SI24410A - System and method for contactless temperature measuring with a cameraworking in the visible part of the light spectrum - Google Patents
System and method for contactless temperature measuring with a cameraworking in the visible part of the light spectrum Download PDFInfo
- Publication number
- SI24410A SI24410A SI201400224A SI201400224A SI24410A SI 24410 A SI24410 A SI 24410A SI 201400224 A SI201400224 A SI 201400224A SI 201400224 A SI201400224 A SI 201400224A SI 24410 A SI24410 A SI 24410A
- Authority
- SI
- Slovenia
- Prior art keywords
- camera
- temperature
- observed
- light spectrum
- temperature measurement
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000001228 spectrum Methods 0.000 title claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 15
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 12
- 238000005286 illumination Methods 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 3
- 230000004907 flux Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0022—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Predmet izuma - sistem in metoda za brezkontaktno merjenje temperature s kamero delujočo v vidnem delu svetlobnega spektra - temelji na snemanju opazovanega procesa s kamero in računalniški obdelavi slik (slika 1). Tok vroče snovi (2) je sneman z digitalno hitro kamero (6), katere senzor zaznava pretežno vidni del svetlobnega spektra. Za kontinuirano zajemanje in obdelavo slik s kamere ter shranjevanje obdelanih podatkov v realnem času je uporabljen računalnik (7) z ustrezno programsko opremo. Princip izračuna absolutne temperature opazovane snovi (2) temelji na predpostavki, da snov (2) seva kot sivo telo z nespremenljivo emisivnostjo in na umerjanju metode na telo z znano temperaturo.Subject of the invention - the system and method for contactless temperature measurement with a camera operating in the visible part of the light spectrum - is based on the recording of the observed process with the camera and the computer image processing (Figure 1). The flow of the hot substance (2) is recorded with a digitally fast camera (6), the sensor detected by the predominantly visible portion of the light spectrum. For the continuous capture and processing of images from the camera and the storage of processed data in real time, a computer (7) is used with the corresponding software. The principle of calculating the absolute temperature of the observed substance (2) is based on the assumption that the substance (2) is plotted as a gray body with constant emissivity and on the calibration of the method on a body with known temperature.
Description
Sistem in metoda za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektraSystem and method for contactless temperature measurement with a camera operating in the visible light spectrum
Opis izumaDescription of the invention
Izum se nanaša na sistem in metodo za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra. Omenjeni sistem in metoda sta namenjena merjenju temperature v procesih, kjer imajo opazovane snovi oziroma predmeti dovolj visoko temperaturo, da žarijo in jih je mogoče brez zunanje osvetlitve opazovati s kamero, ki snema v območju vidne svetlobe. Značilni primeri takšnih procesov so na primer obdelovalni postopki za vroče preoblikovanje kovin (npr. vroče valjanje) in proizvodnja vlaken mineralne (kamene, steklene, žlindrne itd.) volne iz taline na centrifugah, ki bo v tem patentu predstavljena kot primer uporabe omenjenega sistema in metode za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra. V primeru da je hitrost gibanja opazovane snovi velika, se kaže potreba po merjenju dvodimenzionalnih in/ali tridimenzionalnih skalarnih polj temperature s sistemi in metodami, ki poleg dobre prostorske ločljivosti omogočajo visoko frekvenco vzorčenja in dober dinamični odziv. Izmerjena skalama polja temperature lahko služijo za krmiljenje in/ali nadzor kvalitete tehničnega procesa.The invention relates to a system and method for contactless temperature measurement with a camera operating in the visible part of the light spectrum. The aforementioned system and method are intended to measure temperature in processes where the observed substances or objects have a sufficiently high temperature to glow and can be observed without external illumination by a camera which shoots in the visible light region. Typical examples of such processes are, for example, machining processes for hot metal transformation (eg hot rolling) and production of mineral wool (stone, glass, slag, etc.) melt wool on centrifuges, which will be presented in this patent as an example of the use of said system and Methods for contactless temperature measurement with a camera operating in the visible part of the light spectrum. If the velocity of motion of the observed substance is high, there is a need to measure two- and three-dimensional scalar temperature fields using systems and methods that, in addition to good spatial resolution, allow for a high sampling rate and good dynamic response. The measured scales of the temperature field can serve to control and / or control the quality of the technical process.
