SK122890A3 - Dna fragment, recombinant dna and process for producing l-lysine - Google Patents
Dna fragment, recombinant dna and process for producing l-lysine Download PDFInfo
- Publication number
- SK122890A3 SK122890A3 SK1228-90A SK122890A SK122890A3 SK 122890 A3 SK122890 A3 SK 122890A3 SK 122890 A SK122890 A SK 122890A SK 122890 A3 SK122890 A3 SK 122890A3
- Authority
- SK
- Slovakia
- Prior art keywords
- lysine
- pcs2
- dna
- plasmid
- recombinant dna
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Fragment DNA, rekombinantná DNA a spôsob výroby L-lyzínuDNA fragment, recombinant DNA and method for producing L-lysine
Oblasť technikyTechnical field
Vynález sa týka fragmentu DNA, ktorý sa nachádza v plazmide, rekombinantnej DNA odvodenej od tohto plazmidu a spôsobu výroby L-lyzínu za použitia mikroorganizmu obsahujúceho vyššie uvedený plazmid alebo z neho odvodenú rekombinantnú DNA.The invention relates to a DNA fragment present in a plasmid, to recombinant DNA derived from this plasmid, and to a process for producing L-lysine using a microorganism comprising the above-mentioned plasmid or recombinant DNA derived therefrom.
Doterajší stav technikyBACKGROUND OF THE INVENTION
Corynebacterium glutamicum a príbuzné rody, ako sú napríklad Brevibacterium lactofermentum a Brevibacterium fl.avum, sú známe ako mikroorganizmy tvoriace aminokyseliny.Corynebacterium glutamicum and related genera such as Brevibacterium lactofermentum and Brevibacterium fl.avum are known as amino acid-forming microorganisms.
Aby sa produktivita zvýšila, uskutočňujú sa umelé mutácie .To increase productivity, artificial mutations are made.
Príkladmi takto pripravených umelých mutantov sú napríklad lyzín produkujúce kmene Corynebacterium glutamicum, ktoré okrem rezistencie AEC (AEC = S-2-aminoetylcysteín), preukazujú s ňou spojenú homoserínovú a leucínovú auxotrofiu (US patentový spis č. 3 708 395) alebo sú citlivé voči metionínu (US patentový spis č. 3 871 960).Examples of artificial mutants thus prepared are, for example, lysine-producing strains of Corynebacterium glutamicum which, in addition to AEC resistance (AEC = S-2-aminoethylcysteine), exhibit homoserine and leucine auxotrophy associated therewith (US Patent No. 3,708,395) or sensitive to methionine. (U.S. Patent No. 3,871,960).
Okrem týchto klasických metód boli objavené vektorové systémy, ktoré umožňujú transformáciu mikroorganizmov rodov Corynebacterium a Brevibacterium (DE-OS č. 37 37 719, DE-OS č. 38 41 453, Thierbach G., Schwarzer A., Puhler A., Appl. Microbiol. Biotechnol. 29 (1988) 356-362).In addition to these classical methods, vector systems have been discovered which allow the transformation of microorganisms of the genera Corynebacterium and Brevibacterium (DE-OS No. 37 37 719, DE-OS No. 38 41 453, Thierbach G., Schwarzer A., Puhler A., Appl. Microbiol Biotechnol 29 (1988) 356-362).
V EP-A-0219 027 sa popisuje spôsob výroby rôznych aminokyselín, pri ktorom sa rekombinantnou DNA transformujú rody Corynebacterium a Brevibacterium, a tak sa zvyšujú produkované množstvá aminokyselín.EP-A-0219 027 discloses a process for the production of various amino acids, in which the genera Corynebacterium and Brevibacterium are transformed with recombinant DNA, thus increasing the amounts of amino acids produced.
Rekombinantná DNA obsahuje pritom fragment DNA, kódujúci syntézu aspartátsemialdehyddehydrogenázy alebo aspartátaminotransferázy.The recombinant DNA comprises a DNA fragment encoding the synthesis of aspartate semialdehyde dehydrogenase or aspartate aminotransferase.
Z US patentového spisu č. 4 346 170 je známe klonovanie genetickej informácie riadiacej, tvorbu lyzínu v Escherichia coli, ktorá pochádza z kmeňa toho istého rodu s rezistenciou voči analógom L-lyzínu, ako je napríklad AEC.U.S. Pat. No. 4,346,170 is known to clone genetic information controlling the production of lysine in Escherichia coli, which originates from a strain of the same genus with resistance to L-lysine analogs such as AEC.
Predmet US patentového spisu č. 4 560 654 sa týka tej istej oblasti. V tomto prípade sa však v lyzín-auxotrofnom kmeni Corynebacterium.glutamicum klonuje genetická informácia z AEC-rezistentného kmeňa toho istého rodu z toho dôvodu, aby sa vylučoval lyzín.U.S. Pat. 4,560,654 refers to the same area. In this case, however, genetic information from an AEC-resistant strain of the same genus is cloned in the lysine-auxotrophic strain Corynebacterium.glutamicum in order to secrete lysine.
Identita klonovaného fragmentu DNA nie je zrejmá.The identity of the cloned DNA fragment is not obvious.
Tiež z EP č. 88 166 je možné iba vyrozumieť, že kmeň Corynebacterium glutamicum vylučuje lyzín, keď transformáciou získal fenotyp AEC rezistencie.Also from EP no. 88 166, it can only be understood that the Corynebacterium glutamicum strain secretes lysine when it has transformed into the phenotype of AEC resistance.
Rekombinantný plazmid pAec5 použitý na tento účel obsahuje 3,9 kb fragment chromozómovej DNA, vsadený na štiepne miesto Bglll vektora pCG 11.The recombinant plasmid pAec5 used for this purpose contains a 3.9 kb fragment of chromosomal DNA inserted at the BglII cleavage site of the vector pCG11.
Úlohou predloženého vynálezu je zmeniť regulovatelnosť dôležitého enzýmu biosyntézy lýzínu v mikroorganizme roduThe object of the present invention is to alter the controllability of an important enzyme of lysine biosynthesis in a microorganism of the genus
Corynebacterium alebo Brevibacterium tak, aby sa získal producent lyzínu alebo aby sa zvýšila schopnosť produkcie lyzínu.Corynebacterium or Brevibacterium to obtain a lysine producer or to enhance lysine production capability.
Podstata vynálezuSUMMARY OF THE INVENTION
Predmetom vynálezu je fragment DNA, ktorý sa skladá z nukleotidovej sekvencie s dĺžkou 2,1 kb, ohraničený Pst 1 a Xho 1 miestami štiepenia, ktorého podstata spočíva v tom, že aminokyselinová sekvencia uvedená na obr. 5 kóduje produkciu proteínov, vedúcich k aktivite aspartyl-p-semialdehyddehydrogenázy (asd) a k deregulácii aspartátkinázy (lysC), je obsiahnutý v plazmide pCS2, ktorého delečná mapa je uvedená na obr. 3, uloženom v Corynebacterium qlutamicum pod číslom DSM 5086.The present invention provides a DNA fragment consisting of a 2.1 kb nucleotide sequence flanked by Pst I and Xho I cleavage sites, characterized in that the amino acid sequence shown in FIG. 5 encodes the production of proteins leading to aspartyl β-semialdehyde dehydrogenase (asd) activity and aspartic kinase deregulation (lysC), is contained in the plasmid pCS2, the deletion map of which is shown in FIG. 3, deposited with Corynebacterium qlutamicum under number DSM 5086.
Predmetom vynálezu je ďalej aj rekombinantná DNA odvodená z plazmidu pCS2, charakterizovaná delečnou mapou zodpovedajúcou označeniu pCS26, uvedenou na obr. 3.The present invention also provides recombinant DNA derived from plasmid pCS2, characterized by a deletion map corresponding to the designation pCS26 shown in FIG. Third
Predmetom vynálezu je ďalej aj rekombinantná DNA odvodená z plazmidu pCS2, charakterizovaná delečnými mapami zodpovedajúcimi označeniam pCS23 alebo pCS233 na obr. 3.The present invention also provides recombinant DNA derived from plasmid pCS2, characterized by deletion maps corresponding to pCS23 or pCS233 in FIG. Third
Predmetom vynálezu je ďalej aj spôsob výroby L-lyzínu fermentáciou mikroorganizmov rodu Corynebacterium alebo Brevibacterium produkujúcich túto aminokyselinu, ktorého podstata spočíva v tom, že mikroorganizmy obsahujú plazmid uvedený vyššie alebo niektorú z rekombinantných DNA uvedených vyššie.The invention also provides a process for the production of L-lysine by fermentation of microorganisms of the genus Corynebacterium or Brevibacterium producing this amino acid, which comprises the microorganisms containing the plasmid mentioned above or one of the recombinant DNAs mentioned above.
Pri výhodnom uskutočnení vyššie popísaného spôsobu sa *In a preferred embodiment of the method described above, *
používa mikroorganizmus Corynebacterium DMS 5086.uses Corynebacterium DMS 5086.
Vynález sa teda okrem iného týka spôsobu výroby L-lyzínu, ktorého podstata spočíva v tom, že sa rekombinantná DNA, ktorá pochádza z fragmentu DNA, ktorý má kódovanú genetickú sekvenciu pre produkciu proteínov, ktoré vedú k aspartyl-βsemialdehyddehydrogenázovej (asd) aktivite a/alebo k deregulácii aspartátkinázy, a skladá sa z vektora DNA, inzeruje do mikroorganizmu rodu Corynebacterium alebo Brevibacterium produkujúceho lyzín, takto získané transformanty sa kultivujú vo vhodnom o sebe známom médiu a vytvorený lyzín sa známymi metódami izoluje.The invention thus relates, inter alia, to a process for the production of L-lysine, characterized in that the recombinant DNA is derived from a DNA fragment which has a coded genetic sequence for the production of proteins which lead to aspartyl-βsemialdehyde dehydrogenase (asd) activity and / or to deregulate aspartic kinase, and consists of a DNA vector, inserted into a lysine-producing microorganism of the genus Corynebacterium or Brevibacterium, the transformants thus obtained are cultured in a suitable medium known per se, and the lysine formed is isolated by known methods.
