SK145499A3 - High-strength, anti-corrosive iron-manganese-chrome alloy - Google Patents

High-strength, anti-corrosive iron-manganese-chrome alloy Download PDF

Info

Publication number
SK145499A3
SK145499A3 SK1454-99A SK145499A SK145499A3 SK 145499 A3 SK145499 A3 SK 145499A3 SK 145499 A SK145499 A SK 145499A SK 145499 A3 SK145499 A3 SK 145499A3
Authority
SK
Slovakia
Prior art keywords
until
alloys
manganese
iron
alloy
Prior art date
Application number
SK1454-99A
Other languages
Slovak (sk)
Inventor
Ulrich Brill
Original Assignee
Krupp Vdm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19716795A external-priority patent/DE19716795C2/en
Application filed by Krupp Vdm Gmbh filed Critical Krupp Vdm Gmbh
Publication of SK145499A3 publication Critical patent/SK145499A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Heat Treatment Of Steel (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

The invention relates to an austenitic iron-manganese-chrome-alloy melted at atmospheric pressure, comprising the following constituents (indicated in wt. %): Cr (12.0-24.7 %), Ni (up to 0.10 %), Mn (23.5-25.0 %), Si (up to 0.20 %), Mo (2.0-5.7 %), Ti (up to 0.10 %), C (up to 0.015 %), N (1.05-1.30 %), Zr (0.01-0.15 %), Cu (0.8-2.0 %), B (0.002-0.005 %), the rest of the iron is made up of unavoidable impurities.

Description

Vysokopevná a proti korózii odolná železo-mangán-chrómová zliatinaHigh-strength and corrosion-resistant iron-manganese-chrome alloy

Oblasť technikyTechnical field

Vynález sa týka pri atmosférickom tlaku otvorene tavenej, za tepla a za studená tvárniteľnej austenitickej železo-mangán-chrómovej zliatiny, najmä na použitie vo vodných prostrediach.The invention relates to atmospheric pressure of an open-cast, hot and cold-formable austenitic iron-manganese-chromium alloy, in particular for use in aqueous environments.

Doterajší stav technikyBACKGROUND OF THE INVENTION

AT-PS 152 291 uvádza chróm-mangánové ocele s 0,01 až 1,5 % hmotn. uhlíka, 5 až 25 % hmotn. chrómu, 10 až 35 % hmotn. mangánu a 0,07 až 0,7 % hmotn. dusíka, ako aj prípadne s pomerne malými prísadami nilu, kobaltu, medi, molybdénu, volfrámu, vanádu, nióbu, tantalu a titánu.AT-PS 152 291 discloses chromium-manganese steels with 0.01 to 1.5 wt. % of carbon, 5 to 25 wt. % chromium, 10 to 35 wt. % manganese and 0.07 to 0.7 wt. nitrogen, and optionally with relatively small additions of nile, cobalt, copper, molybdenum, tungsten, vanadium, niobium, tantalum and titanium.

Na rozdiel od dovtedy známych chróm-mangánových ocelí tieto neobsahovali martenzit a tým umožnili dobré spracovanie. Okrem toho boli nemagnetické a vykazovali zlepšenú odolnosť proti korózii.Unlike the previously known chromium-manganese steels, these did not contain martensite and thus allowed good processing. In addition, they were non-magnetic and exhibited improved corrosion resistance.

Nemeckým patentom 917 672 sa značne veľké rozpätia analýz zúžili nasledovne: uhlík < 0,5 % hmotn., 10 až 20 % hmotn. chrómu, 14 až 22 % hmotn. mangánu, 0,1 až 0,7 % hmotn. dusíka, pretože sa zistilo, že so zliatinami takéhoto zloženia sa po vhodnom tepelnom spracovaní dali pri tvárnení dosiahnuť veľmi vysoké úbytky prierezu, čo tento materiál predurčuje na použitie ako plech alebo pás na poťahy lietadiel.German Patent 917 672 greatly narrowed the analysis ranges as follows: carbon <0.5 wt.%, 10 to 20 wt. % of chromium, 14 to 22 wt. % manganese, 0.1 to 0.7 wt. Nitrogen, since it has been found that, with suitable alloys, very high cross-sectional losses can be achieved in the molding after suitable heat treatment, which makes this material suitable for use as a sheet or strip for aircraft coatings.

II

Niektoré zverejnené železo-mangán-chrómové zliatiny predpisujú na úkor odolnosti proti korózii povinne vysoké obsahy uhlíka, aby sa pri použití napríklad na nehrdzavejúce hriadele a piestnice pre stavbu lodí, alebo na záťažníky pre priemysel ropy a zemného plynu dosiahli dostatočné pevnosti.Some published iron-manganese-chromium alloys prescribe compulsory high carbon contents at the expense of corrosion resistance to achieve sufficient strength when used, for example, on rust-proof shafts and rods for shipbuilding or on oil and gas industry loaders.