Ker se pričakujejo zelo visoke temperature opazovane snovi in je potrebno celotno skalarno polje temperature izmeriti naenkrat (v istem časovnem trenutku), točkovni in/ali kontaktni sistemi in metode za merjenje temperature ne pridejo v poštev. Primerni pa so vizualizacijski sistemi in metode, delujoči na osnovi snemanja s kamero in naknadne obdelave posnetih slik. Znani so merilni sistemi in metode, ki skalama polja temperature merijo s pomočjo termovizijskih kamer, ki snemajo v območju infrardeče svetlobe. Takšni sistemi in metode ob pravilnem umerjanju omogočajo natančno merjenje skalarnih polj temperature, njihova glavna slabost pa je v visoki ceni ter omejeni ločljivosti in hitrosti snemanja infrardečih kamer.Because very high temperatures of the observed substance are expected and the entire scalar temperature field needs to be measured at one time (at the same time), point and / or contact systems and temperature measurement methods are out of the question. Visualization systems and methods based on camera and post-processing of captured images are suitable. Measurement systems and methods are known for measuring the scales of the temperature field with the help of thermal imaging cameras that record in the area of infrared light. Such systems and methods, when properly calibrated, allow accurate scaling of temperature fields, and their main disadvantage lies in the high cost and limited resolution and speed of infrared cameras.
Kamere, delujoče v vidnem delu svetlobnega spektra, so pri enaki zmogljivosti v smislu ločljivosti in hitrosti snemanja bistveno cenejše od infrardečih. Če je temperatura snovi v opazovanem procesu dovolj visoka, da snov žari oziroma se znaten del izsevanega energijskega toka nahaja v vidnem delu svetlobnega spektra, raven osvetlitve, zaznano na senzorju kamere, lahko uporabimo za oceno skalarnih polj temperature opazovanega procesa. Raven osvetlitve senzorja kamere se na posnetih slikah odraža kot sivinska stopnja. Medsebojna odvisnost temperature in sivinske stopnje slik je kompleksna in izrazito nelinearna, zato je eden od ciljev tega patenta predstaviti algoritem, ki bo omogočal pretvorbo iz sivinske v temperaturno skalo. Omenjeni algoritem je ključni sestavni del omenjenega sistema in metode za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra.Cameras operating in the visible light spectrum are substantially cheaper than infrared at the same performance in terms of resolution and recording speed. If the temperature of the substance in the observed process is high enough for the substance to glow or a significant part of the radiated energy flux is in the visible part of the light spectrum, the illumination level detected on the camera sensor can be used to estimate the scalar fields of the temperature of the observed process. The light level of the camera sensor is reflected in the captured images as a grayscale. The interdependence of temperature and grayscale images is complex and highly nonlinear, so one of the aims of this patent is to present an algorithm that will allow the conversion from grayscale to temperature scale. The said algorithm is a key component of the said system and a method for contactless temperature measurement with a camera operating in the visible part of the light spectrum.
Z namenom izpolnitve ciljev patenta je bil zasnovan sistem za brezkontaktno merjenje temperature, ki ga sestavljajo sledeči elementi:In order to fulfill the objectives of the patent, a contactless temperature measurement system was designed, consisting of the following elements:
1. Najmanj ena digitalna kamera, katere senzor je občutljiv na svetlobo pretežno v za človeško oko vidnem delu spektra, to je v območju valovnih dolžin med približno 390nm in 700nm. Kamera mora omogočati snemanje z dovolj visoko hitrostjo in ločljivostjo, da je na podlagi obdelave posnetih slik mogoče analizirati želene dinamske lastnosti opazovanega procesa. Kamera je lahko monokromatske izvedbe in snema sivinske slike, ali pa barvne izvedbe in snema barvne slike procesa, ki se pretvorijo v sivinske slike v postopku naknadne obdelave. Kamera mora imeti možnost ročne nastavitve hitrosti snemanja slik in časa ekspozicije, to je trajanja izpostavljenosti senzorja kamere vpadli svetlobi med snemanjem posamezne slike.1. At least one digital camera whose sensor is sensitive to light predominantly in the human-visible portion of the spectrum, that is, in the wavelength range between about 390nm and 700nm. The camera must be capable of recording at a high enough speed and resolution so that the desired dynamic properties of the observed process can be analyzed based on the processing of the captured images. The camera can be monochromatic and capture grayscale images, or color designs and capture color images of a process that are converted to grayscale images in a post-processing process. The camera must be able to manually adjust the speed of image capture and exposure time, that is, the duration of exposure of the camera sensor to the incident light while capturing a single image.
