SK280649B6 - Method for water purification based on the fenton reaction - Google Patents

Method for water purification based on the fenton reaction Download PDF

Info

Publication number
SK280649B6
SK280649B6 SK1465-97A SK146597A SK280649B6 SK 280649 B6 SK280649 B6 SK 280649B6 SK 146597 A SK146597 A SK 146597A SK 280649 B6 SK280649 B6 SK 280649B6
Authority
SK
Slovakia
Prior art keywords
water
feso
flocculant
amount
minutes
Prior art date
Application number
SK1465-97A
Other languages
Slovak (sk)
Other versions
SK146597A3 (en
Inventor
Jozef Prousek
Ladislav Maro
Original Assignee
Prox T.E.C. Poprad
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prox T.E.C. Poprad filed Critical Prox T.E.C. Poprad
Priority to SK1465-97A priority Critical patent/SK280649B6/en
Priority to CZ19981383A priority patent/CZ290006B6/en
Priority to AU96602/98A priority patent/AU9660298A/en
Priority to PCT/SK1998/000016 priority patent/WO1999021801A1/en
Publication of SK146597A3 publication Critical patent/SK146597A3/en
Publication of SK280649B6 publication Critical patent/SK280649B6/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

A method for water purification based on the Fenton reaction the nature of which consists in that to the water adjusted to pH = 2.0 to 4.0 FeSO4.7H2O in an amount of 0.05 % to 0.40 % by weight, and H2O2 in an amount of 0.03 % to 0.45 % by weight are added, the composition is further mixed for 60 to 90 minutes at a temperature of 10 to 30 DEG C, and it is left to react for additional 10 to 35 minutes to finish the reaction, then it is neutralised to pH = 7.0 to 8.0, and further a flocculant, based on polyacrylamide copolymers, and/or a coagulant in an amount of 0.01 to 1.5 % by weight is added under intensive stirring, and the mixture is allowed to sedimentate for 0.5 to 3 hours, after which the cleaned water is separated from the sediment. A mixture of water, FeSO4.7H2O and H202 is stirred in the presence of the day light, solar radiation or artificial UV-VIS radiation or in the dark.

Description

Oblasť technikyTechnical field

Vynález sa týka spôsobu čistenia vôd na báze Fcntonovej reakcie.The invention relates to a process for purifying water based on the Fcnton reaction.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Čistenie odpadových vôd s použitím Fentonovcj reakcie, teda pôsobením H2O2 a FeSO4. 7 H2O opísané v prácach J. H. Careya, Water Poli. Res. J. Canada 27, 1 (1992), S. H. Lina a C. F. Penga, Environ. Technol. 16, 693 (1995) a v monotematickom čísle editorovanom A. Vogelpohlom a S. U. Geissenom, Oxidation Technologies for Water and Wastewater Treatment. Water Sci Technol. 35 (4), 1 - 363 (1997) predstavuje dôležitý krok v oblasti technológie čistenia odpadových vôd. Tieto technológie sú všeobecne nazývané Advanced Oxidation Technologies (AOTs).Wastewater treatment using Fenton reaction, ie by treatment with H 2 O 2 and FeSO 4 . 7 H 2 O described by JH Carey, Water Poli. Res. J. Canada 27, 1 (1992), SH Lina and CF Penga, Environ. Technol. 16, 693 (1995) and in a monothematic issue edited by A. Vogelpohl and SU Geissen, Oxidation Technologies for Water and Wastewater Treatment. Water Sci Technol. 35 (4), 1-363 (1997) represents an important step in the field of waste water treatment technology. These technologies are commonly called Advanced Oxidation Technologies (AOTs).

Jednou z prvých prác v tejto oblasti je práca W. G. Kua, Water Res. 26, 881 (1992), ktorý Fentonovu reakciu robil pri teplote 50 °C a po jej uskutočnení pracoval len s hornou vrstvou čírej kvapaliny a nie s celým objemom a týmto postupom dosiahol pomerne vysoké hodnoty odstránenej farby a CHSK. Dosiahnuté výsledky preto neodzrkadľujú reálnu skutočnosť, nakoľko autor nepracoval s celým objemom čistenej vody. Nevýhodou použitého postupu bola aj tá skutočnosť, že po vyzrážaní vzniknutá zrazenina sedimentovala najmenej 4 hodiny.One of the first works in this field is the work of W. G. Kua, Water Res. 26, 881 (1992), which carried out the Fenton reaction at 50 ° C and, after carrying out it, worked only with the upper layer of clear liquid and not with the entire volume, and achieved a relatively high removal of color and COD. The achieved results therefore do not reflect the real reality, as the author did not work with the entire volume of purified water. A disadvantage of the procedure used was also the fact that the precipitate formed sedimented for at least 4 hours.

