SU925256A3 - Method of operating heat pump apparatus - Google Patents

Method of operating heat pump apparatus Download PDF

Info

Publication number
SU925256A3
SU925256A3 SU802904349A SU2904349A SU925256A3 SU 925256 A3 SU925256 A3 SU 925256A3 SU 802904349 A SU802904349 A SU 802904349A SU 2904349 A SU2904349 A SU 2904349A SU 925256 A3 SU925256 A3 SU 925256A3
Authority
SU
USSR - Soviet Union
Prior art keywords
heat
low
pressure
heat pump
agents
Prior art date
Application number
SU802904349A
Other languages
Russian (ru)
Inventor
Лампинен Маркку
Original Assignee
Валмет Ой (Инофирма)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валмет Ой (Инофирма) filed Critical Валмет Ой (Инофирма)
Application granted granted Critical
Publication of SU925256A3 publication Critical patent/SU925256A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • F26B23/005Heating arrangements using waste heat recovered from dryer exhaust gases using a closed cycle heat pump system ; using a heat pipe system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Solid Materials (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Central Heating Systems (AREA)

Abstract

A heat pump apparatus comprises a plurality of separate heat pump circuits (P) wherein the condensers (L) of the heat pump circuits are connected in series with respect to the mass current being heated (m) and in a manner such that the temperature of the mass current being heated increases while being in heat exchange relationship with the fluid circulating in the condensers of the separate heat pump circuits. Similarly, a mass current (m) may be cooled on passing in heat exchange relationship with the evaporators of the heat pump circuits. The mass currents may be air or liquid. The apparatus may be used for drying timber (Fig. 6). <IMAGE>

Description

1one

Изобретение относитс  к холодиль ной Технике, а точнее к способу работы теплонаносной установки. The invention relates to refrigeration technology, and more specifically to a method for operating a heat transfer unit.

Известны способы работы .теплонасосной установки путем нагрева жидкого g рабочего тела теплоносителем низкого потенциала, отсасывани  образующихс  паров при низком давлении, последующего их сжати  и конденсации при высоком давлении с отводом тепла к тепло- о носителю высокого потенциала 1 .There are known methods for operating a heat pump installation by heating a liquid g working fluid with a low potential coolant, sucking out the resulting vapors at a low pressure, then compressing them and condensing at a high pressure with heat transfer to a high potential heat carrier 1.

Недостатком известных способов  вл етс  их мала  экономичность при больших температурных зонах охлажде- 15 ни  теплоносител  низкого потенциала и зонах нагрева теплоносител  высокого потенциала вследствие сильного возрастани  необратимых тепловых потерь и снижени  из-за этого термо- 20 динамической э(1)фвктивности рабочего цикла установки.A disadvantage of the known methods is their low efficiency at high temperature cooling zones of low potential coolant and heating zones of high potential coolant due to a strong increase in irreversible heat losses and a decrease due to this thermo-dynamic operation cycle of the installation.

Цель изобретени  - повышение экономичности при больших температурных зонах охлаждени  теплоносител  низко- 25The purpose of the invention is to increase the efficiency with high temperature cooling zones of the coolant low.

го потенциала и зонах нагрева теплоносител  высокого потенциала.potential and heating zones of high potential coolant.

Claims (2)

