TR201620378A2 - Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer. - Google Patents

Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer. Download PDF

Info

Publication number
TR201620378A2
TR201620378A2 TR2016/20378A TR201620378A TR201620378A2 TR 201620378 A2 TR201620378 A2 TR 201620378A2 TR 2016/20378 A TR2016/20378 A TR 2016/20378A TR 201620378 A TR201620378 A TR 201620378A TR 201620378 A2 TR201620378 A2 TR 201620378A2
Authority
TR
Turkey
Prior art keywords
semiconductor
source
feature
phase
lithography
Prior art date
Application number
TR2016/20378A
Other languages
Turkish (tr)
Inventor
Demi̇r Abdullah
Original Assignee
Abdullah Demir
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abdullah Demir filed Critical Abdullah Demir
Priority to TR2016/20378A priority Critical patent/TR201620378A2/en
Publication of TR201620378A2 publication Critical patent/TR201620378A2/en
Priority to CN201780081435.5A priority patent/CN110337765A/en
Priority to PCT/TR2017/050728 priority patent/WO2018208274A2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/2209GaInP based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18391Aperiodic structuring to influence the near- or far-field distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials

Abstract

Bu buluş, elektrik ve optik kısıtlamayı aynı anda sağlayan, gömülü yapıların kullanılarak yanal boyutları litografik süreçle belirlenebilen yüzey emisyonlu yarı iletken ışık kaynağı elde edilmesi yöntemi ile ilgilidir.The present invention relates to a method of obtaining a surface emission semiconductor light source whose lateral dimensions can be determined by lithographic process using buried structures simultaneously providing electrical and optical constraint.

Description

TARIFNAME YÜZEY EMISYONLU YARIILETKEN ISIK KAYNAGININ GÖMÜLÜ ELEKTRIK VE OPTIK KISITLAMA TABAKASI ILE ELDE EDILMESI YÖNTEMI Ilgili Teknik Alan: Bu, bulus, elektrik ve optik klsHtlamayl aynll anda, saglayan, gömülü yapülarEn kullanElarak yanal boyutlarü litografik süreçle belirlenebilen yüzey emisyonlu yarE iletken Dsjk kaynagE elde edilmesi yöntemi ile ilgilidir. DESCRIPTION SURFACE EMISSIONED SEMICONDUCTOR LIGHT SOURCE IS EMBEDDED ELECTRIC AND METHOD OF OBTAINING WITH OPTICAL RESTRICTION LAYER Related Technical Field: This invention provides, at the same time, electrical and optical restriction, embedded structuresUsing lateral dimensions by lithographic process semiconductor Dsjk source with detectable surface emission relates to the method.

Teknigin Bilinen Durumu: Ilk olarak. 1917 willnda .Albert Einstein' m_ stimüle lsHmanlm varlHgTnT öne sürülmesiyle ortaya çîkan ve 1960 yÜlTnda Theodore Maiman'Jn optik frekansta lazer hareketini gerçeklestirmesi ve yakut lazerinin varljgjnü kanltlamasjyla oldukça önemli gelismeler kaydeden lazerler modern dünyada gün geçtikçe daha fazla önem kazanmEslardJr. Lazerler, endüstri, otomotiv, mühendislik alanlarH, bilimsel arastlrmalar, haberlesme ve iletisim, tîp ve askeri alanlar gibi daha pek çok alanda sîklîkla kullanElmaktadDr. State of the Art: Firstly. In 1917 .Albert Einstein' m_ stimulated lsHmanlm It emerged with the assertion of varlHgTnT and in 1960 Theodore Maiman's realization of laser movement at optical frequency and very important by proving the existence of the ruby laser lasers, which make progress, are becoming more and more popular in the modern world. does not gain much importance. Lasers, industry, automotive, fields of engineering, scientific research, communication and frequently in many fields such as communication, medicine and military fields. usedActionDr.

Lazerler DsEma yaptjklarj bölgelere göre kenar Jsjmasü yapan ve düsey kovuklu yüzey Isümasü yapan lazerler olmak üzere ikiye ayrllmaktadlrlar. Lasers DsEma make edge Jsjma according to regions and It is divided into two as vertical cavity surface heating lasers. they are leaving.

Temeli 1970'lere dayanan düsey kovuklu yüzey | sHmalll lazer (VCSEL: Vertical Cavity Surface Emitting Laser) tipi yarEiletken lazerler l990'lÜ yEllarda endüstriyel ürün olarak piyasaya çEkmDs olup ilk kullanümlarü bilgi & iletisim alanEnda olmustur.vertical cavity surface based on 1970's | shmall laser (VCSEL: Vertical Cavity Surface Emitting Laser) type semiconductor lasers were introduced as industrial products in the 1990s. It is çEkmDs and its first use was in the information & communication area.

Bunun yanE sEra son yüllarda jest&mimik tanEma ve üç boyutlu tarama yapabilen akUllL sensörler, gözetleme ve gece görüs sistemleri için lazer aydHnlatma, katlhal lazerlerin pompalanmasE, endüstriyel kaülötesi Isütma sistemleri, araçlarda çarpEsmayE önleyici lazer tarama cihazü ve kendi kendini süren sürücüsüz araçlar gibi yeni teknolojik alanlarda da gelismelerini sürdürmektedirler. Besides, in recent years, gesture & mimic recognition and three-dimensional smart sensors that can scan, surveillance and night vision laser lighting for systems pumping, industrial infrared heating systems, collision avoidance laser scanning device in vehicles and its own in new technological areas such as self-driving self-driving vehicles they continue to develop.

Düsey kovuklü yüzey LsLmalU lazerlerin (VCSEL) diger yariiletken Hslk kaynaklarl olan kenar Hslmalllyarliletken lazerler (EEL) ve Dsjk yayan diyotlara (LED) küyasla pek çok avantajE bulunmaktadEr. Bu avantajlardan bazElarj, üretim kolaylDgE, düsük enerji tüketimi, dairesel Jsük çEkÜs3,yüzeyden paralel Usima yapmasJ, UraksamanUn yakUn mesafede olmamasU, yüksek verimli optikr haberlesmeye olanak saglamasl olarak slralanabilir. Yüksek güçlü lazerler açHsHndan kHyaslandlgHnda ise yüksek verimli olmasü, uzun ömürlü olmasE, dar ve stabil spektral dagElDm saglamasj, yüksek cihaz güvenilirligi, yüksek sEcaklEklarda çalüsma olanagü, daha ucuz ve daha kolay paketleme imkânH gibi üstün özelliklere sahiptirler. Vertical cavity surface LsLmalU lasers (VCSEL) Edge thermally conductive lasers (EEL) with heat sources and Many advantages over dsjk emitting diodes (LED) exists. Some of these advantages are Elarj, ease of production, low energy consumption, circular UsimaJ, Divergence not in close distance, high as it enables efficient optical communication. can be ordered. In terms of high-power lasers, kHyaslandlgHnda On the other hand, it is highly efficient, long-lasting, narrow and stable. Provides spectral distribution, high device reliability, high Working in heatsinks, cheaper and easier packaging They have superior features such as possibility.

Günümüzde GaAs tabanli düsey kovuklü yüzey lslmasH yapan lazer (VCSEL) teknolojisi oksitleme yöntemine dayanmaktadjr.Today, GaAs-based vertical cavity surface washing laser (VCSEL) technology is based on the oxidation method.