2. Računalnik, ki omogoča kontinuiran prenos slik s kamere v realnem času, to je z zelo majhnim časovnim zamikom glede na opazovani proces.2. A computer that allows continuous transfer of images from the camera in real time, that is, with a very small time delay relative to the observed process.
3. V računalniškem programu implementiran in v realnem času delujoč algoritem za pretvorbo sivinskih slik v skalama polja temperature opazovanega procesa ter njihov izris in shranjevanje. Omenjeni algoritem je bistven sestavni del tega patenta in bo predstavljen v nadaljevanju, vključno s postopkom izpeljave.3. A computer program implemented and real-time algorithm for converting grayscale images to the scales of the temperature field of the observed process and their drawing and storage. The aforementioned algorithm is an essential component of this patent and will be presented below, including the derivation process.
Za opazovano snov oziroma predmet predpostavimo, da seva kot t.i. sivo telo po Stefan-Boltzmannovem zakonu, pri čemer je gostota izsevanega energijskega toka j podana z en. (1). Ker se emisivnost ε v razponu merjenih absolutnih temperatur T\e malo spreminja, jo obravnavamo kot konstantno.For the substance or object under consideration, assume that the radiation is so-called. a gray body according to the Stefan-Boltzmann law, where the density of the radiated energy flux j is given by eq. (1). Since the emissivity ε varies little over the range of absolute temperatures T \ e measured, it is considered constant.
j = £0sT4 ; as = 5.67 · 10_8IVni'2/f “4 (1)j = £ 0 with T 4 ; a s = 5.67 × 10 _8 sure shall be nominal '2 / f "4 (1)
Osvetljenost senzorja kamere Ev je sorazmerna s produktom svetlobnega izkoristka rji4 η in gostoto izsevanega energijskega toka za črno telo (£as ), kar popisuje en. (2).The illumination of the camera Ev sensor is proportional to the product of the luminous efficiency rji4 η and the density of the radiated energy flux for the black body ( £ as ), which enumerates one. (2).
Ev = Cj]-<ff4 (2)E v = Cj] - <ff 4 (2)
Konstanta C je odvisna od oddaljenosti senzorja kamere od gorišča objektiva, od emisivnosti opazovane snovi ter časa ekspozicije Ie in jo določimo z umerjanjem na telo znane temperature.The constant C depends on the distance of the camera sensor from the focus of the lens, on the emissivity of the observed substance and the exposure time Ie, and is determined by calibration to a body of known temperature.
Svetlobni izkoristek η (en. (4)) je definiran kot razmerje med energijskim tokom, izsevanim v področju valovnih dolžin 2, ki jih kamera zazna, in celotnim energijskim tokom, izsevanim v območju 0 < Λ < *.The luminous efficiency η (Eq. (4)) is defined as the ratio of the energy flux emitted in the range of wavelengths 2 detected by the camera to the total energy flux emitted in the range 0 <Λ <*.
f 7(2)5^(2)^2 = to—]βλ(Λ)<Μ of 7 (2) 5 ^ (2) ^ 2 = to—] β λ (Λ) <Μ o
/z = 6.626 10 34 J s/ z = 6.626 10 34 J s
2hc2_1_2hc 2 _1_
25 exp(/zc / 2kBT) -1 kB =1.381-10 2,J/K ; c = 3.0-108m/s (3)2 5 exp (/ zc / 2k B T) -1 k B = 1.381-10 2, J / K; c = 3.0-10 8 m / s (3)
Pri tem je v en. (3) h Planckova konstanta, ke Boltzmannova konstanta, c hitrost svetlobe v zraku in Βλ spektralna gostota elektromagnetnega valovanja. Z izrazomIn doing so, it is into one. (3) h Planck constant, ke Boltzmann constant, c speed of light in air and Β λ spectral density of electromagnetic wave. With the expression
Υ(λ) je podana osvetlitvena funkcija kamere, ki pomeni relativno občutljivost senzorja kamere pri določeni valovni dolžini λ glede na maksimalno občutljivost. Vrednost osvetlitvene funkcije se nahaja znotraj intervala 0 < Υ(λ) < 1. Iz en. (3) je s ponavljanjem izračuna za različne temperature moč dobiti odvisnost svetlobnega izkoristka od temperature. Dobljeno funkcijo rj(7) se lahko bodisi tabelira ali pa aproksimira z zvezno, na primer polinomsko funkcijo.Kamere (λ) is the camera's illumination function, which indicates the relative sensitivity of the camera sensor at a given wavelength λ with respect to maximum sensitivity. The value of the illumination function is within the interval 0 <Υ (λ) <1. From Eq. (3) it is possible to obtain a dependence of the light efficiency on the temperature by repeating the calculation for different temperatures. The resulting function rj (7) can either be tabulated or approximated by a continuous, for example, polynomial function.