Ako donorové kmene môžu slúžiť všetky kmene, výhodne baktérie rodu Brevibacterium a Corynebacterium produkujúce lyzín, ktoré obsahujú príslušné sekvencie DNA, najmä však Corynebacterium glutamicum DM 58-1, ktorý bol vyvinutý mutagenézou Corynebacterium ATCC 13032 etylmetánsulfátom a preukazuje AEC-rezistenciu.Donor strains can be all strains, preferably Brevibacterium and Corynebacterium lysine producing bacteria, which contain the respective DNA sequences, in particular Corynebacterium glutamicum DM 58-1, which has been developed by mutagenesis of Corynebacterium ATCC 13032 with ethyl methanesulfate and demonstrates AEC resistance.
Tento kmeň je uložený pod číslom DSM 4697, pričom slúži ako hostiteľská baktéria pre plazmid pDM6. Tento môže odborník známymi spôsobmi oddeliť a tak získať kmeň DM58-1 (FEMS Microbiology Review 32 (1986) 149-157).This strain is deposited under the number DSM 4697 and serves as a host bacterium for the plasmid pDM6. This can be separated by one of ordinary skill in the art to obtain strain DM58-1 (FEMS Microbiology Review 32 (1986) 149-157).
Chromozómová DNA sa z donora extrahuje známym spôsobom a spracuje sa reštrikčnou endonukleázou.Chromosomal DNA is extracted from the donor in a known manner and treated with restriction endonuclease.
Po konštrukcii rekombinantnej DNA zavedením chromozómového fragmentu DNA do vektora prebieha transformácia mikroorganizmu s takto získaným plazmidom, podľa predloženého vy nálezu napríklad pCS2, ktorého resktrikčná schéma je znázornená na obr. 2 a ktorý je v kmeni Corynebacterium glutamicum DM2-l/pCS2 uložený podlá Budapeštianskej zmluvy pod číslom DSM 5086 v Nemeckej zbierke mikroorganizmov a bunkových štruktúr.After construction of the recombinant DNA by introducing the chromosomal DNA fragment into the vector, the microorganism is transformed with the plasmid thus obtained, according to the present invention, for example, pCS2, the restriction scheme of which is shown in FIG. 2 and which is deposited in the Corynebacterium glutamicum DM2-1 / pCS2 strain under the Budapest Treaty under number DSM 5086 in the German Collection of Microorganisms and Cellular Structures.
Výhodný vektorový systém predstavuje pZl (uložený v Corynebacterium glutamicum DM 274-2 pod číslom DSM 4241) alebo i pCV34, pCVX4, pCVXlO, pCVX15, pZ9 a pZ8-l (DE-OS 38 41 454.6) alebo pCV35, pECM3 a pECMl (DE-OS 38 41 453.8).A preferred vector system is pZ1 (deposited in Corynebacterium glutamicum DM 274-2 under DSM 4241) or even pCV34, pCVX4, pCVX10, pCVX15, pZ9 and pZ8-1 (DE-OS 38 41 454.6) or pCV35, pECM3 and pECM1 (DE) -OS 38 41 453.8).
Použiteľné sú však aj zložené plazmidy, známe z EP-A-93 611, ak samy replikujú v rodoch Corynebacterium alebo Brevibacterium, najmä pAJ 655, pAJ 611, pAJ 440, pAJ 1844 a pAJ 3148 alebo tiež pCG 11, pCE 54 (viď EP-A 0 233 581), a taktiež pUL330 (Santamaria, R. I. a kol., J. Bacteriology 162, (1985) 463-467).However, composite plasmids known from EP-A-93 611 are also useful when they replicate themselves in the Corynebacterium or Brevibacterium genera, in particular pAJ 655, pAJ 611, pAJ 440, pAJ 1844 and pAJ 3148 or also pCG 11, pCE 54 (see EP -A 0 233 581), as well as pUL330 (Santamaria, RI et al., J. Bacteriology 162, (1985) 463-467).
Predmetom prihlášky sú aj mikroorganizmy rodu Corynebacterium alebo Brevibacterium obsahujúce rekombinantnú DNA a ich použitie na výrobu L-lyzínu fermentáciou.The present invention also relates to microorganisms of the genus Corynebacterium or Brevibacterium containing recombinant DNA and their use for the production of L-lysine by fermentation.
Klonovaný fragment DNA (viď obr. 2) obsahuje len časť génu aspartátkinázy (LysC), ako aj úplný gén aspartyl-βsemialdehyddehydrogenázy (asd), čo je možné zistiť sekvenčnou analýzou.The cloned DNA fragment (see FIG. 2) contains only a portion of the aspartate kinase (LysC) gene as well as the complete aspartyl β-semialdehyde dehydrogenase (asd) gene, as determined by sequence analysis.
Časť tohto génu aspartátkinázy má homologickú sekvenciu DNA k β-podjednotke aspartátkinázy II z Bacillus substilis.Part of this aspartic kinase gene has a homologous DNA sequence to the β-subunit of aspartic kinase II from Bacillus substilis.
Všetky transformanty, ktorých plazmid má túto sekvenciu (pCS2, pCS22, pCS23, pCS24, pCS26 a pCS233) , obsahujú v po6 rovnaní s chromozómovo kódovaným enzýmom z ATCC 13032 vo vzťahu k feed-back inhibítorom L-lyzínu a L-treonínu značne desenzibilizovanú aspartátkinázu a vykazujú AEC-rezistenciu.All transformants whose plasmid has this sequence (pCS2, pCS22, pCS23, pCS24, pCS26 and pCS233) contain a substantially desensitized aspartate kinase in comparison to the feed-back inhibitors of L-lysine and L-threonine when compared to the chromosome encoded enzyme from ATCC 13032. and exhibit AEC resistance.
Závery odvodzované z porovnaní homológie, podľa ktorých fragment génu Pst I - Xhol z DM58-1 obsahuje len časť génu LysC (AK), ale úplný gén asd, môžu byť jednoznačne potvrdené pomocou enzýmových meraní.Conclusions derived from a homology comparison that a fragment of the Pst I - XhoI gene from DM58-1 contains only a portion of the LysC (AK) gene but the full asd gene can be unequivocally confirmed by enzyme measurements.
Žiadny kmeň Corynebacterium glutamicum ATCC 13032, transformovaný derivátom pCS2 alebo pCS2 neobsahuje prekvapivo zvýšenú aktivitu aspartátkinázy v porovnaní s pôvodným kmeňom (tabuľka 4, stĺpec 3) .No Corynebacterium glutamicum ATCC 13032 strain transformed with a pCS2 or pCS2 derivative contains surprisingly increased aspartate kinase activity compared to the parent strain (Table 4, column 3).
Naproti tomu vo všetkých transfprmantoch, ktorých plazmidy obsahujú štruktúrny gén asd, sa dá zistiť silná superexpresia aspartyl-p-semialdehyddehydrogenázy (ASA-DH) , (tabuľka 4, stĺpec 2, obr. 3 a 4). Plazmidy pCS23 a deriváty pCS23 nevedú podľa očakávania k superexpresii ASA-DH.In contrast, in all transfections whose plasmids contain the structural gene asd, strong superexpression of aspartyl β-semialdehyde dehydrogenase (ASA-DH) can be detected (Table 4, column 2, Figures 3 and 4). As expected, pCS23 plasmids and pCS23 derivatives do not result in superexpression of ASA-DH.
Silná superexpresia ASA-DH, nastávajúca pri klonovaní podľa vynálezu fragmentu DNA pomocou pCS2 a z neho odvodených derivátov, zaručuje účinnú reakciu produktu aspartátkinázovej reakcie, β-aspartylfosfátu, čím dochádza k urýchleniu už neinhibovanej aspartátkinázovej reakcie.The strong superexpression of ASA-DH resulting from the cloning of the DNA fragment according to the invention with pCS2 and derivatives derived therefrom guarantees an efficient reaction of the aspartate kinase reaction product, β-aspartyl phosphate, thereby accelerating the no longer inhibited aspartate kinase reaction.
Na základe vysokej lability ASA-DH kolísajú faktory superexpresie, kalkulovateľné zo špecifických aktivít v rozmedzí 31 až 65.Due to the high lability of ASA-DH, the factors of superexpression, calculated from specific activities range from 31 to 65.
V porovnaní so súčasným stavom techniky dochádza k podstatnému zjednodušeniu tým, že sa po prvé musí izolovať len časť génu LysC, ktorý vedie k deregulácii aspartátkinázy, aby sa dosiahlo alebo zlepšilo vylučovanie lyzínu, a po druhé na základe organizácie LysC a asd v jednom operóne sa môže izolovať gén asd bez dodatočných experimentálnych nákladov spojených s AEC-rezistenciou, nastávajúcou s mutáciou génu LysC, spoločne s génom LysC. Naopak sa môže pomocou mutantov asd izolovať fragment DNA obsahujúci LysC + asd, a to nezávisle od toho, či je LysC mutovaný alebo nie.Compared to the current state of the art, there is a substantial simplification in that, first, only part of the LysC gene that leads to deregulation of aspartate kinase has to be isolated to achieve or improve lysine secretion, and secondly based on LysC and asd in one operon. can isolate the asd gene at no additional experimental cost associated with the AEC-resistance occurring with the LysC gene mutation, along with the LysC gene. Conversely, a DNA fragment containing LysC + asd can be isolated using the asd mutants, regardless of whether the LysC is mutated or not.
1. Charakteristika donora génu DM58-1 a príjemcu génu ATCC 130321. Characteristics of the DM58-1 donor and ATCC 13032 recipient
1.1 Získanie a fenotyp kmeňa DM58-11.1 Acquisition and phenotype of strain DM58-1
Kmeň DM58-1 sa získal mutagenézou kmeňa Corynebacterium glutamicum ATCC 13032 bežnou koncentráciou etylmetánsulfonátu.The DM58-1 strain was obtained by mutagenesis of the Corynebacterium glutamicum ATCC 13032 strain with a conventional concentration of ethyl methanesulfonate.
