SI24404A - Multi-stage hydrualic power plant with compressor - Google Patents

Multi-stage hydrualic power plant with compressor Download PDF

Info

Publication number
SI24404A
SI24404A SI201300178A SI201300178A SI24404A SI 24404 A SI24404 A SI 24404A SI 201300178 A SI201300178 A SI 201300178A SI 201300178 A SI201300178 A SI 201300178A SI 24404 A SI24404 A SI 24404A
Authority
SI
Slovenia
Prior art keywords
fluid
hydraulic
gas
traveling element
power plant
Prior art date
Application number
SI201300178A
Other languages
Slovenian (sl)
Inventor
Silvano Bizjak
Original Assignee
Silvano Bizjak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silvano Bizjak filed Critical Silvano Bizjak
Priority to SI201300178A priority Critical patent/SI24404A/en
Priority to PCT/SI2014/000037 priority patent/WO2014209240A1/en
Publication of SI24404A publication Critical patent/SI24404A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/025Other machines or engines using hydrostatic thrust and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/04Alleged perpetua mobilia

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Izum rešuje problem učinkovite in okolju prijazne proizvodnje električne energije, ki je rešen z večstopenjsko hidravliko, ki omogoča prečrpavanje tekočine v zaprtem sistemu. Zaprtost sistema rešuje problem uporabe ene in iste tekočine ali plina, zato je neodvisen od stalnega dovajanja naravnih virov energije. Večstopenjska hidravlika rešuje problem porabe minimalne količine energije za samo delovanje sistema, torej za njegov optimalni izkoristek. Večstopenjska hidravlika je izvedena tako, da z manjšimhidravličnim sistemom preko ročice potiskamo hidravlični cilinder v večjem hidravličnem sistemu. Večstopenjska hidravlična elektrarna s kompresorjem je v osnovi sestavljena iz rezervoarja (A), spodnje hidravlične kompresorske postaje (B), instalacijskega kanala (C), potujočega elementa (D), zgornje kompresorske postaje z navijalnim sistemom (E), prostor nadzora in upravljanja (F), dodatne rezervoarje tekočine (G, H, I) in črpalno postajo (J). Glede na uporabljeni medij v rezervoarju (A) je večstopenjskahidravlična elektrarna s kompresorjem lahko izvedena na dva načina: ali z uporabo tekočine in plina ali z uporabo dveh plinov različnih gostot.The invention solves the problem of efficient and environmentally friendly production of electricity, which is solved by a multi-stage hydraulics, which allows the pumping of liquid in a closed system. The closure of the system solves the problem of the use of one and the same liquid or gas, therefore it is independent of the constant supply of natural sources of energy. A multistage hydraulics solution solves the problem of consuming a minimum amount of energy for the system itself, ie for its optimum utilization. The multi-stage hydraulics are designed by pushing the hydraulic cylinder in a larger hydraulic system through a small hydraulic system through the handle. A multistage hydraulic power plant with a compressor consists essentially of a tank (A), a lower hydraulic compressor station (B), an installation duct (C), a traveling element (D), an upper compressor station with a winding system (E) F), additional fluid reservoirs (G, H, I) and pumping station (J). Depending on the medium used in the reservoir (A), the multi-stage hydraulic power plant with the compressor can be implemented in two ways: either using liquid and gas or using two gases of different densities.

Description

Predmet izuma je večstopenjska hidravlična elektrarna s kompresorjem, ki jo lahko postavimo kjerkoli na zemlji ali v vesolju, kjer je prisotna ustrezna sila gravitacije in temperatura, ki omogoča trajno obstojnost tekočine in plina v zaprtem sistemu. Večstopenjska hidravlična elektrarna s kompresorjem ni odvisna od naravnih virov energije, kot so npr. premog, nafta, plin, tekoča voda, uran, veter, sonce, in podobno, zato lahko proizvaja električno energijo kjerkoli in kadarkoli 24 ur na dan, vse dni v letu. Uporabljeni plin in tekočina v hidravlično kompresorski elektrarni so v zaprtem sistemu, zato se lahko uporabijo isti plini in ista tekočina v celem življenjskem obdobju elektrarne. Večstopenjska hidravlična elektrarna s kompresorjem s svojim delovanjem ne onesnažuje okolja. Zgradi se kot stolpnica delno ali popolnoma vgrajena v zemljo ali pa pod vodo, npr. na dno morja ali jezera.The subject of the invention is a multi-stage hydraulic power station with a compressor, which can be placed anywhere on earth or in space, where there is an adequate force of gravity and a temperature that allows permanent liquid and gas stability in a closed system. A multi-stage hydraulic power plant with a compressor does not depend on natural energy sources, such as for example. coal, oil, gas, running water, uranium, wind, sun, and the like, so it can generate electricity anywhere, anytime, 24 hours a day, all days of the year. The gas and liquid used in the hydraulic compressor plant are in a closed system, so the same gases and the same liquid can be used throughout the life of the plant. A multi-stage hydraulic compressor power plant does not pollute the environment. It is built as a building partially or fully embedded in the ground or under water, e.g. to the bottom of the sea or lake.

Izum rešuje problem učinkovite in okolju prijazne proizvodnje električne energije. Obstoječe hidroelektrarne, termoelektrarne in nuklearne elektrarne predstavljajo velik poseg v naravno okolje in ga tudi onesnažujejo. Plinske elektrarne so odvisne od bližine velikih zalog zemeljskega plina. Vetrne elektrarne so odvisne od prisotnosti vetra. Sončne elektrarne so odvisne od sonca in proizvajajo lahko električno energijo samo podnevi. Elektrarne, ki izkoriščajo valovanje ali plimovanje morja, se lahko postavijo le na ustrezna mesta v morju. Tehnični problem izvedbe izuma je rešen z večstopenjsko hidravliko, ki omogoča prečrpavanje tekočine v zaprtem sistemu. Zaprtost sistema rešuje problem uporabe ene in iste tekočine ali plina, zato je neodvisen od stalnega dovajanja naravnih virov energije. Večstopenjska hidravlika rešuje problem porabe minimalne količine energije za samo delovanje sistema, torej za njegov optimalni izkoristek. Večstopenjska hidravlika je izvedena tako, da z manjšim hidravličnim sistemom preko ročice potiskamo hidravlični cilinder v večjem hidravličnem sistemu.The invention solves the problem of efficient and environmentally friendly electricity generation. Existing hydroelectric, thermal and nuclear power plants represent a major interference with and pollute the natural environment. Gas power plants depend on the proximity of large natural gas reserves. Wind farms depend on the presence of wind. Solar power plants are dependent on the sun and can only produce electricity during the day. Power plants that take advantage of the waves or tides of the sea can only be installed at appropriate locations in the sea. The technical problem of carrying out the invention is solved by multi-stage hydraulics, which allows the fluid to be pumped in a closed system. The closedness of the system solves the problem of using the same liquid or gas, so it is independent of the constant supply of natural energy sources. Multi-stage hydraulics solves the problem of consuming the minimum amount of energy for the system to function, ie for optimal efficiency. The multi-stage hydraulics are designed by pushing the hydraulic cylinder over the larger hydraulic system with the help of a smaller hydraulic system.

Princip uporabe sile vzgona in sile gravitacije za pridobivanje električne energije je že poznan in je na primer predlagan v patentnih prijavah oz. patentih SI 22556, SI 22815, SI 22762, US 2009/0293471, US 5944480, US 4718232, SI 20651, US2011/0162356, US 2006/0064975 ter v članku o pridobivanju energije po principu vzgona objavljen na mednarodni konferenci (2013) o tehnologiji in podjetništvu (International Conference on Technology and BusinessThe principle of using buoyancy and gravity forces to generate electricity is already known and is proposed, for example, in patent applications. Patents SI 22556, SI 22815, SI 22762, US 2009/0293471, US 5944480, US 4718232, SI 20651, US2011 / 0162356, US 2006/0064975, and in an article on energy generation by buoyancy published at the International Technology Conference (2013) and Entrepreneurship (International Conference on Technology and Business

Menagement). Slabost nekaterih navedenih rešitev je ta, da delujejo samo teoretično, ne pa tudi dejansko, saj je izumitelj pozabil na določene faktorje, kot je npr. trenje, pri nekaterih drugih pa sama elektrarna ali motor potroši za svoje delovanje več energije kot je proizvede. Poleg tega ima predmet izuma po pričujočem patentu določene prednosti pred znanim stanjem tehnike. Med delovanjem večstopenjske hidravlične elektrarne s kompresorjem deluje več generatorjev hkrati, kar omogoča proizvodnjo večje količine električne energije.Management). The disadvantage of some of these solutions is that they work only theoretically and not actually, since the inventor has forgotten about certain factors, such as. friction, and in some others the power plant or engine itself consumes more energy than it produces. In addition, the present invention has certain advantages over the prior art according to the prior art. During the operation of a multi-stage hydraulic power plant, the compressor operates several generators simultaneously, which enables the production of more electricity.

