SK283761B6 - Steel for heat-resistant and/or high-tensile formed parts - Google Patents

Steel for heat-resistant and/or high-tensile formed parts Download PDF

Info

Publication number
SK283761B6
SK283761B6 SK1649-2001A SK16492001A SK283761B6 SK 283761 B6 SK283761 B6 SK 283761B6 SK 16492001 A SK16492001 A SK 16492001A SK 283761 B6 SK283761 B6 SK 283761B6
Authority
SK
Slovakia
Prior art keywords
steel
vanadium
nitrogen
chemical composition
heat
Prior art date
Application number
SK1649-2001A
Other languages
Slovak (sk)
Other versions
SK16492001A3 (en
Inventor
Václav Foldyna
Tasilo Prnka
Anna Jakobová
Jaroslav Purmensky
Kamil Pětroš
Tomáš Schellong
Original Assignee
Jinpo Plus, A. S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinpo Plus, A. S. filed Critical Jinpo Plus, A. S.
Publication of SK16492001A3 publication Critical patent/SK16492001A3/en
Publication of SK283761B6 publication Critical patent/SK283761B6/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The invention relates to a steel for heat-resistant and/or high-tensile strength formed parts, in particular, pipes, metal plates and forged pieces, with an increased heat-resistance up to 600 °C and increased plasticity and impact strength up to -60 °C and with the following chemical composition: carbon C = between 0.02 and 0.3 %, silicon Si = between 0.0 and 0.8 %, manganese Mn = between 0.0 and 2.0 %, chrome Cr = between 0.0 and 3.5 %, molybdenum Mo = between 0.0 and 1.5 %, vanadium V = between 0.02 and 0.8 %, niobium Nb = between 0.0 and 0.1 %, nickel = between 0.0 and 2.5 %, titanium Ti = between 0.0 and 0.1 %, phosphorous P = max. 0.05 %, sulphur S = max. 0.05 %, aluminium Al'total' = between 0.0 and 0.05 %, copper Cu = between 0.0 and 0.8, the remainder made up of iron Fe and nitrogen N. The inventive steel is characterised in that the total content of nitrogen N is determined by the following relation: N = (0.52 multiplied by Al + 0.29 multiplied by Ti + 0.075 multiplied by Nb + 0.005 to 0.07) %.

Description

Oblasť technikyTechnical field

Vynález sa týka ocelí na výrobu žiarupevných súčastí so zvýšenou plasticitou, pracujúcich vo vysoko namáhaných strojárenských, energetických a chemických zariadeniach pri teplotách od + 450 °C až do 600 °C, napríklad rúrok, plechov a výkovkov.The invention relates to steels for the manufacture of refractory parts with increased plasticity, operating in highly stressed engineering, power and chemical plants at temperatures from + 450 ° C to 600 ° C, for example tubes, sheets and forgings.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Žiarupevné tvárnené súčasti, napríklad kotlové rúrky, pracujúce pri zvýšených teplotách až do 600 °C, sa dosiaľ vyrábajú buď z nízkolegovaných chróm-molybdénvanádových (CrMoV) ocelí, alebo z chróm-molybdénových (CrMo) ocelí.Up to now, heat-resistant molded parts, such as boiler tubes operating at elevated temperatures up to 600 ° C, are made from either low-alloy chromium-molybdenum (CrMoV) steels or chromium-molybdenum (CrMo) steels.

Používané CrMoV ocele majú nasledujúce hmotnostné chemické zloženie: C = 0,08 až 0,30 %, Mn = 0,4 až 0,7 %, Si = 0,15 až 0,4 %, Cr = 0,3 až 1,7 %, Mo = 0,4 až 1,2 %,The CrMoV steels used have the following chemical composition by weight: C = 0.08 to 0.30%, Mn = 0.4 to 0.7%, Si = 0.15 to 0.4%, Cr = 0.3 to 1, 7%, Mo = 0.4 to 1.2%,