Selekcia prebiehala kultiváciou takto získanej zmesi mutantov na minimálnom agare so zložením:Selection was carried out by culturing the mixture of mutants thus obtained on minimal agar of the composition:
ktorý obsahoval vhodnú koncentráciu S-aminoetyl-D,L-cysteinu (AEC<) . Kloň izolovaný z tohto selekčného média a schopný delenia na tomto médiu, neskôr označený ako DM58-1, nenesie okrem svojej AEC-rezistencie žiadne ďalšie genetické znaky.which contained a suitable concentration of S-aminoethyl-D, L-cysteine (AEC <). A clone isolated from this selection medium and capable of dividing on this medium, later designated DM58-1, bears no other genetic traits apart from its AEC resistance.
1.2 Enzvmatické obsahy aspartátkinázv a aspartyl-B-semialdep hvddehydrogenázy v ATCC 13Q32 a DM 58-11.2 Enzymatic contents of aspartic kinases and aspartyl-B-semialdep hvddehydrogenase in ATCC 13Q32 and DM 58-1
Kmene ATCC 13032 a DM58-1 sa kultivujú za priamo porovnatelných podmienok v Standard I Bouillon (Merck Art. Nr.The strains ATCC 13032 and DM58-1 are cultured under directly comparable conditions in Standard I Bouillon (Merck Art. Nr.
7882) s prídavkom 4 g/l glukózy a 1 mM chloridu horečnatého pri 30 °C a 150 otáčok za minútu až do dosiahnutia včasné stacionárnej fázy a centrifugáciou sa od kultivačného média oddelia. Premyjú sa trikrát 100 mM Tris/HCl (pH 7,5); 1 mM DTT a vlhká bunková masa sa suspenduje v jednom objemovom dieli rovnakého tlmivého roztoku.7882) with the addition of 4 g / l glucose and 1 mM magnesium chloride at 30 ° C and 150 rpm until an early stationary phase is reached and centrifuged to separate from the culture medium. Wash three times with 100 mM Tris / HCl (pH 7.5); 1 mM DTT and wet cell mass were suspended in one volume of the same buffer.
Takto suspendované bunky sa dezintegrujú v guľovom mlyne (B. Braun Melsungen - MSK-Homogenisator, IMA-Disintegrator S) rozmiešaním s vhodným množstvom sklených guľôčok. Bunkový homogenizát sa oddelí od sklených guľôčok na sklenom filtri a centrifuguje sa 30 minút pri 30000 x g do vyčírenia.The suspended cells are then disintegrated in a ball mill (B. Braun Melsungen-MSK-Homogenisator, IMA-Disintegrator S) by mixing with an appropriate amount of glass beads. The cell homogenate is separated from the glass beads on a glass filter and centrifuged for 30 minutes at 30,000 x g until clear.
Po 15-hodinovej dialýze v tlmivom roztoku stabilizujúcom enzým sa určila enzýmová aktivita v nasledujúcich testovacích zmesiach:After 15 hours of dialysis in enzyme stabilizing buffer, enzyme activity was determined in the following test mixtures:
Test aspartátkinázy:Aspartate Kinase Test:
L-aspartát 300 mML-aspartate 300 mM
ATP 40 mM a rôzne množstvá enzýmových preparátov.ATP 40 mM and various amounts of enzyme preparations.
Prídavkom 150 μΐ roztoku z 10 % hexahydrátu chloridu železitého; 3,3 % TCA; 0,7 N HCI na 500 μΐ testovanej enzýmovej zmesi sa enzýmová reakcia po tridsaťminútovej inkubácii pri teplote 37 °C zastaví. Z koncentrácie aspartyl-β10 hydroxamátu, zistenej fotometrický (ΔΕ540 nm) pomocou kalibračnej krivky, sa kalkuluje enzymatická aktivita v μιηοΐ/mg.min (U/mg) . Príslušné koncentrácie proteínov sa určovali podľa metódy Lowryho a kolektívu (Lowry a kol. J. Biol. Chem. 193, 265 (1951) alebo Bradforda (Bradford Anál. Biochem. 72, 248 (1976) ) .Addition of 150 μΐ of 10% ferric chloride hexahydrate solution; 3.3% TCA; With 0.7 N HCl per 500 μΐ of the test enzyme mixture, the enzyme reaction is stopped after a thirty minute incubation at 37 ° C. From the concentration of aspartyl-β10 hydroxamate, determined by photometric (540Ε 540 nm) using a calibration curve, the enzymatic activity is calculated in μιηοΐ / mg.min (U / mg). Appropriate protein concentrations were determined according to the method of Lowry et al. (Lowry et al. J. Biol. Chem. 193, 265 (1951) or Bradford (Bradford Anal. Biochem. 72, 248 (1976)).
Test aspartyl-p-semialdehyddehydrogenázy:Aspartyl-β-semialdehyde dehydrogenase test:
dietanolamín (pH 9,0) 120 mMdiethanolamine (pH 9.0) 120 mM
NaAsO4 40 mMNaAsO 4 40 mM
NADP+ 1 mMNADP + 1 mM
L-treonín 5 mM aspartyl-0-semialdehyd 1,3 mM a rôzne množstvá enzýmových preparátov v celkovom objeme 1 ml.L-threonine 5 mM aspartyl-O-semialdehyde 1.3 mM and varying amounts of enzyme preparations in a total volume of 1 ml.
Aktivita udávaná v μπιοΐ/mg.min (U/mg) sa počíta cez fotometrický stanovenú (ΔΕ540 nm) rýchlosť syntézy NADPH.The activity reported in μπιοΐ / mg.min (U / mg) is calculated via the photometric determined (540Ε 540 nm ) NADPH synthesis rate.
Tabuľka 1 obsahuje špecifické enzýmové aktivity obidvoch enzýmov v surových extraktoch identicky pestovaných a zpracovaných buniek Corynebacterium glutamicum ATCC 13032 a DM58-1. Okrem porovnateľných obsahov aspartátkinázy u obidvoch kmeňov obsahuje AEC-rezistentný mutant DM58-1 v porovnaní s divým typom približne päťnásobne zvýšenú aktivitu aspartyl-p-semialdehyddehydrogenázy.Table 1 contains the specific enzyme activities of both enzymes in crude extracts of identically grown and processed Corynebacterium glutamicum ATCC 13032 and DM58-1 cells. In addition to comparable aspartic kinase contents in both strains, the AEC-resistant mutant DM58-1 contains approximately five-fold increased aspartyl β-semialdehyde dehydrogenase activity compared to wild type.
1.3 Inhibícia aspartátkinázy z Corynebacterium glutamicum ATCC 13032 a DM58-1 in vitro1.3 In vitro Inhibition of Corynebacterium glutamicum aspartate kinase ATCC 13032 and DM58-1
Tabuľka 1 ukazuje, že už K. Nakayamom a kol. (K. Nakayama a kol., Agr. Biol. Chem. 30, 611 (1966)) naznačená a S. N. Kara-Murzom a kol. (S. N. Kara-Murza Prikladnaya Biokhimiya; Mikrobiológia 14, 345 (1978)) presnejšie preskúmaná inhibícia enzýmov divého typu Corynebacterium glutamicum je schopná reprodukcie. V porovnaní s tým je značne rozdielny charakter enzýmu AEC-rezistentných mutantov DM58-1, ktorých aspartátkináza už nie je koncentrovane inhibovateľná L-lyzínom + L-treonínom. Látkou S-aminoetyl-D,L-cysteínom, pôsobiacim na enzým z ATCC 13032 ako analóg lyzínu, je enzým mutantov taktiež len nepatrne ovplyvňovaný.Table 1 shows that K. Nakayam et al. (K. Nakayama et al., Agr. Biol. Chem. 30, 611 (1966)) and S. N. Kara-Murz et al. (S.N. Kara-Murza Prikladnaya Biokhimiya; Microbiology 14, 345 (1978)) more specifically investigated inhibition of wild-type enzymes of Corynebacterium glutamicum is capable of reproduction. In comparison, the enzyme character of the AEC-resistant mutants DM58-1, whose aspartate kinase is no longer concentrically inhibited by L-lysine + L-threonine, is quite different. The enzyme S-aminoethyl-D, L-cysteine, acting on the enzyme from ATCC 13032 as a lysine analog, is also only slightly affected by the enzyme mutants.
Tabuľka 1Table 1
Obsah enzýmov a vlastnosti aspartátkinázy (AK) a aspartyl-βsemialdehyddehydrogenázy (ASA-DH) z Corynebacterium glutamicum ATCC 13032 a DM58-1Enzyme content and properties of aspartic kinase (AK) and aspartyl βsemialdehyde dehydrogenase (ASA-DH) from Corynebacterium glutamicum ATCC 13032 and DM58-1
tu/mq)here / m²)
AEC: S-(aminoetyl)-D,L-cysteínAEC: S- (aminoethyl) -D, L-cysteine
2. Klonovanie fragmentu DNA kmeňa Corynebacterium glutamicum DM58-1, ktorý kóduje pre feed-back rezistentnú aspartátkinázu2. Cloning of a DNA fragment of Corynebacterium glutamicum DM58-1 which encodes feed-back resistant aspartate kinase
2.1 Klonovanie2.1 Cloning
Izoluje sa celková DNA z kmeňa Corynebacterium glutamicum DM58-1 spôsobom popísaným Charterom a kol. (Charter a kol. Curr. Topics Microb. Immunol. 96, 69 (1982)) a parciálne sa naštiepi reštrikčným enzýmom Pstl. Vektor pZl (obr.Total DNA from Corynebacterium glutamicum DM58-1 was isolated as described by Charter et al. (Charter et al. Curr. Topics Microb. Immunol. 96, 69 (1982)) and partially digested with the restriction enzyme PstI. Vector pZ1 (fig.