VCSEL'lerde en temel gereksinim akDmEn ve optik hüzmesinin küçük bir alana veya hacme sEnDrlandDrElmasEdDr. VCSEL'lerde küçük bir alana akümj hapsedebilmek için ilk olarak. proton implantasyon yöntemi uygulanmLstUr. Bu yöntem akLm sLnLrlamasJ saglamaslna ragmen klrHlma indisinde degisiklik yaratmadlgt için optik sDnErlama saglayamamüstîr. Diger bir yöntem olan oksit açJlek tekniginin bulunmasjyla birlikte hem elektriksel hem de optik sjnürlama saglanmEs, oksidin akjm geçisini engellemesi ve optik kDrElma indisinin GaAs/AlAs sisteminden çok daha küçük olmasH saglanmHstlr. The most basic requirement in VCSELs is the small size of the actuation and optical beam. sEnDrlandDrDiamondEdDr to an area or volume. small on VCSELs first to be able to confine the battery to an area. proton implantation method is applied. This method Although it provides it could not provide optical sDing. Another method, oxide With the discovery of the opening technique, both electrical and optical curing is provided, the oxide prevents the flow of current and much smaller than the GaAs/AlAs system of the optical kDrElma index It is provided that it is.

Oksitleme yöntemi için VCSEL tasarlmlnda aktif bölgenin üstündeki bölgede yüksek alüminyüni içerikli ince bir tabaka kullanElmaktadDr. Bu tabakanjn açüga çEkarDlmasD için derinligini geçecek sekilde oksitleme penceresi asündErma islemi yapElmakta bu asamada Esüsal sulu oksitleme islemi yapElarak buhar fDrEnDnIn da oksitlendirilmesi yoluyla aküm ve optik sEnErlamanDn saglandEgü VCSEL açjkljk bölgesi olusturulmaktadür.In the design of the VCSEL for the oxidation method, the active site a thin layer of high alumina content in the region above usedActionDr. To reveal this layer oxidation window abrasion process beyond the depth At this stage, the principal aqueous oxidation process is carried out. current and optics by oxidizing steam fDrEnDnIn A VCSEL vulnerability zone is being created.

Oksidin yalEtkan olmas: akjni geçirmez özellik saglamakta ve kErElma indisinin AlGaAs'dan küçük olmasi sebebiyle de açElek bölgesi optik kllavuzlama saglamaktadlr. Bu sekilde çok küçük bir lazer bölgesinde elektrik ve optik ktlavuzlama yapElabilmekte ancak 5 Inikrondan daha küçük çaplarda üretim verimi ve güvenilirlik sorunlarjndan dolayj VCSEL'lerin üretiminde sjkü bir kontrole ihtiyaç duyulmaktadEr. The oxide being an insulator: it provides waterproofing and Since the index of KerElma is less than AlGaAs, it is also open. region provides optical guidance. This one is very small electrical and optical guidance in a laser zone Can be made, but production in diameters less than 5 Inicrons VCSELs due to efficiency and reliability issues a tight control is needed in its production.

Bu boyutlaan altinda VCSEL çipleri veri iletisimi için avantaj saglasa da üretim ve güvenilirlik sorunlarindan dolayH tercih edilememektedirler. Oksitleme yönteminin limitlerine ulasllmHs olmasü VCSEL çiplerinin daha fazla gelistirilebilmesini sEnErlandDrmakta ve VCSEL optoelektroniginin imkân tanDdEgJ performansa ulasmasUnL engellemektedir. Under these dimensions, VCSEL chips are advantageous for data communication. However, it is preferred due to production and reliability problems. they cannot. Reaching the limits of the oxidation method The fact that VCSEL chips can be developed further synchronizing and enabling VCSEL optoelectronics It prevents it from reaching performance.

Oksit-VCSEL teknigi ile ilgili karSElasDlan sorunlar asagEda yer almaktadEr: o Ölçeklenebilirlik Problemi: Zamanlamaya dayalü olan oksit VCSEL yönteminde Oksitleme hEzD yonga levhasü boyunca farklülasma göstermekte ve asündErülan dEs daireden istenilen çapa gelinceye kadar geçen zamanda bu mesafedeki degiskenlik çapta da degisim yaratmaktadßr. Günümüzde yüksek hEzlD veri iletisiminde kullanDlmakta olan VCSEL yongalarEnDn oksit-açÜklEk çap: 5um ve üzeri boyutlardadEr.Problems encountered with the oxide-VCSEL technique are listed below. receives: o Scalability Problem: Oxide based on timing Oxidation through the hEzD particleboard in the VCSEL method shows differentiation and asündErülan dEs from the circle at this distance until the desired diameter is reached. variability also creates change in scale. Today VCSEL used in high speed data communication The chips are EN oxide-clear diameter: 5um and above.

Bunun nedenlerinden biri çaptaki degisimi istenilen üretim sEnErlarE içinde tutamamaktan kaynaklanmaktadür.One of the reasons for this is the desired production change in diameter. It is due to not being able to keep it in sEnErlarE.

Yongalarln performanslnßn oksit-açßkllk boyutuna bagh olmasHndan ötürü, cihaz boyutunun üretilebilirligi büyük ölçüde önem tasEmakta ve dolayDsEyla bu sekilde büyük degiskenlik gösteren VCSEL çaplarjnün daha da küçültülebilmesi mümkün olamamaktadür. o Isll Direnç Problemi: Lazer ömrü, slcakllkla üssel olarak azalmakta ve düsük DsEl direnç VCSEL'lerin daha düsük sEcaklEklarda çaljsmasjnü ve çok daha uzun ömürlü olmasEnE saglamaktadEr ancak oksidin :sü geçisini engelleyen bir malzeme olmas: cihaan EsDl direncini yükselten sebeplerin basEnda gelmektedir. o Güvenilirlik Problemi: Oksidasyon sürecinde yüksek alüminyum içerikli AlGaAs tabakasE (genellikle AloggGaQßgAS) AlXOy'e dönüsürken yarEiletken kristalinde kusurlarEn olusmasEna yol acmaktadür. Oksit ve yarEiletken yüzeyler arasJnda olusan bu yapilar cihaz basarHslzlHklarHna ve güvenilirligin düsmesine yol açmaktadErlar. Ayrüca oksitlenmenin yüksek sücaklüklarda yapElmasE ve daha sonra oda sjcakljgüna sogutulmasj sErasünda yarEiletkenle arasEndaki Esjl genlesme farkündan dolayD ortaya çEkan gerilme güvenilirligin azalmasüna sebep olan bir diger faktördür. The performance of the chips depends on the oxide-opening size. The reproducibility of the device size is large due to the it is of great importance and therefore it is of great importance in this way. further the varying VCSEL diameters downsizing is not possible. o Thermal Resistance Problem: Laser lifetime exponentially with temperature decreases, and the low Dsel resistance VCSELs It does not work in heat and has a much longer life. but it is a substance that prevents the passage of the oxide: it is material: cihaan is one of the reasons that increase the resistance of EsDl. comes in bass. o Reliability Problem: High in the oxidation process aluminum-containing AlGaAs layerE (usually AloggGaQßgAS) in semiconductor crystal while transforming to AlXOy Most of the defects lead to the occurrence. Oxide and semiconductor These structures formed between the surfaces success, leading to laziness and loss of credibility they are opening. In addition, oxidation at high temperatures make diamond and then cool down to room temperature Esjl expansion difference between the semiconductor and The resulting stress causes a decrease in reliability. is another factor.