V = 0,22 až 0,7 %, Alceik = max. 0,04 %, P = max. 0,04 %, S = max. 0,04 %, zvyšok tvorí Fe a nevyhnutné výrobné nečistoty. Medzi výrobné nečistoty patril i dusík, ktorého hmotnostné množstvo sa pohybovalo v rozmedzí N = 0,004 až 0,013 %, a to v závislosti od použitého taviaceho agregátu pri výrobe ocele, ktoré však nebolo presne špecifikované.V = 0.22 to 0.7%, Al ce ik = max. 0.04%, P = max. 0.04%, S = max. 0.04%, the remainder being Fe and unavoidable manufacturing impurities. The production impurities also included nitrogen, the amount of which ranged from N = 0.004 to 0.013%, depending on the melting aggregate used in the production of steel, but this was not exactly specified.

Pri výrobe výrobku, napr. rúrky, z tejto ocele, je oceľ tvárnená za tepla, prípadne za studená a tepelne spracovaná. Tepelné spracovanie spočíva v normalizačnom žíhaní a popúšťaní alebo kalení a popúšťaní. Pri ohreve na teplotu normalizácie alebo kalenia, čo je cca 900 až 1000 °C, dochádza k rozpúšťaniu karbidov, ale nemalo by dôjsť k úplnému rozpusteniu karbidov a tým k hrubnutiu zrna. K. žiaducej precipitácii disperznej fázy karbidu vanádu dochádza najmä pri popúšťaní ocele, ktoré sa vykonáva pri teplotách 650 až 740°C.In the manufacture of the product, e.g. Tubes, made of this steel, are hot or cold formed and heat treated. The heat treatment consists of normalization annealing and tempering or quenching and tempering. Heating to normalization or quenching temperature, which is about 900 to 1000 ° C, dissolves the carbides, but should not completely dissolve the carbides and thus the grain coarsening. The desirable precipitation of the vanadium carbide dispersion phase occurs, in particular, in the tempering of the steel, which is carried out at temperatures of 650 to 740 ° C.

V praxi sa zistilo, že aj pri dodržaní požadovaného chemického zloženia, vrátane mikročistoty a obvyklom spôsobe tepelného spracovania, vznikne pri výrobkoch z niektorých tavieb jemnozmná štruktúra a pri výrobkoch z iných tavieb sa pozoruje hrubozmná štruktúra, čo negatívne ovplyvňuje pevnostné a plastické vlastnosti, ktoré sú zistiteľné okamžite pri preberacích skúškach. Výrobky z takýchto tavieb, kde vzniká hrubozrnná štruktúra, sú potom nepoužiteľné, čo podstatne zhoršuje ekonomiku výroby. Takisto je možné pri výrobkoch z niektorých tavieb pozorovať rozmerovú nestálosť vyprecipitovaných karbidov, čo hlavne negatívne ovplyvňuje odolnosť proti tečeniu. Táto vlastnosť je zistiteľná dlhodobými skúškami tečenia alebo pri dlhodobej expozícii výrobkov pri zvýšených teplotách, ale nedá sa zistiť pri preberacích skúškach.In practice, it has been found that even with the required chemical composition, including micro-purity and the usual heat treatment method, a fine-grain structure is produced for products from some melts and a coarse-grain structure is observed for products from other melts, negatively affecting the strength and plastic properties detectable immediately in acceptance tests. Products from such melts, where a coarse-grained structure is formed, are then unusable, which significantly worsens the economy of production. It is also possible to observe the dimensional instability of the precipitated carbides in products from some melts, which in particular negatively affects the creep resistance. This property is detectable by long-term creep tests or by prolonged exposure of the products at elevated temperatures, but not detectable in acceptance tests.

Z US patentového spisu č. 5 876 521 je známa vysokopevná oceľ so štruktúrou jemnozrnného martenzit-bainitu s nasledujúcim hmotnostným chemickým zložením: C = 0,03 až 0,12 %, Si = 0.10 až 0,50 %, Mn = 0,40 až 2,0 %, Cu = = 0,50 až 2,0 %, Ni = 0,50 až 2,0 %, Nb = 0,03 až 0,12 %,U.S. Pat. U.S. Patent No. 5,876,521 discloses a high-strength steel with a fine-grained martensite-bainite structure having the following chemical composition by weight: C = 0.03 to 0.12%, Si = 0.10 to 0.50%, Mn = 0.40 to 2.0%, Cu = 0.50 to 2.0%, Ni = 0.50 to 2.0%, Nb = 0.03 to 0.12%,

