydrosilylation) catalyst; and heating the known deposit—segmentation It takes time to form the cured ketone component. The present invention further points to a method for preparing-semiconductor packaging, which includes the following steps: Printing-silicone is composed of at least one active surface of a semiconductor wafer- unit The active surface has at least one integrated circuit, each integrated circuit has a plurality of welds, and the mother solder has at least part of it. Covered, and the crushed ketone composition contains: (A) —organopolysiloxane (〇rganoplysoxane), each molecule containing an average of at least two affiliated hydrocarbon groups bonded to silicon, (B) -Organosilicon compounds, each molecule containing an average of at least two hydrogen atoms bonded to silicon, the concentration of which is sufficient to cure the composition, (C) an effective number of inorganic fillers having a content of less than square meters per gram (m2 / g ); And (D) —the amount of hydrosilylation catalyst that can cause catalysis; and (11) heating the silicone deposition for a sufficient time to form a solidified silicon copper component. Coefficient between 4 and 15 × χ: linear thermal expansion coefficient between 60 and 280 microns / meter. c (/ zm / na), and at 25 its modulus is between 1 and 300 million Pascals (MPa). The semiconductor package of the present invention exhibits good 200308030 thermal stability over a wide range of temperatures as well! Good environmental tolerance (resistanee). In addition, the conductor package allows simultaneous testing of all integrated circuits on a wafer: In addition, individual wafers can be cut and cut from the wafer-level semiconductor package), and each wafer is only smaller than the integrated circuit The circuit itself is slightly larger-dots: inch. These "wafer-size packages" are lighter, smaller, and thinner than conventional integrated circuit packages, and are made of high-density materials. The method for preparing the semiconductor package of the present invention can be extended into a high-production method, which can provide all integrated circuits on a wafer synchronously. In addition, the method utilizes conventional stencil printing equipment and methods. Compared with the packaging method using the traditional spin coating technology, the method has a lower liquid cost (composed of broken particles) and fewer process steps. The semiconductor package of the present invention can be used to prepare individual integrated circuit chip packages. Wafer packaging is useful for producing printed circuit boards. It can be incorporated into electronic devices such as computers, telephones, televisions and personal computers. For example, the present invention (and other features, viewpoints, and advantages will be understood by referring to the following description and the additional 4 members). Application 4 and accompanying drawings will be more thorough. [Embodiment] A semiconductor package according to the present invention includes: a semiconductor wafer, and one ancient valley 丨, /, yes. There are at least one active integrated circuit of the active integrated circuit, and the mother-in-one integrated integrated circuit has a plurality of pads; and to: two solidified components covering at least one of the active surface The cover of the 20030030 cover for the ketone component. The linear thermal expansion coefficient of the silicone component between -40 and 150 ° C is between 60 and 280 microns / meter (// m / m ° C), and At 25 ° C, its modulus is between 1 and 300 million Pascals (MPa). In addition, the silicone component is prepared by a method that includes the following steps: (i) printing a silicone composition on the active surface To form a silicone deposit, wherein the silicone composition contains: (A)-organic polysiloxane (organopolysiloxane), each molecule contains an average of at least two bonded alkenyl groups (alkenyl groups), ( B) —organohydrogensiloxane, each molecule contains an average of at least two hydrogen atoms bonded to silicon, the concentration of which is sufficient to solidify the composition, (C) an effective number of inorganic fillers, less than 25 square centimeters Surface area in feet per gram (m2 / g), and (D) — can cause The effect of the number of silicon hydrogenation reaction (Hydrosilylation) catalyst; and (ii) heating the deposited stone one evening for a sufficient time to form the cured second one member. The semiconductor wafer contains a semiconductor material such as silicon and gallium arsenide. The active surface of the semiconductor wafer contains at least one, usually more than 100, integrated circuits. Examples of integrated circuits include, but are not limited to, dynamic random access memory (DRAM), flash memory (FLASH), static random access memory (SRAM), and logic (LOGIC) devices. Each integrated circuit has a plurality of pads (ie, input / output terminals), which are usually located on the periphery of the integrated circuit. The number of pads of each integrated circuit may range from about 4 to about 200308030 2_ 'depending on the complexity of the circuit. The ping # is made of conductive metal, usually aluminum, copper or its alloy. The semiconductor wafer may further include a passive layer covering the surface of the wafer except for the pads I. Examples of suitable materials for the passive layer include polyimide, benzcyclocycline, and polybenzoxazole. In addition, the semiconductor wafer may include trenches or scribe lines, and may be divided into individual wafers along the wafer. Methods of manufacturing integrated circuits on semiconductor wafers are well known in the art. The cured silicone member may have several types, including but not limited to, a dome, a layer, a cylinder, a sphere, a hemisphere, a cone, and a cube. (Cube), ellipse, 7T hexagon, ovai, pyramid, wedge, polyhedr, and disc. The specific type depends on the rheological properties of the uncured silicone composition, the size and shape of the pores in the stencil or screen, and the printing conditions. The thickness (or height) of the silicone member may be 10 to 250 micrometers, or 10 to 200 micrometers, or 10 to 50 micrometers. The linear thermal expansion coefficient of the cured silicone member is 60 to 280 microns / meter ° C, or 60 to 180 microns / meter. c, or 150 to 180 microns / meter. C, when between -40 and 150 ° C. In addition, the modulus of the cured silicon g and the component is 1 to 300 million Pascals (MPa), or 1 to 100 million Pascals, or! Up to 20 megapascals when at 25 ° C. The thermal expansion coefficient and modulus of the cured silicone member are determined by the examples described below. -12- 200308030 The cured silicone component is prepared using a silicone composition, which contains (A) -organic polyoxygen (organopOiysiiOxane), each molecule contains an average of at least two Alkenyl groups, (B)-organohydrogensiloxane, each molecule contains at least two hydrogen atoms bonded to silicon, the concentration of which is sufficient to solidify the composition ' (C) an effective amount of an inorganic filler and (D) an amount of a hydrosilylation catalyst which can cause a catalytic effect. Component (A) is at least one organopolysiloxane, and each molecule contains an average of at least two olefinic hydrocarbon groups bonded to silicon. The organic polysiloxane may have a linear or branched structure. The organic polysiloxane may be a homopolymer or a copolymer. The olefinic hydrocarbon group may have 2 to 10 carbon atoms and specific examples are, but are not limited to, vinyl, allyl, butenyl, and hexenyl. The associative meridian group in the organic polyoxygen quaternary element can be placed at the terminal, penJant, or both terminal and side positions. The remaining silicon-bonded organic groups in the organosiloxane are independently selected from monovalent hydrocarbons and monovalent hydrocarbons without unsaturated aliphatic groups. These monovalent groups may have 1 to 20 carbon atoms or 1 to 10 carbon atoms' and specific examples are, but are not limited to, alkyl groups such as methyl, ethyl, propyl, pentyl, octyl, ten Mono- and octadecyl; cycloalkyl, such as cyclohexyl; aryl, such as phenyl, tolyl, xylyl, benzyl, and 2-phenylethyl And halogenated hydrocarbon groups, such as 3,3,3-trifluoropropyl, 3,3,3-trifluoropropyl, 3-chloropropyl, and dichlorophenyl. The viscosity of the organopolysiloxane at 25 ° C varies with molecular weight and structure 20030830, which can be 0.002 to 60 Pa · s (Pa · s), or 0.002 to 50 Pa · s, or 0.1 To 10 Pa · s. Examples of the organopolysiloxanes that can be used in the silicone composition include, but are not limited to, polydiorganosiloxanes having the following molecular formulas:

