SI9700232A - Aluminium alloy with good machinability - Google Patents

Aluminium alloy with good machinability Download PDF

Info

Publication number
SI9700232A
SI9700232A SI9700232A SI9700232A SI9700232A SI 9700232 A SI9700232 A SI 9700232A SI 9700232 A SI9700232 A SI 9700232A SI 9700232 A SI9700232 A SI 9700232A SI 9700232 A SI9700232 A SI 9700232A
Authority
SI
Slovenia
Prior art keywords
max
mpa
aluminum alloy
milling
bismuth
Prior art date
Application number
SI9700232A
Other languages
Slovenian (sl)
Inventor
Jiri Faltus
Karel Placek
Original Assignee
Alusuisse Technology & Management Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=5465300&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=SI9700232(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alusuisse Technology & Management Ag filed Critical Alusuisse Technology & Management Ag
Publication of SI9700232A publication Critical patent/SI9700232A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent

Abstract

The invention refers to aluminium alloys with good machinability, particularly materials for automates based on ALCu or AlMgSi. As an addition they contain 0.2 to 1.2 mass% of tin and 0.2 to 1.0 mass% of bismuth for breaking the chips. The alloy based on AlCU contains the following amounts of metals expressed in mass%: copper 4.6-6.0 %, bismuth 0.2 - 1.0%, tin 0.2 to 0.7%, zinc up to 0.45%, iron maximum 0.7%, silicon maximum 0.4%, as well as further alloyed elements, max. 0.05% each, total share 0.15%, the remaining share is aluminium. The alloy based on AlMgSi contains the following substances in mass %: magnesium 0.6 to 1.2, silicon 0.6 to 1.4%, bismuth 0.2 to 0.7%. manganese 0.2 to 0.6%, iron maximum 0.5%, copper maximum 0.5% (preferably 0.15 to 0.4), titanium max. 0.2% (preferably 0.04 to 0.1), as well as other alloyed elements, each maximum 0.05, totally max. 0.15%, the rest is aluminium. By combined use of tin and bismuth, the use of lead, which is harmful to health, can be avoided.

Description

Aluminijeva zlitina z dobro obdelovalnostjoAluminum alloy with good machinability

Izum se nanaša na aluminijevo zlitino z dobro obdelovalnostjo, zlasti na material za avtomate na osnovi AlCu ali AlMgSi.The invention relates to an aluminum alloy with good machinability, in particular to a material for AlCu or AlMgSi based automata.

Gnetljive zlitine, primerne za material za avtomate, na osnovi AlCu in AlMgSi vsebujejo kot dodatek za lomljenje odrezkov svinec, v danem primeru v kombinaciji z bizmutom. Tovrstne zlitine so po EN 573:1994 označene kot sledi: EN AW-AlCu6BiPb, v danem primeru EN AW-AlCu6BiPb(A) in EN AW-AlMgl SiPb, EN AW-AlMglSiPbMn, v danem primeru EN AW-AlMgSiPb.Kneading alloys suitable for machine material based on AlCu and AlMgSi contain lead additives, optionally in combination with bismuth, as an additive for fracturing slices. According to EN 573: 1994, such alloys are designated as follows: EN AW-AlCu6BiPb, optionally EN AW-AlCu6BiPb (A) and EN AW-AlMgl SiPb, EN AW-AlMglSiPbMn, in the case of EN AW-AlMgSiPb.

Zaradi zdravju škodljivega učinka svinca seje uporabo le-tega v industriji omejilo na minimum. Poleg tega se je izkazalo, da že prisotnost majhnih količin svinca v aluminijevi gnetljivi zlitini vodi k povečanju pokljivosti zaradi napetosti pri trajni obremenitvi pri sobni temperaturi.Due to the health-damaging effect of lead, the use of lead is limited to a minimum. In addition, the presence of small amounts of lead in the aluminum alloy has also been shown to lead to an increase in permeability due to the stress at sustained load at room temperature.