Oksit VCSEL yönteminin dTSÜnda kullanÜlan diger bir yaklasrm ise litografik tabanlü iki adümda büyütmeye dayanan VCSEL üretme yöntemleridir. Bu yöntemler ikinci adDmda yüksek enerji bandü ve düsük kjrülma indeksine sahip yapElarIn büyütülmesiyle dEs bölgenin elektriksel ve optik sHnkrlandWrma saglayan malzemelerden olusmasÜ prensibine dayanmaktadrr. Ancak bu yaklasFmTn da kalÜn aSHndHrma, AlGaAs malzemelerinin hava ile temasü sonucu oksitlenmesi ve küçük boyutlarda ölçeklenememesi gibi pek çok olumsuz yönü bulunmaktadjr. Another approach used in the dTSÜ of the oxide VCSEL method is VCSEL generation based on lithographic two-step magnification are methods. In the second step of these methods, high energy band and dEs by enlarging structures with a low fracture index providing electrical and optical synchronization of the region It is based on the principle that it consists of materials. However, this Approx.FmTn thick SHndHmma, AlGaAs materials with air It oxidizes as a result of contact and cannot be scaled in small sizes. There are many negative aspects such as

US6534331 sayjlü patent basvurusu gelistirilmis akDm slnlrlandHrmasH ile yüzey emisyonlu yarl iletken lazer elde etme yöntemi ile ilgilidir. Söz konusu bulus konusu Hslk yayHmlayan cihazlarEn yapoEnda kullanElabilecek bir akJm sEnJrlama elemanEdEr. Aküm. sEnDrlayDcj eleman, bir` üst tabaka ve bir açjklük tanümlayDcE tabaka içermektedir. Üst tabaka, Jsjga karsE geçirgen olan birinci iletkenlik tipinde bir üst yarE iletken malzeme içermektedir. SHnlrlama bölgesi açHkllk bölgesini çevrelemekte ve akjm akEsDna karsD yüksek direnç saglamak için katkülanmüs malzemeyi içermektedir. Bulusun bir düzenlemesinde ise sjnjrlayjcü bölge, ikinci iletkenlik tipinde yarD iletken bir malzeme içermektedir. Patent application numbered US6534331 developed current Obtaining surface emission semiconductor laser with slnlrlandHrmasH relates to method. The subject of the invention in question is the publisher of public health devicesA current controller that can be used in most construction elementEd. my current. The sEnDrlayDcj element consists of a `superlayer and a The gap defineDcE layer contains. Upper layer, Jsjga karsE an upper semiconductor of the first conduction type, which is permeable contains material. Opening zone surrounding and to provide high resistance against flowing water. contains doped material. In one embodiment of the invention whereas the sjnjrlayjc region is semiconductor in the second conductivity type. contains a material.

EP1568112 sayLlJ patent basvurusu yüzey emisyonlu yari iletken lazerde gömülü bir tünel kavsagl üretilmesi yöntemi ile ilgilidir. Bulus,yüzey emisyonlu yarD iletken lazerde içerisinde bir n katleD yar: iletken tabaka ve en az bir p katkjlE yarEiletken tabaka ile çevrelenen bir aktif bölgeye ve aktif bölgenin p katkLlL bölgesindeki ikinci n katleU yarL iletken tabaka üzerinde slnHrlama yapan bir tünel kavsagHna sahip gömülü bir tünel kavsaglnHn üretilmesine yönelik olup yöntemin ilk adjmünda asündjrma islemi yapjlmakta, ikinci adEmJnda ise oyulan bölge tünel kavsagj üzerinde sEnDrlama yapan yarDiletken tabakalarün en az birinden kütle tasünmasü yoluyla uygun bir atmosfer içerisinde kapatHlana kadar lsHtllmaktadHr. EP1568112 numberLlJ patent application surface emissive semiconductor by the method of producing an embedded tunnel junction in a laser is relevant. The invention is in the semiconductor laser with surface emission. an n-killed half: conductive layer and at least one p-contribution an active region surrounded by a semiconductor layer and an active the second n-fold U yarL conductor in the p-contribution region of the region buried with a tunnel junction that slants over the layer for the production of a tunnel junction, the first of the method In the second step, the etching process is carried out, and in the second step, the carved zone tunnel junction by mass transfer from at least one of the layers lsHtllmakdHr until it is closed in the atmosphere.

US8774246 sayHll patent basvurusuna ise litogafik tabanli difüzyon VCSEL yöntemi konu edilmistir. Bu bulusta aktif bölge kovugunun üzerindeki bölgede sErasjyla p- katleE/yalEtkan/yüksek-p-katkülj tabakalar büyütülmekte elektriksel ve optik kjlavuz bölgesi standart UV litografi ve asindUrma süreçleriyle tanUmlanmaktadJr. Düz tepe aslndHrmasHndan sonra yonga ikinci büyütme adlmH için reaktöre yüklenmekte, tepe bölgesinde kullanElan yüksek difüzyon katsayElE katkE malzemesi sayesinde reaktör içi yüksek sEcaklEklara çükjlarak katkD maddesinin VCSEL içine dogru yayElmasE saglanmaktadür. Daha sonra üst ayna katmalar] büyütülmektedir. Tepe bölgesindeki yüksek-p katkUsUnLn difüzyonu ile katklslz bölge de katklll hale getirilerek. tepe altinda akJmDn geçecegi kanal olusturulmaktadEr. Tepe djsjndaki vadi bölgesinde ise katkjsjz tabaka Fermi-seviyesi igneleme etkisinin de yardjmüyla akEmDn geçisini engellemekte bu sayede tepe ve vadi bölgeleri arasünda gerilini farkü yaratülarak akEm tepe bölgesine sjnjrlandjrjlmaktadjr. Tepe bölgesinin uzun dalgaboylu çEnlamalara sahip bölge olmasEndan dolayj yüksek etkin kjrjlma indisiyle de optik külavuzlama saglanmaktadEr. The patent application numbered US8774246 is based on lithographical diffusion VCSEL method is discussed. active site in this invention sErasjyla p- scaling/inflammatory/high-p-catalyzed layers are enlarged electrical and optical guidance zone standard UV lithography and It is defined by the etching processes. flat hill After the original start, the chip is sent to the reactor for the second amplification. high diffusion, used in the peak region Thanks to the coefficient of additive material, the inside of the reactor is high. Flowing into the VCSEL of the additive springDiamonds are provided. Later top mirror overlays] is enlarged. Diffusion of high-p contributionUnLn in the peak region by making the doped region also doped with. under the hill The channel through which the current will pass is being created. the valley on the hill djsj In the region of the fermi-level pinning effect of the katkjsjz layer With its help, it prevents the passage of AkEmD, so that the hill and AkEm Tepe by creating a tension difference between valley regions sjnjrlandjrjlmdedjr to the region. The long wavelength of the peak region High effective breaking due to the presence of the region with the inclusions With the index, optical guidance is provided.