V = 0,03 až 0,15 %, Mo = 0,20 až 0,80 %, Cr = 0,30 až 1,0 %, Ti = 0,005 až 0,03 %, Al = 0,01 až 0,05 %, N = = 0,001 až 0,01 %. Jemnozrnná štruktúra karbidu vanádu v tejto oceli, ktorá obsahuje len veľmi malé množstvo karbonitridu, sa dosahuje pri termomechanickom spracovaní za prísnych teplotných a redukčných podmienok. Pretože sa karbidy vanádu pri vysokých teplotách rozpúšťajú a tým zapríčiňujú rast zrna, je táto oceľ nevhodná na použitie v rozmedzí pracovných teplôt od 500 °C do 600 °C.V = 0.03 to 0.15%, Mo = 0.20 to 0.80%, Cr = 0.30 to 1.0%, Ti = 0.005 to 0.03%, Al = 0.01 to 0, 05%, N = 0.001 to 0.01%. The fine-grained structure of vanadium carbide in this steel, which contains only a very small amount of carbonitride, is achieved by thermo-mechanical processing under stringent temperature and reducing conditions. Since vanadium carbides dissolve at high temperatures and thereby cause grain growth, this steel is unsuitable for use in the working temperature range of 500 ° C to 600 ° C.

Z japonského abstraktu vol. 1997, č. 11, z 28. novembra 1997, z JP09 184043A, je známa nízkolegovaná oceľ s nasledujúcim hmotnostným chemickým zložením: C = 0,05 až 0,25 %, Si - 0,1 až 1,0 %, Mn = 0,2 až 2,0 %, Cu = 0,01 až 0,5 %, Ni = 0,01 až 1,5 %, Cr = 0,01 až 0,7 %, Mo = = 0,01 až 0,7 %, V = 0,001 až 0,07 %, N = 0,002 až 0,01 %, Al = 0,01 až 0,025 %, Nb = 0,001 až 0,05 %, Ti = = 0,001 až 0,025 %, pričom N = (0,4 x Al + 0,15 x Nb + + 0,3 x Ti + 0,0005 až 0,005) %, zvyšok tvorí železo a nevyhnutné výrobné nečistoty. Tvárnené súčasti vyrobené z tejto ocele sú kvôli nízkemu obsahu vanádu a dusíka a tým aj nízkemu obsahu karbidu vanádu nevhodné na použitie v rozmedzí pracovných teplôt od 450 °C do 600 °C.From the Japanese abstract vol. 1997, no. 11, of November 28, 1997, JP09 184043A, a low-alloy steel with the following chemical composition by weight is known: C = 0.05 to 0.25%, Si = 0.1 to 1.0%, Mn = 0.2 to 2.0%, Cu = 0.01-0.5%, Ni = 0.01-1.5%, Cr = 0.01-0.7%, Mo = 0.01-0.7%, V = 0.001 to 0.07%, N = 0.002 to 0.01%, Al = 0.01 to 0.025%, Nb = 0.001 to 0.05%, Ti = = 0.001 to 0.025%, with N = (0, 4 x Al + 0.15 x Nb + + 0.3 x Ti + 0.0005 to 0.005)%, the rest being iron and unavoidable manufacturing impurities. Wrought parts made of this steel are unsuitable for use in the temperature range from 450 ° C to 600 ° C due to the low vanadium and nitrogen contents and hence the low vanadium carbide content.

