TR201908495T4 - Isinin bi̇r isi kaynağindan i̇zotermal olmayan buharlaşma ve yoğuşma i̇le bi̇rli̇kte en azindan i̇ki̇ madde i̇çeren bi̇r çalişma ortamina sahi̇p bi̇r termodi̇nami̇k çevri̇me i̇leti̇lmesi̇ne yöneli̇k yöntem ve ci̇haz - Google Patents

Isinin bi̇r isi kaynağindan i̇zotermal olmayan buharlaşma ve yoğuşma i̇le bi̇rli̇kte en azindan i̇ki̇ madde i̇çeren bi̇r çalişma ortamina sahi̇p bi̇r termodi̇nami̇k çevri̇me i̇leti̇lmesi̇ne yöneli̇k yöntem ve ci̇haz Download PDF

Info

Publication number
TR201908495T4
TR201908495T4 TR2019/08495T TR201908495T TR201908495T4 TR 201908495 T4 TR201908495 T4 TR 201908495T4 TR 2019/08495 T TR2019/08495 T TR 2019/08495T TR 201908495 T TR201908495 T TR 201908495T TR 201908495 T4 TR201908495 T4 TR 201908495T4
Authority
TR
Turkey
Prior art keywords
condensation
substances
heat source
isothermal evaporation
heat
Prior art date
Application number
TR2019/08495T
Other languages
English (en)
Inventor
Blonn Jann
Lengert Jörg
Ruhsland Kathrin
Original Assignee
Kalina Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kalina Power Ltd filed Critical Kalina Power Ltd
Publication of TR201908495T4 publication Critical patent/TR201908495T4/tr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

İzotermal olmayan buharlaşma ve yoğuşma ile birlikte en azından iki madde ve bir çalışma ortamına sahip bir termodinamik çevrimde (9), çalışma ortamı belirli bir sıcaklık üzerinde ayrışabilmektedir. Isı kaynaklarından (AG) düşük bir çaba yüksek bir işletme güvenliği ile faydalanılabilir çalışma ortamının ayrışma sıcaklığının üzerinde sıcaklıklara sahip ısının meydana gelmesi amacıyla, ısı kaynağının (AG) ısısının bir birinci adımda bir sıcak akışkan çevriine (4) ve bir ikinci adımda sıcak akışkan çevriminden (4) izotermal olmayan buharlaşma ve yoğuşma ile birlikte en azından iki madde bulunduran çalışma ortamına sahip çevrime (9) iletilmesi.; DOLAR A ısı kaynağı ve izotermal olmayan buharlaşma ve yoğuşma ile birlikte iki madde bulunduran bir çalışma ortamına sahip çevrim (9) arasına sıcak akışkan çevriminin (4) koyulması aracılığıyla, ısı kaynağının sıcaklığı, izotermal olmayan buharlaşma ve yoğuşma ile birlikte en azından iki madde içeren çalışma ortamının ayrıştırılmasının güvenli bir şekilde engelleneceği noktaya kadar azaltılabilmektedir. Buna ek olarak, izotermal olmayan buharlaşma ve yoğuşma ile birlikte en azından ikimadde barındıran çevrim (9) her biri farklı sıcaklıklara sahip olan farklı ısı kaynaklarında kullanıma yönelik bir standartlaştırılmış çözelti olarak oluşturulabilmektedir, burada ısı kaynağının (AG) sıcaklığının uyarlanması araya koyulan sıcak akışkan çevrimi (4) aracılığıyla gerçekleştirilmektedir.
TR2019/08495T 2004-07-30 2005-07-28 Isinin bi̇r isi kaynağindan i̇zotermal olmayan buharlaşma ve yoğuşma i̇le bi̇rli̇kte en azindan i̇ki̇ madde i̇çeren bi̇r çalişma ortamina sahi̇p bi̇r termodi̇nami̇k çevri̇me i̇leti̇lmesi̇ne yöneli̇k yöntem ve ci̇haz TR201908495T4 (tr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004037417A DE102004037417B3 (de) 2004-07-30 2004-07-30 Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation

Publications (1)

Publication Number Publication Date
TR201908495T4 true TR201908495T4 (tr) 2019-07-22

Family

ID=35045192

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2019/08495T TR201908495T4 (tr) 2004-07-30 2005-07-28 Isinin bi̇r isi kaynağindan i̇zotermal olmayan buharlaşma ve yoğuşma i̇le bi̇rli̇kte en azindan i̇ki̇ madde i̇çeren bi̇r çalişma ortamina sahi̇p bi̇r termodi̇nami̇k çevri̇me i̇leti̇lmesi̇ne yöneli̇k yöntem ve ci̇haz