Bu tip VCSEL'ler oksit-VCSEL teknolojisi ile karsUlastUrLldUgLnda birçok avantaja sahiptir ancak bu yöntemin de tasarlm zorluklam ve performans slnlrlayldl yanlarl mevcuttur. Yüksek katkE seviyeleri gerektirmesi ve bu katkE maddesinin VCSEL'in iç bölgelerine DsEl islemle yayülmasü sonucu yüksek seviyedeki katkD optik emilim kaprlarDna sebep olmaktadtr. Ayrtca difüzyonun yatay yönde de ilerlemesi VCSEL'in etkin olarak mikron altH boyutlara küçültülebilmesine de engel olabilecek niteliktedir. DolaylsHyla litografik olarak mikrondan küçük boyutlara inmek mümkün olsa da difüzyonun yarattJgD optik kayEplar ve yanal genisleme bunu zorlastErmaktadDr. AyrEca bu yöntem VCSEL tabanlE nanolazer dizinleri yapmaya da elverisli degildir. Bu sebeple difüzyonlu VCSEL yöntemine alternatif ve bu problemlere çözüm getirecek bir yönteme ihtiyaç duyulmustur. These types of VCSELs are equipped with oxide-VCSEL technology. KarsUlastUrLldUgLnda has many advantages, but this method well-designed difficulties and performance limitations available. It requires high additive levels and this additive As a result of the diffusion of the substance into the inner regions of the VCSEL by Dsel process high levels of additives cause optical absorption caps will be In addition, the diffusion progresses in the horizontal direction, making VCSEL It also prevents it from being able to be effectively reduced to micron altH sizes. is possible. Therefore, lithographically from micro Although it is possible to go down to small sizes, diffusion creates losses and lateral expansion complicate this. Apart from this The method is also suitable for making VCSEL-based nanolaser arrays. is not. For this reason, an alternative to the diffusion VCSEL method and this A method was needed to solve the problems.

Bu bulus yukarEda bahsedilen problemlere çözüm saglayan yarE iletken Dsjk kaynagEnEn elektrik ve optik kjsütlama ile elde edilmesini saglayan yeni bir yöntem ile ilgilidir. This invention is a tool that provides solutions to the above-mentioned problems. Conductive Dsjk welding is obtained by electrical and optical heating. It is about a new method that enables

Bulusun Amacî: Bulusun amact hem elektriksel hem de optik kHsltlamayH ayni anda saglayarak yüzey emisyonlu bir EsEk kaynagj veya lazer elde edilmesini saglamastEr. Purpose of the Invention: The aim of the invention is to reduce both electrical and optical reduction at the same time. obtaining a surface-emission EEK source or laser by providing will not ensure that

Bulusun diger amacj, oksitlenme problemini ortadan kaldjrarak litografik VCSEL yöntemi kullanElmasE sayesinde yüksek sElekta ve dolayüsjyla yüksek güçlü VCSEL dizinleri üretimine olanak saglamasTdÜr.Another aim of the invention is to eliminate the oxidation problem. use the lithographic VCSEL method, high selection thanks to ElmasE and thereby enabling the production of high-power VCSEL arrays. it provides.

Bulusun bir diger amacü kullanülan. yöntemin oksitsiz olmasE sayesinde DsEl iletkenligi yüksek yapElarJn kullanElmasEna imkân saglamasEdDr. Another object of the invention is used. if the method is oxide-free Thanks to this, it is possible to use the structures with high DEL conductivity. providingEdDr.

Bulusun bir baska amacU bireysel ve dizin yapUlaanJn boyutlaanUn ve mesafelerinin mikron alti hassasiyetle kontrol edilebilir olmasEdEr. Another purpose of the invention is to make individual and directory Control of dimensions and distances with submicron precision would not be feasible.

Bulusun bir baska amacü ise nanolazer (mikron-altj boyutlarda VCSEL) ve dizinlerinin üretimine olanak saglamasEdDr. Another object of the invention is nanolaser (submicron-sub-micron sizes). VCSEL) and its directories.

Sekillerin AçEklamasD: Sekil 1. Düsey Kovuklu Yüzey ISÜmalT Lazer (VCSEL) YapîsTnÜn Görünüsü Sekil 2. Düsey Kovuklu Yüzey IsjmalE Lazer (VCSEL) YapDsEnEn Iki Boyutlu Dizin Halinde OlusturulmasUnLn Yan Kesit Görünüsü Sekil 3. Düsey Kovuklu Yüzey IsjmalE Lazer (VCSEL) YapDsEnEn Iki Boyutlu Dizin Halinde OlusturulmasDnEn Üstten Görünüsü Sekil 4. Düsey Kovuklu Yüzey IsTmalFl Lazer (VCSEL) Üretim Sürecinin Ilk Büyütme AdDmE Görünüsü Sekil 5. Düsey Kovuklu Yüzey IsümalE Lazer (VCSEL) Üretiminin Litografi ve PSCB tabakasH AsHndlrma Süreci Görünüsü Sekil 6. Düsey Kovuklu Yüzey IsJmalU Lazer (VCSEL) Üretim Sürecinin Ikinci Büyütme Adjmü Görünüsü Sekil 7.Düsey Kovuklu Yüzey IsÜmalF Lazer (VCSEL) Fabrikasyon Sonucu Görünüsü Sekil 8. Etkin kDrElma indisinin PSCB tabakasj kaljnljgjyla ayarlanabilirligini gösteren hesaplama sonuçlarl ReferanslarEn AçEklamasE: 101.Faz degistiren akjm engelleyici tabaka 102. Açjklük 103. Üst Kontak Metal 104. Üst Ayna Tabakaa 105. Aktif Bölge 106. Alt Ayna TabakasE 107. Alttas 108. Alt Kontak Metal Bulusun Detaylm AçTklamasÜ: Bu bulus, elektrik ve optik kJsDtlamayE aynü anda saglayan, gömülü yapülarEn kullanElarak yanal boyutlarü litografik süreçle belirlenebilen yüzey emisyonlu yarE iletken Dsjk kaynagE elde edilmesi yöntemi ile ilgilidir. Explanation of FiguresD: Figure 1. Vertical Grooved Surface ISUmalT Laser (VCSEL) Adhesive appearance Figure 2. Two Vertical Vacuum Surface Burning Laser (VCSEL) Builds Side Section View of Uncreated Directory with Dimensions Figure 3. Two Vertical Burrow Surface Burning Laser (VCSEL) Builds Top View of Being Created as a Dimensional Directory Figure 4. Vertical Vacuum Surface Treatment Laser (VCSEL) Production First Magnification AdDmE View of the Process Figure 5. Vertical Burrow Surface Insulating Laser (VCSEL) Production Appearance of Lithography and PSCB Layer Ashing Process Figure 6. Vertical Vacuum Surface Treated Laser (VCSEL) Production Second Magnification Adjmu View of the Process Figure 7. Vertical Vacuum Surface Thermal Laser (VCSEL) Fabrication Result View Figure 8. With the thickness of the PSCB layer of the effective reduction index calculation results showing the adjustability ReferencesThe Most OpenAddition: 101. Phase-changing flow barrier layer 102. Hunger 103. Top Contact Metal 104. Top Mirror Layer 105. Active Zone 106. Bottom Mirror Layer 107. Bottom 108. Lower Contact Metal Detailed Description of the Invention: This invention provides electrical and optical restriction at the same time, embedded structuresUsing lateral dimensions by lithographic process semiconductor Dsjk source with detectable surface emission relates to the method.