Je zaprtega tipa in jo lahko postavimo kjerkoli. Postavimo jo lahko blizu porabnikov energije, zato zmanjšuje dolžino daljnovodnih kablov. Večstopenjski hidravlični sistem omogoča majhno porabo energije za delovanje elektrarne. Med delovanjem izkorišča tudi toploto generatorjev za ogrevanje sanitarne vode in bivalnih objektov. Nobena od zgoraj naštetih rešitev ne uporablja principa delovanja z zobatimi kolesi in ne predvideva uporabo lažjega plina, ki omogoča močnejšo silo vzgona.It is closed type and can be placed anywhere. It can be placed close to power consumers, so it reduces the length of power lines. The multi-stage hydraulic system enables low power consumption for the operation of the power plant. During operation, it also utilizes the heat of generators to heat domestic water and living quarters. None of the above solutions uses the principle of gear-wheel operation and does not envisage the use of lighter gas, which enables a stronger buoyancy force.

Izvedbeni primer izuma bo opisan na slikah, ki prikazujejo:An embodiment of the invention will be described in the figures showing:

Slika 1 - vertikalni prerez hidravlično kompresorske elektrarne (Prerez 1-1)Figure 1 - vertical section of a hydraulic compressor power plant (Section 1-1)

Slika 2 - horizontalni prerez hidravlično kompresorske elektrarne (Prerez 2-2) Slika 3 - vertikalni prerez potujočega elementa D v zgornji skrajni legiFigure 2 - Horizontal cross-section of a hydraulic compressor power plant (Cross-section 2-2) Figure 3 - Vertical cross-section of a traveling element D in the upper extreme position

(Prerez 3-3)(Section 3-3)

Slika 4 - vertikalni prerez potujočega elementa D v spodnji skrajni legi (Prerez 3-3)Figure 4 - vertical cross section of traveling element D in the lower extreme position (cross section 3-3)

Slika 5 - vertikalni prerez zobatega kolesa D3 z vgrajenim generatorjem D17 (Prerez 4-4)Figure 5 - vertical section of D3 gear wheel with built-in generator D17 (section 4-4)

Slika 6 - vertikalni prerez batnega cilindra B3 z batom B4Figure 6 - vertical cross-section of piston cylinder B3 with piston B4

Slike od 2 do 3 in 6 so v 4x večjem merilu glede na sliko 1.Figures 2 to 3 and 6 are 4x larger in scale than Figure 1.

Slika 4 in 5 pa je v 3x večjem merilu glede na sliko 1.Figures 4 and 5, however, are 3x larger than Figure 1.

Sestava hidravlično kompresorske elektrarne:Composition of hydraulically compressor power plant:

Element A - rezervoar tekočine - slika 1 Al - tekočina - slike 1, 2, 3, 4Element A - fluid reservoir - Figure 1 Al - fluid - Figures 1, 2, 3, 4

A2 - dvigalo - nadzor upravljanje in vzdrževanje - slika 1 A3 - loputa pretoka tekočine - slika 1A2 - elevator - control operation and maintenance - figure 1 A3 - fluid flow flap - figure 1

A4 - toplotna črpalka - ogrevanje tekočine pri nizkih temperaturah uporabe slika 1A4 - heat pump - fluid heating at low temperatures Fig. 1

A5 - izmenjevalec - ogrevanje tekočine - pri nizkih temperaturah uporabe sliki 1 in 2A5 - exchanger - fluid heating - at low application temperatures Figures 1 and 2

A6 - priključek cevi plina iz kompresorske postaje za polnjenje potujočega elementa D - sliki 1 in 4A6 - gas pipe connection from the compressor station for filling the traveling element D - Figures 1 and 4

A7 - priključek cevi tekočine za praznjenje potujočega elementa D - sliki 1 in 4 A8 - priključek cevi za praznjenja plina iz potujočega elementa D - sliki 1 in 3A7 - pipe connection for discharge fluid D - Figures 1 and 4 A8 - pipe connection for discharge gas D - Figures 1 and 3

Element B - spodnja hidravlično kompresorska postaja - slika 1 BI - rezervoar plina - sliki 1 in 4 B2 - hidravlični sistem - sliki 1 in 4 B3 - batni cilinder - sliki 1 in 4 B4 - bat batnega cilindra B3 - sliki 1 in 4 B5 - dodatni generator z zložljivimi lopaticami - sliki 1 in 4 B6 - akumulatorji - slika 1 • · • ·Element B - Bottom hydraulic compressor station - Figure 1 BI - Gas tank - Figures 1 and 4 B2 - Hydraulic system - Figures 1 and 4 B3 - Piston cylinder - Figures 1 and 4 B4 - Piston piston cylinder B3 - Figures 1 and 4 B5 - additional generator with folding blades - pictures 1 and 4 B6 - batteries - picture 1 • · • ·

Β7 - kompresor - slika 1Β7 - compressor - picture 1

B8 - vpeta ročica - slika 6B8 - Clamped lever - Figure 6

B9 - manjši hidravlični sistem - slika 6B9 - smaller hydraulic system - Figure 6

Element C - instalacijski kanal - slika 1 Cl - zobniška letev - slika 1Element C - installation duct - Figure 1 Cl - Gear - Figure 1

C2 - tračnica (velja za način izvedbe II, ki bo pojasnjen v nadaljevanju) - slika 2C2 - rail (applies to embodiment II, which will be explained below) - Figure 2

Element D - potujoči element - slika 1 Dl - balastni rezervoarji - sliki 3 in 4Element D - traveling element - Figure 1 Dl - Ballast tanks - Figures 3 and 4

D2 - vzmeteno (velja za način izvedbe II, ki bo pojasnjen v nadaljevanju) slika 2D2 - Suspended (applies to implementation mode II, which will be explained below) Figure 2

D3 - zobato kolo - sliki 2 in 4 D4 - hidravlična blokada - slika 5D3 - gear wheel - Figures 2 and 4 D4 - Hydraulic lock - Fig. 5

D5 - hidravlika zatesnitve povezave med balastnimi rezervoarji Dl in rezervoarjem plina BI - slika 4D5 - connection seal hydraulics between Dl ballast tanks and BI gas tank - Figure 4

D6 - hidravlika zatesnitve povezave med balastnimi rezervoarji Dl in hidravličnim sistemom B2 - slika 4D6 - Hydraulic sealing connection between ballast tanks Dl and hydraulic system B2 - Figure 4

D7 - ventil pretoka tekočine na cevi balastnega rezervoarja Dl - slika 2, 3, 4D7 - fluid flow valve on Dl ballast tube - Figure 2, 3, 4

D8 - ventil pretoka plina na cevi rezervoarja plina BI - slika 4D8 - Gas flow valve on BI gas tank pipe - Figure 4

D9 - ventil pretoka plina na cevi balastnega rezervoarja Dl - slika 3 in 4D9 - gas flow valve on Dl ballast tube - Figures 3 and 4

D10 - dodatni generator regeneracijskega zaviranja - slika 5D10 - additional regenerative braking generator - Figure 5

Dl 1 - akumulatorji potujočega elementa D - slika 5Dl 1 - Traveling element D batteries - Figure 5

D12 - hidravlični sistem potujočega elementa D - slike 3, 4, 5D12 - hydraulic system of traveling element D - figures 3, 4, 5

D13 - hidravlika zatesnitve povezave med balastnimi rezervoarji Dl in kompresorjem E - slika 3D13 - Hydraulic seal for connection between ballast Dl and compressor E - Figure 3