Pri termomechanickom alebo normalizačnom valcovaní, resp. pri tepelnom spracovaní normalizačným žíhaním výrobkov z týchto ocelí, je potrebné veľmi presne dodržiavať teplotu a čas tepelného pôsobenia, ako aj rýchlosť ochladzovania po termomechanickom alebo normalizačnom valcovaní, resp. po tepelnom spracovaní, ktoré sú rozhodujúce pre výsledné pevnostné a plastické vlastnosti finálneho výrobku. Pri rýchlom riadenom ochladzovaní dôjde k vyprecipitovaniu jemných, rozmerovo stálych a v štruktúre rovnomerne rozložených karbidov vanádu a/alebo karbidov nióbu, pričom táto štruktúra je bezpodmienečne nutná pre požadované pevnostné a plastické vlastnosti. Ak sa nedodrží rýchlosť ochladzovania a/alebo čas tepelného pôsobenia počas tepelného spracovania, dôjde v dôsledku veľkej rýchlosti hrubnutia karbidu a/alebo veľkej rýchlosti rozpúšťania karbidu k vytvoreniu nežiaducich hrubých, rozmerovo nestálych a v štruktúre nerovnomerne rozložených precipitátov karbidu vanádu a/alebo nióbu; a/alebo ku vzniku hrubozrnnej štruktúry. Výrobok s touto štruktúrou je potom nepoužiteľný, pretože nespĺňa požadované pevnostné a plastické vlastnosti. Nevýhodou tejto ocele je teda značná náročnosť na jej technológiu výroby, vrátane tepelného spracovania.During thermomechanical or normalization rolling, respectively. during the heat treatment by normalizing the products of these steels, the temperature and time of the heat treatment as well as the cooling rate after thermo-mechanical or normalization rolling, respectively. after heat treatment, which are decisive for the resulting strength and plastic properties of the final product. Rapid controlled cooling results in the precipitation of fine, dimensionally stable and evenly distributed vanadium carbides and / or niobium carbides, which structure is absolutely necessary for the desired strength and plastic properties. Failure to observe the cooling rate and / or heat treatment time during heat treatment will result in the formation of undesirable coarse, dimensionally unstable and unevenly distributed vanadium carbide and / or niobium precipitates as a result of the high carbide roughing rate and / or high carbide dissolution rate; and / or to form a coarse-grained structure. A product with this structure is then unusable as it does not meet the required strength and plastic properties. The disadvantage of this steel is therefore its high production technology, including heat treatment.

Podstata vynálezuSUMMARY OF THE INVENTION

Uvedené nevýhody v podstate odstraňuje oceľ pre žiarupevné tvárnené súčasti, na použitie v rozmedzí pracovných teplôt od 450 °C do 600 °C s nasledujúcim hmotnostným chemickým zložením: C = 0,05 až 0,3 %, Mn = 0,01 až 1,2 %, Si = až 0,8 %, Cr = 0,3 až 3,5 %, Mo = 0,2 až 1,5 %, Ti = až 0,02 %, V= 0,23 až 0,8 %, Alcelk = až 0,05 %, P = až 0,05 %, S = až 0,05 %, N = (0,52 x obsah Alceik + + 0,29 x obsah Ti + 0,005 až 0,07) %, zvyšok tvorí Fe a nevyhnutné výrobné nečistoty.The above disadvantages are essentially eliminated by the steel for the refractory molded parts for use in the operating temperature range of 450 ° C to 600 ° C with the following chemical chemical composition: C = 0.05 to 0.3%, Mn = 0.01 to 1, 2%, Si = up to 0.8%, Cr = 0.3 to 3.5%, Mo = 0.2 to 1.5%, Ti = up to 0.02%, V = 0.23 to 0.8 %, Al total = up to 0.05%, P = up to 0.05%, S = up to 0.05%, N = (0.52 x Al cc content + + 0.29 x Ti content + 0.005 to 0 , 07)%, the remainder being Fe and unavoidable manufacturing impurities.

