RU2561780C2 - Парогазовая установка - Google Patents

Парогазовая установка Download PDF

Info

Publication number
RU2561780C2
RU2561780C2 RU2013152919/06A RU2013152919A RU2561780C2 RU 2561780 C2 RU2561780 C2 RU 2561780C2 RU 2013152919/06 A RU2013152919/06 A RU 2013152919/06A RU 2013152919 A RU2013152919 A RU 2013152919A RU 2561780 C2 RU2561780 C2 RU 2561780C2
Authority
RU
Russia
Prior art keywords
steam
condenser
evaporator
turbine
recuperator
Prior art date
Application number
RU2013152919/06A
Other languages
English (en)
Other versions
RU2013152919A (ru
Inventor
Николай Никитович Галашов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2013152919/06A priority Critical patent/RU2561780C2/ru
Publication of RU2013152919A publication Critical patent/RU2013152919A/ru
Application granted granted Critical
Publication of RU2561780C2 publication Critical patent/RU2561780C2/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления. Первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим - через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором. В котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя. Паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором. Охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором. Паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором. Изобретение позволяет увеличить мощность и КПД парогазовой установки, повысить надежность и безопасность ее работы, а также снизить затраты в установку. 1 ил.

Description

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях.
Известна парогазовая установка с газотурбинным циклом и двумя циклами Ренкина на разных рабочих телах в паротурбинной части (воде и водяном паре в верхнем цикле и бутане - в нижнем) (Готовский М.А., Гринман М.И., Фомин В.А., Арефьев В.К., Григорьев А.А. Использование комбинированного пароводяного и органического циклов Ренкина для повышения экономичности ГТУ и ДВС / Журнал «Теплоэнергетика». 2012. №3, с. 56-61), содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены поверхности нагрева экономайзера, испарителя и пароперегревателя. Испаритель котла-утилизатора трубопроводами связан с барабаном, который паропроводом связан с пароперегревателем котла-утилизатора и водопроводом с первым насосом, который водопроводом связан с деаэратором, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина высокого давления связана паропроводами с пароперегревателем котла-утилизатора, подогревателем сетевой воды и конденсатором-испарителем. Подогреватель сетевой воды водопроводом связан со вторым насосом, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина низкого давления паропроводами связана с конденсатором-испарителем и конденсатором, который водопроводом связан с третьим насосом, который водопроводом связан с конденсатором-испарителем. Конденсатор-испаритель водопроводом связан с четвертым насосом, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина высокого и паровая турбина низкого давления валами связанны с электрическим генератором.
Недостатком этой парогазовой установки является то, что в последних ступенях паровой турбины высокого давления при давлениях пара на выходе 0,06-0,25 МПа, необходимых для подогрева сетевой воды, водяной пар имеет значительную влажность, что снижает КПД турбины, т.к. увеличение средней степени влажности на 1% снижает относительный КПД турбины на 1%. При этом при давлениях пара в конденсаторе-испарителе ниже 0,1 МПа необходима система отсоса воздуха. В паровую турбину низкого давления из конденсатора-испарителя идет насыщенный пар бутана с температурой 70-110°С. Отсутствие перегрева пара перед турбиной снижает КПД нижнего цикла, т.к. из термодинамики известно, что термический КПД цикла Ренкина зависит от температуры пара перед турбиной, ее увеличение на 10°С увеличивает КПД примерно на 0,2-0,25%. Следующим недостатком является то, что конденсат пара, поступающий из подогревателя сетевой воды и конденсатора-испарителя в экономайзер котла-утилизатора имеет температуру 86-127°С, в результате чего выходящие из котла-утилизатора газы будут иметь температуру как минимум 96-137°С, а котел-утилизатор при такой высокой температуре - пониженный КПД, т.к. увеличение температуры уходящих из котла-утилизатора газов на 10°С снижает его КПД примерно на 2%. Также недостатком является то, что выходящий из турбины низкого давления бутан имеет существенный перегрев, который не используется полезно в установке и приводит к дополнительным потерям энергии в цикле. С учетом рассмотренных недостатков парогазовая установка имеет снижение КПД при производстве электроэнергии на 2-4%.