D14 - ventil pretoka plina na cevi kompresorja E - slika 3 Dl5 - plavajoča krogla - slike 3, 4, 5D14 - Gas flow valve on compressor tube E - Figure 3 Dl5 - Floating ball - Figures 3, 4, 5

Dl6 - plinski cevni sistem balastnih rezervoarjev Dl potujočega elementa D slike 3, 4, 5Dl6 - gas pipe system of ballast tanks Dl of traveling element D Figures 3, 4, 5

Dl7 - generator vgrajen v zobato kolo D3 - slika 1 Dl8 - plin - slika 3, 4, 5Dl7 - generator built into gear wheel D3 - picture 1 Dl8 - gas - picture 3, 4, 5

Dl9 - glazura iz teflona - sliki 4 in 5 D20 - zavorna obloga - slika 5 D21 - zobnik zaviranja - slika 5Dl9 - Teflon glaze - pictures 4 and 5 D20 - brake lining - picture 5 D21 - brake gear - picture 5

Element E - zgornja kompresorska postaja, prostor navijalnega sistema - slika 1 El - kabel prenosa električne energije in komunikacijski kabel - slika 1 E2 - navij alni sistem - slika 1Element E - upper compressor station, winding system compartment - figure 1 El - electricity transmission cable and communication cable - figure 1 E2 - winding system - figure 1

E3 - kompresor - slika 1E3 - compressor - picture 1

E4 - toplotna črpalka - hlajenje tekočine - generatorjev - slika 1 E5 - izmenjevalec - hlajenje tekočine - izkoriščanje toplote - slika 1 E6 - ekspanzijska posoda - slika 1E4 - Heat pump - Liquid cooling - Generators - Figure 1 E5 - Exchanger - Liquid cooling - Heat recovery - Figure 1 E6 - Expansion tank - Figure 1

Element F - prostor nadzora in upravljanja - slika 1 FI - transformatorska postaja - slika 1 F2 - akumulatorji - slika 1Element F - Control and Management Space - picture 1 FI - transformer station - picture 1 F2 - batteries - picture 1

Element G - dodatni rezervoar tekočine - vzdrževanje - slika 1 Gl - loputa pretoka tekočine - slika 1Element G - Additional fluid reservoir - Maintenance - Figure 1 Gl - Fluid flow damper - Figure 1

Element H - dodatni rezervoar tekočine - vzdrževanje - slika 1 HI - loputa pretoka tekočine - slika 1Element H - Additional fluid reservoir - Maintenance - Figure 1 HI - Fluid flow flap - Figure 1

Element I - dodatni rezervoar tekočine - vzdrževanje - slika 1Element I - Additional fluid reservoir - Maintenance - Figure 1

- sesalni koš prečrpavanja tekočine -vzdrževanje - slika 1- Suction pump for fluid pumping - Maintenance - Figure 1

- cev prečrpavanja tekočine - vzdrževanje - slika 1- fluid pumping tube - maintenance - Figure 1

- ventil preusmeritve pretoka tekočine pri prečrpavanju - vzdrževanje - slika 1- pump flow diversion valve - maintenance - Figure 1

Element J - prostor s črpalko za prečrpavanje tekočine - vzdrževanje - slika 1 JI - črpalka za prečrpavanje tekočine - vzdrževanje - slika 1Element J - fluid pumping room - maintenance - picture 1 JI - fluid pumping room - maintenance - picture 1

Večstopenjska hidravlična elektrarna s kompresorjem zajema: element A, spodnjo hidravlično kompresorsko postajo B, instalacijski kanal C, potujoči element D, zgornjo kompresorsko postajo z navijalnim sistemom E, prostor nadzora in upravljanja F, dodatni rezervoar tekočine G dodatni rezervoar tekočine H, dodatni rezervoar tekočine I in črpalno postajo J.Multi-stage hydraulic power plant with compressor includes: element A, lower hydraulic compressor station B, installation channel C, traveling element D, upper compressor station with winding system E, control and control space F, additional fluid reservoir G additional fluid reservoir H, additional fluid reservoir I and pumping station J.

* ·* ·

Element A je visoka votla zgradba z elementom C v sredi. Element C je zgrajen kot votel steber z enakomerno razporejenimi zobniškimi letvami Cl po zunanjem obodu. Zobniški letvi sta lahko 2 ali več in segajo od vrha do tal elementa C. Na vsako zobniško letev je vpeto zobato kolo D3 z vgrajenim generatorjem D17. Generator D17 je lahko tudi ( druga izvedba) montiran ločeno od zobatega kolesa D3 in povezan z njim preko sklopke regulatorja obratov. Zobata kolesa D3 so na ležajih pritrjena na nosilno os, na katero so pritrjeni tudi balastni rezervoarji Dl. Zobata kolesa D3 z vgrajenim generatorjem Dl7 skupaj z balastnimi rezervoarji Dl tvorijo potujoči element D.Element A is a tall hollow structure with element C in the middle. The C element is constructed as a hollow pillar with evenly spaced Cl gears along the outer circumference. The toothed rails may be 2 or more and extend from the top to the ground of the C element. A gear wheel D3 is fitted to each gear bar with a built-in D17 generator. The D17 generator can also (second version) be mounted separately from the D3 gear wheel and connected to it via the clutch of the rotary adjuster. The D3 gears are mounted on the bearings on the bearings, to which ballast tanks Dl are also attached. The D3 gear wheels with the built-in Dl7 generator together with the Dl ballast tanks form a traveling element D.

Glede na uporabljeni medij v elementu A je večstopenjska hidravlična elektrarna s kompresorjem lahko izvedena na dva načina:Depending on the medium used in element A, a multi-stage hydraulic power plant with a compressor can be implemented in two ways:

Način izvedbe I:Method of implementation I:

Z uporabo katerekoli ustrezne tekočine s specifično gostoto pi (prednostno voda) v elementu A in kateregakoli ustreznega plina specifične gostote p2 (prednostno helij) v balastnih rezervoarjih Dl potujočega elementa D. Kjer je pi » p2. Prenos električne energije je izveden preko kablov El, ki se simultano odvijajo in navijajo med gibanjem potujočega elementa D, zato se lahko uporabijo tudi električno prevodne tekočine v elementu A.Using any suitable fluid with a specific density pi (preferably water) in element A and any suitable specific gas density p 2 (preferably helium) in the ballast tanks D1 of the traveling element D. Where pi »p 2 . The transmission of electricity is carried out through the cables El, which are simultaneously unwound and bent during movement of the traveling element D, so electrically conductive fluids in element A may also be used.

Način izvedbe II:Method II:

Z ustreznim plinom specifične gostote P3 (prednostno zrak) v elementu A in ustreznim plinom specifične gostote p2 (prednostno helij) v napihljivih balonih potujočega elementa D. Kjer je p3 » p2. Prenos električne energije je izveden preko vzmetenih kovinskih koles D2, ki se kotalijo po tračnicah C2. Element A je lahko izveden tudi kot odprt sistem.With the corresponding gas of specific density P3 (preferably air) in element A and the corresponding gas of specific density p 2 (preferably helium) in inflatable balloons of traveling element D. Where p3 »p 2 . The transmission of electricity is done via the spring metal wheels D2 which roll on the C2 rails. Element A may also be implemented as an open system.

Večstopenjska hidravlična elektrarna s kompresorjem izkorišča gravitacijo, silo vzgona na balastne rezervoarje Dl in navor kot zmnožek sile in ročice na zobatem kolesu D3 ter dolžino poti, ki jo opravlja potujoči element D. Izkoristek • · pridobivanja električne energije je odvisen od dolžine poti, ki jo opravi potujoči element D, velikosti generatorja Dl7 in razlike v gostoti med uporabljeno tekočino v elementu A in plinom v potujočem elementu D pri načinu izvedbe I, oz. od razlike v gostoti med uporabljenim plinom 1 v elementu A in plinom 2 v potujočem elementu D pri načinu izvedbe II.A multi-stage hydraulic power plant with a compressor utilizes gravity, the force of buoyancy on ballast tanks Dl, and torque as a product of the force and lever on the gear wheel D3 and the length of the path traveled by the traveling element D. Efficiency • · The generation of electricity depends on the length of the path perform the traveling element D, the size of the generator Dl7 and the difference in density between the fluid used in the element A and the gas in the traveling element D in embodiment I, respectively. from the difference in density between used gas 1 in element A and gas 2 in traveling element D in embodiment II.