Nevýhodou všetkých doteraz publikovaných prác je, že účinnosť odstránenej CHSK vo väčšine prípadov je len 60 až 80 %. Tieto nižšie hodnoty CHSK sú spôsobené použitím nevhodného pomeru H2O2 a Fe2+ soli. Tieto postupy často vedú k vytvoreniu jemnej disperznej sústavy a tým k predĺženiu sedimentačného času až na 24 hodín. Nevýhodou je tiež skutočnosť, že sa dosiahli horšie technologické parametre, ako je sedimentačná rýchlosť, tvar flokúl a filtrovateľnosť. Ďalším nedostatkom je potreba investične náročných zariadení.The disadvantage of all published work so far is that in most cases the efficiency of removed COD is only 60 to 80%. These lower COD values are due to the use of an inappropriate ratio of H 2 O 2 to Fe 2+ salt. These processes often lead to the formation of a fine dispersion system and thus an increase in the sedimentation time up to 24 hours. Another disadvantage is that worse technological parameters such as sedimentation rate, flocculation shape and filterability have been achieved. Another drawback is the need for investment-intensive equipment.

Podstatným nedostatkom uvedených prác je aj tá skutočnosť, že použitím AOTs sa uskutočňovala v prevažnej miere degradácia čistej látky, napríklad fenolu, 4-chlórfenolu a pod. v modelových vodách a s reálnymi odpadovými vodami sa prakticky nezaoberajú.A substantial drawback of the above-mentioned works is also the fact that the use of AOTs predominantly degraded the pure substance, for example phenol, 4-chlorophenol and the like. in model water and real wastewater are practically not dealt with.

Podstata vynálezuSUMMARY OF THE INVENTION

Uvedené nevýhody odstraňuje spôsob podľa vynálezu, ktorého podstata spočíva v tom, že po prídavku heptahydrátu síranu železnatého FeSO4.7 H2O v množstve 0,05 až 0,40 % hmotn. a peroxidu vodíka H2O2 v množstve 0,03 až 0,45 % hmotn. k znečistenej vode upravenej na pH = 2,0 až 4,0 sa vzniknutá zmes mieša počas 60 až 90 min. pri teplote 10 až 30 °C, potom sa nechá doreagovať počas 10 až 35 minút a ďalej sa zneutralizuje na pH = 7,0 až 8,0, napokon sa za intenzívneho miešania pridá flokulant na báze polyakrylamidových kopolymérov a/alebo koagulant v množstve 0,01 až 1,5 % hmotn. a zmes sa nechá sedimentovať počas 0,5 až 3 hod a následne sa oddelí vyčistená voda od sedimentu.The above disadvantages are eliminated by the process of the invention, which is characterized in that the addition of ferrous sulfate heptahydrate FeSO 4 .7 H 2 O 0.05 to 0.40% by weight. and hydrogen peroxide H 2 O 2 in an amount of 0.03 to 0.45 wt. to contaminated water adjusted to pH = 2.0 to 4.0, the resulting mixture is stirred for 60 to 90 min. at a temperature of 10 to 30 ° C, then allowed to react for 10 to 35 minutes and further neutralized to pH = 7.0 to 8.0, finally adding polyacrylamide copolymer flocculant and / or coagulant in an amount of 0 with vigorous stirring. % To about 1.5 wt. and the mixture is allowed to sediment for 0.5 to 3 hours and then purified water is separated from the sediment.

Ako flokulant možno použiť katiónaktívny, aniónaktívny, prípadne neutrálny flokulant.As a flocculant, cationic, anionic or neutral flocculants may be used.

Po prídavku FeSO4. 7 H2O a H2O2 k znečistenej vode sa vzniknutá zmes môže miešať za prítomnosti denného svetla, slnečného žiarenia, prípadne umelého UV-VIS žiarenia alebo za tmy.After addition of FeSO 4 . 7 H 2 O and H 2 O 2 to contaminated water, the resulting mixture can be mixed in the presence of daylight, sunlight, possibly artificial UV-VIS light or in the dark.

Ako koagulant možno použiť polyalumíniumchlorid, polyalumíniumsulfát, síran hlinitý, chlorid železitý, prípadne chlorid hlinitý.As a coagulant, polyaluminium chloride, polyaluminium sulphate, aluminum sulphate, ferric chloride or aluminum chloride may be used.