Tvárnené výrobky z takejto ocele majú po normalizačnom žíhaní a popúšťaní, alebo po kalení a popúšťaní vždy bez výnimky rovnomernú jemnozrnnú štruktúru s karbonitridmi vanádu a tým aj vysokú pevnosť, resp. žiarupevnosť a plasticitu pri zvýšených teplotách. Nedochádza teda už k ekonomickým stratám a výrobe nepodarkov, spôsobenej skôr nezaručenou kvalitou výrobkov. Zaručená jemnozmnosť a rovnomernosť zrna sa dosiahne tým, že pri normalizačnom žíhaní a popúšťaní alebo kalení a popúšťaní, nedochádza k úplnému rozpusteniu precipitátov vanádu, ktoré spôsobovalo rast zrna, pretože vanád vytvára s dusíkom ťažšie rozpustné karbonitridy vanádu. Karbid vanádu by sa pri rovnakých podmienkach úplne rozpustil a došlo by k hrubnutiu zrna. Rýchlosť hrubnutia karbonitridu vanádu je nižšia než rýchlosť hrubnutia karbidu vanádu, takže disperzná fáza karbonitridu vanádu vyprecipituje v jemnejšej a rozmerovo stálejšej forme. Následkom toho sa takisto zlepšia žiarupevné vlastnosti. Dá sa teda oprávnene predpokladať, že medza pevnosti pri tečení ocele obsahujúcej karbo2 nitrid vanádu bude vyššia než pri oceli spevnenej karbidom vanádu.Wrought products of such steel, after normalization annealing and tempering, or after quenching and tempering, always have a uniformly fine-grained structure with vanadium carbonitrides and, consequently, high strength, respectively. heat resistance and plasticity at elevated temperatures. There is therefore no longer any economic loss and production of non-gifts caused by the previously unwarranted product quality. The guaranteed fineness and uniformity of the grain is achieved by the fact that normalization and tempering or quenching and tempering do not completely dissolve the vanadium precipitates causing the grain growth, since vanadium forms more difficultly soluble vanadium carbonitrides with nitrogen. Vanadium carbide would dissolve completely under the same conditions and grain would coarsen. The rate of vanadium carbonitride roughening is lower than the rate of vanadium carbide roughening, so that the vanadium carbonitride dispersion phase precipitates in finer and dimensionally more stable form. As a result, the heat-resistant properties are also improved. Thus, it can reasonably be expected that the creep rupture strength of steel containing vanadium carbide nitride will be higher than that of vanadium carbide-reinforced steel.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Na výrobu vysoko namáhanej rúrky, určenej na prevádzku pri teplotách do 600 °C bola použitá oceľ podľa ČSN 41 5128 s nasledujúcim hmotnostným chemickým zložením: C = 0,12 %, Mn = 0,56 %, Si = 0,58 %, Cr = = 0,64 %, Mo = 0,43 %, V = 0,25 %. Alce|k= 0,031 %, P = = 0,008 %, S = 0,009 %, N = 0,0116 %, Cu = 0,09 %, Ti = = 0,02 %, Ni = 0,12 %, zvyšok tvorí Fe a nevyhnutné výrobné nečistoty.For the production of a highly stressed tube intended for operation at temperatures up to 600 ° C, steel according to ČSN 41 5128 with the following chemical chemical composition was used: C = 0.12%, Mn = 0.56%, Si = 0.58%, Cr = 0.64%, Mo = 0.43%, V = 0.25%. Al ce | k = 0.031%, P = 0.008%, S = 0.009%, N = 0.0116%, Cu = 0.09%, Ti = 0.02%, Ni = 0.12%, the remainder being Fe and necessary manufacturing impurities.

Rúrka s rozmermi 0 273 x 20 mm bola valcovaná za tepla a tepelne spracovaná obvyklým spôsobom, t. j. normalizačným žíhaním (960 °C/vzduch) a popúšťaním (720 °C/vzduch). Po tomto tepelnom spracovaní mala rúrka nevyhovujúce mechanické vlastnosti, uvedené v tabuľke I na riadku 1, pretože obsah dusíka v oceli N = 0,0116 % bol nižší, než je stanovené podmienkou vynálezu a síce:A tube with dimensions of 0 273 x 20 mm was hot rolled and heat treated in a conventional manner, i. j. normalizing (960 ° C / air) and tempering (720 ° C / air). After this heat treatment, the tube had non-compliant mechanical properties listed in Table I on line 1, since the nitrogen content of the steel N = 0.0116% was lower than the condition of the invention, namely:

N = (0,52 x 0,031 + 0,29 x 0,02 + 0,05 až 0,07) % = = 0,0269 až 0,0919 %. Rúrka z takejto tavby je na daný účel nepoužiteľná.N = (0.52 x 0.031 + 0.29 x 0.02 + 0.05 to 0.07)% = = 0.0269 to 0.0919%. A pipe from such a melt is unusable for this purpose.