Известна парогазовая установка с газотурбинным циклом и двумя циклами Ренкина на разных рабочих телах в паротурбинной части (бензоле в верхнем цикле и бутане - в нижнем) (А.М. Гафуров, Д.А. Усков, А.С. Шубина, «Энергетическая установка на базе ГТУ НК-37 с двумя теплоутилизирующими рабочими контурами» / Журнал «Энергетика Татарстана», 2012, №3, с. 35-41), содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, паровую турбину высокого и паровую турбину низкого давления, валами связанные с отдельными электрическими генераторами. Паровая турбина высокого давления паропроводами связана входом с пароперегревателем котла-утилизатора и выходом через первый рекуператор - с конденсатором-испарителем, который водопроводом через первый насос связан с экономайзером котла-утилизатора. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим - через второй рекуператор с конденсатором, который водопроводом через второй насос и второй рекуператор связан с конденсатором-испарителем. Эта установка принята в качестве прототипа.
Недостатком этой установки в первую очередь является то, что в верхнем паротурбинном цикле в качестве рабочего тела используется бензол - токсичное, канцерогенное, взрывоопасное вещество, самовоспламеняющееся при температуре 534°С и замерзающее при температуре 5,5°С, что снижает безопасность и надежность работы установки. Главной причиной выбора бензола послужило то, что по сравнению с другими органическими жидкостями он термоустойчив при температурах выше 600°С и позволяет получить на выходе из турбины перегретый пар, в результате чего последние ступени турбины работают без эрозионного износа лопаток и потери энергии от влажности.
Вторым недостатком установки является отсутствие охлаждения конденсата бензола на входе в экономайзер, что не позволяет снизить температуру уходящих из котла-утилизатора газов. В прототипе температура конденсата бензола на входе в экономайзер 83°С, в результате температура выходящих из экономайзера газов будет как минимум 93°С. По правилам эксплуатации котлов для работы без низкотемпературной коррозии металла со стороны газов температура входящего в поверхность нагрева теплоносителя должна быть не ниже 60°С. Что позволяет при минимальном температурном напоре 10°С на выходе экономайзера иметь температуру уходящих газов 70°С. В результате, за счет снижения температуры бензола на входе экономайзера с 83 до 60°С можно понизить температуру уходящих из него газов на 23°С. Снижение температуры уходящих из котла-утилизатора газов на 10°С увеличивает его КПД примерно на 2%. Кроме того, снижение температуры уходящих газов позволяет увеличить количество теплоты, передаваемой в верхнем цикле рабочему телу, и этим увеличить расход генерируемого рабочего тела, что позволит повысить мощность турбины и КПД верхнего цикла.
Задачей изобретения является увеличение мощности и КПД парогазовой установки, повышение надежности и безопасности ее работы и снижение затрат в установку.
Поставленная задача решена за счет того, что парогазовая установка, также как в прототипе, содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором.
Согласно изобретению в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем первый насос через охладитель-подогреватель водопроводами связан с экономайзером, а второй рекуператор трубопроводом связан с охладителем-подогревателем, который другим трубопроводом связан с конденсатором-испарителем, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.
В предложенной парогазовой установке по сравнению с прототипом в верхнем цикле в качестве рабочего тела используется вода и установлена паровая турбина среднего давления, пар в которую поступает из паровой турбины высокого давления через промежуточный пароперегреватель, встроенный в котел-утилизатор. Промежуточный перегрев пара в результате подвода теплоты от газов в котле-утилизаторе при более высокой средней температуре позволяет повысить КПД первого цикла на 0,5-1%. Кроме того, в результате подогрева в промежуточном пароперегревателе пар на выходе паровой турбины среднего давления имеет перегрев относительно температуры насыщения на 40-50°С, что позволяет за счет рекуперации тепла в первом рекуператоре иметь температуру пара второго рабочего тела на входе в паровую турбину низкого давления на 5-10°С выше температуры насыщения и, таким образом, КПД нижнего цикла можно повысить на 0,1-0,2%. Использование охладителя-подогревателя позволяет понизить температуру поступающей в экономайзер воды до требуемых по условиям надежной работы экономайзера без коррозии металла 60°С и понизить температуру отводимых из котла-утилизатора газов до 70-80°С, что повышает КПД котла-утилизатора по сравнению с прототипом на 2-4%, а также увеличивает количество теплоты, передаваемой воде и пару, и этим увеличивает расход пара в верхнем цикле, что повышает мощность работающих на паре турбин высокого и среднего давления. При этом подогрев конденсата второго рабочего тела после второго рекуператора в охладителе-подогревателе позволяет увеличить расход генерируемого пара второго рабочего тела в конденсаторе-испарителе и этим увеличить мощность турбины низкого давления. В итоге, по сравнению с прототипом увеличиваются мощность и КПД парогазовой установки по производству электроэнергии, а замена бензола в качестве рабочего тела верхнего цикла водой обеспечивает ее надежную и безопасную работу. Кроме того, по сравнению с прототипом, за счет установки одного электрического генератора вместо двух уменьшаются капитальные вложения при создании предложенной парогазовой установки, а также уменьшаются затраты на приобретение рабочего тела верхнего цикла, т.к. вода значительно дешевле бензола.