Použitím flokulantu, prípadne jeho kombináciou s koagulantom sa podstatne skráti čas sedimentácie na 0,5 až 3 hod. a podstatne sa zlepší hodnota odstránenej CHSK. Výrazne sa zlepši aj kvalita flokúl vznikajúceho kalu, flokuly majú definovaný tvar, a tým sa zlepšia aj možnosti lepšej filtrácie kalu.The use of flocculant or its combination with coagulant significantly reduces the sedimentation time to 0.5 to 3 hours. and the COD removed is greatly improved. The quality of the flocculation of the resulting sludge is also greatly improved, the floccules having a defined shape, thereby improving the possibilities of better filtration of the sludge.

Pri stanovení CHSK aj pri úprave pH sa pracuje s celým objemom čistenej reálnej odpadovej vody, čo má samozrejme za následok zistenie skutočných parametrov vyčistenej vody.Both COD and pH adjustment work with the entire volume of purified real waste water, which obviously results in the real parameters of the purified water being determined.

Spôsob podľa vynálezu možno pre jeho jednoduchosť využiť ako jeden stupeň čistenia v zariadeniach, ktoré sú súčasťou čistiarne odpadových vôd, nakoľko tento spôsob čistenia nevyžaduje osobitné zariadenie na uskutočnenie tejto operácie. Spôsob podľa vynálezu takto odstraňuje zložitosť používaných zariadení, zlepšuje technologické parametre vznikajúceho kalu, znižuje časovú náročnosť, podstatne zvyšuje účinnosť odstránenej chemickej spotreby kyslíka (CHSK) a v súčasnosti patrí medzi ekonomicky najvýhodnejšie postupy používané v rámci AOTs technológii. Túto jednoduchú čistiacu metódu jc možné použiť v stacionárnom, semikontinuálnom a kontinuálnom usporiadaní, a to ako operáciu predčistenia, ako jeden zo stupňov čistenia alebo dočistenia znečistenej vody pred vypustením do recipientu.For the sake of simplicity, the method according to the invention can be used as one stage of purification in plants that are part of a wastewater treatment plant, since this method of purification does not require a separate device to perform this operation. The process according to the invention thus eliminates the complexity of the equipment used, improves the technological parameters of the resulting sludge, reduces the time required, substantially increases the efficiency of the removed chemical oxygen demand (COD) and is currently among the most economically advantageous processes used in AOTs technology. This simple purification method can be used in a stationary, semi-continuous and continuous arrangement, as a pretreatment operation, as one of the steps of purification or purification of contaminated water prior to discharge to the recipient.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Do 500 ml Erlenmayerovej banky sa odmeralo 300 ml odpadovej vody z parfumárskej výroby s východiskovou hodnotou CHSK = 1855 mg.ľ1 a 5 % H2SO4 sa upravilo jej pH na hodnotu 3,0. Potom sa za miešania pridalo 1,09372 g FeSO4.7 H2O a 1,6 ml 30 % H2O2. Zmes sa 90 minút miešala pri teplote 22 °C na elektromagnetickej miešačke (200 otáčok/min.’1) a potom 30 minút stála. Po 30 minútach sa zneutralizovala roztokom uhličitanu sodného na pH = = 7,0, potom sa pridala 1 kvapka 0,1 % vodného roztoku katiónaktívneho flokulantu Zetag 57. Po 30 minútach sedimentácie bola v čírej kvapaline stanovená hodnota CHSK. Výsledná hodnota CHSK = 240 mg.ľ1, účinnosť odstránenej CHSK bola 87 %.To a 500 ml Erlenmeyer flask 300 ml of perfume production waste water with a COD COD value of 1855 mg.l -1 and 5% H 2 SO 4 was adjusted to pH 3.0. Then, 1.09372 g of FeSO 4 .7H 2 O and 1.6 ml of 30% H 2 O 2 were added with stirring. The mixture was stirred for 90 minutes at 22 ° C on a magnetic stirrer (200 rev / min. "1) and 30 minutes standing. After 30 minutes, it was neutralized with sodium carbonate solution to pH = 7.0, then 1 drop of a 0.1% aqueous solution of cationic flocculant Zetag 57 was added. After 30 minutes of sedimentation, the COD value was determined in the clear liquid. The resulting COD value = 240 mg.l -1 , the COD removal efficiency was 87%.