Spričo teh danosti si je izumitelj zastavil nalogo zagotoviti kot material za avtomate primemo aluminijevo zlitino brez svinca z dobro obdelovalnostjo, ki v primerjavi z običajnimi materiali za avtomate obsega primerljive ali boljše mehanske lastnosti.In view of these circumstances, the inventor has set himself the task of providing a lead-free aluminum alloy with good machinability as a machine material, which has comparable or better mechanical properties compared to conventional machine materials.

K rešitvi naloge po izumu vodi, da zlitina kot dodatek za lomljenje odrezkov vsebuje 0,2 do 1,2 mas.% kositra in 0,2 do 1,0 mas.% bizmuta.The object of the invention is that the alloy contains 0.2 to 1.2% by weight of tin and 0.2 to 1.0% by weight of bismuth as an additive for fracturing the chips.

Aluminijeva zlitina na osnovi AICu vsebuje v mas.% baker bizmut kositer cink železo silicijAICu-based aluminum alloy contains, by weight, copper bismuth tin zinc iron silicon

4,6 do 6,0 0,2 do 1,0 0,2 do 0,7 max. 0,45 max. 0,7 max. 0,4 kot tudi nadaljnje legime elemente, posamič max. 0,05 in skupno max. 0,15, ostalo pa je aluminij.4.6 to 6.0 0.2 to 1.0 0.2 to 0.7 max. 0.45 max. 0.7 max. 0.4 as well as further legime elements, max. 0.05 and total max. 0.15 and the rest is aluminum.

Pri zlitini na osnovi AICu leži prednostno območje za bizmut pri 0,4 do 0,9, zlasti 0,6 do 0,8 mas.%, prednostno območje za kositer pa pri 0,3 do 0,6, zlasti 0,4 do 0,6 mas.%.For the AIC-based alloy, the preferred area for bismuth is at 0.4 to 0.9, in particular 0.6 to 0.8% by weight, and the preferred area for tin is at 0.3 to 0.6, especially 0.4 to 0.6% by weight.

Zlitina na osnovi AlMgSi vsebuje v mas.% magnezij 0,6 do 1,2 silicij 0,6 do 1,4 kositer 0,6 do 1,2 bizmut 0,2 do 0,7 mangan 0,2 do 0,6 železo max. 0,5 baker max. 0,5, prednostno 0,15 do 0,40 titan max. 0,2, prednostno 0,04 do 0,10 kot tudi nadaljnje legime elemente, posamič max. 0,05, skupno max. 0,15, ostalo pa je aluminij.AlMgSi-based alloy contains, by weight, magnesium 0.6 to 1.2 silicon 0.6 to 1.4 tin 0.6 to 1.2 bismuth 0.2 to 0.7 manganese 0.2 to 0.6 iron max. 0,5 copper max. 0.5, preferably 0.15 to 0.40 titanium max. 0.2, preferably 0.04 to 0.10 as well as further legime elements, individually max. 0.05, total max. 0.15 and the rest is aluminum.

Pri zlitini na osnovi AlMgSi leži prednostno območje za kositer pri 0,7 do 1,0, prednostno 0,7 do 0,9 mas.%, prednostno območje za bizmut pa pri 0,3 do 0,6, zlasti 0,4 do 0,6 mas.%.For the AlMgSi-based alloy, the preferred area for the tin is 0.7 to 1.0, preferably 0.7 to 0.9% by weight, and the preferred area for bismuth is 0.3 to 0.6, especially 0.4 to 0.6% by weight.

Zlitine po izumu se da na znan način predelati s polkontinuimim pramenskim ulivanjem ali iztiskanjem. Polkuntinuirano pramensko ulite grede se na običajen način izpostavi žarjenju pri visokih temperaturah; to pa lahko tudi odpade. Pramesko iztisnjene izdelke se nato s toplotno obdelavo ali termomehansko predelavo prevede v različna končna stanja.The alloys of the invention can be processed in a known manner by semi-continuous strand casting or extrusion. Semi-continuous stranded cast beams are normally exposed to annealing at high temperatures; this may also fall off. The extruded products are then converted to different end states by heat treatment or thermomechanical processing.