K týmto spisom patria napríklad US patentový spis 4 121 953 s 0,35 až 0,80 % hmotn. uhlíka, 17 až 23 % hmotn. mangánu, max. 0,80 % hmotn. dusíka, 6 až 10 % hmotn. chrómu a až do 3,5 % hmotn. molybdénu.These documents include, for example, U.S. Pat. No. 4,121,953 with 0.35 to 0.80 wt. % of carbon, 17 to 23 wt. Manganese, max. 0.80 wt. % nitrogen, 6 to 10 wt. % of chromium and up to 3.5 wt. molybdenum.

-2Ďalej je známy európsky patent O 065 631 s 0,17 až 0,40 % hmotn. uhlíka, až 25 % hmotn. mangánu, 0,3 až 1,0 % hmotn. dusíka, 12 až 20 % hmotn.Further, European Patent 0 065 631 is known with 0.17 to 0.40 wt. % carbon, up to 25 wt. % manganese, 0.3 to 1.0 wt. % nitrogen, 12 to 20 wt.

chrómu a 1,0 až 5,0 % hmotn. molybdénu.% chromium and 1.0 to 5.0 wt. molybdenum.

Európsky patent 0 249 117 taktiež pripúšťa do 0,40 % hmotn. uhlíka; súčasne sa vyžaduje 13,0 až 25,0 % hmotn. mangánu, 0,3 až 1,0 % hmotn. dusíka, 12,0 až 20,0 % hmotn. chrómu a až do 5,0 % hmotn. molybdénu.European Patent 0 249 117 also permits up to 0.40 wt. alkyl; at the same time, 13.0 to 25.0 wt. % manganese, 0.3 to 1.0 wt. % nitrogen, 12.0 to 20.0 wt. % of chromium and up to 5.0 wt. molybdenum.

Železo-mangán-chrómové zliatiny sa taktiež používajú ako takzvané ocele uzáverových prstencov s typickým zložením ako až do 0,12 % hmotn. uhlíka, 18,5 % hmotn. mangánu, 18,5 % hmotn. chrómu a 1,0 % hmotn. dusíka. Materiály s týmto zložením sa však nedajú taviť bez tlaku, ale len pri pretlaku dusíka, napríklad v tlakovom elektrotroskovom pretavovacom zariadení.Iron-manganese-chromium alloys are also used as so-called cap ring steels with a typical composition up to 0.12% by weight. % carbon, 18.5 wt. % manganese, 18.5 wt. % of chromium and 1.0 wt. nitrogen. However, materials of this composition cannot be melted without pressure, but only under nitrogen overpressure, for example in a pressurized electroslag remelter.

Cieľom tohto vynálezu je vytvoriť pri atmosférickom tlaku otvorene taviteľnú, za tepla a za studená tvárniteľnú austenitickú železo-mangán-chrómovú zliatinu, ktorá je vhodná najmä na použitie vo vodných médiách, ktorá nemá nevýhody predtým citovaného doterajšieho stavu techniky a ktorá nájde čo najširšiu oblasťIt is an object of the present invention to provide an open-melt, hot-and-cold-deformable austenitic iron-manganese-chromium alloy at atmospheric pressure which is particularly suitable for use in aqueous media, which does not have the disadvantages of the prior art cited above and which

I technického použitia.I technical use.

Podstata vynálezuSUMMARY OF THE INVENTION

Tento cieľ sa dosiahne železo-mangán-chrómovou zliatinou, ktorá obsahuje nasledujúce legujúce zložky (údaje v % hmotn.):This objective is achieved by an iron-manganese-chromium alloy comprising the following alloying constituents (% by weight):

chróm chrome 12,0 12.0 v az in until 24,7 24.7 % % nikel nickel until do to 0,10 0.10 % % mangán manganese 23,5 23.5 until 25,0 25.0 % % kremík silicon until do to 0,20 0.20 % % molybdén molybdenum 2,0 2.0 until 5,7 5.7 % % titán titan until do to 0,10 0.10 % % uhlík carbon until do to 0,015% 0.015% dusík nitrogen 1,05 1.05 until 1,30 1.30 % % zirkónium zirconium 0,01 0.01 until 0,15 0.15 % % meď copper 0,8 0.8 until 2,0 2.0 % %

-3bór 0,002 až 0,005 %.-3 Boron 0.002 to 0.005%.

Zvyšok železo, vrátane nevyhnutných znečistenín.The rest of the iron, including the necessary contaminants.