Sekil 1 ile gösterilen VCSEL yapjsj faz degistiren akjm engelleyici tabakaw (, optik kip ve aka hapsetme açHklîgHnF (102), üst kontak metali (103) üst ayna tabakalarDnE (104), aktif bölgeyi (105), alt ayna tabakalarEnj (106), alttasE (107), alt kontak metali (108) ve içermektedir. Phase-changing current with VCSEL structure shown in Figure 1 barrier layerw (, optical mode and aka confinement openHklîgHnF (102), upper contact metal (103) upper mirror layersDnE (104), active site (105), sub-mirror layersInj (106), bottom 107, bottom contact metal (108) and.

Aktif bölge (105), alt ayna tabakasEyla (106) ve üst ayna tabakaslyla (104) belirlenmis düsey bir kovuk içerisinde yer almaktadlr. Düsey kovuk, optik kip ve aktm napsetme aç)kl|g)n)n (102) bulundugu iç bölgeyi ve faz degistiren aklm engelleyici tabakayj ( içeren akEmEn engellendigi djs bölgeyi içermektedir. Faz degistiren akEm engelleyici tabakayj ( içeren akDmEn engellendigi düs bölge, aktif bölgenin (105) dHslnda olacak sekilde, üst ayna tabakasjnün (104) veya alt ayna tabakasEnEn (106) içerisine konumlandDrElabilmektedir. Faz degistiren akEm engelleyici tabakanjn (101) asündjrülmasüyla bu bölgede optik kip ve akJm hapsetme açlk1Hgl (102) olusturulmaktadHr. Active region (105), lower mirror layer Eyla (106) and upper mirror It is located in a vertical cavity defined by layer (104). they are receiving Vertical cavity, optical mode and flow napping open)kl|g)n)n (102) and phase-changing current blocker akEmEn blocked djs includes the region. Phase changing current blocking layer (containing the lower region where the flow is blocked, the upper mirror, dHH of the active zone (105) into layer (104) or sub-mirror layer (106) can be positioned. Phase-changing current blocker The optical mode and current flow in this region by the suspension of the layer (101). incarceration Açlk1Hgl (102) is created.

Faz degistiren akUm engelleyici tabaka (, yüksek aka engelleme gücüne sahip olmasH için katkHslz veya n- katleE silisyum, selenyum veya tellür ile katkülanarak büyütülmektedir. Phase changing current barrier layer (, additives or n- katleE by doping with silicon, selenium or tellurium is enlarged.

Bulus konusu VCSEL üretim süreci birinci büyütme, litografi süreci ve ikinci büyütme olmak üzere üç temel asamadan olusmaktadÜr. Invention subject VCSEL manufacturing process first magnification, lithography It consists of three basic stages, namely the process of growth and the second augmentation. is formed.

Sekil 4 ile gösterilen birinci büyütme adrmrnda n-katkîlî alt- ayna tabakalar: (106), aktif bölge (105) ve bunun üzerinde de faz degistiren akjm engelleyici tabakanün (101) da içinde bulundugu katmanlar büyütülmektedir. Litografi isleminden sonra ikinci büyütme adJmJnda yapEnJn üst ayna tabakalarj (104) büyütülerek büyütme islemi tamamlanmaktadlr. Üst ayna tabakalarl arasü tabaka çifti içermektedir. Bu alt ayna tabakasE (106) için Bu çiftler' GaAs/AlGaAs, GaAs/AlAs veya AlGaAs/AlAs tabakalaründan olusmaktadür. Üst ayna tabakasjnjn (104) olusturulmasl için dielektrik tabaka çiftleri de kullanrlabilmektedir. Birinci büyütme adTmT n-katkÜlF GaAs alttaslar (107) üzerinde gerçeklestirilmektedir. Bunun dEsJnda kullanElabilecek diger alttaslar (107) veya epikristal malzemeler InP, GaN, Si, Ge, InAs, GaP veya safir de olabilmektedir. In the first magnification step shown in Figure 4, n-additive sub- mirror layers: (106), active site (105) and above it inside the phase change flow barrier layer (101) layers are enlarged. After lithography Top mirror layers made in the second step of magnification (104) enlargement process is completed. upper mirror layers contains interlayer pairs. For this lower mirror layer (106) These pairs are GaAs/AlGaAs, GaAs/AlAs or AlGaAs/AlAs consists of layers. Top mirror layer (104) dielectric layer pairs are also used to form can be used. First magnification adTmT n-additive GaAs It is carried out on the substrates (107). Besides that Other available substrates (107) or epicrystalline materials InP, GaN, Si, Ge, InAs, GaP or sapphire can happen.

Alt ayna tabakalarjnjn (106) ardEndan aktif bölge (105) büyütülmektedir. Aktif bölge (105) genel olarak InGaAs kuantum kuyularlndan olusmaktadHr. Aktif bölgenin (105) olusumunda malzemeler içeren kuantum kuyularE, noktalarD veya kuantum telleri kullanjlabilmektedir. Aktif bölgeye (105) pozitif ve negatif yuklu tasjyjcülarün enjekte edilebilmesi için Sekil 2'de görülen aktif bölgenin (105) asaglsHnda kalan bölge n-katk1D iken aktif' bölgenin (105) yukarHs)ndau kalana bölge p-katkll büyütülmektedir. Aktif bölgenin (105) yukarEsEndaki üst ayna tabakalarDnEn (104) p-katkElD olmasEnDn aksine, faz degistiren akjm.engelleyici tabaka (, tasjyjcüdan yoksun bEralemasD veya ters besleme altEnda kalmasE için katküsjz veya üst ayna tabakalarHna (104) karsl) tipte yani n-tipte katkÜlanmaktadÜr. Bu amaçla faz degistiren akTm. engelleyici tabaka ( akDmE engelleyebilmesi için katkEst veya n-katkElD büyütülmektedir. Eger faz degistiren akDm engelleyici tabakanün ( aküm engelleme özelligi n-tipi bölgede kullanülmak isteniyorsa bu durumda da katkHslz veya p-katkll l olarak büyütülebilmektedir. Faz degistiren akFm engelleyici tabaka ( aktif bölge (105) ile üst ayna tabakalar: arasEndaki bölgede veya üst ayna tabakalarünjn (104) içerisinde yer almaktadEr. Aktif bölgenin (105) üzerinde optik kip ve elektrik-kEsJtlama bölgesinin bulundugu iç açDklEk (102) ve faz degistiren akjm engelleyici tabaka (0 içeren dHs bölge litografi islemi ile olusturulmaktadrr. Bu yüzden iç açÜlegÜn (102) ve düs bölgenin olusturulabilmesi için gerekli olan tabakalar (faz degistiren akDm engelleyici tabaka (101) ve etrafündaki katmanlar) asEndDrma islemi sonrasE havaya Heruz kaldüklaründa oksitlenmemeleri için tercihen alüminyum içermeyen malzemelerden olusmaktad1rlar (GaAs, InGaP, InGaAs, InGaAsP). Bu sekilde büyütme isleminin ilk adEmE Sekil 4'te görüldügü gibi sonlandjrülmaktadjr. Ilk büyütme adDmD sonrasü litografi sürecine geçilmektedir.Sub-mirror layers (106) followed by active region (105) is enlarged. The active site (105) is generally InGaAs quantum consists of wells. In the formation of the active zone (105) quantum wells containing materialsE, pointsD or quantum wires can be used. positive to the active site (105) and Figure 2 for injecting negatively charged handlers. The region remaining downstream of the active region (105) seen is n-katk1D while the region β-contributed to the remainder of the 'active' region (105) upstream is enlarged. Upper mirror upstream of active region (105) In contrast to the absence of p-added layers, the phase changer (104) akjm.blocking layer (, lacks tasjyjcu additives or the upper mirror layers are of the Hna (104) opposite) type, that is, of the n-type is contributed. For this purpose, phase-changing current. inhibitory layer ( katkEst to prevent akDmE or n-katkElD is magnified. If the phase-changing current barrier layer ( current blocking If the feature is desired to be used in the n-type region, it can also be used in this case. It can be grown as katkHslz or p-katkll l. Phase AkFm blocking layer ( active in the region between the region (105) and the upper mirror layers: It is located within the mirror layers (104). Active Optical mode and electrical-cutting over region 105 interior opening (102) and phase changing flow dHs zone containing barrier layer (0 It is created by the lithography process. That's why open upUlegUn (102) and necessary for the formation of the low region layers (phase change flow barrier layer (101) and layers around it) preferably aluminum-free so that they do not oxidize when they are composed of materials (GaAs, InGaP, InGaAs, InGaAsP). This The first step of the enlargement process as seen in Figure 4 being terminated. First magnification adDmD post lithography process is passed.