Za zlitine na osnovi AlCu so za dosego različnih stanj staranja primerni naslednji postopki toplotne obdelave:For AlCu-based alloys, the following heat treatment processes are suitable to achieve different states of aging:

topilno žaljenje, ki mu sledi umetno staranje topilno žaljenje, zmanjšanje notranjih napetosti s superplastičnim raztezanjem, ki mu sledi umetno staranje topilno žarjenje, hladno preoblikovanje, ki mu sledi naravno staranje tekom vsaj treh dnisolvent insult followed by artificial aging solvent insult, reduction of internal stresses by superplastic elongation followed by artificial aging solvent annealing, cold transformation followed by natural aging for at least three days

Pri zlitinah na osnovi AlMgSi so za dosego različnih stanj staranja primerni naslednji postopki toplotne obdelave:For AlMgSi-based alloys, the following heat treatment processes are suitable to achieve different states of aging:

topilno žaljenje, ki mu sledi umetno staranje topilno žaljenje, zmanjšanje notranjih napetosti s superplastičnim raztezanjem, ki mu sledi umetno staranje topilno žaljenje, hladno preoblikovanje, ki mu sledi umetno staranje topilno žaljenje, umetno staranje, ki mu sledi hladno preoblikovanjesolvent insult followed by artificial aging solvent insult, reduction of internal stresses by superplastic elongation followed by artificial aging solvent insult, cold transformation followed by artificial aging solvent insult, artificial aging followed by cold transformation

Izum je v nadaljevanju pobliže obrazložen s pomočjo izvedbenih primerov.The invention will now be further explained by way of example examples.

Zlitina na osnovi AlCuAlCu based alloy

V lončeni uporovni peči se je stalilo tri zlitine s sestavo po tabeli 1 iz aluminija 99,5, predzlitine AlCu 45, kositra 99,95 in bizmuta 99,9. Iz vsake talilne šarže se je s polkontinuimim pramenskim ulivanjem s pomočjo vodno hlajene kokile iz aluminijeve zlitine ob uporabi maziva odlilo okroglico s premerom 135 mm. Po struženju na premer 110 mm seje del okroglice žarilo pri visoki temperaturi, preostali del pa seje brez žarjenja pustilo v odlitem stanju. Po segretju na temperaturo pramenskega iztiskovanja v pretočni indukcijski peči se je okroglico pramensko iztisnilo v drogove s premerom 36 mm kot tudi šesterokotne profile.Three alloys with the composition according to Table 1 made of aluminum 99.5, pre-alloy AlCu 45, tin 99.95 and bismuth 99.9 were melted in the crucible resistance furnace. From each melting batch, a 135 mm diameter bead was cast by semi-continuous strand casting using a water-cooled aluminum alloy mold using a lubricant. After turning to a diameter of 110 mm, a portion of the bead is fired at high temperature, leaving the remainder of the session in an annealed state without annealing. After heating to the temperature of the extrusion strand in a flow induction furnace, the annular strand extruded into 36 mm diameter rods as well as hexagonal profiles.

Na tak način izdelane pramensko iztisnjene izdelke se je z različnimi toplotnimi obdelavami predelalo na želena končna stanja. Z različnimi postopki toplotne obdelave dosežena končna stanja in mehanske lastnosti zlitine po izumu na osnovi AlCu so povzete v tabeli 2.The strands extruded in this way were processed to the desired end states with various heat treatments. The final states and mechanical properties of the AlCu-based alloy according to the invention according to the various heat treatment processes are summarized in Table 2.