ViMe2Si〇(Me2SiO)aSiMe2Vi,ViMe2Si〇(Me2SiO)025a(MePhSi〇)0.75aSiMe2Vi, ViMe2SiO(Me2Si〇)〇.95a(Ph2Si〇)a〇5aSiMe2Vi, ViMe2Si〇(Me2SiO)〇.98a(MeViSiO)a〇2aSiMe2Vi, Me3SiO(Me2SiO)0.95a(MeViSiO)0.05aSiMe3,以及 PhMeViSiO(Me2SiO)aSiPhMeVi, 其中Me、Vi和Ph分別表示甲基、乙烯基和苯基,並且a具 有一可使該聚二有機矽氧烷的黏度在25 °C時介於0.002至 6 0帕·秒之間的值。 製備適用於該矽酮組成中的有機聚矽氧烷的方法’例如 有機鹵矽烷的水解和冷凝或環聚二有機矽氧燒的平衡’都 是技藝中所熟知者。 成分(A)可以是一單,種的有機聚梦乳燒或含有兩種或 多種至少有一種性質不同的有機聚矽氧烷的混合物’例如 結構、黏度、平均分子量、矽氧烷單元和序列。、 成分(B)係至少一種有機氫矽氧烷,每一個分子含有平均 至少兩個键結矽的氫原子。通常認為的是當成分(A)中每一 個分子的烯屬烴基平均數量以及成分(B)中每一個分子的 键結矽之氫原子平均數量的總和超過4的時候會發生交聯 200308030 (Cr〇SSlinklng)。在該有機氫矽氧烷内的鍵結矽的氫原子可 以安置在末端、側邊(pendant)或末端和側邊位置兩者。 該有機氫矽氧烷可以是二矽氧烷、三矽氧烷或聚矽氧 烷。該有機氫矽氧烷的結構可以是線性、具支鏈、環狀戋 樹脂狀。 &lt; 有機氫矽氧烷的例子包含,但不限於,二矽氧烷,例如 1,1,3,3·四甲基二矽氧烷 ,1,3,3四苯基一碎氧規(1,1,3,3七(1^匕11丫1(^以1〇)\&amp;116);二 矽氧烷,例如苯基三(二甲基矽氧基)矽烷(phenyihh (dmiethylsilowsiune)和u,5_三甲基環三矽氧烷 (l,3,5_tmnethylCyCl〇trisii〇xane);以及聚矽氧烷,例如一 具有三甲基矽氧基末端的聚(甲基氫矽氧烷)、一具有三甲 基矽氧基末端的聚(二甲基矽氧烷/甲基氫矽氧烷)、一具有 二甲基氫矽氧基末端的聚(甲基氫矽氧烷)和一基本上由 叫⑶灿〜早兀、(CH3)3Si〇i/2單元、以及Sia^單元所組成 的樹脂。 成刀(B)可以疋單一種的有機氫碎氧燒或含有兩種或多 種至少有—種性質不、同的有機氫碎氧燒的混合物,例如結 構平均为子量、黏度、碎氧燒單元和序列。 本發明之矽酮组成内成分(B )的濃度足以固化(交聯)該組 成。成分(B)的確實濃度取決於所要的交聯程度,其通常隨 著成分⑻内鍵結㈣氫原子莫耳數對成分⑷㈣屬煙基 莫耳數比例的增加而增加。成分W的濃度可以是足以提供 成分(A)中的每—個缔屬«〇,8至3個鍵結碎的氫原子或者 -15- 200308030 是0 · 8至1 · 5個鍵結矽的氫原子。 製備有機氫碎氧燒的方法,例如古 列如有機_矽坑的水解和冷 凝,是技藝中所熟知者。 成分(C)係至少-種表面積小於25平方公尺/克㈤知,或 者是0.25至10平方公尺/克’或是〇25至5平方公尺/克的無機 填充物。成分(c)可以是任何表面積小於25平方公尺/克的無 機填充物,it常應;在碎氫化反應(hydr〇silylati〇n)中可加 成固化(additlon-curable)的矽酮組成上以調整該組成的流 變性質、孩组成的成本、或調整該固化的矽酮產物的機械、 電子、化學或熱力性質。 該無機填充物含有平均尺寸從〇 2至15〇微米或者從〇 2至 20微米的微粒。 雖然該無機填充物微粒的形狀不是關鍵性的,但是形狀 為球形的微粒是較佳的,因為與其他形狀的微粒相比,他 們通常會使該矽酮組成的黏度增加較少。 該無機填充物的pH值在室溫時(15至25°C )可以是3至9或 者是6至9。一填充物的pH值可以藉由測量10克的填充物在 1〇毫升蒸餾水内所組成的漿液的pIi值來測定,如美國測試 暨材料協會D 4972號試驗(ASTM D 4972)所例示者。當該填 充物的pH值小於約3時,該固化的矽酮產物通常會展現出降 低的熱穩定性。當該填充物的pH值大於約9時,該矽酮組成 通成在儲存時變成不穩定的及/或該固化的矽酮產物展現 出降低的熱穩定性。 該填充物可以具有不多於2重量百分比或者是不多於1重 -16- 200308030 量百分比的水(水蒸氣)含量。一填充物的水含量可以藉由測 量在110 °c下乾燥該填充物時所損失的重量來測定,如美國 測試暨材料協會D 2216號試驗(ASTM D 22 16)所例示者。 當水含量多於約2重量百分比時,該有機氫碎氧燒和水可以 在碎氫化反應催化劑存在的情況下產生反應。此反應消耗 掉需要用來固化該碎酮組成的有機氫碎氧燒並且產生氯 氣,其可能導致裂隙(void)在固化的矽酮產物中產生。 無機填充物的例子包含,但不限於,天然的二氧化矽, 例如結晶二氧化矽,土壤結晶二氧化矽(ground crystaUine silica)以及珍’藻類一氧化梦(diatomaceous silica);合成的二 氧化矽,例如熔融的二氧化矽、矽膠,以及矽酸鹽,例如 雲母、矽礦石、長石和霞石正長岩;金屬氧化物,例如氧 ,鋁、二氧化鈦、氧化鎂、三氧化二鐵、氧化鈹、氧化鉻、 乳化鈥和氧化鋅;金屬氮化物,例如氮化硼、氮化發和氮 化銘’金屬碳化物’例如碳化硼、碳化鈥、和碳切;碳 黑;驗土金屬碳酸鹽,例如碳酸約;驗土金屬硫酸鹽,例 如…、硫酸鎂和硫酸鎖;二硫酸相(m〇iybd_ :f:e),硫酸鋅;高嶺土 ;滑石·破璃纖維;玻璃珠, 例如中空玻璃微球體以及實心破璃微球體;銘三水合物 德a UminUm tnhyd她);石棉;以及金屬粉末,例如銘、銅、 ’成粉末。建議的無機填充物是熔融的二。 成刀⑹也可以是-處理過的無機填充物,藉由以 化合物處理前述無機填充物 合物可以是任何通常用來處理二氧化^備:有機碎化 虱化矽填无物的有機矽化 -17· 200308030 合物。有機矽化合物的例子包含,但不限於,有機氣矽烷, 例如甲基三氯矽烷、二甲基二氯矽烷和三甲基單氯矽烷; 有機碎氧燒,例如以藉基做為端塊的(hydroxy-endblocked) 二甲基矽氧烷寡聚物、六甲基二矽氧烷和四甲基二乙烯基 二硬氧燒;有機碎氮燒(organosilazanes),例如六甲基二碎 氮烷、六甲基環三矽氮烷;以及有機烷氧基矽烷 (organoalkoxysilanes),例如甲基三甲氧基碎燒、乙錦τ基三 甲氧基矽烷、乙烯基三乙氧基矽烷、3-去水甘油氧基丙基 三甲氧基碎燒(3 -glycidoxypropyltrimethoxysilane)以及 3 -甲 基丙烯氧基丙基三甲氧基矽烷(3-methacryloxypropyltrimethoxysilane) 〇 成分(C)可以是一單一種的如前所述之無機填充物或兩 種或多種至少有一種性質不同的這樣的填充物的混合物, 例如表面積、表面處理、微粒尺寸、密度和微粒形狀。 成分(C)在該矽酮組成中係以一有效數量存在。如在此所 使用者,『有效數量』一詞表示成分(C)的濃度能夠使該矽 酮組成固化,以形成一當溫度介於-40和150°c之間時,熱 膨脹係數從60至280微米/米°(:的產物,如利用如下實例中 所述的方法所測定者。成分(C)的確實濃度取決於所要求的 熱性質、填充物表面積、填充物密度、填充物微粒形狀、 填充物表面處理以及在該矽酮組成内之其他成分的性質。 成分(C)的濃度可以是在每100重量等份的成分(A)中有 30至1200重量等分(parts by weight),或者是100至600重量 等分,或是150至400重量等分。當成分(C)的濃度小於約30 -18- 200308030 重量等分時,該固化的矽酮產物與由沒有該無機填充物的 相同成分所製成的矽酮產物相比,熱膨脹係數不會明顯縮 小。當成分(C)的濃度大於約1200重量等分時,該矽酮組成 的黏度非常高並且固化後形成一易碎的產物。成分(D)的有 效數量可以藉由使用如下實例中的方法之例行實驗很容易 地被測定出來。 成分(D)係至少一種矽氫化反應(hydr〇silylation)催化 劑’其促進成分(A)與成分(B)的加成反應。該矽氫化反應 催化劑可以是任何熟知的含有一鉑族金屬之矽氫化反應催 化劑、一具有一鉑族金屬的化合物或一含有微膠囊化 (microencapsulated)的鉑族金屬的催化劑,鉑族金屬包含 麵、铑、釕、鈀、鐵和銥。較佳者,該鉑族金屬是鉑,以 其在珍氫化反應中的高活性而言。 矽氫化反應催化劑的例子包含Willing在美國專利第 3,419,593號中所揭示的氯鉑酸(chl〇r〇platinic acid)和某些 含乙烯基的有機矽氧烷的錯合物,其在此藉由引用而併入 本文中。此種催化劑之一具體實例是氯鉑酸和丨,3_二醋酸乙 缔基 _1,1,3,3-四甲基二矽氧烷 tetramethyldisiloxane) 〇 該矽氫化反應催化劑也可以是一含有微膠囊化的鉑族金 屬之催化劑,其包含一膠囊化在一熱塑性樹脂内的鉑族金 屬。含有微膠囊化的矽氫化反應催化劑之組成可以在環境 條件下保持一段長時間的穩定,通常是幾個月或更久,但 疋在南於該(等)熱塑性樹脂的溶點或軟化點的溫度時可以 -19- 200308030 以相對快的速度固化。微膠囊化的矽氫化反應催化劑和製 備它們的方法在技藝中是眾所周知的,如在美國專利第 4,766,176號以及其所引用的參考文獻中,·以及美國專利第 5,017,654號所例示者。 成分(D)可以是一單一種的矽氫化反應催化劑或含有兩 種或多種至少有一種性質不同的催化劑的混合物,例如結 構、類型、始族金屬、錯合配位體(ligand)和熱塑性樹脂。 成分(D)的濃度足以催化成分(A)和成分(B)的加成反應。 成分(D)的濃度可以是足以提供百萬分之0.1至1000(ppm)的 始族金屬,或者是1至500 ppm的凝族金屬,或是5至150 ppm 的鉑族金屬,以成分(A)、(B)和(C)的組合重量為根據。固 化速率在鉑族金屬低於0.1 ppm時會非常低。但使用多於 1000 ppm的鉑族金屬並不會導致固化速率的顯著增加,並 因此是不經濟的。 該矽酮組成可以包含其他成分,只要該等成分不會妨礙 該組成固化形成一如上所述之具有低熱膨脹係數(CTE)和 低模數的矽酮樹脂即可。其他成分的例子包含,但不限於, 碎氫化催化劑抑制劑;有機聚矽氧烷樹脂,黏著促進劑, 例如在美國專利第4,087,585號和第5,194,649號中所教示的 黏著促進劑;染料(dye);顏料(pigment);抗氧化劑;熱穩 足劑’ UV穩定劑;防燃劑(fiame retardant);流量控制添加 劑以及有機溶劑。 碎氫化反應催化劑抑制劑的例子包含數種『埽-炔』系 、、充例如 3 甲基 _3 -戊婦-1-炔(3-methyl-3_penten-l-yne)和 200308030 3,5-一甲基-3 -己烯炔(3,5-dimethyl-3-hexen-l_yne);乙炔 醇(acetylenic alcohols),例如3,5-二甲基 己炔 _3_醇(3,5-dimethyl-l-hexyn-3-ol)、1-乙炔 環己醇 o-ethynyl-l cyclohexanol)以及 2_苯基·3_丁炔 _2_醇(iphenyubww 2-〇1);順·丁烯二酸酯(maleates)和延胡索酸(fumarates) ,例如熟知的二烷基(dialkyl)、二烯屬烴基((ιία1]^ηγ1)和二 燒氧基烷基(dialkoxyalkyl)延胡索酸和順—丁婦二酸酯;以 及環乙烯碎氧燒(cyclovinylsiloxanes〇。 有機溶劑的例子包含飽和烴類,例如戊烷、己烷和庚烷; 芳香煙類’例如苯、甲苯和二甲苯;礦油精(mineral叩卜如); 鹵烴類,例如二氯甲烷、氯仿和三氯乙烷;酯類,例 如乙酸乙酯;g同類,例如丙@同、甲基乙基酮和甲基異丁基 酮;以及這些溶劑的混合物。 有機聚矽氧烷樹脂的一種型式基本上是由R33Si〇i/2矽氧 $元早兀和Si〇4/2碎乳坑單元所構成,其中每一個r3係獨立選 自具有1至2 0個竣原子的一價烴類和一價鹵化烴類,並且該 有機聚碎乳規樹脂内之R θίΟ&quot;2單元和si〇4/2單元的莫耳比 為 0.65至 1.9。 當該矽酮組成進一步包含一有機聚矽氧烷樹脂時,交聯 劑的濃度可以是足以提供成分(A)中的每一個烯屬烴基和 該有機聚碎氧烧樹脂組合〇 · 8至3個键結秒的氫原子。 本發明之該矽酮組成中之有機聚矽氧烷樹脂的濃度可以 是每100重量等分的成分(A)中有1至1〇〇重量等分或者是3〇 至100重量等分。 -21 - 200308030 本發明之有機聚矽氧烷樹脂可以利用在技藝中熟知的方 法來製備’例如在核准予Daudt等之美國專利第2,676,182 號中所例示者。 在一較佳實施例中,該矽酮組成進一步包含一表面積 (Β·Ε·Τ.法)從50至400平方公尺/克的二氧化矽填充物。該二 氧化矽填充物授予該矽酮組成趨流性(thixotropy)。如在此 所使用者’趨流性一詞表示當一剪力被應用在其上時,該 組成展現出黏度的降低,而在隨後的靜置中黏度則又增 加。趨流程度可以藉由測量該組成的趨流指數來測定。例 如,該趨流指數可以表示為剪切率為i弧度/秒(rad/s)時該矽 酮組成的黏度對於剪切率為10弧度/秒時該組成的黏度之 比例,其中每一個黏度在23±2°C下測量。 適合的一氧化碎填充物的例子包含,但不限於,燻梦 (fumed silica)、沈澱二氧化矽(precipitated siUca)以及藉由 以一有機矽化合物來處理前述的二氧化矽表面所製備成的 處理過的二氧化矽填充物。適合的有機矽化合物在上面為 成分(C)的敘述中例示。 該一氧化矽填充物的濃度可以是每1〇〇重量等分的成分 (A)中有0.5至20重量等分或者是〇 5至1〇重量等分。 本發明之矽酮組成可以是含有成分(A)至(D)在一單一部 分内的一單一部分(one_Part)組成,或者是含有(A)至(D)在 兩個或多個部分内的一多重部分組成。在一多重部分組成 中成刀(八)、(B)和(D)通常不會存在於同一個部分中,除 非一抑制劑也同時存在。例如,一多重部分矽酮組成可以 -22- 200308030 含有一包含一部份成分(A)、一 ’ #伤成分(c)、以及所有的 成分(D)的第一部份,和一句各 匕。成刀(A)和(〇的其餘部分以 及所有的成分(B)的第二部份。 本發明的單一邵分碎g同組成 、 成j以精由在環境溫度下合併 指定比例的組成(A)至(D)和任位、登裡μ丄 V )和任何選擇的成分來製備,在有 或沒有如上所述的溶劑的輔M _ AL ^ 、 A冏補助下。雖然各種成分的添加順 序不疋很重要’但是當需要民土 、 而要馬上使用孩矽酮組成時,該矽 氫化反應催化劑較佳者在低於 社1&amp;於約30 C的溫度下最後被加 入,以避免該组成過早固化。此外,本發明之多重部分梦 酮組成可以藉由合併為每—個部分所料的料成分來製 備。 本發明的半導體封裝係祐々丨- 策你被例不,但不限於,在如下所述 的實施例中並在圖1-4中示出。在今签闰-士 ^ 在孩寺圖不中,只有一部份 的具有一單一焊墊的晶圓被示出。 在根據本發明之半導體封裝的第一實施例中,其在旧 中示出,該半導體封裝包含—半導體晶圓ig,其具有—至 少含有一個積體電路(未示出)的 彡母口王動表面,其中每一個積體 電路都具有複數個坪墊20 ;以;5 螬芸兮曰门人 以及一覆盍孩晶圓除了該等焊 墊20之外的主動表面之固化的矽酮層%。 在根據本發明之半導體封裝的第二實施例中,其在圖2 中不出’孩半導體封裝包含—半冑體晶圓1〇,其具有—至 少含有-個積體電路(未示出)的主動表面,其中每一個積體 電路都具有複數個焊㈣…覆蓋該晶圓除了該等坪塾2〇 〈外的王動表面之固化㈣_層3(),_金屬軌跡4〇,其近 -23 - 200308030 3中0=Γ在每—個料Μ上並且其末端平置於該賴層 3 0的表面上,一.gM 、九户 . 、著;母一個軌跡40末端的烊錫凸塊5〇 ; ^及一覆蓋料料2G、㈣⑽和金屬軌職的抗焊綠 漆 60(solder mask)。 在一半導體封裝的第三實施例中,其在圖3中示出,該半 導體封裝包含—半導體晶圓10,其具有一至少含有一個積 體電路(未示出)的主動表面,其中每一個積體電路都具有複 數個知塾2G ’以及—覆蓋該晶圓除了該等焊塾2G之外的主 動表面的—部份之固化的矽酮穹頂31❶ 在一半導體封裝的第四實施例中,其在圖4中示出,該半 2封裝包含-半導體晶圓1G,其具有—至少含有一個積 體電路(未示出)的主動表面,其中每一個積體電路都具有複 數個坪塾2G ;-覆蓋該晶圓除了該等㈣%之外的主動表 面的一部份之固化的矽酮穹頂31 ; 一金屬軌跡41,其近中 心點附著在每一個焊墊2〇上並且其末端平置於該矽酮穹頂 1的表面上,以及一附著於每一個軌跡41末端的焊錫凸塊 50 〇 在上面的實施例中,該等金屬軌跡重定或重新配置該等 積體電路上的周邊烊墊成為一區域陣列配置。該等執跡含 有一導電金屬或合金。金屬的例子包含鉻、鈦、銅、金、 和鎳。更明確地說,該金屬軌跡可以由一鈥/鎳/銅之三層系 統構成’其中鈦是黏著層、鎳是分散阻障層而銅是主要的 軌跡金屬。此外,該抗焊綠漆可以是本發明之矽酮組成固 化的產物。先前沒有本發明的矽酮組成之晶圓級封裝設計 -24- 200308030 在技藝中是已知的。例如,Kang等提出一晶圓級晶片尺寸 封裝,其含有一修改過的聚醯亞胺來做為一應力緩衝層、 一由苯環丁婦構成的抗焊綠漆、以及一由金屬通道(metal runners)和錫球所構成的重配置網絡(電子構件和技術會議 紀錄,2000,87-92)。 根據本發明來製備一半導體封裝的方法包含如下步騾: (1)印刷一矽酮組成在一半導體晶圓之一主動表面的至 少一部份上以形成至少一矽酮沈積,其中該主動表面至少 含有一個積體電路,每一個積體電路都具有複數個焊墊, 母個丨干塾有至少一邵份沒有被該秒酮沈積所覆蓋,並且 該矽酮組成含有: (A) —有機聚矽氧烷(organopolysiloxane),每一個分子 含有平均至少兩個鍵結矽的烯屬烴基(alkenyl gr〇ups), (B) —有機矽化合物,每一個分子含有平均至少兩個鍵 結碎的氫原子,其濃度足以固化該組成, (c) 一有效數量的無機填充物,具有小於25平方公尺/克 (m2/g)的表面積;以及 (D) —可引起催化作用之數量的矽氫化反應 (hydrosilylation)催化劑;以及 (ii)加熱該矽酮沈積一段足夠的時間以形成一固化的矽 酮構件,其中該構件介於_40*15(rc之間時的線性熱膨脹 係數在60至280微米/米。C(# m/mt)之間,並且在25。〇時其 模數介於1至300百萬帕(MPa)之間。 忒碎酮組成可以藉由習知的模板印刷法或網板印刷法被 -25- 200308030 應用该半導體晶圓的主動表面上,取決於所要的沈積厚 度。通常,網板印刷可以被用來製造厚度多至15〇微米的沈 積’而模板印刷可以被用來製造厚度多至3〇〇微米的沈積。 具體的印刷條件取決於該未固化的矽酮組成的流變性質、 孔隙尺寸和印刷方法(即模板或網版)。例如,該矽酮組成可 以藉由利用2至25磅的刮刀(SqUeegee)壓力、〇 2至5英吋/秒 的速度(0.5至12.7公分/秒)以及〇至〇」英吋(〇至2 5毫米)的 離板調節(snap-off adjustment)之模板或網版印刷來應用。 該矽酮沈積然後被加熱一段足以形成該固化的矽酮構件 的時間。該矽酮沈積可以被加熱一段足以達到所要的交聯 铪度但沒有氧化作用或分解作用發生的時間。例如,該沈 積了以在從至250C的溫度下被加熱3至360分鐘,或者 在從90至200。(:的溫度下被加熱5至6〇分鐘,或是從1〇〇至 150°C的溫度下被加熱15至6〇分鐘。該矽酮沈積可以利用習 知的設備來加熱,例如一加熱盤或烤箱。 本方法可以進一步包含連接一彈性接觸件(spring 至母個焊塾並分割該封裝成為個別的積體電路晶片。彈 簧接觸件的例子和連接接觸彈簧至半導體設備的方法在技 蟄中是已知的,如在核准予chang等之美國專利第 6,168,974B1中所例示者。 相反地,該方法可以進一步包含分割該封裝成為個別的 積體電路晶片並組裝每一個晶片在一引線架❿肅繼)封 裝内。該組裝製程通常包含附著每一個晶片在一引線架 上連接(通#是打線接合(wire bonding))每一個晶片上的 -26 - 200308030 該等焊墊至該引線架上的引線,並與外罩的部分密封在一 起或以一塑封材料(molding comp〇und)封裝該組合體。組裝 引線架封裝的方法包含,例如雙列式封裝(DIp)、微細引線 雙列式封裝(SH-DIP)、薄型雙列式封裝(SK_DIp)、細長型 封裝(SL-DIP)、單列式封裝(SIp)、交叉引線封裝(ζιρ)、針 格式封裝(PGA)、小型封裝(s〇)、小型化封裝(s〇p)、無引 線晶片封裝(LCC)、塑料無引線晶片封裝(pLCC)以及小型平 面塑膠晶粒承載器(SOJ)。 另一方面,該方法可以進一步包含分割該封裝成為個別 的積體電路晶片並組裝每一個晶片在一球格式(BGA)封裝 内。組裝球格式封裝的方法在技藝中也是眾所周知的。 圖1所不的半導體封裝可以利用以下方法來製備:⑴印刷 -珍酮組成在-半導體晶圓10之一主動表面上以形成一梦 酮層,其中該主動表面至少含有—個龍€路,每一個積 體電路都具有複數個坪墊20,該等焊墊2〇並未被該矽酮層 覆蓋,並且該碎酮組成含有如上所述的成分(a)_(d);以及 (ϋ)加熱該矽酮層一段足夠的時間以形成一固化的矽酮層 3〇 ’其中該固化的矽酮層介於肩和⑸。。之間時的線性熱 膨脹係數在60至280微米/米。CUm/mt:)之間,並且在25。〇 時其模數介於1至300百萬柏(MPa)之間。 圖2所g半導體封裝可以利用以下方法來製備:⑴印刷 -碎酮組成在-半導體晶圓1G之—主動表面上以形成一碎 酮層’其中該主動表面至少含有一個積體電路,每一個積 體電路都具有複數個烊_ ’該等焊#20並未被該㈣層 -27- 200308030 覆蓋,並且該秒酮組成含有如上所述的成分(A)-(D);以及 (ii)加熱該矽酮層一段足夠的時間以形成一固化的矽酮層 30,其中該固化的矽酮層介於-40和150°C之間時的線性熱 膨脹係數在60至280微米/米。C (// m/m。〇 )之間,並且在2 5 °C 時其模數介於1至300百萬帕(MPa)之間;(iii)形成一金屬軌 跡40,其近中心點附著在每一個焊墊2〇上並且其末端平置 於該矽酮層30的表面上;(iv)應用一覆蓋該等焊墊2〇、矽酮 層3 0和金屬軌跡40的抗焊綠漆60,其中每一個軌跡4〇末端 的一部份並未被該抗焊綠漆60覆蓋;以及(v)在每一個軌跡 40的末端形成一焊錫凸塊5〇。形成的半導體封裝可以利 用,例如,習知的晶圓切割法來分割成為個別的積體電路 晶片。 圖3所示的半導體封裝可以利用以下方法來製備:印刷 一矽酮組成在一半導體晶圓10之一主動表面上以形成至少 一矽酮穹頂,其中該主動表面至少含有一個積體電路,每 一個積體電路都具有複數個焊墊2〇,該等焊墊2〇並未被該 矽酮穹頂覆蓋,並且該矽酮組成含有如上所述的成分 (A)_(D),·以及(ii)加熱該矽酮穹頂一段足夠的時間以形成一 固化的矽酮穹頂31,其中該固化的矽酮穹頂介於_40和150 ci間時的線性熱膨脹係數在60至280微米/米。 炙間,並且在25°C時其模數介於1至3〇〇百萬帕(Mpa)之間。 圖4所示的半導體封裝可以利用以下方法來製備:⑴印刷 -秒酮組成在-半導體晶圓1G之—主動表面上以形成一碎 酮穹頂,纟中該主動表面至少含有一個積體電路,每一個 -28- 200308030 積體電路都具有複數個焊|20,該等焊塾20並未被該碎酮 宫頂覆蓋’並且該秒酮組成含有如上所述的成分(A)_(D); (ii)加熱該矽酮穹頂一段足夠的時間以形成一固化的碎酮 穹頂3 1 ’其中該構件介於-40和1 50°C之間時的線性熱膨脹 係數在60至280微米/米。C (// m/m °C )之間,並且在2 5 °C時其 模數介於1至300百萬帕(Mpa)之間;(iii)形成一金屬軌跡 41 ’其近中心點附著在每一個坪塾2〇上並且其末端平置於 該碎嗣宫頂31的表面上;以及(iv)在每一個軌跡41的末端形 成一焊錫凸塊50。形成的半導體封裝可以利用,例如,習 知的晶圓切割法來分割成為個別的積體電路晶片。 在本方法的上述實施例中,該金屬執跡可以利用習知的 濺鍍、微影、以及電鍍技術來形成,例如由1^11§等所提出 者(電子構件和技術研討會,2000,87-9 2彡。 本發明之半導體封裝展現出在一大範圍溫度下之良好的 熱穩定性以及良好的環境耐受力(resistance)。並且,該半 導體封裝允許同步測試在一晶圓上所有的積體電路。此 外,個別的晶片可以從該晶圓級半導體封裝中被切斷(分 割),以每一個晶片只比該積體電路本身稍微大一點的尺 寸。這些『晶片尺寸封裝』,其與習知的積體電路封裝相 比較輕、較小並且較薄,是非常適用於高密度應用上的。 本發明製備該半導體封裝的方法可延伸成為一高產量生 產製程。重要的是,該方法提供同步封裝一晶圓上所有的 積體電路。此外,該方法運用習知的模板印刷設備和方法。 與運用傳統的旋轉塗佈技術之封裝方法相比,本方法的特 -29- 200308030 徵在於較少的材料浪費(矽酮組成)和較少的製程步驟。 本發明的半導體封裝可以被用來製備個別的積體電路晶 片封裝。晶片封裝對於生產印刷電路板是有用的。其可: 被併入電子設備中,例如計算機、電話、電視以及大型雨 腦和個人電腦。 % 本發月之這些及其他特徵、觀點和優勢藉由參考如下的 敘逑附加的申請專利範圍以及伴隨的圖示將會被更徹 的瞭解。 一 實例 如下的實例被描述以進一步說明本發明的矽酮組成,但 不應被認定為是對本發明的限制,本發明的範圍在附加的 申請專利範圍中被描述。除非有特別註明,否則在該等實 例中的所有等分和百分比都是以重量計。 黏度的測量 一矽酮組成的黏度係利用一配備25毫米平板的流變科學 (Rheometric Scientific)公司的SR_5000平行板流變儀來測 疋。該流變儀在一應力控制模式下於25它下操作。剪切率 在5分鐘内從100增加至5〇〇〇達因/平方公分(dynes/cm2)。得 到的黏度值’以達因/平方公分表示,係在剪切率為I 〇秒-1 和10秒4下所測得者。 矽酮樣本的製備 一矽酮組成被注入一内部尺寸為3·〇英吋χ6·〇英吋x0 075 英忖(7·6公分xl 5公分χ〇. 19公分)並且由鋁和鐵弗龍薄板所 構成的矩形鏵模中(圖5)。該填充的鑄模被一鐵弗龍薄板覆 200308030 蓋並在一熱壓機(press)内於1〇噸(9〇72公斤)的質量下以i5〇 °C加熱15分鐘。該鑄模可以被冷卻至室溫並且該矽酮樣本 被移出。該樣本在一烤箱中於一鐵弗龍薄板上以15〇。〇加熱 45分鐘,然後維持在室溫下至少24小時。 秒酬測試樣品的製備 用來做硬度(durometer hardness)、抗張強度(tensile strength)、延展性(elongati〇n)以及弦模數(ch〇rd m〇dulus) 測量的樣品係藉由根據在美國測試暨材料協會第D 412號 試驗(ASTM D 412)中所述的程序利用印模c(Die c)從每一 個矽酮樣本上裁切三個啞鈴形狀的樣品來製備。 用來作線性熱膨脹係數測量的樣品係藉由從矽酮樣本上 裁切直徑為0.25英吋(〇·64公分)並且長度為0 075英吋(〇19 公分)的圓柱狀樣品來製備。 硬度的測量 一秒嗣測試樣品的硬度係根據美國測試暨材料協會第D 2240號試驗(aSTM D 2240)利用蕭式硬度計A型(Sh〇re Type A)儀器來測定。三種來自相同矽酮樣本的測試樣品被堆疊 以使總厚度達到〇·22英吋(0.57公分)。硬度測量係在最上層 的測試樣品之外表面上執行。得到的硬度值表示在相同的 測試樣品上之不同位置執行的三個測量的平均值。 張力強度、延展性和弦模數的測量 一矽酮測試樣品在最大延展性處之抗張強度、最大延展 性、以及弦模數係根據美國測試暨材料協會第D 412號試驗 (ASTM D 412)利用夢山都(Monsant〇)公司的張力計2〇〇〇來 -31- 200308030 測定。夾叙分離(grip separation)速率是20英对/分鐘(0.85公 分/秒)。弦模數係利用在美國測試暨材料協會第E 111-97號 試驗(ASTM E 111-97)中所述的方法由該應力-張力曲線來 計算。所得到的每一個抗張強度(帕)、延展性(%)和弦模數 (百萬帕)的值都代表在從相同的矽酮樣本取得的不同啞铃 形狀測試樣品上執行的三個測量的平均值。 