1), ktorý je popísaný v nemeckej patentovej prihláške č. 37 37 729.9, sa linearizuje pomocou Pstl a spracovaním alkalickou fosfatázou sa defosforyluje. Vektor DNA a DM58-1 DNA sa zmiešajú a spracujú sa T4 DNA-ligázou, ako sa popisuje Maniatisoma kol. (Maniatis, T. a kol., Molecular Cloning,1), which is described in German patent application no. 37 37 729.9, is linearized with PstI and dephosphorylated by alkaline phosphatase treatment. The DNA vector and the DM58-1 DNA were mixed and treated with T4 DNA ligase as described by Maniatisoma et al. (Maniatis, T. et al., Molecular Cloning,
A. Laboratory Manual, Cold Spring Harbour Laboratory 1982).A. Laboratory Manual, Cold Spring Harbor Laboratory 1982).
Transformácia Corynebacterium glutamicum ATCC 13032 ligačnou zmesou sa uskutočňuje spôsobom popísaným Thierbachom a kol. (Thierbach, G. a kol., Applied Microbiology and Biotechnology 29, 356 (1988)).Transformation of Corynebacterium glutamicum ATCC 13032 with the ligation mixture is carried out as described by Thierbach et al. (Thierbach, G. et al., Applied Microbiology and Biotechnology 29, 356 (1988)).
Na obr. 1 je znázornená reštrikčná schéma plazmidu pZl. Hrubá čiara znázorňuje podiel pHM1519 a tenká čiara znázorňuje podiel pACYC177. Označenie ApR = gén ampicilínovej rezistencie a Km3 = gén kanamycínovej rezistencie.In FIG. 1 is a restriction diagram of plasmid pZ1. The thick line represents the proportion of pHM1519 and the thin line represents the proportion of pACYC177. The designation Ap R = ampicillin resistance gene and Km 3 = kanamycin resistance gene.
Transformačná zmes sa zaočkuje na agarové platne s RCG/E agarom s 300 μg/ml· kanamycínu a tieto platne sa inkubujú jeden týždeň pri teplote 30 ’C. Potom sa tieto agarové platne prepečiatkujú na agarové platne s agarom MM (Katasumata, R. a kol., J. Bact. 159, 306 (1984)) s 50 mM AEC a 50 mM L-treonínu a tieto sa kultivujú jeden deň pri teplote 30 ’C. Kolónie, ktoré na tomto agare mohli rásť, sa preočkujú na agar MM, ktorý dodatočne obsahuje AEC, L-treonín a 10 gg/ml kanamycínu, aby sa získali jednobunkové kolónie. Plazmid DNA sa izoluje z takéhoto klonu, označeného ako pCS2, a použije sa na transformáciu Corynebacterium glutamicum ATCC 13032. 59 zo 62 preskúšaných transformantov rezistentných na kanamycín sa javilo rezistentných voči inhibícii 50 mM AEC a 50 mM L-treonínu. Plazmid pCS2 sa ďalej charakterizoval pomocou reštrikčnej analýzy. Obsahuje asi 9,9 kb dlhú inzerciu v štiepnom mieste PstI vektora pZl, ktorý má dĺžku 6,9 kb.The transformation mixture was seeded on RCG / E agar plates with 300 µg / ml kanamycin and incubated for one week at 30 ° C. Thereafter, these agar plates are resolved into MM agar plates (Katasumata, R. et al., J. Bact. 159, 306 (1984)) with 50 mM AEC and 50 mM L-threonine and cultured for one day at temperature. 30 'C. Colonies that could grow on this agar were inoculated on MM agar, which additionally contained AEC, L-threonine and 10 gg / ml kanamycin to obtain single cell colonies. Plasmid DNA was isolated from such a clone, designated pCS2, and used to transform Corynebacterium glutamicum ATCC 13032. 59 out of 62 kanamycin-resistant transformants tested appeared resistant to inhibition by 50 mM AEC and 50 mM L-threonine. Plasmid pCS2 was further characterized by restriction analysis. It contains an approximately 9.9 kb long insertion at the PstI cleavage site of the pZ1 vector 6.9 kb in length.
Na obr. 2 je znázornená reštrikčná schéma plazmidu pCS2 v linearizovanej forme.In FIG. 2 is a restriction diagram of the plasmid pCS2 in linearized form.
V hornej časti obr. 2 sú uvedené pozície rôznych reštrikčných štiepnych miest. V dolnej časti obrázka sú znázornené rôzne oblasti plazmidu pCS2. Inzercia DM58-1 DNA je znázornená ako prázdny pás. Gén ampicilínovej rezistencie pZl je znázornený ako čierne pole, gén kanamycínovej rezistencie je znázornený ako bodkované pole. Ostatné podiely pZl plazmidu pCS2 sú vyšrafované. Použité skratky sú nasledovné: BamHI - B; Bell - C; Sali - S; Sca - A; Smal - M; Xhol - X.In the upper part of FIG. 2 shows the positions of the various restriction cleavage sites. Different regions of the plasmid pCS2 are shown in the lower part of the figure. The insertion of DM58-1 DNA is shown as an empty band. The ampicillin resistance gene pZ1 is shown as a black field, the kanamycin resistance gene is shown as a dotted field. Other proportions of pZ1 of plasmid pCS2 are shaded. The abbreviations used are as follows: BamHI-B; Bell-C; Sali-S; Sca-A; Smal-M; Xhol - X.
2.2 Charakteristika aktivity aspartátkinázv2.2 Characteristics of aspartate kinase activity
Aspartátkinázová aktivita sa merala u kmeňa ATCC 13032/pCS2, ako pozitívna kontrola u kmeňa DM58-1 a ako negatívna kontrola u kmeňa ATCC 13032. Kmene sa kultivovali na Standard I Bouillon, pričom táto pôda bola doplnená 4 g/1 glukózy, 10 hg/ml kanamycínu a 1 mM chloridu horečnatého. Kultivačné podmienky, izolácia buniek, rozloženie buniek a stanovenie aspartátkinázy sú popísané a uskutočňujú sa podľa odstavca 1.2. Efektory L-lyzín, L-treonín a AEC sa vždy pridávajú ako základné roztoky v 100 mM Tris/HCl tlmivom roztoku s hodnotou pH 7,5.Aspartate kinase activity was measured in strain ATCC 13032 / pCS2, as a positive control in strain DM58-1 and as a negative control in strain ATCC 13032. The strains were cultured on Standard I Bouillon supplemented with 4 g / l glucose, 10 hg / l. ml of kanamycin and 1 mM magnesium chloride. Culture conditions, cell isolation, cell lysis and aspartic kinase assays are described and performed according to paragraph 1.2. The effectors L-lysine, L-threonine and AEC are always added as stock solutions in 100 mM Tris / HCl buffer, pH 7.5.
Obsah aspartátkinázy a inhibovateľnosť enzýmu z ATCC 13032/pCS2 sú uvedené v tabuľke 4. Aj keď kmeň nepreukazuje žiadne zvýšenie špecifickej aktivity, mohla byť zistená zreteľná desenzibilizácia voči uvedeným inhibičným látkam, ktorých miera stupňa deregulácie enzýmu z poskytovateľa génu DM58-1 však nebola dosiahnutá (parciálna deregulácia).The aspartic kinase content and enzyme inhibitory activity of ATCC 13032 / pCS2 are shown in Table 4. Although the strain showed no increase in specific activity, a clear desensitization to the indicated inhibitory substances could be observed but the degree of enzyme deregulation from the DM58-1 gene provider was not achieved ( partial deregulation).
2.3 Stanovenie vylučovania L-lyzínu2.3 Determination of L-lysine secretion
Schopnosť vylučovania lyzínu sa stanovila u kmeňa ATCC 13032/pCS2 a ako negatívna kontrola u kmeňa ATCC 13032/pZl. Po prídavku 10 ug/ml kanamycínu sa kultivácia uskutočňovala spôsobom popísaným nižšie a získané výsledky sú zhrnuté v tabuľke 2.The lysine secretion capacity was determined for the ATCC 13032 / pCS2 strain and as a negative control for the ATCC 13032 / pZ1 strain. Following the addition of 10 µg / ml kanamycin, the culture was performed as described below and the results are summarized in Table 2.
Tabuľka2TABLE 2
Vylučovanie L-lyzínu rôznymi kmeňmi Corynebacterium glutamicumExcretion of L-lysine by various strains of Corynebacterium glutamicum
Kmeň C. glutamicum Koncentrácia vylúčenéhoStrain C. glutamicum Concentration excluded
L-lyzín.HCI (g/1)L-lysine.HCI (g / 1)
ATCC 13032/pZlATCC 13032 / pZ1
ATCC 13032/pCS2 (= DM 2-l/pCS2)ATCC 13032 / pCS2 (= DM 2-1 / pCS2)
0, 0 7,10. 7.1
Erlenmeyerova banka s objemom 100 ml sa naplní 10 ml kultivačného média s nasledovným zložením:A 100 ml Erlenmeyer flask is filled with 10 ml of culture medium as follows:
Po zaočkovaní sa kultúra inkubuje 72 hodín pri teplote 30 °C a 300 otáčkach za minútu. Stanovenie lyzínu sa uskutočňuje v kvapaline po centrifugácii pomocou analyzátora aminokyselín.After seeding, the culture is incubated for 72 hours at 30 ° C and 300 rpm. The lysine determination is performed in the liquid after centrifugation using an amino acid analyzer.