Zlitina na osnovi AlMgSiAlMgSi based alloy

V lončeni uporovni peči seje stalilo tri zlitine s sestavo po tabeli 3 iz aluminija 99,5, magnezijaThree alloys with the composition according to Table 3 of aluminum 99.5, magnesium in the crucible resisting furnace

99,9, kositra 99,95, bizmuta 99,9, kot tudi iz predzlitin AlCu 45, AlMn 10, AlTi 6 in AlSi 30. Iz «99,9, tin 99,95, bismuth 99,9, as well as from alloys AlCu 45, AlMn 10, AlTi 6 and AlSi 30. From «

vsake talilne šarže seje s pramenskim ulivanjem s pomočjo vodno hlajene kokile iz aluminijeve zlitine ob uporabi maziva odlilo okroglico s premerom 135 mm. Po struženju na premer 110 mm se je del okroglice žarilo pri visoki temperaturi, preostali del pa se je brez žaljenja pustilo v odlitem stanju. Po segretju na temperaturo pramenskega iztiskovanja v pretočni indukcijski peči seje okroglico pramensko iztisnilo v drogove s premerom 36 mm kot tudi šesterokotne profile.each melting batch is seeded with a strand cast using a water-cooled aluminum alloy mold using a 135 mm diameter bead using a lubricant. After turning to a diameter of 110 mm, a portion of the ball was annealed at high temperature and the remaining part was left in the cast state without regret. After heating to the temperature of the extrusion of the strands in the flow induction furnace, the circular strands are squeezed into 36 mm diameter rods as well as hexagonal profiles.

Na tak način izdelane pramensko iztisnjene izdelke se je z različnimi toplotnimi obdelavami predelalo na želena končna stanja. Z različnimi postopki toplotne obdelave dosežena končna stanja in mehanske lastnosti zlitine po izumu na osnovi AlMgSi so povzete v tabeli 4.The strands extruded in this way were processed to the desired end states with various heat treatments. The final states and mechanical properties of the AlMgSi-based alloy according to the invention based on various heat treatment processes are summarized in Table 4.

Tabela 1Table 1

Si Si Fe Fe Cu Cu Sn Sn Bi Would Zn Zn Drugo Second Ostalo The rest posamič individually skupaj together max. max. max. max. 0,11 1 0.11 1 0,21 0.21 5,06 5.06 0,49 0.49 0,60 0.60 0,42 0.42 0,05 0.05 0,15 0.15 Al Al 0,16 0.16 0,27 0.27 5,67 5.67 0,52 0.52 0,72 0.72 0,41 0.41 0,05 0.05 • 0,15 • 0.15 Al Al 0,10 0.10 0,16 0.16 5,24 5,24 0,50 0.50 0,63 | 0.63 | 0,02 0.02 0,05 0.05 0,15 0.15 Al Al

Tabela 2Table 2

i Stanje po EN 515 and Status by EN 515 R p 0,2 (MPa) R p 0,2 (MPa) R m (MPa) R m (MPa) A5 (%) A5 (%) HB HB T6,T651 T6, T651 min. 280 min. 280 min. 370 min. 370 min. 10 min. 10 110 110 ί T3 ί T3 min. 150 min. 150 min. 270 min. 270 min. 20 min. 20 80 80

Tabela 3Table 3

Si Si Fe Fe Cu Cu Mn Mn — Mg - Mg -r I Ti i- r I You i Sn Sn Bi Would Drugo Second --—, Ostalo --—, The rest posam. alone. skup. expensive. max. max. max. max. 1,16 1.16 0,39 0.39 0,45 0.45 0,32 0.32 0,93 0.93 0,042 ; ί. ____ ,...J. 0.042; ί. ____, ... J. 0,81 0.81 0,45 0.45 0,05 0.05 0,15 0.15 Al Al

Tabela 4Table 4

Stanje Condition R P 0,2 (MPa) R P 0,2 (MPa) R m (MPa) R m (MPa) A5 (%) A5 (%) HB HB T6, T651 T6, T651 min. 240 min. 240 min.320 min.320 min. 10 min. 10 110 110 T8 T8 min. 315 min. 315 min. 350 min. 350 min. 8 min. 8 115 115 T9 T9 min. 330 min. 330 min. 360 min. 360 min. 5 min. 5 120 120