Pri načinu izvedbe I je votli del elementa A napolnjen s tekočino Al in potujoči element D ima ustrezno izvedene balastne rezervoarje Dl. Ko se potujoči element D nahaja v spodnji končni legi, kar je prikazano na sliki 4, je blokiran s hidravlično blokado D4, kije prikazana na sliki 5. Avtomatika preko stikal aktivira hidravliko D5, ki izvede zatesnitev povezave med balastnimi rezervoarji Dl in rezervoarjem plina BI ter istočasno aktivira hidravliko D6, ki izvede zatesnitev povezave med balastnimi rezervoarji Dl in hidravličnim sistemom B2. Nato avtomatika preko hidravlike odpre ventile D7 in D8, ter aktivira hidravlični sistem B2, da vleče bat B4 v začetni položaj in s tem tekočina prehaja iz balastnih rezervoaijev Div batni cilinder B3 s prostim padom ter vleče plin iz rezervoarja plina BI. Plin je pod tlakom, kar še dodatno pospeši proces praznjenja tekočine iz balastnih rezervoarjev Dl. Tekočina med odtekanjem poganja dodatni generator z zložljivimi lopaticami B5, ki polni akumulatorje B6 oz., če so tej že polni, preko kompresorja B7, zagotavlja optimalen pritisk v rezervoarju plina BI, oz. preko hidravličnega sistema B2 zagotavlja optimalen pritisk hidravličnega sistema ter tako skladišči energijo za kasnejšo uporabo. Ko vsa tekočina odteče, avtomatika zapre ventile D7 in D8, sprosti zatesnitev D5 in D6 ter hidravlično blokado D4. Na balastne rezervoarje polne plina Dl, deluje sila vzgona, ki povzroči vrtenje zobatih koles D3 in gibanje potujočega elementa D proti vrhu elementa A. Vrtenje zobatih koles D3 povzroča vrtenje generatorjev Dl7 in proizvodnjo električne energije. Električna energija se prenaša po kablih El, preko navijalnega sistema E2 in transformatorske postaje FI v omrežje.In embodiment I, the hollow portion of element A is filled with fluid Al and the traveling element D has ballast tanks D1 properly constructed. When the traveling element D is in the lower end position, as shown in Figure 4, it is blocked by the hydraulic lock D4 shown in Figure 5. Automation via switches activates the hydraulic D5, which seals the connection between the ballast tanks Dl and the gas tank BI and at the same time activates D6 hydraulics, which seals the connection between ballast tanks D1 and hydraulic system B2. The automatics then opens the valves D7 and D8 via the hydraulics and activates hydraulic system B2 to pull the piston B4 to its initial position, thereby transferring fluid from the ballast tanks to the free-fall Div piston cylinder B3 and drawing gas from the BI gas tank. The gas is pressurized, further accelerating the process of draining fluid from the ballast tanks Dl. Liquid is driven by an additional generator with folding blades B5, which charges the B6 batteries, or, if they are already full, through the compressor B7, provides optimum pressure in the BI gas tank, or. Hydraulic system B2 provides optimum pressure for the hydraulic system to store energy for later use. When all the fluid is drained, the automatic valve closes the valves D7 and D8, releasing the sealing D5 and D6 and the hydraulic lock D4. At full throttle ballasts Dl, a buoyancy force is applied which causes the gears D3 to rotate and the travel of the traveling element D towards the top of the element A. The rotation of the gear wheels D3 causes the rotation of the Dl7 generators and the production of electricity. Electricity is transmitted through El cables, through the winding system E2 and the transformer station FI to the grid.

Med potovanjem potujočega elementa D proti vrhu elementa A avtomatika zažene hidravlični sistem B2 v spodnji hidravlično kompresorski postaji B, ki potiska bat • ·While traveling the traveling element D towards the top of element A, the automatic system starts hydraulic system B2 in the lower hydraulic compressor station B, which pushes the piston • ·

Β4 batnega cilindra B3 v zgornjo lego ter tako vrne tekočino iz batnega cilindra nazaj v element A. Med pretokom tekočine iz batnega cilindra B3 v element A se generator B5 ne aktivira, ker ima zložljive lopatice v tej smeri pretoka, kar je prikazano na sliki 6. V primeru visokih tlakov, ko je v elementu A uporabljena tekočina Al pa uporabimo večstopenjski hidravlični sistem z vzvodom, tako zmanjšamo porabo energije za vrnitev tekočine v element A - slika 6. Večstopenjska hidravlika je izvedena tako, da manjši hidravlični sistem B9 potiska vpeto ročico B8 na večjem hidravličnem sistemu B2. Hidravlični sistem B2 tvori tlak, ki potiska bat B4 batnega cilindra B3 kateri tlači tekočino Al nazaj v element A.Β4 of piston cylinder B3 in the upper position, thus returning fluid from piston cylinder back to element A. During fluid flow from piston cylinder B3 to element A, generator B5 is not activated because it has folding blades in this direction of flow, as shown in Figure 6 In the case of high pressures, when fluid Al is used in element A, a multi-stage hydraulic system with lever is used, thus reducing the energy consumption to return the fluid to element A - Figure 6. Multi-stage hydraulics are designed so that the smaller hydraulic system B9 pushes the clamped lever. B8 on the larger hydraulic system B2. Hydraulic system B2 generates a pressure that pushes piston B4 of piston cylinder B3 which presses fluid Al back into element A.

Na ustrezni razdalji pred zgornjo končno lego potujočega elementa D, avtomatika sproži regeneracijsko zaviranje potujočega elementa D z generatorji regeneracijskega zaviranja D10. Tej proizvajajo dodatno električno energijo ter polnijo akumulatorje Dll oz., če so tej že polni, preko hidravličnega sistema D12 zagotavlja optimalen pritisk hidravličnega sistema ter tako skladišči energijo za kasnejšo uporabo. Ko potujoči element D doseže zgornjo končno lego, avtomatika blokira potujoči element s hidravlično blokado D4. Nato avtomatika sproži hidravliko Dl3 zatesnitve povezave med balastnimi rezervoarji Dl in cevjo zgornjega kompresorja E3. Sedaj avtomatika odpre hidravlične ventile D14, D9 in D7 ter omogoči prost pretok tekočini v notranjost balastnih rezervoarjev Dl potujočega elementa D. Kompresor E3 sesa plin iz balastnih rezervoaijev Dl, kar pospeši proces polnjenja balastnih rezervoarjev Dl potujočega elementa D s tekočino. Ko je balastni rezervoar poln, plavajoča krogla Dl 5 zapre prehod tekočini v plinski cevni sistem D16, kar aktivira zapiranje ventilov D14, D9, D7, sprostitev hidravlične zatesnitve povezave Dl3 med balastnimi rezervoarji Dl in cevjo zgornjega kompresorja E3 ter sprostitev hidravlične blokade D4. Sila gravitacije na potujoči element D s polnimi balastnimi rezervoarji tekočine, povzroči rotacijo zobatih koles D3 in vrtenje generatorjev D17 ter proizvodnjo električne energije med prostim padom potujočega elementa D. Na ustrezni razdalji pred spodnjo končno lego potujočega elementa D, avtomatika sproži • · regeneracijsko zaviranje potujočega elementa D z generatorji D10. Ko potujoči element D doseže spodnjo končno lego, avtomatika blokira potujoči element D s hidravliko D4.At the appropriate distance in front of the upper end position of the traveling element D, the automatics initiates regenerative braking of the traveling element D with regenerative braking generators D10. They produce additional electricity and recharge the Dll batteries, or, if they are already fully charged, provide the hydraulic system with optimum pressure through the D12 hydraulic system, thus storing energy for later use. When the traveling element D reaches the upper end position, the automatic element locks the traveling element with the hydraulic lock D4. Then, the automation triggers the Dl3 hydraulics of sealing the connection between the Dl ballast tanks and the upper compressor tube E3. Now the automatics open the hydraulic valves D14, D9 and D7 and allow the fluid to flow freely inside the ballast tanks Dl of the traveling element D. The compressor E3 sucks the gas from the ballast tanks Dl, which speeds up the process of filling the ballast tanks Dl of the traveling element D with the fluid. When the ballast tank is full, the floating ball Dl 5 closes the fluid passage to the gas pipe system D16, which activates the closing of valves D14, D9, D7, release the hydraulic seal Dl3 between the ballast tanks Dl and the upper compressor hose E3, and release D4. The gravity force on the traveling element D with full ballast fluid reservoirs, causes the rotation of the gear wheels D3 and the rotation of the generators D17 and the production of electricity during the free fall of the traveling element D. At the appropriate distance from the lower end position of the traveling element D, the automatic triggers element D with D10 generators. When the traveling element D reaches the lower end position, the automatic locks the traveling element D with hydraulics D4.