3. Prehľad odštiepovania fragmentu DNA pCS2, ktorý kóduje pre feed-back rezistentnú aspartátkinázu3. Overview of cleavage of the pCS2 DNA fragment that encodes feed-back resistant aspartate kinase
Úplným alebo parciálnym štiepením pCS2 rôznymi reštrikčnými enzýmami a nasledujúcim spracovaním T4 DNA-ligázou pri nízkych koncentráciách DNA sa konštruujú rôzne odštiepne deriváty. Výroba rôznych odštiepnych derivátov je zhrnutá v nasledujúcej tabuľke 3 a pozícia odštiepenia v rôznych derivátoch je znázornená na obr. 3. Na obr. 3 je taktiež nanesená schopnosť rezistencie kmeňov odvodených od Corynebacterium glutamicum ATCC 13032 voči AEC. Týmto spôsobom mohla byť ohraničená oblasť DNA, sprostredkujúca AEC-rezistenciu, na fragment DNA dlhý približne 1,5 kb, ktorá je obmedzená v plazmide pCS233 klonovacím štiepnym miestom PstI a štiepnym miestom EcoRI.By total or partial cleavage of pCS2 by various restriction enzymes and subsequent treatment with T4 DNA ligase at low DNA concentrations, various cleavage derivatives are constructed. The production of the various cleavage derivatives is summarized in the following Table 3, and the cleavage position in the different derivatives is shown in FIG. 3. In FIG. 3 also shows the ability of the AEC resistance of strains derived from Corynebacterium glutamicum ATCC 13032. In this way, the DNA region mediating AEC-resistance could be flanked to a DNA fragment of approximately 1.5 kb, which is restricted in plasmid pCS233 by the cloning PstI cleavage site and EcoRI cleavage site.
Aktivita aspartátkinázy a inhibovateľnosť enzýmovej aktivity zmesami lyzínu, prípadne AEC a treonínu, sa stanovovala v konštruovaných klonoch. Pestovanie, izolácia a stano17 venie aktivity sa uskutočňovali spôsobom vyššie popísaným. Okrem toho sa skúmala schopnosť rôznych klonov vylučovať Llyzín. Na to sa používal difúzny test na agarových platniach s L-lyzín-auxotrofným indikačným kmeňom Corynebacterium glutamicum. Z tabuľky 4 je zrejmé, že všetky AEC-rezistentné kmene majú parciálne deregulovanú aktivitu aspartátkinázy a že sú schopné vylučovať L-lyzín.Aspartate kinase activity and enzyme activity inhibition by mixtures of lysine, optionally AEC and threonine, were determined in engineered clones. Cultivation, isolation and activity determination were performed as described above. In addition, the ability of different clones to secrete Llysine was examined. A diffusion test on L-lysine-auxotrophic indicator strain Corynebacterium glutamicum was used for this. It is evident from Table 4 that all AEC-resistant strains have partially deregulated aspartate kinase activity and are capable of secreting L-lysine.
Tabuľka 3Table 3
Výroba a AECR/s-f enotyp rôznych štiepnych derivátov plazmidu pCS2Production and AEC R / s -f enotype of various cleavage derivatives of plasmid pCS2
Í9i9
Vysvetlivky: R - rezistencia S = citlivosťExplanatory notes: R - resistance S = sensitivity
Na obr. 3 je znázornená schéma štiepenia plazmidu pCS2 V hornej časti obrázka sú znázornené deriváty odvodené od pCS2 a v dolnej časti obrázka deriváty odovodené od pCS23. Hranice ampicilínovej rezistencie pZl sú znázornené čierno; hranice kanamycínovej rezistencie sú znázornené bodkované a ostatné časti pZl plazmidu pCS2 sú vyšrafované. Inzercie DM58-1 DNA sú znázornené ako voľné pásy. Štiepenia sú označené čiarou. Vysvetlenie použitých skratiek:In FIG. 3 shows a scheme for the cleavage of pCS2. In the upper part of the figure, derivatives derived from pCS2 and in the lower part of the figure derivatives derived from pCS23 are shown. The ampicillin resistance limits of pZ1 are shown in black; the kanamycin resistance boundaries are dotted and the other parts of the pZ1 plasmid pCS2 are shaded. The insertions of DM58-1 DNA are shown as free bands. Cleavages are indicated by a line. Explanation of abbreviations used:
B - BamHI, G - Bell, D - Dral, E - EcoRI, S - Sali, A Seal, M - Smal, X - Xhol.B-BamHI, G-Bell, D-Dral, E-EcoRI, S-Sal, A-Seal, M-Smal, X-Xhol.
Tabuľka 4: Mikrobiologické a biochemické charakteristiky rekombinantných kmeňov Corynebacterium glutamicumTable 4: Microbiological and biochemical characteristics of recombinant strains of Corynebacterium glutamicum
(pZ1 )(pZ1)
Použité skratky: ASA-DH: aspartyl-p-semialdehyddehydrogenázaAbbreviations used: ASA-DH: aspartyl-β-semialdehyde dehydrogenase
AK: aspartátkináza n.: nezistené.AK: aspartate kinase n .: undetected.
4. Sekvensovanie fragmentu DNA plazmidu pCS24, ktorý sprostredkuje fenotyp AEC-rezistencie4. Sequencing of the DNA fragment of plasmid pCS24, which mediates the AEC-resistance phenotype
4.1 Metóda sekvengovania4.1. Sequencing method
Sekvencia nukleotidov 2,1Kb Pstl-Xhol-fragmentu DNA sa zisťovala metódou Maxama a Gilberta (Maxam, A. M. a kol., Proc. Natl. Acad. Sci. USA 74, 560-564 (1977)) s modifikáciou podľa Arnolda a Pílhlera (Arnold, W. a kol., Gene, 70, 171 ff (1988)). Subklonovanie k sekven^ovaniu pritom vychádzalo z plazmidu pCS24 (viď obr. 4). Tento sa transformuje' podľa Escherichia coli MM 294 (Merelson, M. a kol., Náture 217, 1110-1114 (1968)) a príslušné fragmenty sa klonujú do sekvenčných vektorov pSVB21, 25 a 26 (Arnold, W. a kol., Gene, 70, 171 ff (1988)). V kmeni Escherichia coli JM83 (Messing, J., Recombinant DNA Technical Bulletin NIH Publication No. 79-99, 2, 43-48 (1979)) je možné dokázať aktiváciu inzercie pomocou testu Xgal (5-bróm-4-chlórindolyl-p-D-galaktopyranozid).The nucleotide sequence of the 2.1Kb PstI-XhoI-DNA fragment was determined by the method of Maxam and Gilbert (Maxam, AM et al., Proc. Natl. Acad. Sci. USA 74, 560-564 (1977)) with Arnold and Pillhler modification ( Arnold, W. et al., Gene, 70, 171 (1988). Subcloning for sequencing was based on plasmid pCS24 (see FIG. 4). This is transformed according to Escherichia coli MM 294 (Merelson, M. et al., Nature 217, 1110-1114 (1968)) and the corresponding fragments cloned into the sequence vectors pSVB21, 25 and 26 (Arnold, W. et al. Gene, 70, 171 (1988). In the Escherichia coli JM83 strain (Messing, J. Recombinant DNA Technical Bulletin NIH Publication No. 79-99, 2, 43-48 (1979)), it is possible to demonstrate the activation of insertion by the Xgal (5-bromo-4-chloroindolyl-pD) assay. -galaktopyranozid).
Stratégia sekven^ovania je znázornená na obr. 4. Sekvencia nukleotidov sa zisťovala na obidvoch vetvách DNA s prekrývajúcimi sa klonmi.The sequencing strategy is shown in FIG. 4. The nucleotide sequence was determined on both strands of DNA with overlapping clones.
Na obr. 4 je znázornená odštiepovacia analýza a stratégia sekventíovania chromozómového fragmentu plazmidu pCS2. Odštiepovacia analýza: Plazmidy pCS23 a pCS24 zprostredkovávajú taktiež ako kloň pCS2 AEC-rezistenciu a produkciu lyzínu. Šrafované pásy predstavujú podiel vektora v plazmide.In FIG. 4 shows the cleavage analysis and strategy of sequencing the chromosomal fragment of plasmid pCS2. Cleavage analysis: The plasmids pCS23 and pCS24 also mediate AEC resistance and lysine production as a pCS2 clone. The hatched bands represent the proportion of vector in the plasmid.
Stratégia sekven^ovania: 2,1 kb Pstl-Xhol-fragment plazmidu pCS24 sa subklonoval so znázornenými.reštrikčnými štiepnymi miestami. Šípky vždy udávajú sekvenčný rozsah a smer čítania. Označené sú reštrikčné štiepne miesta enzýmov Dral (D), EcoRI (E), BglII (G), HindlII (H), Nael (N), PstI (P), Sali (S) a Xhol (X). Dolu sú znázornené dva čítacie rastre, ktoré kódujú pre podjednotky aspartátkinázy a pre aspartát-0-semialdehyddehydrogenázu (viď text).Sequencing strategy: The 2.1 kb PstI-XhoI fragment of plasmid pCS24 was subcloned with the restriction cleavage sites depicted. The arrows always indicate the sequential range and reading direction. The restriction cleavage sites of the enzymes DraI (D), EcoRI (E), BglII (G), HindIII (H), Nael (N), PstI (P), SalI (S), and XhoI (X) are indicated. Shown below are two reading frames that code for aspartate kinase subunits and for aspartate-O-semialdehyde dehydrogenase (see text).
4.2. Sekvencia DNA 2,1 kb Pst I - Xho J-fragmentu_DNA2.4 DNA sequence of 2.1 kb Pst I-Xho J-DNA fragment
Sekven^ovaný úsek DNA je dlhý 2112 bp. Nesie reštrikčné štiepne miesta pre enzýmy BglII, Dral, EcoRI, HindlI, Nael, PstI, Sali a Xhol, s ktorými boli vyrobené aj subklony.The DNA sequence sequenced is 2112 bp long. It carries restriction cleavage sites for BglII, DraI, EcoRI, HindIII, Nael, PstI, SalI and XhoI, with which subclones were also produced.
Sekvencia nukleotidov sa spracovala sekvenčnou analýzou podía programového zväzku ANALYSEQ (Staden, R. a kol., Nucl. Acids Res. M, 217-232 (1986)).The nucleotide sequence was processed by sequence analysis according to the ANALYSEQ program bundle (Staden, R. et al., Nucl. Acids Res. M, 217-232 (1986)).