Za osvetljenost senzorja kamere Ev velja poleg formulacije v en. (2) še formulacija, ki popisuje pretvorbo vhodnega signala (osvetljenosti Ev) v izhodni signal (sivinska stopnja G). Sivinska stopnja posameznega piksla na posnetih slikah je podana s celoštevilskimi vrednostmi na intervalu (B G < 2-1, pri čemer je n bitna globina slike, spodnja meja intervala pomeni popolnoma črno, zgornja meja pa popolnoma belo barvo. Običajno je n = 8, kar pomeni, da so slike 8-bitne oziroma je vsak piksel lahko zapisan z 256 različnimi nivoji sivin. Sivinska stopnja je lahko podana tudi v normirani obliki 0 £ G £ 1, pri čemer se omenjeni interval enakomerno razdeli na 2n vrednosti.The brightness of the camera sensor E v applies in addition to the formulation v en. (2) a formulation that records the conversion of an input signal (luminance E to ) into an output signal (grayscale G). The gray level of each pixel in the captured images is given by integer values at the interval (BG <2-1, where n is the bit depth of the image, the lower bound of the interval means completely black and the upper bound is completely white. Usually n = 8, which is means that the images are 8-bit or each pixel can be written with 256 different levels of grayscale, and the grayscale can also be given in the standard form 0 £ G £ 1, with the interval evenly divided by 2 n values.
k-tE (4)kt E (4)
V en. (4) je tE čas ekspozicije, k pa občutljivost senzorja kamere, ki jo izrazimo z enoto [sivina/lux-sj in je definirana kot razmerje med spremembo sivinske stopnje G pri spremembi osvetlitve senzorja za eno enoto.In en. (4) t E is the exposure time, and k is the sensitivity of the camera sensor, which is expressed by the unit [grayscale / lux-sj and is defined as the ratio of the change in grayscale G when changing the illumination of the sensor by one unit.
Z izenačenjem en. (2) in en. (4) izpeljemo končni izraz za preračun sivinske stopnje v absolutno temperaturo.By equating en. (2) and en. (4) derive the final expression for the conversion of the grayscale rate to the absolute temperature.
(5)(5)
Ker je svetlobni izkoristek η odvisen od temperature, je temperaturo iz en. (5) potrebno izračunati iterativno z upoštevanjem predhodno izpeljane funkcije η(Τ). Konstanto C se določi z umerjanjem na telo znane temperature.Since the luminous efficiency η is temperature dependent, the temperature from eq. (5) must be calculated iteratively by considering the previously derived function η (Τ). The constant C is determined by calibration to a body of known temperature.
Postopek za določanje skalarnih polj temperature procesa lahko popišemo z naslednjimi koraki:The procedure for determining the scalar fields of the process temperature can be described by the following steps:
1. Snemanje procesa s kamero in prenos posnetih na računalnik. Čas ekspozicije mora biti nastavljen dovolj nizko, da ne pride do zasičenja sivinske slike z belo barvo in/ali neostre slike zaradi gibanja opazovane snovi.1. Record the process with the camera and transfer the recordings to your computer. The exposure time should be set low enough to prevent saturation of the grayscale image with white and / or sharp images due to the movement of the observed substance.
