WO2023115186A1 - Submerged system for producing thrust for energy generation - Google Patents

Submerged system for producing thrust for energy generation Download PDF

Info

Publication number
WO2023115186A1
WO2023115186A1 PCT/BR2022/050511 BR2022050511W WO2023115186A1 WO 2023115186 A1 WO2023115186 A1 WO 2023115186A1 BR 2022050511 W BR2022050511 W BR 2022050511W WO 2023115186 A1 WO2023115186 A1 WO 2023115186A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust force
submerged
flexible
producing thrust
submerged system
Prior art date
Application number
PCT/BR2022/050511
Other languages
French (fr)
Portuguese (pt)
Inventor
Rafael Camilotti
Original Assignee
Rafael Camilotti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102021026012-2A external-priority patent/BR102021026012A2/en
Application filed by Rafael Camilotti filed Critical Rafael Camilotti
Publication of WO2023115186A1 publication Critical patent/WO2023115186A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/04Alleged perpetua mobilia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia

Definitions

  • the present patent belongs to the field of propulsive thrust force production systems, more particularly, the submerged system can be integrated into a power generator, or any other means of converting kinetic energy into mechanical energy.
  • the submerged system is equipped with a set of floats that, when receiving a portion of compressed air, provide a continuous movement of said submerged system, allowing the generation of energy, also, continuously.
  • hydroelectric energy is the most exploited, corresponding to approximately 65% of the national energy matrix.
  • hydroelectric plants use the gravitational force of water, dammed in dams, to turn the turbines that generate electricity.
  • hydroelectric plants do not use fossil fuels to generate electricity, disadvantageously, large plants have a negative impact on the environment. These impacts are a consequence of large areas of flooding, deforestation carried out for their construction and changes in the structure of rivers.
  • the present invention aims to provide a submerged system for producing thrust force for power generation, which is equipped with a set of flexible floats that are attached to a mechanism of transport that bypass at least two rotational mechanisms, ensuring that the flexible floats and the transport mechanism translate in an elliptical orbit.
  • Another objective of the present invention is to provide a submerged thrust force production system equipped with a gas compression subsystem, which, through a gear equipped with pneumatic valves along its teeth, injects a fluid gas inside each flexible float, inflating it and moving it through the thrust of each submerged flexible float.
  • a gas compression subsystem which, through a gear equipped with pneumatic valves along its teeth, injects a fluid gas inside each flexible float, inflating it and moving it through the thrust of each submerged flexible float.
  • Figure 1 shows a set of flexible floats (1), which are associated with a transport mechanism (2) that translate on a rotation mechanism (3) in an elliptical orbit, inserted in the compartment (4) and a gas compression subsystem (5),
  • Figure 2 shows the gas compression subsystem (5), which comprises at least one air reservoir (51), at least one air compressor (50) and at least one pipe (52) that carries compressed air to one of the rotation mechanisms (3).
  • Figure 3 shows the rotation system (3), which is comprised of at least one lower gear (30) and at least one lower gear (31).
  • Figure 4 reveals the lower gear (30), which comprises pneumatic valves (300) along its teeth, in addition, it shows a flexible float (10) with its open end (101) and also, a receiving valve (11) which receives the compressed gas through the pneumatic valves (300).
  • FIG. 5 reveals the compartment (4), which is configured by a cylindrical structure, performing the function of a reservoir. yet, the housing (4) comprises a closed end (40) and an open end (41).
  • figure 6 shows another embodiment of the invention, in which the compartment (4) comprises a platform (70) for sustaining and floating the system (S).
  • the present patent discloses a submerged system (S) for producing thrust force by means of the pressure difference between a liquid fluid and a gaseous fluid inserted inside a float.
  • said system (S) is integrated into a generator, transforming kinetic energy into electrical energy.
  • the submerged system (S) for producing buoyancy force comprises a set of flexible floats (1), at least one transport mechanism (2), at least one rotation mechanism (3), at least one compartment (4) and at least one gas compression subsystem (5).
  • the set of floats (1) is coupled to the transport mechanism (2) which translates on the rotation mechanism (3) in an elliptical orbit, through the buoyancy force generated by the difference in pressure between the liquid fluid stored in the compartment (4) and the gaseous fluid generated by each gas compression subsystem (5), whose gaseous fluid is blown into the interior of each flexible float (10) through at least one receiver valve (11) and evacuated through the end (101) of said flexible float (10).
