SK279719B6 - Dna fragment, recombinant dna, process for the production of l-lysine - Google Patents

Dna fragment, recombinant dna, process for the production of l-lysine Download PDF

Info

Publication number
SK279719B6
SK279719B6 SK1228-90A SK122890A SK279719B6 SK 279719 B6 SK279719 B6 SK 279719B6 SK 122890 A SK122890 A SK 122890A SK 279719 B6 SK279719 B6 SK 279719B6
Authority
SK
Slovakia
Prior art keywords
pcs2
lysine
corynobacterium
dna
plasmid
Prior art date
Application number
SK1228-90A
Other languages
Slovak (sk)
Other versions
SK122890A3 (en
Inventor
Bern Bachman
Georg Thierbach
Jrn Kalinowski
Alfred Phler
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Publication of SK279719B6 publication Critical patent/SK279719B6/en
Publication of SK122890A3 publication Critical patent/SK122890A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

A DNA fragment has a nucleotide sequence with 2.1 kb downstream of the Pst I site and Xho I site. The said DNA fragment has a genetic sequence coding the production of proteins which lead to an aspartyl-beta-semialdehyde dehydrogenase (asd) activity or to the deregulation of aspartate kinase (lysC) and is contained in the pCS2 plasmide, in Corynobacterium glutamicum, under No. DSM 5086. Here disclosed recombinant DNA is derived from the said pCS2 plasmide. A process for the production of the L-lysine, obtained by Corynebacterium or Brevibacterium genus fermentation, resides in the fact that production microorganisms contain a plasmide or some of the stated recombinant DNA. Corynobacterium glutamicum DMS 5086 is preferably used as a microorganism.

Description

Oblasť technikyTechnical field

Vynález sa týka fragmentu DNA, ktorý sa nachádza v plazmide, rekombinantnej DNA odvodenej od tohto plazmidu a spôsobu výroby L-lyzínu s použitím mikroorganizmu obsahujúceho uvedený plazmid alebo z neho odvodenú rekombinantnú DNA.The invention relates to a DNA fragment present in a plasmid, to recombinant DNA derived from this plasmid, and to a method for producing L-lysine using a microorganism comprising said plasmid or recombinant DNA derived therefrom.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Corynobacterium glutamicum a príbuzné rody, ako sú napríklad Brevibacterium lactofermentum a Brevibacterium flavum, sú známe ako mikroorganizmy tvoriace aminokyseliny.Corynobacterium glutamicum and related genera such as Brevibacterium lactofermentum and Brevibacterium flavum are known as amino acid-forming microorganisms.

Aby sa produktivita zvýšila, uskutočňujú sa umelé mutácie.To increase productivity, artificial mutations are made.

Príkladmi takto pripravených umelých mutantov sú napríklad lyzín produkujúce kmene Corynobacterium ghitamicum, ktoré okrem rezistencie AEC (AEC = S-2-aminoetylcysteín) preukazujú s ňou spojenú homoserínovú a leucínovú auxotrofiu (US patentový spis č. 3 708 395) alebo sú citlivé na metionín (US patentový spis č. 3 871 960).Examples of artificial mutants thus prepared are, for example, lysine-producing strains of Corynobacterium ghitamicum which, in addition to AEC resistance (AEC = S-2-aminoethylcysteine), show homoserine and leucine auxotrophy associated therewith (U.S. Pat. No. 3,708,395) or are sensitive to U.S. Patent No. 3,871,960).

Okrem týchto klasických metód boli objavené vektorové systémy, ktoré umožňujú transformáciu mikroorganizmov rodov Corynobacterium a Brevibacterium (DE-OS č. 37 37 719, DE-OS č. 38 41 453, Thierbach G., Schwarzer A., Piihlcr A., Appl. Microbiol. Biotechnol. 29 (1988) 356-362).In addition to these classical methods, vector systems have been discovered which allow the transformation of microorganisms of the genera Corynobacterium and Brevibacterium (DE-OS No. 37 37 719, DE-OS No. 38 41 453, Thierbach G., Schwarzer A., Piihlcr A., Appl. Microbiol Biotechnol 29 (1988) 356-362).

VEP-A-0219 027 sa opisuje spôsob výroby rôznych aminokyselín, pri ktorom sa rekombinantnou DNA transformujú rody Corynobacterium a Brevibacterium, a tak sa zvyšujú produkované množstvá aminokyselín.EP-A-0219 027 discloses a process for the production of various amino acids, in which the genera Corynobacterium and Brevibacterium are transformed with recombinant DNA, thereby increasing the amounts of amino acids produced.

Rekombinantná DNA obsahuje pritom fragment DNA, kódujúci syntézu aspartátsemialdehyddehydrogenázy alebo aspartátaminotransferázy.The recombinant DNA comprises a DNA fragment encoding the synthesis of aspartate semialdehyde dehydrogenase or aspartate aminotransferase.

Z US patentového spisu č. 4 346 170 je známe klonovanie genetickej informácie riadiacej tvorbu lyzínu v Escherichia coli, ktorá pochádza z kmeňa toho istého rodu s rezistenciou proti analógom L-lyzínu, ako je napríklad AEC.U.S. Pat. No. 4,346,170, it is known to clone genetic information controlling lysine production in Escherichia coli which originates from a strain of the same genus with resistance to L-lysine analogs such as AEC.

Predmet US patentového spisu č 4 560 654 sa týka tej istej oblasti. V tomto prípade sa však v lyzín-auxotrofnom kmeni Corynobacterium glutamicum klonuje genetická informácia z AEC-rezistentného kmeňa toho istého rodu z toho dôvodu, aby sa vylučoval lyzín.The subject of U.S. Pat. No. 4,560,654 relates to the same field. In this case, however, genetic information from an AEC-resistant strain of the same genus is cloned in the lysine-auxotrophic strain Corynobacterium glutamicum in order to secrete lysine.

Identita klonovaného fragmentu DNA nie je zrejmá.The identity of the cloned DNA fragment is not obvious.

Tiež zEP č. 88 166 je možné iba vyrozumieť, že kmeň Corynobacterium glutamicum vylučuje lyzín, keď transformáciou získal fenotyp AEC rezistencie.Also from EP no. 88166, it can only be understood that the Corynobacterium glutamicum strain secretes lysine when transformed to obtain the phenotype of AEC resistance.

Rekombinantný plazmid pAec5 použitý na tento účel obsahuje 3,9 kb fragment chromozómovej DNA, vsadený na štiepne miesto BglII vektora pCG 11.The recombinant plasmid pAec5 used for this purpose contains a 3.9 kb fragment of chromosomal DNA inserted at the BglII cleavage site of the vector pCG11.

Úlohou predloženého vynálezu je zmeniť regulovateľnosť dôležitého enzýmu biosyntézy lyzínu v mikroorganizme rodu Corynobacterium alebo Brevibacterium tak, aby sa získal producent lyzínu alebo aby sa zvýšila schopnosť produkcie lyzínu.It is an object of the present invention to alter the controllability of an important enzyme of lysine biosynthesis in a microorganism of the genus Corynobacterium or Brevibacterium so as to obtain a lysine producer or to increase the ability of lysine production.

Podstata vynálezuSUMMARY OF THE INVENTION

Predmetom vynálezu je fragment DNA, ktorý sa skladá z nukleotidovej sekvencie s dĺžkou 2,1 kb, ohraničený PstI a Xhol miestami štiepenia, ktorého podstata spočíva v tom, že aminokyselinová sekvencia uvedená na obr. 5 kóduje produkciu proteínov, vedúcich k aktivite aspartyl-P-semial dehyddehydrogenázy (asd) a k deregulácii aspartátkinázy (lysC), je obsiahnutý v plazmide pCS2, ktorého delečná mapa je uvedená na obr. 3, uloženom v Corynobacterium glutamicum pod číslom DSM 5086.The present invention provides a DNA fragment consisting of a 2.1 kb nucleotide sequence flanked by PstI and XhoI cleavage sites, characterized in that the amino acid sequence shown in FIG. 5 encodes the production of proteins leading to aspartyl-β-semial dehyddehydrogenase (asd) activity and aspartic kinase deregulation (lysC) is contained in the plasmid pCS2, the deletion map of which is shown in FIG. 3 deposited with Corynobacterium glutamicum under number DSM 5086.

Predmetom vynálezu je ďalej aj rekombinantná DNA odvodená z plazmidu pCS2, charakterizovaná delečnou mapou zodpovedajúcou označeniu pCS26, uvedenou na obr. 3.The present invention also provides recombinant DNA derived from plasmid pCS2, characterized by a deletion map corresponding to the designation pCS26 shown in FIG. Third

Predmetom vynálezu je ďalej aj rekombinatná DNA odvodená z plazmidu pCS2, charakterizovaná delečnými mapami zodpovedajúcimi označeniam pCS23 alebo pCS233 na obr. 3.The invention also provides recombinant DNA derived from plasmid pCS2, characterized by deletion maps corresponding to the designations pCS23 or pCS233 in FIG. Third

Predmetom vynálezu je ďalej aj spôsob výroby L-lyzínu fcrmcntáciou mikroorganizmov rodu Corynobacterium alebo Brevibacterium produkujúcich túto aminokyselinu, ktorého podstata spočíva v tom, že mikroorganizmy obsahujú uvedený plazmid alebo niektorú z uvedených rekombinantných DNA.The present invention further provides a process for the production of L-lysine by culturing microorganisms of the genus Corynobacterium or Brevibacterium producing this amino acid, wherein the microorganisms comprise said plasmid or one of said recombinant DNAs.

Pri výhodnom uskutočnení opísaného spôsobu sa používa mikroorganizmus Corynobacterium DMS 5086.In a preferred embodiment of the method described, Corynobacterium DMS 5086 is used.