2. Določitev konstante C v enačbi (5). Posname se sliko telesa z enakomerno in znano temperaturo ter emisivnostjo, čim bolj podobno emisivnosti snovi, opazovane v točki 1. Pri tem se nastavi enak ekspozicijski čas kamere kot v točki 1. Če se spremeni položaj kamere, ekspozicijski čas kamere, uporabljen objektiv na kameri ali pa emisivnost opazovane snovi, je potrebno konstanto C ponovno določiti.2. Determination of constant C in equation (5). A body image with a uniform and known temperature and an emission similar to that of the substance observed in point 1 is taken. This sets the same camera exposure time as in point 1. If the camera position changes, the camera exposure time, the camera lens used or the emissivity of the observed substance, the constant C must be redefined.
3. Iterativni izračun temperature z uporabo en. (5) in funkcije η(Τ), ki popisuje odvisnost svetlobnega izkoristka od temperature. Funkcijo η(Τ) predhodno izračunamo iz podatkov o občutljivosti senzorja kamere. Omenjena funkcija se lahko znatno razlikuje od standardne funkcije svetlobnega izkoristka, kakršna velja za človeško oko, in jo je v primeru uporabe drugačnega tipa kamere potrebno ponovno določiti.3. Iterative temperature calculation using Eq. (5) and the function η (Τ), which records the dependence of light efficiency on temperature. The function η (Τ) is previously calculated from the camera sensor sensitivity data. This function can be significantly different from the standard light efficiency function that applies to the human eye and should be redefined when using a different type of camera.
Izum bo temeljiteje opisan na izvedbenem primeru s sklicevanjem na slike, ki prikazujejo:The invention will be more thoroughly described in the embodiment with reference to the drawings showing:
• slika 1: Shema merilnega sistema in metode za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra, za primer, ko se omenjeni merilni sistem in metoda uporabljata za določanje skalarnih polj temperature taline na prvem kolesu centrifuge za proizvodnjo mineralne volne.• Figure 1: Schematic of the measurement system and methods for contactless measurement of temperature with a camera operating in the visible part of the light spectrum, when the said measuring system and method are used to determine the scalar fields of melt temperature on a first spinning wheel for mineral wool production.
• slika 2: Značilna krivulja pretvorbe sivinske stopnje slik procesa, posnetih s kamero, delujočo v vidnem delu svetlobnega spektra, v absolutno temperaturo.• Figure 2: Characteristic curve for converting the gray-scale rate of process images taken with the camera operating in the visible part of the light spectrum to absolute temperature.
Na sliki 1 sta prikazana merilni sistem in metoda za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra, in sicer na primeru centrifuge za proizvodnjo mineralne volne. Curek mineralne taline (4) iz rezervoarja (3) nateka na prvo kolo (1) centrifuge, kjer oblikuje tanek film (2), iz katerega se nato tvorijo vlakna mineralne volne (5). Kot naprava za zajem podatkov se uporablja digitalna hitra kamera (6), katere senzor zaznava pretežno vidni del svetlobnega spektra, za kontinuirano branje, obdelavo in shranjevanje podatkov v realnem času pa je uporabljen računalnik (7).Figure 1 shows the measuring system and the method for contactless temperature measurement with a camera operating in the visible part of the light spectrum, in the case of a mineral wool centrifuge. A jet of mineral melt (4) flows from the reservoir (3) onto the first wheel (1) of the centrifuge to form a thin film (2) from which mineral wool fibers (5) are then formed. A digital high-speed camera (6) is used as the data capture device, whose sensor detects a predominantly visible portion of the light spectrum, and a computer (7) is used for continuous reading, processing and storage of data in real time.