  • the liquid fluid stored in the compartment (4) is preferably water, however, it can be any other type of liquid that has low viscosity in order to allow the displacement of the set of floats (1).
  • said set of flexible floats (1) by means of a rotation mechanism (3), runs through an elliptical geometry, since the rotation mechanism (3) comprises at least one lower gear (30) and at least one upper gear (31) arranged on the same axis, so as to alternate the direction of each flexible float (10).
  • the transport mechanism (2) is configured by a set of chains (20), which the set of flexible floats (1) is associated.
  • the set of chains (20) translates the lower and upper gears (30, 31) respectively, causing the floats (10) to be in a first moment, with the opening (101) facing downwards and a second moment , with the opening (101) facing upwards.
  • each flexible float (10) when a first flexible float (10) is in contact with the lower gear (30), it receives air injection through the pneumatic valve (300), which is disposed over each tooth of each lower gear (30).
  • each flexible float (10) comprises at least one receiving valve (11), arranged on one of the sides of the flexible float (10).
  • the gaseous fluid is blown into each flexible float (10) through a receiving valve (11), and thus generated a positive pressure inside the flexible float (10), which expands, thus forming an air pocket.
  • the upper gear (31) is arranged in a non-submerged region of the compartment (4), since in this region, air is evacuated from inside the flexible float (10) through the open end (41), since, when passing through the upper gear (31), each flexible float (10) automatically empties and the weight of its structure deforms it, flattening the flexible float.
  • the gas compression subsystem (5) comprises at least one compressor (50), at least one reservoir (51) and a pipe (52) that transports the compressed gas to a of the rotation mechanisms (3), specifically, the lower gear (30).
  • the gas compression subsystem (5) makes it possible to increase the speed of the flexible float (10), controlling the flow rate and the pressure at which the compressed gas is blown into each flexible float (10).
  • the compartment (4) is a water reservoir, configured by a preferably cylindrical structure, so that the compartment (4) comprises a lower closed end (40) and an upper end opened (41 ).
  • the open end (41) promotes the internal equalization of the compartment (4) with the external environment in which the submerged system (S) of production of buoyancy force is inserted.
  • the submerged thrust force production system (S) can be integrated into an electrical power generator, thus producing electrical energy.
  • the submerged thrust force production system (S) can be integrated with any means of converting kinetic energy into mechanical energy.
  • the compartment (4) comprises a platform (70) for sustaining and floating the system (S), so as to allow the system (S) to be installed in places with high depth, while the open end (41) together with the gear (31) remains in the external region to expel the compressed gas.
  • the platform (70) allows the system (S) to be easily accessed in cases of need for preventive or corrective maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention patent pertains to the field of systems for producing propulsive thrust. More specifically, the submerged system can be integrated into a power generator or into any other means for converting kinetic energy into mechanical energy. The submerged system is equipped with a set of floats, which, when receiving a portion of compressed air, provides continuous movement of said submerged system, permitting the generation of energy also in a continuous manner. Hence, the system (S) comprises a set of flexible floats (1) coupled to a conveyor mechanism (2) which rotates about a rotation mechanism (3) in an elliptical orbit by means of the thrust generated by the pressure difference between a liquid fluid stored in a compartment (4) and a gaseous fluid generated by at least one gas compression subsystem (5), the gaseous fluid of which is blown into each flexible float (10) by means of at least one receiver valve (11) and is evacuated via the end (101) of said flexible float (10).

Description

Sistema submerso de produção de força de empuxo para geração de energia Submerged thrust force production system for power generation
CAMPO DE APLICAÇÃO APPLICATION FIELD
[0001 ] A presente patente de invenção pertence ao campo dos sistemas de produção de força de empuxo propulsivo, mais particularmente, o sistema submerso pode ser integrado a um gerador de energia, ou a qualquer outro meio de conversão de energia cinética em energia mecânica. [0001] The present patent belongs to the field of propulsive thrust force production systems, more particularly, the submerged system can be integrated into a power generator, or any other means of converting kinetic energy into mechanical energy.
[0002] O sistema submerso é dotado de um conjunto de flutuadores que ao receber uma porção de ar comprimido, provê uma movimentação contínua do referido sistema submerso, permitindo a geração de energia, também, de forma contínua. [0002] The submerged system is equipped with a set of floats that, when receiving a portion of compressed air, provide a continuous movement of said submerged system, allowing the generation of energy, also, continuously.