線性熱膨脹係數的測量 一矽酮測試樣品的線性熱膨脹係數係利用一 TA儀器公 司(TA instruments)的TMA 2910熱機械分析儀來測定。一直 徑為0.125英对(0.318公分)的扁平石英探測器被操作與該 樣品的表面接觸。一 〇 · 1牛頓的力量被應用在該探測器上並 且該樣品的溫度以5°C/分鐘的速率從30°C增加至200°C。該 探測器的位移相對於溫度的函數被紀錄,並且在5〇和i5〇艽 之間的最適線(best fit line)的斜率被用來決定熱膨脹係 數。線性熱膨脹係數,以微米/米厂C單位來表示,係利用每 單位長度的線性熱膨脹除以溫度改變來求得。 印刷方法 矽酮組成係利用一史畢林科技公司(Speedline Technologies)型號MPM/SPM之模板印刷機被直接印刷在 一 150毫米矽晶圓的平坦表面上,其配置有一長度為8 〇英 吋(20公分)的刮刀和一厚度為0 0015英吋(〇 〇38毫米)的不 銹鋼模板並且含有多個0.013英吋(〇·33毫米)的圓形孔隙。 該模板印刷機係在13镑(58牛頓)的刮刀壓力、〇 〇1英对(〇2 毫米)的離板碉節(snap-0ff acijustment)以及〇·4英忖/秒(1公 -32· 200308030 該晶圓在一烤箱中以150它的溫度加 分/秒)的速度下操作。 熱15分鐘。 印刷尺寸的測量 印刷特徵的尺寸係利用—姓石、1 / 丁你扪用科磊公司(Tencor)的P-U輪廓 掃描儀㈣叫邮⑽)來敎。所得到的底部寬度、頂部寬 度、平均高度和峰值的每一個都表示在相同晶圓的不同特 徵上所執行的三個測量的平均值。 試劑ViMe2Si〇 (Me2SiO) aSiMe2Vi, ViMe2Si〇 (Me2SiO) 025a (MePhSi〇) 0.75aSiMe2Vi, ViMe2SiO (Me2Si〇) 0.95a (Ph2Si〇) a〇5aSiMe2Vi, ViMe2Si〇 (Me2SiO) 0.98 (MeViSiO) Via2SiMe Me3SiO (Me2SiO) 0.95a (MeViSiO) 0.05aSiMe3, and PhMeViSiO (Me2SiO) aSiPhMeVi, where Me, Vi, and Ph represent methyl, vinyl, and phenyl, respectively, and a has a polydiorganosiloxane The viscosity at 25 ° C is between 0.002 and 60 Pa · s. Methods for preparing organopolysiloxanes suitable for use in the silicone composition, such as hydrolysis and condensation of organohalosilanes or the balance of cyclopolydiorganosiloxanes, are well known in the art. Ingredient (A) can be a single, organic polybutyrate or a mixture containing two or more organic polysiloxanes with at least one different property, such as structure, viscosity, average molecular weight, silicone units and sequences . Component (B) is at least one organohydrogensiloxane, and each molecule contains at least two hydrogen atoms bonded to silicon. It is generally believed that cross-linking occurs when the sum of the average number of olefinic hydrocarbon groups per molecule in component (A) and the average number of bonded silicon hydrogen atoms per component in component (B) exceeds 4,200,030,030 (Cr 〇SSlinklng). The silicon-bonded hydrogen atom in the organohydrogensiloxane may be disposed at a terminal, a pendant, or both terminal and side positions. The organohydrogensiloxane may be a disiloxane, a trisiloxane, or a polysiloxane. The structure of the organohydrogensiloxane may be linear, branched, or cyclic fluorene resin. &lt; Examples of organohydrosiloxanes include, but are not limited to, disiloxanes such as 1,1,3,3 · tetramethyldisilazane, 1,3,3 tetraphenyl-oxygen gauge ( 1,1,3,3 hepta (1 ^ 1111 1 (^ to 1〇) \ &amp;116); disiloxanes, such as phenyltri (dimethylsiloxy) silane (phenyihh (dmiethylsilowsiune) And u, 5_trimethylcyclotrisiloxane (l, 3,5_tmnethylCyCltrisii〇xane); and polysiloxanes, such as a poly (methylhydrosiloxane) with a trimethylsiloxy end ), A poly (dimethylsiloxane / methylhydrosiloxane) with a trimethylsiloxy end, a poly (methylhydrosiloxane) with a dimethylhydrosiloxy end, and A resin consisting of a unit called ⑶chan ~ zaowu, (CH3) 3Si〇i / 2 unit, and Sia ^ unit. The knife (B) can be burned with a single type of organic hydrogen crushed oxygen or containing two or There are at least one kind of mixture of different types of organic hydrogen crushed oxygen, for example, the structure average is sub-quantity, viscosity, crushed oxygen burned unit and sequence. The concentration of the component (B) in the silicone composition of the present invention is sufficient to cure ( (Crosslinking) the composition. The exact concentration of the component (B) depends on the degree of cross-linking, and it usually increases with the increase in the ratio of the mole number of hydrogen atoms in the component ⑻ internal bond to the mole number of nicotine molybdenum. The concentration of component W can be Is sufficient to provide each of the affiliated «0, 8 to 3 bonded hydrogen atoms or -15 to 200308030 in the component (A) is 0 · 8 to 1 · 5 hydrogen atoms bonded to silicon. Preparation organic Hydrogen sintering methods, such as hydrolysis and condensation of ancient columns such as organic silicon pits, are well known in the art. Ingredient (C) is at least-a surface area of less than 25 square meters per gram, or 0.25 to 10 square meters per gram 'or 0.25 to 5 square meters per gram of inorganic filler. Ingredient (c) can be any inorganic filler with a surface area of less than 25 square meters per gram, it is often used; in crushed hydrogenation Additlon-curable silicone composition in the reaction (hydrósilylati) to adjust the rheological properties of the composition, the cost of the composition, or adjust the mechanical, electronic, Chemical or thermal properties. The inorganic filler contains an average size from 02 to 15 Meters or microparticles from 0 to 20 microns. Although the shape of the inorganic filler particles is not critical, spherical particles are preferred because they generally make the silicon more compact than other shaped particles. The viscosity of the ketone composition increases less. The pH value of the inorganic filler at room temperature (15 to 25 ° C) can be 3 to 9 or 6 to 9. The pH value of a filler can be measured by measuring 10 grams of The pIi value of the slurry consisting of the filler in 10 ml of distilled water was measured as exemplified by the American Society for Testing and Materials D 4972 test (ASTM D 4972). When the pH of the filler is less than about 3, the cured silicone product generally exhibits reduced thermal stability. When the pH of the filler is greater than about 9, the silicone composition generally becomes unstable during storage and / or the cured silicone product exhibits reduced thermal stability. The filler may have a water (water vapor) content of not more than 2 weight percent or not more than 1 weight percent. The water content of a filler can be determined by measuring the weight lost when the filler is dried at 110 ° C, as exemplified by the American Society for Testing and Materials D 2216 (ASTM D 22 16). When the water content is more than about 2% by weight, the organic hydrogen crushed oxygen and water can react in the presence of a crushed hydrogenation reaction catalyst. This reaction consumes the organic hydrogen oxyfuel required to cure the broken ketone composition and generates chlorine, which may cause voids to be generated in the cured silicone product. Examples of inorganic fillers include, but are not limited to, natural silica, such as crystalline silica, ground crystaUine silica, and diatomaceous silica; synthetic silica , Such as fused silica, silica, and silicates, such as mica, silicon ore, feldspar and nepheline syenite; metal oxides, such as oxygen, aluminum, titanium dioxide, magnesium oxide, iron oxide, beryllium oxide, Chromium oxide, emulsified 'and zinc oxide; metal nitrides, such as boron nitride, nitrided hair, and nitrided' metal carbides 'such as boron carbide, carbide', and carbon cut; carbon black; soil test metal carbonate, For example, carbonic acid; soil test metal sulfates, such as ..., magnesium sulfate and sulfuric acid lock; disulfate phase (moybd_: f: e), zinc sulfate; kaolin; talc · glass-breaking fiber; glass beads, such as hollow glass Spheres and solid broken glass microspheres; Ming trihydrate de a UminUm tnhyd); asbestos; and metal powders, such as Ming, copper, and powder. The recommended inorganic filler is fused two. It can also be a treated inorganic filler. The inorganic filler compound treated by the compound can be any organic silicon dioxide commonly used to treat dioxide. 200308030 compounds. Examples of organic silicon compounds include, but are not limited to, organic gas silanes, such as methyltrichlorosilane, dimethyldichlorosilane, and trimethylmonochlorosilane; (Hydroxy-endblocked) dimethylsiloxanes oligomers, hexamethyldisilazane and tetramethyldivinyl disaroxane; organosilazanes, such as hexamethyldisazane , Hexamethylcyclotrisilazane; and organoalkoxysilanes, such as methyltrimethoxysilane, ethylene tautrimethoxysilane, vinyltriethoxysilane, 3-dehydration Glyceryloxypropyltrimethoxysilane (3-glycidoxypropyltrimethoxysilane) and 3-methacryloxypropyltrimethoxysilane (3-methacryloxypropyltrimethoxysilane). Component (C) may be a single kind as described above An inorganic filler or a mixture of two or more such fillers having at least one different property, such as surface area, surface treatment, particle size, density, and particle shape. Ingredient (C) is present in the silicone composition in an effective amount. As used herein, the term "effective amount" means that the concentration of ingredient (C) is capable of curing the silicone composition to form a coefficient of thermal expansion from 60 to 150 when the temperature is between -40 and 150 ° c. 280 μm / m ° (: product, as determined by the method described in the following example. The exact concentration of component (C) depends on the required thermal properties, filler surface area, filler density, filler particle shape , The surface treatment of the filler and the properties of other ingredients in the silicone composition. The concentration of the component (C) may be 30 to 1200 parts by weight per 100 weight parts of the component (A) , Or 100 to 600 weight aliquots, or 150 to 400 weight aliquots. When the concentration of component (C) is less than about 30 -18-200308030 weight aliquots, the cured silicone product is filled with the inorganic filler without the inorganic filler. Compared with silicone products made of the same ingredients, the thermal expansion coefficient will not be significantly reduced. When the concentration of the component (C) is greater than about 1200 weight aliquots, the viscosity of the silicone composition is very high and an easy to form after curing. Crushed product. Ingredient (D) The effective amount can be easily determined by routine experiment using the method in the following example. Component (D) is at least one hydrosilylation catalyst 'its promoting component (A) and component (B) The hydrosilylation catalyst can be any well-known hydrosilylation catalyst containing a platinum group metal, a compound having a platinum group metal, or a catalyst containing a microencapsulated platinum group metal, Platinum group metals include noodles, rhodium, ruthenium, palladium, iron, and iridium. Preferably, the platinum group metal is platinum because of its high activity in the hydrogenation reaction. Examples of hydrosilylation catalysts include Willing in the United States The complexes of chloroplatinic acid and certain vinyl-containing organosiloxanes disclosed in Patent No. 3,419,593 are incorporated herein by reference. Such catalysts One specific example is chloroplatinic acid and ethylene diacetate (1,1,3,3-tetramethyldisiloxane tetramethyldisiloxane). The hydrosilylation catalyst may also be a Encapsulated catalyst of the platinum group, which comprises a platinum group metal encapsulated in a thermoplastic resin. The composition containing the microencapsulated hydrosilylation catalyst can be stable for a long time under ambient conditions, usually several months or more, but it is farther than the melting point or softening point of the thermoplastic resin. It can be cured at a relatively fast speed at -19-200308030 at temperature. Microencapsulated hydrosilylation catalysts and methods for preparing them are well known in the art, as exemplified in U.S. Patent No. 4,766,176 and references cited therein, and U.S. Patent No. 5,017,654. Ingredient (D) can be a single type of hydrosilylation catalyst or a mixture containing two or more catalysts with at least one different property, such as structure, type, starting group metal, ligand, and thermoplastic resin . The concentration of the component (D) is sufficient to catalyze the addition reaction of the component (A) and the component (B). The concentration of component (D) may be sufficient to provide a starting group metal of 0.1 to 1000 parts per million (ppm), or a condensed group metal of 1 to 500 ppm, or a platinum group metal of 5 to 150 ppm, with the component ( The combined weights of A), (B) and (C) are based. The cure rate is very low for platinum group metals below 0.1 ppm. However, the use of more than 1000 