SU584817A3 - Method of manufacturing electrode for electrochemical device - Google Patents

Method of manufacturing electrode for electrochemical device

Info

Publication number
SU584817A3
SU584817A3 SU7401994886A SU1994886A SU584817A3 SU 584817 A3 SU584817 A3 SU 584817A3 SU 7401994886 A SU7401994886 A SU 7401994886A SU 1994886 A SU1994886 A SU 1994886A SU 584817 A3 SU584817 A3 SU 584817A3
Authority
SU
USSR - Soviet Union
Prior art keywords
solution
lead
coating
electrolyte
acid
Prior art date
Application number
SU7401994886A
Other languages
Russian (ru)
Inventor
Петер Фритц Гейнц
Миссоль Детлеф
Original Assignee
Рейниш-Вестфелишес Электрицитетсверк Аг, (Фирма)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19732306957 external-priority patent/DE2306957C3/en
Application filed by Рейниш-Вестфелишес Электрицитетсверк Аг, (Фирма) filed Critical Рейниш-Вестфелишес Электрицитетсверк Аг, (Фирма)
Application granted granted Critical
Publication of SU584817A3 publication Critical patent/SU584817A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Catalysts (AREA)

Claims (1)

ца. Электролит может содержать стехиометрические количества амидо-, ИМИДО-, нитридо- или фторпроизводных серной или фосфорной кислоты. Кроме того, можно непосредственно примен ть растворимую соль двухвалентного свинца и одну их этих кислот в,количдстве , обеспечивающем почти насыщенный раствор. Электролит может содержать также смачиватель, например перфторированную алканкарбонов ую кислоту, в концентрации примерно 0,5 . -1 г/л. Услови  электролитического нанесе ни  покрыти  из двуокиси свинца (плотность тока, температура Раствора ) могут колебатьс  в/Широкий .пределах . Плотность тока-обыЧйо составл ет 10-30 мА/см. а температура рас вора 4О-8о С. Водный раствордл  обработки тита новой осноры с.нанесенным покрытием из двуокиси свинца довод т до требуемой величины рН добавкой кислоты или щелочи. На основу может быть нанесено второе покрытие из двуокиси свинца. При этом примен ют электролит , который содержит только нитрат свинца. Второе покрытие нанос т в тех же услови х, что и первое покрытие . Электролитическое нанейение покры ти  из ДВУОКИСИ свинца несколько раз например 3-6 раз, прерывают на 5-15 мин. Пример. Титановый лист кип т т в течение часа в водном ,15%-ном растворе щавелевой кислоты и /датам дополнительно кип т т в течение 2 ч в водном 15%-ном растворе щавелевой кислоты, содержащем оксалатный комплекс четырехвалентного титана в кон центрации примерно 10 молей. После промывки дистиллированной водой на лист нанос т покрытие из двуокиси свинца путем анодно -о. осаждени  посшедней из электролита, содержащего 66 г нитрата свинца и 0,75 г смачивател  на литр. Плотность тока составл ет 20 мА/см а температура раствора 65°С, При же услови х йа электрод осаждают дополнительный слой окиси свинца из раствора чистого нитрата свинца. Затем электрод с нанесенным покрытием снова промывают дистиллированной водой и кип т т в течение 2 ч в водном щелочном растворе с рН-8, ;; Изготовленные по предложенному способу электроды  вл ютс  гомогенными и прочными и имеют срок службы пор дка 6500 ч. Формула изобретени  Способ изготовлен   э 1ектро а дл  электрохимического устройства, напрИ мер дл  свинцового аккумул тора, путем очистки титановой основы кислым раствором, обработки в растворе соли карбоновой кислоты при повышенной температуре и электролитического нанесени  на основу покрыти  из двуокиси свинца из электролита, содержащего ионы свинца, отличающийс  тем, что, с целью повьиаени  срока службы электрода, обработку в растворе соли карбоновой кислоты производ т путем кип чени  очищенной; .основы в течение .О,.5-2 ч в- рас-т оре йгавелевой кислоты, содержащем: тнтано)с|алатные комплексы, а прСле-на гё«:ени :;.цс крыти   осгнЫу.. .  . В ,: в0 н. щелочном расФ йоре рИ . и течёйиб 0,5-2 4-,-.. . Источники информации, прин тые во внимание при экспертизе: 1.Выложенна  за вка ФРГ № 1942680 кл. 57 в 5/30, 1972. 2,Патент Бельгии 702806, кл, С 23 в, 1968,ca. The electrolyte may contain stoichiometric amounts of amido, IMIDO, nitrido or fluorine derivatives of sulfuric or phosphoric acid. In addition, a soluble divalent lead salt and one of these acids can be used directly, in an amount that provides an almost saturated solution. The electrolyte may also contain a wetting agent, for example a perfluorinated alkanecarboxylic acid, at a concentration of about 0.5. -1 g / l. The conditions for electrolytic plating of lead dioxide (current density, temperature of the Solution) can vary in the / wide range. The current density is typically 10-30 mA / cm. and the temperature of the solution is 4O-8 ° C. The aqueous solution of the treatment of titanium with a base with an applied lead dioxide coating is adjusted to the required pH by the addition of acid or alkali. A second lead dioxide coating may be applied to the substrate. An electrolyte is used that contains only lead nitrate. The second coating is applied under the same conditions as the first coating. Electrolytic plating of lead DUOXIDE coating several times, for example, 3-6 times, interrupted for 5-15 minutes. Example. The titanium sheet is boiled for an hour in an aqueous, 15% solution of oxalic acid and / and the dates are additionally boiled for 2 hours in an aqueous 15% solution of oxalic acid containing tetravalent titanium oxalate complex at about 10 moles . After washing with distilled water, lead dioxide is coated onto the sheet anodically. the deposition of the last of the electrolyte containing 66 g of lead nitrate and 0.75 g of wetter per liter. The current density is 20 mA / cm and the solution temperature is 65 ° C. Under the same conditions, an additional layer of lead oxide is precipitated from a solution of pure lead nitrate. Then the coated electrode is again washed with distilled water and boiled for 2 hours in an aqueous alkaline solution with pH-8 ;; The electrodes manufactured according to the proposed method are homogeneous and durable and have a service life of about 6500 hours. Claims The invention is made on an electrochemical device, such as a lead battery, by cleaning the titanium base with an acidic solution, treated in a solution of a carboxylic acid salt at elevated temperature and electrolytic deposition of a lead dioxide coating from an electrolyte containing lead ions on the substrate, characterized in that, in order to determine the service life of the electrode, brabotku a carboxylic acid salt solution is produced by refluxing t purified; Fundamentals for .O., .2-2 hours in the distribution of aore ygavelic acid, containing: tntano) with | alatnye complexes, and PROS-on go ": yeni:;. cc cover osgnYu ... . In,: v0 n. alkaline rasf yore rI and 0.5-2 4 -, - ... Sources of information taken into account in the examination: 1. Published for Germany No. 1942680 cl. 57 in 5/30, 1972. 2, Belgian Patent 702806, class, From 23 to, 1968,
SU7401994886A 1973-02-13 1974-02-11 Method of manufacturing electrode for electrochemical device SU584817A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19732306957 DE2306957C3 (en) 1973-02-13 Process for the production of electrodes for electrolytic purposes, in particular for lead accumulators

Publications (1)

Publication Number Publication Date
SU584817A3 true SU584817A3 (en) 1977-12-15

Family

ID=5871732

Family Applications (1)

Application Number Title Priority Date Filing Date
SU7401994886A SU584817A3 (en) 1973-02-13 1974-02-11 Method of manufacturing electrode for electrochemical device

Country Status (14)