ESTADO DA TÉCNICA STATE OF THE TECHNIQUE
[0003] No Brasil, a energia hidrelétrica é a mais explorada, correspondendo por aproximadamente 65% da matriz energética nacional. Como já é de conhecimento, as hidrelétricas utilizam da força gravitacional da água, represada em barragens, para girar as turbinas que geram a energia elétrica. Apesar das hidrelétricas não utilizarem combustíveis fósseis para gerar a energia elétrica, desvantajosamente, as grandes usinas impactam de forma negativa no meio ambiente. Esses impactos são consequência das grandes áreas de alagamento, dos desmatamentos realizados para sua construção e pelas alterações na estrutura dos rios. [0003] In Brazil, hydroelectric energy is the most exploited, corresponding to approximately 65% of the national energy matrix. As is already known, hydroelectric plants use the gravitational force of water, dammed in dams, to turn the turbines that generate electricity. Although hydroelectric plants do not use fossil fuels to generate electricity, disadvantageously, large plants have a negative impact on the environment. These impacts are a consequence of large areas of flooding, deforestation carried out for their construction and changes in the structure of rivers.
[0004] Já a geração de energia por meio de fonte renováveis, tais como a energia eólica e energia solar, necessitam de áreas muito grandes para gerar uma quantidade significativa de energia elétrica que possa alimentar uma região, mesmo que pequena. [0004] Energy generation through renewable sources, such as wind energy and solar energy, require very large areas to generate a significant amount of electricity that can feed a region, even a small one.
[0005] São conhecidos no estado da técnica, meios de geração contínuo de energia, mais conhecidos como “gerador de energia autossuficiente” ou “gerador de energia perpétuo”, os quais geram energia elétrica por meio da movimentação mecânica contínua sem consumir a energia elétrica gerada ou sem necessitar de fontes externas de energia elétrica. [0005] Are known in the state of the art, means of continuous power generation, better known as "energy generator self-sufficient” or “perpetual power generator”, which generate electrical energy through continuous mechanical movement without consuming the generated electrical energy or without requiring external sources of electrical energy.
[0006] Um exemplo é o documento PI 8702323-7 que revela o uso de meios flutuantes que alternam entre vazios e preenchidos, de modo a manter o sistema em movimento contínuo. Contudo, este modelo de gerador utiliza flutuadores rígidos, semelhantes a um copo, o que desvantajosamente, necessita de um espaço maior, já que a abertura de cada flutuador precisa estar para cima ou para baixo, alternativamente. Além disso, necessitam de alguns estágios com água para submersão dos flutuadores e alguns estágios vazios para drenagem dos ditos flutuadores. [0006] An example is the document PI 8702323-7 which reveals the use of floating means that alternate between empty and filled, in order to keep the system in continuous movement. However, this model of generator uses rigid floats, similar to a glass, which disadvantageously needs a larger space, since the opening of each float needs to be up or down, alternatively. In addition, they need some stages with water for submerging the floats and some empty stages for draining said floats.
[0007] Visando solucionar os inconvenientes do estado da técnica, a presente invenção tem como objetivo prover um sistema submerso de produção de força de empuxo para geração de energia, o qual é dotado de um conjunto de flutuadores flexíveis que são fixados à um mecanismo de transporte que contornam pelo menos dois mecanismos de rotação, garantindo que os flutuadores flexíveis e o mecanismo de transporte transladem em uma órbita elíptica. [0007] In order to solve the drawbacks of the state of the art, the present invention aims to provide a submerged system for producing thrust force for power generation, which is equipped with a set of flexible floats that are attached to a mechanism of transport that bypass at least two rotational mechanisms, ensuring that the flexible floats and the transport mechanism translate in an elliptical orbit.
[0008] Desta forma, a órbita elíptica e os flutuadores flexíveis permitem que o sistema submerso de produção de força de empuxo ocupe um menor espaço lateral. [0008] In this way, the elliptical orbit and flexible floats allow the submerged system to produce thrust force to occupy less lateral space.