Vynález sa teda okrem iného týka spôsobu výroby L-lyzínu, ktorého podstata spočíva v tom, že sa rekombinantná DNA, ktorá pochádza z fragmentu DNA, ktorý má kódovanú genetickú sekvenciu na produkciu proteínov, ktoré vedú k aspartyl-P-semialdehyddehydrogenázovej (asd) aktivita a/alebo k deregulácii aspartátkinázy a skladá sa z vektora DNA, inzeruje do mikroorganizmu rodu Corynobacterium alebo Brevibacterium produkujúceho lyzín, takto získané transformanty sa kultivujú vo vhodnom osebe známom médiu a vytvorený lyzín sa známymi metódami izoluje.Accordingly, the invention relates, inter alia, to a process for the production of L-lysine, characterized in that the recombinant DNA is derived from a DNA fragment having a coded genetic sequence for the production of proteins which lead to aspartyl-β-semialdehyde dehydrogenase (asd) activity and / or to deregulate aspartic kinase and consists of a DNA vector, inserted into a lysine-producing microorganism of the genus Corynobacterium or Brevibacterium, the transformants thus obtained are cultured in a suitable medium known per se, and the lysine formed is isolated by known methods.

Ako donorové kmene môžu slúžiť všetky kmene, výhodne baktérie rodu Brevibacterium a Corynobacterium produkujúce lyzín, ktoré obsahujú príslušné sekvencie DNA, najmä však Corynobacterium glutamicum DM 58-1, ktorý bol vyvinutý mutagenézou Corynobacterium ATCC 13032 etylmetánsulfátom a preukazuje AEC-rezistenciu.Donor strains can be all strains, preferably Brevibacterium and Corynobacterium lysine producing bacteria, which contain the respective DNA sequences, in particular Corynobacterium glutamicum DM 58-1, which has been developed by mutagenesis of Corynobacterium ATCC 13032 with ethyl methanesulfate and demonstrates AEC resistance.

Tento kmeň je uložený pod číslom DSM 4697, pričom slúži ako hostiteľská baktéria pre plazmid pDM6. Tento môže odborník známymi spôsobmi oddeliť a tak získať kmeň DM58-1 (FEMS Microbiology Review 32 (1986) 149-157)This strain is deposited under the number DSM 4697 and serves as a host bacterium for the plasmid pDM6. This can be separated by a person skilled in the art by known methods to obtain strain DM58-1 (FEMS Microbiology Review 32 (1986) 149-157)

Chromozómová DNA sa z donoru extrahuje známym spôsobom a spracuje sa restikčnou endonukleázou.Chromosomal DNA is extracted from the donor in a known manner and treated with a restriction endonuclease.

Po konštrukcii rekombinantnej DNA zavedením chromozómového fragmentu DNA do vektora prebieha transformácia mikroorganizmu s takto získaným plazmidom, podľa predloženého vynálezu napríklad pCS2, ktorého reštrikčná schéma je znázornená na obr. 2 a ktorý je v kmeni Corynobacterium glutamicum DM2-l/pCS2 uložený podľa Budapeštianskej zmluvy pod číslom DSM 5086 v Nemeckej zbierke mikroorganizmov a bunkových štruktúr.After construction of the recombinant DNA by introducing the chromosomal DNA fragment into the vector, the microorganism is transformed with the plasmid thus obtained, for example pCS2 according to the present invention, the restriction scheme of which is shown in FIG. 2 and which is deposited in the Corynobacterium glutamicum DM2-1 / pCS2 strain under the Budapest Treaty under the number DSM 5086 in the German Collection of Microorganisms and Cell Structures.

Výhodný vektorový systém predstavuje pZl (uložený v Corynobacterium glutamicum DM 274-2 pod číslom DSM 4241) alebo i pCV34, pCVX4, pCVXlO, pCVX15, pZ9 a pZ8-l (DE-OS 38 41 454.6) alebo pCV35, pECM3 a pECMl (DE-OS 38 41 453.8).A preferred vector system is pZ1 (deposited in Corynobacterium glutamicum DM 274-2 under DSM 4241) or even pCV34, pCVX4, pCVX10, pCVX15, pZ9 and pZ8-1 (DE-OS 38 41 454.6) or pCV35, pECM3 and pECM1 (DE -OS 38 41 453.8).

Použiteľné sú však aj zložené plazmidy, známe z EP-A-93 611, ak samy replikujú v rodoch Corynobacterium alebo Brevibacterium, najmä pAJ 655, pAJ 611, p AJ 440, p AJ 1844 a pAJ 3148 alebo tiež pCG 11, pCE 54 (pozri EP-A 0 233 581), a taktiež pUL33O (Santamaria, R. I. a kol., J. Bacteriology 162, (1958) 463-467).However, composite plasmids, known from EP-A-93 611, are also useful when they replicate themselves in the genera Corynobacterium or Brevibacterium, in particular pAJ 655, pAJ 611, p AJ 440, p AJ 1844 and pAJ 3148 or also pCG 11, pCE 54 ( see EP-A 0 233 581) as well as pUL33O (Santamaria, RI et al., J. Bacteriology 162, (1958) 463-467).

Predmetom prihlášky sú aj mikroorganizmy rodu Corynobacterium alebo Brevibacterium obsahujúce rekombinantnú DNA a ich použitie na výrobu L-lyzínu fermentáciou.The present invention also relates to microorganisms of the genus Corynobacterium or Brevibacterium containing recombinant DNA and their use for the production of L-lysine by fermentation.

Klonovaný fragment DNA (pozri obr. 2) obsahuje len časť génu aspartátkinázy (LysC), ako aj úplný gén aspartyl-β-semialdehyddehydrogenázy (asd), čo je možné zistiť sekvenčnou analýzou.The cloned DNA fragment (see FIG. 2) contains only a portion of the aspartate kinase (LysC) gene as well as the complete aspartyl-β-semialdehyde dehydrogenase (asd) gene, as determined by sequence analysis.

Časť tohto génu aspartátkinázy má homologickú sekvenciu DNA k β-podjednotke aspartátkinázy II z Bacillus substilis.Part of this aspartic kinase gene has a homologous DNA sequence to the β-subunit of aspartic kinase II from Bacillus substilis.

Všetky transformanty, ktorých plazmid má túto sekvenciu (pCS2, pCS22, pCS23, pCS24, pCS26 a pCS233), obsahujú v porovnaní s chromozómovo kódovaným enzýmom z ATCC 13032 vo vzťahu k feed-back inhibitorom L-lyzínu a L-treonínu značne desenzibilizovanú aspartátkinázu a majú AEC-rezistenciu.All transformants whose plasmid has this sequence (pCS2, pCS22, pCS23, pCS24, pCS26 and pCS233) contain a substantially desensitized aspartate kinase relative to the feed-back inhibitor L-lysine and L-threonine compared to the chromosome encoded enzyme from ATCC 13032 and have AEC resistance.

Závery odvodzované z porovnaní homológie, podľa ktorých fragment génu PstI - Xhol z DM58-1 obsahuje len časť génu LysC (AK), ale úplný gén asd, môžu byť jednoznačne potvrdené pomocou enzýmových meraní.Conclusions derived from a homology comparison that a fragment of the PstI-XhoI gene from DM58-1 contains only part of the LysC (AK) gene but the full asd gene can be unequivocally confirmed by enzyme measurements.

Žiadny kmeň Corynobacterium glutamicum ATCC 13032, transformovaný derivátom pCS2 alebo pCS2 neobsahuje prekvapivo zvýšenú aktivitu aspartátkinázy v porovnaní s pôvodným kmeňom (tabuľka 4. stĺpec 3).No Corynobacterium glutamicum ATCC 13032 strain transformed with a pCS2 or pCS2 derivative contains surprisingly increased aspartate kinase activity compared to the parent strain (Table 4, column 3).

Naproti tomu vo všetkých transformantoch, ktorých plazmidy obsahujú štruktúrny gén asd, sa dá zistiť silná superexpresia aspartyl^-semialdehyddehydrogenázy (ASA-DH), (tabuľka 4, stĺpec 2, obr. 3 a 4). Plazmidy pCS23 a deriváty pCS23 nevedú podľa očakávania k superexpresii ASA-DH.In contrast, in all transformants whose plasmids contain the structural gene asd, strong superexpression of aspartyl-β-semialdehyde dehydrogenase (ASA-DH) can be detected (Table 4, column 2, Figures 3 and 4). As expected, pCS23 plasmids and pCS23 derivatives do not result in superexpression of ASA-DH.

Silná superexpresia ASA-DH, nastávajúca pri klonovaní podľa vynálezu fragmentu DNA pomocou pCS2 a z neho odvodených derivátov, zaručuje účinnú reakciu produktu aspartátkinázovej reakcie, β-aspartylfosfátu, čím dochádza k urýchleniu už neinhibovanej aspartátkinázovej reakcie.The strong superexpression of ASA-DH resulting from the cloning of the DNA fragment according to the invention with pCS2 and derivatives derived therefrom guarantees an efficient reaction of the aspartate kinase reaction product, β-aspartyl phosphate, thereby accelerating the no-inhibited aspartate kinase reaction.

Na základe vysokej lability ASA-DH kolísajú faktory superexpresie, kalkulovateľné zo špecifických aktivít v rozmedzí 31 až 65.Due to the high lability of ASA-DH, the factors of superexpression, calculated from specific activities range from 31 to 65.

V porovnaní so súčasným stavom techniky dochádza k podstatnému zjednodušeniu tým, že sa po prvé musí izolovať len časť génu LysC, ktorý vedie k deregulácii aspartátkinázy, aby sa dosiahlo alebo zlepšilo vylučovanie lyzínu, apo druhé na základe organizácie LysC a asd v jednom operóne sa môže izolovať gén asd bez dodatočných experimentálnych nákladov spojených s AEC-rezistenciou, nastávajúcou s mutáciou génu LysC, spoločne s génom LysC. Naopak sa môže pomocou mutantov asd izolovať fragment DNA obsahujúci LysC + asd, a to nezávisle od toho, či je LysC mutovaný alebo nie.Compared to the current state of the art, there is a substantial simplification in that, firstly, only a portion of the LysC gene that leads to deregulation of aspartate kinase must be isolated to achieve or improve lysine secretion, and secondly based on LysC and asd in one operon. isolate the asd gene without the additional experimental costs associated with the AEC-resistance occurring with the mutation of the LysC gene, together with the LysC gene. Conversely, a DNA fragment containing LysC + asd can be isolated using the asd mutants, regardless of whether the LysC is mutated or not.