Указанна  цель достигаетс  тем, что в качестве рабочего тела используют от четырех до дес ти различных агентов, нагрев жидкой фазы и конденсацию паров высокого давлени  которых производ т последовательно соответственно теплоносител ми низкого и высокого потенциалов при совершении каждым агентом своего известного теплонасосного цикла с влажным, ходом в процессе всасывани  паров низкого давлени , причем в каждых двух последовательных теплонасосных циклах отношение абсолютных температур кипени  их агентов поддерживают посто нным, а теплоносители низкого и высокого потенциалов перемещают в противотоке по отношению один к другому с одновременным понижением температуры после нагрева жидкой фазы каждого агента и повышением температуры после конденсации паров высокого давлени  этого же агента. На чертеже представлена схема теплонасосной установки, в которой осуществл етс  предлагаемый способ работы. Установка содержит шесть контуров, в которых различные агенты осуществл  ют свои известные теплонасосные циклы В каждом контуре установлены компрессоры 1-6, конденсаторы 7 12, дрос сельные вентили 13 - 18 и испарители 19 т This goal is achieved by using from four to ten different agents as the working fluid, the heating of the liquid phase and the condensation of high-pressure vapors of which are carried out successively according to heat carriers of low and high potentials when each agent performs its well-known heat pump cycle with a wet one. during the absorption of low-pressure vapors, and in every two successive heat pump cycles, the ratio of the absolute boiling points of their agents is kept constant m and coolants low and high potentials are moved in countercurrent with respect to one another with simultaneous lowering of temperature after heating of the liquid phase of each agent and the temperature increase after condensation of high vapor pressure of the same agent. The drawing shows a diagram of a heat pump installation in which the proposed method of operation is carried out. The installation contains six circuits in which various agents carry out their famous heat pump cycles Compressors 1-6, condensers 7-12, throttle valves 13-18 and evaporators 19 tons are installed in each circuit. 2. В испарител х 19, 20, 21, 22, 23 и 2k соответственно расположены тепло обменные поверхности 25, 2б, 27, 28, 29 и 30, а в конденсаторах 7 8, 9, 10, II и 12 соответственно размещены теплообменные поверхности 31, 32, 33 35 и 36. Через испарители по линии 37 последовательно протекает низкопотенциальный теплоноситель, а по линии 38 через конденсаторы также последовательно проходит высокопотенциальный теплоноситель. Оба теплоносител  , движутс  в противотоке по отношению друг к другу. При этом низ-25, копотенциальный теплоноситель охлаждаетс , нагрева  и испар   жидкие фазы агентов в теплообменных поверхност х 25 - 30, а высокопотенциальный теплоноситель нагреваетс , коиден-зо сиру  пары высокого давлени  этих же агентов в теплообменных поверхност х 36-31. В дроссельных вентил х 18 - 13 жидкие фазы этих же агентов снижают свое давление, а образующиес  пары низкого давлени  отсасываютс  при низком давлении и нагнетаютс  до высокого давлени  компрессорами 6 - 1. Таким образом, каждый агент в своем контуре совершает известный теплонасосный Цикл, отбира  тепло от низкопотенциального теплоносител  и передава  его высокопотенциальному теплоносителю, соответственно протесающих по линии 37 через все испарители и по линии 38-через все конденсаторы . В контуре,включающем компрессор 1, конденсатор 7 с теплообменной поверхностью 31 .дроссельный вентиль 13 и испаритель 19 с теплообменной поверхностью 25, циркулирует агент с высокой нормальной температурой кипени , например хладон-11, нормальна  температура кипени  которого составл ет .А в контуре, включающем компрессор 6, конденсатор 12 с теплообменной поверх ностью Зб,дроссельный вентиль 18 ииспа , рит.ель 2k с теплообменной поверхность 9 5б4 30, используетс , например, хладон506 , нормальна  температура кипени  которого составл ет - 12 С. В промежуточных контурах используютс  агенты, нормальные температуры кипени  которых наход тс  между нормальной температурой кипени  хладона-П и нормальной температурой кипени  хладона-50б, причем отношение абсолютных температур кипени  агентов в каждых двух последовательных циклах поддерживают посто нным. Экономическа  эффективность изобретени  выражаетс  в снижении расхода электроэнергии, затрачиваемой на производство тепла. Формула изобретени  Способ работы теплонасосной установки путем нагрева жидкого рабочего тела теплоносителем низкого потенциала , отсасывани  образующихс  паров при низком давлении, последующего их сжати  и конденсации при высоком давлении и отводом тепла к теплоносителю высокого потенциала, отличающийс  