TR201809373T4 - Apparatus and method for injecting oxygen into a pressure loaded circulating fluidized bed gasification reactor. - Google Patents

Apparatus and method for injecting oxygen into a pressure loaded circulating fluidized bed gasification reactor. Download PDF

Info

Publication number
TR201809373T4
TR201809373T4 TR2018/09373T TR201809373T TR201809373T4 TR 201809373 T4 TR201809373 T4 TR 201809373T4 TR 2018/09373 T TR2018/09373 T TR 2018/09373T TR 201809373 T TR201809373 T TR 201809373T TR 201809373 T4 TR201809373 T4 TR 201809373T4
Authority
TR
Turkey
Prior art keywords
oxygen
pipe
tube
gas
mouth
Prior art date
Application number
TR2018/09373T
Other languages
Turkish (tr)
Inventor
Abraham Ralf
Pavone Domenico
Schulze Eckel Reinald
Toporov Dobrin
Simon Hafner Boris
Original Assignee
Thyssenkrupp Ind Solutions Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Ind Solutions Ag filed Critical Thyssenkrupp Ind Solutions Ag
Publication of TR201809373T4 publication Critical patent/TR201809373T4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/503Fuel charging devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/10Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Buluş, birbirlerine yönelik olarak en az üç koaksiyal boruya sahip, bunlardan her birinin en az bir halkasal boşluğa sınırlandığı bir oksijen mızrağı ile ilgilidir. En dıştaki boru, aşırı sıcak buharın yönlendirilmesine yönelik olarak konfigüre edilir ve bir buhar besleme noktasına sahiptir, merkezi boru ise halka formunda bir boşluk olarak tasarlanır ve en içteki boru, oksijeni, 180°C'den daha yüksek olmayan bir sıcaklıkta geçireceği şekilde konfigüre edilir ve bir oksijen besleme noktasına sahiptir. En içteki borunun içinde bir ısı sensörü düzenlenir, burada, ısı sensörü, en içteki borunun açıklığının hemen önüne kadar uzanır. En içteki boru, açılma öncesinde bir nozul formunda incelir; en içteki boru, merkezi boru içine ağızlanır ve merkezin borunun açıklığı, en dıştaki borunun açıklığına göreceli olarak daha önde durur.The invention relates to an oxygen spear having at least three coaxial tubes for each other, each of which is limited to at least one annular space. The outermost tube is configured for directing excess heat steam and has a steam supply point, the central tube being designed as an annular space, and the innermost tube is configured to pass oxygen at a temperature not higher than 180 ° C, and has an oxygen supply point. A heat sensor is arranged in the innermost tube, wherein the heat sensor extends just in front of the opening of the innermost tube. The innermost tube is tapered in the form of a nozzle prior to opening; the innermost tube is fed into the central tube and the aperture of the tube of the center is relatively ahead of the aperture of the outermost tube.

Description

TARIFNAME OKSIJENIN, BASINÇ YÜKLÜ BIR DOLASIMLI AKISKAN YATAKLI GAZIFIKASYON REAKTÖRÜ IÇINE ENJEKSIYONLANMASINA YÖNELIK CIHAZ VE YÖNTEM Bulus, oksijenin, tipik olarak Yüksek Isili Winkler Yöntemine (HTW Yöntemi) göre bir gazifikasyon reaktöründe kullanima giren, basinç yüklü dolasimli akiskan yatakli bir gazifikasyonda enjeksiyonlanmasina yönelik bir yöntem ve bir cihaz ile ilgilidir. DESCRIPTION GAZIFICATION OF OXYGEN WITH A PRESSURE-LOADED CIRCULATIONAL FLUID BED DEVICE AND METHOD FOR INJECTING INTO THE REACTOR The invention demonstrates that oxygen is typically produced by the High Temperature Winkler Method (HTW Method). A pressure-loaded circulating fluidized bed, put into use in a gasification reactor. It relates to a method and a device for injection in gasification.

HTW Yöntemi uzun zamandan beri bilinir ve bununla parçali ve ayni zamanda sivi veya macun seklinde karbon içerikli yakitlarin, sentez gazina dönüstürüldügü, kanitlanmis teknoloji olarak geçerlidir. Yakit olarak, ayni zamanda, çok yüksek kül miktarina sahip agir yakitlar ve ayni zamanda biyokütle kaynakli yakitlar ve karbon içerikli atiklar da kullanima girer. Bunlar, kabarcik olusturan dolasimli akiskan yatak olarak isletilen bir dolasimli akiskan yatak içine yönlendirilir ve oksijen, su buhari ve C02 ile gazlanir. HTW Yöntemi, diger gazifikasyon yöntemlerine göre, meydana gelen külün erimedigi orta sicakliklarda çalisir. Bu, özellikle asindirici küllerde operasyonel avantajlara sahiptir. The HTW Method has been known for a long time and with it a fragmented and at the same time liquid or paste-shaped carbon-containing fuels are converted into synthesis gas, valid as proven technology. As a fuel, it is also very high ash heavy fuels, as well as fuels from biomass and carbon containing wastes are also used. These are bubble-forming circulating fluidized beds. A circulating fluid operated as a circulating fluid is directed into the bed and oxygen, water vapor and It is gassed with C02. HTW Method, compared to other gasification methods, It works at medium temperatures where ash does not melt. This is especially true for corrosive ash. has advantages.