V porovnaní s doterajším stavom techniky sa zliatina podľa tohto vynálezu odlišuje výrazne vyšším obsahom dusíka, s ktorým je teraz možné nastaviť v zliatine vyššie obsahy chrómu a molybdénu bez toho, aby precipitovala σ-fáza, čo znemožňuje spracovanie týchto zliatin z bloku, resp. z bramy z plynulého odlievania, napríklad na za tepla alebo za studená valcovaný plech. Zliatina podľa tohto vynálezu vykazuje oproti doterajšiemu stavu techniky výrazne vyššiu pevnosť a odolnosť proti korózii, najmä vo vodných prostrediach. Pod vodnými médiami rozumie odborník v oblasti medicíny a v dentálnej oblasti každý druh telesných tekutín, ako aj tkanivových tekutín, takže sa tu naskytuje zvláštny prípad použitia zliatiny podľa tohto vynálezu, najmä na výrobu lekárskych nástrojov a náradia, dočasných implantátov, ako sú vnútrodreňové klince, skrutky a dlahy, ako aj svorky a pripevňovacie a napínacie drôty.Compared to the prior art, the alloy according to the invention is distinguished by a significantly higher nitrogen content, with which it is now possible to adjust the chromium and molybdenum contents in the alloy without precipitating the σ phase, which makes it impossible to process these alloys from the block and the alloy. from a continuous casting slab, for example on a hot or cold rolled sheet. The alloy of the present invention exhibits significantly higher strength and corrosion resistance compared to the prior art, especially in aqueous environments. Aqueous media means a person skilled in the medical and dental fields means any type of body fluid as well as tissue fluids, so that there is a particular case of using the alloy of the invention, especially for the manufacture of medical instruments and tools, temporary implants such as intramedullary nails, screws and splints, as well as clamps and fastening and tensioning wires.

Celkom všeobecne sa zliatina podľa tohto vynálezu môže použiť aj na výrobu kotiev a osadzovacích čapov, ktoré sa za istých okolností môžu použiť vo vlhkých priestoroch alebo vlhkých oblastiach.In general, the alloy according to the invention can also be used for the manufacture of anchors and locating pins, which in certain circumstances can be used in damp areas or damp areas.

Naviac treba výhodnú oblasť použitia zliatiny podľa tohto vynálezu vidieť v oblasti spaľovacích motorov, pričom sa pre zliatinu podľa tohto vynálezu ponúkajú najmä nasávacie a výfukové ventily.In addition, the preferred field of application of the alloy according to the invention must be seen in the field of internal combustion engines, with intake and exhaust valves in particular being offered for the alloy according to the invention.

Predmet vynálezu v ďalšom objasníme pomocou obrázkov a tabuliek.The invention will be further elucidated by means of figures and tables.

Prehľad obrázkov na výkresochBRIEF DESCRIPTION OF THE DRAWINGS

Obr. 1 je znázornením sumy účinkov (WS) v závislosti od kombinácie maximálnych obsahov molybdénu a chrómu pre rozličné obsahy dusíka, pričom suma účinkov sa vypočíta podľa nasledujúcej rovnice:Fig. 1 is an illustration of the sum of effects (WS) as a function of the combination of maximum molybdenum and chromium contents for different nitrogen contents, the sum of the effects being calculated according to the following equation:

WS = (% chrómu) + 3 x (% molybdénu) + 30 x (% dusíka).WS = (% of chromium) + 3 x (% molybdenum) + 30 x (% nitrogen).

-4Obr. 1 znázorňuje z tohto vyplývajúcu oblasť zložení zliatiny podľa tohto vynálezu.-4Obr. 1 shows the resulting composition composition of the alloy according to the invention.

Na obr. 2 je vynesená pevnosť v ťahu v závislosti od stupňa deformácie preIn FIG. 2 shows the tensile strength as a function of the degree of deformation for

I rozličné zliatiny.Even various alloys.

Na obr. 3 je znázornená závislosť prúdovej hustoty od potenciálu a obr. 4 znázorňuje meranie pokojového potenciálu rozličných zliatin v umelých slinách podľa Fusayamu pri 37 °C.In FIG. 3 shows the current density versus potential, and FIG. 4 shows the measurement of the resting potential of various alloys in Fusayam artificial saliva at 37 ° C.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Podľa obr. 1 z požiadavky, aby suma účinkov bola > 59, vyplýva nevyhnutne obsah molybdénu najmenej 2,0 % hmotn. pre najnižší obsah dusíka 1,05 % hmotn.. Najvyšší obsah molybdénu 5,7 % hmotn. vyplýva pre najvyšší obsah dusíka 1,3 % hmotn. a požiadavku najmenej 12,0 % hmotn. chrómu v týchto zliatinách. Najvyšší obsah chrómu sa získa nevyhnutne pri 1,3 % hmotn. dusíka a minimálnom obsahu molybdénu 2,0 % hmotn. s 24,7 % hmotn.. Okno zliatin podľa tohto vynálezu je na obr. 1 zvýraznené šrafované.According to FIG. 1, the requirement for a sum of effects of> 59 necessarily results in a molybdenum content of at least 2.0% by weight. for the lowest nitrogen content of 1.05 wt%. The highest molybdenum content of 5.7 wt%. results in a maximum nitrogen content of 1.3% by weight. and a requirement of at least 12.0 wt. of chromium in these alloys. The highest chromium content is inevitably obtained at 1.3 wt. % nitrogen and a minimum molybdenum content of 2.0 wt. The window of the alloys of the present invention is shown in FIG. 1 highlighted in hatched.