V tabeli 2 in 4 uporabljene kratice pomenijo:In Tables 2 and 4, the abbreviations used are:

EN 515 EN 515 evropski standard EN 515:1993 oznaka za stanja materialov za polizdelke iz aluminija in aluminijeve zlitine European standard EN 515: 1993 code for the state of materials for semi-finished products aluminum and aluminum alloys Rp0,2 R p0,2 meja tečenja flow limit R m R m natezna trdnost tensile strength A5 A5 raztezek pri porušitvi elongation at rupture HB HB trdota po Brinellu hardness according to Brinell

ALUSUISSE TECHNOLOGY & MANAGEMENT AGALUSUISSE TECHNOLOGY & MANAGEMENT AG

Za:For:

irii» ! h/» d.o.o.irii »! h / »d.o.o.

ljubljan/tčcm/a 14 ljubljana / tcmcm a 14

Claims (12)

Patentni zahtevkiPatent claims 1. Aluminijeva zlitina z dobro obdelovalnostjo, zlasti na material za avtomate na osnovi AlCu ali AlMgSi, značilna po tem, da zlitina kot dodatka za lomljenje odrezkov vsebuje 0,2 do 1,2 mas.% kositra in 0,2 do 1,0 mas.% bizmuta.Claims 1. Aluminum alloy with good machinability, in particular on the material for AlCu or AlMgSi based automata, characterized in that the alloy contains 0.2 to 1.2% by weight of tin and 0.2 to 1.0, as an additive for fracturing wt.% bismuth. 2. Aluminijeva zlitina po zahtevku 1, značilna po tem, da zlitina vsebuje v mas.% baker 4,6 do 6,0 bizmut 0,2 do 1,0 kositer 0,2 do 0,7 cink max. 0,45 železo max. 0,7 silicij max. 0,4 kot tudi nadaljnje legime elemente, posamič max. 0,05 in skupno max. 0,15, ostalo pa je aluminij.Aluminum alloy according to claim 1, characterized in that the alloy contains, by weight, copper 4.6 to 6.0 bismuth 0.2 to 1.0 tin 0.2 to 0.7 zinc max. 0.45 iron max. 0.7 silicon max. 0.4 as well as further legime elements, max. 0.05 and total max. 0.15 and the rest is aluminum. 3. Aluminijeva zlitina po zahtevku 2, značilna po tem, da zlitina vsebuje 0,4 do 0,9 mas.%, prednostno 0,6 do 0,8 mas.% bizmuta.Aluminum alloy according to claim 2, characterized in that the alloy contains 0.4 to 0.9% by weight, preferably 0.6 to 0.8% by weight of bismuth. 4. Aluminijeva zlitina po zahtevku 2, značilna po tem, da zlitina vsebuje 0,3 do 0,6 mas.%, prednostno 0,4 do 0,6 mas.% kositra.Aluminum alloy according to claim 2, characterized in that the alloy contains 0.3 to 0.6% by weight, preferably 0.4 to 0.6% by weight of tin. 5. Aluminijeva zlitina po zahtevku 1, značilna po tem, da zlitina vsebuje v mas.%Aluminum alloy according to claim 1, characterized in that the alloy contains in wt.% magnezij magnesium 0,6 do 1,2 0.6 to 1.2 silicij silicon 0,6 do 1,4 0.6 to 1.4 kositer tin 0,6 do 1,2 0.6 to 1.2 bizmut bismuth 0,2 do 0,7 0.2 to 0.7 mangan manganese 0,2 do 0,6 0.2 to 0.6 železo iron max. 0,5 max. 0.5 baker copper max. 0,5, prednostno 0,15 do 0,40 max. 0.5, preferably 0.15 to 0.40
titan max. 0,2, prednostno 0,04 do 0,10 kot tudi nadaljnje legime elemente, posamič max. 0,05, skupno max. 0,15, ostalo pa je aluminij.titanium max. 0.2, preferably 0.04 to 0.10 as well as further legime elements, individually max. 0.05, total max. 0.15 and the rest is aluminum.
6. Aluminijeva zlitina po zahtevku 5, značilna po tem, da zlitina vsebuje 0,7 do 1,0 mas.%, prednostno 0,7 do 0,9 mas.% kositra.Aluminum alloy according to claim 5, characterized in that the alloy contains 0.7 to 1.0 wt.%, Preferably 0.7 to 0.9 wt.% Tin. 7. Aluminijeva zlitina po zahtevku 5, značilna po tem, da zlitina vsebuje 0,3 do 0,6 mas.%, prednostno 0,4 do 0,6 mas.% bizmuta.Aluminum alloy according to claim 5, characterized in that the alloy contains 0.3 to 0.6% by weight, preferably 0.4 to 0.6% by weight of bismuth. 8. Aluminijeva zlitina po enem od zahtevkov 2 do 4, značilna po tem, da zlitina po polkontinuiranem pramenskem ulivanju, žaljenju pri visoki temperaturi in pramenskem iztiskovanju s temu sledečim topilnim žaljenjem, gašenjem in umetnim staranjem na največjo stopnjo utrditve obsega natezno trdnost najmanj 370 Mpa, mejo tečenja najmanj 280 Mpa, trdoto po Brinellu najmanj 110 kot tudi raztezek A5 pri porušitvi najmanj 10%.Aluminum alloy according to one of Claims 2 to 4, characterized in that the alloy, after semi-continuous casting, high temperature milling and extrusion milling, with subsequent solvent milling, quenching and artificial aging, has a maximum tensile strength of at least 370 MPa , a yield stress of at least 280 Mpa, a Brinell hardness of at least 110, and an A5 elongation at break of at least 10%. 