Country Link
JP (1) JPS5647268B2 (en)
AT (1) AT331323B (en)
BE (1) BE810206A (en)
CA (1) CA997418A (en)
CH (1) CH585279A5 (en)
DD (1) DD109321A5 (en)
FR (1) FR2217816B1 (en)
GB (1) GB1433844A (en)
IT (1) IT1004941B (en)
NL (1) NL168998C (en)
NO (1) NO138571C (en)
SE (1) SE389692B (en)
SU (1) SU584817A3 (en)
YU (1) YU18274A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2722840A1 (en) * 1977-05-20 1978-11-23 Rheinische Westfaelisches Elek METHOD OF MANUFACTURING ELECTRODES FOR ELECTROLYTIC PURPOSES
CN111634982B (en) * 2020-06-27 2023-06-30 北京中核天友环境科技股份有限公司 Preparation method of anode material for efficient phenol wastewater degradation
CN111893535B (en) * 2020-08-04 2022-10-11 盐城工学院 Preparation method of porous titanium-based lead dioxide electrocatalytic membrane electrode

Also Published As

Publication number Publication date
FR2217816B1 (en) 1977-06-10
NO138571C (en) 1978-09-27
GB1433844A (en) 1976-04-28
DE2306957A1 (en) 1974-08-29
NO740463L (en) 1974-08-14
NL168998C (en) 1982-05-17
DD109321A5 (en) 1974-11-05
NO138571B (en) 1978-06-19
SE389692B (en) 1976-11-15
BE810206A (en) 1974-05-16
DE2306957B2 (en) 1975-10-23
AT331323B (en) 1976-08-10
NL7401720A (en) 1974-08-15
CH585279A5 (en) 1977-02-28
IT1004941B (en) 1976-07-20
FR2217816A1 (en) 1974-09-06
NL168998B (en) 1981-12-16
JPS49113736A (en) 1974-10-30
CA997418A (en) 1976-09-21
YU18274A (en) 1982-02-25
ATA46774A (en) 1975-11-15
JPS5647268B2 (en) 1981-11-09

Similar Documents

Publication Publication Date Title
Lanz et al. Photocatalytic oxidation of water to O2 on AgCl-coated electrodes
JP4965794B2 (en) Ionic liquids and methods of use
Juodkazytė et al. Iridium anodic oxidation to Ir (III) and Ir (IV) hydrous oxides
Sakamoto et al. 522—Catalytic oxydation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose
Clavilier et al. Study of the conditions for irreversible adsorption of lead at Pt (h, k, l) electrodes
CA1044754A (en) Process for making titanium supported lead electrode
Morallón et al. Electrochemical behaviour of basal single crystal Pt electrodes in alkaline medium
Kulesza et al. Reactivity and charge transfer at the tungsten oxide/sulfuric acid interfaces: Nonstoichiometric tungsten (VI, V) oxide films as powerful electroreduction catalysts
SU584817A3 (en) Method of manufacturing electrode for electrochemical device
Takamura et al. Catalytic effects of metal submonolayers formed by faradaic adsorption on the anodic oxidation of ascorbic acid at a platinum electrode
US5232576A (en) Anode for chromium plating and processes for producing and using the same
Pavese et al. Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd (II) ions
RU2001126522A (en) LIQUID ELECTROLYTE COMPOSITION AND METHOD FOR PRODUCING COATING FROM THIS ELECTROLYTE
US4488944A (en) Electrocatalytic oxidation of (poly)alkylene glycols
US3935082A (en) Process for making lead electrode
Lingane Chronopotentiometric study of the redox characteristics of PtCl62− and PtCl42− at a platinum electrode
Desideri et al. Electrochemical behaviour of bromate in perchloric acid solutions
Bishop et al. Mass and charge transfer kinetics and coulometric current efficiencies. Part VII. Conditional potentials, and single-scan voltammetry of pure vanadium (V)-vanadium (IV) systems in various media at platinum electrodes pre-treated by five methods
SU662624A1 (en) Method of preparing metal surface prior to electroplating
Morallón et al. Electrochemical behaviour of Pt (110) in carbonate and bicarbonate solutions
SU134090A1 (en) Electroplating method for titanizing tin dioxide semiconductor films
JPH0678588B2 (en) Aluminum surface treatment method
SU973029A3 (en) Process for producing titanium electrode with lead dioxide coating
US4188269A (en) Method of making electrodes for electrolytic purposes
SU815010A1 (en) Method of preparing complexes