Generatorji D10 izvajajo regeneracijsko zaviranje in omogočajo regulacijo hitrosti vrtenja zobatih koles D3 - generatorjev Dl7 in s tem nadzorovano proizvodnjo električne energije. Hidravlična blokada D4 izvaja blokado potujočega elementa D v spodnji in zgornji skrajni legi ter omogoča blokado v sili. Komunikacija med prostorjem nadzora in upravljanja F in generatorji zaviranja D10 ter hidravlično blokado D4 poteka po komunikacijskem kablu El, ki se navija in odvija skupaj s kablom prenosa električne energije El preko navijalnega sistema E2.D10 generators perform regenerative braking and control the speed of rotation of the D3 gear wheels - Dl7 generators and thereby control the electricity production. Hydraulic lock D4 locks the traveling member D in the lower and upper extremities and enables emergency locking. The communication between the control and control room F and the D10 braking generators and the D4 hydraulic interlock is via the communication cable El, which is bent and unwound together with the power transmission cable El via the winding system E2.

Balastni rezervoarji Dl so lahko narejeni iz kovine ali drugih ustreznih materialov za visoke tlake. Notranjost balastnih rezervoarjev je obdana z glazuro teflona. Presek elementa A je okrogle oblike zaradi visokih tlakov. Če je sistem elementa A hermetično zaprt, ima v zgornjem delu izvedeno ekspanzijsko posodo E6, ki omogoča tekočini Al raztezanje. Toplotna črpalka E4 preko izmenjevalca toplote E5 ohlaja tekočino Al v elementu A, katero segrevajo generatorji D17. Toplotna črpalka A4 segreva tekočino Al v primeru zelo nizkih temperatur ob zagonu elektrarne. V primeru vzdrževalnih del se tekočina Al iztoči iz elementa A v dodatni rezervoar tekočine I preko lopute A3. Dvigalo A2 služi za dostop do elementa J - prostorja s črpalko JI za prečrpavanje tekočine iz dodatnega rezervoaija tekočine I v dodatni rezervoar tekočine G in H preko cevi za prečrpavanje tekočine 12. Črpalka JI črpa tekočino iz sesalnega koša II po cevi 12 preko ventila preusmeritve pretoka tekočine 13 v dodatni rezervoar tekočine G in H. Po končanih vzdrževalnih delih v elementu A, se tekočina Al ponovno pretoči v element A, najprej, iz dodatnega rezervoarja H preko lopute pretoka HI in nato še iz dodatnega rezervoarja G preko lopute Gl.Dl ballast tanks may be made of metal or other suitable high pressure materials. The inside of the ballast tanks is surrounded by a Teflon glaze. The cross section of element A is of circular shape due to high pressures. If the system of element A is hermetically sealed, an expansion vessel E6 is provided in the upper part which allows the liquid Al to stretch. The heat pump E4 through the heat exchanger E5 cools the liquid Al in element A, which is heated by the generators D17. A4 heat pump heats Al fluid in case of very low temperatures at power plant startup. In the case of maintenance work, fluid Al is drained from element A into the additional reservoir of fluid I via flap A3. Elevator A2 is used to access element J - room with pump JI for pumping fluid from the additional fluid reservoir I into the additional fluid reservoir G and H via the fluid pumping pipe 12. The pump JI pumps the fluid from the suction basket II through the pipe 12 via the flow diversion valve fluid 13 to the auxiliary reservoir of fluid G and H. After the maintenance work in element A is completed, fluid Al is re-flowed to element A, first from the additional reservoir H through the flow hatch HI and then from the additional reservoir G via the flap Gl.

V primeru izvedbe II z uporabo dveh plinov različnih specifičnih gostot (p3> p2), je prenos električne energije izveden preko vzmetenih kovinskih koles D2, ki se kotalijo po tračnicah C2. Postopek delovanja je enak kot v načinu I, le da so namesto balastnih rezervoarjev uporabljeni baloni in namesto hidravličnih priključnih ventilov D9, D8, D7, D14 hitro zaporne spojke. Pri tej izvedbi ne potrebujemo elementov G, H, I in J ter njihovih sestavnih delov.In the case of embodiment II, using two gases of different specific densities (p 3 > p 2 ), the transmission of electricity is carried out via the spring metal wheels D2 which roll on the rails C2. The operation procedure is the same as in Mode I, except that balloons are used instead of ballast tanks and quick-release couplings instead of hydraulic connection valves D9, D8, D7, D14. In this embodiment, we do not need the elements G, H, I and J and their components.

V primeru potrebe po neprekinjeni dobavi električne energije se postavi dve enaki elektrarni tako, da ko potujoči element D ene miruje se potujoči element D druge potuje.In case of a need for uninterrupted supply of electricity, two identical power plants shall be installed such that when the traveling element D of one is stationary, the traveling element D of the other travels.