Na sliki 2 je prikazana značilna krivulja pretvorbe sivinske stopnje slik procesa, posnetih s kamero, delujočo v vidnem delu svetlobnega spektra, v absolutno temperaturo. Oblika krivulje se spreminja v odvisnosti od položaja kamere, ekspozicijskega časa kamere, lastnosti senzorja kamere, uporabljenega objektiva na kameri in pa emisivnosti opazovane snovi.Figure 2 shows the characteristic curve of the grayscale conversion of the process images taken with the camera operating in the visible part of the light spectrum to absolute temperature. The shape of the curve varies depending on the position of the camera, the exposure time of the camera, the properties of the camera sensor, the lens used on the camera, and the emissivity of the observed substance.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201400224A SI24410A (en) | 2014-06-18 | 2014-06-18 | System and method for contactless temperature measuring with a cameraworking in the visible part of the light spectrum |
PCT/SI2015/000024 WO2015195055A1 (en) | 2014-06-18 | 2015-06-15 | Apparatus and method for non-contact temperature measurement with a visible light camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201400224A SI24410A (en) | 2014-06-18 | 2014-06-18 | System and method for contactless temperature measuring with a cameraworking in the visible part of the light spectrum |
Publications (1)
Publication Number | Publication Date |
---|---|
SI24410A true SI24410A (en) | 2014-12-31 |
Family
ID=52114112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201400224A SI24410A (en) | 2014-06-18 | 2014-06-18 | System and method for contactless temperature measuring with a cameraworking in the visible part of the light spectrum |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI24410A (en) |
WO (1) | WO2015195055A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114509166A (en) * | 2022-01-27 | 2022-05-17 | 重庆大学 | High transient high temperature plasma temperature measurement system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102705671B1 (en) * | 2017-12-11 | 2024-09-10 | 타타 스틸 이즈무이덴 베.뷔. | Method and system for measuring temperature of a moving strip |
CN113514414B (en) * | 2021-06-08 | 2022-10-11 | 中国矿业大学 | Method for establishing spectral emissivity distribution model of high-temperature single-particle coal coke thermal radiation wave band |
-
2014
- 2014-06-18 SI SI201400224A patent/SI24410A/en not_active IP Right Cessation
-
2015
- 2015-06-15 WO PCT/SI2015/000024 patent/WO2015195055A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114509166A (en) * | 2022-01-27 | 2022-05-17 | 重庆大学 | High transient high temperature plasma temperature measurement system |
CN114509166B (en) * | 2022-01-27 | 2024-02-23 | 重庆大学 | High-transient high-temperature plasma temperature measurement system |
Also Published As
Publication number | Publication date |
---|---|
WO2015195055A1 (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lane et al. | Thermographic measurements of the commercial laser powder bed fusion process at NIST | |
US7422365B2 (en) | Thermal imaging system and method | |
CN101476939B (en) | Double-CCD temperature field measuring apparatus and method | |
CN105628208B (en) | A kind of thermometry based on infrared imaging system | |
US20100265987A2 (en) | Method and Apparatus for Measuring the Temperature of a Sheet Material | |
Lane et al. | Calibration and measurement procedures for a high magnification thermal camera | |
CN107588854A (en) | High precision measuring temperature method based on built-in reference body | |
CN106644089B (en) | Casting blank surface temperature field measuring sensor and method | |
SI24410A (en) | System and method for contactless temperature measuring with a cameraworking in the visible part of the light spectrum | |
IL122258A (en) | Method and system for determining temperature and/or emissivity function of objects by remote sensing | |
CN104101432B (en) | Method for measuring temperature distribution of inner walls of sealed cavity metalware | |
CN112179498B (en) | Vehicle temperature measurement method, system and device based on road surface as virtual black body | |
Grujić | A review of thermal spectral imaging methods for monitoring high-temperature molten material streams | |
Whitenton | An introduction for machining researchers to measurement uncertainty sources in thermal images of metal cutting | |
Guoqing et al. | Nonlinear atmospheric correction based on neural network for infrared target radiometry | |
CN213364035U (en) | Infrared thermal imaging temperature measuring device | |
JP2007240164A (en) | Infrared two-wavelength processing method | |
Cheng et al. | Application of a Temperature Measurement System Based on CCD Sensor in Blast Furnace Tuyere Raceway | |
Jiao et al. | A smartphone-based infrared thermal imaging temperature sensor for accurate temperature measurement of pig groups | |
Daraseliya et al. | Determining the temperature and gas concentration in a gas-air mixture. | |
Sankaranarayanan et al. | Flame temperature measurement using color-ratio pyrometry with a consumer grade DSLR camera | |
Junhong et al. | Research on slab surface temperature-measurement of continuous casting based on CCD imaging | |
KR102714522B1 (en) | Video imaging device and method | |
Ma et al. | High temperature measurement using very high shutter speed to avoid image saturation | |
Li et al. | Quantitative measurement of screening rate by a thermal imager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20150121 |
|
KO00 | Lapse of patent |
Effective date: 20180213 |