Príklad 2Example 2

Na výrobu rovnakej rúrky bola použitá oceľ podľa normy ČSN 41 5128 s nasledujúcim hmotnostným chemickým zložením: C = 0,13 %, Mn = 0,54 %, Si = 0,27 %, P = = 0,018 %, S = 0,015 %, Cr = 0,73 %, Mo = 0,46 %, V = = 0,25 %. Alceik = 0,005 %, Cu = 0,08 %, Ti = 0,002 %, Ni = 0,13%, N = 0,0132%.For the production of the same tube, steel according to ČSN 41 5128 with the following chemical chemical composition was used: C = 0.13%, Mn = 0.54%, Si = 0.27%, P = 0.018%, S = 0.015%, Cr = 0.73%, Mo = 0.46%, V = 0.25%. Alceic = 0.005%, Cu = 0.08%, Ti = 0.002%, Ni = 0.13%, N = 0.0132%.

Rúrka s rozmermi 0 273 x 20 mm, z tejto ocele mala po celkom rovnakom spracovaní ako v príklade 1 vyhovujúce mechanické vlastnosti, uvedené v tabuľke 1 na riadku 2, pretože obsah dusíka N = 0,0132 % vyhovuje vynálezcovskej podmienke obsahu dusíka:A tube with dimensions of 0 273 x 20 mm, made of this steel, after quite the same treatment as in Example 1, had satisfactory mechanical properties as shown in Table 1, line 2, since the nitrogen content N = 0.0132% complies with the inventive nitrogen content condition:

N > (0,52 x 0,05 + 0,29 x 0,002 + 0,005 až 0,07) % = = 0,0082 až 0,0432 %.N> (0.52 x 0.05 + 0.29 x 0.002 + 0.005 to 0.07)% = = 0.0082 to 0.0432%.

Mechanické vlastnosti a vrubová húževnatosť rúrky z tejto ocele úplne vyhovujú požadovaným hodnotám.The mechanical properties and notch toughness of this steel tube fully meet the required values.

cele, ktorá má za následok opísané nevyhovujúce parametre.cell resulting in the described non-compliant parameters.

Ak je však v oceli množstvo dusíka, dané podmienkou podľa vynálezu, neobsahuje oceľ karbidy vanádu, ale len karbonitridy vanádu, ktoré sa pri uvedenom tepelnom spracovaní nerozpúšťajú, a tým zabraňujú hrubnutiu zrna.However, if the amount of nitrogen present in the steel is a condition of the invention, the steel does not contain vanadium carbides, but only vanadium carbonitrides, which do not dissolve in said heat treatment, thereby preventing grain from coarsening.

Priemyselná využiteľnosťIndustrial usability

Oceľ podľa predkladaného vynálezu je vhodná na výrobu tvárnených súčasti, od ktorých je vyžadovaná zvýšená žiarupevnosť a vysoká pevnosť pri súčasne zvýšenej plasticite v rozmedzí pracovných teplôt od 450 °C do 600 °C, ktoré sa využívajú obzvlášť na vysoko namáhaných strojárenských, energetických a chemických zariadeniach, ako napr. kotlové rúrky, plechy, výkovky.The steel according to the present invention is suitable for the production of molded parts which are required to be of higher refractoriness and high strength, while at the same time increasing plasticity in the working temperature range of 450 ° C to 600 ° C, which are used in particular on highly stressed engineering, power and chemical plants , for example. boiler tubes, sheets, forgings.