Sekil 5 ile görülen litografik-VCSEL yapüsj, birinci büyütme adjmü tamamlanan yonga levhasE üzerine litografi ve asjndjrma yöntemleri kullanjlarak aktarülmaktadjr. Litografik-VCSEL yapilarj standart UV litografi, elektron EsEnD (e-beam) litografisi veya nano-baski (nano-imprint) litografi ile olusturulabilmektedir. Bu yapilartn boyutlar len dar kenarl veya çapEÂ 10 nm kadar küçük olacak sekilde tanjmlanabilmektedir.The lithographic-VCSEL structure seen in Figure 5, first magnification lithography and asjndjrma on the completed particle board transferred using methods. Lithographic-VCSEL structures standard UV lithography, electron EsEnD (e-beam) lithography or nano-imprint lithography can be created. The dimensions of these structures are measured with narrow sides or diameterEÂ can be defined as as small as 10 nm.

SonrasEnda seçici Dslak asjndjrma veya kuru asEndErma yöntemleri kullanElarak açükljk (102) olusturulmakta ve asjndErma isleminin tamamlanmasEnEn ardEndan düs bölgede faz degistiren akDm engelleyici tabaka (101) yer alHrken iç bölgede faz degistiren akîm engelleyici tabaka (101) kaldTrÜlmTs olmaktadTr. Bu sayede akjm açükljk (102) bölgesinden geçebilirken düs bölgeden geçememektedir ve bu sayede elektriksel kEsjtlama saglanmaktadjr. Afterwards selective wet hanging or dry hanging methods Using the opening (102) is being created and the installation process is phase-changing current in the lower region after incomplete phase changing in the inner region while the barrier layer (101) is in place. the current blocking layer (101) is removed. In this way While the flow can pass through the gap (102) region, it can pass through the low region. cannot pass through and thus electrical interruption is provided.

Olusturulan bu açlkltk (102), elektriksel klsttlama özelliginin yanTnda optik kÜsTtlama özelligine de sahiptir. Optik kip için bu açjklükta (102) kElavuzlama veya zjt-kElavuzlama elde edilebilmektediru Bu özellik faz cdegistiren akDHL engelleyici tabaka (101) kalEnlEgEnJn degistirilmesiyle kontrol edilebilmektedir. Örnek hesap sonuçlarT sekil 8'de gösterilmekte olup hesaplarda teknigin bilinen durumunda yer alan G.R. Hadley'in VCSEL'ler üzerine yaptDgE çalEsma kullanElmDstjru]. YapElan bu analizde etkin kjrülma indisinin kovuk çEnlama dalgaboyunda yapülan degisikliklerle kontrol edilebilecegini göstermistir. Yani uzun dalgaboyu çtnlamasHna sahip kovugun daha büyük etkin klrllma indisine sahip oldugu sonucuna varmüstEr. This created opening (102) shows that the electrical restriction property In response, it also has an optical reduction feature. For optical mode In this gap (102), guidance or self-guidance is achieved. This feature is phase changer akDHL blocker control by changing the layer (101) thickness can be achieved. Sample calculation results are shown in Figure 8 and the calculations are in the state of the art, G.R. Hadley's VCSELs Use the work done on itElmDstjru]. YapElan in this analysis The effective refractive index is made at the hollow-cracking wavelength. showed that it can be controlled by changes. So long greater effective clarification of the cavity with wavelength inclusion He concluded that it has the index.

Sekil 8'de görüldügü gibi faz degistiren akjm engelleyici tabakanjnr (101) kalDnlEgD degistirilerek külavuzlamar ve th- kllavuzlama elde edilebilmektedir. Bu hesaplamada örnek olarak GaAs faz degistiren akEm. engelleyici tabaka (101) ve 980nm dalgaboyu temsili olarak kullanülmEstEr. KDlavuzlama ve züt- kElavuzlama davranüslarü kalDnlEkla birlikte periyodik olarak tekrar etmektedir. Bunun sebebi kovuk çünlama dalgaboyunun döngüsel davranHs göstermesidir. Faz degistiren akim engelleyici tabaka (lOl) kallnlHglnln artmaya baslamaslyla ktsa dalgaboyuna dogru kaymakta ve kaybolarak uzun dalgaboyunda ortaya çEkmaktadür. KalDnlEk artEkça kEsa dalgaboylarjna kayarak tekrar kaybolmaktadjr. As seen in Figure 8, a phase-changing flow inhibitor By changing the layer (101) kalDnlEgD, guides and th- guiding can be obtained. For example, in this calculation GaAs phase-changing current. barrier layer (101) and 980nm is not used as a wavelength representation. Guidance and advice As guidance behaviors remain, periodically repeats. This is because the cavity resonance wavelength cyclical behavior. Phase changing current blocker As the layer (101) thickness starts to increase, it changes to short wavelength shifting towards and disappearing into the long wavelength is working. The thicker the longer, the shorter it shifts to wavelengths and repeats is disappearing.