Country Status (16)

Country Link
US (1) US8176722B2 (tr)
EP (1) EP1771641B1 (tr)
CN (1) CN100445518C (tr)
AU (1) AU2005268758B2 (tr)
CA (1) CA2575342C (tr)
DE (1) DE102004037417B3 (tr)
DK (1) DK1771641T3 (tr)
ES (1) ES2732957T3 (tr)
HU (1) HUE044097T2 (tr)
MX (1) MX2007001160A (tr)
NO (1) NO342098B1 (tr)
NZ (1) NZ552646A (tr)
PL (1) PL1771641T3 (tr)
RU (1) RU2358129C2 (tr)
TR (1) TR201908495T4 (tr)
WO (1) WO2006013186A1 (tr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034580A1 (de) 2009-07-24 2011-02-03 Mtu Onsite Energy Gmbh Einrichtung zur Bereitstellung von Energie
US8667797B2 (en) * 2010-07-09 2014-03-11 Purdue Research Foundation Organic rankine cycle with flooded expansion and internal regeneration
EP2455658B1 (de) * 2010-11-17 2016-03-02 Orcan Energy AG Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien
JP5800295B2 (ja) * 2011-08-19 2015-10-28 国立大学法人佐賀大学 蒸気動力サイクルシステム
US9638175B2 (en) * 2012-10-18 2017-05-02 Alexander I. Kalina Power systems utilizing two or more heat source streams and methods for making and using same
RU2557823C2 (ru) * 2013-05-13 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы комбинированной газотурбинной установки системы газораспределения
RU2542621C2 (ru) * 2013-06-17 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Парогазовая установка
RU2561776C2 (ru) * 2013-08-08 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Парогазовая установка
RU2561780C2 (ru) * 2013-11-29 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Парогазовая установка
RU2555597C1 (ru) * 2013-12-27 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2562506C2 (ru) * 2013-12-27 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2555600C1 (ru) * 2013-12-27 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2564470C2 (ru) * 2013-12-27 2015-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2564466C2 (ru) * 2013-12-27 2015-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2568348C2 (ru) * 2013-12-27 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2552481C1 (ru) * 2013-12-27 2015-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
RU2564748C1 (ru) * 2014-03-11 2015-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы тепловой электрической станции
CN104793495A (zh) * 2015-04-15 2015-07-22 浙江工业大学 一种包含非等温相变流体的换热网络最大热回收潜力的确定方法
JP6690822B2 (ja) * 2015-08-13 2020-04-28 ガス エクスパンション モーターズ リミテッド 熱力学エンジン
EP3553422B1 (en) 2018-04-11 2023-11-08 Rolls-Royce North American Technologies, Inc. Mechanically pumped system for direct control of two-phase isothermal evaporation
US11022360B2 (en) * 2019-04-10 2021-06-01 Rolls-Royce North American Technologies Inc. Method for reducing condenser size and power on a heat rejection system
US10921042B2 (en) 2019-04-10 2021-02-16 Rolls-Royce North American Technologies Inc. Method for reducing condenser size and power on a heat rejection system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604867A (en) * 1985-02-26 1986-08-12 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with intercooling
JPH06200710A (ja) * 1992-12-28 1994-07-19 Mitsui Eng & Shipbuild Co Ltd 再生・吸収式動力回収システム
US5440882A (en) * 1993-11-03 1995-08-15 Exergy, Inc. Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US5860279A (en) * 1994-02-14 1999-01-19 Bronicki; Lucien Y. Method and apparatus for cooling hot fluids
JPH09203304A (ja) * 1996-01-24 1997-08-05 Ebara Corp 廃棄物を燃料とする複合発電システム
US6571548B1 (en) 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
DE10008125A1 (de) * 1999-02-22 2001-08-23 Frank Eckert Vorrichtung zur Energieumwandlung mittels eines kombinierten Gasturbinen-Dampfkreisprozesses
US6209307B1 (en) * 1999-05-05 2001-04-03 Fpl Energy, Inc. Thermodynamic process for generating work using absorption and regeneration
EP1306526A4 (en) * 2000-08-01 2004-04-14 Yasuaki Osumi ENERGY GENERATOR USING HYDROGEN ALLOY AND MEDIUM / LOW HEAT
US20020053196A1 (en) * 2000-11-06 2002-05-09 Yakov Lerner Gas pipeline compressor stations with kalina cycles
UA68433C2 (en) 2001-11-21 2004-08-16 Oleksandr Mykolaiovy Uvarychev Method for joint production of electric and thermal energy with application of heat of secondary energy sources from industrial enterprises and power unit for its implementation
US6820421B2 (en) * 2002-09-23 2004-11-23 Kalex, Llc Low temperature geothermal system
MXPA05008120A (es) * 2003-02-03 2006-02-17 Kalex Llc Ciclo de trabajo y sistema para utilizar fuentes de calor con temperatura moderada y baja.
US7305829B2 (en) * 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
DE10335143B4 (de) * 2003-07-31 2010-04-08 Siemens Ag Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage
DE102004006837A1 (de) 2004-02-12 2005-08-25 Erwin Dr. Oser Stromgewinnung aus Luft