Asiri yüksek dozlama, yüksek bir yanmaya ve böylece sentez gazinda 002 miktarinin yükselmesine yol açacagindan dolayi, bundan kaçinmak gerektiginden, oksijen ilavesi çok iyi dozlanmalidir. Ayni zamanda, asiri yüksek bir dozlama, oksijen giris noktalarinin hemen çevresinde, kül partiküllerinin erimesine yol açacaktir, bunun sonucu olarak, dolasimli akiskan yatagi malzemesine sahip topaklanmalar ortaya çikabilir, bunlar kendi tarafinda, oksijen mizraklarina yapismalara yol açar. Buna yönelik olarak, yakitin, basinç altinda, kismen kesintili beslenmesi yoluyla, tam, hizli ve ince bir oksijen beslemesinin düzenlenmesi gerekir. Bu, tipik olarak, gerekli oksijenin, dolasimli akiskan yatak reaktörü içine uygulanmasina yönelik mizraklarinda özellikle yüksek gereksinimlere yol açar. açiklanir, bunlar, mevcut duruma kadar olan önceki teknige karsilik gelir. Olasi topaklanma problemi, oksijenin çikis noktasindaki buhar ilavesinin, disari çikan oksijen jetini sarmalayan bir buhar sisini olusturacagi sekilde düzenlenmesi seklinde çözülür. Excessive dosing will result in high combustion, thus reducing the amount of 002 in the syngas. supplementation of oxygen, as this should be avoided, as this will cause It should be dosed very well. At the same time, an excessively high dosing may result in a loss of oxygen entry points. in its immediate vicinity, it will cause the ash particles to melt, as a result, Clumps with circulating fluid bed material may appear, these on its side, it causes sticking to the oxygen lances. To this end, the fuel a complete, rapid, and fine supply of oxygen under pressure, through its partially interrupted supply. feeding needs to be regulated. This typically means that the required oxygen is circulated particularly high in lances for application in a fluidized bed reactor. gives rise to requirements. explained, they correspond to the prior art up to the present situation. Possible agglomeration problem, the addition of steam at the exit point of the oxygen, the outgoing oxygen It dissolves when it is arranged to form a mist of steam enveloping the jet.

Bu baglamda, ortaya çikan gaz jetindeki türbülanslar, çok yüksek bir buhar miktarina sahiptir, bu, birlikte sürüklenen dolasimli yatak partiküllerinin asiri isinmasini önler ve böylece topaklanma egilimini önemli oranda düsürür. In this context, the turbulences in the resulting gas jet cause a very high amount of steam. This prevents the co-entrained circulating bed particles from overheating and thus significantly reducing the tendency to agglomerate.

Bununla birlikte, bu teknoloji, 8 ila 10 bar üstündeki basinçlarda problemlidir. Oksijen, oksijen mizragi içine verilmesi öncesinde normal olarak önceden isitilir. Ancak, güvenlik sebeplerinden dolayi, bu baglamda endüstride mutat olan donanim parçalari, özellikle de contalar hasar gördügünden, 180°C üstünde isitma uygulanmak istenmez. 200°C`nin üstündeki malzeme kullanimina yönelik olarak ayni zamanda yasal izin kisitlamalari da mevcuttur. Önceden isitilan oksijen, 180°C'de, oksijen mizraginin içine yönlendirilir ve bir kilif borusu içinde asiri isitilmis su buhari birakir, 8 ila 10 bar basincin üstünde, oksijeni ileten borunun buharlasma tarafinda kondensatlar olusur. Bu kondensatlar, gaz çikisinda akis oranini ciddi sekilde degistirir, böylece oksijen mizragi çevresinde bir daha çevreleyen sekilde su buhari sisi meydana gelmez. Bu da oksijen mizraginin basarisizligina yol açar. However, this technology is problematic at pressures above 8 to 10 bar. Oxygen, The oxygen is normally preheated before being introduced into the lance. However, for safety reasons, hardware parts customary in the industry in this context, Heating above 180°C is undesirable, especially since the gaskets are damaged. Legal permission is also given for the use of materials above 200°C. restrictions are also available. Preheated oxygen, at 180°C, into the oxygen lance diverted and releases superheated water vapor in a sheath pipe, 8 to 10 bar Above the pressure, condensates form on the evaporation side of the pipe that conducts the oxygen. This condensates drastically change the flow rate at the gas outlet so that the oxygen lance No more water vapor fog will occur around it. This is oxygen leads to the failure of the spear.

Bu nedenle, bulusun amaci, oksijenin, yüklü bir dolasimli akiskan yatakli gazifikasyon reaktörü içine enjeksiyonlanmasina yönelik olarak, ayni zamanda 10 bar üstündeki isleme basinçlarina yönelik olarak uygun olan ve yüksek güvenlik ve kullanilabilirlikte ekonomik olan bir cihaz ve bir yöntemin kullanima sunulmasidir. Therefore, the object of the invention is the gasification of oxygen with a charged circulating fluidized bed. also for injection into the reactor above 10 bar suitable for processing pressures and with high safety and usability is the introduction of an economical device and a method.

Bu amaç, birbiri içinde düzenlenen ve her durumda en az bir halkasal bosluga bitisik en az üç koaksiyal boruya sahip bir oksijen mizragi vasitasiyla yerine getirilir, burada . en distaki boru, asiri isinmis buharin geçirilmesine yönelik olarak düzenlenir ve bir buhar besleme noktasina sahiptir, . ortadaki boru, halkasal bosluk olarak düzenlenir, . en içteki boru, maksimum 180°C sicakliga sahip sicak oksijenin geçirilmesine yönelik olarak düzenlenir ve bir oksijen besleme noktasina sahiptir, - en içteki borunun içinde bir isi sondasi düzenlenir, bu, en içteki boru agzinin çok yakinina kadar ulasir. . en içteki boru, kendi agzindan önce nozul seklinde daralir, . en içteki boru, ortadaki borunun içine açilir ve . orta borunun agzi, en distaki borunun agzina göre daha fazla çikinti yapar. This purpose is the smallest one arranged within each other and in each case adjacent to at least one annular space. carried out by an oxygen lance with at least three coaxial pipes, where . the outermost pipe is arranged for passing the overheated steam and has a steam supply point, . the middle tube is arranged as an annular space, . the innermost tube allows the passage of hot oxygen with a maximum temperature of 180°C. is geared towards and has an oxygen supply point, - a heat probe is arranged inside the innermost pipe, this is the innermost pipe mouth it reaches very close. . the innermost tube narrows into a nozzle before its mouth, . the innermost tube opens into the middle tube and . the mouth of the middle pipe protrudes more than the mouth of the outermost pipe.