[0009] Um outro objetivo da presente invenção é prover um sistema submerso de produção de força de empuxo dotado de um subsistema de compressão de gás, o qual, por meio de uma engrenagem dotada de válvulas pneumáticas ao logo de seus dentes, injeta um fluído gasoso no interior de cada flutuador flexível, inflando-o e movimentando-o por meio do empuxo de cada flutuador flexível submerso. [0010] Desta forma, a injeção do ar comprimido nos flutuadores flexíveis é feita por meio de pelo menos um dos dois mecanismos de rotação, aproveitando o direcionamento dos ditos flutuadores flexíveis, na posição vertical com a abertura para baixo, para injetar o ar comprimido no interior de cada flutuador flexível. [0009] Another objective of the present invention is to provide a submerged thrust force production system equipped with a gas compression subsystem, which, through a gear equipped with pneumatic valves along its teeth, injects a fluid gas inside each flexible float, inflating it and moving it through the thrust of each submerged flexible float. [0010] In this way, the injection of compressed air into the flexible floats is done by means of at least one of the two rotation mechanisms, taking advantage of the direction of said flexible floats, in the vertical position with the opening downwards, to inject the compressed air inside each flexible float.
BREVE DESCRIÇÃO DOS DESENHOS BRIEF DESCRIPTION OF THE DRAWINGS
[0011 ] O objeto da presente invenção será melhor compreendido à luz da descrição detalhada que segue em sua forma de realização preferencial, mas não limitativa, a qual tem por ilustração os desenhos esquemáticos em anexo. [0011] The object of the present invention will be better understood in the light of the detailed description that follows in its preferred, but non-limiting, embodiment, which is illustrated by the attached schematic drawings.
[0012] A figura 1 revela um conjunto de flutuadores flexíveis (1 ), os quais estão associados um mecanismo de transporte (2) que transladam sobre um mecanismo de rotação (3) em uma órbita elíptica, inseridos no compartimento (4) e um subsistema de compressão de gás (5), [0012] Figure 1 shows a set of flexible floats (1), which are associated with a transport mechanism (2) that translate on a rotation mechanism (3) in an elliptical orbit, inserted in the compartment (4) and a gas compression subsystem (5),
[0013] A figura 2 revela o subsistema de compressão de gás (5), o qual compreende, pelos menos um reservatório de ar (51 ), pelo menos um compressor de ar (50) e pelo menos uma tubulação (52) que transporta o ar comprimido até um dos mecanismos de rotação (3). [0013] Figure 2 shows the gas compression subsystem (5), which comprises at least one air reservoir (51), at least one air compressor (50) and at least one pipe (52) that carries compressed air to one of the rotation mechanisms (3).
[0014] A figura 3 revela o sistema de rotação (3), o qual é compreendido por pelo menos por uma engrenagem inferior (30) e pelo menos uma engrenagem inferior (31 ). [0014] Figure 3 shows the rotation system (3), which is comprised of at least one lower gear (30) and at least one lower gear (31).
[0015] A figura 4 revela a engrenagem inferior (30), a qual, compreende ao longo de seus dentes válvulas pneumáticas (300), além disso, evidencia um flutuador flexível (10) com sua extremidade aberta (101 ) e ainda, uma válvula receptora (11 ) a qual recebe o gás comprimido por meio das válvulas pneumáticas (300). [0015] Figure 4 reveals the lower gear (30), which comprises pneumatic valves (300) along its teeth, in addition, it shows a flexible float (10) with its open end (101) and also, a receiving valve (11) which receives the compressed gas through the pneumatic valves (300).
[0016] A figura 5 revela o compartimento (4), o qual é configurado por uma estrutura cilíndrica, realizando a função de um reservatório. Ainda, o compartimento (4) compreende uma extremidade fechada (40) e uma extremidade aberta (41 ). [0016] Figure 5 reveals the compartment (4), which is configured by a cylindrical structure, performing the function of a reservoir. yet, the housing (4) comprises a closed end (40) and an open end (41).
[0017] Por fim, a figura 6 revela uma outra forma de realização da invenção, em que o compartimento (4) compreende uma plataforma (70) de sustentação e flutuação do sistema (S). [0017] Finally, figure 6 shows another embodiment of the invention, in which the compartment (4) comprises a platform (70) for sustaining and floating the system (S).
DESCRIÇÃO DETALHADA DETAILED DESCRIPTION
[0018] A presente patente de invenção revela um sistema (S) submerso de produção de força de empuxo por meio da diferença de pressão entre um fluído líquido e um fluído gasoso inserido no interior de um flutuador. Particularmente, o referido sistema (S) é integrado à um gerador, transformando a energia cinética em energia elétrica. [0018] The present patent discloses a submerged system (S) for producing thrust force by means of the pressure difference between a liquid fluid and a gaseous fluid inserted inside a float. Particularly, said system (S) is integrated into a generator, transforming kinetic energy into electrical energy.