Claims (21)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Večstopenjska hidravlična elektrarna s kompresorjem označena s tem, da sestoji iz rezervoarja tekočine (A), spodnje hidravlične kompresorske postaje (B), instalacijskega kanala (C), potujočega elementa (D), zgornje kompresorske postaje z navij alnim sistemom (E), prostora nadzora in upravljanja (F), dodatnih rezervoarjev tekočine (G, H, I) in črpalne postaje (J).A multi-stage hydraulic power plant with a compressor, characterized in that it consists of a fluid reservoir (A), a lower hydraulic compressor station (B), an installation duct (C), a traveling element (D), an upper compressor station with a winding system (E) , control and command room (F), additional fluid tanks (G, H, I) and pumping station (J). 2. Večstopenjska hidravlična elektrarna po zahtevku 1 označena s tem, daje rezervoar tekočine (A) visoka votla zgradba z instalacijskim kanalom (C) v sredi, kije zgrajen kot votel steber z enakomerno razporejenimi zobniškimi letvami (Cl) po zunanjem obodu, ki j ih j e lahko dve ali več in segajo od vrha do tal instalacijskega kanala (C) in je na vsako zobniško letev (Cl) vpeto zobato kolo (D3) z vgrajenim generatorjem (D17).Multistage hydraulic power plant according to claim 1, characterized in that the fluid reservoir (A) is a high hollow structure with an installation duct (C) in the middle, constructed as a hollow column with evenly spaced gears (Cl) along the outer circumference thereof. it may be two or more and extend from the top to the floor of the installation duct (C) and a toothed wheel (D3) is mounted on each gear bar (Cl) with a built-in generator (D17). 3. Večstopenjska hidravlična elektrarna po zahtevku 2 označena s tem, daje generator (D 17) lahko montiran tudi ločeno od zobatega kolesa (D3) in povezan z njim preko sklopke regulatorja obratov.Multistage hydraulic power plant according to claim 2, characterized in that the generator (D 17) can also be mounted separately from the gear wheel (D3) and connected to it through the clutch of the rotary adjuster. 4. Večstopenjska hidravlična elektrarna po zahtevkih 1 in 2 označena s tem, daje potujoči element (D) sestavljen iz zobatih koles (D3)z vgrajenim generatorjem (D 17) in balastnih rezervoarjev (Dl), ki so oboji pritrjeni na nosilno os.Multistage hydraulic power plant according to claims 1 and 2, characterized in that the traveling element (D) consists of gears (D3) with a built-in generator (D 17) and ballast tanks (Dl), both of which are attached to the supporting axis. 5. Večstopenjska hidravlična elektrarna po zahtevkih 1, 2 in 4 označena s tem, • · da sta mogoča dva načina izvedbe njenega delovanja, ali z uporabo tekočine in plina ali z uporabo dveh plinov različnih gostot.5. A multi-stage hydraulic power plant according to claims 1, 2 and 4, characterized in that there are two possible ways of performing its operation, either by using liquid and gas or by using two gases of different densities. 6. Večstopenjska hidravlična elektrarna po zahtevku 5 označena s tem, daje njeno delovanje z uporabo tekočine in plina določeno z uporabo katerekoli ustrezne tekočine s specifično gostoto pi, pri čemer se prednostno uporabi voda, v rezervoarju tekočine (A) in kateregakoli ustreznega plina specifične gostote p2, pri čemer se prednostno uporabi helij, v balastnih rezervoarjih (Dl) potujočega elementa (D), pri čemer je pi večja od p2, prenos električne energije pa je izveden preko kablov (El), ki se simultano odvijajo in navijajo med gibanjem potujočega elementa (D), zato se lahko uporabijo tudi električno prevodne tekočine v rezervoarju tekočine (A).Multistage hydraulic power plant according to claim 5, characterized in that its operation using fluid and gas is determined using any suitable fluid with a specific density pi, preferably using water, in a fluid reservoir (A) and any suitable gas of a specific density p 2 , preferably using helium, in the ballast tanks (Dl) of the traveling element (D), where pi is greater than p 2 , and electricity is transmitted through cables (El) that are simultaneously unwound and wound between the movement of the traveling element (D), so electrically conductive liquids in the fluid reservoir (A) may also be used. 7. Večstopenjska hidravlična elektrarna po zahtevku 5 označena s tem, daje njeno delovanje z uporabo dveh plinov določeno z uporabo ustreznega plina specifične gostote p3, pri čemer se prednostno lahko uporabi kar zrak, v rezervoarju tekočine (A) in ustreznega plina specifične gostote p2, pri čemer se prednostno uporabi helij, v napihljivih balonih potujočega elementa (D), pri čemer je p3 večji od p2, prenos električne energije pa je izveden preko vzmetenih kovinskih koles (D2), ki se kotalijo po tračnicah (C2).Multistage hydraulic power plant according to claim 5, characterized in that its operation using two gases is determined by the use of a suitable gas of specific density p 3 , preferably using as much air as possible, in the fluid reservoir (A) and the corresponding gas of specific density p 2 , preferably using helium, in inflatable balloons of the traveling element (D), where p 3 is greater than p 2 , and electricity is transmitted via the spring metal wheels (D2) rolling along the rails (C2) . 8. Večstopenjska hidravlična elektrarna po zahtevkih 1, 2, 4 in 5 označena s tem, da za svoje delovanje izkorišča gravitacijo, silo vzgona na balastne rezervoarje (Dl) in navor kot zmnožek sile in ročice na zobatem kolesu (D3) ter dolžino poti, ki jo opravlja potujoči element (D), pri čemer je izkoristek pridobivanja električne energije odvisen od dolžine poti, ki jo opravi potujoči element (D), velikosti generatorja (D 17) in razlike v gostoti med uporabljeno tekočino v rezervoarju tekočine (A) in plinom v potujočem elementu (D) pri • · prvem načinu izvedbe oziroma od razlike v gostoti med uporabljenim plinom v elementu (A) in plinom v potujočem elementu (D) pri drugem načinu izvedbe.8. A multi-stage hydraulic power plant according to claims 1, 2, 4 and 5 characterized in that it utilizes gravity, the force of buoyancy on the ballast tanks (Dl) and torque as a product of the force and levers on the gear (D3) and the length of the path, provided by the traveling element (D), wherein the utilization of electricity generation depends on the length of the path taken by the traveling element (D), the size of the generator (D 17) and the difference in density between the fluid used in the fluid reservoir (A), and the gas in the traveling element (D) in the first mode • or the difference in density between the gas used in the element (A) and the gas in the traveling element (D) in the second mode. 9. Postopek delovanja večstopenjske hidravlične elektrarne s kompresorjem označen s tem, da se ta v določeni meri razlikuje glede na način izvedbe delovanja, ali z uporabo tekočine in plina ali z uporabo dveh plinov različnih gostot.9. The process of operating a multi-stage hydraulic power plant with a compressor, characterized in that it differs to some extent in the manner in which the operation is performed, either by using liquid and gas or by using two gases of different densities. 10. Postopek delovanja po zahtevku 9 označen s tem, daje pri načinu izvedbe z uporabo tekočine in plina je votli del rezervoarja tekočine (A) napolnjen s tekočino (Al) in potujoči element (D) ima ustrezno izvedene balastne rezervoaije (Dl), in ko se potujoči element (D) nahaja v spodnji končni legi (slika 4), je blokiran s hidravlično blokado (D4), avtomatika preko stikal aktivira hidravliko (D5), ki izvede zatesnitev povezave med balastnimi rezervoarji (Dl) in rezervoarjem plina (BI) ter istočasno aktivira hidravliko (D6), ki izvede zatesnitev povezave med balastnimi rezervoarji (Dl) in hidravličnim sistemom (B2), nato avtomatika preko hidravlike odpre ventile (D7, D8) ter aktivira hidravlični sistem (B2), da vleče bat (B4) v začetni položaj in s tem tekočina prehaja iz balastnih rezervoarjev (Dl) v batni cilinder (B3) s prostim padom ter vleče plin iz rezervoarja plina (BI), pri čemer je plin pod tlakom, kar še dodatno pospeši proces praznjenja tekočine iz balastnih rezervoarjev (Dl), tekočina med odtekanjem pa poganja dodatni generator z zložljivimi lopaticami (B5), ki polni akumulatorje (B6) oziroma, če so tej že polni, preko kompresorja (B7) zagotavlja optimalen pritisk v rezervoarju plina (BI) oziroma preko hidravličnega sistema (B2) zagotavlja optimalen pritisk hidravličnega sistema ter tako skladišči energijo za kasnejšo uporabo.The method of operation according to claim 9, characterized in that, in the fluid and gas embodiment, the hollow portion of the fluid reservoir (A) is filled with fluid (Al) and the traveling element (D) has ballast reservoirs (Dl) properly constructed, and when the traveling element (D) is in the lower end position (Fig. 4), it is blocked by a hydraulic lock (D4), the automatic switch activates the hydraulics (D5) through switches, which seals the connection between the ballast tanks (Dl) and the gas tank (BI ) and simultaneously activates the hydraulics (D6), which seals the connection between the ballast tanks (Dl) and the hydraulic system (B2), then the automatics opens the valves (D7, D8) via hydraulics and activates the hydraulic system (B2) to draw the piston (B4). ) to the starting position, thereby transferring the fluid from the ballast tanks (Dl) to the free-fall piston cylinder (B3) and drawing gas from the gas tank (BI), the gas being pressurized, further accelerating the fluid discharge process from the ballast The reservoir fluid (Dl) and the fluid during the outflow are driven by an additional generator with folding blades (B5), which charges the batteries (B6) or, if they are already full, provides an optimal pressure in the gas tank (BI) or via the compressor (B7). The Hydraulic System (B2) provides optimum pressure for the hydraulic system to store energy for later use. 11. Postopek delovanja po zahtevku 10 označen s tem, da ko vsa tekočina odteče iz rezervoarja (A), avtomatika zapre ventile (D7, D8), sprosti zatesnitev (D5, D6) ter hidravlično blokado (D4), pri čemer na balastne rezervoarje (Dl) polne plina, deluje sila vzgona, ki povzroči vrtenje zobatih koles (D3) in gibanje potujočega elementa (D) proti vrhu rezervoarja tekočine (A), vrtenje zobatih koles (D3) pa povzroča vrtenje generatorjev (D 17) in s tem proizvodnjo električne energije, ki se prenaša po kablih (El), preko navijalnega sistema (E2) in transformatorske postaje (Fl) v omrežje.A method of operation according to claim 10, characterized in that when all the fluid drains from the reservoir (A), the automatic closes the valves (D7, D8), releasing the seal (D5, D6) and the hydraulic lock (D4), thereby releasing the ballast tanks (Dl) full throttle, a buoyancy force that causes the gears (D3) to rotate and the travel element (D) moves towards the top of the fluid reservoir (A), and the gears (D3) rotate to cause the generators (D 17) to rotate generation of electricity transmitted via cables (El), through the winding system (E2) and the transformer station (Fl) into the grid. 12. Postopek delovanja po zahtevkih 10 in 11 označen s tem, da med potovanjem potujočega elementa (D) proti vrhu rezervoarja (A) avtomatika zažene hidravlični sistem (B2) v spodnji hidravlično kompresorski postaji (B), ki potiska bat (B4) batnega cilindra (B3) v zgornjo lego ter tako vrne tekočino iz batnega cilindra nazaj v rezervoar (A), pri čemer se med pretokom tekočine iz batnega cilindra (B3) v element (A) generator (B5) ne aktivira, ker ima zložljive lopatice v tej smeri pretoka (slika 6).12. The operating method according to claims 10 and 11, characterized in that during the travel of the traveling element (D) towards the top of the tank (A), the automatic system starts the hydraulic system (B2) in the lower hydraulic compressor station (B) which pushes the piston (B4) of the piston of the cylinder (B3) to the upper position, thus returning the fluid from the piston cylinder back to the tank (A) without activating the generator (B5) during the flow of fluid from the piston cylinder (B3) to the element (A) because it has folding blades in this flow direction (Figure 6). 