ppm of platinum group metals does not result in a significant increase in cure rate and is therefore uneconomical. The silicone composition may contain other ingredients as long as the ingredients do not prevent the composition from curing to form a silicone resin having a low coefficient of thermal expansion (CTE) and a low modulus as described above. Examples of other ingredients include, but are not limited to, crushed hydrogenation catalyst inhibitors; organopolysiloxane resins, adhesion promoters, such as the adhesion promoters taught in US Patent Nos. 4,087,585 and 5,194,649; dyes ( dye); pigments; antioxidants; thermal stabilizers' UV stabilizers; flame retardants; flow control additives and organic solvents. Examples of fragmentation hydrogenation catalyst inhibitors include several "fluorene-acetylene" systems, such as 3-methyl-3_penten-1-yne and 20030830 3,5- 3,5-dimethyl-3-hexen-l_yne; acetylenic alcohols, such as 3,5-dimethylhexene-l_yne (3,5-dimethyl -l-hexyn-3-ol), 1-ethynyl-l cyclohexanol), and 2-phenyl · 3-butyn-2-ol (iphenyubww 2-〇1); cis-butene di Esters (maleates) and fumarates, such as the well-known dialkyl, diolefin ((ιία1) ^ ηγ1) and dialkoxyalkyl (dialkoxyalkyl) fumaric acid and cis-butyric acid Esters; and cyclovinylsiloxanes. Examples of organic solvents include saturated hydrocarbons such as pentane, hexane, and heptane; aromatic fumes such as benzene, toluene, and xylene; mineral spirits (E.g.); halogenated hydrocarbons, such as dichloromethane, chloroform, and trichloroethane; esters, such as ethyl acetate; g, such as propyl, methyl ethyl ketone, and methyl isobutyl ketone; and this A mixture of solvents. A type of organic polysiloxane resin is basically composed of R33Si〇i / 2 silicone oxygen element and Si04 / 2 crushed milk pit unit, where each r3 is independently selected from Monovalent hydrocarbons and monovalent halogenated hydrocarbons of 1 to 20 complete atoms, and the molar ratios of R θ 2 and SiO 2/2 units in the organic poly crushed milk gauge resin are 0.65 to 1.9. When the silicone composition further comprises an organic polysiloxane resin, the concentration of the cross-linking agent may be sufficient to provide each olefinic hydrocarbon group in the component (A) and the organic polyoxyalkylene resin combination 0.8 to 3 Hydrogen bonding atoms per second. The concentration of the organopolysiloxane resin in the silicone composition of the present invention may be 1 to 100 weight aliquots per 100 weight aliquots of component (A) or 3 0 to 100 weight aliquots. -21-200308030 The organic polysiloxane resin of the present invention can be prepared by a method well known in the art, such as exemplified in U.S. Patent No. 2,676,182 issued to Daudt et al. In a preferred embodiment, the silicone composition further includes a surface area (B · E · T. Method) Silica dioxide fillers from 50 to 400 m2 / g. The silica dioxide fillers give the silicone a composition thixotropy. As used herein, the user's The term sex indicates that when a shear force is applied to the composition, the composition exhibits a decrease in viscosity, and the viscosity increases in subsequent rest. The degree of current flow can be determined by measuring the current flow index of the composition. For example, the flow index can be expressed as the ratio of the viscosity of the silicone composition at a shear rate of i radians / second (rad / s) to the viscosity of the composition at a shear rate of 10 radians / second, where each viscosity Measured at 23 ± 2 ° C. Examples of suitable pulverized monoxide fillers include, but are not limited to, fumed silica, precipitated siUca, and those prepared by treating the aforementioned silicon dioxide surface with an organic silicon compound Treated silica dioxide filler. Suitable organosilicon compounds are exemplified in the above description for component (C). The concentration of the silicon monoxide filler may be 0.5 to 20 weight equal parts or 100 to 10 weight equal parts per 100 weight equal parts of the component (A). The silicone composition of the present invention may be a one-part composition containing ingredients (A) to (D) in a single part, or a composition containing (A) to (D) in two or more parts It consists of multiple parts. Knifes (8), (B), and (D) in a multi-part composition usually do not exist in the same part, except for an inhibitor. For example, a multi-part silicone composition can be -22-200308030 containing a first part containing a part of the ingredient (A), a '# wound ingredient (c), and all the ingredients (D), and a sentence each dagger. The rest of the knife (A) and (0) and the second part of all the ingredients (B). The single component of the present invention has the same composition, and the j is composed of the specified proportions combined at ambient temperature ( A) to (D) and Ren Wei, Dengli μ 丄 V) and any selected ingredients were prepared with the aid of auxiliary M_AL ^, A 冏 with or without the solvent as described above. Although the order of addition of the various ingredients is not important, but when civilian soil is needed, and the child silicone composition is used immediately, the hydrosilylation catalyst is preferably the final one at a temperature lower than about 1 ° C and 30 ° C. Added to avoid premature curing of the composition. In addition, the multi-part nightmone composition of the present invention can be prepared by combining the ingredients for each part. The semiconductor packaging system of the present invention is not limited to, but is not limited to, the embodiments described below and shown in Figs. 1-4. In this case, only a portion of a wafer with a single pad is shown in the Hasu Temple. In a first embodiment of a semiconductor package according to the present invention, it was shown in the past that the semiconductor package contains—a semiconductor wafer ig—that has—a mother-in-law that contains at least one integrated circuit (not shown) Moving surface, in which each integrated circuit has a plurality of pads 20; 5; the silicon layer of the active surface of the doorman and a covered child wafer except for the pads 20% . In the second embodiment of the semiconductor package according to the present invention, it is not shown in FIG. 2 that the semiconductor package contains-a half-body wafer 10, which has-at least-one integrated circuit (not shown) Active surface of which each integrated circuit has a plurality of soldering pads ... covering the solidified surface of the wafer except for the flat surface 2o <layer 3 (), _ metal track 4o, which Near -23-200308030 3 in 0 = Γ on each material M and its end is flat on the surface of the Lai layer 30, a .gM, nine households, and; the tin tin at the end of a track 40 The bumps 50 and ^ and a solder mask 60 (solder mask) covering 2G, concrete and metal rails. In a third embodiment of a semiconductor package, which is shown in FIG. 3, the semiconductor package includes a semiconductor wafer 10 having an active surface containing at least one integrated circuit (not shown), each of which The integrated circuits each have a plurality of known 2G's and—a portion of the cured silicone dome 31—that covers the active surface of the wafer other than the solder 2G. In a fourth embodiment of a semiconductor package, It is shown in FIG. 4 that the half-two package contains-a semiconductor wafer 1G, which has-an active surface containing at least one integrated circuit (not shown), wherein each integrated circuit has a plurality of flat 2G ;-A part of the cured silicone dome 31 covering a part of the active surface of the wafer other than ㈣%; a metal track 41 whose near-center point is attached to each pad 20 and whose end is flat It is placed on the surface of the silicone dome 1 and a solder bump 50 attached to the end of each track 41. In the above embodiment, the metal tracks are repositioned or reconfigured on the integrated circuit. Pad becomes a zone Column configuration. These tracks contain a conductive metal or alloy. Examples of metals include chromium, titanium, copper, gold, and nickel. More specifically, the metal track can be composed of a three-layer system of nickel / copper, where titanium is the adhesion layer, nickel is the dispersion barrier layer, and copper is the main track metal. In addition, the solder-resistant green paint may be a cured product of the silicone composition of the present invention. Wafer-level package designs previously without the silicone composition of the present invention -24- 200308030 are known in the art. For example, Kang et al. Proposed a wafer-level wafer-scale package that contains a modified polyimide as a stress buffer layer, a solder-resistant green paint composed of benzophenone, and a metal via ( metal runners) and solder ball reconfiguration network (electronic component and technical conference proceedings, 2000, 87-92). The method for preparing a semiconductor package according to the present invention comprises the following steps: (1) printing a silicone composition on at least a portion of an active surface of a semiconductor wafer to form at least one silicone deposit, wherein the active surface Contains at least one integrated circuit, each integrated circuit has a plurality of pads, the female 丨 dry at least one part is not covered by the second ketone deposition, and the silicone composition contains: (A) — organic Polysiloxane (organopolysiloxane), each molecule contains at least two alkenyl groups bonded silicon, (B)-organosilicon compounds, each molecule contains at least two bonds broken Hydrogen atoms in a concentration sufficient to cure the composition, (c) an effective amount of an inorganic filler having a surface area of less than 25 square meters per gram (m2 / g); and (D) —amount of silicon that can cause catalysis Hydrosilylation catalyst; and (ii) heating the silicone deposition for a sufficient time to form a cured silicone component, wherein the component has a linear thermal expansion coefficient between _40 * 15 (rc) 60 to 280 micrometers / meter. C (# m / mt), and its modulus is between 1 and 300 million Pascals (MPa) at 25.0. The composition of fluorene can be determined by conventional methods. Stencil printing or screen printing is used by -25-200308030 on the active surface of the semiconductor wafer, depending on the desired deposition thickness. Generally, screen printing can be used to make deposits up to 15 microns thick. Stencil printing can be used to make deposits up to 300 microns thick. Specific printing conditions depend on the rheological properties of the uncured silicone composition, pore size, and printing method (ie, stencil or screen). For example, The silicone composition can be made by using a blade pressure of 2 to 25 pounds (SqUeegee), a speed of 0 to 5 inches / second (0.5 to 12.7 cm / second), and 0 to 0 inches (0 to 25 mm). ) For snap-off adjustment stencil or screen printing applications. The silicone deposit is then heated for a period of time sufficient to form the cured silicone member. The silicone deposit may be heated for a period sufficient to achieve the desired Degree of crosslinking but no oxidation or The time at which the effect occurs. For example, the deposit is heated at a temperature from to 250C for 3 to 360 minutes, or at a temperature from 90 to 200 ° C (for a temperature of 5 to 60 minutes, or from 10). It is heated at a temperature of 0 to 150 ° C for 15 to 60 minutes. The silicone deposition can be heated using conventional equipment, such as a heating plate or oven. The method can further include attaching an elastic contact (spring to female) Each solder pad and split the package into individual integrated circuit wafers. Examples of spring contacts and methods of connecting contact springs to semiconductor devices are known in the art, such as in US Patent No. 6, approved by Chang et al., Illustrated in 168,974 B1. Conversely, the method may further include dividing the package into individual integrated circuit wafers and assembling each wafer in a leadframe package. The assembly process usually includes