TARIFNAME KUVVET AKTARIMI VE YÖNLENDIRMESI YAPAN MEKANIZMA TEKNIK ALAN Bulus; enerji üreteçlerinde, makinelerde, robotik mekanizmalarda güç aktarimi, kuvvet aktarimi ve hareket iletimi için kullanilirken kuvvet verimini artiran mekanik sistem ile Bulus özellikle, dikey bilesenli kuvvet üretecine baski uygulayarak dikey bilesenli kuvvet üretecinin destek almasini ve dikey bilesenli kuvvet üretecine gelen kuvvettin istenilen yöne dogru iletilmesini saglamak için kullanilan ana gövde, açili olarak geometrik form verilen, yüzey noktalarindan birbirlerine temas ederek yatay olarak mesafe olusturan ve bu mesafe ile kazanilan kuvvetin aktarilmasinda kullanilan alt blok ve üst blok, dikey bilesenli kuvvet olusturarak alt bloklarin ve üst bloklarin asagi yukari hareketinde kullanilan dikey bilesenli kuvvet üreteci ile ilgilidir. ÖNCEKI TEKNIK Günümüzde güç aktariminda ve kuvvet aktarimlarinda mekanik sistemler sürekli kullanilmaktadir. Bu mekanik sistemlerle güç ve kuvvet yönlendirilebilmekte ve özellikle enerji üreten sistemlerde ciddi verimler elde edilebilmektedir. Mevcut teknikte kullanilan mekanik sistemlerdeki bir problem, mekanik sistemlerin kuvvet dagilimlarini ve yönlerini istenilen düzeyde ve performansta saglayamamasidir. Mevcut teknikte mekanik sistemlerde hidrolik ve pnömatik sistemlerin redüktöre ve jeneratöre aktarilmasiyla birebir oraninda sonuç alinmaktadir. Hidrolik ve pnömatik sistemlerde sabit piston çapi ve stroke bulunmaktadir. Mevcut sistem hidrolik veya pnömatik pompa gücü ile sabit bir kuvvet üretmektedir. Bu sebepten dolayi mekanik bu tip sistemler özel durumlar disinda tercih edilmemektedir. BULUSUN AMACI Bulus yukarida bahsedilen problemlerin hepsini ayni anda çözmektedir. Söz konusu bulus en genel haliyle form verilmis kütlelerin birbiri içerisinde hareketi ile stroke olusturarak kuvveti artiran mekanik sistemle ile ilgilidir. Bulusun ana amaci; hidrolik pnömatik vb. sistemlerle çalistirilan piston vb. kuvvet üreteçlerinden ortaya çikan kuvvetin, birbiri içerisinde hareket eden bloklar ile yönlendirilmesi ve stroke olusturularak kuvvet çarpaninin artirilmasi ve bu kuvvetin robotik mekanizmalarda, enerji üretiminde kullanilan mekanik sistemlerde kullanilmasidir. Bulusun amaci, hidrolik ve pnömatik sistemlerin kullanildigi pistonlarla elde edilen kuvvetin, piston çapinin degistirilmesiyle büyütülmesini ve bu kuvvet artisi sonrasinda bu kuvvetin mekanik yapiya iletilerek gerekli stroke miktarinin tekrar elde edilmesiyle verim saglamasidir. Bulusun amaci, ayni pompa gücü ile ayni stroke miktarina ulasip mevcut sistemden daha fazla güç üretimi saglamasidir. Bulusun bir diger amaci, robotik mekanizmalarda ve endüstriyel mekanik sistemlerde ara mekanizma olarak kullanilabildigi gibi tek basina kuvvet çarpani artirici olarak ta kullanilabilmektedir. Bulusun bir diger amaci, anlik ihtiyaca göre kuvvet üreteç hizini ve kuvvet degerini ayarlayabilen otomasyon sistemi ile kontrol edilebilir olmasi ve istege bagli olarak çalistirilip istege bagli olarak duraklatilabilmesidir. BULUSUN ANLASILMASINA YARDIMCI OLACAK SEKILLER Sekil - 1; Bulus konusu mekanik sistemi bloklar yukari konumdayken gösteren çizimdir. Sekil - 2; Bulus konusu mekanik sistemi bloklar asagi konumdayken gösteren çizimdir. Sekil - 3; Bulus konusu mekanik sistemdeki dikey bilesenli kuvvet üretecini ve kuvvet dagiticiyi demonte gösteren çizimdir. Sekil- 4; Bulus konusu mekanik sistemdeki lineer kizagi demonte gösteren çizimdir. Sekil- 5; Bulus konusu mekanik sistemdeki lineer kizak irtibat blogu, gövde miIini ve esnek blok düzenleyiciyi gösteren çizimdir. Sekil- 6; Bulus konusu mekanik sistemdeki tasiyici toplama unsurunu gösteren çizimdir. Sekil- 7; Bulus konusu mekanik sistemdeki blogu gösteren çizimdir. Sekil- 8; Bqus konusu mekanik sistemdeki lineer tasiyiciyi gösteren çizimdir. Sekil- 9; Bqus konusu mekanik sistemdeki stroke baglanti eIemanini gösteren çizimdir. REFERANS NUMARALARI 1. Ana Gövde 2. Lineer Kizak Irtibat BIogu 3. Lineer Tasiyici 3.1 Lineer Tasiyici Blok Referanslama Alani 3.2 Lineer Tasiyici Kizak Konumlanma Alani 4. Alt Blok . Üst Blok 6. Lineer Kizak 6.1. Lineer Kizak Blok Konumlanma Alani 7. Gövde Mili 8. Stroke Baglanti Elemani 9. Tasiyici Toplama Unsuru . Dikey BiIesenIi Kuvvet Üreteci (piston) 11. Kuvvet Dagitici 12. Esnek Blok Düzenleyici Bulus, yukarida verilen referans numaralari ve ekli sekillere atifta bqunuIarak izah edildiginde daha iyi anIasiIacaktir. BU LUSUN DETAYLI AÇIKLAMASI Sekil-1' de gösterilen bulus; enerji üreteçlerinde, makinelerde, robotik mekanizmalarda güç aktarimi, kuvvet aktarimi ve hareket iletimi için kullanilirken kuvvet verimini artiran mekanik