1. Charakteristika donora génu DM58-1 a príjemcu génu ATCC 130321. Characteristics of the donor DM58-1 gene and the ATCC 13032 recipient

1.1 Získanie a fenotyp kmeňa DM58-11.1 Acquisition and phenotype of strain DM58-1

Kmeň DM58-1 sa získal mutagenézou kmeňa Corynobacterium glutamicum ATCC 13032 bežnou koncentráciou etylmetánsulfonátu.The DM58-1 strain was obtained by mutagenesis of the Corynobacterium glutamicum ATCC 13032 strain with a conventional concentration of ethyl methanesulfonate.

Selekcia prebieha kultiváciou takto získanej zmesi mutantov na minimálnom agare so zložením:Selection is carried out by culturing the mixture of mutants thus obtained on minimal agar with the following composition:

glukóza glucose 20 g 20 g síran amónny ammonium sulfate 10g 10 grams močovina urea 2,5 g 2.5 g dihydrogenfosforečnan draselný potassium dihydrogen phosphate 1 g 1 g heptahydrát síranu horečnatého magnesium sulfate heptahydrate 0,4 g 0.4 g heptahydrát síranu železnatého ferrous sulfate heptahydrate 2 mg 2 mg monohydrát síranu mangánatého manganese sulphate monohydrate 1,5 mg 1.5 mg biotín biotin 300 pg 300 pg tiamín thiamine 900 pg 900 pg agar agar 20 g 20 g

destilovaná voda 1 liter (ph 7,0), ktorý obsahoval vhodnú koncentráciu S-aminoetyl-D,L-cysteínu (AEC). Kloň izolovaný z tohto selekčného média a schopný delenia na tomto médiu, neskôr označený ako DM58-1, nenesie okrem svojej AEC-rezistencie žiadne ďalšie genetické znaky.distilled water 1 liter (ph 7.0) containing an appropriate concentration of S-aminoethyl-D, L-cysteine (AEC). A clone isolated from this selection medium and capable of dividing on this medium, later designated DM58-1, bears no other genetic traits apart from its AEC resistance.

1.2 Enzymatické obsahy aspartátkinázy a aspartyl-β-semialdehyddehydrogenázy v ATCC 13032 aDM58-l1.2 Enzymatic contents of aspartic kinase and aspartyl-β-semialdehyde dehydrogenase in ATCC 13032 aDM58-1

Kmene ATCC 13032 a DM58-1 sa kultivujú za priamo porovnateľných podmienok v Štandard I Bouillon (Merck Art. Nr. 7882) s prídavkom 4 g/1 glukózy a 1 mM chloridu horečnatého pri 30 °C a 150 otáčok za minútu až do dosiahnutia včasné stacionárnej fázy a centrifugáciou sa od kultivačného média oddelia. Premyjú sa trikrát 100 mM Tris/HCl (pH 7,5); 1 mM DTT a vlhká bunková masa sa suspenduje v jednom objemovom diele rovnakého tlmivého roztoku.The strains ATCC 13032 and DM58-1 are cultured under directly comparable conditions in Standard I Bouillon (Merck Art. Nr. 7882) with the addition of 4 g / l glucose and 1 mM magnesium chloride at 30 ° C and 150 rpm until reaching an early time. of the stationary phase and centrifuged to separate them from the culture medium. Wash three times with 100 mM Tris / HCl (pH 7.5); 1 mM DTT and wet cell mass are suspended in one volume of the same buffer.

Takto suspendované bunky sa dezintegrujú v guľovom mlyne (B. Braun Melsungen - MSK-Homogenisator, IMA-Disintegrator S) rozmiešaním s vhodným množstvom sklených guľôčok na sklenom filtri a centrifuguje sa 30 minút pri 30 000 x g do vyčírenia.The suspended cells are then disintegrated in a ball mill (B. Braun Melsungen-MSK-Homogenisator, IMA-Disintegrator S) by mixing with an appropriate amount of glass beads on a glass filter and centrifuged for 30 minutes at 30,000 x g until clear.

Po 15-hodinovej dialýze v tlmivom roztoku stabilizujúcom enzým sa určila enzýmová aktivita v nasledujúcich testovacích zmesiach:After 15 hours of dialysis in enzyme stabilizing buffer, enzyme activity was determined in the following test mixtures:

Test aspartátkinázy:Aspartate Kinase Test:

Tris/HCl (pH 7,5) Tris / HCl (pH 7.5) 100 mM 100 mM DTT DTT 1 mM 1 mM síran amónny ammonium sulfate 400 mM 400 mM chlorid horečnatý magnesium chloride 20 mM 20 mM NH2OH.HC1NH 2 OH.HCl 400 mM 400 mM L-aspartát L-aspartate 300 mM 300 mM ATP ATP 40 mM a 40 mM a rôzne množstvá enzýmových preparátov. different amounts of enzyme preparations.

Prídavkom 150 μΐ roztoku z 10 % hexahydrátu chloridu železitého; 3,3 % TCA; 0,7 N HCI na 500 μΐ testovanej enzýmovej zmesi sa enzýmová reakcia po tridsaťminútovej inkubácii pri teplote 37 °C zastaví. Z koncentrácie aspartyl-β-hydroxamátu, zistenej fotometrický (ΔΕ54ο J pomocou kalibračnej krivky, sa kalkuluje enzymatická aktivita v pmol/mg.min (U/mg). Príslušné koncentrácie proteinov sa určovali podľa metódy Lowryho a kolektívu (Lowry a kol. J. Biol. Chem. 193, 265 (1951) alebo Bradforda (Bradford Anál. Biochem. 72, 248 (1976)).Addition of 150 μΐ of 10% ferric chloride hexahydrate solution; 3.3% TCA; With 0.7 N HCl per 500 μΐ of the test enzyme mixture, the enzyme reaction is stopped after a thirty minute incubation at 37 ° C. The enzymatic activity in pmol / mg.min (U / mg) is calculated from the concentration of aspartyl β-hydroxamate determined by photometric (54Ε 54 ο J by calibration curve). The respective protein concentrations were determined according to the Lowry et al. Method (Lowry et al. J. Biol. Chem. 193, 265 (1951) or Bradford (Bradford Anal. Biochem. 72, 248 (1976)).

Test aspartyl- β-semialdehyddehydrogenázy:Aspartyl β-semialdehyde dehydrogenase test:

dietanolamín (ph 9,0) diethanolamine (ph 9.0) 120 mM 120 mM NaAsO4 NaAsO4 40 mM 40 mM NADP+ NADP + 1 mM 1 mM L-treonín L-threonine 5 mM 5 mM aspartyl-O-semialdehyd The aspartyl-semialdehyde 1,3 mM a 1.3 mM a

rôzne množstvá enzýmových preparátov v celkovom objeme 1 ml.different amounts of enzyme preparations in a total volume of 1 ml.

Aktivita udávaná v pmol/ mg.min (U/mg) sa počíta cez fotometrický stanovenú (AE540 mn) rýchlosť syntézy NADPH.The activity reported in pmol / mg.min (U / mg) is calculated via a photometric determined (AE 540 mn ) NADPH synthesis rate.

Tabuľka 1 obsahuje špecifické enzýmové aktivity obidvoch enzýmov v surových extraktoch identicky pestovaných a spracovaných buniek Corynobacterium glutamicum ATCC 13032 a DM58-1. Okrem porovnateľných obsahov aspartátkinázyu obidvoch kmeňov obsahuje AEC-rezistentný mutant DM58-1 v porovnaní s divým typom približne päťnásobne zvýšenú aktivitu asparty!-|j-semialdchyddehydrogenázy.Table 1 contains the specific enzyme activities of both enzymes in crude extracts of identically grown and processed Corynobacterium glutamicum ATCC 13032 and DM58-1 cells. In addition to comparable aspartate kinase contents of both strains, the AEC-resistant mutant DM58-1 contains approximately five-fold increased aspartyl-β-semialdehyde dehydrogenase activity compared to wild type.

SK 279719 Β6SK 279719 Β6

1.3 Inhibícia aspartátkinázy z Corynobacterium glutamicum ATCC 13032 aDM58-l in vitro1.3 In vitro Inhibition of Aspartate Kinase from Corynobacterium glutamicum ATCC 13032 aDM58-1

Tabuľka 1 ukazuje, že už K. Nakayamom a kol. (K. Nakayama a kol., Agr. Biol. Chem. 30, 611 (1966)) naznačená a S. N. Kara-Murzom a kol. (S. N. Kara-Murza Prikladnaya Biokhimiya; Mikrobiológia 14, 345 (1978)) presnejšie preskúmaná inhibícia enzýmov divého typu Corynobacterium glutamicum je schopná reprodukcie. V porovnaní s tým je značne rozdielny charakter enzýmu AEC-rezistentných mutantov DM58-1, ktorých aspartátkináza už nie je koncentrovane inhibovateľná L-lyzinom + L-treonínom. Látkou S-aminoetyl-D,L-cysteínom, pôsobiacim na enzým z ATCC 13032 ako analóg lyzínu, je enzým mutantov taktiež len nepatrne ovplyvňovaný.Table 1 shows that K. Nakayam et al. (K. Nakayama et al., Agr. Biol. Chem. 30, 611 (1966)) and S. N. Kara-Murz et al. (S.N. Kara-Murza Prikladnaya Biokhimiya; Microbiology 14, 345 (1978)) more specifically investigated inhibition of wild-type enzymes of Corynobacterium glutamicum is capable of reproduction. In contrast, the enzyme character of the AEC-resistant mutant DM58-1, whose aspartate kinase is no longer concentrically inhibited by L-lysine + L-threonine, is quite different. The enzyme S-aminoethyl-D, L-cysteine, acting on the enzyme of ATCC 13032 as a lysine analog, is also only slightly influenced by the enzyme mutants.