Príklad 2Example 2

Do 500 ml Erlenmayerovej banky sa odmeralo 300 ml odpadovej vody z parfumárskej výroby s východiskovou hodnotou CHSK = 3111 mg.ľ1 a 5 % H2SO4 sa upravilo jej pH na hodnotu 3,0. Potom sa za miešania pridalo 0,82029 g FeSO4.7 H2O a 2,4 ml 30 % H2O2. Zmes sa 90 minút miešala pri teplote 22 °C na elektromagnetickej miešačke (200 otáčok/min.·1) a potom 30 minút stála. Po 30 minútach sa zneutralizovala roztokom uhličitanu sodného na pH = = 7,0. Po 30 minútach sedimentácie bola účinnosť odstránenej CHSK 81 %.In a 500 ml Erlenmeyer flask 300 ml of perfume production waste water with a COD COD value of 3111 mg.l -1 and 5% H 2 SO 4 was adjusted to pH 3.0. Then 0.82029 g of FeSO 4 .7H 2 O and 2.4 ml of 30% H 2 O 2 were added with stirring. The mixture was stirred at 22 ° C on an electromagnetic stirrer (200 rpm · 1 ) for 90 minutes and then allowed to stand for 30 minutes. After 30 minutes, it was neutralized with sodium carbonate solution to pH = 7.0. After 30 minutes of sedimentation, the COD removal efficiency was 81%.

Príklad 3Example 3

Postup a druh čistenej vody ako v príklade 2 s tým rozdielom, že po prídavku Fentonového činidla a neutralizácii sa k zmesi pridala 1 kvapka 0,1 % vodného roztoku katiónaktívneho flokulantu Zetag 57. Výsledná hodnota CHSK = = 480 mg.ľ1. Účinnosť odstránenej CHSK bola 87 %, t. j. oProcedure and type of purified water as in Example 2 except that after addition of the Fenton reagent and neutralization, 1 drop of a 0.1% aqueous solution of cationic flocculant Zetag 57 was added to the mixture. The resulting COD value = 480 mg.l -1 . The removal efficiency of COD was 87%, ie

SK 280649 Β6 % viac v porovnaní s príkladom 2 bez použitia flokulantu.2806% more compared to Example 2 without the use of flocculant.

Príklad 4Example 4

Odpadová voda z výroby syntetických vlákien s východiskovou hodnotou CHSKcr = 1556 mg.ľ1. Postup rovnaký ako v príklade 1 s tým rozdielom, že sa pridalo 0,27343 g FeSO4 .7 H2O a 0,8 ml 30 % H2O2. Výsledná hodnota CHSK = 658 mg.ľ1, účinnosť odstránenej CHSK bola 58 %.Waste water from the production of synthetic fibers with a COD COD value r = 1556 mg.ľ 1 . The procedure of EXAMPLE 1 except that it was added to 0.27343 g FeSO 4 .7 H 2 O and 0.8 ml 30% H 2 O second The resulting COD value was 658 mg.l -1 , the COD removal efficiency was 58%.

Príklad 5Example 5

K 300 ml vzorky výluhovej humínovej vody znečistenej ropnými látkami (4,43 mg.ľ1) s východiskovou hodnotou CHSK = 1828 mg.ľ1 a s pH 2,980 sa pridalo pri teplote 23 °C za miešania 1,09372 g FeSO4.7 H2O a 1,6 ml 30 % H2O2. 1 hodinu sa zmes miešala a 30 minút potom stála. Potom sa zneutralizovala za vytvorenia objemnej zrazeniny, ku ktorej sa pridala za miešania I kvapka 0,1 % roztoku flokulantu Zetag 57 a 1 kvapka koagulantu polyalumíniumchloridu (PAC-10 Novaflok). Po 1 hodine státia bola výsledná hodnota CHSK = 508 mg.ľ1 (72 %) a po troch hodinách státia 376 mg.ľ1 (79 %).To a 300 ml sample of lean oil-contaminated humic water (4.43 mg.l -1 ) with a starting COD = 1828 mg.l -1 and a pH of 2.980 was added at 23 ° C with stirring 1.09372 g FeSO 4 .7 H 2 O and 1.6 ml of 30% H 2 O 2 . The mixture was stirred for 1 hour and then allowed to stand for 30 minutes. It was then neutralized to form a bulk precipitate, to which 1 drop of a 0.1% Zetag 57 flocculant solution and 1 drop of polyaluminium chloride coagulant (PAC-10 Novaflok) were added with stirring. After 1 hour of standing, the resulting COD value was 508 mg.l- 1 (72%) and after 3 hours of standing 376 mg.l- 1 (79%).