Bir tasarimda, ortadaki boru, oksijen mizraginin agiz tarafinda açiktir. Diger bir tasarimda, ortadaki boru, kuru gazin geçirilmesine yönelik olarak düzenlenir ve bir gaz girisi noktasina sahiptir. Bu baglamda, diger bir tasarimda, ortadaki borunun, en içteki borunun ortadaki boru içine agizlanmasindan önce, nozul tarzinda daralmasi saglanabilir. In one design, the middle tube is open at the mouth of the oxygen lance. another one In the design, the middle tube is arranged for passing dry gas and a gas It has an entry point. In this context, in another design, the middle pipe is constriction of the tube in the form of a nozzle before it is introduced into the middle tube can be provided.

Burada, kuru gaz altinda, buharlastirma teknolojisine karsit sekilde yanma teknolojisinde mutat oldugu gibi, su buhari kismi olmayan teknik bir gaz anlasilir. Buna karsilik, yas gaz altinda, asagida, ayni zamanda su buhari kismini da içeren bir teknik gaz anlasilir, ancak, burada, bu, çok fazli bir karisimin olusmasi anlamina gelmez. Here, combustion under dry gas, as opposed to evaporation technology A technical gas is understood to be without the water vapor portion, as is customary in technology. This on the other hand, under wet gas, below is a technique that also includes the water vapor portion. gas is understandable, however, here, this does not mean that a polyphase mixture has formed.

Bundan dolayi, asiri sicak su buhari, hiç islak buharin meydana gelmedigi kuru anlamda olmasina ragmen, yas gaz olarak dikkate alinmalidir. Therefore, excessively hot water vapor is dry, where no wet steam occurs. Although it has a meaning, it should be considered as a wet gas.

Amaç, ayni zamanda, oksijenin, HTW Yöntemi'ne göre çalistirilan dolasimli akiskan yatakli gazifikasyon reaktörü içine, yukarida açiklandigi gibi bir oksijen mizragi vasitasiyla yönlendirilmesine yönelik bir yöntem ile yerine getirilir, burada . yas gaz, en distaki boru içine, dolasimli akiskan yatakli gazifikasyon reaktörü içindeki basincin üstündeki bir basinç ile beslenir, . oksijen, en içteki boru içine, maksimum 180°C`Iik bir sicaklik ile ve dolasimli akiskan yatakli gazifikasyon reaktörü içindeki basincin üstündeki bir basinç ile geçirilir, . yas gaz, en distaki borunun agzindan manto akisi seklinde, orta borunun agzi çevresinde ve disari çikan serbest jet olarak çikar, burada, disari çikan yas gazin akis hizi, en içteki borudan disari çikan gazinkinden daha büyük olarak Yöntemin tasarimlarinda, orta borudaki kuru gazin, dolasimli akiskan yatakli gazifikasyon reaktörü içindeki basincin üstünde bir basinç ile yönlendirilmesi ve oksijenin ve kuru gazin, orta borunun agizlanmasi öncesinde karistirilmasi öngörülebilir. The aim is also to ensure that oxygen is a circulating fluid operated according to the HTW Method. an oxygen lance, as described above, into the bed gasification reactor. carried out by a method of directing through . flat gas, in the outermost tube, circulating fluidized bed gasification reactor fed by a pressure above the pressure inside, . Oxygen is circulated into the innermost tube at a maximum temperature of 180°C. with a pressure above the pressure inside the fluidized bed gasification reactor. is passed, . flat gas, in the form of mantle flow from the mouth of the outermost pipe, the mouth of the middle pipe around and come out as a free jet, here, the age coming out the flow rate of the gas is greater than that of the gas coming out of the innermost pipe. In the designs of the method, the dry gas in the middle pipe is used with a circulating fluidized bed. directed with a pressure above the pressure inside the gasification reactor, and mixing of oxygen and dry gas before opening the middle pipe predictable.

Yöntemin diger tasarimlarinda, yas gazin, asiri sicak su buhari veya karbondioksit ve asiri sicak su buharindan olusan bir karisim olmasi tasarlanir. In other embodiments of the method, the wet gas is used as superheated water vapor or carbon dioxide and It is designed to be a mixture of extremely hot water vapor.

Yöntemin diger tasarimlarinda, yas gazin, karbondioksit, azot veya karbondioksit ve havadan olusan bir karisim veya karbondioksit ve azottan olusan bir karisim olmasi tasarlanir. Buna ek olarak, gazlastirma sürecinde arzu edilmesi durumunda, bu isleme, kuru gaz olmadan da mümkündür, burada, yas gazin sicakligi üzerindeki olumlu etkiler muhafaza edilebilir. Kuru gazin, orta boru içine en düsük besleme sicakligi, kullanilan yas gazin en distaki boru içinde çiylenme noktasindan elde edilir, bu, saf su buharinda, doymus buhar sicakligina karsilik gelir. In other embodiments of the method, the oil gas is carbon dioxide, nitrogen or carbon dioxide and a mixture of air or a mixture of carbon dioxide and nitrogen is designed. In addition, if desired during the gasification process, also possible without dry gas, where positive effects on the temperature of the wet gas can be preserved. The lowest supply temperature of dry gas into the middle pipe, used The oil is obtained from the dew point of the gas in the outermost tube, which in pure water vapor, corresponds to the saturated steam temperature.