sistemdir. Bulusta dikey bilesenli kuvvet üretecine (10) baski uygulayarak dikey bilesenli kuvvet üretecinin (10) destek almasini ve dikey bilesenli kuvvet üretecine (10) gelen kuvvettin istenilen yöne dogru iletilmesini saglamak için kullanilan ana gövde (1), lineer kizagin (6) içerisine konumlandigi, ayni zamanda gövde milinin (7) irtibatlandigi lineer kizak irtibat blogu (2), alt bloklarin(4) ve üst bloklarin (5) referanslanmasinda ve lineer kizak (6) üzerinde hareketinin saglanmasinda kullanilan Sekil-8' de detayi gösterilen lineer tasiyici (3), lineer tasiyici (3) üzerinde olusturulan, alt bloklarin (4) ve üst bloklarin (5) lineer tasiyiciya (3) referanslanarak konumlanmasi için kullanilan lineer tasiyici blok referanslama alani (3.1) ve lineer kizakla (6) lineer tasiyicinin (3) referanslanmasin da ve lineer tasiyicinin (3) lineer kizak (6) üzerinde yatay yönde hareket ederken dikey yönde hareketi sinirlamak için kullanilan lineer tasiyici kizak konumlanma alani (3.2), açili olarak geometrik form verilen, yüzey noktalarindan birbirlerine temas ederek yatay olarak mesafe olusturan ve bu mesafe ile kazanilan kuvvetin aktarilmasinda kullanilan Sekil-7' de gösterilen alt blok (4) ve üst blok (5), alt blok (4) ve üst bloklarin (5) ayni hat üzerinde düzenli halde hareket etmesini ve ayni anda birbirleri arasina konumlanmalarini saglamak için kullanilan Sekil-4'te detayi gösterilen lineer kizak (6), lineer kizak (6) üzerinde olusturulan, lineer tasiyicinin (3) sürülerek konumlandigi ve lineer tasiyicinin (3) lineer kizak (6) üzerinde yatay yönde hareketine izin verirken dikey yönde hareketini engellemek için kullanilan lineer kizak blok konumlanma alani (6.1), zeminle ana gövde (1) arasinda bir destek noktasi olusturmak için kullanilan Sekil- ' te gösterilen gövde mili (7), alt blok (4) ve üst bloklarin (5) birbirleri arasina girerek ortaya çikardiklari yatay kuvvetin iletilmesinde kullanilan Sekil-9' da detayi gösterilen stroke baglanti elemani (8), alt blok (4) ve üst bloklarin (5) birbirleri arasina konumlanmalarindan sonra birbirleri arasindan tekrar baslangiç konumlarina gelirken alt bloklarin (4) ve üst bloklarin (5) yatay olarak baslangiç konumlarina gelmeleri için kullanilan Sekil-6' da gösterilen tasiyici toplama unsuru (9), dikey bilesenli kuvvet olusturarak alt bloklarin (4) ve üst bloklarin (5) asagi yukari hareketinde kullanilan dikey bilesenli kuvvet üreteci (10), dikey bilesenli kuvvet üretecinden (10) gelen kuvvetin üst bloklar (5) üzerine dagitilmasini saglamak için kullanilan kuvvet dagitici (11), alt bloklar (4) ve üst bloklar (5) birbirleri arasina girdikten sonra üst bloklarin (5) dikey olarak baslangiç konumlarina gelmeleri için kullanilan, sistemin yukari yönde hareketinde dikey bilesenli kuvvet üretecine (10) destek saglamak için kullanilan esnek blok düzenleyici (12) unsurlari bulunmaktadir. Baslangiç konumunda Sekil-1' deki konumda olan sistemin çalismasinda ana gövdeden (1) destek alan Sekil-3' te detayi gösterilen dikey bilesenli kuvvet üreteci (10) asagi yönde hareket eder ve kuvvet dagiticiya (11) itme kuvveti uygular. ltme kuvvetinin etkisiyle kuvvet dagitici (11) aldigi kuvveti lineer kizak (6) üzerinden üst bloklara (5) iletir. Üst bloklar (5) aldigi kuvvet etkisiyle alt bloklar (4) yüzeyindeki geometrik formu takip ederek alt bloklari (4) Sekil- 2' deki gibi saga ve sola iter. Bu asamada geometrik formlarini kullanarak üst bloklar (5) alt bloklarin (4) arasina konumlanir ve yatay yönde mesafe alinir. Bu olusturulan mesafe sayesinde ortaya çikan kuvvet stroke baglanti elemani (8) ile istenilen alana iletilmektedir. Asagi yönlü hareket tamamlanmasi ve stroke olusumu tamamlandiktan sonra dikey bilesenli kuvvet üretecinin (10) yukari yönde hareketi saglanmakta ve üst bloklarin (5) alt bloklarin (4) arasindan çekilerek baslangiç konumunu almasi saglanmaktadir. Böylece bir devir tamamlanmaktadir. Bulusta üst bloklarin (5) alt bloklarin (4) arasindan çekilerek baslangiç konumunu almasi esnasinda esnek blok düzenleyici (12) unsur yukari yönde çekilmeyi olusturan kuvvete destek verirken, tasiyici toplama unsuru da (9) üst bloklarin (5) alt bloklarin (4) birbirlerine göre dagilmadan konumlanmalarini saglamaktadir. TR TR TR TR DESCRIPTION MECHANISM THAT PERFORMS FORCE TRANSMISSION AND DIRECTION TECHNICAL FIELD Invention; The invention is a mechanical system that increases force efficiency while being used for power transfer, force transfer and motion transmission in energy generators, machines and robotic mechanisms. In particular, by applying pressure to the vertical component force generator, the vertical component force generator receives