Príklad 6Example 6

Vzorka vody a postup rovnaký ako v príklade 4 s tým, že pH = 2,96 a že sa pridalo 0,54686 g FeSO4 . 7 H2O aWater sample and procedure as in Example 4 except that pH = 2.96 and 0.54686 g of FeSO 4 was added. 7 H 2 O a

1,6 ml 30 % H2O2 a reakcia bola 90 minút vystavená intenzívnemu slnečnému žiareniu pri teplote 32 °C. Potom 30 minút stála a po neutralizácii na pH = 7,0 sa v celom objeme vyzrážala objemná zrazenina, ku ktorej sa pridala 1 kvapka flokulantu Zetag 57. Po 1 hodine sedimentácie bola výsledná hodnota čírej kvapaliny CHSK = 543 mg.ľ1 (70 %).1.6 ml of 30% H 2 O 2 and the reaction was exposed to intense sunlight at 32 ° C for 90 minutes. It was then allowed to stand for 30 minutes, and after neutralization to pH = 7.0, a bulk precipitate was added to the volume, to which 1 drop of Zetag 57 flocculant was added. After 1 hour of sedimentation, the resulting clear COD value was 543 mg.l -1 (70%). ).

Príklad 7Example 7

Postup rovnaký ako v príklade 5 s tým, že bolo použité 1000 ml odpadovej vody s upraveným pH = 2,994, ku ktorej sa pridalo 1,82287 g FeSO4 . 7 H2 O a 5,33 ml 30 % H2O2. Po 1 hodine státia bola výsledná hodnota CHSK = = 729 mg.ľ1 (60 %) a po 21 hodinách státia 484 mg.ľ1 (74 %). Obsah ropných látok poklesol z 4,43 mg.ľ1 naThe procedure was the same as in Example 5 except that 1000 ml of waste water with adjusted pH = 2.994 was used, to which 1.8228 g of FeSO 4 was added. 7 H 2 O and 5.33 ml of 30% H 2 O 2 . After 1 hour of standing, the resulting COD value = = 729 mg.l -1 (60%) and after 21 hours of standing 484 mg.l -1 (74%). The oil content decreased from 4.43 mg.l -1 to

2,84 mg.ľ1 (36 %).2.84 mg.l -1 (36%).

Príklad 8Example 8

K 300 ml vzorky odpadovej vody z výroby chemických vlákien s východiskovou CHSK =1112 mg.ľ1 a upraveným pH = 3,0 sa pridalo 0,54686 g FeSO4 . 7 H2O a 1,6 ml 30 % H2O2. Zmes sa 1 hodinu miešala pri teplote 24 °C, potom 30 minút stála. Po 30 minútach sa zneutralizovala na pH = 7,0, pridala sa 1 kvapka 0,1 % roztoku flokulantu Zetag 57 a nechala sa 1 hodinu sedimentovať. Výsledná hodnota CHSK = 17 mg.ľ1 (98,5 %). Obsah amoniaku poklesol z 344,2 mg.ľ1 na 240,5 mg.ľ1 (30 %).0.54686 g of FeSO 4 was added to a 300 ml sample of chemical fiber waste water with a COD COD = 1112 mg.l -1 and an adjusted pH = 3.0. 7 H 2 O and 1.6 ml 30% H 2 O 2 . The mixture was stirred at 24 ° C for 1 hour, then allowed to stand for 30 minutes. After 30 minutes, it was neutralized to pH = 7.0, 1 drop of a 0.1% Zetag 57 flocculant solution was added and allowed to sediment for 1 hour. The resulting COD = 17 mg.l- 1 (98.5%). The ammonia content decreased from 344.2 mg.l -1 to 240.5 mg.l -1 (30%).

Príklad 9Example 9

K 300 ml modelovej farebnej odpadovej vody obsahujúcej 100 mg.ľ1 farbiva Isolan Orange S-RL s pH = 3,0 sa pridalo Fentonove činidlo/0,54686 g FeSO4 . 7 H2O a 0,8 ml 30 % H2O2. Ďalší postup ako v príklade 1 s tým rozdielom, že sa po neutralizácii pridala 1 kvapka 0,1 % vodného roztoku katiónaktívneho flokulantu Superflock C 496. Po l hodine státia bola účinnosť odstránenia farby 99,5 % a CHSK = 86%.To 300 ml of model colored wastewater containing 100 mg · l 1 of the dye Isolan Orange S-RL, pH 3.0 was added Fenton reagent / 0.54686 g FeSO fourth 7 H 2 O and 0.8 ml of 30% H 2 O 2 . Proceed as in Example 1 except that 1 drop of 0.1% Superflock C 496 aqueous cationic flocculant was added after neutralization. After 1 hour of standstill, the paint removal efficiency was 99.5% and COD = 86%.

Príklad 10Example 10

K 300 ml modelovej farebnej odpadovej vody obsahujúcej 100 mg.ľ1 farbiva Isolan Marineblau S-RL s pH = 3,0 sa pridalo Fentonove činidlo/0,54686 g FeSO4 . 7 H2O a 0,8 ml 30%H2O2.Fenton reagent / 0.54686 g FeSO 4 was added to 300 ml model colored wastewater containing 100 mg.l- 1 Isolan Marineblau S-RL dye at pH = 3.0. 7 H 2 O and 0.8 ml of 30% H 2 O 2 .