13. Postopek delovanja po zahtevkih 10 do 12 označen s tem, da primeru visokih tlakov, ko je v rezervoarju (A) uporabljena tekočina (Al), uporabimo večstopenjski hidravlični sistem z vzvodom in tako zmanjšamo porabo energije za vrnitev tekočine v rezervoar (A), pri čemer večstopenjska hidravlika deluje tako, da manjši hidravlični sistem (B9) potiska vpeto ročico (B8) na večjem hidravličnem sistemu (B2), ki tvori tlak, ki potiska bat (B4) batnega cilindra (B3), ki potiska tekočino (Al) nazaj v rezervoar A.Method according to claims 10 to 12, characterized in that in the case of high pressures when a fluid (Al) is used in the reservoir (A), a multi-stage hydraulic system with a lever is used to reduce the energy consumption to return the fluid to the reservoir (A) , wherein the multi-stage hydraulics act by pushing the clamping lever (B8) on the larger hydraulic system (B2) to form a pressure which pushes the piston (B4) of the piston cylinder (B3), which pushes the fluid (Al ) back to tank A. 14. Postopek delovanja po zahtevkih 10 do 13 označen s tem, da na ustrezni razdalji pred zgornjo končno lego potujočega elementa (D) avtomatika sproži regeneracijsko zaviranje potujočega elementa (D) z generatorji regeneracijskega zaviranja (D 10), ki proizvajajo dodatno električno energijo ter polnijo akumulatorje (D 11) oziroma, če so že polni, preko hidravličnega sistema (D 12) zagotavlja optimalen pritisk hidravličnega sistema ter tako skladišči energijo za kasnejšo uporabo.A method of operation according to claims 10 to 13, characterized in that, at an adequate distance from the upper end position of the traveling element (D), the automatics initiate regenerative braking of the traveling element (D) with regenerative braking generators (D 10) which generate additional electricity and They charge the batteries (D 11) or, if they are fully charged, provide the hydraulic system with optimal pressure (D 12), thus storing energy for later use. 15. Postopek delovanja po zahtevkih 10 do 14 označen s tem, da ko potujoči element (D) doseže zgornjo končno lego, avtomatika blokira potujoči element (D) s hidravlično blokado (D4), nato sproži hidravliko (D 13) zatesni povezave med balastnimi rezervoarji (Dl) in cevjo zgornjega kompresorja (E3) in nato avtomatika odpre hidravlične ventile (D14, D9, D7) ter omogoči prost pretok tekočini v notranjost balastnih rezervoarjev (Dl) potujočega elementa (D), pri čemer kompresor (E3) sesa plin iz balastnih rezervoarjev (Dl), kar pospeši proces polnjenja balastnih rezervoarjev (Dl) potujočega elementa (D) s tekočino.The operating method according to claims 10 to 14, characterized in that when the traveling element (D) reaches the upper end position, the automatic locks the traveling element (D) with the hydraulic lock (D4), then triggers the hydraulics (D 13) to seal the ballast connections tanks (Dl) and the upper compressor tube (E3) and then the automatic opens the hydraulic valves (D14, D9, D7) and allows the fluid to flow freely inside the ballast tanks (Dl) of the traveling element (D), with the compressor (E3) sucking gas from ballast tanks (Dl), which speeds up the process of filling the ballast tanks (Dl) of the traveling element (D) with liquid. 16. Postopek delovanja po zahtevku 15 označen s tem, da ko je balastni rezervoar (A) poln, plavajoča krogla (Dl 5) zapre prehod tekočini v plinski cevni sistem (D 16), kar aktivira zapiranje ventilov (D 14, D9, D7), sprostitev hidravlične zatesnitve povezave (D 13) med balastnimi rezervoarji (Dl) in cevjo zgornjega kompresorja (E3) ter sprostitev hidravlične blokade (D4), nato sila gravitacije na potujoči element (D) s polnimi balastnimi rezervoarji tekočine povzroči rotacijo zobatih koles (D3) in vrtenje generatorjev (D 17) ter proizvodnjo električne energije med prostim padom potujočega elementa (D), pri tem pa na ustrezni razdalji pred spodnjo končno lego potujočega elementa (D) avtomatika sproži regeneracijsko zaviranje potujočega elementa (D) z generatorji (D 10) in ko potujoči element (D) doseže spodnjo končno lego, avtomatika blokira potujoči element (D) s hidravliko (D4).A method of operation according to claim 15, characterized in that when the ballast tank (A) is full, the floating ball (Dl 5) closes the fluid passage to the gas pipe system (D 16), which activates the closing of the valves (D 14, D9, D7 ), releasing the hydraulic seal (D 13) between the ballast tanks (Dl) and the upper compressor tube (E3), and releasing the hydraulic lock (D4), then the force of gravity on the traveling element (D) with the full ballast tanks causes the rotation of the gears ( D3) and the rotation of the generators (D 17) and the production of electricity during the free fall of the traveling element (D), while at the appropriate distance before the lower end position of the traveling element (D), the automatic triggers regenerative braking of the traveling element (D) with the generators (D) 10) and when the traveling element (D) reaches the lower end position, the automatic locks the traveling element (D) with the hydraulics (D4). 17. Postopek delovanja po zahtevkih 10 do 16 označen s tem, da generatorji (D10) izvajajo regeneracijsko zaviranje in omogočajo regulacijo hitrosti vrtenja zobatih koles (D3) in generatorjev (Dl7) in s tem omogočajo nadzorovano proizvodnjo električne energije, medtem ko hidravlična blokada (D4) izvaja blokado potujočega elementa (D) v spodnji in zgornji skrajni legi ter omogoča blokado v sili, komunikacija med prostorom nadzora in upravljanja (F) in generatorji zaviranja (D 10) ter hidravlično blokado (D4) pa poteka po komunikacijskem kablu (El), ki se navija in odvija skupaj s kablom prenosa električne energije (El) preko navijalnega sistema (E2).17. The operating method according to claims 10 to 16, characterized in that the generators (D10) perform regenerative braking and enable the gearing of the gear wheels (D3) and the generators (Dl7) to be controlled, thereby allowing the controlled generation of electricity while the hydraulic lock ( D4) blocks the traveling element (D) in the lower and upper extreme positions and enables emergency locking, and communication between the control and command space (F) and the braking generators (D 10) and the hydraulic lock (D4) is via the communication cable (El ), which is bent and unwound together with the power transmission cable (El) via the winding system (E2). 18. Postopek delovanja po zahtevku 9 do 16 označen s tem, daje v primeru izvedbe delovanja z uporabo dveh plinov različnih specifičnih gostot prenos električne energije izveden preko vzmetenih kovinskih koles (D2), ki se kotalijo po tračnicah (C2), pri čemer je postopek delovanja enak kot v načinu izvedbe z uporabo tekočine in plina, le da so namesto balastnih rezervoaijev (Dl) uporabljeni baloni in namesto hidravličnih priključnih ventilov (D9, D8, D7, D14) hitro zaporne spojke in pri tej izvedbi ne potrebujemo elementov rezervoarjev (G H, I) in črpalne postaje (J) ter njihovih sestavnih delov.18. The method of operation according to claims 9 to 16, characterized in that, in the case of performing the operation using two gases of different specific densities, the transmission of electricity is carried out via the spring metal wheels (D2), which are rolling along the rails (C2) operation is the same as in fluid and gas mode, except that balloons are used instead of ballast tanks (Dl) and quick couplings instead of hydraulic connecting valves (D9, D8, D7, D14) and no tank elements are required in this embodiment (GH , I) and pumping station (J) and their components. 19. Večstopenjska hidravlična elektrarna po zahtevkih od 1 do 8 označena s tem, da so balastni rezervoarji (Dl) prednostno narejeni iz kovine ali drugih ustreznih materialov za visoke tlake, njihova notranjost je obdana z glazuro teflona, presek rezervoarja (A) je okrogle oblike zaradi visokih tlakov.19. The multi-stage hydraulic power plant according to claims 1 to 8, characterized in that the ballast tanks (Dl) are preferably made of metal or other suitable high pressure materials, their interior is surrounded by teflon glazing, the cross section of the tank (A) is circular in shape due to high pressures. • · · • ·• · · • · 20. Večstopenjska hidravlična elektrarna po zahtevkih od 1 do 8 in 19 označena s tem, da če je sistem rezervoarja (A) hermetično zaprt, ima v zgornjem delu izvedeno ekspanzijsko posodo (E6), ki omogoča tekočini (Al) raztezanje, toplotna črpalka (E4) pa preko izmenjevalca toplote (E5) ohlaja tekočino (Al) v rezervoarju (A), ki jo segrevajo generatorji (D17), prav tako toplotna črpalka (A4) segreva tekočino (Al) v primeru zelo nizkih temperatur ob zagonu elektrarne.20. A multi-stage hydraulic power plant according to claims 1 to 8 and 19, characterized in that, if the system of the reservoir (A) is sealed, an expansion vessel (E6) is provided in the upper part allowing the fluid (Al) to be expanded by a heat pump ( E4) cools the liquid (Al) in the reservoir (A) heated by the generators (D17) through the heat exchanger (E5), and also the heat pump (A4) heats the liquid (Al) in case of very low temperatures at power plant start-up. 21. Večstopenjska hidravlična elektrarna po zahtevkih od 1 do 8 in 19 in 20 označena s tem, da dvigalo (A2) služi za dostop do črpalne postaje (J) - prostorja s črpalko (JI) za prečrpavanje tekočine iz dodatnega rezervoarja tekočine (I) v dodatni rezervoar tekočine (G, H) preko cevi za prečrpavanje tekočine (12), pri čemer črpalka (JI) črpa tekočino iz sesalnega koša (II) po cevi (12) preko ventila preusmeritve pretoka tekočine (13) v dodatni rezervoar tekočine (G, H).21. A multi-stage hydraulic power plant according to claims 1 to 8 and 19 and 20, characterized in that the lift (A2) is used to access the pumping station (J) - a pump room (JI) for pumping fluid from the additional fluid reservoir (I) into an additional fluid reservoir (G, H) via a fluid conduit (12), wherein the pump (JI) draws fluid from the intake manifold (II) through the tube (12) via the fluid flow diversion valve (13) into the additional fluid reservoir (13). G, H).
SI201300178A 2013-06-28 2013-06-28 Multi-stage hydrualic power plant with compressor SI24404A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201300178A SI24404A (en) 2013-06-28 2013-06-28 Multi-stage hydrualic power plant with compressor
PCT/SI2014/000037 WO2014209240A1 (en) 2013-06-28 2014-06-16 Multi-stage hydraulic power plant with compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201300178A SI24404A (en) 2013-06-28 2013-06-28 Multi-stage hydrualic power plant with compressor