Also Published As

Publication number Publication date
AU2005268758A1 (en) 2006-02-09
RU2358129C2 (ru) 2009-06-10
AU2005268758B2 (en) 2009-06-18
MX2007001160A (es) 2007-04-19
CN1993537A (zh) 2007-07-04
CA2575342C (en) 2010-08-24
NO342098B1 (no) 2018-03-19
EP1771641B1 (de) 2019-03-06
NZ552646A (en) 2010-08-27
EP1771641A1 (de) 2007-04-11
PL1771641T3 (pl) 2019-10-31
NO20071094L (no) 2007-02-27
DE102004037417B3 (de) 2006-01-19
CA2575342A1 (en) 2006-02-09
CN100445518C (zh) 2008-12-24
RU2007107376A (ru) 2008-09-10
HUE044097T2 (hu) 2019-09-30
WO2006013186A1 (de) 2006-02-09
ES2732957T3 (es) 2019-11-26
US20090205336A1 (en) 2009-08-20
DK1771641T3 (da) 2019-06-11
US8176722B2 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
TR201908495T4 (tr) Isinin bi̇r isi kaynağindan i̇zotermal olmayan buharlaşma ve yoğuşma i̇le bi̇rli̇kte en azindan i̇ki̇ madde i̇çeren bi̇r çalişma ortamina sahi̇p bi̇r termodi̇nami̇k çevri̇me i̇leti̇lmesi̇ne yöneli̇k yöntem ve ci̇haz
WO2007044369A3 (en) Advanced power recovery and energy conversion systems and methods of using same
BR112015021737A2 (pt) compósito de matriz de cerâmica operável a altas temperaturas e método para fabricar um componente de motor de turbina operável a altas temperaturas
BR112012024307A2 (pt) ciclo termodinâmico e motor térmico
WO2008125827A3 (en) Organic rankine cycle apparatus and method
BR112013015661A2 (pt) dispositivo de passar roupa a vapor
TW200616891A (en) Method for producing manganese fluoride
WO2009111558A3 (en) Particle-mediated heat transfer in bernoulli heat pumps
EA201170488A1 (ru) Система для переработки использованных шин
WO2010048100A3 (en) Ultra-high-efficiency engines and corresponding thermodynamic system
Ganesh et al. Development of thermo-physical properties of aqua ammonia for Kalina cycle system
BR112015017975A2 (pt) instalação de combustão, instalação de tratamento de peças a serem trabalhadas e processo para operar uma instalação de combustão
Romero et al. Monomethylamine–water vapour absorption refrigeration system
PL2150763T3 (pl) Sposób i urządzenie do wykorzystywania ciepła transportowanego przez niestabilny strumień gazów odlotowych
ATE550613T1 (de) Energieumwandlungsvorrichtung
Chen et al. Optimal expansion of a heated working fluid with convective-radiative heat transfer law
Zheng et al. The influence of heat resistance and heat leak on the performance of a four-heat-reservoir absorption refrigerator with heat transfer law of Q∝ Δ (T− 1)
WO2014195882A3 (fr) Procede de production d'energie par combustion de matieres, et installation pour la mise en oeuvre du procede
Touaibi et al. Modelling and Optimization Study of an Absorption Cooling Machine using Lagrange Method to Minimize the Thermal Energy Consumption
Barranco-Jimenez et al. On thermodynamic optimisation of solar collector model under maximum ecological conditions
Wang et al. Thermodynamic analysis for LiBr-H 2 O absorption heat transformer
Upadhyaya et al. Parametric analysis and thermodynamic optimization of organic rankine cycle for low grade waste heat recovery
Kim et al. A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation
ATE47627T1 (de) Als temperaturdruckpotentialverstaerker arbeitendes waermeuebertragungssystem der absorptionsart.
Reynolds et al. Influence of pressure on the melting of rare gas solids