attaching each wafer to a lead frame and connecting (through # wire bonding) each wafer on the wafer. -26-200308030 The pads are connected to the leads on the lead frame and are connected to the outer cover. The parts are sealed together or the assembly is encapsulated with a molding compound. Methods for assembling leadframe packages include, for example, dual in-line packages (DIp), micro-lead dual-in-line packages (SH-DIP), thin dual-in-line packages (SK_DIp), slim packages (SL-DIP), single-inline packages (SIp), cross-lead package (ζιρ), pin format package (PGA), small package (s〇), miniaturized package (soop), leadless chip package (LCC), plastic leadless chip package (pLCC) And small flat plastic die carrier (SOJ). On the other hand, the method may further include dividing the package into individual integrated circuit wafers and assembling each wafer in a ball-format (BGA) package. The method of assembling ball-shaped packages is also well known in the art. The semiconductor package shown in FIG. 1 can be prepared by the following method: ⑴printing-Zhenone is formed on one of the active surfaces of the semiconductor wafer 10 to form a dreamone layer, wherein the active surface contains at least one dragon's road, Each integrated circuit has a plurality of pads 20, the pads 20 are not covered by the silicone layer, and the broken ketone composition contains the components (a) _ (d) as described above; and (ϋ ) The silicone layer is heated for a sufficient time to form a cured silicone layer 30 ′, wherein the cured silicone layer is between the shoulder and the palate. . The coefficient of linear thermal expansion is between 60 and 280 microns / meter. CUm / mt :), and at 25. At 0, its modulus is between 1 and 300 million cypresses (MPa). The semiconductor package shown in FIG. 2 can be prepared by the following method: ⑴printing-crushed ketone composition-on the active surface of the semiconductor wafer 1G-to form a broken ketone layer 'wherein the active surface contains at least one integrated circuit, each The integrated circuits each have a plurality of 烊 _ ′ 等 焊 # 20 is not covered by the ㈣ layer-27- 200308030, and the second ketone composition contains the components (A)-(D) as described above; and (ii) The silicone layer is heated for a sufficient time to form a cured silicone layer 30, wherein the cured silicone layer has a linear thermal expansion coefficient of 60 to 280 microns / meter when the temperature is between -40 and 150 ° C. C (// m / m.〇), and its modulus is between 1 and 300 million Pascals (MPa) at 25 ° C; (iii) forming a metal track 40, which is near the center point Attached to each pad 20 and its end is flat on the surface of the silicone layer 30; (iv) A solder-resistant green covering the pads 20, the silicone layer 30, and the metal track 40 is applied Paint 60, a portion of the end of each track 40 is not covered by the solder-resistant green paint 60; and (v) a solder bump 50 is formed at the end of each track 40. The formed semiconductor package can be divided into individual integrated circuit wafers using, for example, a conventional wafer dicing method. The semiconductor package shown in FIG. 3 can be prepared by the following method: printing a silicone composition on an active surface of a semiconductor wafer 10 to form at least one silicone dome, wherein the active surface contains at least one integrated circuit, each An integrated circuit has a plurality of pads 20, the pads 20 are not covered by the silicone dome, and the silicone composition contains the components (A) _ (D) as described above, and ( ii) The silicone dome is heated for a sufficient time to form a cured silicone dome 31, wherein the linear thermal expansion coefficient of the cured silicone dome is between 60 and 280 microns / meter. At room temperature, its modulus is between 1 and 300 million Pascals (Mpa) at 25 ° C. The semiconductor package shown in FIG. 4 can be prepared by the following method: ⑴printed-second ketone composition is formed on the active surface of the semiconductor wafer 1G to form a broken ketone dome, and the active surface contains at least one integrated circuit. Each of the -28- 200308030 integrated circuits has a plurality of solders | 20, the solder pads 20 are not covered by the broken ketone palace 'and the second ketone composition contains the components (A) _ (D) as described above (ii) heating the silicone dome for a sufficient time to form a cured crushed ketone dome 3 1 'where the linear thermal expansion coefficient of the member between -40 and 150 ° C is 60 to 280 microns / meter . C (// m / m ° C), and its modulus is between 1 and 300 million Pascals (Mpa) at 25 ° C; (iii) forming a metal track 41 'its near-center point It is attached to each plateau 20 and its end is flat on the surface of the fragmentary palace roof 31; and (iv) a solder bump 50 is formed at the end of each track 41. The formed semiconductor package can be divided into individual integrated circuit wafers using, for example, a conventional wafer dicing method. In the above embodiment of the method, the metal track can be formed using conventional sputtering, lithography, and electroplating techniques, such as those proposed by 1 ^ 11§, etc. (Symposium on Electronic Components and Technology, 2000, 87-9 2 彡. The semiconductor package of the present invention exhibits good thermal stability and good environmental resistance over a wide range of temperatures. Moreover, the semiconductor package allows simultaneous testing of all on a wafer In addition, individual wafers can be cut (divided) from the wafer-level semiconductor package, with each wafer being only slightly larger than the integrated circuit itself. These "wafer-size packages", Compared with the conventional integrated circuit package, it is lighter, smaller, and thinner, and is very suitable for high-density applications. The method for preparing the semiconductor package of the present invention can be extended into a high-volume production process. It is important that, This method provides the simultaneous packaging of all integrated circuits on a wafer. In addition, this method uses conventional stencil printing equipment and methods. It is in contrast to the traditional spin coating technology. Compared with the packaging method, the special feature of this method is that it has less material waste (silicone composition) and fewer process steps. The semiconductor package of the present invention can be used to prepare individual integrated circuit chip packages. Chip packaging is useful for the production of printed circuit boards. It can: be incorporated into electronic devices such as computers, telephones, televisions, and large rain brains and personal computers.% These and other features, perspectives, and advantages of this month The scope of the additional patent application and accompanying drawings will be more thoroughly understood with reference to the following description. An example The following example is described to further illustrate the silicone composition of the present invention, but it should not be considered as an invention. Restriction, the scope of the present invention is described in the scope of additional patent applications. Unless otherwise specified, all aliquots and percentages in these examples are by weight. Viscosity measurement The viscosity of a silicone composition is used A Rheometric Scientific SR_5000 parallel plate rheometer equipped with a 25 mm flat plate was used to measure radon. The control mode is operated at 25. The shear rate is increased from 100 to 5000 dynes / cm 2 (dynes / cm 2) in 5 minutes. The obtained viscosity value is expressed in dynes / cm 2 and is in Shear rates were measured at 100 s-1 and 10 s 4. Preparation of silicone samples-A silicone composition was injected into an internal dimension of 3.0 inches x 6.0 inches x 0 075 inches (7 · 6 cm x 5 cm x 19.19 cm) and a rectangular mold made of aluminum and Teflon sheet (Figure 5). The filled mold is covered with a Teflon sheet covering 20030830 and heated under pressure It was heated in a press at a mass of 10 tons (9072 kg) at 15 ° C. for 15 minutes. The mold could be cooled to room temperature and the silicone sample was removed. The sample was placed on a Teflon sheet in an oven at 150 ° C. 〇 Heat for 45 minutes and then maintain at room temperature for at least 24 hours. The preparation of the second-paid test sample is used to measure the hardness (durometer hardness), tensile strength (tensile strength), ductility (elongati〇n) and chord modulus (ch〇rd m〇dulus). The procedure described in the American Society for Testing and Materials Test D 412 (ASTM D 412) was prepared using die c to cut three dumbbell-shaped samples from each silicone sample. The sample used for the linear thermal expansion measurement was prepared by cutting a cylindrical sample having a diameter of 0.25 inches (0.64 cm) and a length of 0 075 inches (0 19 cm) from a silicone sample. Hardness measurement The hardness of the one-second test specimens was measured according to the American Society for Testing and Materials D 2240 (aSTM D 2240) using a Shore Hardness Type A instrument. Three test samples from the same silicone sample were stacked for a total thickness of 0.22 inches (0.57 cm). The hardness measurement is performed on the outer surface of the uppermost test sample. The resulting hardness values represent the average of three measurements performed at different locations on the same test sample. Measurement of Tensile Strength, Ductility, and Chord Modulus-The tensile strength, maximum ductility, and chord modulus of silicone test samples at the maximum ductility are in accordance with American Test and Materials Association Test D 412 (ASTM D 412) It was measured using a tensiometer 2000-31-200308030 by Monsant. The grip separation rate is 20 inches per minute (0.85 cm / s). The chord modulus is calculated from the stress-tension curve using the method described in the American Society for Testing and Materials Test No. E 111-97 (ASTM E 111-97). Each of the values obtained for tensile strength (Pa), ductility (%), and chord modulus (Mpa) represents three measurements performed on different dumbbell-shaped test samples obtained from the same silicone sample average of. Measurement of the coefficient of linear thermal expansion The coefficient of linear thermal expansion of a silicone test sample was determined using a TMA 2910 thermomechanical analyzer from TA instruments. A flat quartz detector with a diameter of 0.125 inches (0.318 cm) was operated to contact the surface of the sample. A force of 0.1 Newton was applied to the detector and the temperature of the sample was increased from 30 ° C to 200 ° C at a rate of 5 ° C / minute. The detector's displacement as a function of temperature was recorded, and the slope of the best fit line between 50 and 50 ° was used to determine the coefficient of thermal expansion. The coefficient of linear thermal expansion, expressed in micrometers per meter of factory C, is obtained by dividing the linear thermal expansion per unit length by the change in temperature. Printing method Silicone composition was printed directly on a flat surface of a 150 mm silicon wafer using a Speedline Technologies model MPM / SPM stencil printer with a length of 80 inches ( 20 cm) scraper and a 0015 inch (0038 mm) stainless steel template with multiple 0.013 inch (0.33 mm) circular pores. The stencil printing machine was set at a scraper pressure of 13 pounds (58 Newtons), a 001-inch pair (02 mm) of snap-0ff acijustment, and 0.4 Angstroms per second (1 male-32). 200308030 The wafer is operated in an oven at a temperature of 150 ° C (minutes per second). Heat for 15 minutes. Measurement of printing size The size of printing features is used—name surname Shi, 1 / Ding You (using Tencor's P-U contour scanner (called postal)). Each of the resulting bottom width, top width, average height, and peak represents the average of three measurements performed on different characteristics of the same wafer. Reagent