[0019] Desse modo, conforme ilustrado na figura 1 , o sistema (S) submerso de produção de força de empuxo compreende um conjunto de flutuadores flexíveis (1 ), pelo menos um mecanismo de transporte (2), pelo menos um mecanismo de rotação (3), pelo menos um compartimento (4) e pelo menos um subsistema de compressão de gás (5). [0019] Thus, as illustrated in figure 1, the submerged system (S) for producing buoyancy force comprises a set of flexible floats (1), at least one transport mechanism (2), at least one rotation mechanism (3), at least one compartment (4) and at least one gas compression subsystem (5).
[0020] Conforme figuras 1 e 4, o conjunto de flutuadores (1 ) está acoplado ao mecanismo de transporte (2) que translada sobre o mecanismo de rotação (3) em uma órbita elíptica, por meio da força de empuxo gerada pela diferença de pressão entre o fluído líquido armazenado no compartimento (4) e o fluído gasoso gerado por cada subsistema de compressão de gás (5), cujo fluído gasoso é insuflado para o interior de cada flutuador flexível (10) por meio de pelo menos uma válvula receptora (11 ) e evacuado por meio da extremidade (101 ) do dito flutuador flexível (10). [0020] According to figures 1 and 4, the set of floats (1) is coupled to the transport mechanism (2) which translates on the rotation mechanism (3) in an elliptical orbit, through the buoyancy force generated by the difference in pressure between the liquid fluid stored in the compartment (4) and the gaseous fluid generated by each gas compression subsystem (5), whose gaseous fluid is blown into the interior of each flexible float (10) through at least one receiver valve (11) and evacuated through the end (101) of said flexible float (10).
[0021 ] Será compreendido que o fluído liquido armazenado no compartimento (4) é preferencialmente água, porém, pode ser qualquer outro tipo de liquido que possua viscosidade baixa de modo a permitir, o deslocamento de conjunto de flutuadores (1 ). [0022] Desse modo, conforme figuras 1 e 3, o dito conjunto de flutuadores flexíveis (1 ) por meio de um mecanismo de rotação (3), percorre uma geometria elíptica, já que o mecanismo de rotação (3) compreende pelo menos uma engrenagem inferior (30) e pelo menos uma engrenagem superior (31 ) dispostas sobre o mesmo eixo, de modo a alternar o sentido de cada flutuador flexível (10). [0021] It will be understood that the liquid fluid stored in the compartment (4) is preferably water, however, it can be any other type of liquid that has low viscosity in order to allow the displacement of the set of floats (1). [0022] Thus, according to figures 1 and 3, said set of flexible floats (1) by means of a rotation mechanism (3), runs through an elliptical geometry, since the rotation mechanism (3) comprises at least one lower gear (30) and at least one upper gear (31) arranged on the same axis, so as to alternate the direction of each flexible float (10).
[0023] Desse modo, quando houver diferença de pressão entre o fluido líquido armazenado no compartimento (4) e o fluido gasoso no interior de cada flutuador flexível (10), a força de empuxo promove o deslocamento do conjunto de flutuadores flexíveis (1 ) que estão conectados com o mecanismo de transporte (2) e consequentemente, promove o movimento continuo. [0023] Thus, when there is a pressure difference between the liquid fluid stored in the compartment (4) and the gaseous fluid inside each flexible float (10), the buoyancy force promotes the displacement of the set of flexible floats (1) which are connected with the transport mechanism (2) and consequently promote continuous movement.
[0024] De maneira preferencial, o mecanismo de transporte (2) é configurado por um conjunto de correntes (20), as quais o conjunto de flutuadores flexíveis (1 ) está associado. Desse modo, o conjunto de correntes (20) translada as engrenagens inferior e superior (30, 31 ) respectivamente, fazendo com que os flutuadores (10) estejam em um primeiro momento, com a abertura (101 ) voltada para baixo e um segundo momento, com a abertura (101 ) voltada para cima. [0024] Preferably, the transport mechanism (2) is configured by a set of chains (20), which the set of flexible floats (1) is associated. In this way, the set of chains (20) translates the lower and upper gears (30, 31) respectively, causing the floats (10) to be in a first moment, with the opening (101) facing downwards and a second moment , with the opening (101) facing upwards.