Publications (1)

Publication Number Publication Date
SI24404A true SI24404A (en) 2014-12-31

Family

ID=51519160

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201300178A SI24404A (en) 2013-06-28 2013-06-28 Multi-stage hydrualic power plant with compressor

Country Status (2)

Country Link
SI (1) SI24404A (en)
WO (1) WO2014209240A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI26013A (en) 2020-06-19 2021-12-31 ENERGETIK, ogrevalne naprave Spacecraft powered by electromagnetic waves with primary and secondary tunnel for accelerating in the vacuum and generating electricity to propel the craft

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329361A1 (en) * 1983-08-13 1985-02-28 8600 Bamberg Sauer Josef Drive device for machines
US4718232A (en) 1986-10-21 1988-01-12 Willmouth Robert W Gravity and buoyancy driven power generators
DE29812463U1 (en) 1998-01-20 1998-10-08 Thien, Gerhard, 15890 Eisenhüttenstadt Torque generating device
US5944480A (en) 1998-01-26 1999-08-31 Forrest; Brad A. Buoyancy and gravitation motor
WO2005012724A2 (en) * 2003-08-04 2005-02-10 Borisa Antonijevic Gravitational alternator
ATE402338T1 (en) 2003-11-10 2008-08-15 Takeuchi Mfg BUOYANCY POWER PLANT
WO2007049288A1 (en) * 2005-10-27 2007-05-03 Astad Nadir Parakh A system for generating continuous energy
SI22815A (en) 2008-06-12 2009-12-31 Jana Škoda in Refik Fočić Buoyancy engine - turbine - pump
SI22556A (en) 2007-06-20 2008-12-31 Škoda Jana Buoyancy engine - turbine - pump
SI22762A (en) 2008-04-11 2009-10-31 Marjan ZupanÄŤiÄŤ Buoyancy engine
US7765804B2 (en) 2008-06-03 2010-08-03 Davis Stephen E Hydraulic motor using buoyant and gravitational forces to generate kinetic energy
US20110162356A1 (en) 2009-06-29 2011-07-07 Douglas Reynolds Hastings Rotational gravity/buoyancy power generator
GB2488158B (en) * 2011-02-18 2015-04-15 George Edward Wadsworth Gravity water engine

Also Published As

Publication number Publication date
WO2014209240A1 (en) 2014-12-31
WO2014209240A4 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
US9045209B2 (en) Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources
JP5579924B2 (en) Tidal energy seawater desalination system, power generation system, and integrated energy utilization system
US20130134714A1 (en) Method And System For Tidal Energy Storage And Power Generation
US20090021012A1 (en) Integrated wind-power electrical generation and compressed air energy storage system
CN102472244A (en) Low-drag hydro-pneumatic power cylinder and system
US20220196341A1 (en) Three section configuration for compressed air energy storage systems
EP3902991B1 (en) Advanced gravity-moment-hydro power system
JP4480051B1 (en) A hybrid power generator connected to a gravity power generator using a balance having a pressure load device.
US20210388809A1 (en) Accumulator over-pressurization in a hydrostatically compensated compressed air energy storage system
SI24404A (en) Multi-stage hydrualic power plant with compressor
DE102011118486A1 (en) Compressed air storage power plant
WO2014199286A1 (en) Fluid pumping system and method
US20210388810A1 (en) Hydrostatically compensated caes system having an elevated compensation liquid reservoir
US20220412301A1 (en) Energy conversion device
US20230250795A1 (en) Method of electric energy generation and power generation system, in particular a power plant
KR20110135939A (en) System and method for the autonomous production of fluid and electricity
KR101970637B1 (en) Energy recovery Apparatus using buoyancy
WO2014020581A2 (en) Fluid displacement methods and resultant machines
WO2000001945A1 (en) Accumulated wind and wave power plant
WO2023115186A1 (en) Submerged system for producing thrust for energy generation
KR20110110732A (en) The power system for improving energy efficiency
KR20070078421A (en) Kinetic energy storage device
JP2004251259A (en) Circulation type hydraulic power generation device and power generation method
WO2017093826A1 (en) Reciprocating hydraulic system
WO2015087170A1 (en) Under liquid electricity production system

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20150122

OU01 Decison according to article 73(1) ipa 1992, publication of decision on fulfilment of conditions on patentability

Effective date: 20220906