Tabuľka 1Table 1

Obsah enzýmov a vlastnosti aspartátkinázy (AK) a aspartyl-P-semialdehyddehydrogenázy (ASA-DH) z Corynobacterium glutamicum ATCC 13032 a DM58-1Enzyme content and properties of aspartic kinase (AK) and aspartyl β-semialdehyde dehydrogenase (ASA-DH) from Corynobacterium glutamicum ATCC 13032 and DM58-1

Kmeň tribe ATCC13032 ATCC 13032 DM58-1 DM58-1 AK (U/me) AK (U / me) 0.016 0016 0,011 0,011 ASA-DH (U/rnoi ASA - DH (U / rnoi 0.06 12:06 0.33 12:33 Kombinácie combinations Inhibícia inhibition inhibítorov inhibitors AK W AK W 10 mM L-Ľy* i mM 10 mM L-Lγ * i mM 99 99 1 2 1 2 10 eiH L-Lys 10 mM L-Thr 10 eiH L-Lys 10 mM L-Thr 95 95 2 2 100 mM L-Lys 10 mM L-Thr 100 mM L-Lys 10 mM L-Thr 99 99 21 21 10 mM AEC 1 nifl L-Thr 10 mM AEC 1 nifl L-Thr 1 2 1 2 0 0 10 mM AEC 10 mM L-Thr 10 mM AEC 10 mM L-Thr 61 61 0 0 100 mM AEC 10 mM L-Thr---- 100 mM AEC 10mM L-Thr ---- 95 95 T T

AEC: S-(aminoetyl)-D,L-cysteínAEC: S- (aminoethyl) -D, L-cysteine

2. Klonovanie fragmentu DNA kmeňa Corynobacterium glutamicum DM58-1, ktorý kóduje pre feed-back rezistentnú aspartátkinázu2. Cloning of DNA fragment of Corynobacterium glutamicum DM58-1 which encodes feed-back resistant aspartate kinase

3. Klonovanie3. Cloning

Izoluje sa celková DNA z kmeňa Corynobacterium glutamicum DM58-1 spôsobom opísaným Charterom a kol. (Charter a kol. Curr. Topics Microb. Immunol. 96, 69 (1982)) a parciálne sa naštiepi reštrikčným enzýmom Pstl. Vektor pZl (obr. 1), ktorý je opísaný v nemeckej patentovej prihláške č. 37 37 729.9, sa linearizuje pomocou Pstl a spracovaním alkalickou fosfatázou sa defosforyluje. Vektor DNA a DM58-1 DNA sa zmiešajú a spracujú sa T4 DNA-ligázou, ako sa opisuje Maniatisom a kol. (Maniatis T. a kol., Molecular Cloning A. Laboratory Manual, Cold Spring Harbour Laboratory 1982).Total DNA was isolated from Corynobacterium glutamicum DM58-1 as described by Charter et al. (Charter et al. Curr. Topics Microb. Immunol. 96, 69 (1982)) and partially digested with the restriction enzyme PstI. The vector pZ1 (FIG. 1), which is described in German patent application no. 37 37 729.9, is linearized with PstI and dephosphorylated by alkaline phosphatase treatment. The DNA vector and the DM58-1 DNA were mixed and treated with T4 DNA ligase as described by Maniatis et al. (Maniatis T. et al., Molecular Cloning A. Laboratory Manual, Cold Spring Harbor Laboratory 1982).

Transformácia Corynobacterium glutamicum ATCC 13032 ligačnou zmesou sa uskutočňuje spôsobom opísaným Thierbachom a kol. (Thierbach G. a kol., Applied Microbiology and Biotechnology 29, 356 (1988)).Transformation of Corynobacterium glutamicum ATCC 13032 with the ligation mixture is performed as described by Thierbach et al. (Thierbach G. et al., Applied Microbiology and Biotechnology 29, 356 (1988)).

Na obr. 1 je znázornená reštrikčná schéma plazmidu pZl. Hrubá čiara znázorňuje podiel pHM1519 a tenká čiara znázorňuje podiel pACYC177. Označenie ApR = gén ampicilínovej rezistencie a Km3 = gén kanamycínovej rezistencie.In FIG. 1 is a restriction diagram of plasmid pZ1. The thick line represents the proportion of pHM1519 and the thin line represents the proportion of pACYC177. The designation Ap R = ampicillin resistance gene and Km 3 = kanamycin resistance gene.

Transformačná zmes sa zaočkuje na agarové platne s RCG/E agarom s 300 pg/ml kanamycínu a tieto platne sa inkubujú jeden týždeň pri teplote 30 °C. Potom sa tieto agarové platne prepečiatkujú na agarové platne s agarom MM (Katasumata, R. a kol., J. Bact. 159, 306 (1984)) s 50 mM AEC a 50 mM L-treonínu a tieto sa kultivujú jeden deň pri teplote 30 °C. Kolónie, ktoré na tomto agare mohli rásť, sa preočkujú na agar MM, ktorý dodatočne obsahuje AEC, L-treonín a 10 pg/ml kanamycínu, aby sa získali jednobunkové kolónie. Plazmid DNA sa izoluje z takéhoto klonu, označeného ako pCS2, a použije sa na transformáciu Corynobacterium glutamicum ATCC 13032. 59 zo 62 preskúšaných transformantov rezistentných na kanamycín sa javilo rezistentných proti inhibícii 50 mM AEC a 50 mM L-treionínu. Plazmid pCS2 sa ďalej charakterizoval pomocou reštrikčnej analýzy. Obsahuje asi 9,9 kb dlhú inzerciu v štiepnom mieste Pstl vektora pZl, ktorý má dĺžku 6,9 kb.The transformation mixture was seeded on RCG / E agar plates with 300 µg / ml kanamycin and incubated for one week at 30 ° C. Thereafter, these agar plates are resolved into MM agar plates (Katasumata, R. et al., J. Bact. 159, 306 (1984)) with 50 mM AEC and 50 mM L-threonine and cultured for one day at temperature. Deň: 29 ° C. Colonies that could grow on this agar were inoculated on MM agar which additionally contained AEC, L-threonine and 10 µg / ml kanamycin to obtain single cell colonies. Plasmid DNA was isolated from such a clone, designated pCS2, and used to transform Corynobacterium glutamicum ATCC 13032. 59 out of 62 kanamycin-resistant transformants tested appeared resistant to inhibition by 50 mM AEC and 50 mM L-threionine. Plasmid pCS2 was further characterized by restriction analysis. It contains an approximately 9.9 kb insertion at the PstI cleavage site of the vector pZ1, which is 6.9 kb in length.

Na obr. 2 je znázornená reštrikčná schéma plazmidu pCS2 v linearizovanej forme.In FIG. 2 is a restriction diagram of the plasmid pCS2 in linearized form.

V hornej časti obr. 2 sú uvedené pozície rôznych reštrikčných štiepnych miest. V dolnej časti obrázka sú znázornené rôzne oblasti plazmidu pCS2. Inzercia DM58-1 DNA je znázornená ako prázdny pás. Gén ampicilínovej rezistencie pZl je znázornený ako čierne pole, gén kanamycínovej rezistencie je znázornený ako bodkované pole. Ostatné podiely pZl plazmidu pCS2 sú vyšrafované. Použité skratky sú nasledovné:In the upper part of FIG. 2 shows the positions of the various restriction cleavage sites. Different regions of the plasmid pCS2 are shown in the lower part of the figure. The insertion of DM58-1 DNA is shown as an empty band. The ampicillin resistance gene pZ1 is shown as a black field, the kanamycin resistance gene is shown as a dotted field. Other proportions of pZ1 of plasmid pCS2 are shaded. The abbreviations used are as follows:

BamHI - B; Beli - C; Sali - S; Sca - A; Smal - M; Xhol - X.BamHI-B; Beli-C; Sali-S; Sca-A; Smal-M; Xhol - X.

2.2 Charakteristika aktivity aspartátkinázyCharacteristics of aspartic kinase activity

Aspartátkinázová aktivita sa merala u kmeňa ATCC 13032/pCS2, ako pozitívna kontrola u kmeňa DM58-1 a ako negatívna kontrola u kmeňa ATCC 13032. Kmene sa kultivovali na Štandard I Boillon, pričom táto pôda bola doplnená 4 g/1 glukózy, 10 μΐ/ml kanamycínu a 1 mM chloridu horečnatého. Kultivačné podmienky, izolácia buniek, rozloženie buniek a stanovenie aspartátkinázy sú opísané a uskutočňujú sa podľa odseku 1.2. Efektory L-lyzín, L-treonín a AEC sa vždy pridávajú ako základné roztoky v 100 mM Tris/HCl tlmivom roztoku s hodnotou pH 7,5.Aspartate kinase activity was measured in strain ATCC 13032 / pCS2, as a positive control in strain DM58-1 and as a negative control in strain ATCC 13032. The strains were cultured on Standard I Boillon supplemented with 4 g / l glucose, 10 μΐ / ml of kanamycin and 1 mM magnesium chloride. Culture conditions, cell isolation, cell lysis and aspartate kinase assays are described and performed according to section 1.2. The effectors L-lysine, L-threonine and AEC are always added as stock solutions in 100 mM Tris / HCl buffer, pH 7.5.

Obsah aspartátkinázy a inhibovateľnosť enzýmu z ATCC 13032/pCS2 sú uvedené v tabuľke 4. Aj keď kmeň nepreukazuje žiadne zvýšenie špecifickej aktivity, mohla byť zistená zreteľná desenzibilizácia proti uvedeným inhibičným látkam, ktorých miera stupňa deregulácia enzýmu z poskytovateľa génu DM58-1 však nebola dosiahnutá (parciálna deregulácia).Aspartate kinase content and enzyme inhibition from ATCC 13032 / pCS2 are shown in Table 4. Although the strain did not show any increase in specific activity, a clear desensitization against these inhibitory substances could be detected but whose degree of enzyme deregulation from the DM58-1 gene provider was not achieved ( partial deregulation).

2.3 Stanovenie vylučovania L-lyzínu2.3 Determination of L-lysine secretion

Schopnosť vylučovania lyzínu sa stanovila u kmeňa ATCC 13032/pCS2 a ako negatívna kontrola u kmeňa ATCC 13032/pZl. Po prídavku 10 pg/ml kanamycínu sa kultivácia uskutočňovala spôsobom opísaným a získané výsledky sú zhrnuté v tabuľke 2.The lysine secretion capacity was determined for the ATCC 13032 / pCS2 strain and as a negative control for the ATCC 13032 / pZ1 strain. Following the addition of 10 µg / ml kanamycin, the culture was performed as described and the results are summarized in Table 2.