Na sekven^ovanom úseku DNA sa nachádzajú dva otvorené čítacie rastre (ORF). Obidva sú usporiadané od štiepneho miesta PstI smerom k štiepnemu miestu Xhol. Madzi obidvomi sa nachádza len malá oblasť 26 bp. Pred 2. ORF sa nachádza miesto väzby ribozómov (RBS) (806-809 AGGA nasleduje štartkodón ATG). Vnútri 1. ORF bola lokalizovaná aj jedna RBS (AGGA, 268-271 so štartovacím kodónom GTG).There are two open reading frames (ORFs) on the sequenced DNA strand. Both are arranged from the PstI cleavage site to the XhoI cleavage site. Only a small area of 26 bp is located between both. The ribosome binding site (RBS) is located upstream of the 2nd ORF (806-809 AGGA followed by the start codon ATG). One RBS (AGGA, 268-271 with GTG start codon) was also located within the 1st ORF.
ORF 1 má dĺžku 264 aminokyselín (AS), počítajúc od PstI miesta a 172 aminokyselín (zodpovedá 18,6 k Dals) od internej RBS. ORF 2 má dĺžku 342 aminokyselín (36,1 k Dals).ORF 1 is 264 amino acids (AS) in length, counting from the PstI site and 172 amino acids (corresponding to 18.6 k Dals) from internal RBS. ORF 2 is 342 amino acids in length (36.1 k Dals).
Priamo za ORF 2 sa nachádza možná transkripčná terminačná štruktúra, takzvaná vlasová ihlová slučka prebiehajúca od viacerých tymínových zvyškov (1864 - 1900). Toto usporiadanie je charakteristické pre p-nezávislé terminančné signály v Escherichia coli a iných bakteriálnych druhoch (Ahyda a kol., Ann. Rev. Biochem. 47, 967-996 (1978)). Tu predložený terminátor má stabilitu viac ako -40 kcal/mol pri 30 ’C.Directly after ORF 2 is a possible transcription termination structure, the so-called hair needle loop extending from several thymine residues (1864 - 1900). This pattern is characteristic of β-independent termination signals in Escherichia coli and other bacterial species (Ahyda et al., Ann. Rev. Biochem. 47, 967-996 (1978)). The terminator presented herein has a stability of more than -40 kcal / mol at 30 C. C.
Možný promótor pre ORF 2 sa zistil vnútri ORF 1 (409437), (TTGACA-17 bp-TATTCT). Oblasť -35 a vzdialenosť k oblasti -10 zodpovedajú presne E. coli-Consensus-Promotor (Hawley, D. K. a kol., Nucl. Acids Res. 11, 2237-2255 (1983)), oblasť -10 je veľmi podobná E. coli-Consensusregion (TATAAT).A possible promoter for ORF 2 was found within ORF 1 (409437), (TTGACA-17 bp-TATTCT). Region -35 and distance to region -10 correspond exactly to E. coli-Consensus-Promotor (Hawley, DK et al., Nucl. Acids Res. 11, 2237-2255 (1983)), region -10 is very similar to E. coli -Consensusregion (TATAAT).
Ďalej je uvedená sekvencia DNA a odvodená sekvencia aminokyselín 2,1 kb Pstl-Xhol-fragmentu.The DNA sequence and the deduced amino acid sequence of the 2.1 kb PstI-XhoI fragment are shown below.
ThrAspIleThrPheThrCysProAr gSer.AspGlyArgArgAlaMecGluIleLeuLysLysLeuGlnValGlnGlyAsnTrpThrA CCACCGACATCACCTTCACCiGCCCxCGTTCCÚACGÓCCGCCGCGCGATGGAGATCTTGaÁgA-AGCTŤCAGGTTCAGGGCAACxGGACCA 460 470 480 490 500 BglII 510 HindlII 530 540ThrAspIleThrPheThrCysProAr gSer.AspGlyArgArgAlaMecGluIleLeuLysLysLeuGlnValGlnGlyAsnTrpThrA CCACCGACATCACCTTCACCiGCCCxCGTTCCUACGOCCCGGGGCGCGCCCTGCCGCGCG
b o o o «u ub o o o u
•rl »tj ώ u d b g• rl »ie ώ u b b
ä O m H r* M bä O m H r * M b
35S cn35S cn
AlaThrGluGluSerLeuLysAspIleAspValAlaLeuPheSerAlaGlyGlyThrAlaSerLysGlnTyrAlaProLeuPheAlaAl GGCAACCCAGGAGTCCCTCAAGCACATCGACCTTGCGTTGT7CTCCGCTCCAGGCACCGCTTCCAAGCAGTACGCTCCACTC7TCCCTGC Í000 1010 1020 1030 1040 1050 1060 1070 PscI «ΛAlaThrGluGluSerLeuLysAspIleAspValAlaLeuPheSerAlaGlyGlyThrAlaSerLysGlnTyrAlaProLeuPheAlaAl GGCAACCCAGGAGTCCCTCAAGCACATCGACCTTGCGTTCTGT7CTCCGCTCCTCGC7
ÍX UÍX U
h.h.
φιφι
r-Ί ο ο «4 4 ο ν> Η >ιϋ Ο Η Μ) 4 r-l <5 O U d or-Ί ο 4 4 4 ο ν> Η> ιϋ Ο Μ Μ) 4 r-l <5 O U d o
VI •r4 xVI • r4 x
>>
u cu c
u ou o
vi 4 Ο νι Ο $2 bOOvi $ 4 bOO
ΗΗ
Μ U esEs U es
Μ Ο CN 4 &;4 Ο CN 4 &;
Η •44 • 4
Β ο Η ΟΒ ο Η Ο
RR
Ο Η Ο tíjÍj Η Ο íj
4 μι4 μι
4)4)
V)IN)
ΡΡ
U (ΛU (Λ
CC
V) >»ιο ub 3V)> »ιο u 3
Η ΟΗ Ο
C νιC νι
ΟΟ
Ρ <Λ Η r-l Ο Ο U uΡ <Λ Η r-l Ο Ο
Η οΗ ο
οο
<4 ><4>
<4 tP (d ΐ> <—ι m ϊ> Μ<4 tP (d ΐ> <—ι m ϊ> Μ)
Ο οΟ ο
ΗΗ
Ο <4 _ rP ΟΟ <4 _ rP Ο
ΟΟ
G <G <
Ο Ο U cn Ο ΟC Ο U cn Ο Ο
Μ 4Μ 4
Η U Η οΗ U Η ο
ťť
Η 4 •3ΒΗ 4 • 3Β
Μ 4 Ο λυη --Ι Ud ο to ηΜ 4 Ο λυη - Ι Ud ο to η
V) uV) u
3·$ fp (J <15 ο ο jj G 3 ρ υ ρ 4) υ3 · $ fp (J <15 ο j jj 3 ρ υ ρ 4) υ
4)4)
ΟΟ
Η οΗ ο
ο οο ο
rP 4 ο υ >ι4 rP Ο ο ο CL ΗrP 4 ο υ> ι4 rP Ο ο CL Η
X H P. H P O es >>oX H P. O P o es >> o
4) U </) r-1 R) > ο4) U </ r-1 R>> ο
VJ U •p 4 x u oVJ U • p 4 x u o
oooo
CN x H s b r-l 4CN x H with b r-14
O O rP -I «d (p * oO O rP -Id (p * o
«4 (-1 > O bOO P 10«4 (-1> About bOO P 10
H id H > O w O >,U a H P u es fP o o o P 4 4) U ι/l H i—I u H OH id H> O w O>, U and H P u es fP o o P 4 4) U / l H i — I u H O
C ‘C irC ‘C ir
C ir vC ir v
ThrValAspGlnAlaGlnGluIleLeuGlyAj.aAlaSerGlyValLysLeuValAspValPrpThr?roLeuAlaAlaAlaGlyIleAs CACCGTGGACCAGGCGCAGGAGATCTTGGGTGCCGCTľCAGGCGTCAACCTTGTCGACGTCCCAACCCCACTTGCAGCTGCCGGCATTGA 1630 16AO BglII1650 1660 HindlII Gali 1690 1700 1710ThrValAspGlnAlaGlnGluIleLeuGlyAj.aAlaSerGlyValLysLeuValAspValPrpThr? RoLeuAlaAlaAlaGlyIleAs CACCGTGGACCAGGCGCAGGAGATCTTGGGTGCCGCTľCAGGCGTCAACCTTGTCGACGTCCCAACCCCACTTGCAGCTGCCGGCATTGA 1630 16AO BglII1650 HindIII Gali 1660 1690 1700 1710
r-l O O M 4) to f—í >4-to-4)
rt > d a 1-1 r-1 >rt> d and 1-1 r-1>
dD
OABOUT
GG
H •ťH • ť
UU
S oS o
u pu p
o oo o
o oo r* oo oo r * o
r>r>
r>.r>.
£ o o O m < cn£ o o m <cn
U rlU rl
x)x)
a c n υ o oa c n υ o o
4i υ to P p. b n <4i to P p. b n <
r-l -ťr-1-t
O u tog o u H oO u tog o u H o
r· <ť o o rt p r-l Or · <o o o rt p r-10
d.d.
r-l H M < C O r-l u or-l H M <C r-l u o
4) U H4) U H
PP
OABOUT
OABOUT
C5C5
OABOUT
Sekvencia aminokyselín ORF 1 (1 až 794) a ORF 2 (821 až 1846) sa udávajú v trojpísmenovom kóde. Číslovanie pod linajkou sa týka sekvencie DNA. Názvy klonovacích štiepnych miest využitých pri sekvencovaní sú tiež uvedené pod linajkou. Miesta väzby ribozómov sú označené hviezdičkou. Štartovací kodón je označený šípkou a štruktúra terminátora plnou čiarou.The amino acid sequences of ORF 1 (1-794) and ORF 2 (821-1846) are given in three letter code. The numbering below the line refers to the DNA sequence. The names of the cloning cleavage sites used in sequencing are also listed below the line. Ribosome binding sites are indicated by an asterisk. The start codon is indicated by an arrow and the terminator structure is solid.