тем, что, с целью повышени  экономичности при больших температурных зонах охлаждени  теплоносител  низкого потенциала и зонах нагрева теплоносител  высокого потенциала , в качестве рабочего тела используют от четырех до дес ти различных агентов, нагрев жидкой фазы и конденсацию паров высокого давлени  которых производ т последовательно соответственно теплоносител ми низкого и высокого потенциалов при совершении каждым агентом своего известного теплонасосного цикла с влажным ходом в процессе всасывани  паров низкого давлени , причем в каждых двух последовательных теплонасосных циклах . отношение абсолютных температур кипени  их агентов поддерживают посто нным , а теплоносители низкого и высокого потенциалов перемещают в проти- вотоке по отношению один к другому с одновременным понижением температуры после нагрева жидкой фазы каждого агента, и повьаиением температуры после конденсации паров высокого давлени  этого же агента. Источники информации, прин тые во внимание при экспертизе 1. Энциклопедический справочник по холодильной технике. Т. III, М. , Госторгиздат, 19б2, с. 30, рис. 1.2. In the evaporators x 19, 20, 21, 22, 23 and 2k, respectively, heat exchange surfaces 25, 2b, 27, 28, 29 and 30 are located, and in heat exchangers 7 8, 9, 10, II and 12, respectively, heat exchange surfaces are placed 31, 32, 33, 35 and 36. A low-grade coolant flows successively through the line 37 through the evaporators, and a high-grade coolant also passes through the condensers through the lines 38. Both heat carriers are moving in countercurrent with respect to each other. In this case, the bottom-25, the copotential coolant is cooled, the heating and evaporation of the liquid phases of the agents in the heat exchange surfaces 25-30, and the high-grade coolant is heated to co-concentrate the high-pressure vapor of the same agents in the heat exchange surfaces 36-31. In the throttle valves 18–13, the liquid phases of these same agents reduce their pressure, and the resulting low-pressure vapors are sucked at low pressure and injected to high pressure by compressors 6–1. Thus, each agent performs a known heat pump cycle in its circuit, extracting heat from the low-grade coolant and transferring it to the high-grade coolant, respectively, flowing through line 37 through all evaporators and through line 38 through all condensers. In the circuit including compressor 1, condenser 7 with heat exchanging surface 31. Throttle valve 13 and evaporator 19 with heat exchanging surface 25, circulates an agent with a high normal boiling point, for example, freon-11, whose normal boiling point is. And in the circuit including the compressor 6, the condenser 12 with the heat exchanging surface Zb, the throttle valve 18 of iispa, the electric 2k with the heat exchange surface 9 5b4 30, is used, for example, freon 506, the normal boiling temperature of which is 12 C. intramural circuits agents employed, normal boiling point which are between the normal boiling point of HFC-P and the normal boiling point of HFC-50b, wherein the ratio of absolute to each two successive cycles agents reflux temperature is maintained constant. The economic efficiency of the invention is expressed in reducing the consumption of electricity consumed for the production of heat. The method of operation of a heat pump installation by heating a liquid working fluid with a low-capacity heat carrier, sucking out the resulting vapors at a low pressure, then compressing them and condensing at a high pressure and removing heat to a high-potential heat carrier, characterized in that cooling zones of a low potential coolant and heating zones of a high potential coolant; from four to ten Various agents that heat the liquid phase and condense high-pressure vapors which are produced successively according to heat carriers of low and high potentials when each agent performs its well-known heat pump cycle with a wet stroke during the suction process of low pressure vapors, and in every two successive heat pump cycles. the ratio of the absolute boiling points of their agents is kept constant, and the heat carriers of low and high potentials are moved in opposition to each other with a simultaneous decrease in temperature after heating the liquid phase of each agent, and temperature rise after condensation of high pressure vapor of the same agent. Sources of information taken into account in the examination 1. Encyclopedic guide to refrigeration. T. III, M., Gostorgizdat, 19b2, p. 30, Fig. one.
SU802904349A 1979-04-02 1980-04-02 Method of operating heat pump apparatus SU925256A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI791079A FI791079A (en) 1979-04-02 1979-04-02 PAO UTNYTTJANDE AV EN VAERMEPUMP SIG GRUNDANDE FOERFARANDE VID TILLVARATAGANDE AV VAERME