Tabuľka 1 znázorňuje závislosť kritickej teploty jamkovej korózie od obsahu dusíka, chrómu a molybdénu, zistenej v ASTM G-48/A teste. Tu zliatiny 1 až 3 predstavujú doterajší stav techniky, čo sa týka komerčne zavedených materiálov. Zliatiny 4 až 12 ukazujú z patentov a iných publikácií známy doterajší stav techniky, zatiaľ čo na zliatiny 13 až 20 treba hľadieť ako na zliatiny podľa tohto vynálezu.Table 1 shows the dependence of the critical temperature of the hole corrosion on the nitrogen, chromium and molybdenum content as determined in the ASTM G-48 / A test. Here, alloys 1 to 3 represent the state of the art as regards commercially available materials. Alloys 4-12 show patents and other publications known in the art, while alloys 13-20 are to be regarded as alloys of the present invention.

-5Tabufka 1: Kritická teplota jamkovej korózie v ASTM G 48A teste pre Fe-25Mnzliatiny s rozličnými obsahmi dusíka, chrómu a molybdénu (všetky údaje v % hmotn.)-5Table 1: Critical well corrosion temperature in the ASTM G 48A test for Fe-25M alloys with different contents of nitrogen, chromium and molybdenum (all data in% by weight)

Číslo zliatiny Alloy number N N Cr Cr Mo Mo Suma účinkov WS The amount effects of WS Kritická teplota jamkovej korózie v °C critical temperature well corrosion in ° C 1 1 - - 18,0 18.0 2,4 2.4 25 25 10 10 (1.4571) (1.4571) 2 2 - - 18,5 18.5 2,5 2.5 26 26 15 15 (1.4429) (1.4429) 3 3 - - 21,0 21.0 2,7 2.7 29 29 30 30 (2.4858) (2.4858) 4 4 1,0 1.0 14,5 14.5 4,6 4.6 58 58 40 40 5 5 1,0 1.0 20,0 20.0 2,0 2.0 56 56 38 38 6 6 1,0 1.0 23,0 23.0 0,5 0.5 55 55 37,5 37.5 7 7 0,8 0.8 22,1 22.1 - - 46 46 33 33 8 8 0,8 0.8 18,5 18.5 2,0 2.0 49 49 34,5 34.5 9 9 0,8 0.8 14,8 14.8 4,0 4.0 51 51 36 36 10 10 0,65 0.65 19,8 19.8 1 1 39 39 31 31 11 11 0,65 0.65 16,8 16.8 2,0 2.0 42 42 32 32 12 12 0,65 0.65 13,8 13.8 4,0 4.0 45 45 33 33 13 13 1,30 1.30 14,3 14.3 5,0 5.0 68 68 61,5 61.5 14 14 1,30 1.30 21,3 21.3 3,0 3.0 61 61 45,5 45.5 15 15 1,05 1.05 13,9 13.9 5,0 5.0 60 60 45 45 16 16 1,11 1.11 18,4 18.4 2,5 2.5 59 59 44,5 44.5 17 17 1,05 1.05 18,0 18.0 3,2 3.2 59 59 44,5 44.5 18 18 1,18 1.18 19,6 19.6 2,6 2.6 63 63 47 47 19 19 1,30 1.30 19,5 19.5 2,6 2.6 66 66 58,5 58.5 20 20 1,30 1.30 19,8 19.8 2,6 2.6 67 67 61 61

Z tejto tabuľky je jasné, že len so zliatinami podľa tohto vynálezu sa dajú dosiahnuť kritické teploty jamkovej korózie výrazne nad 40 °C.From this table, it is clear that only the alloys of the present invention can achieve critical well corrosion temperatures well above 40 ° C.

Príklad 2Example 2

-6Podľa obr. 2, zliatiny 17 a 19 podľa tohto vynálezu oproti porovnávacím zliatinám dosahujú bezpečne pevnosti v ťahu > 2000 N/mm2, aké sú napríklad potrebné pre kotvy a osadzovacie čapy.-6According to FIG. 2, the alloys 17 and 19 according to the invention achieve a tensile strength of> 2000 N / mm 2 as compared to comparative alloys, such as are necessary for anchors and setting pins, for example.