Karbondioksite yönelik besleme hatlarinin, gereksinim nedeniyle, oksijen mizraklarinin inertlenmesinin hizli sekilde kapatilmasi esnasinda, kullanilabilmesini güvence altina almasindan ve oksijen mizraklarina diger bir borunun eklenmesinin sadece çok az bir masraf üretmesinden dolayi, bu teknik çözümün ekonomik olarak özellikle avantajli oldugu ortaya çikmistir. Yüksek nitelikte isi kapasitesine sahip bir kuru gazin seçilmesi ve sicak, yas gazin, soguk oksijene karsilik ek korumasi vasitasiyla, buharlasmayi yapan en dis boru içinde kayda deger bir sicaklik düsmesi ve dolayisiyla en dis boru içinde su buharinin yogunlasmasi meydana gelmez. Supply lines for carbon dioxide, oxygen lances due to requirement ensure that it can be used during the rapid closure of the inert It's just a little bit of a blowout from the air intake and adding another pipe to the oxygen lances. This technical solution is particularly advantageous economically because it generates costs. it turned out to be. Choosing a dry gas with high quality heat capacity and hot, wet gas, through additional protection against cold oxygen, to prevent evaporation a significant temperature drop in the outermost pipe and hence the outermost pipe Condensation of water vapor does not occur in it.

Bulus, asagida, 2 taslak yardimiyla daha detayli olarak açiklanir. Bu kapsamda, sekil 1, agzi, gösterilmeyen bir HTW gazifikasyon reaktörünün akiskan yatagi içine açilan bir oksijen mizragi boyunca sematik bir kesiti gösterir. Sekil 2, oksijene, karbondioksite ve buhara yönelik besleme hatlarinin ara baglantisini gösterir. The invention is explained in more detail below with the aid of 2 outlines. In this context, figure 1, a nozzle opening into the fluidized bed of an HTW gasification reactor, not shown. shows a sematic section through the oxygen spear. Figure 2 shows oxygen, carbon dioxide and indicates the interconnection of supply lines for steam.

Oksijen (1), içinde isi ölçme düzeneginin (3) düzenlendigi en içteki boruya (2) yönlendirilir. Sicaklik 180 derece santigrat, giristeki basinç yaklasik 28 bar'dir. Tam basinç, mevcut anda gerekli olan oksijen miktarinin gazifikasyonuna yönelik olarak reaktöre beslenen kapasite kontrolü vasitasiyla belirlenir. Karbondioksit, ortadaki boru (4) içine, 5 ila 230 derece santigrata sahip sekilde verilir. Asiri sicak su buhari (7), en distaki boru (6) içine, yaklasik 29 bar basinca ve 410 derece santigrat bir sicakliga sahip sekilde yönlendirilir. Su buhari, karbondioksiti yaklasik 270 derece santigratlik bir sicakliga isitir, burada, oksijen ayni sekilde hafifçe isinir. Bu kapsamda, su buharinin çiylenme noktasinin altina düsülmediginden dolayi, hiç su buhari yogunlasmasi olmaz ve en distaki borunun agzinda hiç damlacik olusmaz, böylece, oksijen mizragi ucu çevresinde homojen bir buhar sisi meydana gelebilir. Oxygen (1) enters the innermost tube (2), in which the heat measuring device (3) is arranged. is directed. The temperature is 180 degrees Celsius, the pressure at the inlet is about 28 bar. Full pressure for gasification of the amount of oxygen currently required determined by the capacity control fed to the reactor. carbon dioxide, middle pipe (4) is supplied with 5 to 230 degrees centigrade. Extremely hot steam (7), max into the outer tube (6), at a pressure of approximately 29 bar and a temperature of 410 degrees Celsius. owner is directed. Water vapor releases carbon dioxide to a temperature of about 270 degrees Celsius. heats up to temperature, where oxygen is likewise slightly warmed. In this context, water vapor No water vapor condensation occurs as the dew point is not dropped below and no droplets form at the mouth of the outermost tube, so that the oxygen spear tip A homogeneous vapor mist may occur around it.

En içteki borunun oksijeni ve ortadaki borunun karbondioksiti, karistirma noktasinda (9) ortak bir gaz akimina yönelik olarak kombine edilirler, burada, besleme noktasi, halihazirda, HTW gazifikasyon reaktörünün dolasimli akiskan yataginin içinde bulunur. The oxygen of the innermost tube and the carbon dioxide of the middle tube are at mixing point (9) they are combined for a common gas stream, where, the supply point, It is currently located in the circulating fluid bed of the HTW gasification reactor.

Karisim, serbest jet (10) seklinde, dolasimli akisan yatagi içine yönlendirilir, burada, buhar sisi, nozul ucu çevresinde oksijenin türbülans olusumunu önler ve böylece muhtemel lokal bir asiri isinmanin sonucu olarak. nozul ucunda kül yumusamasini ve topaklanmalari engeller. Bu sekilde, dolasimli akiskan yatakli reaktör, 28 bar”lik bir basinçta çalistirilabilir. The mixture is directed into the circulating flow bed in the form of a free jet (10), where vapor mist prevents turbulence of oxygen around the nozzle tip and thus as a result of possible local overheating. ash softening at the nozzle tip and prevents clumping. In this way, the circulating fluidized bed reactor is set at a 28 bar can be operated under pressure.

Sekil 2, oksijene (11), karbondioksite (12) ve asiri sicak buhara (13) yönelik besleme hatlarina ve ayni zamanda en önemli durdurma ve ayarlama ventillerine sahip bir ara baglanti semasini gösterir. Karbondioksit, acil durumda, bosaltma ventili (14) vasitasiyla oksijen hatti içine ve ayarlama ventili (15) vasitasiyla buhar hatti içine yönlendirilebilir. Normalde, her iki ventil kapalidir. Ihtiyaç duyulan oksijen miktarina bagli olarak, oksijen beslemenin ayarlama ventili (16), karbondioksit miktari ayarlamanin ayarlama ventili (17) ve buhar hattinin ayarlama ventili (18) olarak islev görür. Oksijen (11), oksijen dagitioisi (19) vasitasiyla ayni zamanda diger nozul düzlemlerine yönelik olarak da dagitilabilir. Figure 2, supply for oxygen (11), carbon dioxide (12) and super hot steam (13) intermediate lines, as well as the most important stop and regulating valves. shows the connection diagram. Carbon dioxide, emergency, relief valve (14) through the oxygen line and through the regulating valve (15) into the steam line can be directed. Normally, both valves are closed. The amount of oxygen needed adjusting valve (16) of oxygen supply, depending on the amount of carbon dioxide function as the regulating valve (17) of the regulator and the regulating valve (18) of the steam line sees. Oxygen (11), through the oxygen distribution nozzle (19) at the same time as the other nozzle It can also be distributed towards the planes.