己婦基矽氧基 如下的化學物質被使用在該等實例中 聚合物A: —具有二甲基 (dunetliylhexenylsiloxy)末端的聚(二甲基矽氧烷/甲基己烯 基矽氧烷),每個分子平均具有146個二甲基矽氧烷單元和 兩個甲基己烯基矽氧烷單元,並且在25。〇時的黏度為〇 C 帕·秒。 聚合物B : —種混合物,其組成物係:66 9%的具有二甲 基乙稀基矽氧基(dimethylvinylsiloxy)末端的聚(二甲基矽 氧烷)’其在25°C時的黏度約為2帕·秒、2· 1 %的具有二甲基 乙缔基碎氧基末端的聚(二甲基碎氧燒),其在25艺時的黏度 約為55帕·秒、以及31%的基本上由CH2=CH(CH3)2Si01/2單 元、(CHshSiO^單元和SiO#2單元所構成的一有機聚矽氧垸 樹脂,其中CHfCHCCHASiO&quot;2單元和(CHASiOw單元與 S1O4/2單元結合的莫耳比約是0.7,並且該樹脂的重量平均分 子量約是22,〇〇〇、聚合散度性(P〇lydispersity)約是5、在25 C時的黏度為5帕·秒、並且該樹脂含有重量約1 8 % (約5 5 -33- 200308030 莫耳%)的乙埽基。 聚合物C: 一種由85%的具有二甲基乙缔基矽氧基末端的 聚(二曱基碎氧烷),其在25°C時的黏度約為3毫帕·秒、10〇/〇 的一甲基環矽氧烷以及5 %的四甲基二乙烯基二矽氧燒所 組成的混合物。 聚合物D : —具有二甲基乙缔基矽氧基末端的聚(二甲基 梦氧燒)’其平均聚合度約是830並且在25°C時的黏度約為 5 5帕·秒。 交聯劑A : —種基本上由H(CH3)2Si〇1/2單元、(CH3)3Si〇1/2 單7G以及SiOw單元所組成的有機氫聚矽氧烷,其中該有機 氯聚碎氧燒含有重量百分比約1〇的鍵結矽的氫原子並且 在25°C時的黏度約為2.4 X 1(Γ5平方公尺/秒。 交聯劑Β : —具有三甲基矽氧基末端的聚(二甲基矽氧烷/ 甲基氫矽氧燒),其每一個分子平均具有3個二甲基矽氧燒 單元和5個甲基氫矽氧烷單元,在25t時的黏度約為$毫 帕·秒’並且含有約〇 · 8 %的鍵結碎的氫原子。 X聯劑C : 一種混合物,其組成物係:的具有三甲基 矽氧基末端的聚(二甲基矽氧烷/甲基氫矽氧烷),其每一個 分子平均具有16個二甲基矽氧烷單元和39個甲基氫矽氧烷 單元並且含有約1.05%的键結矽的氫原子;以及1〇%的低沸 點環狀和線性二甲基甲基氫矽氧烷。 填充物A : —電子動態隨機存取記憶體(DRAM)級的球形 炫融二氧化秒’其平均粒徑為4.4微米並且平均比面積約13 平方公尺/克。 -34- 200308030 填充物B · —屬於卡博特公司(Cab〇t c〇rp〇rati〇n)之 O-SIL TS-530商標販售之處理過的熔融二氧化矽。該處理 過的熔融二氧化矽係一高純度二氧化矽,其以六甲基二矽 氮烷(hexamethyldisilazane)處理過。該處理過的熔融二氧 化矽之表面積(BET法)係212土28平方公尺/克,碳含量係 4·25 ±0.5重量百分比,並且比重係22克/平方公分。 黏著促進劑··一種具有氫氧基末端的(二甲基矽氧烷/甲基 乙烯基矽氧燒),其每一個分子平均具有2個二甲基矽氧烷 單7C和2個甲基乙烯基矽氧烷單元,以及去水甘油氧基丙基 二甲氧基矽烷(glycidoxypropyltdmethoxysiiane)的反應產 物。該產物係藉由讓同樣重量等分的矽氧烷和去水甘油氧 基丙基二甲氧基矽烷(glyCid〇Xypr〇pyltrimeth〇xysilane)在 140 c下於一抑催化劑存在的情況下反應兩小時來製備。該 反應混合物係利用雙(二甲基乙缔基甲矽基)乙烯基磷酸鹽 (bis(dimethylvinylsilyl)vinylphosphonate)來中和並且在 130 °C的溫度和6.7千帕的壓力下液化小時。 催化劑:一種混合物,其組成物係·· 4〇重量百分比的分 散在一熱塑性矽酮樹脂内的鉑以及丨,弘二乙烯基i,3,3_ 四甲基二矽氧烷的錯合物,其中該樹脂係由78莫耳百分比 的單苯基矽氧烷單元和22莫耳百分比的二甲基矽氧烷單元 所組成,並且該樹脂的軟化點是6〇-9(rc ; 55重量百分比的 聚合物B,其係一具有二甲基乙婦基矽氧基末端的聚(二甲 基碎氧燒)’在2 5 C時的黏度約為2帕·秒並且乙婦基含量 是〇·2重量百分比;以及5重量百分比的以六甲基二矽氮烷 -35- 200308030 處理過的熔融二氧化矽。該催化劑的鉑含量約是重量百分 比 0.16 (1600 ppm) 〇 抑制劑:2_ 苯基-3_ 丁炔-2·醇 實例1 在一攪拌容器中混合聚合物Β (20·9等分)、79丨等分的聚 合物D、1.2等分的交聯劑C以及194.5等分的填充物A直到該 填充物均勻地分佈在該混合器中。加入抑制劑(〇〇4等分) 和3.7等分的催化劑至該攪拌器中並且持續攪拌約2〇分 鐘。該矽酮組成的黏度在ΐ·ο弧度/秒(rad/s)時是235 6帕· 秒’而在10弧度/秒(rad/s)時是193.4帕·秒。該固化的碎酮 產物之物理性質在表1中示出。 實例2 在一攪拌容器中混合聚合物A (7 5.0等分)、25.0等分的聚 合物B、2.5等分的交聯劑A、3.2等分的交聯劑B、2916等 分的填充物A以及4.2等分的填充物B直到該填充物均句地 分佈在該攪拌器中。加入抑制劑(〇·〇5等分)和2 5等分的催 化劑至该攪拌器中並且持續攪拌約2 〇分鐘。該碎酮組成的 黏度在1.0弧度/秒(rad/s)時是177.0帕·秒,而在1〇弧度/秒 (rad/s)時是27.9帕·秒。該固化的碎嗣產物之物理性質在表1 中示出。 實例3 在一攪拌容器中混合聚合物B (50.0等分)、50·〇等分的聚 合物(3、18.3等分的交聯劑(3、345.3等分的填充物八以及9.8 等分的填充物Β直到該填充物均勻地分佈在該攪拌器中。加 -36- 200308030 入抑制劑(0 · 06等分)和3·1等分的催化劑至該攪拌器中並且 持續攪拌約20分鐘。該矽酮組成的黏度在丨〇弧度/秒(rad/s) 時是322.8帕·秒,而在1〇弧度/秒(rad/s)時是42 6帕·秒。該 固化的矽酮產物之物理性質在表1中示出。 表1 實例 硬度 抗張強度 延展性 弦模數 熱膨脹係數 (蕭氏A型) 」^帕) (%) (百萬帕) (微米/米/°c) 1 _____ 67.6 3.51 99.90 3.5 157 2 93.0 6.40 11.91 53.8 110 3 92.0 6.28 4.23 148.5 丄X V/ 70 【圖式簡單說明】 圖1示出根據本發明之一半導體封裝之第一實施例的剖 面圖,其中該矽酮構件是一個層。 圖2示出根據本發明之一半導體封裝之第二實施例的剖 面圖,其中該矽酮構件是一個層。 圖3示出根據本發明之一半導體封裝之第三實施例的剖 面圖,其中該矽酮構件是一個穹頂。 圖4示出根據本發明之—半導體封裝之第三實施例的剖 面圖,其中該矽酮構件是一個穹頂。 圖5不出—用來製備一固化的矽酮樣本的鑄模。 【圖式簡單說明】 10 晶圓 20 焊塾 30 珍g同層 -37· 200308030 31 碎酉同宫頂 40 - 41 金屬軌跡 50 焊錫凸塊 60 抗焊綠漆The following chemical compounds of hexamethylenesilyl are used in these examples: Polymer A:-poly (dimethylsiloxane / methylhexenylsiloxane) with a dimethyl (dunetliylhexenylsiloxy) terminal Each molecule has an average of 146 dimethylsiloxane units and two methylhexenylsiloxane units, and is at 25. The viscosity at 0 was 0 C Pa · s. Polymer B: a mixture whose composition is: 66 9% poly (dimethylsilyloxy) with dimethylvinylsiloxy terminus' its viscosity at 25 ° C About 2 Pa · s, 2.1% of poly (dimethyl oxyhydroxide) with dimethylethenyloxy terminal, its viscosity at 25 times is about 55 Pa · s, and 31 % Is an organic polysiloxane resin consisting of CH2 = CH (CH3) 2Si01 / 2 units, (CHshSiO ^ units, and SiO # 2 units, of which CHfCHCCHASiO &quot; 2 units and (CHASiOw unit and S1O4 / 2 unit The combined molar ratio is about 0.7, and the weight average molecular weight of the resin is about 220,000, the polymer dispersion is about 5, the viscosity at 25 C is 5 Pa · s, and The resin contains about 18% by weight (about 5 5 -33- 200308030 mole%) of ethyl fluorenyl group. Polymer C: A poly (difluorene) containing 85% dimethylethylenylsiloxy-terminated Based on trioxane), its viscosity at 25 ° C is about 3 mPa · s, monomethylcyclosiloxane and 5% tetramethyldivinyl disiloxane. Polymer D: —Poly (dimethyl dream fired) with dimethylethylenoxy terminal 'has an average degree of polymerization of about 830 and a viscosity of about 5 5 Pa at 25 ° C Second. Crosslinking agent A: an organohydrogenpolysiloxane composed essentially of H (CH3) 2Si〇1 / 2 units, (CH3) 3Si〇1 / 2 7G units, and SiOw units, wherein the organic Chlorinated oxygen contains about 10% by weight of hydrogen atoms bonded to silicon and has a viscosity at 25 ° C of about 2.4 X 1 (Γ5 m 2 / sec.) Crosslinking agent B:-Has trimethyl silicon Poly (dimethylsiloxane / methylhydrogen siloxane) with an oxygen terminal, each molecule has an average of 3 dimethylsiloxane units and 5 methylhydrosiloxane units, at 25t Has a viscosity of about $ mPa · s' and contains about 0.8% of broken and broken hydrogen atoms. X-coupling agent C: a mixture whose composition is a poly (trimethylsiloxy-terminated) poly ( Dimethylsiloxane / methylhydrosiloxane), which has an average of 16 dimethylsiloxane units and 39 methylhydrosiloxane units per molecule and contains about 1.05% of bonds Hydrogen atom; and 10% low-boiling cyclic and linear dimethyl methyl hydrosiloxane. Filler A: —Electronic Dynamic Random Access Memory (DRAM) -level spherical sintering dioxide ' The average particle size is 4.4 microns and the average specific area is about 13 square meters per gram. -34- 200308030 Filler B · -O-SIL TS-530 belonging to Cabortec Corporation Treated fused silica sold under the trademark. The treated fused silica is a high-purity silica which has been treated with hexamethyldisilazane. The surface area (BET method) of the treated fused silica is 212 to 28 m 2 / g, the carbon content is 4.25 ± 0.5 weight percent, and the specific gravity is 22 g / cm 2. Adhesion Promoter ············································································· everyone The reaction product of a vinyl siloxane unit and glycidoxypropyltdmethoxysiiane. The product was reacted by allowing equal weight aliquots of siloxane and dehydrated glyceryloxypropyldimethoxysilane (glyCidOxypr〇pyltrimethoxylsilane) to react in the presence of a single catalyst at 140C. Hours to prepare. The reaction mixture was neutralized using bis (dimethylvinylsilyl) vinylphosphonate (bis (dimethylvinylsilyl) vinylphosphonate) and liquefied for hours at a temperature of 130 ° C and a pressure of 6.7 kPa. Catalyst: A mixture whose composition is 40% by weight of a platinum and polyvinyl i, 3,3_tetramethyldisiloxane complex dispersed in a thermoplastic silicone resin, in which The resin is composed of 78 mol% of monophenylsiloxane units and 22 mol% of dimethylsiloxane units, and the softening point of the resin is 60-9 (rc; 55% by weight) Polymer B, which is a poly (dimethyl oxyhydroxide) having a dimethylethynylsiloxy terminal, has a viscosity of about 2 Pa · s at 2 5 C and an ethylenyl content of 0 · 2 weight percent; and 5 weight percent of fused silica treated with hexamethyldisilazane-35-200308030. The catalyst has a platinum content of about 0.16 weight percent (1600 ppm). Inhibitor: 2-phenyl -3_ Butyne-2 · Alcohol Example 1 In a stirred vessel, polymer B (20 · 9 aliquots), 79 丨 aliquots of polymer D, 1.2 aliquots of cross-linking agent C, and 194.5 aliquots were filled. Content A until the filling is evenly distributed in the mixer. Add inhibitor (0.04 aliquots) and 3.7 Equally divide the catalyst into the stirrer and continue stirring for about 20 minutes. The viscosity of the silicone composition is 235 6 Pa · s' at ΐ · ο radians / second (rad / s) and at 10 radians / second ( rad / s) is 193.4 Pa · s. The physical properties of the cured crushed ketone product are shown in Table 1. Example 2 Polymer A (7 5.0 aliquots) and 25.0 aliquots were polymerized in a stirred vessel. Material B, 2.5 aliquots of crosslinker A, 3.2 aliquots of crosslinker B, 2916 aliquots of filler A, and 4.2 aliquots of filler B until the filler is evenly distributed in the mixer. Add inhibitor (0.05 aliquot) and 25 aliquots of catalyst to the mixer and continue stirring for about 20 minutes. The viscosity of the crushed ketone composition is 177.0 at 1.0 radian / second (rad / s) Pa · s, and 27.9 Pa · s at 10 radians / second (rad / s). The physical properties of the cured mash product are shown in Table 1. Example 3 Polymer B was mixed in a stirred vessel (50.0 aliquots), 50 · 0 aliquots of polymer (3, 18.3 aliquots of crosslinker (3, 345.3 aliquots of filler eight, and 9.8 aliquots of filler B until the filler is uniform) Distribute in the agitator. Add -36- 200308030 into the agitator (0.06 aliquots) and 3.1 aliquots of catalyst into the agitator and continue to stir for about 20 minutes. The viscosity of the silicone composition is 0 radians / second (rad / s) is 322.8 Pa · s, and 10 radians / second (rad / s) is 42.6 Pa · s. The physical properties of the cured silicone product are shown in Table 1. Table 1. Examples of hardness, tensile strength, ductility, modulus of string, coefficient of thermal expansion (Shore A) ”^ Pa) (%) (million Pa) (μm / m / ° c) 1 _____ 67.6 3.51 99.90 3.5 157 2 93.0 6.40 11.91 53.8 110 3 92.0 6.28 4.23 148.5 丄 XV / 70 [Simplified illustration] FIG. 1 shows a cross-sectional view of a first embodiment of a semiconductor package according to the present invention, wherein the silicone member is a layer. Fig. 2 shows a cross-sectional view of a second embodiment of a semiconductor package according to the present invention, wherein the silicone member is a layer. Fig. 3 shows a cross-sectional view of a third embodiment of a semiconductor package according to the present invention, wherein the silicone member is a dome. Fig. 4 shows a cross-sectional view of a third embodiment of a semiconductor package according to the present invention, wherein the silicone member is a dome. Figure 5 does not show-the mold used to prepare a cured silicone sample. [Schematic description] 10 wafers, 20 solder joints, 30 g of the same layer -37 · 200308030 31 Broken joints with the palace roof 40-41 metal tracks 50 solder bumps 60 solder-resistant green paint