Publications (1)

Publication Number Publication Date
SU925256A3 true SU925256A3 (en) 1982-04-30

Family

ID=8512544

Family Applications (1)

Application Number Title Priority Date Filing Date
SU802904349A SU925256A3 (en) 1979-04-02 1980-04-02 Method of operating heat pump apparatus

Country Status (8)

Country Link
JP (1) JPS55134254A (en)
DE (1) DE3012670A1 (en)
FI (1) FI791079A (en)
FR (1) FR2453373A1 (en)
GB (1) GB2049901B (en)
NO (1) NO800960L (en)
SE (1) SE8002494L (en)
SU (1) SU925256A3 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079523A1 (en) * 1981-11-06 1983-05-25 Etablissements NEU Société Anonyme dite: Drying apparatus using several energy sources
FR2522799B2 (en) * 1982-03-05 1986-05-23 Neu Ets MULTIPLE SOURCE DRYING PLANT
JPS6023759A (en) * 1983-07-18 1985-02-06 株式会社荏原製作所 Energy conserving type refrigerator
ATE61656T1 (en) * 1984-07-24 1991-03-15 Multistack Int Pty Ltd MODULAR COOLING SYSTEM.
JPH0621722B2 (en) * 1984-10-31 1994-03-23 株式会社東芝 Super heat pump device
DE3529885A1 (en) * 1985-08-21 1987-03-05 Hans Kempter Method and device for operating heat pumps and cooling systems
DE3637737A1 (en) * 1986-11-05 1988-05-19 Waldner Gmbh & Co Hermann DRYERS, ESPECIALLY FOR THE CHEMICAL INDUSTRY
DE69005643T2 (en) * 1989-11-27 1994-05-19 Alcan Int Ltd METHOD FOR CALCINATING ALUMINUM OXIDE TRIHYDRATE FOR PRODUCING ALUMINUM OXIDE AND DEVICE THEREFOR.
BE1003595A5 (en) * 1989-12-22 1992-04-28 Econergie Sa Process heating heat pumps.
US5119571A (en) * 1990-08-01 1992-06-09 Richard Beasley Dehydration apparatus and process of dehydration
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system
EP1843114A1 (en) * 2006-04-06 2007-10-10 Swedish Exergy Consulting AB Dryer plant
EP2182296A3 (en) * 2008-10-28 2014-02-19 Oilon Scancool Oy District heating arrangement and method
IT1393090B1 (en) * 2009-02-17 2012-04-11 Agroittica Acqua & Sole Spa NETWORK FOR THE CONTEMPORARY SUPPLY OF HEATING AND COOLING SERVICES
US8453343B2 (en) * 2010-01-12 2013-06-04 Hot Woods, LLC Method of treatment of wooden items
DE102010007033A1 (en) * 2010-02-10 2012-12-27 Sabine Ludewig Heat pump for use with e.g. compression heat pump for air conditionings of building room air, has recuperatively-arranged highly heat conductive hollow bodies through which aqueous potassium carbonate solution is flown
EP2354689A3 (en) 2010-02-09 2011-10-19 Immoplan Technische Gebäudeausstattung Absorption heat pump with peltier elements and their use
EP2631546A4 (en) * 2010-10-19 2016-05-18 Yury Markovich Petin Method for supplying hot water and heating method using said method
DE102013214891A1 (en) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Thermal engineering interconnection of a geothermal energy source with a district heating network
ITFI20130244A1 (en) * 2013-10-16 2015-04-17 Frigel Firenze S P A "MULTI-STAGE REFRIGERATION UNIT FOR THE REFRIGERATION OF A PROCESS FLUID"
JP2014074583A (en) * 2014-01-28 2014-04-24 Mitsubishi Electric Corp Refrigeration air conditioner
EP2947401A1 (en) 2014-05-23 2015-11-25 Vlaamse Instelling voor Technologisch Onderzoek (VITO) Multi-stage heat engine
JP7094824B2 (en) * 2018-08-10 2022-07-04 三菱重工サーマルシステムズ株式会社 Refrigeration cycle system
CN112984864A (en) * 2021-02-04 2021-06-18 上海伯涵热能科技有限公司 Heat exchanger refrigerant pipeline staggered single-stage heat pump module and step heat pump system
CN114909824A (en) * 2021-02-10 2022-08-16 上海本家空调系统有限公司 Condenser parallel compression steam unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2008407A (en) * 1932-04-28 1935-07-16 Westinghouse Electric & Mfg Co Inverted-refrigeration plant
CH236721A (en) * 1943-09-27 1945-03-15 Escher Wyss Maschf Ag Heat pump system with several heat carrier circuits working with different final pressures.
CH239500A (en) * 1944-02-10 1945-10-31 Bbc Brown Boveri & Cie Heat pump with multi-stage condensation.
US3670806A (en) * 1970-06-29 1972-06-20 Alden I Mcfarlan Air conditioning system and method
FR2352247A1 (en) * 1976-05-18 1977-12-16 Cem Comp Electro Mec METHOD AND DEVICE FOR EXCHANGING HEAT BETWEEN FLUIDS
FR2383411A1 (en) * 1977-03-09 1978-10-06 Cem Comp Electro Mec PROCESS AND DEVICE FOR HEAT EXCHANGE BETWEEN FLUIDS
US4124177A (en) * 1977-04-21 1978-11-07 Timmerman Robert W Heating system