Postup rovnaký ako v príklade 1 s tým rozdielom, že sa po neutralizácii pridala 1 kvapka 0,1 % vodného roztoku aniónaktívneho flokulantu Superflock A 130. Po 1 hodine státia bola účinnosť odstránenia farby 95,7 % a CHSK = = 80 %.The procedure was the same as in Example 1 except that 1 drop of a 0.1% aqueous solution of the anionic flocculant Superflock A 130 was added after neutralization. After 1 hour of standoff, the paint removal efficiency was 95.7% and COD = 80%.

Príklad 11Example 11

K 300 ml modelovej farebnej odpadovej vody obsahujúcej 100 mg.ľ1 farbiva Isolan Gelb S-GL s pH = 3,0 sa pridalo Fentonove činidlo/0,27343 g FeSO4 . 7 H2O a 0,8 ml 30 % H2O2.To 300 ml of model colored wastewater containing 100 mg · l 1 of the dye Isolan Gelb S-GL, pH 3.0 was added Fenton reagent / 0.27343 g FeSO fourth 7 H 2 O and 0.8 ml of 30% H 2 O 2 .

Postup rovnaký ako v príklade 1 s tým rozdielom, že roztok farbiva a Fentonového činidla bol vystavený slnečnému žiareniu počas 1,5 hod. pri teplote 10 °C a že sa po neutralizácii pridala 1 kvapka 0,1 % vodného roztoku katiónaktívneho flokulantu Zetag 57. Po 1 hodine státia bola účinnosť odstránenia farby 99,0 % a CHSK = 91 %.The procedure was the same as in Example 1 except that the dye / Fenton reagent solution was exposed to sunlight for 1.5 hours. at a temperature of 10 ° C and that after neutralization 1 drop of a 0.1% aqueous solution of cationic flocculant Zetag 57 was added.

Priemyselná využiteľnosťIndustrial usability

Spôsob podľa vynálezu možno využiť pri čistení nielen priemyselných odpadových vôd, ale aj úžitkových vôd. Túto čistiacu metódu možno využiť v rámci čistiarne odpadových vôd ako jeden zjej stupňov čistenia, pred čistiarňou na predúpravu odpadovej vody, alebo za čistiarňou ako stupeň na dočisťovanie vody pred jej vypustením do recipientu.The process according to the invention can be used in the treatment of not only industrial waste water but also industrial water. This treatment method can be used within a wastewater treatment plant as one of its treatment stages, upstream of the wastewater pre-treatment plant, or downstream of the wastewater treatment plant as a stage to purify the water before it is discharged into the recipient.

Claims (6)