Asagidaki hesaplama ve konfigürasyon örnekleri, bulusu açiklar: . Örnek 1'de, en distaki boru, su buhari ile ve ortadaki borui azot ile yüklendirilir. . Örnek 2'de en distaki boru, su buhari ile, ortadaki boru karbondioksit ile yüklendirilir. 0 Örnek 3'te en distaki boru, karbondioksitten ve su buharindan esit sekilde kütle miktarlarindan olusan bir karisim ile, ortadaki boru ise karbondioksit ile yüklendirilir. . Örnek 4`te en distaki boru, su buhari ile yüklendirilir ve ortadaki boru akimsiz sekilde birakilir. The following calculation and configuration examples illustrate the invention: . In Example 1, the outermost tube is charged with water vapor and the middle tube with nitrogen. . In Example 2, the outermost pipe is filled with water vapor, and the middle pipe is filled with carbon dioxide. is loaded. 0 In Example 3, the outermost tube has equal mass from carbon dioxide and water vapor. with a mixture consisting of amounts of is loaded. . In Example 4, the outermost pipe is loaded with water vapor and the middle pipe is flowless. it is left in a row.

Bütün örneklerde, en içteki boru oksijen ile yüklendirilir, burada, iç çap yaklasik 25 mm'dir ve 11 mm kalinliginda bir termo eleman içeride düzenlenir. Bütün ölçüm degerleri, konfigürasyon hesaplamalarindan elde edilen yaklasik degerlerdir. In all examples, the innermost tube is charged with oxygen, where the inside diameter is approximately 25 mm and a 11 mm thick thermo element is arranged inside. whole measurement values are approximate values obtained from configuration calculations.

En distaki borunun boslugu [mm] 9 15 15 15 Ortadaki borunun boslugu [mm] 10 En distaki borunun kütle akisi [kg/s] 0,039 Ortadaki borunun kütle akisi [kg/s] 0,0039 En içteki borunun kütle akisi [kg/s] 0,225 En distaki boruda giris sicakligi [°C] 410 Ortadaki boruda giris sicakligi [°C] 230 En içteki boruda giris sicakligi [°C] 180 En distaki borudan çikis sicakligi [°C] 400 Ortadaki borudan çikis sicakligi [°C] 270 En içteki borudan çikis sicaklgi [°C] 182 0,225 0,225 0,225 Bütün durumlarda, en distaki borunun yas gazinin doymus buhar sicakligi, orta borudaki hiçbir noktada asagiya düsmez, böylece hiç yogunlasma meydana gelmez. Clearance of outermost tube [mm] 9 15 15 15 Gap of middle tube [mm] 10 Mass flow of the outermost pipe [kg/s] 0.039 Mass flux of the middle pipe [kg/s] 0.0039 Mass flux of the innermost tube [kg/s] 0.225 Inlet temperature in outermost pipe [°C] 410 Inlet temperature in the middle pipe [°C] 230 Inlet temperature in the innermost pipe [°C] 180 Output temperature from outermost pipe [°C] 400 Output temperature from the middle pipe [°C] 270 Output temperature from the innermost pipe [°C] 182 0.225 0.225 0.225 In all cases, the saturated steam temperature of the wet gas of the outermost tube is it does not fall down at any point in the pipe so no condensation occurs.

Bulus, sergilenen örnekler ile sinirli degildir, ayrica, farkli yük durumlarinda veya çalisma durumlarinda ilgili akislarin, ihtiyaçlara göre esnek sekilde uyarlanmasi da mümkündür. The invention is not limited to the examples illustrated, moreover, it can be used in different load cases or flexibly adapting the relevant flows to the needs in working situations possible.

Referans Numaralari Listesi: Oksijen En içteki boru Orta boru Karbondioksit En distaki boru Su buhari Eri distaki borunun agzi OCJ\ICD01-ßc›.)i\)-` Karisim noktasi Serbest jet Oksijen Karbondioksit M141618 Bosaltma ventili Ayarlama ventili Ayarlama ventili Ayarlama ventili Ayarlama ventili Oksijen dagiticisiReference Numbers List: Oxygen innermost tube middle pipe Carbon dioxide The outermost pipe Water vapor The mouth of the outer pipe OCJ\ICD01-ßc›.)i\)-` mixing point free jet Oxygen Carbon dioxide M141618 Drain valve regulating valve regulating valve regulating valve regulating valve oxygen diffuser

Claims (1)