Tabuľka 2Table 2

Vylučovanie L-lyzínu rôznymi kmeňmi Corynobacterium glutamicumExcretion of L-lysine by various strains of Corynobacterium glutamicum

Kmeft C. glutamicum Koncentrácia vylúčenéhoKmeft C. glutamicum Concentration of excreted

L-lyzín.HCI (g/1)L-lysine.HCI (g / 1)

ATCC 13032/pZl 0,0ATCC 13032 / pZ1 0.0

ATCC 13032/pCS2 (= DM 2-l/pCS2) 7,1ATCC 13032 / pCS2 (= DM 2-1 / pCS2) 7.1

Erlenmeyerova banka s objemom 100 ml kultivačného média s nasledovným zložením:Erlenmeyer flask of 100 ml culture medium, composed of:

síran amónny 12 g/1 melasa 240 g/1ammonium sulphate 12 g / l molasses 240 g / l

SK 279719 Β6 sójový hydrolyzát 60 ml/1 uhličitan vápenatý 10 g/1.276 soya hydrolyzate 60 ml / l calcium carbonate 10 g / l.

Po zaočkovaní sa kultúra inkubuje 72 hodín pri teplote 30 °C a 300 otáčkach za minútu. Stanovenie lyzínu sa uskutočňuje v kvapaline po centrifugácii pomocou analyzátora aminokyselín.After seeding, the culture is incubated for 72 hours at 30 ° C and 300 rpm. The lysine determination is performed in the liquid after centrifugation using an amino acid analyzer.

3. Prehľad odštiepovania fragmentu DNA pCS2, ktorý kóduje pre feed-back rezistentnú aspartátkinázu3. Overview of cleavage of the pCS2 DNA fragment that encodes feed-back resistant aspartate kinase

Úplným alebo parciálnym štiepením pCS2 rôznymi reštrikčnými enzýmami a nasledujúcim spracovaním T4 DNA-ligázou pri nízkych koncentráciách DNA sa konštruujú rôzne odštiepne deriváty. Výroba rôznych odštiepnych derivátov je zhrnutá v nasledujúcej tabuľke 3 a pozícia odštiepenia v rôznych derivátoch je znázornená na obr. 3. Na obr. 3 je taktiež nanesená schopnosť rezistencie kmeňov odvodených od Corynobacterium glutamicum ATCC 13032 voči AEC. Týmto spôsobom mohla byť ohraničená oblasť DNA, sprostredkujúca AEC-rezistenciu, na fragment DNA dlhý približne 1,5 kb, ktorá je obmedzená v plazmide pCS233 klonovacím štiepnym miestom Pstl a štiepnym miestom EcoRl.By total or partial cleavage of pCS2 with various restriction enzymes and subsequent treatment with T4 DNA ligase at low DNA concentrations, various cleavage derivatives are constructed. The production of the various cleavage derivatives is summarized in the following Table 3, and the cleavage position in the different derivatives is shown in FIG. 3. In FIG. 3 also shows the ability of the AEC to resist strains derived from Corynobacterium glutamicum ATCC 13032. In this way, the DNA region mediating AEC-resistance could be flanked to a DNA fragment of approximately 1.5 kb, which is restricted in plasmid pCS233 by the cloning PstI cleavage site and EcoRl cleavage site.

Aktivita aspartátkinázy a inhibovateľnosť enzýmovej aktivity zmesami lyzínu, prípadne AEC a treonínu, sa stanovovala v konštruovaných klonoch. Pestovanie, izolácia a stanovenie aktivity sa uskutočňovali opísaným spôsobom. Okrem toho sa skúmala schopnosť rôznych klonov vylučovať L-lyzín. Na to sa používal difúzny test na agarových platniach s L-lyzín-auxotrofným indikačným kmeňom Corynobacterium glutamicum. Z tabuľky 4 je zrejmé, že všetky AEC-rezistentné kmene majú parciálne deregulovanú aktivitu aspartátkinázy a že sú schopné vylučovať L-lyzín.Aspartate kinase activity and enzyme activity inhibition by mixtures of lysine, optionally AEC and threonine, were determined in engineered clones. Cultivation, isolation and activity determination were performed as described. In addition, the ability of different clones to secrete L-lysine was examined. A diffusion test on L-lysine-auxotrophic indicator strain Corynobacterium glutamicum was used for this. It can be seen from Table 4 that all AEC-resistant strains have partially deregulated aspartic kinase activity and are capable of secreting L-lysine.

Tabuľka 3Table 3

Výroba a AEC^-fenotyp rôznych štiepnych derivátov plazmidu pCS2Production and AEC-phenotype of various cleavage derivatives of plasmid pCS2

Plazmid Konštrukcia AECk/:i-fenotypPlasmid Construction of AEC k / phenotype

pCS21 PCS21A vyrobený štiepením pCS2 pomocou BamHl produced by digestion of pCS2 with BamH1 R R PCS22 PCS22A vyrobený štiepením pCS2 pomocou BamHl a Bclľ produced by digestion of pCS2 with BamHI and BclI R R pCS2 3 pCS2 3 vyrobený parciálnym štiepením pCS2 pomocou Sali produced by partial cleavage of pCS2 with SalI R R pCS24 pCS24 vyrobený parciálnym štiepením. pCS2 pomocou Xhol made by partial cleavage. pCS2 using XhoI R R pCS26 pCS26 vyrobený štiepením pCS2 pomocou Scal produced by digestion of pCS2 with Scal R R pCS231 pCS231 vyrobený parciálnym štiepenin pCS23 pomocou Pstl made by partial cleavage of pCS23 using PstI S WITH PCS232 PCS232 vyrobený parciálnym štiepením pCS23 pomocou Dral produced by partial digestion of pCS23 with DraI s with PCS233 PCS233 vyrobený parciálnym Štiepením pCS23 pomocou EcoRl produced by partial cleavage of pCS23 with EcoR1 R R

Vysvetlivky: R = rezistenciaExplanatory notes: R = resistance

S = citlivosťS = sensitivity

Na obr. 3 je znázornená schéma štiepenia plazmidu pCS2. V hornej časti obrázka sú znázornené deriváty odvodené od pCS2 a v dolnej časti obrázka deriváty odvodené od pCS23. Hranice ampicilínovej rezistencie pZl sú znázornené čierno; hranice kanamycínovej rezistencie sú znázornené bodkované a ostatné časti pZl plazmidu pCS2 sú vyšrafované. Inzercie DM58-1 DNA sú znázornené ako voľné pásy. Štiepenia sú označené čiarou. Vysvetlenia použitých skratiek:In FIG. 3 shows the cleavage scheme of plasmid pCS2. The upper part of the figure depicts derivatives derived from pCS2 and the lower part of the figure depicts derivatives derived from pCS23. The ampicillin resistance limits of pZ1 are shown in black; the kanamycin resistance boundaries are dotted and the other parts of the pZ1 plasmid pCS2 are shaded. The insertions of DM58-1 DNA are shown as free bands. Cleavages are indicated by a line. Explanations of abbreviations used:

B - BamHl, G - Beli, D - Dral, E - EcoRl, S - Sali,B-BamHl, G-Beli, D-Dral, E-EcoRl, S-Sali,

A - Scal, M - Smal, X - Xhol.A-Scal, M-Smal, X-Xhol.

Tabuľka 4Table 4

Mikrobiologické a biochemické charakteristiky rekombinantných kmeňov Corynobacterium glutamicumMicrobiological and biochemical characteristics of recombinant strains of Corynobacterium glutamicum

Kmeňtribe

ASA-DH AK ASA-DH AK Reaktivita AK v pritoonosti Reactivity of AK in pritoonosti (Ϊ) aecr (Ϊ) aec r Vylučovanie Lyzínu Elimination of Lysine (11/ (U/ (11 / (U / 10mH 10mM lOOmM 10mH 10mM 100mM 1 OOmH 1 OOmH mg 1 mg) mg 1 mg) Lyi Lys Ly· Lyi Lys Ly · AEC AEC 1mM 10mH 1OmM 1mM 10mH 10mM 10mM 10 mM rnr Thr Thr rnr Thr Thr Thr Thr

ATCC13032 0 (pZl J ATCC13032 0 (pZl J 06 06 0.016 0016 9 9 S WITH 7 7 - - ATCC13032 1pCS21 ATCC13032 1pCS21 3 3 9 9 0.013 0.013 55 55 55 55 28 28 56 56 - - ATCC13032 IpCS21) ATCC 13032 IpCS21) nn 0.016 0016 46 46 50 50 24 24 · · - - ATCC13032 PCS2Z ATCC13032 PCS2Z n n 0.015 0.015 4 0 4 0 41 41 22 22 n. n. - - - - ATCC13032 (pCS23 í ATCC13032 (pCS23) 0 0 03 03 0.014 0.014 5 1 5 1 57 57 30 30 56 56 ATCC13O3Z <pCS24 > ATCC13O3Z <pCS24> 2 2 07 07 0.011 0.011 65 65 55 55 40 40 62 62 ATCC13O32 (DCSZ6) ATCC13O32 (DCSZ3) 1 1 aa aa 0,015 0,015 64 64 53 53 39 39 60 60 ATCC13032 lPCS231) ATCC13032 lPCS231) 0 0 060 060 0,013 0,013 1 1 1 1 14 14 10 10 - - - - ATCC13032 1pCS232) ATCC 13032 1pCS232) n. n. n. n. n. n. · · - - - - ATCC13D32 1PCS233) ATCC13D32 1PCS233) n n 0.011 0.011 56 56 62 62 36 36 57 57 - - DM5Í-1 IpZI) DM5Í-1 IpZI) 0 0 330 330 0.009 0.009 83 83 100 100 79 79 93 93

Použité skratky: ASA-DH: aspartyl-P-semialdehyddehydrogenázaAbbreviations used: ASA-DH: aspartyl-β-semialdehyde dehydrogenase

AK: aspartátkinázaAK: aspartate kinase

n.: nezistené.n .: not found.