Claims (1)

200308030 拾、申請專利範園: 1· 一種半導體封裝,包含: 一半導體晶圓,具有-含有至少-個積體電路的主動 .區域,其中每一個積體電路都具有複數個焊以及 至少一固化的矽酮構件,覆蓋該主動表面的至少一部 ϊ刀其中每個焊塾有至少一邵份沒有為該碎嗣構件所 覆蓋’該矽酮構件在_40和15(rc之間時的線性熱膨脹係數 介於60至280微米/米。c(Mm/m°c)之間,並且在2rc時其 模數介於1至300百萬帕(MPa)之間,此外該碎酮構件係由 一種包含如下步驟的方法來製備: (i)印刷一秒酮組成在該主動表面上以形成一梦酮沈 積,其中該矽酮組成含有: (A) —有機聚碎氧垸(organopolysiloxane),每一個分子 含有平均至少兩個键結碎的婦屬經基(alkenyl groups), (B) — 有機氫矽氧燒(organohydrogensiloxane),每一個 分子含有平均至少兩個鍵結碎的氫原子,其濃度足以固 化該組成, (C) 一有效數量的無機填充物,其表面積小於25平方公 尺/克(m2/g), (D) —可引起催化作用之數量的矽氫化反應 (hydrosilylation)催化劑, 選擇性地(E)—矽氫化反應(hydrosilylati〇n)催化劑抑制 劑,及 選擇性地(F) —有機聚矽氧燒樹脂,其基本上是由 200308030 碎氧烷單元和sK^2珍氧烷單元所構成,其中每一 個R3係獨立選自具…錢個碳原子之一價煙類和一價由 化烴類,並且該有機聚矽氧烷樹脂内之R33Si〇i/2單元和 S1O4/2單元的莫耳比為〇·65至1·9;以及 (i i)加熱該矽酮沈積一段足夠的時間以形成該固化的 矽酮構件。 2.如申請專利範圍第丨項之半導體封裝,其中該晶圓進一步 包含溝槽(streets)。 3·如申請專利範圍第1項之半導體封裝,其中該固化的矽酮 構件之厚度係10至200微米。 4.如申請專利範圍第1項之半導體封裝,其中成分(B)的濃度 足以提供成分(A)中的每一個婦屬烴基(alkenyl) 〇 8至15 個鍵結碎的氯原子。 5·如申請專利範圍第丨項之半導體封裝,其中該無機填充物 的表面積係0.25至10平方公尺/克。 6.如申請專利範圍第1項之半導體封裝,其中該無機填充物 係溶融的二氧化碎(fused silica)。 7·如申請專利範圍第1項之半導體封裝,其中該成分(C)的濃 度係每100重量等份(parts by weight)的成分(Α)中有100 至600重量等分。 8. 如申請專利範圍第1項之半導體封裝,其中該矽氫化反應 催化劑含有鉑。 9. 如申請專利範圍第1項之半導體封裝,其中該固化的矽酮 構件係選自一固化的碎酮層或一固化的碎酮宫頂(dome)。 200308030 10·如申請專利範圍第1項之半導體封裝,進一步包含一金屬 軌跡,其近中心點附著在每一個焊墊上並且其末端平置 於該矽酮層的表面上。 11. 一種製備一半導體封裝之方法,該方法包含如下步驟: (i)印刷一矽酮組成在一半導體晶圓之一主動表面的 至少一邵份上以形成至少一矽酮沈積,其中該主動表面 至少含有一個積體電路,每一個積體電路都具有複數個 焊墊,每一個焊墊有至少一部份沒有為該矽酮沈積所覆 蓋’並且該秒_組成含有: (A) —有機聚矽氧烷(〇rgan〇p〇lysil〇xane),每一個分子 含有平均至少兩個鍵結矽的烯屬烴基(alkenyl gr〇ups), (B) —有機矽化合物,每一個分子含有平均至少兩個键 結矽的氫原子,其濃度足以固化該組成, (c) 一有效數量的無機填充物,其表面積小於25平方公 尺/克(m2/g), (D) 一可引起催化作用之數量的矽氳化反應200308030 Patent application park: 1. A semiconductor package comprising: a semiconductor wafer with-containing at least-active circuit areas of integrated circuits, each integrated circuit having a plurality of solders and at least one curing Silicone member, at least one trowel covering the active surface of which each weld has at least one part is not covered by the broken member. 'The linearity of the silicone member between _40 and 15 (rc The coefficient of thermal expansion is between 60 and 280 microns / meter.c (Mm / m ° c), and its modulus is between 1 and 300 million Pascals (MPa) at 2rc. In addition, the broken ketone component is made of A method comprising the steps of: (i) printing a one-second ketone composition on the active surface to form a dreamone deposit, wherein the silicone composition contains: (A) —organopolysiloxane, each One molecule contains at least two bonded alkenyl groups, (B) — organohydrogensiloxane, each molecule contains at least two bonded hydrogen atoms, the concentration of which Enough to cure the composition (C) an effective amount of an inorganic filler having a surface area of less than 25 square meters per gram (m2 / g), (D) —the amount of hydrosilylation catalyst that can cause a catalytic effect, selectively (E ) —Hydrosilylation catalyst inhibitor, and optionally (F) —organopolysiloxane resin, which is basically composed of 200308030 crushed oxane units and sK ^ 2 rare-oxane units, Each R3 is independently selected from the group consisting of monovalent smokes and monovalent hydrocarbons with ... carbon atoms, and R33Si〇i / 2 units and S1O4 / 2 units in the organic polysiloxane resin. The ear ratio is from 0.65 to 1.9; and (ii) heating the silicone deposition for a sufficient time to form the cured silicone member. 2. The semiconductor package according to item 丨 of the patent application scope, wherein the wafer It further includes trenches. 3. The semiconductor package according to item 1 of the patent application, wherein the thickness of the cured silicone member is 10 to 200 microns. 4. The semiconductor package according to item 1 of the patent application, wherein The concentration of component (B) is sufficient to provide the component Each female alkenyl group in A) has 8 to 15 bonded chlorine atoms. 5. The semiconductor package according to item 丨 of the patent application, wherein the surface area of the inorganic filler is 0.25 to 10 square centimeters. Feet per gram. 6. The semiconductor package according to item 1 of the patent application, wherein the inorganic filler is fused silica. 7. The semiconductor package according to item 1 of the patent application, wherein the component ( C) The concentration is 100 to 600 weight aliquots per 100 parts by weight of component (A). 8. The semiconductor package as claimed in claim 1, wherein the hydrosilylation catalyst contains platinum. 9. The semiconductor package as claimed in claim 1, wherein the cured silicone member is selected from a cured crushed ketone layer or a cured crushed ketone dome. 200308030 10. The semiconductor package according to item 1 of the scope of patent application, further comprising a metal track, the near-center point of which is attached to each pad and its end lying flat on the surface of the silicone layer. 11. A method of preparing a semiconductor package, the method comprising the following steps: (i) printing a silicone composition on at least one portion of an active surface of a semiconductor wafer to form at least one silicone deposit, wherein the active The surface contains at least one integrated circuit, each integrated circuit has a plurality of pads, each pad has at least a part that is not covered by the silicone deposit ', and the second component contains: (A) — organic Polysiloxane (〇rgan〇p〇lysil〇xane), each molecule contains an average of at least two silicon-linked alkenyl hydrocarbons (alkenyl gr〇ups), (B)-organosilicon compounds, each molecule contains an average At least two silicon-bonded hydrogen atoms at a concentration sufficient to solidify the composition, (c) an effective number of inorganic fillers with a surface area of less than 25 square meters per gram (m2 / g), (D)-may cause catalysis Silicidation reaction 脂,其基本上是由Fat, which is basically made up of 3選擇性地(F) 一有機聚矽氧烷樹脂,其J R sSiOm矽氧烷單元和^〇奶梦氧烷單元所構成 個R係獨互選自具有1至2〇個碳原子之一價烴 200308030 (η)加熱該矽酮沈積一段足夠的時間以形成一固化的 碎嗣構件’其中該構件介於-40和150°C之間時的線性熱膨 脹係數在60至280微米/米。C(#m/mt)之間,並且在25。〇 時其模數介於1至300百萬帕(MPa)之間。 12·如申請專利範圍第1丨項之方法,其中該晶圓進一步包含 溝槽。 13·如申請專利範圍第丨丨項之方法,其中該固化的矽酮構件 之厚度係10至200微米。 14·如申請專利範圍第丨丨項之方法,其中成分(B)的濃度足以 提供成分(A)中的每一個婦屬烴基(aikenyl) 〇 8至15個鍵 結矽的氫原子。 15·如申請專利範圍第11項之方法,其中該無機填充物的表 面積係0.25至10平方公尺/克。 16.如申請專利範圍第11項之方法,其中該無機填充物係溶 融的二氧化矽(fused silica)。 17·如申請專利範圍第11項之方法,其中該成分(c)的濃度係 每100重量等份(parts by weight)的成分(A)中有100至600 重量等分。 18. 如申請專利範圍第11項之方法,其中該矽氫化反應催化 劑含有鉑。 19. 如申請專利範圍第11項之方法,其中該固化的碎g同構件 係選自一固化的矽酮層或一固化的矽酮穹頂(doine)。 20·如申請專利範圍第11項之方法,其中該印刷步騾係利用 模板印刷或網板印刷來執行。 200308030 21•如申請專利範圍第11項之方法,其中該加熱該矽酮沈積 的步驟係在一90至200°C的溫度下執行5至60分鐘。 2 2.如申請專利範圍第11項之方法,進一步包含形成一金屬 軌跡的步驟,該金屬軌跡的近中心點附著在每一個焊塾 上並且其末端平置於該矽酮層的表面上。3. Optionally (F) an organic polysiloxane resin whose JR sSiOm siloxane units and ^ cleavage units form an R system independently selected from monovalent hydrocarbons having 1 to 20 carbon atoms 200308030 (η) The silicone deposit is heated for a sufficient time to form a solid, broken concrete member, wherein the linear thermal expansion coefficient of the member between -40 and 150 ° C is 60 to 280 microns / meter. C (# m / mt), and at 25. At 0, its modulus is between 1 and 300 million Pascals (MPa). 12. The method of claim 1 丨, wherein the wafer further includes a trench. 13. The method of claim 丨 丨, wherein the thickness of the cured silicone member is 10 to 200 microns. 14. The method according to item 丨 丨 of the patent application range, wherein the concentration of the component (B) is sufficient to provide each aikylyl group (A) of the component (A) with 8 to 15 hydrogen atoms bonded to silicon. 15. The method of claim 11 in which the surface area of the inorganic filler is from 0.25 to 10 square meters per gram. 16. The method of claim 11 in which the inorganic filler is fused silica. 17. The method according to item 11 of the scope of patent application, wherein the concentration of the component (c) is 100 to 600 weight equal parts per 100 parts by weight of the component (A). 18. The method according to item 11 of the application, wherein the hydrosilylation catalyst contains platinum. 19. The method according to item 11 of the patent application, wherein the cured crushed g member is selected from a cured silicone layer or a cured silicone doine. 20. The method according to item 11 of the scope of patent application, wherein the printing step is performed using stencil printing or screen printing. 200308030 21 • The method according to item 11 of the patent application range, wherein the step of heating the silicone deposition is performed at a temperature of 90 to 200 ° C for 5 to 60 minutes. 2 2. The method according to item 11 of the scope of patent application, further comprising the step of forming a metal track, the near-center point of the metal track is attached to each welding pad and its end is flat on the surface of the silicone layer.
TW092107882A 2002-05-16 2003-04-07 Semiconductor package and method of preparing same TWI265578B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/068,755 US6940177B2 (en) 2002-05-16 2002-05-16 Semiconductor package and method of preparing same