Etkin kHrllma indisinin yukaera bahsedilen bu davrantsl döngüsel olarak. devam. etmektedir ve bu davranTsTn en temel avantajj ise faz degistiren akEm engelleyici tabakanjn (lOl) kalEnlEk seçiminde tasarDm esnekligi tanümastEr. Ince faz degistiren akEm engelleyici tabaka (lOl) akEm engelleme saglayabilmek için üst ayna tabakalarü (104) ile karsj tipte katkHlama gerektirirken (yani üst ayna tabakalarHntn (l04) p- katkHlF olmasT durumunda,ince faz degistiren akÜm engelleyici tabaka (lOl) n-katleanmaktadDr) kalEn faz degistiren akDm engelleyici tabaka (lOl) katkEsEz büyütme ile akjm engellemeyi saglayabilmektedir. Ayrjca kalEn faz degistiren akEm engelleyici tabaka (lOl) açjklük (102) djsjndaki bölgede yüksek kapasitans elde etmek için de kullanHlabilmekte olup bu özellik yüksek m zu VCSEL'ler elde etmek için Önem teskil etmektedir. This behavior, which is mentioned above the effective rooting index, cyclically. continue. and this behavior is the most basic The advantage is that the phase changing current barrier layer (101) It recognizes design flexibility in the choice of thickness. fine phase alternating flow blocking layer (101) flow blocking It is of the opposite type with the upper mirror layers (104) to provide while requiring doping (i.e. the upper mirror layers Hntn (104) p- In case of additive, thin-phase changing current blocker layer (101) n-folded) remaining phase changing current The barrier layer (101) prevents whitening with additive magnification. can provide. In addition, the remaining phase-changing current blocker layer (101) gap (102) high capacitance in the region at djsj It can also be used to achieve high resolution. It is important to obtain VCSELs.

Litografi ve asHndlrma adtmlartndan sonra örnek, ikinci büyütme adlmH için uygun hale gelmektedir. Sample after lithography and hanging steps, second enlargement becomes suitable for adlmH.

Sekil 6 ile gösterilen ikinci büyütme adJmJnda reaktör içi yonga levhasE temizligi sonrasE üst ayna tabakalarü (104) büyütülmektedir (örnegin GaAs/AlGaAs çiftleri). Ikinci büyütme adjmündaki epitaksiyel katmanlarjn tamamünjn p-tipi olmasj için karbon, berilyum veya çinko ile katkllama yalemaktadlr. In-reactor chip in the second magnification step shown in Figure 6 Top mirror layers (104) after plate cleaning is magnified (eg GaAs/AlGaAs pairs). second magnification so that all epitaxial layers in the adjoining region are p-type doping with carbon, beryllium or zinc.

Ikinci büyütme adDmEndan sonra örnek üzerine sekil 7'de gösterildigi gibi standart lazer fabrikasyon islemleri tabi tutularak alt metal kontagEn (108) ve üst metal kontagjn (103) yerlestirilmesiyle üretim süreci tamamlanmaktadjr. After the second enlargement step, on the sample in figure 7 Subject to standard laser fabrication procedures as shown by holding the lower metal contact (108) and the upper metal contact (103) is placed, the production process is completed.

Referanslar Kilavuz/ama Bölgesi b` Zit-kilavuzlama bi bib PSCB Tabakasi Kalinligi (nm) References guide/but region b` Zit-guiding bi bib PSCB Layer Thickness (nm)

Claims (12)

ISTEMLERREQUESTS 1. Bulus yüzey emisyonlu yarü iletken EsEk kaynagü olup özelligi, faz degistiren akim engelleyici tabakayü (, optik kip ve akim hapsetme açlklHglnl (102), üst kontak metali (103), üst ayna tabakalarlml (104), aktif bölgeyi (105), alt ayna tabakalarünE (106), alttasj (107) ve alt kontak metali (108) içermesi ile karakterize edilmesidir.1. The invention is a surface emissive semiconductor EEK source, which features a phase change current barrier layer (, optical mode and current trapping aperture (102), upper contact metal (103), upper mirror layers (104), active region (105), lower It is characterized by that it contains mirror layers (106), substrate (107) and bottom contact metal (108). 2. Bulus Isteni l'e uygun yüzey emisyonlu yari. iletken 11S1k kaynagr olup özelligi, içerdigi faz degistiren akÜm engelleyici tabakanjn (101) katkEst veya n-katkjlü silisyum, selenyum veya tellür ile katkülanarak büyütülmesidir.2. Surface emissive semi according to Claim 1 . The conductor is an 11S1k source, and its feature is that the phase-changing current barrier layer it contains is enlarged (101) by doping with additive or n-doped silicon, selenium or tellurium. 3. Bulus Isteni l'e uygun yüzey emisyonlu yarE iletken Dsük kaynagl olup özelligi, içerdigi üst ayna tabakalarlnHn (104) lO- 20 periyot arasÜ tabaka çifti içermesi ile karakterize edilmesidir.3. The semiconductor with surface emission in accordance with Invention Request 1 is low-source, and its feature is that the upper mirror layers it contains (104) contain layer pairs between 10-20 periods. 4. Bulus Isteni l'e uygun yüzey emisyonlu yarE iletken Dsük kaynagE olup özelligi, içerdigi alt ayna tabakalarEnDn (106) 20- 40 periyot arasH tabaka çifti içermesi ile karakterize edilmesidir.4. It is a low source semiconductor with surface emission according to Invention Demand 1, and its feature is that the sub-mirror layers it contains (106) contain layer pairs between 20 and 40 periods. 5. Bulus Istem l'e uygun yüzey emisyonlu yarE iletken Esjk kaynagE olup özelligi, içerdigi üst ayna tabakalarDnJn (104) ve alt ayna tabakalarjnün (106) GaAs/AlGaAs, GaAs/AlAs veya AlGaAs/AlAs tabaka çiftlerinden olusmasl ile karakterize edilmesidir.5. The invention is a surface emissive semiconductor Ezk source according to Claim 1, characterized in that the upper mirror layers (104) and the lower mirror layers (106) are composed of GaAs/AlGaAs, GaAs/AlAs or AlGaAs/AlAs layer pairs. 6. Bulus Istem. l'e uygun yüzey› emisyönlu yarE iletken Esjk kaynagE olup özelligi, içerdigi aktif bölgenin (105) InGaAs, kuyularjndan, noktalarEndan veya kuantum tellerinden olusmasj ile karakterize edilmesidir.6. Invention Claim. It is an emissive semiconductor Ezk source with an emissive surface according to 1, and its feature is that the active region it contains (105) consists of InGaAs, wells, pointsEndan or quantum wires. 7. Bulus IStGHL 1'e uygun› yüzey› emisyonlu yar: iletken [Jsük kaynag olup özelligi, asHndHrma islemi sonraml dHs bölgenin Olusturulabilmesi için gerekli olan tabakalartn (faz degistiren akjm engelleyici tabaka (101) ve etraflndaki katmanlar) havaya maruz kaldDklarÜnda oksitlenmemeleri için tercihen alüminyum içermeyen malzemelerden olusmasE ile karakterize edilmesidir.7. Surface-emitting semiconductor according to Invention IStGHL 1: Conductive [J is a low source, and its property is preferred to prevent oxidation of the layers (phase-change flow barrier layer (101) and surrounding layers) necessary for the formation of the dHs region after the suspension process. It is characterized by the fact that it consists of materials that do not contain aluminum. 8. Bulus Istem. 1'e uygun yüzey emisyonlu yarl iletken 1 slk kaynagr olup özelligi, leavuzlama ve zTt-krlavuzlama elde edilebilmesi için faz degistiren akDm engelleyici tabakanün (101) kontrol edilebilir kalEnlEga sahip olmasE ile karakterize edilmesidir.8. Invention Claim. Semiconductor 1 is a surface emission semiconductor 1 light weld suitable for 1, and its feature is that it has a controllable thickness of the phase-changed flow barrier layer (101) in order to achieve guiding and zTt-guiding. 9.Bulus, yüzey emisyonlu yarH iletken Hslk kaynagl elde edilmesi yöntemi ile ilgili olup özelligi; SLraszla alt ayna tabakalaanJn (106), aktif bölgenin (105) ve faz degistiren akar engelleyici tabaka (101) içeren katmanlarln büyütüldügü birinci büyütme, o Elektriksel küsjtlamanün ve optik szItlamanDn saglandEgj iç açjkljgjn (102) ve faz degistiren akDm engelleyici tabaka (101) içeren dEs bölgenin olusturuldugu litografi, 0 Üst ayna tabakalarEnDn (104) büyütüldügü ikinci büyütme, 0 Alt metal kontagün (108) ve üst metal kontagEn (103) yerlestirilmesi ile üretim sürecinin tamamlanmasE Islem adlmlarlnH içermesidir.9. The invention is related to the method of obtaining a semi-conductor Hslk source with surface emission, and its feature is; First magnification, in which the layers containing the sub-mirror layers (106), the active region (105) and the phase-changing mite barrier layer (101) are magnified in succession, o Electrical reduction and optical interference are achieved, including the internal aperture (102) and the phase-changing flow barrier layer (101) Lithography in which the dEs region is created, 0 Second magnification where the upper mirror layers (104) are enlarged, 0 Completion of the production process by placing the lower metal contact (108) and the upper metal contact (103). 10. Bulus Istem 9'a uygun yüzey emisyonlu yar: iletken Esjk kaynagE elde edilmesi yöntemi ile ilgili olup özelligi; litografi islem adjmünda standart UV litografisi kullanjlmasj ile karakterize edilmesidir.10. The invention relates to the method of obtaining a surface emissive semiconductor ESH source according to Claim 9, and its characteristic is; It is characterized by the use of standard UV lithography in the lithography process. ll. Bulus Istem 9'a uygun yüzey emisyonlu yart iletken lslk kaynagE elde edilmesi yöntemi ile ilgili olup Özelligi; litografi islem adDmEnda elektron Esjnj litografisi kullanElmasE ile karakterize edilmesidir.ll. The invention relates to the method of obtaining surface emissive semiconductor wet welding according to Claim 9. Its feature is; The lithography process is characterized by the use of electron Esjnj lithography in the process. 12.Bulus Istem. 9'a uygun yüzey emisyonlu yar \ iletken ÄlsHk kaynagr elde edilmesi yöntemi ile ilgili olup Özelligi; litografi islem adDmEnda nano-baskü litografisi kullanjlmasj ile karakterize edilmesidir.12. Invention Claim. It is related to the method of obtaining surface emissive semiconductor ÄlsHk source in accordance with 9. Its feature is; The lithography process is characterized by the use of nano-print lithography.
TR2016/20378A 2016-12-30 2016-12-30 Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer. TR201620378A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TR2016/20378A TR201620378A2 (en) 2016-12-30 2016-12-30 Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer.
CN201780081435.5A CN110337765A (en) 2016-12-30 2017-12-29 Semiconductor light source with extension embeddability autoregistration electricity and optical confinement
PCT/TR2017/050728 WO2018208274A2 (en) 2016-12-30 2017-12-29 Aligned electrical and optical confinement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2016/20378A TR201620378A2 (en) 2016-12-30 2016-12-30 Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer.