4. Sekvenovanie fragmentu DNA plazmidu pCS24, ktorý sprostredkuje fenotyp AEC-rezistencie4. Sequencing of the DNA fragment of plasmid pCS24, which mediates the AEC-resistance phenotype

4.1 Metóda sekvenovania4.1 Sequencing method

Sekvencia nukleotidov 2,1 kb Pstl-Xhol-fragmetnu DNA sa zisťovala metódou Maxama a Gilberta (Maxam, A. M. a kol., Proc. Natl. Acad. Sci. USA 74, 560-564 (1977)) s modifikáciou podľa Arnolda a Puhlera (Arnold W. a kol, Gene, 70, 171 ff (1988)). Subklonovanie k sekvenovaniu pritom vychádzalo z plazmidu pCS24 (pozri obr. 4). Tento sa transformuje podľa Escherichia coli MM 294 (Merelson, M. a kol, Náture 217, 1110-1114 (1968)) a príslušné fragmenty sa klonujú do sekvenčných vektorov pSVB21, 25 a 26 (Arnold W. a kol., Gene, 70, 171 ff (1988)). V kmeni Escherichia coli JM83 (Mesing J., Recombinant DNA Technical Bulletin NIH Publication No. 79-99, 2, 43-48 (1979)) je možné dokázať aktiváciu inzercie pomocou testu Xgal (5-bróm-4-chlórindolyl-p-D-galaktipyranozid).The 2.1 kb nucleotide sequence of PstI-XhoI-fragment DNA was determined by the method of Maxam and Gilbert (Maxam, AM et al., Proc. Natl. Acad. Sci. USA 74, 560-564 (1977)) with Arnold and Puhler modification. (Arnold W. et al., Gene, 70, 171 ff (1988)). Subcloning for sequencing was based on plasmid pCS24 (see FIG. 4). This is transformed according to Escherichia coli MM 294 (Merelson, M. et al., Nature 217, 1110-1114 (1968)) and the corresponding fragments cloned into the sequence vectors pSVB21, 25 and 26 (Arnold W. et al., Gene, 70 171 (1988). In the Escherichia coli JM83 strain (Mesing J., Recombinant DNA Technical Bulletin NIH Publication No. 79-99, 2, 43-48 (1979)), it is possible to demonstrate the activation of insertion by the Xgal (5-bromo-4-chloroindolyl-pD-) assay. galaktipyranozid).

Stratégia sekvenovania je znázornená na obr. 4. Sekvencia nukleotidov sa zisťovala na obidvoch vetvách DNA s prekrývajúcimi sa klonmi.The sequencing strategy is shown in FIG. 4. The nucleotide sequence was determined on both strands of DNA with overlapping clones.

Na obr. 4 je znázornená odštiepovacia analýza a stratégia sekvenovania chromozómového fragmentu plazmidu pCS2. Odštiepovacia analýza: Plazmidy pCS23 a pCS24 sprostredkovávajú taktiež ako kloň pCS2 AEC-rezistenciu a produkciu lyzínu. Šrafované pásy predstavujú podiel vektora v plazmide.In FIG. 4 shows the cleavage analysis and sequencing strategy of the chromosomal fragment of plasmid pCS2. Plasmid pCS23 and pCS24 also mediate AEC resistance and lysine production as a pCS2 clone. The hatched bands represent the proportion of vector in the plasmid.

SK 279719 Β6SK 279719 Β6

Stratégia sekvenovania: 2,1 kb Pstl-Xhol-fragment plazmidu pCS24 sa subklonoval so znázornenými reštrikčným štiepnymi miestami. Šípky vždy udávajú sekvenčný rozsah a smer čítania. Označené sú reštrikčné štiepne miesta enzýmov Dral (D), EcoRI (E), BglII (O), HindlII (H), Nael (A), PstI (P), Sali (S) a Xhol (X). Dolu sú znázornené dva čítacie rastre, ktoré kódujú pre podjednotky aspartátkinázy a pre aspartát-P-semialdehyddehydrogenázu (pozri text).Sequencing strategy: The 2.1 kb PstI-XhoI fragment of plasmid pCS24 was subcloned with the restriction cleavage sites depicted. The arrows always indicate the sequential range and reading direction. The restriction cleavage sites of the enzymes DraI (D), EcoRI (E), BglII (O), HindIII (H), Nael (A), PstI (P), SalI (S), and XhoI (X) are indicated. Shown below are two reading frames that code for aspartate kinase subunits and for aspartate-β-semialdehyde dehydrogenase (see text).

4.2 Sekvencia DNA 2,1 kb Pstľ-Xhol-fragmetnu DNA4.2 DNA sequence of 2.1 kb PstI-XhoI-fragment DNA

Sekvenovaný úsek DNA je dlhý 2112 bp. Nesie reštrikčné štiepne miesta pre enzýmy BglII, Dral, EcoRI, Hindll, Nael, PstI, Sali a Xhol, s ktorými boli vyrobené aj subklony.The DNA sequence sequenced is 2112 bp long. It carries restriction cleavage sites for BglII, DraI, EcoRI, HindIII, Nael, PstI, SalI and XhoI, with which subclones were also produced.

Sekvencia nukleotidov sa spracovala sekvenčnou analýzou podľa programového zväzku ANALYSEQ (Staden, R. a kol., Nucl. Acids Res. 14, 217-323 (1986)).The nucleotide sequence was processed by sequence analysis according to the ANALYSEQ program bundle (Staden, R. et al., Nucl. Acids Res. 14, 217-323 (1986)).

Na sekvenovanom úseku DNA sa nachádzajú dva otvorené čítacie rastre (ORF). Obidva sú usporiadané od štiepneho miesta PstI smerom k štiepnemu miestu Xhol. Medzi obidvoma sa nachádza len malá oblasť 26 bp. Pred 2. ORF sa nachádza miesto väzby ribozómov (RBS) (806-809 AGGA nasleduje štartkodón ATG). Vnútri 1. ORF bola lokalizovaná aj jedna RBS (AGGA, 268-271 so štartovacím kodónom GTG).There are two open reading frames (ORFs) on the sequenced DNA. Both are arranged from the PstI cleavage site to the XhoI cleavage site. There is only a small 26 bp region between the two. The ribosome binding site (RBS) is located upstream of the 2nd ORF (806-809 AGGA followed by the ATC codon). One RBS (AGGA, 268-271 with GTG start codon) was also located within the 1st ORF.

ORF 1 dĺžku 264 aminokyselín (AS), počítajúc od PstI miesta a 172 aminokyselín (zodpovedá 18,6 k Dals) od internej RBS. ORF 2 má dĺžku 342 aminokyselín (36,1 k Dals).ORF 1 length 264 amino acids (AS), counting from the PstI site and 172 amino acids (corresponding to 18.6 k Dals) from internal RBS. ORF 2 is 342 amino acids in length (36.1 k Dals).

Priamo za ORF 2 sa nachádza možná transkripčná terminančná štruktúra, takzvaná vlasová ihlová slučka prebiehajúca od viacerých tymínových zvyškov (1864-1900). Toto usporiadanie je charakteristické pre p-nezávislé terminančné signály v Escherichia coli a iných bakteriálnych druhoch (Ahyda a kol., Ann. Rev. Biochem. 47, 967-996 (1978)). Tu predložený terminátor má stabilitu viac ako -40 kcal/mol pri 30 °C.Directly beyond ORF 2 is a possible transcriptional termination structure, the so-called hair needle loop extending from several thymine residues (1864-1900). This arrangement is characteristic of β-independent termination signals in Escherichia coli and other bacterial species (Ahyda et al., Ann. Rev. Biochem. 47, 967-996 (1978)). The terminator presented herein has a stability of more than -40 kcal / mol at 30 ° C.

Možný promótor pre ORF 2 sa zistil vnútri ORF 1 (409-437), (TTGACA-17 bp-TATTCT). Oblasť -35 a vzdialenosť k oblasti -10 zodpovedajú presne E. coliConsensus-Promotor (Hawley, D. K. a kol., Nucl. Acids Res. 11, 2237-2255 (1983)), oblasť -10 je veľmi podobná E. coli-Consensusregion (TATAAT).A possible promoter for ORF 2 was found within ORF 1 (409-437), (TTGACA-17 bp-TATTCT). Area -35 and distance to area -10 correspond exactly to E. coliConsensus-Promotor (Hawley, DK et al., Nucl. Acids Res. 11, 2237-2255 (1983)), area -10 is very similar to E. coli-Consensusregion (TATAAT).

Ďalej je uvedená sekvencia DNA a odvodená sekvencia aminokyselín 2,1 kb Pstl-Xhol-fragmetnu.The DNA sequence and the deduced amino acid sequence of 2.1 kb PstI-XhoI-fragment are shown below.

u á Su á S

Str liStr li

Iis * o < n u w »Ii s * o <nuw »

O iľ <3 .Sít<3. Network

O cnO cn

O co 00 r—tAbout 00 r — t

O r*, coO r * what

O XD «Ο r-4O XD «-r-4

O CMAbout CM

COWHAT

Sekvencia aminokyselín ORF 1(1 až 794) a ORF 2 (821 až 1846) sa udávajú v trojpísmenovom kóde. Číslovanie pod linajkou sa týka sekvencie DNA. Názvy klonovacích štiepnych miest využitých pri sekvenovaní sú tiež uvedené pod linajkou. Miesta väzby ribozómov sú označené hviezdičkou. Štartovací kodón je označený šípkou a štruktúra terminátora plnou čiarou.The amino acid sequences of ORF 1 (1-794) and ORF 2 (821-1846) are given in three letter code. The numbering below the line refers to the DNA sequence. The names of the cloning cleavage sites used in sequencing are also listed below the line. Ribosome binding sites are indicated by an asterisk. The start codon is indicated by an arrow and the terminator structure is a solid line.