4.3 Analýza sekvencie aminokyselín4.3 Amino acid sequence analysis
Sekvencia aminokyselín prenášaná pomocou ORF 1 a ORF 2 sa porovnávala so známymi sekvenciami aspartátkinázy AK I (Cassan, M. a kol., J. Biol. Chem. 261, 1052-1057 (1986)) z Escherichia coli a AK II z Bacillus subtilis (Chen, N. Y. a kol., J. Biol. Chem. 262, 8737-2255 (1987)), prípadne so sekvenciami aminokyselín aspartátsemialdehyddehydrogenázy (ASA-DH) z Escherichia coli (Haziza, C. a kol., Embo J. 1., 379-384 (1982)) a Streptococcus mutans (Cardineau, G. A. a kol., J. Biol. Chem. 262, 7, 3344-3353 (1987)). Na to sa využili programy MALIGN (Sobel, E. a kol., Nucl. Acids Res. 14, 363-374, (1986)) a DIAGON (Staden R. a kol·., Nucl. AcidThe amino acid sequence transmitted by ORF 1 and ORF 2 was compared with the known AK I aspartate kinase sequences (Cassan, M. et al., J. Biol. Chem. 261, 1052-1057 (1986)) from Escherichia coli and AK II from Bacillus subtilis (Chen, NY et al., J. Biol. Chem. 262, 8737-2255 (1987)), optionally with the amino acid sequences of aspartate semialdehyde dehydrogenase (ASA-DH) from Escherichia coli (Haziza, C. et al., Embo J. 1) , 379-384 (1982)) and Streptococcus mutans (Cardineau, GA et al., J. Biol. Chem. 262, 7, 3344-3353 (1987)). MALIGN (Sobel, E. et al., Nucl. Acids Res. 14, 363-374, (1986)) and DIAGON (Staden R. et al., Nucl. Acid) were used for this purpose.
Res. 14, 217-232 (1986)). Ukázala sa signifikantná zhodnosť medzi ORF 1 a sekvenciou AK na jednej strane a medzi ORF 2 a sekvenciou ASA-DH zo Streptococcus mutans na druhej strane. Pre Escherichia coli sa ukázala v prípade ASA-DH len slabá homológia, najmä však v oblasti aktívneho centra (Haziza, C. a kol., Embo J. 1, 379-384 (1982)).Res. 14, 217-232 (1986)). Significant identity between ORF 1 and the AK sequence on the one hand and between ORF 2 and the ASA-DH sequence from Streptococcus mutans on the other hand was shown. Escherichia coli has shown little homology to ASA-DH, especially in the active center region (Haziza, C. et al., Embo J. 1, 379-384 (1982)).
Z počítačovej analýzy vyplýva nasledovné:Computer analysis shows the following:
- ORF 1 zodpovedá C. Termínu aspartátkinázy, to znamená, že chýba asi 160 aminokyselín N-terminu, ako i kompletná ob29 lasť promotóra.ORF 1 corresponds to C. The term aspartate kinase, i.e., lacking about 160 amino acids of the N-termine, as well as the complete ob29 promoter.
- ORF 2 zodpovedá aspartátsemialdehyddehydrogenáze.- ORF 2 corresponds to aspartate semialdehyde dehydrogenase.
Homológia ORF 1 s AK II z Bacillus subtilis je odborníkom zrejmá. AK II pozostáva z prekrývajúcich sa podjednotiek (Chen, N.-Y. a kol., J. Biol. Chem. 262, 8787-8798 (1987)). Pritom zodpovedá β-podjednotka C-Terminu a-podjednotky. Vzhľadom na to, že RBS zistená v ORF 1 sa zhoduje vo svojej polohe presne s RBS tejto aspartátkinázy, môže sa analogicky odvodiť, že tu existuje klonovaná β-podjednotka aspartátkinázy Corynebacterium glutamicum.The homology of ORF 1 to AK II from Bacillus subtilis is apparent to those skilled in the art. AK II consists of overlapping subunits (Chen, N.-Y. et al., J. Biol. Chem. 262, 8787-8798 (1987)). The β-subunit corresponds to the C-terminus of the α-subunit. Since the RBS found in ORF 1 coincides exactly in its position with the RBS of this aspartate kinase, it can be deduced by analogy that there is a cloned Corynebacterium glutamicum β-subunit aspartate kinase.
5. Skúmanie expresie5. Examination of expression
5.1 Komolementácia asd- a lysC-negatívnych kmeňov Escherich i a rol i5.1 Comolementization of asd- and lysC-negative Escherich i and rol i strains
Identitu ORF 2 s génom asd je možné doložiť komplementáciou asd-negatívneho kmeňa Escherichia coli RASA 6 (Richaud, F. a kol., C. R. Acad. Sc. Paris, 293, 507-512 (1981)) pomocou plazmidov pCS2 a pCS24. Plazmid pCS23, u ktorého asi 30 aminokyselín C-Terminu ASA-DH chýba, nekomplementuje. Žiadny z týchto plazmidov nie je schopný komplementovať AKI-III negatívny kmeň Escherichia coli Gif 106 Ml (Boy, E. a kol., Biochémie 61, 1151-1160 (1979)).The identity of ORF 2 with the asd gene can be demonstrated by complementing the asd-negative Escherichia coli strain RASA 6 (Richaud, F. et al., C. R. Acad. Sc. Paris, 293, 507-512 (1981)) using plasmids pCS2 and pCS24. Plasmid pCS23, which lacks about 30 amino acids of the C-Termin ASA-DH, is not complementary. None of these plasmids is able to complement the AKI-III negative strain of Escherichia coli Gif 106 M1 (Boy, E. et al., Biochemistry 61, 1151-1160 (1979)).
5.2 Sta^nvpnie špecifickej aspartátkinázy (AK) a aspartyl-βsemialdehyddehydrogenázy (ASA-DH) v_transformantoch ATCC 130 32 s rôznymi š t i epnvmi derivátmi pCS2.5.2 Specific aspartate kinase (AK) and aspartyl β-semialdehyde dehydrogenase (ASA-DH) stasis in ATCC 130 32 transformants with various four pCS2 derivatives.
Analogické závery odvodené v odstavci 4.3 z porovnania homoiógií, podľa ktorých fragment génu Pstl-Xhol z DM58-1 obsahuje len časť génu lysC (AK), ale úplný gén asd, je mož né jednoznačne potvrdiť enzýmovými meraniami.The analogous conclusions drawn in section 4.3 from the homology comparison that a fragment of the Pst1-XhoI gene from DM58-1 contains only a portion of the lysC (AK) gene but a full asd gene can be unambiguously confirmed by enzyme measurements.
Žiadny kmeň Corynebacterium glutamicum transformovaný pomocou pCS2 alebo derivátom pCS2 neobsahuje zvýšenú aspartátkinázovú aktivitu voči rodičovskému kmeňu (tabuľka 4. stĺpec 3).No strain of Corynebacterium glutamicum transformed with pCS2 or a pCS2 derivative contains enhanced aspartate kinase activity against the parent strain (Table 4, column 3).
Naproti tomu vo všetkých prípadoch transformantov, ktorých plazmidy obsahovali asd-štruktúrny gén, bola dokáza teľná silná superexpresia aspartyl-p-semialdehyddehyd-rogenázy (tabulka 4, stĺpec 2, obr. 3 a 4) . Plazmidy pCS23 a deriváty pCS23 nevedú podľa predpokladu k superexpresii aspartyl-p-semialdehyddehydrogenázy. Na základe vysokej lability aspartyl-p-semialdehyddehydrogenázy kolíšu faktory superexpresie, ktoré sa dajú vypočítať zo špecifickej aktivity, medzi hodnotami 31 až 65.In contrast, in all cases of transformants whose plasmids contained an asd-structural gene, strong superexpression of aspartyl β-semialdehyde dehydrogenase was demonstrated (Table 4, column 2, Figures 3 and 4). The plasmids pCS23 and derivatives of pCS23 do not result in superexpression of aspartyl β-semialdehyde dehydrogenase. Because of the high lability of aspartyl β-semialdehyde dehydrogenase, the superexpression factors, which can be calculated from specific activity, vary between values of 31 to 65.
6. Enzvmatické vlastnosti a vylučovanie L-lvzínu6. Enzymatic properties and secretion of L-lysine
Vylučovanie L-lyzínu v množstve 7,1 g/1 za 72 hodín do kázané pre ATCC 13032 pCS2 (viď tabulka 2) sa dá odvodiť na základe dvoch geneticky realizovaných zmien.The excretion of L-lysine at 7.1 g / L in 72 hours into ATCC 13032 pCS2 (see Table 2) can be derived from two genetically engineered changes.
a) Klonovanie regulačnej podjednotky aspartátkinázy z DM58-1 bez zvýšenia bunkového obsahu enzýmu.a) Cloning of the aspartate kinase regulatory subunit of DM58-1 without increasing the cellular content of the enzyme.