support and the force coming to the vertical component force generator is transmitted to the desired direction. The main body used for the main body, the lower block and the upper block, which are given an angled geometric form, contacting each other from the surface points, creating a horizontal distance and used to transfer the force gained by this distance, the vertical component force used in the up and down movement of the lower blocks and upper blocks, creating a vertical component force. It's about the generator. BACKGROUND ART Today, mechanical systems are constantly used in power transmission and force transmission. With these mechanical systems, power and force can be directed and serious efficiency can be achieved, especially in energy-producing systems. A problem in the mechanical systems used in the current technique is that mechanical systems cannot provide force distributions and directions at the desired level and performance. In the current technique, in mechanical systems, the same ratio of results is obtained by transferring the hydraulic and pneumatic systems to the reducer and generator. Hydraulic and pneumatic systems have fixed piston diameter and stroke. The current system produces a constant force with hydraulic or pneumatic pump power. For this reason, this type of mechanical systems are not preferred except in special cases. PURPOSE OF THE INVENTION The invention solves all of the above-mentioned problems at the same time. In its most general form, the invention in question is related to the mechanical system that increases the force by creating a stroke with the movement of formed masses within each other. The main purpose of the invention is; hydraulic pneumatic etc. pistons operated by systems, etc. The force generated by the force generators is directed by blocks moving within each other and the force multiplier is increased by creating a stroke, and this force is used in robotic mechanisms and mechanical systems used in energy production. The purpose of the invention is to increase the force obtained by pistons using hydraulic and pneumatic systems by changing the diameter of the piston, and to provide efficiency by transmitting this force to the mechanical structure and obtaining the required stroke amount again. The purpose of the invention is to achieve the same stroke amount with the same pump power and provide more power production than the existing system. Another purpose of the invention is that it can be used as an intermediate mechanism in robotic mechanisms and industrial mechanical systems, as well as as a stand-alone force multiplier increaser. Another purpose of the invention is that it can be controlled by an automation system that can adjust the force generator speed and force value according to the instant need, and that it can be started and paused optionally. FIGURES THAT WILL HELP UNDERSTAND THE INVENTION Figure - 1; The subject of the invention is a drawing showing the mechanical system with the blocks in the upward position. Figure - 2; The subject of the invention is a drawing showing the mechanical system with the blocks in the downward position. Figure - 3; The subject of the invention is a drawing showing the vertical component force generator and force distributor in the mechanical system disassembled. Figure- 4; The subject of the invention is a drawing showing the linear slide in the mechanical system disassembled. Figure- 5; The subject of the invention is a drawing showing the linear guide contact block, body shaft and flexible block organizer in the mechanical system. Figure- 6; The subject of the invention is a drawing showing the carrier collection element in the mechanical system. Figure- 7; The subject of the invention is the drawing showing the block in the mechanical system. Figure- 8; The subject of Bqus is the drawing showing the linear carrier in the mechanical system. Figure- 9; The subject of Bqus is the drawing showing the stroke connection element in the mechanical system. REFERENCE NUMBERS 1. Main Body 2. Linear Guide Contact Block 3. Linear Carrier 3.1 Linear Carrier Block Referencing Area 3.2 Linear Carrier Guide Positioning Area 4. Lower Block. Upper Block 6. Linear Guide 6.1. Linear Guide Block Positioning Area 7. Body Shaft 8. Stroke Connection Element 9. Carrier Collection Element. Vertical Component Force Generator (piston) 11. Force Distributor 12. Flexible Block Regulator The invention will be better understood when explained with reference to the reference numbers given above and the attached figures. DETAILED DESCRIPTION OF THE INVENTION The invention shown in Figure-1; It is a mechanical