Claims (1)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Oceľ pre žiarupevné tvárnené súčastí, obzvlášť na použitie v rozmedzí teplôt od 450 °C do 600 °C, vyznačujúca sa tým, že jej hmotnostné chemické zloženie je: uhlík C = 0,05 až 0,3 %, mangán Mn = = 0,01 až 1,2 %, kremík Si = až 0,8 %, chróm Cr = 0,3 až 3,5 %, molybdén Mo = 0,2 až 1,5 %, vanád V = 0,23 až 0,8 %, titán Ti = až 0,02 %, hliník Alcdk = až 0,05 %, fosfor P = až 0,05 %, síra S = až 0,05 %, dusík N = (0,52 x Al + + 0,29 x Ti + 0,005 až 0,07) %, zvyšok tvorí železo Fe a nevyhnutné výrobné nečistoty.1. Steel for a refractory molded part, in particular for use in a temperature range of 450 ° C to 600 ° C, characterized in that its mass chemical composition is: carbon C = 0.05 to 0.3%, manganese Mn = = 0.01 to 1.2%, silicon Si = up to 0.8%, chromium Cr = 0.3 to 3.5%, molybdenum Mo = 0.2 to 1.5%, vanadium V = 0.23 to 0 8%, titanium Ti = up to 0.02%, aluminum Al cdk = up to 0.05%, phosphorus P = up to 0.05%, sulfur S = up to 0.05%, nitrogen N = (0.52 x Al + + 0.29 x Ti + 0.005 to 0.07)%, the remainder being iron Fe and unavoidable manufacturing impurities. Koniec dokumentuEnd of document Tabuľka ITable I Chemické zloženie Chemical composition Mechanické vlastnosti Mechanical properties Hm% wt% Rp02 Rp02 Rm rm KCV KCV pr. pr. C C Cr Cr Mo Mo V IN Ti you AlcdkAl c dk N N Mpa mpa J/ctn2 J / ctn 2 1 1 0,12 0.12 0,64 0.64 0,43 0.43 0,25 0.25 0,02 0.02 031 031 0,0116 0.0116 446 446 591 591 20 20 2 2 0,13 0.13 0,73 0.73 0,46 0.46 0,25 0.25 0,002 0,002 0,005 0,005 0,0132 0.0132 460 460 601 601 213 213
Kde Rpoj je medza šmyku pri 20 °C, Rm je medza pevnosti pri 20 °C, KCV je vrubová húževnatosť pri 20 °CWhere Rpoj is the shear limit at 20 ° C, R m is the strength limit at 20 ° C, KCV is the notch toughness at 20 ° C Ako vyplýva z tabuľky I, má oceľ s modifikovaným obsahom dusíka podľa príkladu 2 podstatne lepšie mechanické vlastnosti než oceľ bez modifikovaného obsahu dusíka podľa príkladu 1.As shown in Table I, the modified nitrogen steel of Example 2 has significantly better mechanical properties than the non-modified steel of Example 1. Dôvodom týchto markantných rozdielov je odlišná štruktúra a veľkosť zŕn medzi oceľami podľa príkladu 1 a 2.The reason for these striking differences is the different grain structure and grain size between the steels of Examples 1 and 2. Pri oceli podľa príkladu 1 sa vyskytuje vanád vo forme karbidov vanádu, ktoré sa rozpúšťajíi rýchlejšie než karbonitridy a spôsobujú pri tepelnom spracovaní výrobku, t. j. pri normalizačnom žíhaní alebo kalení a popúšťaní alebo pri termomechanickom tvárnení pri teplotách nad Ac3, rast zrna a preto vzniká hrubozrnná nerovnomerná štruktúra o-In the steel of Example 1, vanadium is present in the form of vanadium carbides, which dissolve more rapidly than carbonitrides and cause thermal treatment of the product, i. j. during normalization or quenching and tempering or thermo-mechanical forming at temperatures above Ac3, grain growth and therefore a coarse-grained, uneven o-
SK1649-2001A 1999-05-17 2000-05-16 Steel for heat-resistant and/or high-tensile formed parts SK283761B6 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CZ19991752A CZ293084B6 (en) 1999-05-17 1999-05-17 Steel for creep-resisting and high-strength wrought parts, particularly pipes, plates and forgings
PCT/CZ2000/000035 WO2000070107A1 (en) 1999-05-17 2000-05-16 Steel for heat-resistant and/or high-tensile formed parts

Publications (2)

Publication Number Publication Date
SK16492001A3 SK16492001A3 (en) 2002-09-10
SK283761B6 true SK283761B6 (en) 2004-01-08