На фиг. 1 представлена схема заявляемой парогазовой установки.
Парогазовая установка (фиг. 1) содержит газотурбинную установку 1 (ГТУ), связанную газоходом с котлом-утилизатором 2, в который встроены связанные между собой поверхности нагрева первого экономайзера 3, испарителя 4 и пароперегревателя 5, а также поверхности нагрева промежуточного пароперегревателя 6. Паровые турбины высокого 7, среднего 8 и низкого 9 давления через общий вал связаны с электрическим генератором 10. Пароперегреватель 5 паропроводом связан с паровой турбиной высокого давления 7, которая паропроводом связана с промежуточным пароперегревателем 6, который паропроводом связан с паровой турбиной среднего давления 8. Паровая турбина среднего давления 8 паропроводом связана с первым рекуператором 11, который паропроводом связан с конденсатором-испарителем 12. Конденсатор-испаритель 12 водопроводом связан с первым насосом 13, который водопроводом связан с охладителем-подогревателем 14, который водопроводом связан с экономайзером 3. Охладитель-подогреватель 14 трубопроводом связан с конденсатором-испарителем 12, который паропроводом связан с первым рекуператором 11, который паропроводом связан с паровой турбиной низкого давления 9. Паровая турбина низкого давления 9 паропроводом связана со вторым рекуператором 15, который паропроводом связан с конденсатором 16. Конденсатор 16 водопроводом связан со вторым насосом 17, который водопроводом связан со вторым рекуператором 15. Второй рекуператор 15 трубопроводом связан с охладителем-подогревателем 14. Котел-утилизатор 2 снабжен газоходом 18 для отвода газов в дымовую трубу.
Парогазовая установка работает следующим образом. Газы, образующиеся в результате работы газотурбинной установки 1 (ГТУ), с температурой, например 450-650°С поступают в котел-утилизатор 2, где в экономайзере 3 нагревают первое рабочее тело, воду, до кипения, в испарителе 4 превращают ее в насыщенный пар и в пароперегревателе 5 перегревают пар до температуры на 20-30°С ниже температуры газов, поступающих в котел-утилизатор 2. Перегретый пар поступает в паровую турбину высокого давления 7, где вырабатывает механическую мощность, и поступает в промежуточный пароперегреватель 6, где за счет тепла газов нагревается до температуры на 20-30°С ниже температуры газов, поступающих в котел-утилизатор 2. Из промежуточного пароперегревателя 6 перегретый пар поступает в паровую турбину среднего давления 8, где вырабатывает механическую мощность, и при давлении выше атмосферного с температурой 140-160°С уходит через первый рекуператор 11 в конденсатор-испаритель 12, в котором конденсируется. Образовавшийся конденсат насосом 13 сжимается до около или сверхкритического давления и через охладитель-подогреватель 14 подается в экономайзер 3. В конденсаторе-испарителе 12 за счет теплоты конденсирующегося пара нагревается и испаряется второе рабочее тело, например, бутан, которое перегревается в первом рекуператоре 11 на 5-10°С выше температуры насыщения и поступает в паровую турбину низкого давления 9, где вырабатывает механическую мощность, и при давлении выше атмосферного через второй рекуператор 14 уходит в конденсатор 15, в котором конденсируется. Образовавшийся конденсат бутана вторым насосом 16 сжимается до давления на 30-50% выше, чем давление бутана в конденсаторе-испарителе 12, и через второй рекуператор 15 и охладитель-подогреватель 14 перекачивается в конденсатор-испаритель 12. Снижение температуры воды на входе экономайзера 3 до 60°С позволяет снизить температуру отводимых в дымовую трубу газов 18 до 70-80°С и этим увеличить количество теплоты, передаваемой от газов воде и пару, что увеличивает расход пара в верхнем цикле, и в результате мощность паровых турбин высокого 7 и среднего 8 давления. Подогрев конденсата бутана во втором рекуператоре 15 и в охладителе-подогревателе 14 увеличивает количество генерируемого пара бутана в конденсаторе-испарителе 12 и в результате увеличивается мощность паровой турбины низкого давления 9. Паровые турбины высокого 7, среднего 8 и низкого 9 давления через общий вал передают механическую мощность электрическому генератору 10, который вырабатывает электроэнергию.