9. Aluminijeva zlitina po enem od zahtevkov 2 do 4, značilna po tem, da zlitina po polkontinuiranem pramenskem ulivanju, žaljenju pri visoki temperaturi in pramenskem iztiskovanju s temu sledečim topilnim žaljenjem, gašenjem in umetnim staranjem na manj kot največjo stopnjo utrditve obsega natezno trdnost najmanj 270 Mpa, mejo tečenja najmanj 150 Mpa, trdoto po Brinellu najmanj 80 kot tudi raztezek A5 pri porušitvi najmanj 20%.Aluminum alloy according to one of Claims 2 to 4, characterized in that the alloy after semi-continuous casting, high temperature milling and extrusion milling with subsequent solvent milling, quenching and artificial aging, has a tensile strength of at least 270 Mpa, yield strength at least 150 Mpa, Brinell hardness at least 80, as well as A5 elongation at break of at least 20%. 10. Aluminijeva zlitina po enem od zahtevkov 5 do 7, značilna po tem, da zlitina po polkontinuiranem pramenskem ulivanju, žaljenju pri visoki temperaturi in pramenskem iztiskovanju s temu sledečim topilnim žaljenjem, gašenjem in naravnim staranjem tekom vsaj treh dni pri sobni temperaturi obsega natezno trdnost najmanj 320 Mpa, mejo tečenja najmanj 240 Mpa, trdoto po Brinellu najmanj 110 kot tudi raztezek A5 pri porušitvi najmanj 10%.Aluminum alloy according to one of Claims 5 to 7, characterized in that the alloy has tensile strength after at least three days at room temperature after semi-continuous strand casting, high temperature milling and strand extrusion, followed by solvent melting, quenching and natural aging. at least 320 Mpa, yield strength at least 240 Mpa, Brinell hardness at least 110, as well as A5 elongation at break of at least 10%. 11. Aluminijeva zlitina po enem od zahtevkov 5 do 7, značilna po tem, da zlitina po polkontinuiranem pramenskem ulivanju, žaljenju pri visoki temperaturi in pramenskem iztiskovanju s temu sledečim topilnim žaljenjem, gašenjem, v danem primeru s superplastičnim raztezanjem in umetnim staranjem na največjo stopnjo utrditve obsega natezno trdnost najmanj 370 Mpa, mejo tečenja najmanj 315 Mpa, trdoto po Brinellu najmanj 115 kot tudi raztezek A5 pri porušitvi najmanj 8%.Aluminum alloy according to one of Claims 5 to 7, characterized in that the alloy after semi-continuous casting, high temperature milling and strand extrusion with subsequent solvent milling, quenching, optionally by superplastic elongation and artificial aging to the maximum degree The hardening shall have a tensile strength of at least 370 Mpa, a yield stress of at least 315 Mpa, a Brinell hardness of at least 115 and an A5 elongation at break of at least 8%. 12. Aluminijeva zlitina po enem od zahtevkov 5 do 7, značilna po tem, da zlitina po polkontinuiranem pramenskem ulivanju, žaljenju pri visoki temperaturi in pramenskem iztiskovanju s temu sledečim topilnim žaljenjem, gašenjem, hladnim preoblikovanjem in umetnim staranjem na največjo stopnjo utrditve obsega natezno trdnost najmanj 370 Mpa, mejo tečenja najmanj 330 Mpa, trdoto po Brinellu najmanj 120 kot tudi raztezek A5 pri porušitvi najmanj 5%.Aluminum alloy according to one of Claims 5 to 7, characterized in that the alloy, after semi-continuous casting, high temperature milling and strand extrusion, with subsequent solvent milling, quenching, cold forming and artificial aging, has the highest tensile strength at least 370 Mpa, at a flow limit of at least 330 Mpa, a Brinell hardness of at least 120, as well as an A5 at break of at least 5%.
SI9700232A 1996-09-09 1997-09-09 Aluminium alloy with good machinability SI9700232A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ19962628A CZ286150B6 (en) 1996-09-09 1996-09-09 Aluminium alloy with excellent machinability