Pri materiáloch, ktoré nie sú podľa tohto vynálezu, ide o zliatiny s nasledujúcimi zloženiami:Materials not according to the invention are alloys with the following compositions:

0,65 % hmotn. dusíka, 16,8 % hmotn. chrómu, 2,0 % hmotn. molybdénu,0.65 wt. % nitrogen, 16.8 wt. % chromium, 2.0 wt. molybdenum,

24,0 % hmotn. mangánu, zvyšok železo a24.0 wt. manganese, the rest iron and

0,42 % hmotn. dusíka, 16,5 % hmotn. chrómu, 1,75 % hmotn. molybdénu,0.42 wt. % nitrogen, 16.5 wt. % chromium, 1.75 wt. molybdenum,

24,5 % hmotn. mangánu, zvyšok železo.24.5 wt. manganese, the rest iron.

Na použitie zliatin podľa tohto vynálezu v dentálnej technike je popri vysokej pevnosti týchto materiálov potrebná aj vysoká odolnosť proti slinám. Skúška zliatiny podľa tohto vynálezu, čo sa týka prierazného potenciálu a pokojového potenciálu, ktorý sa nastaví, sa uskutočnila v umelých slinách podľa Fusayamu pri 37 °C.In addition to the high strength of these materials, high saliva resistance is required to use the alloys of the present invention in dental technology. The alloy test of the present invention with respect to the breakthrough potential and the resting potential that was set was performed in Fusayam artificial saliva at 37 ° C.

Ako príklad správania sa zliatin podľa tohto vynálezu a materiálov, zodpovedajúcich doterajšiemu stavu techniky, sú na obr. 3 znázornené výsledky pre zliatinu 17 (zliatina podľa tohto vynálezu) a pre zliatinu 11 (materiál, zodpovedajúci doterajšiemu stavu techniky). Výrazne vyššia odolnosť proti korózii zliatiny podľa tohto vynálezu je zrejmá s asi 1300 mV (GKE) v porovnaní s 200 mV (GKE) oveľa vyššie ležiacim prierazným potenciálom.As an example of the behavior of the alloys of the present invention and of prior art materials, FIG. 3 shows the results for an alloy 17 (an alloy according to the invention) and an alloy 11 (a prior art material). The significantly higher corrosion resistance of the alloy of the present invention is apparent with about 1300 mV (GKE) as compared to 200 mV (GKE) of a much higher breakthrough potential.

Aj pokojový potenciál pre zliatinu podľa tohtu vynálezu nastavujúci sa na -100 mV (GKE) po 420 min. je výrazne nižší než hodnota +100 mV (GKE), zistená pre porovnávaciu zliatinu (obr.4).Also the resting potential for the alloy of the present invention is set to -100 mV (GKE) after 420 min. is significantly lower than the +100 mV (GKE) value found for the comparative alloy (Fig. 4).

Aj v tabuľke 2 uvedené teploty štrbinovej korózie, zistené v ASTM G-48/A teste, pre zliatiny podľa tohto vynálezu (zliatiny 13 až 20) vykazujú oproti komerčnému doterajšiemu stavu techniky (zliatiny 1 až 3) a v patentoch a publikáciách uverejnenému doterajšiemu stavu techniky (zliatiny 4 až 12) výraznú prevahu zliatin podľa tohto vynálezu. Len s týmito zliatinami sa bezpečne dosiahnu kritické teploty štrbinovej korózie £ 15 °C.Also, in Table 2, the crevice corrosion temperatures found in the ASTM G-48 / A test for alloys of the present invention (alloys 13 to 20) show compared to the prior art (alloys 1-3) and patents and publications published in the prior art. (alloys 4 to 12) a significant predominance of the alloys of the invention. Only with these alloys can critical creep corrosion temperatures of £ 15 ° C be safely achieved.

-7Tabuľka 2: Kritická teplota štrbinovej korózie v ASTM G 48A teste pre Fe-25Mnzliatiny s rozličnými obsahmi dusíka, chrómu a molybdénu (všetky údaje v % hmotn.)-7 Table 2: Critical crevice corrosion temperature in the ASTM G 48A test for Fe-25M alloys with varying nitrogen, chromium and molybdenum contents (all% by weight)

Číslo zliatiny Number alloys N N Cr Cr Mo Mo Suma účinkov WS The amount effects of WS Kritická teplota štrbinovej korózie v °C Critical crevice corrosion temperature in ° C 1 1 - - 18,0 18.0 2,4 2.4 25 25 2,5 2.5 (1.4571) (1.4571) 2 2 - - 18,5 18.5 2,5 2.5 26 26 5 5 (1.4429) (1.4429) 3 3 - - 21,0 21.0 2,7 2.7 29 29 7,5 7.5 (2.4858) (2.4858) 4 4 1,0 1.0 14,5 14.5 4,6 4.6 58 58 13,5 13.5 5 5 1,0 1.0 20,0 20.0 2,0 2.0 56 56 13 13 6 6 1,0 1.0 23,0 23.0 0,5 0.5 55 55 13 13 7 7 0,8 0.8 22,1 22.1 - - 46 46 9,5 9.5 8 8 0,8 0.8 18,5 18.5 2,0 2.0 49 49 10,5 10.5 9 9 0,8 0.8 . 14,8 . 14.8 4,0 4.0 51 51 11,5 11.5 10 10 0,65 0.65 19,8 19.8 - - 39 39 7,5 7.5 11 11 0,65 0.65 16,8 16.8 2,0 2.0 42 42 8 8 12 12 0,65 0.65 13,8 13.8 4,0 4.0 45 45 9,5 9.5 13 13 1,30 1.30 14,3 14.3 5,0 5.0 68 68 30 30 14 14 1,30 1.30 21,3 21.3 3,0 3.0 61 61 17 17 15 15 1,05 1.05 13,9 13.9 5,0 5.0 60 60 16 16 16 16 1,11 1.11 18,4 18.4 2,5 2.5 59 59 15 15 17 17 1,05 1.05 18,0 18.0 3,2 3.2 59 59 15 15 18 18 1,18 1.18 19,6 19.6 2,6 2.6 63 63 21 21 19 19 1,30 1.30 19,5 19.5 2,6 2.6 66 66 27 27 20 20 1,30 1.30 19,8 19.8 2,6 2.6 67 67 29 29

Zliatiny podľa tohto vynálezu nielen že vykazujú mimoriadne vysokú odolnosť v anorganických kyselinách, ale pritom sa vyznačujú ešte aj veľmi vysokými mechanickými pevnosťami po tvárnení za studená.The alloys according to the invention not only have an extremely high resistance to inorganic acids, but also have very high mechanical strengths after cold forming.

Skúška odolnosti proti korózii v Ringerovom roztoku ako kritérium pre odolnosť proti korózii v lekárskej technike sa uskutočnila pri 37 °C vo forme pokusov odležania po dobu 30 dní so zisťovaním zmeny hmotnosti. Skúšali sa zliatiny 17 a 19 podľa tohto vynálezu, ako aj doterajšiemu stavu technikyThe corrosion resistance test in Ringer's solution as a criterion for corrosion resistance in medical technology was performed at 37 ° C in the form of 30-day resting tests with a change in weight. Alloys 17 and 19 of the present invention as well as the prior art have been tested

-8zodpovedajúce materiály 1.4571 a 1.4429. V tabuľke 3 uvedené výsledky vykazujú pre zliatiny podľa tohto vynálezu značne nižšie rýchlosti korózie než pre zliatiny, zodpovedajúce doterajšiemu stavu techniky.-8 Matching materials 1.4571 and 1.4429. The results shown in Table 3 show significantly lower corrosion rates for the alloys of the present invention than for prior art alloys.

Tabuľka 3: Výsledky pokusov starnutia v Ringerovom roztoku pri 37 °C po dobu 30 dní.Table 3: Results of aging experiments in Ringer's solution at 37 ° C for 30 days.

Zliatiny alloys Špec. začiatočná hmotnosť v g/cm2 Spec. initial weight in g / cm 2 Špec. konečná hmotnosť v g/cm2 Spec. final weight in g / cm 2 Rýchlosť korózie v mm/s Corrosion rate in mm / s 17 17 44,8886 44.8886 44,8892 44.8892 0,083 0,083 19 19 41,9995 41.9995 41,9999 41.9999 0,067 0.067 1.4571 1.4571 38,7733 38.7733 38,7739 38.7739 0,100 0,100 1.4429 1.4429 39,2111 39.2111 39,2117 39.2117 0,100 0,100

Príklad 3Example 3

Prekvapujúco sa pri zisťovaní žiarupevnosti zliatin 17 až 20 podľa tohto vynálezu ukázalo, že tieto zliatiny už v rozpustenom žeravom stave vykazovali pri 800 °C značne vyššiu žiarupevnosť než v DIN 17480 uvedené typické ventilové ocele 1.4718, 1.4871, 1.4875 a 1.4882 (tabuľka 4). Za to je popri prvkoch, ktoré zabezpečujú vysoké spevnenie zmesovými kryštálmi, ako je mangán, chróm, molybdén a dusík, zodpovedné pridanie podľa tohto vynálezu na hraniciach zŕn aktívnych prvkov bóru a zirkónia.Surprisingly, in determining the fire resistance of alloys 17 to 20 according to the invention, it has been shown that these alloys already exhibited at 800 ° C a considerably higher fire resistance at 800 ° C than the typical valve steels 1.4718, 1.4871, 1.4875 and 1.4882 (Table 4). In addition to the elements which provide high solidification with mixed crystals such as manganese, chromium, molybdenum and nitrogen, the addition according to the invention is responsible at the grain boundaries of the active boron and zirconium elements.

Tabuľka 4: Žiarupevnosť pri 800 °C rozličných materiálov.Table 4: Heat resistance at 800 ° C of various materials.

Zliatina alloy Rpo%vN/mm2 R by% vN / mm 2 R. v N/mm2 R. in N / mm 2 M% M% 17 17 280 280 415 415 18 18 18 18 250 250 370 370 20 20 19 19 260 260 390 390 15 15 20 20 255 255 390 390 33 33 1.4718 1.4718 180 180 295 295 - - 1.4871 1.4871 215 215 345 345 - - 1.4875 1.4875 195 195 315 315 - - 1.4882 1.4882 240 240 355 355

Claims (5)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Austenitická železo-mangán-chrómová zliatina tavená otvorene pri atmosférickom tlaku, tvárniteľná za tepla aj za studená, najmä na použitie vo vodných médiách, vyznačujúca sa tým, že obsahuje nasledujúce legujúce zložky v % hmotn.An Austenitic iron-manganese-chromium alloy melted open at atmospheric pressure, hot and cold deformable, in particular for use in aqueous media, characterized in that it contains the following alloying components in% by weight. Cr Cr 12,0 12.0 until 24,7 24.7 % % Ni Ni až do until 0,10 0.10 % % Mn Mn 23,5 23.5 until 25,0 25.0 % % Si Are you až do until 0,20 0.20 % % Mo Mo 2,0 2.0 w az w until 5,7 5.7 % % Ti you až do until 0,10 0.10 % % C C až do until 0,015% 0.015% N N 1,05 1.05 until 1,30 1.30 % % Zr Zr 0,01 0.01 until 0,15 0.15 % % Cu Cu 0,8 0.8 until 2,0 2.0 % % B B 0,002 až 0.002 to 0,005 %, 0,005%,
zvyšok železo, vrátane nevyhnutných znečistenín.the rest of the iron, including the necessary contaminants.
2. Zliatina podľa nároku 1,vyznačujúca sa tým, že obsahuje nasledujúce legujúce zložky (údaje v % hmotn.)Alloy according to claim 1, characterized in that it contains the following alloying components (% by weight) Cr Cr 19,0 19.0 until 21,0 21.0 % % Ni Ni až do until 0,10 0.10 % % Mn Mn 23,5 23.5 w az w until 25,0 25.0 % % Si Are you až do until 0,20 0.20 % % Mo Mo 2,7 2.7 until 3,3 3.3 % % Ti you až do until 0,10 0.10 % % C C až do until 0,015% 0.015% N N 1,05 1.05 until 1,30 1.30 % % Zr Zr 0,01 0.01 until 0,15 0.15 % % Cu Cu 0,8 0.8 until 0,9 0.9 % %
-10Β 0,002 až 0,005 %, zvyšok železo, vrátane nevyhnutných znečistenín.-10Β 0.002 to 0.005%, the rest of the iron, including the necessary contaminants.
3. Použitie zliatiny podľa nároku 1 alebo 2 v lekárskej a dentálnej technike, najmä na výrobu lekárskych nástrojov a náradia, dočasných implantátov, ako sú vnútrodreňové klince, skrutky a dlahy, ako aj svorky, pripevňovacie a napínacie drôty.The use of an alloy according to claim 1 or 2 in medical and dental technology, in particular for the manufacture of medical instruments and tools, temporary implants such as intramedullary nails, screws and splints, as well as clamps, fastening and tensioning wires. 4. Použitie zliatiny podľa nároku 1 alebo 2 v pripevňovacej technike, najmä na výrobu kotiev a osadzovacích čapov.Use of an alloy according to claim 1 or 2 in a fastening technique, in particular for the production of anchors and setting pins. 5. Použitie zliatiny podľa nároku 1 alebo 2 v spaľovacích motoroch, najmä na výrobu nasávacích a výfukových ventilov.Use of an alloy according to claim 1 or 2 in internal combustion engines, in particular for the manufacture of intake and exhaust valves.
SK1454-99A 1997-04-22 1998-04-17 High-strength, anti-corrosive iron-manganese-chrome alloy SK145499A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19716795A DE19716795C2 (en) 1997-04-22 1997-04-22 Use of a high-strength and corrosion-resistant iron-manganese-chrome alloy
PCT/EP1998/002299 WO1998048070A1 (en) 1997-04-22 1998-04-17 High-strength, anti-corrosive iron-manganese-chrome alloy

Publications (1)

Publication Number Publication Date
SK145499A3 true SK145499A3 (en) 2000-07-11

Family

ID=7827273

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1454-99A SK145499A3 (en) 1997-04-22 1998-04-17 High-strength, anti-corrosive iron-manganese-chrome alloy

Country Status (7)

Country Link
EP (1) EP0977901B1 (en)
AT (1) ATE202158T1 (en)
DE (1) DE19758613C2 (en)
HU (1) HUP0001778A3 (en)
NO (1) NO995133L (en)
SK (1) SK145499A3 (en)
WO (1) WO1998048070A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407882B (en) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
AT412727B (en) 2003-12-03 2005-06-27 Boehler Edelstahl CORROSION RESISTANT, AUSTENITIC STEEL ALLOY

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT152291B (en) * 1936-10-07 1938-01-25 Boehler & Co Ag Geb Chromium-manganese steels with 0¨01 1¨5% carbon, 5 25% chromium, 10 35% manganese.
DE917672C (en) * 1939-01-03 1954-09-09 Boehler & Co Ag Geb Manufacture of rust-resistant and non-magnetic sheets, strips or tapes for aircraft coverings
CH680267A4 (en) * 1967-05-13 1969-11-14 Straumann Inst Ag Component with a temperature coefficient only slightly deviating from zero for a timing device
US4121953A (en) * 1977-02-02 1978-10-24 Westinghouse Electric Corp. High strength, austenitic, non-magnetic alloy
CA1205659A (en) * 1981-03-20 1986-06-10 Masao Yamamoto Corrosion-resistant non-magnetic steel and retaining ring for a generator made of it
DE3940438C1 (en) * 1989-12-07 1991-05-23 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
AT397968B (en) * 1992-07-07 1994-08-25 Boehler Ybbstalwerke CORROSION-RESISTANT ALLOY FOR USE AS A MATERIAL FOR PARTS IN CONTACT WITH LIFE
DE4242757C1 (en) * 1992-12-17 1994-03-24 Krupp Vdm Gmbh Low nickel@ content steel alloy for jewellery, etc - comprises silicon@, manganese@, nitrogen@, chromium@, phosphorus@, sulphur@, copper@ and molybdenum@
DE19513407C1 (en) * 1995-04-08 1996-10-10 Vsg En & Schmiedetechnik Gmbh Steel alloy used for jewellery implants and dental applications

Also Published As

Publication number Publication date
NO995133D0 (en) 1999-10-21
ATE202158T1 (en) 2001-06-15
HUP0001778A2 (en) 2000-09-28
EP0977901B1 (en) 2001-06-13
DE19758613C2 (en) 2000-12-07
EP0977901A1 (en) 2000-02-09
HUP0001778A3 (en) 2000-11-28
NO995133L (en) 1999-10-21
WO1998048070A1 (en) 1998-10-29

Similar Documents

Publication Publication Date Title
EP1783240B1 (en) High-nitrogen austentic stainless steel
RU2731924C1 (en) High-entropic corrosion-resistant alloy having high content of nitrogen and containing several basic elements
KR900006870B1 (en) Ferrite-austenitic stainless steel
KR970008165B1 (en) Duplex stainless steel with high manganese
US5286310A (en) Low nickel, copper containing chromium-nickel-manganese-copper-nitrogen austenitic stainless steel
US4765953A (en) High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
AU2002328002B9 (en) Duplex steel alloy
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
US4295769A (en) Copper and nitrogen containing austenitic stainless steel and fastener
US5849111A (en) Duplex stainless steel
JPS5817820B2 (en) High temperature chrome steel
EP0300362B1 (en) Fe-base build-up alloy excellent in resistance to corrosion and wear
EP1313888B1 (en) Low cost, corrosion and heat resistant alloy for diesel engine valves
WO2001064969A1 (en) Duplex stainless steel
BRPI0922060B1 (en) Precipitation hardenable nickel-based alloy, powder of this alloy, solid component comprising this powder and the use of said alloy
EP0480033A1 (en) Pipe joint made of stainless steel and method of making the same
US3989474A (en) Austenitic stainless steel
EP1087029A2 (en) Improved steel composition
US5000914A (en) Precipitation-hardening-type ni-base alloy exhibiting improved corrosion resistance
US4194909A (en) Forgeable nickel-base super alloy
US3940266A (en) Austenitic stainless steel
SK145499A3 (en) High-strength, anti-corrosive iron-manganese-chrome alloy
US2891858A (en) Single phase austenitic alloy steel
JPS61163238A (en) Heat and corrosion resistant alloy for turbine
JP2022514575A (en) Ferritic stainless steel