[0025] Conforme ilustrado nas figuras 3 e 4, no momento em que um primeiro flutuador flexível (10) está em contato com a engrenagem inferior (30), este recebe a injeção de ar através da válvula pneumática (300), a qual está disposta sobre cada dente de cada engrenagem inferior (30). Assim, cada flutuador flexível (10) compreende pelo menos uma válvula receptora (11 ), disposta em uma das laterais do flutuador flexível (10). [0025] As illustrated in figures 3 and 4, when a first flexible float (10) is in contact with the lower gear (30), it receives air injection through the pneumatic valve (300), which is disposed over each tooth of each lower gear (30). Thus, each flexible float (10) comprises at least one receiving valve (11), arranged on one of the sides of the flexible float (10).
[0026] Desse modo, quando a válvula pneumática (300) está alinhada com a válvula receptora (11 ), é liberado uma porção de fluido gasoso comprimido para o interior de cada flutuador flexível (10) [0026] Thus, when the pneumatic valve (300) is aligned with the receiver valve (11), a portion of compressed gaseous fluid is released into each flexible float (10)
[0027] Assim, o fluído gasoso é insuflado para o interior de cada flutuador flexível (10) por meio da uma válvula receptora (11 ), e assim, gerada uma pressão positiva no interior do flutuador flexível (10), que se expande, formando então, um bolsão de ar. [0027] Thus, the gaseous fluid is blown into each flexible float (10) through a receiving valve (11), and thus generated a positive pressure inside the flexible float (10), which expands, thus forming an air pocket.
[0028] De acordo com as figuras 3 e 4, a engrenagem superior (31 ), está disposta em uma região não submersa do compartimento (4), já que nesta região, ocorre a evacuação de ar de dentro do flutuador flexível (10) por meio da extremidade aberta (41 ), uma vez que, ao passar pela engrenagem superior (31 ), cada flutuador flexível (10) esvazia-se automaticamente e o peso de sua estrutura o deforma, achatando o flutuador flexível. [0028] According to figures 3 and 4, the upper gear (31) is arranged in a non-submerged region of the compartment (4), since in this region, air is evacuated from inside the flexible float (10) through the open end (41), since, when passing through the upper gear (31), each flexible float (10) automatically empties and the weight of its structure deforms it, flattening the flexible float.
[0029] Em seguida, ainda em contato com a engrenagem superior (31 ), após ser deformado e ter adquirido uma forma chata, o flutuador flexível (10), que antes se deslocava no sentido vertical para cima, agora, desloca-se verticalmente para baixo, tendo seu sentido alterado. Assim, o flutuador desloca-se novamente em direção a água, nesse momento, sem a presença de fluído gasoso em seu interior. [0029] Then, still in contact with the upper gear (31), after being deformed and having acquired a flat shape, the flexible float (10), which previously moved vertically upwards, now moves vertically down, changing its direction. Thus, the float moves again towards the water, at that moment, without the presence of gaseous fluid inside it.
[0030] Ainda, de acordo com a figura 2, o subsistema de compressão de gás (5) compreende pelo menos um compressor (50), pelo menos um reservatório (51 ) e uma tubulação (52) que transporta o gás comprimido até um dos mecanismos de rotação (3), especificamente, a engrenagem inferior (30). Assim, o subsistema de compressão de gás (5), possibilita o aumento da velocidade do flutuador flexível (10), controlando a vazão e a pressão em que o gás comprimido é insuflado para o interior de cada flutuador flexível (10). [0030] Also, according to figure 2, the gas compression subsystem (5) comprises at least one compressor (50), at least one reservoir (51) and a pipe (52) that transports the compressed gas to a of the rotation mechanisms (3), specifically, the lower gear (30). Thus, the gas compression subsystem (5) makes it possible to increase the speed of the flexible float (10), controlling the flow rate and the pressure at which the compressed gas is blown into each flexible float (10).