Publications (2)

Publication Number Publication Date
TW200308030A true TW200308030A (en) 2003-12-16
TWI265578B TWI265578B (en) 2006-11-01

Family

ID=29418266

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092107882A TWI265578B (en) 2002-05-16 2003-04-07 Semiconductor package and method of preparing same

Country Status (9)

Country Link
US (1) US6940177B2 (en)
EP (1) EP1504469B1 (en)
JP (1) JP4773089B2 (en)
CN (1) CN1328770C (en)
AT (1) ATE347737T1 (en)
AU (1) AU2003230678A1 (en)
DE (1) DE60310222T2 (en)
TW (1) TWI265578B (en)
WO (1) WO2003098682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486403B (en) * 2011-10-31 2015-06-01 Nitto Denko Corp Silicone resin composition, silicone resin sheet, optical semiconductor element device, and producing method of silicone resin sheet

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870272B2 (en) * 1994-09-20 2005-03-22 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US6284563B1 (en) 1995-10-31 2001-09-04 Tessera, Inc. Method of making compliant microelectronic assemblies
US6211572B1 (en) 1995-10-31 2001-04-03 Tessera, Inc. Semiconductor chip package with fan-in leads
US20040102022A1 (en) * 2002-11-22 2004-05-27 Tongbi Jiang Methods of fabricating integrated circuitry
JP4193052B2 (en) * 2003-08-25 2008-12-10 信越化学工業株式会社 High thermal conductive silicone rubber composition, fixing roll and fixing belt
US7190157B2 (en) * 2004-10-25 2007-03-13 Agilent Technologies, Inc. Method and apparatus for layout independent test point placement on a printed circuit board
JP4741230B2 (en) * 2004-12-28 2011-08-03 東レ・ダウコーニング株式会社 Film-like silicone rubber adhesive
US7999379B2 (en) 2005-02-25 2011-08-16 Tessera, Inc. Microelectronic assemblies having compliancy
US7695819B2 (en) * 2005-09-30 2010-04-13 Wacker Chemical Corporation Two piece curable HCR silicone elastomers
JP4993555B2 (en) * 2005-12-07 2012-08-08 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Addition reaction curable silicone composition
TWI296037B (en) * 2006-04-28 2008-04-21 Delta Electronics Inc Light emitting apparatus
GB2444775B (en) * 2006-12-13 2011-06-08 Cambridge Silicon Radio Ltd Chip mounting
US7749886B2 (en) * 2006-12-20 2010-07-06 Tessera, Inc. Microelectronic assemblies having compliancy and methods therefor
US20080308932A1 (en) * 2007-06-12 2008-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package structures
US7772691B2 (en) * 2007-10-12 2010-08-10 Taiwan Semiconductor Manufacturing Company, Ltd. Thermally enhanced wafer level package
CN101945950A (en) * 2008-01-17 2011-01-12 陶氏康宁公司 Film forming, silicone containing compositions
WO2011003054A2 (en) 2009-07-03 2011-01-06 Dow Corning Corporation Film forming, silicone containing compositions
US8421226B2 (en) * 2010-02-25 2013-04-16 Infineon Technologies Ag Device including an encapsulated semiconductor chip and manufacturing method thereof
JP5384443B2 (en) * 2010-07-28 2014-01-08 日東電工株式会社 Flip chip type semiconductor back film, dicing tape integrated semiconductor back film, semiconductor device manufacturing method, and flip chip type semiconductor device
JP6300218B2 (en) 2010-12-31 2018-03-28 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Translucent resin composition for encapsulant, encapsulant containing the translucent resin, and electronic device
TWI575684B (en) * 2011-06-13 2017-03-21 矽品精密工業股份有限公司 Chip-scale package structure
JP5563695B2 (en) * 2013-04-17 2014-07-30 株式会社カネカ Curable resin composition for semiconductor package and semiconductor
TW201601358A (en) * 2014-06-19 2016-01-01 道康寧公司 Photopatternable silicones for wafer level Z-axis thermal interposer
WO2016190422A1 (en) * 2015-05-27 2016-12-01 京セラ株式会社 Solar cell element and method for manufacturing same
US9812414B1 (en) 2016-06-17 2017-11-07 Nanya Technology Corporation Chip package and a manufacturing method thereof
KR102255081B1 (en) * 2016-12-30 2021-05-21 엘켐 실리콘즈 상하이 컴퍼니 리미티드 Curable silicone composition
CN108165014A (en) * 2017-12-23 2018-06-15 苏州赛源微电子有限公司 A kind of packaging method of IC chip

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171716A (en) 1986-12-19 1992-12-15 North American Philips Corp. Method of manufacturing semiconductor device with reduced packaging stress
US5907190A (en) * 1994-11-24 1999-05-25 Dow Corning Toray Silicone Co., Ltd. Semiconductor device having a cured silicone coating with non uniformly dispersed filler
US6284563B1 (en) * 1995-10-31 2001-09-04 Tessera, Inc. Method of making compliant microelectronic assemblies
JPH09286971A (en) * 1996-04-19 1997-11-04 Toray Dow Corning Silicone Co Ltd Silicon-based die bonding agent, production of semiconductor device and semiconductor device
CN1244038A (en) * 1998-08-04 2000-02-09 长兴化学工业股份有限公司 Resin composition for semiconductor package
US6103552A (en) 1998-08-10 2000-08-15 Lin; Mou-Shiung Wafer scale packaging scheme
EP1641033A3 (en) * 1999-01-07 2006-12-13 Alliedsignal, Inc. Dielectric films from organhydridosiloxane resins
US6239378B1 (en) * 1999-02-02 2001-05-29 Dow Corning Corporation Flame resistant silicone rubber wire and cable coating composition
US6197613B1 (en) 1999-03-23 2001-03-06 Industrial Technology Research Institute Wafer level packaging method and devices formed
US6369185B1 (en) * 1999-03-31 2002-04-09 Dow Corning Toray Silicone Co., Ltd. Curable organopolysiloxane composition, cured products formed therefrom and unified articles
US6277669B1 (en) 1999-09-15 2001-08-21 Industrial Technology Research Institute Wafer level packaging method and packages formed
EP1375553A4 (en) * 2001-01-25 2009-07-29 Sanyo Chemical Ind Ltd Curable resin, curable resin material, curable film, and insulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486403B (en) * 2011-10-31 2015-06-01 Nitto Denko Corp Silicone resin composition, silicone resin sheet, optical semiconductor element device, and producing method of silicone resin sheet

Also Published As

Publication number Publication date
WO2003098682A1 (en) 2003-11-27
DE60310222T2 (en) 2007-09-13
CN1328770C (en) 2007-07-25
JP4773089B2 (en) 2011-09-14
CN1666326A (en) 2005-09-07
EP1504469B1 (en) 2006-12-06
ATE347737T1 (en) 2006-12-15
AU2003230678A1 (en) 2003-12-02
US6940177B2 (en) 2005-09-06
EP1504469A1 (en) 2005-02-09
TWI265578B (en) 2006-11-01
JP2005526398A (en) 2005-09-02
DE60310222D1 (en) 2007-01-18
US20030214051A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
TW200308030A (en) Semiconductor package and method of preparing same
EP1920007B1 (en) Insulating liquid die-bonding agent and semiconductor device
KR100880090B1 (en) Die attach adhesives for semiconductor applications, processes for producing semiconductor devices and semiconductor devices produced by such processes
US6235862B1 (en) Adhesive silicone sheet, method for the preparation thereof and semiconductor devices
CN102543900B (en) Fiber-containing resin substrate, mounting semiconductor element substrate and semiconductor element form wafer, semiconductor device and manufacture method thereof
TWI690553B (en) Curable silicone composition, cured product thereof, method for forming cured product, and optical semiconductor device
US6225433B1 (en) Curable silicone composition and electronic components
KR100880091B1 (en) Die attached adhesives for semiconductor devices, an efficient process for producing such devices and the devices per se produced by the efficient processes
KR100655626B1 (en) Silicone adhesive sheet and method for manufacturing
CN104347530B (en) The manufacture method of encapsulant, semiconductor device and semiconductor device with encapsulating semiconductor matrix material
TW200536026A (en) Semiconductor device and method of manufacturing thereof
EP3587498B1 (en) Curable organopolysiloxane composition and semiconductor device
KR20010051669A (en) Silicone-based bonding sheet and semiconductor device
WO2015093329A1 (en) Silicone adhesive film and semiconductor device
WO2003035762A1 (en) Curable liquid silicone composition and a semiconductor device prepared using the composition
JP2000080335A (en) Silicone adhesive sheet, its manufacture and semiconductor device
JP2003034782A (en) Silicone adhesive for use in semi-conductor part
KR100975790B1 (en) Semiconductor package and method of preparing same
CN113493677B (en) Organic silicon composition for die bonding, cured product thereof, and optical semiconductor device
TWI825200B (en) Cold-resistant curable organopolysiloxane composition, pattern-forming method and electronic articles etc.
WO2004015002A2 (en) Thermoconductive filler, thermocoductive silicone elastomer composition, and semiconductor devices
CN115820223A (en) Thermally conductive silicone composition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees