SK110191A3 - Method of production of foreign proteins in streptomycets - Google Patents

Method of production of foreign proteins in streptomycets Download PDF

Info

Publication number
SK110191A3
SK110191A3 SK1101-91A SK110191A SK110191A3 SK 110191 A3 SK110191 A3 SK 110191A3 SK 110191 A SK110191 A SK 110191A SK 110191 A3 SK110191 A3 SK 110191A3
Authority
SK
Slovakia
Prior art keywords
gene
tendamistate
protein
amino acids
fusion protein
Prior art date
Application number
SK1101-91A
Other languages
Slovak (sk)
Inventor
Klaus-Peter Koller
Gunther Riess
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of SK110191A3 publication Critical patent/SK110191A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Diabetes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Gene structures which code for the signal sequence and approximately the first ten amino acids of tendamistat as well as a required protein are expressed in high yield in streptomyces host cells, and the fusion proteins are secreted into the medium.

Description

Zpusob výroby cizích proteinu ve streptomycetáchMethod of production of foreign proteins in streptomyces

Oblasť technikyTechnical field

Z evropské patentové prihlášky s číslem zverejnení ( EP-A) 0 289 936 je známo, že se fúzní proteiny vyrobí tak, že se štruktúrni gen pro požadovaný protein kopuluje na 3'-konec kódujícího ŕetézce poprípade modifikovaného tendamistát-genu, tato génová štruktúra se pŕivede v hostiteľské buňce baktérií streptomyces k expresi a sekretovavý fúzní protein se izoluje z média.. Pri výhodné forme provedení se tendamistát-gen na 3'-konci zkrátí. Pro zkrácení se používaj í štépná místa pro reštrikční enzymy BstEII v oblasti tripletu 31 a 32, Stul v oblasti tripletu 43 a 44, jakož i Sau3A v oblasti tripletu 52 a 53.It is known from European patent application publication number (EP-A) 0 289 936 that fusion proteins are produced by coupling the structural gene for the desired protein to the 3'-end of the coding strand or the modified tendamistate gene, which gene structure is expressing in the host cell streptomyces and secreting the fusion protein is isolated from the medium. In a preferred embodiment, the tendamistate gene is truncated at the 3'-end. Truncation sites for restriction enzymes BstEII in the region of triplets 31 and 32, StuI in the region of triplets 43 and 44, and Sau3A in the region of triplets 52 and 53 are used for truncation.

Pri dalším vývoji této vynálezecké myšlenky bylo již navrženo, vyrobiť fúzní protein, ve kterém po podílu tendamistátu následuje zkrácený proinsulin, jehož C-ŕetézec sestává pouze z jednoho nebo dvou lysinových zbytku ( miniproinsulin) . Jako další pokračování vývoje bylo navrhováno, aby se v takovýchto fúzních proteinech zkrátil i podíl tendamistátu (evropská prihláška EP-A 0 367 163 zverejnená 9. 5. 1990) .In a further development of this inventive idea, it has already been proposed to produce a fusion protein in which the proportion of tendamistate is followed by a truncated proinsulin whose C-chain consists of only one or two lysine residues (miniproinsulin). As a further development, it has been proposed that the proportion of tendamistate in such fusion proteins be shortened (European application EP-A 0 367 163 published May 9, 1990).

Nyní bylo s prekvapením zjišténo, že fúzní proteiny s velmi krátkým podílem tendamistátu jsou v buňce streptomycet stálé a vyplavuj! se do média. Takto získané fúzní proteiny se chovaj í v dúsledku velmi krátkeho ŕetézce tendamistatu jako zralé proteiny a existuj í všeobecné v médiu ve správne terciární štruktúre.Surprisingly, it has now been found that fusion proteins with a very short proportion of tendamistate are stable in the streptomyces cell and wash out! to the media. The fusion proteins thus obtained behave as mature proteins due to the very short chain of tendamistat and exist generally in the medium in the correct tertiary structure.

Z EP-A O 177 827 je známá syntetická signálni sekvence pro prenos proteínu do expresních systému, která je charakteristická tím, že DNA odpovídá v podstate pŕirozené signálni sekvenci, avšak vykazuje jedno nebo více stepných míst pro endonukleázy, která nejsou v pŕirozené DNA obsažena. Když se kopuluje gen pro proteín, který se má pŕenést, na takovou sekvenci DNA, zabuduje se tento fúzní gen do vektoru a tím transformuje hostiteľskou bunku, která transportuje exprimovaný protein z cytoplasmy, mohou se v prokaryotických a eukaryotických buňkách vyrobiť prokaryotické nebo virální proteiny. Na príkladu periplasmatického proteínu alkalické fosfatáty se ukazuje, že pŕí expresi v E. coli je výhodné, když se v návaznosti na pre-sekvenci dosadí kodony pro asi prvních 40 aminokyselín alkalické fosfatázy pred štruktúrni gen pro požadovaný protein. V mnohá pŕípadech však postačí také méné prídavných aminokyselín, napríklad asi 10, s výhodou asi 5. Odpovídající fúzní protein s opičím proiusulinem byl transportován asi z 90 % do periplasmatického prostoru.EP-A 0 177 827 discloses a synthetic signal sequence for transferring a protein to an expression system, characterized in that the DNA corresponds to a substantially natural signal sequence, but has one or more endonuclease step sites that are not contained in the natural DNA. When the gene for the protein to be transferred is coupled to such a DNA sequence, the fusion gene is incorporated into the vector and thereby transforms a host cell that transports the expressed protein from the cytoplasm, prokaryotic or viral proteins can be produced in prokaryotic and eukaryotic cells. As an example of a periplasmic protein, alkaline phosphatates show that when expressed in E. coli it is preferred that, following the pre-sequence, codons for about the first 40 amino acids of alkaline phosphatase be inserted before the structural gene for the desired protein. In many cases, however, fewer additional amino acids, for example about 10, preferably about 5, will suffice. The corresponding monkey proiusulin fusion protein has been transported about 90% into the periplasmic space.

Bylo již také navrhováno (WO 91/03 550 z 21. 3. 1991) vyrábét fúzní proteiny tak, že se konštruuje smésný oligonukleotid, který kóduje balastní podíl fúzního protein, tento oligonukleotid se vnese do vektoru tak, že je funkčné kopulován na regulační región a štruktúrni gen pro požadovaný protein, s takto získanou populací plasmidu se transformuj! vhodné hostitelské buňky a ty klony, které vykazuj í vysoký výtéžek fúzního proteínu, se selektuj í.It has also been proposed (WO 91/03 550 of 21 March 1991) to produce fusion proteins by constructing a mixed oligonucleotide that encodes a ballast portion of the fusion protein, which oligonucleotide is introduced into the vector so that it is operably coupled to a regulatory region and the structural gene for the protein of interest is transformed with the plasmid population thus obtained. suitable host cells and those clones that have a high yield of fusion protein are selected.

Oligonukleotid sestává pri tom s výhodou ze 4 až 12, zejména pak 4 až 8 tripletú.The oligonucleotide preferably consists of 4 to 12, in particular 4 to 8, triplets.

Zkoušelo se rovnéž vyrobit fúzní proteiny s krátkym balastním podílem. Tak byla napríklad vyrobená génová fúze, která kóduje fúzní protein z prvních 10 aminokyselín β-galaktosidázy a somatostatinu. Ukázalo se však, že tento krátký fragment β-galaktosidázy nepostačí k tomu, aby chránil fúzní protein pred odbouráváním proteázami, vlastními hostiteli (US 4 366 246, 15, odstavec 2). V souladu s tím byly v EP-A 0 290 005 a 0 292 763 popsány fúzní proteiny, jejichž balastní podíl sestává z fragmentu β-galaktosidázy s více než 250 aminokyselinami.It has also been attempted to produce fusion proteins with a short ballast fraction. For example, a gene fusion that encodes a fusion protein of the first 10 amino acids of β-galactosidase and somatostatin has been produced. However, it has been shown that this short β-galactosidase fragment is not sufficient to protect the fusion protein from self-host protease degradation (US 4,366,246, 15, paragraph 2). Accordingly, EP-A 0 290 005 and 0 292 763 disclose fusion proteins whose ballast portion consists of a β-galactosidase fragment of more than 250 amino acids.

Podstata vynálezuSUMMARY OF THE INVENTION

Neočekávané bylo nyní zjišténo, že fúzní proteiny, sestávající z asi prvních 10 aminoterminálních aminokyselín tendamistátu a požadovaného proteínu, napríklad proinsulinu, jsou v hostitelských bunkách streptomycet stabilní a jsou sekretovány do média, ze kterého se mohou získat ve vysokých výtéžcích. Je prekvapující, že to platí i pro relativné malé proteiny jako jsou mini-proinsuliny.Unexpectedly, it has now been found that fusion proteins, consisting of about the first 10 amino-terminal amino acids of tendamistate and the desired protein, for example proinsulin, are stable in streptomyces host cells and are secreted into medium from which they can be obtained in high yields. It is surprising that this also applies to relatively small proteins such as mini-proinsulins.

Asi 10 aminokyselín pri tom znamená, že v úvahu pŕichází i méné aminokyselín, napríklad prvních 7 N-terminálních aminokyselín tendamistátu, ale s výhodou ne více nežAbout 10 amino acids means that less amino acids are possible, for example the first 7 N-terminal amino acids of tendamistate, but preferably no more than

10. Výhodné jsou fúzní proteiny, v jejichž podílu tendamistátu je v poloze 7 a/nebo 9 prolin (jako v prírodní sekvenci).10. Preferred are fusion proteins in which the proportion of tendamistate is at the 7 and / or 9 position of proline (as in the natural sequence).

Samozrejmé je ale také možné, zvolit v souladu s již známymi nebo navrženými formami provedení vétší balastní podíl tendamistátu, pŕičemž se ale pŕirozené stále více a více ztrácí výhoda malého balastu.It is, of course, also possible, in accordance with known or proposed embodiments, to select a larger ballast portion of tendamistate, but naturally the advantage of a small ballast is more and more lost.

Je možné a dokonce výhodné, když se pŕirozený sled aminokyselín podílu tendamistatu mení, tedy, když se aminokyseliny vymení, vypustí nebo se nezavedou tak jak se v pŕirozeném sledu aminokyseliny vyskytuj í. Dále je možné ménit sled aminokyselín v signálním peptidu.It is possible and even advantageous for the natural amino acid sequence of the tendamistat moiety to vary, that is, when the amino acids are exchanged, deleted or not introduced as they occur in the natural amino acid sequence. It is further possible to vary the amino acid sequence of the signal peptide.

Obvzlášté výhodné fúzní konstrukce se mohou snadno zjistit na základe vynálezecké myšlenky jednoduchými predbežnými pokusy.Especially preferred fusion structures can be readily ascertained based on the inventive idea by simple preliminary experiments.

Dále je také možné uskutečnit vynálezeckou myšlenku i v j iných grampozitivních bakteriálních buňkách, napríklad v buňkách bacillú nebo stafylokokú, za použití signálních sekvencí, které tito hostitelé rozeznají.Furthermore, it is also possible to practice the invention in other gram-positive bacterial cells, for example in bacillus or staphylococcal cells, using signal sequences recognized by these hosts.

Fúzní proteiny, získané podie vynálezu, se vyskytuj! v médiu v rozpušténé forme, což poskytuje radu výhod pri dalším zpracování a čistení. Tak se muže provádét napríklad další enzymatické zpracování za odštépení balastního podílu bezprostredné s produktem sekrece, aniž by bylo nutné provádét postupy zpracování, které jsou nezbytné u nerozpustných fúzních proteinú. Je také možné provést pred dalším zpracováním nejdŕíve zakoncentrování nebo čistení, napríklad pomoci afinitní chromatografie, ale také ultrafiltraci, srážením, iontoméničovou chromatografii, adsorpční chromatograf ií, gelovou filtraci nebo vysokotlakou kapalinovou chromatograf ii.The fusion proteins obtained according to the invention are present. in a medium in dissolved form, which provides a number of advantages for further processing and purification. Thus, for example, further enzymatic treatment can be carried out to cleave the ballast portion immediately with the secretion product, without the need for processing procedures which are necessary for the insoluble fusion proteins. It is also possible to first concentrate or purify, for example by means of affinity chromatography, but also ultrafiltration, precipitation, ion exchange chromatography, adsorption chromatography, gel filtration or high pressure liquid chromatography before further processing.

Príklady provedení vynálezuDETAILED DESCRIPTION OF THE INVENTION

Vynález je blíže vysvétlen v nálsedujících pŕíkladech.The invention is explained in more detail in the following examples.

Výchozím materiálem pro plasmidové konstrukce je plasmid pKK500, který byl navržen v EP-A 0 367 163. Tento plasmid se liší od plasmidu pKK400, známého z EP-A 0 289 936, náhradou génu proinsulinu analogickým genem, který kóduje namísto uhlíkatého ŕetézce pouze aminokyselinu lysín, jakož i zavedením terminátotové sekvence, pripojující se k tomuto génu mini-proinsulinu . V následující tabulce 1 a 2 je znázornén gen mini-proinsulinu a sekvence terminátoru.The starting material for the plasmid constructs is the plasmid pKK500, which was proposed in EP-A 0 367 163. This plasmid differs from the plasmid pKK400, known from EP-A 0 289 936, by replacing the proinsulin gene with an analogue gene which encodes only the amino acid instead of the carbon chain. lysine, as well as the introduction of a terminator sequence joining this mini-proinsulin gene. Tables 1 and 2 show the mini-proinsulin gene and the terminator sequence.

Tabulka 1Table 1

B1 10B 1 10

ASN ASN SER SER ASN ASN GLI GLI LIS PRESS PHE PHE VAL VAL ASN ASN GLN GLN HIS HIS LEU LEU CIS CIS GLI GLI SER SER HIS HIS AAT AAT TCG TCG AAC AAC GGC GGC AAG AAG TTC TTC GTC GTC AAC AAC CAG CAG CAC CAC CTG CTG TGC TGC GGC GGC TCG TCG CAC CAC GC GC TTG TTG CCG CCG TTC TTC AAG AAG CAG CAG TTG TTG GTC GTC GTG GTG GAC GAC ACG ACG CCG CCG AGC AGC GTG GTG (EcoRI) (EcoRI) 20 20 30 30 LEU LEU VAL VAL GLU GLU ALA ALA LEU LEU TIR TIR LEU LEU VAL VAL CIS CIS GLI GLI GLU GLU ARG ARG GLI GLI PHE PHE PHE PHE CTC CTC GTG GTG GAG GAG GCC GCC CTC CTC TAC TAC CTG CTG GTG GTG TGC TGC GGG GGG GAG GAG CGC CGC GGC GGC TTC TTC TTC TTC GAG GAG CAC CAC CTC CTC CGG CGG GAG GAG ATG ATG GAC GAC CAC CAC ACG ACG CCC CCC CTC CTC GCG GCG CCG CCG AAG AAG AAG AAG C C A1 A 1 40 40 TIR TIR THR THR PRO PRO LYS LYS THR THR LYS LYS GLY GLY ILE ILE VAL VAL GLU GLU GLN GLN CYS CYS CYS CYS THR THR SER SER TAC TAC ACC ACC CCC CCC AAG AAG ACC ACC AAG AAG GGC GGC ATC ATC GTG GTG GAG GAG CAG CAG TGC TGC TGT TGT ACG ACG TCC TCC ATG ATG TGG TGG GGG GGG TTC TTC TGG TGG TTC TTC CCG CCG TAG TAG CAC CAC CTC CTC GTC GTC ACG ACG ACA ACA TGC TGC AGG AGG

ILE ILE CYS CYS SER SER LEU LEU TYR TYR GLN GLN LEU LEU GLU GLU ASN ASN TYR TYR CYS CYS ASN ASN STP STP STP STP ATC ATC TGC TGC TCC TCC CTC CTC TAC TAC CAG CAG CTC CTC GAG GAG AAC AAC TAC TAC TGC TGC AAC AAC TAG TAG TAA TAA TAG TAG ACG ACG AGG AGG GAG GAG ATG ATG GTC GTC GGA GGA CTC CTC TTG TTG ATG ATG ACG ACG TTG TTG ATC ATC ATT ATT

GTC GTC GAC GAC CTG CTG CAG CAG CCA CCA CAG CAG CTG CTG GAC GAC GTC GTC GGT TCG A GGT TCG

Sali (HindlII)Sali (Hindu)

T a b u 1 k a 2T a b at 1 k and 2

5'-OGATTAAACOGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTTGGAGATTTTCAACGTGGA5 'OGATTAAACOGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTTGGAGATTTTCAACGTGGA

GCTATTTGGCTATGTTAATTTCOGAGAAAACCTCGAAAAAAAAACCTCTAAAAGTTGCACCTAG-51 GCTATTTGGCTATGTTAATTTCOGAGAAAACCTCGAAAAAAAAACCTCTAAAAGTTGCACCTAG-5 1

Plasmidy pKK400 a pKK500 obsahuj! v signálni sekvenci génu inhibitoru α-amylázy stepné místo XmalII (v oblasti tripletu -5 až -7).The plasmids pKK400 and pKK500 contain! in the signal sequence of the α-amylase inhibitor gene, the steppe site XmalII (in the region of the triplet -5 to -7).

Príklad 1Example 1

Plasmid pKK500 se otevŕe restrikčními enzymy EcoRI a XmalII a oddelí se velký fragment na 0.8% agarosovém gélu gelovou elektroforézou a izoluje se elektroelucí. Tento fragment se liguje fragmentem DNA (1) (SEQ ID NO :1) syntetizovaným fosforamiditovou metodouPlasmid pKK500 is opened with the restriction enzymes EcoRI and XmalII and the large fragment is separated on a 0.8% agarose gel by gel electrophoresis and isolated by electroelution. This fragment was ligated with a DNA fragment (1) (SEQ ID NO: 1) synthesized by the phosphoramidite method

-5 -1-5 -1

Ala Ala Gly Gly Pro for Ala Ala Ser Ser Ala Ala 5 'G 5 'G GCG GCG GGG GGG CCG CCG GCC GCC TCC TCC GCC GCC 3 ' 3 ' CCC CCC GGC GGC CGG CGG AGG AGG CGG CGG

(XmalII)(XmalII)

Asp Asp Thr Thr Thr Thr Val wall Ser Ser Glu Glu Pro for GAC GAC ACG ACG ACC ACC GTC GTC TCC TCC GAG GAG CCG CCG 3 3 GTG GTG TGC TGC TGG TGG CAG CAG AGG AGG CTC CTC GGC TTA A GGC TTA 5 5

(EcoRI) a ligační smés se transformuje v E. coli. Získa se plasmid pKK510. Tento kóduje preproinsulin, ve kterém na signálni sekvenci tendamistátu následuje prvnich 7 aminokyselín tendamistátu a potom ŕetézec mini-proinsulinu.(EcoRI) and the ligation mixture is transformed into E. coli. Plasmid pKK510 is obtained. This encodes a preproinsulin in which the tendamistate signal sequence is followed by the first 7 amino acids of the tendamistate and then the mini-proinsulin chain.

Príklad 2Example 2

Analogicky jako u zpúsobu prevedení plasmidu pHH400 na expresní plasmid pGFl, který je popsán v EP-A 0 289 936, se plasmid pKK510 pŕevede v expresní plasmid pKFl :Analogously to the method for converting plasmid pHH400 to the expression plasmid pGF1 described in EP-A 0 289 936, the plasmid pKK510 is converted into the expression plasmid pKF1:

Izolovaná DNA plasmidu pKK510 se štepí restrikčními enzymy SpHI a SstI a izoluje se malý fragment s fúzním genem. Na trhu obvyklý expresní plasmid pIJ 702 /získatelný u firmy John Innes Foundation, Norwich, Anglie / se štepí stejnými enzymy a izoluje se velký fragment. Tyto oba isolované fragmenty se ligují, ligační smés se transformuje v S. lividans TK24 a z thiostrepton-resistentních bílých transformantu (to znamená neschopných tvoŕit melanin), se izoluje plasmid. Klony, které nesou vloženou informaci, se zkouší v tŕepané kultuŕe, zda jsou schopný tvoŕit fúzní proteíny.The isolated DNA of plasmid pKK510 was digested with the restriction enzymes SpHI and SstI, and a small fragment with the fusion gene was isolated. The commercial expression plasmid pIJ 702 (obtainable from the John Innes Foundation, Norwich, England) is digested with the same enzymes and a large fragment is isolated. The two isolated fragments were ligated, the ligation mixture transformed in S. lividans TK24, and a plasmid was isolated from thiostrepton-resistant white transformants (i.e., unable to form melanin). Clones carrying the inserted information are tested in shake culture for the ability to form fusion proteins.

Exprese kódovaného fúzního proteinu se provádí o sobé známym zpúsobem: transformovaný kmeň se inkubuje 4 dny pri teplote prevyšující 25 °C v tŕepací baňce a mycelium se oddelí odstŕedéním od kultivačního roztoku. Vytvorený fúzní pŕotein se muže v kultivačním médiu zviditelnit po elektroforéze 20 μιη filtrátu kultury v 15% polyakrylamidovém gélu obarvením ^COOMASSIE-modŕí jako prídavný pás proteinu, který se pri kontrolním pokusu neobjeví, na který byl kmeň pouze transformován pomoci pIJ 702.Expression of the encoded fusion protein is carried out in a manner known per se: the transformed strain is incubated for 4 days at a temperature in excess of 25 ° C in a shake flask and the mycelium is separated by centrifugation from the culture solution. The formed fusion protein can be visualized in the culture medium after electrophoresis of 20 μm of culture filtrate in a 15% polyacrylamide gel by staining with CO COOMASSIE-blue as an additional band of protein that did not appear in the control experiment to which the strain was only transformed with pIJ 702.

Jestliže se filtrát kultury zpracovává lysylendoproteinázou, tak se muže prokázat gelovou elektroforézou Des-(B30)-Thr-insulin, který se verifikuje autentickou kontrolou.When the culture filtrate is treated with lysylendoproteinase, it can be detected by Des- (B30) -Thr-insulin gel electrophoresis, which is verified by authentic control.

Dále se muže fúzní protein ve filtrátu kultury prokázat protilátkami insulinu bučí v testu Immuno-Blot nebo insulin-RIA.Further, the fusion protein in the culture filtrate can be detected with either insulin antibodies in the Immuno-Blot or insulin-RIA assay.

Príklad 3Example 3

Postupuje se jako v príkladu 1 a 2, použije se ale syntetický fragment/2/ se SEQ ID NO: 2.The procedure was as in Examples 1 and 2, but using the synthetic fragment (2) with SEQ ID NO: 2.

-5 -1-5 -1

Ala Ala Gly Gly Pro for Ala Ala Ser Ser Ala Ala 5'G 5'G CCG CCG GGG GGG CCG CCG GCC GCC TCC TCC GCC GCC 3 ' 3 ' CCC CCC GGC GGC CGG CGG AGG AGG CGG CGG

/XmalII// XmalII /

Asp Asp Thr Thr Thr Thr Val wall 5 Ser 5 Ser Glu Glu Pro for Asp Asp Pro for GAC GAC ACG ACG ACC ACC GTC GTC TCC TCC GAG GAG CCC CCC GAC GAC CCG CCG 3 ' 3 ' CTG CTG TGC TGC TGG TGG CAG CAG AGG AGG CTC CTC GGG GGG CTG CTG GGC TTA A GGC TTA 5' 5 '

/EcoRI/ a získaj í se tak plasnidy pKK320 poprípade pKF2.(EcoRI) to obtain plasmids pKK320 and pKF2, respectively.

Tyto plasmidy kóduj í fúzní protein, který se liší od proteinu podie príkladu 1 a 2 tím, že po prvních 7 aminokyselinách tendamistátu následuje asparagin (místo pŕirozené aminokyseliny alaninu) a potom devátá aminokyselina v tendamistátu, prolin. Výménou alaninu za asparagin se tedy zavede do balastního podílu fúzního proteinu dodatečný kladný náboj. Pŕikvapivé se získají asi o 20 až 30% vyšší výtéžky než podie príkladu 2.These plasmids encode a fusion protein that differs from the protein of Examples 1 and 2 in that the first 7 amino acids of the tendamistate are followed by asparagine (instead of the natural amino acid alanine) and then the ninth amino acid in the tendamistate, proline. Thus, by exchanging alanine for asparagine, an additional positive charge is introduced into the ballast portion of the fusion protein. Surprisingly, yields of about 20 to 30% higher than in Example 2 are obtained.

Príklad 4Example 4

Postupuje se podie príkladu 1 a 2, ale použije se syntetický fragment /3/ se SEQ ID NO :3The procedure of Examples 1 and 2 is followed, but the synthetic fragment (3) of SEQ ID NO: 3 is used

-5 -1-5 -1

Ala Ala Gly Gly Pro for Ala Ala Ser Ser Ala Ala 5 'G 5 'G GCC GCC GGG GGG CCG CCG GCC GCC TCC TCC GCC GCC 3 ' 3 ' CCC CCC GGG GGG CGG CGG AGG AGG CGG CGG

/XmalII// XmalII /

Asp Asp Thr Thr Thr Thr Val wall Ser Ser Glu Glu Pro for Ala Ala Pro for GAC GAC ACG ACG ACC ACC GTC GTC TCC TCC GAG GAG CCC CCC GCA GCA CCG CCG 3 ' 3 ' CTG CTG TGC TGC TGG TGG CAG CAG AGG AGG CTC CTC GGG GGG CGT CGT GGC TTA A GGC TTA 5' 5 '

pŕičemž se získaj í plasmidy pKK330, poprípade pKF3 . Tyto plasmidy se liší od plasmidú podie príkladu 1 a 2 tím, že kóduj í prvních 9 pŕirozených aminokyselín tendamistátu. Ve srovnání s pŕíkladem 2 se získaj í asi o 10 % vyšší výtéžky.whereby plasmids pKK330 and pKF3, respectively, are obtained. These plasmids differ from the plasmids of Examples 1 and 2 in that they encode the first 9 natural amino acids of tendamistate. Compared to Example 2, yields of about 10% higher are obtained.

Príklad 5Example 5

Fúzní protein, kódovaný pKK500, obsahuje mezi podílem tendamistátu a B-ŕetézcem proinsulinu sekvenci linkeru, která kóduje aminokyseliny Asn-Ser.Asn-Gly-Lys . Náhrada tohoto koncového lysinu a lysinu, predstavujícího uhlíkatý ŕetézec, argininem, se provádí dále popsaným zpúsobem. Pri tom se upotrebí od singulárního štépného místa Styl v oblasi kodonu B30 až A1 v sekvenci proinsulinu.The fusion protein, encoded by pKK500, contains a linker sequence encoding the amino acids Asn-Ser.Asn-Gly-Lys between the tendamistate fraction and the proinsulin B-chain. The replacement of this terminal lysine and lysine, representing the carbon chain, with arginine is carried out as follows. The singular cleavage site Styl in the region of codon B30 to A1 of the proinsulin sequence is used.

Izolovaný plasmid DNA, pocházející z pKK500 se štepí pomoci Styl, natráví se pro odstránení presahujících koncú SI nukleázou a pŕebytečné nukleáza se extrahje fenolickým chloroformem. Linearizovaný plasmid se potom dále štepí pomoci EcoRI, velký fragment se oddélí elektroforeticky a izoluje elektroelucí. Tento fragment se liguje se syntetickým fragmentem/4/SEQ ID NO: 4/The isolated plasmid DNA, derived from pKK500, was digested with Styl, digested to remove the overlapping ends of the SI nuclease, and the excess nuclease was extracted with phenolic chloroform. The linearized plasmid is then further digested with EcoRI, the large fragment separated by electrophoresis and isolated by electroelution. This fragment is ligated with the synthetic fragment (4) of SEQ ID NO: 4 /

BI 10BI 10

Asn same time Ser Ser Asn same time Gly Gly Arg Arg Phe Phe Val wall Asn same time Cln A boat His His Leu Leu Cys Cys Gly Gly Ser Ser His His AAT AAT TCG TCG AAC AAC GGC GGC CGC CGC TTC TTC GTC GTC AAC AAC CAG CAG GAC GAC CTG CTG TGC TGC GGC GGC TCG TCG CAC CAC GC GC TTG TTG CCG CCG GCG GCG AAG AAG CAG CAG TTG TTG GTC GTC GTG GTG GAC GAC ACG ACG GGG GGG AGC AGC GTG GTG

/EcoRI// EcoRI /

- 11 20 30- 11 20 30

Leu Leu Val wall Glu Glu Ala Ala Leu Leu Tyr Tyr Leu Leu Val wall Cys Cys Gly Gly Glu Glu Arg Arg Gly Gly Phe Phe Phe Phe CTC CTC GTG GTG GAG GAG GCC GCC CTC CTC TAC TAC CTG CTG GTG GTG TGC TGC GGG GGG GAG GAG CGC CGC GGC GGC CTC CTC TTC TTC GAG GAG CAC CAC CTC CTC CGG CGG GAG GAG ATG ATG GAC GAC CAC CAC ACG ACG CCC CCC CTC CTC CGC CGC CCG CCG AAG AAG AAG AAG B/3C B / 3 C i C/B31/ i C / B31 /

Tyr Tyr Thr Thr Pro for Lys Lys Thr Thr Arg Arg TAC TAC ACC ACC CCC CCC AAG AAG ACC ACC CGC CGC ATG ATG TGG TGG GGG GGG TTC TTC TGG TGG GGG GGG

a ligační smés se transfromuje v E. coli. Požadované klony se zkouší reštrikční analýzou získaného plasmidu, pŕičemž se upotrebí nové vzniklé štépné místo SstlI. Dále se celý fragment Sphl-SstI sekvencuje.and the ligation mixture is transfected in E. coli. The desired clones were screened by restriction analysis of the plasmid obtained, using the new SstIII cleavage site formed. Next, the entire SphI-SstI fragment is sequenced.

Pro expresi kódovaného fúzního proteínu se fragment pŕezkoušený sekvenční analýzou liguje ve vektoru pIJ 702, štépeného stejnými enzymy, pŕičemž vznikne expresní vektor pGF4.For the expression of the encoded fusion protein, the fragment examined by sequence analysis was ligated in the pIJ 702 vector digested with the same enzymes to produce the expression vector pGF4.

Dukaz fúzního proteínu kódovaného pGF4 a sekretovaného se muže provádét jednak deskovým testem pomoci inhibitoru α-amylázy /EP A O 161 629/, príklad 3/ a jednak z média tŕepané kultury analogicky jako v príkladu 2.Demonstration of the fusion protein encoded by pGF4 and secreted can be carried out by both a plate assay using an α-amylase inhibitor (EP-A 0 161 629), Example 3, and a shake culture medium analogously to Example 2.

Príklad 6Example 6

Jestliže se analogicky jako v príkladu 5 zavede fragment /4/ do vektoru pKK510, 520, 530, získaj í se vektory pKK610, 620 a 630. Vestavba takovýchto fragmentu Sphl-SstI se sekvencí kódovanou pro fúzní proteíny do vektoru pIJ 702 poskytne expresní vektory pKFll, 12 a 13.If, as in Example 5, the fragment (4) is introduced into vector pKK510, 520, 530, vectors pKK610, 620 and 630 are obtained. Incorporation of such SphI-SstI fragments with the sequence encoded for the fusion proteins into pIJ 702 provides pKF11 expression vectors. , 12 and 13.

Exprese sekretovaných fúzních proteinu se pŕezkouší podie príkladu 2.The expression of secreted fusion proteins was tested according to Example 2.

Príklad 7Example 7

Pro zvýšení exprese derivátú plasmidu pIJ 702 se z tohoto natrávením pomoci PstI a Sphl odstráni promotor melaminu a nahradí se syntetickým fragmentem /5/ (SEQ ID NO : 5).To increase the expression of the plasmid derivatives pIJ 702, the melamine promoter is removed from this digestion with PstI and SphI and replaced with the synthetic fragment [5] (SEQ ID NO: 5).

PstI BoliPstI Were

20 30 40 5020 30 40

CTGCAGTGATCAGGGGGAGCCTTGTGCGAATTTCČGTTACGGGTTTGGGTGGTAGGG GACGTCACTAGTCCCCCTGGGAACACGCTTAAAGGCAATGCCCAAACCCACCATCCCCTGCAGTGATCAGGGGGAGCCTTGTGCGAATTTCČGTTACGGGTTTGGGTGGTAGGG GACGTCACTAGTCCCCCTGGGAACACGCTTAAAGGCAATGCCCAAACCCACCATCCC

SphlSphI

70 8070 80

ACGCACCCGAAGAGGAGGCCCCAGCATGC TGCGTGGGCTTCTCCTCCGGGGTCGTACGACGCACCCGAAGAGGAGGCCCCAGCATGC TGCGTGGGCTTCTCCTCCGGGGTCGTACG

Tím vznikne tandemoná konstrukce ze syntetického promotoru a promotoru tendamistátu. Plasmid získá označení pGRUO.This creates a tandem construct from a synthetic promoter and a tendamistate promoter. The plasmid is designated pGRUO.

Jestliže se v pGRUO po štepení pomoci Sphl a SstI použij í syntetické fragmenty/1/, /2/ /a /3/, tak rezultují expresní vektory pGR200, 210 a 220. Analogicky se získaj í s fragmentem /4/ expresní vektory pGR250, 260 a 270.When synthetic fragments (1), (2), and (3) are used in pGRUO after digestion with SphI and SstI, the expression vectors pGR200, 210, and 220 result in analogy. 260 and 270.

Príklad 8Example 8

Jestliže se má z preinsulinú vyrobiť kombinací trypsinu nebo stejné púsobícího enzýmu karboxypeptidázy B humánni insulin, je výhodné, v prúbéhu stepné reakce ryohle odštépit aminoterminální balastní podíl, aby se podporila ve smeru k B31 (Arg)-insulinu. K tomu se nabízí modifikace aminokyselín pred aminokyselinou Bl/Phe/:If human insulin is to be made from the preinsulins by combining trypsin or the same carboxypeptidase B enzyme, it is preferable to cleave the amino-terminal ballast portion rapidly during the stepping reaction in order to promote it towards B31 (Arg) -insulin. To this end, it is possible to modify amino acids before amino acid B1 (Phe):

Postupuje se podie príkladu 1 a otevŕe se plasmid pKK500 pomoci restrikčních enzmu EcoRI a DrálII. Púvodní fragment se potom nahradí pomoci fragmentu DNA /6/, syntetisovaného fosforamiditovou metodou (SEQ ID NO : 6).The procedure of Example 1 is followed and the plasmid pKK500 is opened with the restriction enzymes EcoRI and DraII. The original fragment is then replaced with a DNA fragment (6) synthesized by the phosphoramidite method (SEQ ID NO: 6).

BIBI

Asn same time Ser Ser Ala Ala Arg Arg Phe Phe Val wall Asn same time Gin gin His His Leu Leu Cys Cys Gly Gly Ser Ser His His Leu Leu 5' 5 ' AAT AAT TCG TCG GCC GCC CGC CGC TTC TTC GTC GTC AAC AAC CAG CAG CAC CAC CTG CTG TGC TGC GGC GGC TCG TCG CAC CAC CTC CTC 3 3 3 ' 3 ' GC GC CGG CGG GCG GCG AAG AAG CAG CAG TTG TTG GTC GTC GTG GTG GAC GAC ACG ACG CCG CCG AGC AGC GTG GTG 5 5

/EcoRI/ /DralII// EcoRI / DralII /

Klonování v E. coli a exprese ve Strptomyces lividans se provádí podie príkladu 1, popŕípadé príkladu 2. Rezultuje plasmid pKK640, poprípade expresní plasmid pKF14.Cloning in E. coli and expression in Strptomyces lividans was carried out according to Example 1 and Example 2 respectively, respectively, resulting in the plasmid pKK640 and the expression plasmid pKF14, respectively.

Analogicky se muže postupovať i s plasmidem, ktrý se získá podie príkladu 5 (po vestavbé fragmentu /4/). Získá se tak plasmid pKK650, popŕípadé pKF15.The plasmid obtained according to Example 5 (after the built-in fragment (4)) can be used analogously. Plasmid pKK650 and pKF15, respectively, are obtained.

Claims (8)

* 1. Zpúsob výroby fúzních proteinu , vyznačující se t í m , že se štruktúrni gen ’ pro požadovaný protein kopuluje na kodony pro signálni sekvence a asi na prvních deset aminoterminálních aminokyselín tendamistátu, tato génová štruktúra se pŕivede ve streptomycetové hostiteľské buňce k expresi a sekretovaný fúzní protein se isoluje z média, pŕičemž tendamistátové génové sekvence mohou být modifikované.Method for producing fusion proteins, characterized in that the structural gene for the desired protein is coupled to the codons for the signal sequences and about the first ten amino-terminal amino acids of the tendamistate, the gene structure is expressed in a streptomyces host cell for expression and secreted the fusion protein is isolated from the medium, wherein the tendamistate gene sequences can be modified. 2. Génová štruktúra, obsahujicí signálni sekvenci a asi prvních deset kodonú pro tendamistát a štruktúrni gen pro2. A gene structure comprising a signal sequence and about the first ten codons for the tendamistate and a structural gene for - j iný protein.- another protein. ** 3. Génová štruktúra podie nároku 2 , vyznačující se tím,žesesev podilu tendamistátu odstráni, vymení nebo pridaj í kodony pro aminokyseliny.3. The gene structure of claim 2, wherein the tendamistate portion removes, exchanges or adds codons for amino acids. 4. Génová štruktúra podie nároku 2 nebo 3 , vyznačující se tím, že mezi genem tenda “ mistátu a strukturním genem pro požadovaný protein je uspoŕádána sekvence linkeru.4. The gene structure according to claim 2 or 3, characterized in that a linker sequence is arranged between the tenda state gene and the structural gene for the protein of interest. 5. Vektor, obsahující génovou strukturu podie nároku 2 , 3 nebo 4 .A vector comprising the gene structure of claim 2, 3 or 4. 6. Streptomycetová bunka, obsahující vektor podie nároku 5 .A streptomyces cell comprising the vector of claim 5. 7. Fúzní protein s podílem N-terminálních asi prvních deseti aminokyselín tendamistátu kopulovaným, poprípade preš mustkovou sekvenci, na požadovaný protein.7. A fusion protein having an N-terminal portion of about the first ten amino acids of tendamistate coupled or, if appropriate, a pre-must sequence to the desired protein. „ 8. Použití fúzního proteinu podie nároku 7 , poprípade fúzního proteinu získatelného podie nároku 1 , pro výrobu * požadovaného proteinu.Use of the fusion protein of claim 7, or the fusion protein obtainable of claim 1, for producing the desired protein.
SK1101-91A 1990-04-21 1991-04-18 Method of production of foreign proteins in streptomycets SK110191A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4012818A DE4012818A1 (en) 1990-04-21 1990-04-21 METHOD FOR THE PRODUCTION OF FOREIGN PROTEINS IN STREPTOMYCETES

Publications (1)

Publication Number Publication Date
SK110191A3 true SK110191A3 (en) 1995-07-11

Family

ID=6404857

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1101-91A SK110191A3 (en) 1990-04-21 1991-04-18 Method of production of foreign proteins in streptomycets

Country Status (29)

Country Link
EP (1) EP0453969B1 (en)
JP (1) JP3319605B2 (en)
KR (1) KR0168669B1 (en)
CN (1) CN1049248C (en)
AT (1) ATE142263T1 (en)
AU (1) AU630287B2 (en)
BR (1) BR9101587A (en)
CA (1) CA2040810C (en)
CZ (1) CZ285440B6 (en)
DE (2) DE4012818A1 (en)
DK (1) DK0453969T3 (en)
ES (1) ES2093043T3 (en)
FI (1) FI911882A (en)
GR (1) GR3021040T3 (en)
HR (1) HRP940770A2 (en)
HU (1) HU210358B (en)
IE (1) IE911322A1 (en)
IL (1) IL97903A0 (en)
LT (1) LT3686B (en)
LV (1) LV10494B (en)
NO (1) NO911557L (en)
NZ (1) NZ237882A (en)
PL (2) PL169596B1 (en)
PT (1) PT97427B (en)
RU (1) RU2055892C1 (en)
SK (1) SK110191A3 (en)
TW (1) TW213487B (en)
YU (1) YU48435B (en)
ZA (1) ZA912937B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100188800B1 (en) * 1990-09-05 1999-06-01 이센브룩, 라피세 Enzymatic process for the conversion of preproinsulins into insulins
DK0600372T3 (en) 1992-12-02 1997-08-11 Hoechst Ag Process for the preparation of proinsulin with properly connected cystine bridges.
EP0622376B1 (en) * 1993-04-27 2001-08-08 Hoechst Aktiengesellschaft Amorphous monospheric forms of insulin derivatives
DE4405179A1 (en) * 1994-02-18 1995-08-24 Hoechst Ag Method of obtaining insulin with correctly connected cystine bridges
CN1061375C (en) * 1996-07-19 2001-01-31 中国科学院上海生物工程研究中心 Using allogeneic promoter to express transparent Tremellineae haemoglobin in streptomycete
ES2218622T3 (en) 1996-07-26 2004-11-16 Aventis Pharma Deutschland Gmbh INSULIN DERIVATIVES WITH INCREASED ZINC UNION ACTIVITY.
DE19825447A1 (en) 1998-06-06 1999-12-09 Hoechst Marion Roussel De Gmbh New insulin analogues with increased zinc formation
CN1298742C (en) * 2003-06-03 2007-02-07 上海新药研究开发中心 A fusion protein suitable to highly effective expression and production method thereof
RU2395296C1 (en) * 2009-02-19 2010-07-27 Общество С Ограниченной Ответственностью "Концерн О3" Method for making oral proinsulin preparation
CN104818291A (en) * 2015-05-08 2015-08-05 江南大学 Construction and application of streptomycete recombinant expression vector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366246A (en) 1977-11-08 1982-12-28 Genentech, Inc. Method for microbial polypeptide expression
DE3418274A1 (en) 1984-05-17 1985-11-21 Hoechst Ag, 6230 Frankfurt SIGNAL PEPTIDE FOR THE EXCRETION OF PEPTIDES IN STREPTOMYCETS
DE3707150A1 (en) * 1987-03-06 1988-09-15 Hoechst Ag TENDAMISTAT DERIVATIVES
DE3714866A1 (en) * 1987-05-05 1988-11-24 Hoechst Ag METHOD FOR THE PRODUCTION OF FOREIGN PROTEINS IN STREPTOMYCETES
DE3715033A1 (en) 1987-05-06 1988-11-17 Hoechst Ag METHOD FOR ISOLATING FUSION PROTEINS
DE3716722A1 (en) 1987-05-19 1988-12-01 Hoechst Ag GENE TECHNOLOGICAL METHOD FOR PRODUCING ANGIOGENINES
DE3843713A1 (en) * 1988-04-25 1989-11-02 Henkel Kgaa USE OF CALCINATED HYDROTALCITES AS CATALYSTS FOR ETHOXYLATION OR PROPOXYLATION
ES2081826T3 (en) * 1988-11-03 1996-03-16 Hoechst Ag PROCEDURE FOR THE PREPARATION OF A PREVIOUS PRODUCT OF INSULIN IN STREPTOMICETS.

Also Published As

Publication number Publication date
KR0168669B1 (en) 1999-01-15
JP3319605B2 (en) 2002-09-03
NZ237882A (en) 1993-12-23
LTIP1523A (en) 1995-06-26
TW213487B (en) 1993-09-21
FI911882A0 (en) 1991-04-18
LT3686B (en) 1996-01-25
CZ285440B6 (en) 1999-08-11
AU630287B2 (en) 1992-10-22
NO911557L (en) 1991-10-22
HU911302D0 (en) 1991-10-28
HU210358B (en) 1995-04-28
NO911557D0 (en) 1991-04-19
CN1055952A (en) 1991-11-06
CZ110191A3 (en) 1993-08-11
GR3021040T3 (en) 1996-12-31
LV10494A (en) 1995-02-20
DE4012818A1 (en) 1991-10-24
YU69691A (en) 1995-12-04
DK0453969T3 (en) 1997-02-10
RU2055892C1 (en) 1996-03-10
YU48435B (en) 1998-07-10
CA2040810A1 (en) 1991-10-22
HRP940770A2 (en) 1997-06-30
EP0453969B1 (en) 1996-09-04
ZA912937B (en) 1991-12-24
IE911322A1 (en) 1991-10-23
FI911882A (en) 1991-10-22
CA2040810C (en) 2001-07-24
PL169178B1 (en) 1996-06-28
BR9101587A (en) 1991-12-10
KR910018551A (en) 1991-11-30
LV10494B (en) 1996-02-20
IL97903A0 (en) 1992-06-21
PL289953A1 (en) 1991-11-04
EP0453969A1 (en) 1991-10-30
JPH04228086A (en) 1992-08-18
DE59108128D1 (en) 1996-10-10
ATE142263T1 (en) 1996-09-15
AU7515491A (en) 1991-10-24
ES2093043T3 (en) 1996-12-16
PL169596B1 (en) 1996-08-30
PT97427A (en) 1992-01-31
PT97427B (en) 1998-08-31
HUT57268A (en) 1991-11-28
CN1049248C (en) 2000-02-09

Similar Documents

Publication Publication Date Title
US5322930A (en) Expression of recombinant polypeptides with improved purification
JP2521413B2 (en) DNA coding for human growth hormone which is directly linked to the DNA coding for the signal sequence
US4963495A (en) Secretion of heterologous proteins
JP3043803B2 (en) Fusion proteins, their preparation and uses
CA1336329C (en) Fusion proteins, a process for their preparation and their use
FI93734B (en) Process for producing fusion proteins containing a eukaryotic ballast fraction and products useful in the process
US5496924A (en) Fusion protein comprising an interleukin-2 fragment ballast portion
JPS63251095A (en) Novel fused protein and purification thereof
IL110829A (en) Insecticidal bacillus thuringiensis hybrid toxin and composition comprising it
JPH10501695A (en) N-terminally extended protein expressed in yeast
SK110191A3 (en) Method of production of foreign proteins in streptomycets
EP0372005A1 (en) Expression systems for preparation of polypeptides in prokaryotic cells
US5426036A (en) Processes for the preparation of foreign proteins in streptomycetes
EP0868523A1 (en) Vector for expression of n-terminally extended proteins in yeast cell
CA1335357C (en) Expression systems for preparation of polypeptides in prokaryotic cells
FI97549C (en) Method for the production of foreign proteins in Streptomycess cells
CA2002062A1 (en) Process for the preparation of an insulin precursor in streptomycetes
EP0314184B1 (en) Expression plasmids
KR19990009995A (en) Novel human growth hormone-releasing factor-human epidermal growth factor fusion gene, expression vector thereof, and method for manufacturing human growth hormone-releasing factor using the same