Publications (1)

Publication Number Publication Date
SI9700232A true SI9700232A (en) 1998-04-30

Family

ID=5465300

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9700232A SI9700232A (en) 1996-09-09 1997-09-09 Aluminium alloy with good machinability

Country Status (7)

Country Link
EP (2) EP0828008B1 (en)
AT (1) ATE194393T1 (en)
CZ (1) CZ286150B6 (en)
DE (1) DE59701965D1 (en)
HU (1) HUP9701466A3 (en)
PL (1) PL183835B1 (en)
SI (1) SI9700232A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964070A1 (en) * 1998-06-12 1999-12-15 Alusuisse Technology & Management AG Lead free Aluminium alloy based on AlCuMg with good machinability
SI20122A (en) * 1998-12-22 2000-06-30 Impol, Industrija Metalnih Polizdelkov, D.D. Aluminium casting-automate alloy, process for its production and application
EP1359233B1 (en) 2002-04-25 2006-12-13 Furukawa-Sky Aluminum Corp. Aluminium alloy with good cuttability, method for producing a forged article and the forged article obtained
EP1549778B1 (en) * 2002-10-09 2009-08-19 Showa Denko K.K. Aluminum alloy for cutting processing, and aluminum alloy worked article made of the same
DE10343618B3 (en) * 2003-09-20 2004-11-04 Ks Gleitlager Gmbh Sliding bearing composite material used in the production of sliding bearing shells for connecting rod bearings comprises a steel support layer with a sliding layer made from an aluminum bearing alloy
DE102007049531B3 (en) 2007-10-15 2009-05-07 Willy Kreutz Gmbh & Co. Kg Method for producing a contact pin for a fluorescent tube
CN101363091B (en) * 2008-09-08 2010-06-02 营口华润有色金属制造有限公司 High-silicon aluminum alloy and method for preparing same
CN101709444B (en) * 2009-12-18 2011-03-16 中国铝业股份有限公司 Thermal treatment method for lead-free aluminum alloy
ES2549135T3 (en) * 2012-05-15 2015-10-23 Constellium Extrusions Decin S.R.O. Improved forging aluminum alloy product for the palletizing and manufacturing process
CN111394601B (en) * 2020-03-25 2021-05-25 广东领胜新材料科技有限公司 Casting method of large-size lead-free-cutting aluminum alloy cast rod
CN112410692A (en) * 2020-11-28 2021-02-26 四川航天长征装备制造有限公司 2219 aluminum alloy grain refining process
CN113578997B (en) * 2021-08-03 2024-02-02 南京超明精密合金材料有限公司 Processing technology of super-easy-cutting precision alloy rod wire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2155322A1 (en) * 1971-11-08 1973-05-17 Schreiber Gmbh Carl Leaded,free machining light alloys - which can be rolled to sheet
JPS61159547A (en) * 1985-01-07 1986-07-19 Nippon Light Metal Co Ltd Non-heat-treated type free-cutting aluminum alloy