4.3 Analýza sekvencie aminokyselín4.3 Amino acid sequence analysis

Sekvencia aminokyselín prenášaná pomocou ORF 1 a ORF 2 sa porovnávala so známymi sekvenciami aspartátkinázy AK I (Cassan, M. a kol., J. Biol. Chem. 261, 1052-1057 (1986)) z Escherichia coli a AK II z Bacillus subtilis (Chen, N. Y. a kol., J. Biol. Chem. 262, 8737-2255 (1987)), prípadne so sekvenciami aminokyselín aspartátsemialdehyddehydrogenázy (ASA-DH) z Escherichia coli (Haziza C. a kol., Embo J. 1, 379-384 (1982)) a Streptococcus mutans (Cardineau G. A. a kol., J. Biol. Chem. 262, 7, 3344-3353 (1987)). Na to sa využili programy MALIGN (Sobel E. a kol., Nucl. Acids Res. 14, 363-374, (1986)) a DIAGON (Staden R. a kol., Nucl. Acid Res. 14, 217-232 (1986)). Ukázala sa signifikantná zhodnosť medzi ORF 1 a sekvenciou AK na jednej strane a medzi ORF 2 a sekvenciou ASA-DH zo Streptococcus mutans na druhej strane. Pre Escherichia coli sa ukázala v prípade ASA-DH len slabá homológia, najmä však v oblasti aktívneho centra (Haziza, C. a kol., Embo J. 1, 379-384 (1982)).The amino acid sequence transmitted by ORF 1 and ORF 2 was compared with the known AK I aspartate kinase sequences (Cassan, M. et al., J. Biol. Chem. 261, 1052-1057 (1986)) from Escherichia coli and AK II from Bacillus subtilis (Chen, NY et al., J. Biol. Chem. 262, 8737-2255 (1987)), optionally with the amino acid sequences of aspartate semialdehyde dehydrogenase (ASA-DH) from Escherichia coli (Haziza C. et al., Embo J. 1, 379-384 (1982)) and Streptococcus mutans (Cardineau GA et al., J. Biol. Chem. 262, 7, 3344-3353 (1987)). For this, MALIGN (Sobel E. et al., Nucl. Acids Res. 14, 363-374, (1986)) and DIAGON (Staden R. et al., Nucl. Acid Res. 14, 217-232 ( 1986)). Significant identity between ORF 1 and the AK sequence on the one hand and between ORF 2 and the ASA-DH sequence from Streptococcus mutans on the other hand was shown. Escherichia coli has shown little homology to ASA-DH, especially in the active center region (Haziza, C. et al., Embo J. 1, 379-384 (1982)).

Z počítačovej analýzy vyplýva nasledovné:Computer analysis shows the following:

- ORF 1 zodpovedá C-koncu aspartátkinázy, to znamená, že chýba asi 160 aminokyselín N-konca, ako i kompletná oblasť promótora.ORF 1 corresponds to the C-terminus of aspartate kinase, i.e., about 160 amino acids of the N-terminus are missing, as well as the complete promoter region.

- ORF 2 zodpovedá aspartátsemialdehyddehydrogenáze.- ORF 2 corresponds to aspartate semialdehyde dehydrogenase.

Homológia ORF 1 a AK II z Bacillus subtilis je odborníkom zrejmá. AK II pozostáva z prekrývajúcich sa podjednotiek (Chen, N. Y. a kol., J. Biol. Chem. 262, 8787-8798 (1987)). Pritom zodpovedá β-podjednotka C-konca α-podjednotky. Vzhľadom na to, že RBS zistená v ORF 1 sa zhoduje vo svojej polohe presne s RBS tejto aspartátkinázy, môže sa analogicky odvodiť, že tu existuje klonovaná β-podjednotka aspartátkinázy Corynobacterium glutamicum.The homology of ORF 1 and AK II of Bacillus subtilis is apparent to those skilled in the art. AK II consists of overlapping subunits (Chen, N.Y. et al., J. Biol. Chem. 262, 8787-8798 (1987)). The β-subunit corresponds to the C-terminus of the α-subunit. Since the RBS found in ORF 1 coincides in its position exactly with the RBS of this aspartate kinase, it can be inferred by analogy that there is a cloned Corynobacterium glutamicum β-subunit aspartate kinase.

5. Skúmanie expresie5. Examination of expression

5.1 Komplementácia asd- a lysC-negatívnych kmeňov Escherichia coli5.1 Complementation of asd- and lysC-negative Escherichia coli strains

Identitu ORF 2 s génom asd je možné doložiť komplementáciou asd-negatívneho kmeňa Escherichia coli RASA 6 (Richaud, F. a kol., C. R. Acad. Sc. Paríš, 293, 507-512 (1981)) pomocou plazmidov pCS2 a pCS24. Plazmid pCS23, pri ktorom asi 30 aminokyselín C-konca ASA-DH chýba, nekomplementuje. Žiadny z týchto plazmidov nie je schopný komplementovať AKI-III negatívny kmeň Escherichia coli Gif 106 Ml (Boy, E. a kol., Biochémie 61, 1151-1160 (1979)).The identity of ORF 2 with the asd gene can be demonstrated by complementing the asd-negative Escherichia coli strain RASA 6 (Richaud, F. et al., C. R. Acad. Sc. Paris, 293, 507-512 (1981)) using plasmids pCS2 and pCS24. Plasmid pCS23, which lacks about 30 amino acids of the C-terminus of ASA-DH, is not complementary. None of these plasmids are able to complement the AKI-III negative strain of Escherichia coli Gif 106 M1 (Boy, E. et al., Biochemistry 61, 1151-1160 (1979)).

5.2 Stanovenie špecifickej aspartátkinázy (AK) a aspartylβ-semialdehyddehydrogenázy (ASA-DH) v transformantoch ATCC 13032 s rôznymi štiepnymi derivátmi pCS25.2. Determination of specific aspartic kinase (AK) and aspartyl beta-semialdehyde dehydrogenase (ASA-DH) in ATCC 13032 transformants with various cleavage derivatives of pCS2

Analogické závery odvodené v odseku 4.3 z porovnania homológií, podľa ktorých fragment génu Pstl-Xhol z DM58-1 obsahuje len časť génu lysC (AK), ale úplný gén asd, je možné jednoznačne potvrdiť enzýmovými meraniami.The analogous conclusions drawn in section 4.3 from the homology comparison that a fragment of the Pst1-XhoI gene from DM58-1 contains only part of the lysC (AK) gene but the full asd gene can be unequivocally confirmed by enzyme measurements.

Žiadny kmeň Corynobacterium glutamicum transformovaný pomocou pCS2 alebo derivátom pCS2 neobsahuje zvýšenú aspartátkinázovú aktivitu proti rodičovskému kmeňu (tabuľka 4, stĺpec 3).No strain of Corynobacterium glutamicum transformed with pCS2 or a pCS2 derivative contains increased aspartate kinase activity against the parental strain (Table 4, column 3).

SK 279719 Β6SK 279719 Β6

Naproti tomu vo všetkých prípadoch transformantov, ktorých plazmidy obsahovali asd-štruktúmy gén, bola dokázateľná silná superexpresia aspartyl-p-scmialdchyddehydrogenázy (tabuľka 4, stĺpec 2, obr. 3 a 4). Plazmidy pCS23 a deriváty pCS23 nevedú podľa predpokladu k superexpresii aspartyl-p-semialdehyddehydrogenázy. Na základe vysokej lability aspartyl-P-semialdehyddehydrogenázy kolíšu faktory superexpresie, ktoré sa dajú vypočítať zo špecifickej aktivity, medzi hodnotami 31 až 65.In contrast, in all cases of transformants whose plasmids contained the asd-structural gene, strong superexpression of aspartyl β-scmialdchyddehyde hydrogenase was demonstrated (Table 4, column 2, Figures 3 and 4). Plasmids pCS23 and derivatives of pCS23 do not result in superexpression of aspartyl β-semialdehyde dehydrogenase. Due to the high lability of aspartyl β-semialdehyde dehydrogenase, the superexpression factors, which can be calculated from specific activity, vary between values of 31 to 65.

6. Enzymatické vlastnosti a vylučovanie L-lyzínu6. Enzymatic properties and secretion of L-lysine

Vylučovanie L-lyzínu v množstve 7,1 g/1 za 72 hodín dokázané pre ATCC 13032 pCS2 (pozri tabuľka 2) sa dá odvodiť na základe dvoch geneticky realizovaných zmien.The exclusion of L-lysine at 7.1 g / L over 72 hours demonstrated for ATCC 13032 pCS2 (see Table 2) can be derived from two genetically engineered changes.

a) Klonovanie regulačnej podjednotky aspartátkinázy z DM58-1 bez zvýšenia bunkového obsahu enzýmu.a) Cloning of the aspartate kinase regulatory subunit of DM58-1 without increasing the cellular content of the enzyme.

b) Klonovanie aspartyl-p-semialdehyddehydrogenázy zDM58-l, ktoré vedie k 31 až 65-násobnému zvýšeniu bunkového obsahu enzýmu.b) Cloning of aspartyl β-semialdehyde dehydrogenase from DM58-1, resulting in a 31- to 65-fold increase in cellular enzyme content.

Claims (5)

1. DNA-fragment, ktorý sa skladá z nukleotidovej sekvencie s dĺžkou 2,1 kb, ohraničený PstI- a Xhol- miestami štiepenia, vyznačujúci sa tým, že kóduje aminokysclinovú sekvenciu, uvedenú na obr. 5, a tým zabezpečuje produkciu proteínov vedúcich k aktivite aspartyl-P-semialdehyddehydrogenázy (asd) a kderegulácii aspartátkinázy (lysC) a je obsiahnutý v plazmide pCS2, ktorého delečná mapa je uvedená na obr. 3, uloženom v Corynobacterium glutamicum pod číslom DSM 5086.A DNA fragment consisting of a 2.1 kb nucleotide sequence flanked by PstI- and XhoI-cleavage sites, characterized in that it encodes the amino acid sequence shown in FIG. 5, thereby ensuring the production of proteins leading to aspartyl-β-semialdehyde dehydrogenase (asd) activity and aspartic kinase (lysC) deregulation, and is contained in the plasmid pCS2, the deletion map of which is shown in FIG. 3 deposited with Corynobacterium glutamicum under number DSM 5086. 2. Rekombinantná DNA odvodená z plazmidu pCS2 podľa nároku 1, charakterizovaná delečnou mapou zodpovedajúcou označeniu pCS26, uvedenou na obr. 3.Recombinant DNA derived from the plasmid pCS2 according to claim 1, characterized by a deletion map corresponding to the designation pCS26 shown in FIG. Third 3. Rekombinantná DNA, odvodená z plazmidu pCS2 podľa nároku 1, charakterizovaná delečnými mapami zodpovedajúcimi označením pCS23 alebo pCS233 na obr. 3.Recombinant DNA derived from the plasmid pCS2 according to claim 1, characterized by deletion maps corresponding to pCS23 or pCS233 in FIG. Third 4. Spôsob výroby L-lyzínu fermentáciou mikroorganizmov rodu Corynobacterium alebo Brevibacterium, produkujúcich túto aminokyselinu, vyznačujúci sa t ý m , že mikroorganizmy obsahujú plazmid podľa nároku 1 alebo z nej odvodenú rekombinantnú DNA podľa nárokov 2 a 3.A method for producing L-lysine by fermentation of microorganisms of the genus Corynobacterium or Brevibacterium producing this amino acid, characterized in that the microorganisms comprise the plasmid according to claim 1 or the recombinant DNA derived therefrom according to claims 2 and 3. 5. Spôsob podľa nároku 4, vyznačujúci sa t ý m , že mikroorganizmom je Corynobacterium glutamicum DMS 5086.The method of claim 4, wherein the microorganism is Corynobacterium glutamicum DMS 5086.
SK1228-90A 1989-03-14 1990-03-14 Dna fragment, recombinant dna and process for producing l-lysine SK122890A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3908201A DE3908201A1 (en) 1989-03-14 1989-03-14 METHOD FOR THE FERMENTATIVE MANUFACTURE OF L-LYSINE