ISTEMLER 1. Koaksiyal olarak birbirlerine baglanan ve en azindan her durumda bir halkasal bosluga sinirlanan en az üç boruya sahip oksijen mizragi olup, özelligi en distaki borunun, içinden asiri sicak buharin geçirilmesine yönelik olarak düzenlenmesi ve bir buhar besleme noktasina sahip olmasidir, orta borunun, halkasal bosluk seklinde düzenlenmesidir, en içteki borunun, içinden, maksimum 180°C'de sicak oksijenin geçirilmesine yönelik olarak düzenlenmesi ve bir oksijen besleme noktasina sahip olmasidir, en içteki borunun içinde, en içteki borunun agzinin hemen önüne kadar ulasan bir isi sondasinin düzenlenmesidir, en içteki borunun, kendi agzinin öncesinde, nozul tarzi öncesinde incelmesidir, en içteki borunun, ortadaki borunun içine agizlanmasidir ve ortadaki borunun agzinin, en distaki borunun agzina göre daha da çikinti yapmasidir. Istem 1'e göre oksijen mizragi olup, özelligi orta borunun, oksijen mizraginin agiz tarafi üzerinde açik sekilde düzenlenmesi ile karakterize edilmesidir. 3. Istem 1'e göre oksijen mizragi olup, özelligi orta borunun, içinden kuru gazin geçirilmesine yönelik olarak düzenlenmesi ve bir gaz geçis noktasina sahip olmasi ile karakterize edilmesidir. Istem Sie göre oksijen mizragi olup, özelligi ortadaki borunun, en içteki borunun agizlanmasi öncesinde, orta boru içinde nozul tarzi öncesi incelmesi ile karakterize edilmesidir. 5. Oksijenin, HTW Yöntemi'ne göre çalistirilan bir dolasimli akiskan yatakli gazifikasyon reaktörü içine, istem 1 ila 4”ten birine karsilik gelen bir oksijen mizragi vasitasiyla geçirilmesine yönelik yöntem olup, özelligi 0 yas gaz, en distaki boru içine, dolasimli akiskan yatakli gazifikasyon reaktöründeki basincin üstünde bir basinç ile beslenir, o oksijen, en içteki boru içine, maksimum 180°C'Iik bir sicaklik ile ve dolasimli akiskan yatakli gazifikasyon reaktörü içindeki basincin üstündeki bir basinç ile geçirilir, 0 yas gaz, en distaki borunun agzindan manto akisi seklinde, orta borunun agzi çevresinde ve disari çikan serbest jet olarak çikar, disari çikan yas gazin akis hizi, en içteki borudan disari çikan gazinkinden daha büyük olarak ayarlanir. istem 5'e göre yöntem olup, özelligi o ortadaki borunun kuru gaz ile yüklendirilmesidir, o oksijenin ve kuru gazin, orta borunun agizlanmasi öncesinde karistirilmasidir, . yas gazin, en distaki borunun agzindan manto akisi seklinde, orta borunun agzi çevresinde ve disari çikan serbest jet olarak çikmasidir, disari çikan yas gazin akis hizi, disari çikan, kuru gazdan ve oksijenden olusan karisiminkinden daha büyük olarak ayarlanir. Istemler 5 veya 6'dan herhangi birine göre yöntem olup, özelligi yas gazin asiri sicak su buhari olmasi ile karakterize edilmesidir. Istemler 5 veya Bidan herhangi birine göre yöntem olup, özelligi yas gazin, karbondioksitten ve asiri sicak su buharindan olusan bir karisim olmasi ile karakterize edilmesidir. Istem 6'ya göre yöntem olup, özelligi kuru gazin karbondioksit olmasi ile karakterize edilmesidir. istem 6'ya göre yöntem olup, özelligi kuru gazin azot olmasi ile karakterize edilmesidir. Istem @ya göre yöntem olup, özelligi kuru gazin, karbondioksitten ve havadan olusan bir karisim olmasi ile karakterize edilmesidir. 12. Istem 6'ya göre yöntem olup, özelligi kuru gazin, karbondioksitten ve azottan olusan bir karisim olmasi ile karakterize edilmesidir. 13. istem S'e göre yöntem olup, özelligi kuru gazin, çalistirma halinde hareket ettirilmemesi ile karakterize edilmemesidir.REQUIREMENTS 1. An oxygen lance with at least three pipes which are coaxially interconnected and limited to at least an annular space in all cases, characterized in that the outermost pipe is arranged for passing extremely hot steam through it and has a steam supply point, the middle pipe is annular space. is the arrangement in the form of a cavity, the innermost tube is arranged for the passage of hot oxygen through it at a maximum of 180°C and has an oxygen supply point, it is the arrangement of a thermal probe in the innermost tube, reaching just before the mouth of the innermost tube, the innermost It is the thinning of the pipe before its mouth, before the nozzle style, the innermost pipe inlet into the middle pipe, and the mouth of the middle pipe protruding further than the mouth of the outermost pipe. It is an oxygen lance according to claim 1, characterized in that the middle tube is clearly arranged on the mouth side of the oxygen lance. 3. An oxygen lance according to claim 1, characterized in that the middle pipe is arranged for passing dry gas through it and has a gas transition point. It is an oxygen lance according to claim 1, characterized in that the middle tube is pre-nozzled in the middle tube before the innermost tube is mouthed. 5. A method for passing oxygen into a circulating fluidized bed gasification reactor operated according to the HTW Method by means of an oxygen lance corresponding to one of claims 1 to 4, characterized by 0 wet gas, into the outermost pipe, circulating fluidized bed gasification it is fed with a pressure above the pressure in the reactor, that oxygen is passed into the innermost pipe with a maximum temperature of 180°C and a pressure above the pressure inside the circulating fluidized bed gasification reactor, 0 wet gas as the mantle flow from the mouth of the outermost pipe , exits around the mouth of the middle pipe and as a free jet coming out, the flow rate of the outgoing oil gas is set to be greater than that of the gas coming out of the innermost pipe. The method according to claim 5, its feature is that the middle pipe is loaded with dry gas, that oxygen and dry gas are mixed before the middle pipe is opened, . The wet gas comes out from the mouth of the outermost pipe in the form of a mantle flow, around the mouth of the middle pipe and as a free jet that comes out, the flow rate of the outgoing oil is set to be greater than that of the outgoing mixture of dry gas and oxygen. The method according to any of the claims 5 or 6, characterized in that the wet gas is extremely hot water vapor. The method according to any of claims 5 or Bidan, characterized in that the wet gas is a mixture of carbon dioxide and extremely hot water vapor. The method according to claim 6, characterized in that the dry gas is carbon dioxide. The method according to claim 6, characterized in that the dry gas is nitrogen. It is the method according to the request, and its feature is that the dry gas is a mixture consisting of carbon dioxide and air. 12. The method according to claim 6, characterized in that the dry gas is a mixture consisting of carbon dioxide and nitrogen. 13. Method according to claim S, characterized in that the dry gas is not moved during operation.
TR2018/09373T 2012-08-14 2013-08-08 Apparatus and method for injecting oxygen into a pressure loaded circulating fluidized bed gasification reactor. TR201809373T4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012016086.0A DE102012016086A1 (en) 2012-08-14 2012-08-14 Apparatus and method for injecting oxygen into a pressure-charged fluidized bed gasification

Publications (1)

Publication Number Publication Date
TR201809373T4 true TR201809373T4 (en) 2018-07-23

Family

ID=49036545

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2018/09373T TR201809373T4 (en) 2012-08-14 2013-08-08 Apparatus and method for injecting oxygen into a pressure loaded circulating fluidized bed gasification reactor.