b) Klonovanie aspartyl-p-semialdehyddehydrogenázy z DM58-1, ktoré vedie k 31 až 65-násobnému zvýšeniu bunkového obsahu enzýmu.b) Cloning of aspartyl β-semialdehyde dehydrogenase from DM58-1, which results in a 31- to 65-fold increase in the cellular enzyme content.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3908201A DE3908201A1 (en) | 1989-03-14 | 1989-03-14 | METHOD FOR THE FERMENTATIVE MANUFACTURE OF L-LYSINE |
Publications (2)
Publication Number | Publication Date |
---|---|
SK279719B6 SK279719B6 (en) | 1999-02-11 |
SK122890A3 true SK122890A3 (en) | 1999-02-11 |
Family
ID=6376268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK1228-90A SK122890A3 (en) | 1989-03-14 | 1990-03-14 | Dna fragment, recombinant dna and process for producing l-lysine |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0387527B1 (en) |
JP (1) | JP3000087B2 (en) |
AT (1) | ATE107699T1 (en) |
DE (2) | DE3908201A1 (en) |
ES (1) | ES2056263T3 (en) |
SK (1) | SK122890A3 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3943117A1 (en) * | 1989-12-27 | 1991-07-04 | Forschungszentrum Juelich Gmbh | METHOD FOR THE FERMENTATIVE PRODUCTION OF AMINO ACID, IN PARTICULAR L-LYSINE, THEREFORE SUITABLE MICROORGANISMS AND RECOMBINANT DNA |
JPH07108228B2 (en) * | 1990-10-15 | 1995-11-22 | 味の素株式会社 | Temperature sensitive plasmid |
JP3473042B2 (en) * | 1992-04-28 | 2003-12-02 | 味の素株式会社 | Mutant aspartokinase gene |
JP3783065B2 (en) * | 1994-03-04 | 2006-06-07 | 味の素株式会社 | Method for producing L-lysine |
JP4075087B2 (en) | 1996-12-05 | 2008-04-16 | 味の素株式会社 | Method for producing L-lysine |
DE19924364A1 (en) | 1999-05-27 | 2000-11-30 | Degussa | Process for the fermentative production of L-amino acids using coryneform bacteria |
JP4623825B2 (en) * | 1999-12-16 | 2011-02-02 | 協和発酵バイオ株式会社 | Novel polynucleotide |
US6927046B1 (en) | 1999-12-30 | 2005-08-09 | Archer-Daniels-Midland Company | Increased lysine production by gene amplification using coryneform bacteria |
US6942996B2 (en) | 2000-08-02 | 2005-09-13 | Degussa Ag | Isolated polynucleotide from Corynebacterium encoding a homocysteine methyltransferase |
AU2001285844A1 (en) * | 2000-08-02 | 2002-02-13 | Degussa A.G. | Nucleotide sequences which code for the meth gene |
AU2001287630A1 (en) * | 2000-08-02 | 2002-02-13 | Degussa A.G. | Nucleotide sequences which code for the mete gene |
US6958228B2 (en) | 2000-08-02 | 2005-10-25 | Degussa Ag | Nucleotide sequence which code for the metH gene |
AU2001287631A1 (en) * | 2000-08-02 | 2002-02-13 | Degussa A.G. | Nucleotide sequences which code for the metf gene |
DE10109690A1 (en) * | 2000-09-02 | 2002-03-14 | Degussa | New nucleotide sequences encoding the metY gene |
US6812016B2 (en) | 2000-09-02 | 2004-11-02 | Degussa Ag | Nucleotide sequences which code for the metY gene |
WO2002020573A2 (en) * | 2000-09-09 | 2002-03-14 | Degussa Ag | Nucleotide sequences which code for the gpmb gene |
DE10044681A1 (en) * | 2000-09-09 | 2002-03-21 | Degussa | New L-lactate dehydrogenase gene from coryneform bacteria, useful, when overexpressed, for increasing fermentative production of L-amino acid |
AU2001285878A1 (en) * | 2000-09-12 | 2002-03-26 | Degussa A.G. | Nucleotide sequences which code for the roda gene |
AU2001287682A1 (en) * | 2000-09-12 | 2002-03-26 | Degussa A.G. | Nucleotide sequences coding for the ftsx gene |
DE10046625A1 (en) * | 2000-09-20 | 2002-04-11 | Degussa | New nucleotide sequences coding for the ndkA gene |
US7026158B2 (en) | 2000-09-27 | 2006-04-11 | Degussa Ag | Nucleotide sequences which code for the mikE17 gene |
DE10047864A1 (en) * | 2000-09-27 | 2002-04-11 | Degussa | New nucleotide sequences coding for the truB gene |
WO2002034775A2 (en) * | 2000-10-28 | 2002-05-02 | Degussa Ag | Nucleotide sequences encoding the hemd and hemb genes |
IL156997A0 (en) | 2001-02-08 | 2004-02-08 | Archer Daniels Midland Co | Polynucleotide constructs for increased lysine production |
DE10155505A1 (en) | 2001-11-13 | 2003-05-22 | Basf Ag | Genes that code for glucose-6-phosphate dehydrogenase proteins |
DE10210527A1 (en) | 2002-03-09 | 2003-09-18 | Degussa | Alleles of the aceA gene from coryneform bacteria |
ATE525457T1 (en) | 2004-12-06 | 2011-10-15 | Sage Biosciences Inc | METHOD FOR CULTIVATION OF BACTERIA FOR DELIVERING BIOACTIVE COMPOUNDS TO THE INTESTINUM OF RUMINANTS |
EP2940039A1 (en) | 2014-04-30 | 2015-11-04 | Evonik Degussa GmbH | Method for the production of l-amino acids in coryne bacteria using a glycine splitting system |
DE102014208199A1 (en) | 2014-04-30 | 2015-11-05 | Evonik Degussa Gmbh | Process for the production of L-amino acids using an alkaliphilic bacterium |
EP2940143B1 (en) | 2014-04-30 | 2020-02-05 | Evonik Operations GmbH | Method for the production of l-amino acids using an alkaliphilic bacterium |
JP6720538B2 (en) * | 2016-01-08 | 2020-07-08 | 日本製鉄株式会社 | Horizontal material, attachment structure of face material using horizontal material, and attachment structure of face material and frame material using horizontal material |
EP3467099A1 (en) | 2017-10-05 | 2019-04-10 | Evonik Degussa GmbH | Method for the fermentative production of l-amino acids |
RU2019128538A (en) | 2018-09-26 | 2021-03-11 | Эвоник Оперейшенс ГмбХ | METHOD FOR ENZYMATIC PRODUCTION OF L-LYSINE |
US20240175064A1 (en) * | 2021-03-09 | 2024-05-30 | Daesang Corporation | Mutant of corynebacterium glutamicum with enhanced l-lysine productivity and method for preparing l-lysine using the same |
WO2023222505A1 (en) | 2022-05-18 | 2023-11-23 | Evonik Operations Gmbh | Biotechnological production of monomers of bisucaberins, desferrioxamines and analogs thereof |
WO2023222515A1 (en) | 2022-05-18 | 2023-11-23 | Evonik Operations Gmbh | Biotechnological production of bisucaberins, desferrioxamines and analogs thereof |
WO2023222510A1 (en) | 2022-05-18 | 2023-11-23 | Evonik Operations Gmbh | Biotechnological production of desferrioxamines and analogs thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126789A (en) * | 1981-12-29 | 1983-07-28 | Kyowa Hakko Kogyo Co Ltd | Method for developing genetic character |
JPH0655149B2 (en) * | 1985-03-12 | 1994-07-27 | 協和醗酵工業株式会社 | Method for producing L-lysine |
JPH06102028B2 (en) * | 1985-10-04 | 1994-12-14 | 協和醗酵工業株式会社 | Amino acid manufacturing method |
-
1989
- 1989-03-14 DE DE3908201A patent/DE3908201A1/en not_active Withdrawn
-
1990
- 1990-02-12 AT AT90102685T patent/ATE107699T1/en active
- 1990-02-12 ES ES90102685T patent/ES2056263T3/en not_active Expired - Lifetime
- 1990-02-12 DE DE59006167T patent/DE59006167D1/en not_active Expired - Fee Related
- 1990-02-12 EP EP90102685A patent/EP0387527B1/en not_active Expired - Lifetime
- 1990-03-14 SK SK1228-90A patent/SK122890A3/en unknown
- 1990-03-14 JP JP2061308A patent/JP3000087B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
SK279719B6 (en) | 1999-02-11 |
DE59006167D1 (en) | 1994-07-28 |
JPH03219885A (en) | 1991-09-27 |
EP0387527A1 (en) | 1990-09-19 |
ES2056263T3 (en) | 1994-10-01 |
JP3000087B2 (en) | 2000-01-17 |
DE3908201A1 (en) | 1990-09-27 |
EP0387527B1 (en) | 1994-06-22 |
ATE107699T1 (en) | 1994-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SK122890A3 (en) | Dna fragment, recombinant dna and process for producing l-lysine | |
Cremer et al. | Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes | |
ES2314076T3 (en) | CORINEFORM BACTERIES THAT PRODUCE CHEMICAL COMPOUNDS II. | |
KR100630604B1 (en) | Process for constructing amino acid-producing bacterium and process for producing amino acid by fermentation method with the use of the thus constructed amino acid-producing bacterium | |
EP1149911B1 (en) | Amino acid producing strains belonging to the genus Escherichia and method for producing an amino acid | |
US6090597A (en) | Method of producing L-lysine | |
JP3106501B2 (en) | Method for producing L-lysine | |
EP1360312B1 (en) | Method for l-threonine production | |
US20020065403A1 (en) | New nucleotide sequences which code for pck gene | |
JPS6279788A (en) | Production of amino acid | |
JPH10165180A (en) | Production of l-lysine | |
SK15112000A3 (en) | Bacterium belonging to the genus escherichia being transformed by the gene encoding pyruvate carboxylase and which produces l-aminoacid, and fermentative method for producing l-aminoacid | |
SK10142000A3 (en) | L-lysine producing coryneform bacteria and methods for the production of l-lysine | |
KR100782867B1 (en) | L-Lysine-producing corynebacteria and process for the preparation of lysine | |
SK3012001A3 (en) | Nucleotide sequences which code for the opca gene and a process for the fermentative preparation of l-amino acids | |
JP2003204788A (en) | Method for producing target substance by fermentation | |
US6872553B2 (en) | Nucleotide sequences which code for the pck gene | |
EP1179073B1 (en) | Process for the fermentative preparation of l-amino acids with amplification of the zwf gene | |
KR970001238B1 (en) | Process for l-tryptophan | |
JP3151075B2 (en) | Alanine production method | |
AU5507400A (en) | New nucleotide sequences which code for the dapF gene | |
JPS6291193A (en) | Production of l-threonine and l-isoleucine | |
KR20000076897A (en) | Process for the production of L-amino acids by fermentation using coryneform bacteria | |
DE60036615T2 (en) | METHOD FOR THE FERMENTATIVE MANUFACTURE OF L-AMINO ACIDS BY REINFORCEMENT OF THE TKT GENE | |
SK7662000A3 (en) | Method for the fermentative preparation of l-amino acids employing coryneform bacteria |