PATENTOVÉ NÁROKYPATENT CLAIMS L Spôsob čistenia vôd na báze Fentonovej reakcie, vyznačujúci sa tým, že po prídavku heptahydrátu síranu železnatého FeSO4 . 7 H2O v množstve 0,05 % hmotn. až 0,40 % hmotn. a peroxidu vodíka H2O2 v množstve 0,03 % hmotn. až 0,45 % hmotn. k znečistenej vode upravenej na pH = 2,0 až 4,0 sa vzniknutá zmes mieša počas 60 až 90 min. pri teplote 10 až 30 °C, potom sa nechá doreagovať počas 10 až 35 minút a ďalej sa zneutralizuje na pH = 7,0 až 8,0, napokon sa za intenzívneho miešania pridá flokulant na báze polyakrylamidových kopolymérov a/alebo koagulant v množstve 0,01 až 1,5 % hmotn. a zmes sa nechá sedimentovať počas 0,5 až 3 hod. a následne sa oddelí vyčistená voda od sedimentu.Method for purifying water based on the Fenton reaction, characterized in that after the addition of FeSO 4, ferrous sulfate heptahydrate. 7 H 2 O in an amount of 0.05 wt. % to 0.40 wt. and hydrogen peroxide H 2 O 2 in an amount of 0.03 wt. % to 0.45 wt. to contaminated water adjusted to pH = 2.0 to 4.0, the resulting mixture is stirred for 60 to 90 min. at a temperature of 10 to 30 ° C, then allowed to react for 10 to 35 minutes and further neutralized to pH = 7.0 to 8.0, finally adding polyacrylamide copolymer flocculant and / or coagulant in an amount of 0 with vigorous stirring. % To about 1.5 wt. and the mixture is allowed to settle for 0.5 to 3 hours. and then the purified water is separated from the sediment. 2. Spôsob podľa nároku 1, vyznačujúci sa t ý m , že ako flokulant na báze polyakrylových kopolymérov sa použije katiónaktívny, aniónaktívny, prípadne neutrálny flokulant.Method according to claim 1, characterized in that a cationic, anionic or neutral flocculant is used as the polyacrylic copolymer-based flocculant. 3. Spôsob podľa nároku 1 a 2, vyznačujúci sa t ý m , že ako koagulant sa použije polyalumíniumchlorid, polyalumíniumsulfát, síran hlinitý, chlorid železitý, prípadne chlorid hlinitý.Method according to claims 1 and 2, characterized in that polyaluminium chloride, polyaluminium sulphate, aluminum sulphate, iron (III) chloride or aluminum chloride are used as the coagulant. 4. Spôsob podľa nároku laž 3, vyznačujúci sa t ý m , že po prídavku heptahydrátu síranu železnatého FeSO4 . 7 H2O a peroxidu vodíka H2O2 k znečistenej vode sa vzniknutá zmes mieša za prítomnosti denného svetla, slnečného žiarenia, prípadne umelého UV-VIS žiarenia.The process according to claims 1 to 3, characterized in that after the addition of ferrous sulfate heptahydrate FeSO 4 . 7 H 2 O and hydrogen peroxide H 2 O 2 to contaminated water, the resulting mixture is mixed in the presence of daylight, sunlight, or artificial UV-VIS radiation. 5. Spôsob podľa nároku laž 3, vyznačujúci sa t ý m , že po prídavku heptahydrátu síranu železnaté-5. The process according to claim 1, wherein after the addition of ferrous sulfate heptahydrate SK 280649 Β6 ho FeSO4 . 7 H2O a peroxidu vodíka H2O2 k znečistenej vode sa vzniknutá zmes mieša za tmy.SK 280649 Β6 ho FeSO 4 . 7 H 2 O and hydrogen peroxide H 2 O 2 to contaminated water are stirred in the dark. 6. Spôsob podľa nároku laž 5, vyznačujúci sa t ý m , že sa uskutočňuje v stacionárnych, semikontinuálných a kontinuálnych zariadeniach ako operácia predčistenia, čistenia alebo dočistenia znečistenej vody.Method according to claims 1 to 5, characterized in that it is carried out in stationary, semi-continuous and continuous plants as a pretreatment, purification or purification operation of contaminated water.
SK1465-97A 1997-10-29 1997-10-29 Method for water purification based on the fenton reaction SK280649B6 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SK1465-97A SK280649B6 (en) 1997-10-29 1997-10-29 Method for water purification based on the fenton reaction
CZ19981383A CZ290006B6 (en) 1997-10-29 1998-05-06 Water treatment process based on Fenton s reaction
AU96602/98A AU9660298A (en) 1997-10-29 1998-10-26 Method for water purification based on the fenton reaction
PCT/SK1998/000016 WO1999021801A1 (en) 1997-10-29 1998-10-26 Method for water purification based on the fenton reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SK1465-97A SK280649B6 (en) 1997-10-29 1997-10-29 Method for water purification based on the fenton reaction

Publications (2)

Publication Number Publication Date
SK146597A3 SK146597A3 (en) 1999-05-07
SK280649B6 true SK280649B6 (en) 2000-05-16

Family

ID=20434580

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1465-97A SK280649B6 (en) 1997-10-29 1997-10-29 Method for water purification based on the fenton reaction

Country Status (4)