Country Status (16)

Country Link
US (1) US9862900B2 (en)
EP (1) EP2885381B1 (en)
KR (1) KR102122621B1 (en)
CN (1) CN104583376B (en)
AU (1) AU2013304361A1 (en)
BR (1) BR112015003048B1 (en)
CA (1) CA2881697C (en)
CL (1) CL2015000330A1 (en)
DE (1) DE102012016086A1 (en)
IN (1) IN2015DN01877A (en)
PL (1) PL2885381T3 (en)
RU (1) RU2635631C2 (en)
TR (1) TR201809373T4 (en)
TW (1) TW201422804A (en)
WO (1) WO2014026748A1 (en)
ZA (1) ZA201501614B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10252270B2 (en) * 2014-09-08 2019-04-09 Arizona Board Of Regents On Behalf Of Arizona State University Nozzle apparatus and methods for use thereof
DE102015011853A1 (en) * 2015-09-10 2017-03-16 Man Truck & Bus Ag Aerosol generator, in particular soot generator
DE102016223318A1 (en) 2016-11-24 2018-05-24 Thyssenkrupp Ag Process and plant for carbon reduction in the bottom product of a fluidized bed gasifier
CN107129833B (en) * 2017-06-23 2024-03-29 航天长征化学工程股份有限公司 Annular pulverized coal cavity
CN109382046B (en) * 2017-08-11 2021-03-09 中国石油天然气股份有限公司 Fixed fluidized bed reactor feeding system
DE102017219780A1 (en) 2017-11-07 2019-05-09 Thyssenkrupp Ag Apparatus and method for HTW gasification of feedstocks with loop arrangement and use
CN112725036A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Mixed material feeding method, powdery material gasification method and gasification furnace
CN112725037A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Gasification furnace and powder material gasification method
EP4026886B1 (en) 2021-01-06 2023-10-11 GIDARA Energy B.V. Process for producing synthesis gas through thermochemical conversion of biomass and waste materials
EP4086328A1 (en) 2021-05-06 2022-11-09 GIDARA Energy B.V. Method and apparatus for industrial production of renewable synthetic fuels

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2340899A (en) * 1939-10-13 1944-02-08 William R Ray Thermocouple structure
US2430887A (en) * 1943-09-25 1947-11-18 Gen Controls Co Thermocouple for pilot burners
GB820820A (en) * 1957-04-27 1959-09-30 Union Carbide Corp Method and apparatus for the heating of industrial furnaces
US3043577A (en) * 1960-10-20 1962-07-10 Walter V Berry Lance with conduits for mixing gases located interiorly
CH429002A (en) 1963-02-24 1967-01-31 Ghelfi Salvatore Burner for the combustion of either one or several injectable fuels
BE758886A (en) * 1969-11-15 1971-04-16 Impianti Spa Soc It PROCESS FOR HEATING METAL PARTS, IN OVENS AND BURNER DEVICE FOR ITS IMPLEMENTATION
US3680785A (en) * 1970-06-29 1972-08-01 Air Prod & Chem Oxy-fuel burner for reducing the level of operating noise
US3730928A (en) * 1971-02-09 1973-05-01 Copolymer Rubber & Chem Corp Method and apparatus for controlling reaction rate
US4014654A (en) * 1972-12-20 1977-03-29 J. M. Huber Corporation Apparatus for producing carbon black
US3982910A (en) * 1974-07-10 1976-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hydrogen-rich gas generator
US4010935A (en) * 1975-12-22 1977-03-08 Alumax Inc. High efficiency aluminum scrap melter and process therefor
CH613761A5 (en) * 1976-04-16 1979-10-15 Colmant Cuvelier
US4249722A (en) * 1979-05-11 1981-02-10 Dravo Corporation Apparatus for the flash oxidation of metal concentrates
US4249907A (en) * 1979-08-23 1981-02-10 Phillips Petroleum Company Temperature control of exothermic reactions
CA1166527A (en) * 1979-09-26 1984-05-01 Shiro Takahashi Method and apparatus for producing multi-component glass fiber preform
US4491456A (en) * 1982-06-29 1985-01-01 Texaco Inc. Partial oxidation process
US4525176A (en) * 1983-08-29 1985-06-25 Texaco Inc. Preheating and deslagging a gasifier
GB8324644D0 (en) * 1983-09-14 1983-10-19 Boc Group Plc Apparatus for burning fuel
ZA848320B (en) 1983-11-05 1985-06-26 Rheinische Braunkohlenw Ag Process and fluidised bed reactor for the gasification of carbonaceous solids
DE3439404C2 (en) 1983-11-05 1986-10-16 Rheinische Braunkohlenwerke AG, 5000 Köln Nozzle for injecting exothermic and endothermic gasification agents into a fluidized bed solid gasifier
EP0202352A1 (en) * 1985-05-22 1986-11-26 C. CONRADTY NÜRNBERG GmbH & Co. KG Plasma torch
JPS63171818A (en) * 1987-01-09 1988-07-15 Nkk Corp Tuyere for oxygen blast furnace
US5281243A (en) * 1989-06-19 1994-01-25 Texaco, Inc. Temperature monitoring burner means and method
US5233156A (en) * 1991-08-28 1993-08-03 Cetac Technologies Inc. High solids content sample torches and method of use
WO1993006251A1 (en) 1991-09-20 1993-04-01 Ausmelt Pty. Ltd. Process for production of iron
DE4140063A1 (en) * 1991-12-05 1993-06-09 Hoechst Ag, 6230 Frankfurt, De BURNER FOR THE PRODUCTION OF SYNTHESIS GAS
US5261602A (en) * 1991-12-23 1993-11-16 Texaco Inc. Partial oxidation process and burner with porous tip
DE4407651C1 (en) 1994-03-08 1995-10-26 Rheinische Braunkohlenw Ag Prodn. of synthesis gas from by-prods., by steam-oxygen@ gasification,
US5714113A (en) * 1994-08-29 1998-02-03 American Combustion, Inc. Apparatus for electric steelmaking
US5611683A (en) * 1995-08-04 1997-03-18 Air Products And Chemicals, Inc. Method and apparatus for reducing NOX production during air-oxygen-fuel combustion
DE19627203C2 (en) * 1996-07-05 2000-11-09 Loesche Gmbh burner
JPH10110926A (en) * 1996-08-14 1998-04-28 Nippon Sanso Kk Combustion type harm removal apparatus
FR2807145B1 (en) 2000-03-30 2002-06-14 Ct D Etude Et De Realisation D DEVICE FOR ARRANGING A CLASSIC THERMOCOUPLE THROUGH THE AIR-GAS SUPPLY DUCT OF A GAS BURNER TO PROVIDE THE FUNCTIONS OF "COLD SECURITY" AND "HOT SECURITY"
DE10119083C1 (en) * 2001-04-19 2002-11-28 Joachim Alfred Wuenning Compact steam reformer
DE10201108A1 (en) 2002-01-15 2003-07-24 Sms Demag Ag Pyrometric metallurgy high-speed oxygen injection process for electric arc furnace involves pulse emission of oxygen-rich gas at supersonic speed
US20030223926A1 (en) * 2002-04-14 2003-12-04 Edlund David J. Steam reforming fuel processor, burner assembly, and methods of operating the same
US6824383B2 (en) * 2002-08-08 2004-11-30 North American Manufacturing Company Diffuse combustion method and apparatus
CN2801784Y (en) 2005-03-08 2006-08-02 北京航天动力研究所 Environmental protection type cleaning gasification device of combustible powder
JP5046887B2 (en) * 2007-11-27 2012-10-10 三菱重工業株式会社 High caking coal burner and gasifier
KR101403883B1 (en) * 2008-01-25 2014-06-17 에스케이이노베이션 주식회사 Steam methane reformer and hydrogen station having it using high performing metal fiber burner
DE102008033096A1 (en) 2008-07-15 2010-02-11 Uhde Gmbh Method and device for igniting and operating burners in the gasification of carbonaceous fuels
US20110151386A1 (en) * 2009-12-23 2011-06-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Particulate Fuel Combustion Process and Furnace
US20120181355A1 (en) * 2011-01-17 2012-07-19 General Electric Company System for flow control in fuel injectors
DE102011011207A1 (en) * 2011-02-14 2012-08-16 Air Liquide Deutschland Gmbh Burner for uniform heating of a long oven