Also Published As

Publication number Publication date
NO800960L (en) 1980-10-03
JPS55134254A (en) 1980-10-18
DE3012670A1 (en) 1980-10-30
GB2049901B (en) 1983-06-15
FI791079A (en) 1980-10-03
SE8002494L (en) 1980-10-03
GB2049901A (en) 1980-12-31
FR2453373A1 (en) 1980-10-31

Similar Documents

Publication Publication Date Title
SU925256A3 (en) Method of operating heat pump apparatus
SU427531A3 (en) METHOD FOR PRODUCTION OF COLD
RU94046343A (en) Method and facility for cooling fluid medium, such as for liquifying natural gas
EP0059748B1 (en) Reverse absorption heat pump augmented distillation process
CN113280522B (en) Double-evaporation-temperature jet refrigerator and method based on mixed working medium
US4028079A (en) Cascade refrigeration system
JP2018514747A (en) Phase change wave rotor automatic cascade refrigeration system and operation method thereof
KR910010139A (en) Heat pump system
CN112254366A (en) Cold and hot combined supply double-effect plate replacement machine set
US3461460A (en) Flash distillation with condensed refrigerant as heat exchanger
SE8101696L (en) HEAT PUMP OR REFRIGERATOR
CN111271887B (en) Liquid-separating non-azeotropic compression injection refrigeration cycle and working method thereof
CN211903353U (en) Liquid-separating condensation non-azeotropic compression injection type refrigeration cycle
CN211346474U (en) Volatile organic compound recovery device
CN113357845A (en) Liquid separation condensation compression-injection refrigeration cycle system
JPS60226668A (en) Heat pump
JPS6411604A (en) Solvent-treating apparatus
CN116202248B (en) Mixed working medium multistage separation low-temperature refrigerating system and circulating method
SU591667A1 (en) Method of cooling working body
SU1038756A1 (en) Thermocompressor drying plant
SU1021887A1 (en) Cascade-type heat pump installation
US2919554A (en) Method of fractionating gas mixtures by means of a gas fractionating system comprising a rectifying column
CN220768249U (en) Efficient air water production system with two-stage cold energy recovery function
CN208952449U (en) A kind of DC frequency-changing water chiller and its system
SU543813A1 (en) Refrigeration unit