JPS61163233A (en) * 1985-01-11 1986-07-23 Furukawa Alum Co Ltd Non-heat treatment type free-cutting aluminum alloy
JP2726444B2 (en) * 1988-09-19 1998-03-11 古河電気工業株式会社 Manufacturing method of aluminum alloy with excellent transverse feed machining
JPH0339442A (en) * 1989-07-06 1991-02-20 Furukawa Alum Co Ltd Aluminum free cutting alloy for hot forging
US5122208A (en) * 1991-07-22 1992-06-16 General Motors Corporation Hypo-eutectic aluminum-silicon alloy having tin and bismuth additions
JPH0797653A (en) * 1993-09-29 1995-04-11 Sumitomo Light Metal Ind Ltd Cast bar of free cutting aluminum alloy
JPH07197165A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The High wear resistant free cutting aluminum alloy and its production
US5587029A (en) * 1994-10-27 1996-12-24 Reynolds Metals Company Machineable aluminum alloys containing In and Sn and process for producing the same

Also Published As

Publication number Publication date
CZ286150B6 (en) 2000-01-12
EP0828008B1 (en) 2000-07-05
EP0828008A2 (en) 1998-03-11
EP0828008A3 (en) 1998-11-11
PL321947A1 (en) 1998-03-16
DE59701965D1 (en) 2000-08-10
HU9701466D0 (en) 1997-11-28
ATE194393T1 (en) 2000-07-15
HUP9701466A2 (en) 1999-06-28
HUP9701466A3 (en) 2002-03-28
CZ262896A3 (en) 1999-05-12
EP0982410A1 (en) 2000-03-01
PL183835B1 (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US10435774B2 (en) 2XXX series aluminum lithium alloys having low strength differential
EP0656956B2 (en) Tough aluminum alloy containing copper and magnesium
ES2936261T3 (en) 7xxx series aluminum alloy product
EP2038446B1 (en) Method of manufacturing AA7000-series aluminium alloys
CA2089171C (en) Improved lithium aluminum alloy system
US5151136A (en) Low aspect ratio lithium-containing aluminum extrusions
CN104334760B (en) 2XXX series aluminum lithium alloys
US6248188B1 (en) Free-cutting aluminum alloy, processes for the production thereof and use thereof
MX2008016076A (en) High strength, heat treatable al-zn-mg aluminium alloy.
SI9700232A (en) Aluminium alloy with good machinability
CN109666830A (en) A kind of deformation aluminium lithium ormolu and preparation method thereof
US5916385A (en) Aluminum-cooper alloy
US3320055A (en) Magnesium-base alloy
US10072321B2 (en) Copper nickel alloy
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JP7140892B1 (en) Aluminum alloy extruded material and manufacturing method thereof
RU2738817C2 (en) Alloy of high strength based on aluminum
WO1999066090A1 (en) Lead free aluminium alloy based on a mixture of aluminium-copper-magnesium with good machining capacity
PL157462B1 (en) Copper alloy