Also Published As

Publication number Publication date
CN104583376B (en) 2017-09-19
CA2881697A1 (en) 2014-02-20
US20150232770A1 (en) 2015-08-20
WO2014026748A1 (en) 2014-02-20
BR112015003048A2 (en) 2018-05-29
RU2015106191A (en) 2016-10-10
TW201422804A (en) 2014-06-16
CA2881697C (en) 2020-04-14
KR102122621B1 (en) 2020-06-29
BR112015003048B1 (en) 2022-03-08
DE102012016086A1 (en) 2014-02-20
RU2635631C2 (en) 2017-11-14
ZA201501614B (en) 2017-11-29
EP2885381B1 (en) 2018-04-04
IN2015DN01877A (en) 2015-08-07
CN104583376A (en) 2015-04-29
EP2885381A1 (en) 2015-06-24
KR20150042276A (en) 2015-04-20
CL2015000330A1 (en) 2015-06-05
US9862900B2 (en) 2018-01-09
PL2885381T3 (en) 2018-10-31
AU2013304361A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
TR201809373T4 (en) Apparatus and method for injecting oxygen into a pressure loaded circulating fluidized bed gasification reactor.
CN106152479A (en) Gas heater
JP2010002079A (en) Boiler and control method of boiler
BR112012017482B1 (en) PROCESS AND BURNER FOR MANUFACTURE OF GAS SYNTHESIS
CN203755418U (en) Human body local cleaning device
US20150353849A1 (en) Gasified-gas generation system
JP5358984B2 (en) Raw material supply equipment for double tower gasifier
JPS5949422A (en) Combustion device and its operating method
JP6060350B2 (en) Gasification system
CN104870895B (en) The method of burning fuel and burner for burning fuel
CA2746615C (en) Device for continuously preheating a mixture of burnable gas, more particularly natural gas and oxygen
US9631809B2 (en) Booster air heater for high moisture fuels
US20170002280A1 (en) Coal slurry preheater and coal gasification system and method using the same
US8607820B2 (en) Device for continuously mixing fed-out natural gas with oxygen to produce a burnable gas for heating the pressurized natural gas before or after the relaxation thereof
CN109852425A (en) Hydronic system in a kind of gasification installation
CN109916083A (en) A kind of high-efficiency gas water heater
KR102367293B1 (en) Burner system
JPS59225218A (en) Detecting device for choking of particle feed pipe
US20240033552A1 (en) Tank for pressurized flammable gas
US275342A (en) James park
Donatini et al. CFD simulation and experimental tests on a natural gas/hydrogen mixture-fired flameless combustor
KR101565065B1 (en) Regenerative oxyfuel combustion system with reformer
SE1550315A1 (en) Supply device for a combustion chamber
PL233821B3 (en) Security buffer for the system of the catalytic utilization of methane contained in mine air
KR20150034008A (en) Gasification apparatus