Publications (1)

Publication Number Publication Date
TR201620378A2 true TR201620378A2 (en) 2017-05-22

Family

ID=64102803

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2016/20378A TR201620378A2 (en) 2016-12-30 2016-12-30 Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer.

Country Status (3)

Country Link
CN (1) CN110337765A (en)
TR (1) TR201620378A2 (en)
WO (1) WO2018208274A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220126450A (en) * 2021-03-09 2022-09-16 주식회사 레이아이알 Laser device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446752A (en) * 1993-09-21 1995-08-29 Motorola VCSEL with current blocking layer offset
US5903590A (en) * 1996-05-20 1999-05-11 Sandia Corporation Vertical-cavity surface-emitting laser device
US6411638B1 (en) * 1999-08-31 2002-06-25 Honeywell Inc. Coupled cavity anti-guided vertical-cavity surface-emitting laser
US6608849B2 (en) * 2001-06-13 2003-08-19 Wisconsin Alumni Research Foundation Vertical-cavity surface-emitting semiconductor laser arrays
US20050249254A1 (en) * 2004-04-14 2005-11-10 Deppe Dennis G Current-confinement heterostructure for an epitaxial mode-confined vertical cavity surface emitting laser
WO2006024025A2 (en) * 2004-08-25 2006-03-02 Nanosource, Inc. Optical-mode-confined and electrical-current-confined semiconductor light sources utilizing resistive interfacial layers
JP2012502472A (en) * 2008-09-04 2012-01-26 スリーエム イノベイティブ プロパティズ カンパニー Monochromatic light source
JP5434131B2 (en) * 2009-02-24 2014-03-05 富士通株式会社 Multi-wavelength laser device and manufacturing method thereof

Also Published As

Publication number Publication date
CN110337765A (en) 2019-10-15
WO2018208274A3 (en) 2019-01-31
WO2018208274A2 (en) 2018-11-15
WO2018208274A8 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US8080480B2 (en) Method of forming fine patterns and manufacturing semiconductor light emitting device using the same
US7813401B2 (en) Electrically pumped low-threshold ultra-small photonic crystal lasers
US10193303B2 (en) Semiconductor laser diode, method for producing a semiconductor laser diode and semiconductor laser diode arrangement
CN108701967B (en) Laser rod with groove
EP2999062B1 (en) Semiconductor laser device
JP6676578B2 (en) Manufacturing method of semiconductor chip
EP3350892B1 (en) Nanowire laser structure and fabrication method
JPH09186400A (en) Fabrication of surface emission semiconductor laser
CN101160699A (en) High reliability etched-facet photonic devices
US20090304038A1 (en) Semiconductor Laser Device
US20180299253A1 (en) Laser scanning method and apparatus for semiconductor device staircase step width measurement
TR201620378A2 (en) Method of obtaining surface emission semiconductor light source with embedded electrical and optical restriction layer.
US20120300202A1 (en) Autonomous light amplifying device for surface enhanced raman spectroscopy
US20170365981A1 (en) Method of manufacturing semiconductor device, and semiconductor device
US9219180B2 (en) Optoelectronic arrangement provided with a semiconductor nanowire with a longitudinal section that is surrounded by a part of a mirror
US8189635B2 (en) Laser diode having nano patterns and method of fabricating the same
JP6722199B2 (en) Wide-area laser with anti-guide region for high-order transverse mode suppression
US20190067908A1 (en) Vertical cavity surface emitting laser, method for fabricating vertical cavity surface emitting laser
CN102255244B (en) GaN-based laser and method for measuring AlGaN/GaN superlattice resistivity
CN115458400A (en) Method for manufacturing trench in semiconductor substrate and semiconductor device
CN110061416B (en) Non-absorption window of semiconductor laser, preparation method thereof and semiconductor laser
TWI497854B (en) Manufacturing method of oxide vertical cavity vcsel
US20190181616A1 (en) Optical device and method for manufacturing optical device
Steinhauser et al. Investigation of the Defect Distribution of Laser Contact Opening Applied to Poly‐Si/SiNx Stacks
KR100587712B1 (en) Self-aligned ridge waveguide semiconductor laser diode structure