Publications (2)

Publication Number Publication Date
SK279719B6 true SK279719B6 (en) 1999-02-11
SK122890A3 SK122890A3 (en) 1999-02-11

Family

ID=6376268

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1228-90A SK122890A3 (en) 1989-03-14 1990-03-14 Dna fragment, recombinant dna and process for producing l-lysine

Country Status (6)

Country Link
EP (1) EP0387527B1 (en)
JP (1) JP3000087B2 (en)
AT (1) ATE107699T1 (en)
DE (2) DE3908201A1 (en)
ES (1) ES2056263T3 (en)
SK (1) SK122890A3 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3943117A1 (en) * 1989-12-27 1991-07-04 Forschungszentrum Juelich Gmbh METHOD FOR THE FERMENTATIVE PRODUCTION OF AMINO ACID, IN PARTICULAR L-LYSINE, THEREFORE SUITABLE MICROORGANISMS AND RECOMBINANT DNA
JPH07108228B2 (en) * 1990-10-15 1995-11-22 味の素株式会社 Temperature sensitive plasmid
JP3473042B2 (en) * 1992-04-28 2003-12-02 味の素株式会社 Mutant aspartokinase gene
DE69534592T2 (en) * 1994-03-04 2006-08-10 Ajinomoto Co., Inc. PROCESS FOR THE PREPARATION OF L-LYSINE
JP4075087B2 (en) 1996-12-05 2008-04-16 味の素株式会社 Method for producing L-lysine
DE19924364A1 (en) 1999-05-27 2000-11-30 Degussa Process for the fermentative production of L-amino acids using coryneform bacteria
JP4623825B2 (en) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 Novel polynucleotide
US6927046B1 (en) 1999-12-30 2005-08-09 Archer-Daniels-Midland Company Increased lysine production by gene amplification using coryneform bacteria
US6942996B2 (en) 2000-08-02 2005-09-13 Degussa Ag Isolated polynucleotide from Corynebacterium encoding a homocysteine methyltransferase
AU2001287631A1 (en) * 2000-08-02 2002-02-13 Degussa A.G. Nucleotide sequences which code for the metf gene
US6958228B2 (en) 2000-08-02 2005-10-25 Degussa Ag Nucleotide sequence which code for the metH gene
WO2002010209A1 (en) * 2000-08-02 2002-02-07 Degussa Ag Nucleotide sequences which code for the meth gene
WO2002010208A1 (en) * 2000-08-02 2002-02-07 Degussa Ag Nucleotide sequences which code for the mete gene
US6812016B2 (en) 2000-09-02 2004-11-02 Degussa Ag Nucleotide sequences which code for the metY gene
DE10109690A1 (en) * 2000-09-02 2002-03-14 Degussa New nucleotide sequences encoding the metY gene
DE10044681A1 (en) * 2000-09-09 2002-03-21 Degussa New L-lactate dehydrogenase gene from coryneform bacteria, useful, when overexpressed, for increasing fermentative production of L-amino acid
AU2001295470A1 (en) * 2000-09-09 2002-03-22 Degussa A.G. Nucleotide sequences which code for the gpmb gene
AU2001285878A1 (en) * 2000-09-12 2002-03-26 Degussa A.G. Nucleotide sequences which code for the roda gene
WO2002022670A1 (en) * 2000-09-12 2002-03-21 Degussa Ag Nucleotide sequences coding for the ftsx gene
DE10046625A1 (en) * 2000-09-20 2002-04-11 Degussa New nucleotide sequences coding for the ndkA gene
US7026158B2 (en) 2000-09-27 2006-04-11 Degussa Ag Nucleotide sequences which code for the mikE17 gene
DE10047864A1 (en) * 2000-09-27 2002-04-11 Degussa New nucleotide sequences coding for the truB gene
AU2002218223A1 (en) * 2000-10-28 2002-05-06 Degussa A.G. Nucleotide sequences encoding the hemd and hemb genes
MXPA03007089A (en) 2001-02-08 2004-10-15 Archer Daniels Midland Co Polynucleotide constructs for increased lysine production.
DE10155505A1 (en) 2001-11-13 2003-05-22 Basf Ag Genes that code for glucose-6-phosphate dehydrogenase proteins
DE10210527A1 (en) 2002-03-09 2003-09-18 Degussa Alleles of the aceA gene from coryneform bacteria
BRPI0518845A2 (en) 2004-12-06 2008-12-09 Sage Biosciences Inc Method for increasing resistance to ruminal inactivation of a strain of gram-positive lysine-producing bacteria, feed supplementation of protected lysine in the rumen, and methods for increasing the metabolically available lysine content of a feedstuff for ruminants, and in vitro for to evaluate the resistance of a strain of lysine-producing bacteria to in vivo rumen inactivation
DE102014208199A1 (en) 2014-04-30 2015-11-05 Evonik Degussa Gmbh Process for the production of L-amino acids using an alkaliphilic bacterium
EP2940039A1 (en) 2014-04-30 2015-11-04 Evonik Degussa GmbH Method for the production of l-amino acids in coryne bacteria using a glycine splitting system
ES2778037T3 (en) 2014-04-30 2020-08-07 Evonik Operations Gmbh Procedure for the production of L-amino acids using alkaliphilic bacteria
JP6720538B2 (en) * 2016-01-08 2020-07-08 日本製鉄株式会社 Horizontal material, attachment structure of face material using horizontal material, and attachment structure of face material and frame material using horizontal material
EP3467099A1 (en) 2017-10-05 2019-04-10 Evonik Degussa GmbH Method for the fermentative production of l-amino acids
RU2019128538A (en) 2018-09-26 2021-03-11 Эвоник Оперейшенс ГмбХ METHOD FOR ENZYMATIC PRODUCTION OF L-LYSINE
WO2022191357A1 (en) * 2021-03-09 2022-09-15 대상 주식회사 Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine using same
WO2023222510A1 (en) 2022-05-18 2023-11-23 Evonik Operations Gmbh Biotechnological production of desferrioxamines and analogs thereof
WO2023222505A1 (en) 2022-05-18 2023-11-23 Evonik Operations Gmbh Biotechnological production of monomers of bisucaberins, desferrioxamines and analogs thereof
WO2023222515A1 (en) 2022-05-18 2023-11-23 Evonik Operations Gmbh Biotechnological production of bisucaberins, desferrioxamines and analogs thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126789A (en) * 1981-12-29 1983-07-28 Kyowa Hakko Kogyo Co Ltd Method for developing genetic character
JPH0655149B2 (en) * 1985-03-12 1994-07-27 協和醗酵工業株式会社 Method for producing L-lysine
JPH06102028B2 (en) * 1985-10-04 1994-12-14 協和醗酵工業株式会社 Amino acid manufacturing method

Also Published As

Publication number Publication date
JP3000087B2 (en) 2000-01-17
ES2056263T3 (en) 1994-10-01
DE3908201A1 (en) 1990-09-27
DE59006167D1 (en) 1994-07-28
ATE107699T1 (en) 1994-07-15
JPH03219885A (en) 1991-09-27
EP0387527B1 (en) 1994-06-22
EP0387527A1 (en) 1990-09-19
SK122890A3 (en) 1999-02-11

Similar Documents

Publication Publication Date Title
SK279719B6 (en) Dna fragment, recombinant dna, process for the production of l-lysine
Cremer et al. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes
EP1360312B1 (en) Method for l-threonine production
RU2207376C2 (en) Method for preparing l-amino acid by fermentation method, strain of bacterium escherichia coli as producer of l-amino acid (variants)
US5661012A (en) Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III
EP1149911B1 (en) Amino acid producing strains belonging to the genus Escherichia and method for producing an amino acid
KR100630604B1 (en) Process for constructing amino acid-producing bacterium and process for producing amino acid by fermentation method with the use of the thus constructed amino acid-producing bacterium
Rossmann et al. Mechanism of regulation of the formate‐hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon
JP5756259B2 (en) Corynebacterium genus having improved L-lysine production ability and method for producing L-lysine using the same
EP0358940B1 (en) DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains
US7604979B2 (en) Method for producing an L-amino acid using a bacterium with an optimized level of gene expression
CA2322555A1 (en) New nucleotide sequences which code for the pck gene
JPS6279788A (en) Production of amino acid
KR19990077974A (en) L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
JP2003164297A (en) New mutant glutamine synthetase and method of producing amino acid
KR100505797B1 (en) A Mutated Microorganism Having A Knockout fadR Gene On Chromosome And A Process For Producing L-Threonine Using Said Mutant
JP2000270888A (en) Preparation of l-amino acid
JPS62186795A (en) Production of amino acid
SK16692000A3 (en) Process for the fermentative preparation of l-lysine by using coryneform bacteria
JP4120269B2 (en) Method for producing L-lysine or L-arginine using methanol-assimilating bacteria
SK16192001A3 (en) Process for the fermentative preparation of l-amino acids with amplifications of the tkt gene
AU2001253134B2 (en) Method for the production of bacterial toxins
RU2215785C2 (en) Method for preparing l-amino acids, strain escherichia coli as producer of l-amino acid (variants)
JPS63105688A (en) Production of l-phenylalanine
SK11296A3 (en) Dna fragment, derived from coryneform bacteria and manufacturing process of l-amino acid or nucleic acid