Claims (1)

  1. Парогазовая установка, содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором, отличающаяся тем, что в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.
RU2013152919/06A 2013-11-29 2013-11-29 Парогазовая установка RU2561780C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013152919/06A RU2561780C2 (ru) 2013-11-29 2013-11-29 Парогазовая установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013152919/06A RU2561780C2 (ru) 2013-11-29 2013-11-29 Парогазовая установка

Publications (2)

Publication Number Publication Date
RU2013152919A RU2013152919A (ru) 2015-06-10
RU2561780C2 true RU2561780C2 (ru) 2015-09-10

Family

ID=53285108

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013152919/06A RU2561780C2 (ru) 2013-11-29 2013-11-29 Парогазовая установка

Country Status (1)

Country Link
RU (1) RU2561780C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686541C1 (ru) * 2018-06-13 2019-04-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Парогазовая установка
US11603794B2 (en) 2015-12-30 2023-03-14 Leonard Morgensen Andersen Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875436A (en) * 1988-02-09 1989-10-24 W. R. Grace & Co.-Conn. Waste heat recovery system
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
RU2358129C2 (ru) * 2004-07-30 2009-06-10 Сименс Акциенгезелльшафт Способ и устройство для передачи тепла от источника тепла к термодинамическому циклу с рабочей средой с по крайней мере двумя веществами с неизотермическим испарением и конденсацией

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875436A (en) * 1988-02-09 1989-10-24 W. R. Grace & Co.-Conn. Waste heat recovery system
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
RU2358129C2 (ru) * 2004-07-30 2009-06-10 Сименс Акциенгезелльшафт Способ и устройство для передачи тепла от источника тепла к термодинамическому циклу с рабочей средой с по крайней мере двумя веществами с неизотермическим испарением и конденсацией

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Гафуров А.М. и др. Энергетическая установка на базе ГТУ НК-37 с двумя теплоутилизирующими рабочими контурами, "Энергетика Татарстана", 2012, N 3, с. 35-41. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603794B2 (en) 2015-12-30 2023-03-14 Leonard Morgensen Andersen Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region
RU2686541C1 (ru) * 2018-06-13 2019-04-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Парогазовая установка

Also Published As

Publication number Publication date
RU2013152919A (ru) 2015-06-10

Similar Documents

Publication Publication Date Title
RU2691881C1 (ru) Тепловая электрическая станция
JP2010031867A (ja) 複合サイクル発電プラント用排熱回収ボイラ
CN106152093A (zh) 全回热的燃料燃烧蒸汽动力循环热力发电系统及其工艺
RU2549743C1 (ru) Теплофикационная газотурбинная установка
RU2525569C2 (ru) Парогазовая надстройка паротурбинного энергоблока с докритическими параметрами пара
RU2561780C2 (ru) Парогазовая установка
RU2561776C2 (ru) Парогазовая установка
RU2728312C1 (ru) Способ работы и устройство маневренной газопаровой теплоэлектроцентрали с паровым приводом компрессора
RU2602649C2 (ru) Паротурбинная аэс
RU2280768C1 (ru) Теплоэлектроцентраль с газотурбинной установкой
RU2015130684A (ru) Электрогенерирующее устройство с высокотемпературной паровой конденсационной турбиной
RU2752123C1 (ru) Тепловая электрическая станция
RU2349764C1 (ru) Теплоэлектроцентраль, надстроенная газотурбинной установкой
RU2009109733A (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
RU2631961C1 (ru) Способ работы бинарной парогазовой тэц
CN104832227A (zh) 一种燃煤机组高效亚临界系统
CN205580221U (zh) 烟气的高效余热发电系统
RU2015149555A (ru) Способ работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройство для его осуществления
RU2533601C2 (ru) Энергетическая установка с парогазовой установкой
RU2542621C2 (ru) Парогазовая установка
RU2686541C1 (ru) Парогазовая установка
RU2420664C2 (ru) Многорежимная теплофикационная установка
RU109797U1 (ru) Теплоутилизационный комплекс с паровой турбиной
RU2626710C1 (ru) Способ работы бинарной парогазовой теплоэлектроцентрали
RU68599U1 (ru) Установка для утилизации тепловой энергии

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151130