Family

ID=5463760

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1649-2001A SK283761B6 (en) 1999-05-17 2000-05-16 Steel for heat-resistant and/or high-tensile formed parts

Country Status (4)

Country Link
AU (1) AU4535700A (en)
CZ (1) CZ293084B6 (en)
SK (1) SK283761B6 (en)
WO (1) WO2000070107A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627931B1 (en) * 2003-04-25 2017-05-31 Tubos De Acero De Mexico, S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
MXPA05008339A (en) 2005-08-04 2007-02-05 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes.
WO2008000300A1 (en) 2006-06-29 2008-01-03 Tenaris Connections Ag Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
DE102007057421A1 (en) * 2007-08-27 2009-03-05 Georgsmarienhütte Gmbh Steel for the production of massively formed machine components
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
KR101322067B1 (en) 2009-12-28 2013-10-25 주식회사 포스코 High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
JP6144417B2 (en) 2013-06-25 2017-06-07 テナリス・コネクシヨンズ・ベー・ブイ High chromium heat resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN110358898A (en) * 2019-08-27 2019-10-22 天长市华海电子科技有限公司 A kind of heat treatment process of more alloy forging parts
CN115341152A (en) * 2022-08-31 2022-11-15 鞍钢股份有限公司 Nickel-saving type-100 ℃ low-temperature steel and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2144325A1 (en) * 1971-09-03 1973-03-15 Mim Comb Siderurg Galati Weather resistant constructional steel - is fine grained, weldable and brittle fracture resistant
JP3246993B2 (en) * 1993-10-29 2002-01-15 新日本製鐵株式会社 Method of manufacturing thick steel plate with excellent low temperature toughness
US5545269A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
JPH09184043A (en) * 1995-12-28 1997-07-15 Nippon Steel Corp Low alloy heat resistant steel excellent in high temperature strength and weldability
JPH10102197A (en) * 1996-09-30 1998-04-21 Nkk Corp High strength, high tensile strength steel excellent in resistance to hot dip galvanizing crack

Also Published As

Publication number Publication date
CZ9901752A3 (en) 2001-02-14
CZ293084B6 (en) 2004-02-18
WO2000070107A1 (en) 2000-11-23
WO2000070107B1 (en) 2001-02-15
AU4535700A (en) 2000-12-05
SK16492001A3 (en) 2002-09-10

Similar Documents

Publication Publication Date Title
SK283761B6 (en) Steel for heat-resistant and/or high-tensile formed parts
RU2152450C1 (en) Ultrahigh-strength steel and method of making such steel
US4075041A (en) Combined mechanical and thermal processing method for production of seamless steel pipe
US8317946B2 (en) Seamless steel pipe and method for manufacturing the same
US5938865A (en) Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
WO2019128286A1 (en) Method for fabricating low-cost, short-production-cycle wear-resistant steel
KR100933114B1 (en) Ferritic Heat Resistant Steel
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JP2007031733A (en) STEEL HAVING EXCELLENT DELAYED FRACTURE RESISTANCE AND TENSILE STRENGTH IN CLASS OF >=1,600 MPa, AND METHOD FOR PRODUCING FORMING THEREOF
KR20110136840A (en) Corrosion-resistant austenitic steel
CN102605238B (en) 50kg grade normalized steel plate with good SR (stress relieving annealing) resistance characteristic and manufacturing method thereof
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JPH0152462B2 (en)
CN109790602B (en) Steel
KR102142782B1 (en) Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JPH0578786A (en) Austenitic high-temperature processed steel of precipitation hardenability and treatment thereof
JPH0247526B2 (en)
CA2486902C (en) Steel for components of chemical installations
JP3721896B2 (en) Cr-Mo steel and manufacturing method thereof
JP3214068B2 (en) Method for producing high Cr ferritic steel with excellent creep rupture strength and ductility

Legal Events

Date Code Title Description
PC4A Assignment and transfer of rights

Owner name: JEAN PAUL WHITECASTLE, SPOL. S R.O., PRAHA 1 -, CZ

Free format text: FORMER OWNER: JINPO PLUS, A. S., OSTRAVA, CZ

Effective date: 20160224

MK4A Expiry of patent

Expiry date: 20200516