Country Link
AU (1) AU9660298A (en)
CZ (1) CZ290006B6 (en)
SK (1) SK280649B6 (en)
WO (1) WO1999021801A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596176B1 (en) * 2001-06-26 2003-07-22 Delozier Ii Gerald Edward Potable water treatable process using hydrogen peroxide and metallic coagulant
AT412470B (en) * 2003-04-30 2005-03-25 Dauser Industrieanlagen Und Ab METHOD FOR CLEANING WASTE WATER
ES2554460T3 (en) * 2003-08-22 2015-12-21 Peroxychem Spain, S.L.U. Method to purify wastewater
CN100453472C (en) * 2004-12-15 2009-01-21 中国科学院生态环境研究中心 Method and apparatus for highly efficient removal of water organisms by utilizing photoelectric Fenton reaction
CN100366545C (en) * 2004-12-15 2008-02-06 中国科学院生态环境研究中心 Method and apparatus for removing water organisms by utilizing inductive electric Fenton reaction
CN101186402B (en) * 2007-11-27 2011-06-01 华泰集团有限公司 Fenton two-stage method oxidation processing technique for paper-making and pulping waste water
FR2925482B1 (en) 2007-12-20 2010-01-15 Otv Sa METHOD OF TREATING WATER BY ADVANCED OXIDATION AND FLOCCULATION, AND CORRESPONDING TREATMENT PLANT.
CN102126802A (en) * 2011-04-13 2011-07-20 尹军 Method for treating domestic sewage by polyaluminium chloride (PAC) coagulant and Fenton reagent jointly utilizing process
CN103058294A (en) * 2011-10-18 2013-04-24 成都快典科技有限公司 Sewage treatment process by microwave
AR094422A1 (en) * 2011-10-25 2015-08-05 Basf Se SUSPENSION CONCENTRATION
CN102633335B (en) * 2012-04-20 2013-06-19 河北大学 Sewage treatment method
CN102887582A (en) * 2012-10-18 2013-01-23 同济大学 Advanced oxidation water treatment method of Fe0-Al0/O2 system
CN103663789A (en) * 2013-12-11 2014-03-26 山东华亚环保科技有限公司 Acid and alkali wastewater treatment method
CN104261589A (en) * 2014-09-29 2015-01-07 天津大学 Separated-point inflow type Fenton reagent oxidation treatment device and method for treating wastewater
CN105110513A (en) * 2015-09-23 2015-12-02 张家港市清泉水处理有限公司 Electroplating wastewater treatment system and method
CN106006820A (en) * 2016-07-07 2016-10-12 安徽天顺环保设备股份有限公司 Environment-friendly sewage treating agent and preparation method thereof
CN112678983A (en) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 Wastewater treatment method for removing heavy metals and reducing COD
DE102022102849A1 (en) 2022-02-08 2023-08-10 Bhu Umwelttechnik Gmbh Process for waste water purification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139258A (en) * 1978-04-21 1979-10-29 Nippon Peroxide Co Ltd Sludge disposal method
FR2464230A1 (en) * 1979-08-31 1981-03-06 Ugine Kuhlmann PROCESS FOR PURIFYING WASTE WATER CONTAINING COLORING MATERIALS
US4724084A (en) * 1986-03-28 1988-02-09 The Boeing Company System for removing toxic organics and metals from manufacturing wastewater

Also Published As

Publication number Publication date
WO1999021801A1 (en) 1999-05-06
CZ138398A3 (en) 1999-12-15
WO1999021801B1 (en) 1999-06-10
SK146597A3 (en) 1999-05-07
CZ290006B6 (en) 2002-05-15
AU9660298A (en) 1999-05-17

Similar Documents

Publication Publication Date Title
SK280649B6 (en) Method for water purification based on the fenton reaction
Semerjian et al. High-pH–magnesium coagulation–flocculation in wastewater treatment
US7048852B2 (en) Method and apparatus for treating water or wastewater to reduce organic and hardness contamination
CN101638279A (en) Method for treating sulfur-containing printing and dyeing wastewater
CN105366839A (en) Treatment device and method for simultaneously removing high-concentration SS, fluoride, sulfate, arsenate and COD in desulfurization waste water
CN108821473A (en) A kind of dyeing and printing sewage treatment process
KR101360015B1 (en) Method of reusing treated wastewater and system using the same
SK22794A3 (en) Process for lowering the phosphorus content of waste water
US3694356A (en) Abatement of water pollution
CA1334543C (en) Method for the treatment of sewage and other impure water
Pinto Filho et al. Evaluation of flocculation and dissolved air flotation as an advanced wastewater treatment
KR19980077286A (en) Oxidation of Organic Wastewater in an Electrolytic Treatment Tank Using Fenton Oxidation
JP2601441B2 (en) Wastewater treatment method
CN110577269A (en) Composite reagent for removing manganese and ammonia nitrogen in wastewater and application method thereof
Guvenc et al. Effects of persulfate, peroxide activated persulfate and permanganate oxidation on treatability and biodegradability of leachate nanofiltration concentrate
CN110040870B (en) Method for treating paint spraying wastewater
JP3731830B2 (en) Purification method for difficult-to-treat contaminated water
Saminathan et al. Organic matter removal from biologically treated sewage effluent by flocculation and oxidation coupled with flocculation
JPS6354998A (en) Treatment of organic sewage containing phosphorus
SU941306A1 (en) Process for purifying slime-bearing effluents from quartz and fieldspar production
CZ277803B6 (en) Process for treating waste water leaving pulp mills
KR950002113B1 (en) Waste water treatment method
Grabowski et al. Coagulation treatment for olive oil pomace extraction wastewater
SU1763385A1 (en) Method for purification of sewage from textile plants
JPS6133639B2 (en)