system that increases force efficiency while being used for power transmission, force transfer and motion transmission in energy generators, machines and robotic mechanisms. In the invention, the main body (1), which is used to ensure that the vertical component force generator (10) receives support by applying pressure to the vertical component force generator (10) and that the force coming to the vertical component force generator (10) is transmitted to the desired direction, is positioned inside the linear slide (6). At the same time, the linear slide connection block (2) to which the body shaft (7) is connected, the linear carrier (3), whose detail is shown in Figure-8, which is used for referencing the lower blocks (4) and upper blocks (5) and ensuring their movement on the linear slide (6). , linear carrier block referencing area (3.1) created on the linear carrier (3) and used to position the lower blocks (4) and upper blocks (5) by referencing the linear carrier (3) and referencing the linear carrier (3) with the linear slide (6). and the linear carrier sled positioning area (3.2), which is used to limit the movement in the vertical direction while the linear carrier (3) moves in the horizontal direction on the linear sled (6), is given an angled geometric form, contacting each other from the surface points, creating a horizontal distance and with this distance. The lower block (4) and upper block (5) shown in Figure-7, which are used to transfer the gained force, are used to ensure that the lower block (4) and upper blocks (5) move regularly on the same line and are positioned between each other at the same time. The linear slide (6), the detail of which is shown in -4, is formed on the linear slide (6), in which the linear carrier (3) is positioned by driving, and is used to prevent the movement in the vertical direction while allowing the linear carrier (3) to move in the horizontal direction on the linear slide (6). linear slide block positioning area (6.1), the body shaft (7) shown in the Figure, which is used to create a support point between the ground and the main body (1), the horizontal block formed by the lower block (4) and upper blocks (5) entering between each other. The stroke connection element (8), detailed in Figure-9, which is used to transmit the force, comes to its starting positions after the lower block (4) and upper blocks (5) are positioned between each other, while the lower blocks (4) and upper blocks (5) move horizontally. The carrier collection element (9) shown in Figure-6, which is used to reach their initial positions, the vertical component force generator (10), which is used in the up and down movement of the lower blocks (4) and the upper blocks (5) by creating a vertical component force, the vertical component force generator. (10) is the force distributor (11) used to ensure that the incoming force is distributed on the upper blocks (5). There are flexible block organizer (12) elements used to provide support to the vertical component force generator (10) in its upward movement. In the operation of the system, which is in the initial position in Figure-1, the vertical component force generator (10), detailed in Figure-3, which receives support from the main body (1), moves in the downward direction and applies thrust force to the force distributor (11). Under the influence of the pushing force, the force distributor (11) transmits the force it receives to the upper blocks (5) via the linear slide (6). With the force it receives, the upper blocks (5) follow the geometric form on the surface of the lower blocks (4) and push the lower blocks (4) to the right and left, as shown in Figure 2. At this stage, the upper blocks (5) are positioned between the lower blocks (4) using their geometric forms and distance is taken in the horizontal direction. The force resulting from this created distance is transmitted to the desired area by the stroke connection element (8). After the downward movement is completed and the stroke formation is completed, the vertical component force generator (10) is moved in the upward direction and the upper blocks (5) are pulled between the lower blocks (4) to take the initial position. Thus, an era is completed. In the invention, while the upper blocks (5) are pulled between the lower blocks (4) and take their initial position, the flexible block organizer (12) element supports the force that creates the upward pulling, while the carrier collection element (9) helps the upper blocks (5) and the lower blocks (4) to each other. It ensures that they are positioned without being dispersed. TR TR TR TR