[0031 ] De acordo com as figuras 4 e 5, o compartimento (4) é um reservatório de água, configurado por uma estrutura preferencialmente cilíndrica, de modo que o compartimento (4) compreende uma extremidade inferior fechada (40) e uma extremidade superior aberta (41 ). A extremidade aberta (41 ) promove a equalização interna do compartimento (4) com o meio externo em que o sistema (S) submerso de produção de força de empuxo está inserido. [0032] Em uma modalidade, o sistema (S) submerso de produção de força de empuxo pode ser integrado a um gerador de energia elétrica produzindo, desta forma, energia elétrica. Em uma outra modalidade, o sistema (S) submerso de produção de força de empuxo pode ser integrado a qualquer meio de conversão de energia cinética em energia mecânica. [0031] According to figures 4 and 5, the compartment (4) is a water reservoir, configured by a preferably cylindrical structure, so that the compartment (4) comprises a lower closed end (40) and an upper end opened (41 ). The open end (41) promotes the internal equalization of the compartment (4) with the external environment in which the submerged system (S) of production of buoyancy force is inserted. [0032] In one embodiment, the submerged thrust force production system (S) can be integrated into an electrical power generator, thus producing electrical energy. In another embodiment, the submerged thrust force production system (S) can be integrated with any means of converting kinetic energy into mechanical energy.
[0033] Em outra forma de realização da invenção, conforme figura 6, o compartimento (4) compreende uma plataforma (70) de sustentação e flutuação do sistema (S), de modo a permitir que o sistema (S) possa ser instalado em locais com elevada profundidade, ao mesmo tempo em que a extremidade aberta (41 ) em conjunto com a engrenagem (31 ) permanece na região externa para expelir o gás comprimido. [0033] In another embodiment of the invention, as shown in figure 6, the compartment (4) comprises a platform (70) for sustaining and floating the system (S), so as to allow the system (S) to be installed in places with high depth, while the open end (41) together with the gear (31) remains in the external region to expel the compressed gas.
[0034] Além disso, vantajosamente, a plataforma (70) permite que o sistema (S) seja facilmente acessado em casos de necessidade de manutenção preventiva ou corretiva. [0034] Furthermore, advantageously, the platform (70) allows the system (S) to be easily accessed in cases of need for preventive or corrective maintenance.
[0035] O homem da técnica prontamente perceberá, a partir da descrição e dos desenhos representados, várias maneiras de realizar a invenção sem fugir do escopo das reivindicações em anexo. [0035] The person in the art will readily perceive, from the description and the drawings represented, several ways to carry out the invention without departing from the scope of the appended claims.

Claims

8 8
REIVINDICAÇÕES
1- “Sistema submerso de produção de força de empuxo para geração de energia” caracterizado por o sistema (S) compreender um conjunto de flutuadores flexíveis (1 ) acoplado a um mecanismo de transporte (2) que translada sobre um mecanismo de rotação (3) em uma órbita elíptica, por meio da força de empuxo gerada pela diferença de pressão entre um fluido líquido armazenado em um compartimento (4) e um fluido gasoso gerado por pelo menos um subsistema de compressão de gás (5), cujo fluído gasoso é insuflado para o interior de cada flutuador flexível (10) por meio de pelo menos uma válvula receptora (11 ) e evacuado por meio da extremidade (101 ) do dito flutuador flexível (10). 1- "Submerged system for producing thrust force for energy generation" characterized in that the system (S) comprises a set of flexible floats (1) coupled to a transport mechanism (2) that translates on a rotation mechanism (3 ) in an elliptical orbit, by means of the thrust force generated by the pressure difference between a liquid fluid stored in a compartment (4) and a gaseous fluid generated by at least one gas compression subsystem (5), whose gaseous fluid is inflated into each flexible float (10) by means of at least one receiving valve (11) and evacuated through the end (101) of said flexible float (10).
2- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 1 , caracterizado por o mecanismo de rotação (3) compreender pelo menos uma engrenagem inferior (30) e pelo menos uma engrenagem superior (31 ), dispostas sobre o mesmo eixo, de modo a alternar o sentido de cada flutuador flexível (10). 2- "Submerged system for producing thrust force for power generation" according to claim 1, characterized in that the rotation mechanism (3) comprises at least one lower gear (30) and at least one upper gear (31) , arranged on the same axis, in order to alternate the direction of each flexible float (10).
3- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 2, caracterizado por cada engrenagem inferior (30) ser de liberação e preenchimento de cada flutuador flexível (10) com fluido gasoso comprimido. 3- “Submerged system for producing thrust force for power generation” according to claim 2, characterized in that each lower gear (30) is for releasing and filling each flexible float (10) with compressed gaseous fluid.
4- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 3, caracterizado por a liberação do fluido gasoso comprimido ser por meio de uma válvula pneumática (300) disposta sobre cada dente de cada engrenagem inferior (30). 4- "Submerged system for producing thrust force for power generation" according to claim 3, characterized in that the release of the compressed gaseous fluid is by means of a pneumatic valve (300) arranged on each tooth of each lower gear ( 30).
5- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 1 , caracterizado por o mecanismo de transporte (2) ser configurado por um conjunto de correntes (20) paralelas entre si. 9 5- "Submerged system for producing thrust force for energy generation" according to claim 1, characterized in that the transport mechanism (2) is configured by a set of chains (20) parallel to each other. 9
6- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 1 , caracterizado por o compartimento (4) ser um reservatório de água, configurado por uma estrutura cilíndrica sendo, uma extremidade inferior (40) fechada e uma extremidade superior (41 ) aberta ser de equalização da pressão atmosférica e evacuação de gás comprimido. 6- “Submerged system for producing thrust force for power generation” according to claim 1, characterized in that the compartment (4) is a water reservoir, configured by a cylindrical structure, one lower end (40) being closed and an open upper end (41) is for atmospheric pressure equalization and compressed gas evacuation.
7- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 1 , caracterizado por cada subsistema de compressão de gás (5) compreender pelo menos um compressor de ar (50), pelo menos um reservatório de ar (51 ) e uma tubulação (52) que transporta o ar comprimido até um dos mecanismos de rotação (3). 7- "Submerged system for producing thrust force for power generation" according to claim 1, characterized in that each gas compression subsystem (5) comprises at least one air compressor (50), at least one fuel tank air (51) and a pipe (52) that transports the compressed air to one of the rotation mechanisms (3).
8- “Sistema submerso de produção de força de empuxo para geração de energia” de acordo com a reivindicação 1 , caracterizado por o compartimento (4) compreender uma plataforma (70) de sustentação e flutuação do sistema (S). 8- "Submerged system for producing thrust force for power generation" according to claim 1, characterized in that the compartment (4) comprises a platform (70) for sustaining and floating the system (S).
PCT/BR2022/050511 2021-12-21 2022-12-19 Submerged system for producing thrust for energy generation WO2023115186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102021026012-2A BR102021026012A2 (en) 2021-12-21 SUBMERGED THRUST STRENGTH PRODUCTION SYSTEM FOR ENERGY GENERATION
BR1020210260122 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023115186A1 true WO2023115186A1 (en) 2023-06-29

Family

ID=86900805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2022/050511 WO2023115186A1 (en) 2021-12-21 2022-12-19 Submerged system for producing thrust for energy generation

Country Status (1)

Country Link
WO (1) WO2023115186A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934964A (en) * 1974-08-15 1976-01-27 David Diamond Gravity-actuated fluid displacement power generator
BR8702323A (en) * 1987-04-28 1988-11-22 Lincoln Amaral PERPETUO GENERATOR AUTOCINE
EP0452601A1 (en) * 1990-04-20 1991-10-23 Alexandre Fabry Buoyancy motor
WO2007076719A1 (en) * 2005-12-31 2007-07-12 Solar City Limited A power output device and a generating device using the same
WO2014006430A2 (en) * 2012-07-05 2014-01-09 Dedas Konstantinos Buoyancy machine for the generation of electrical power
WO2014131377A1 (en) * 2013-03-01 2014-09-04 Petr Hruby Liquid buoyancy engine
WO2015067287A1 (en) * 2013-11-10 2015-05-14 Abdo Taher Mohamed Fathy Tower-floats power generator
WO2016130101A1 (en) * 2015-02-10 2016-08-18 Acar Mehmet Hydroelectric power plant producing energy using standing water in a loop
WO2017173695A1 (en) * 2016-04-06 2017-10-12 李达才 Buoyancy power generation device
WO2019245480A2 (en) * 2017-10-16 2019-12-26 Karaburun Orhan Electricity energy producing system via buoyancy of liquids

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934964A (en) * 1974-08-15 1976-01-27 David Diamond Gravity-actuated fluid displacement power generator
BR8702323A (en) * 1987-04-28 1988-11-22 Lincoln Amaral PERPETUO GENERATOR AUTOCINE
EP0452601A1 (en) * 1990-04-20 1991-10-23 Alexandre Fabry Buoyancy motor
WO2007076719A1 (en) * 2005-12-31 2007-07-12 Solar City Limited A power output device and a generating device using the same
WO2014006430A2 (en) * 2012-07-05 2014-01-09 Dedas Konstantinos Buoyancy machine for the generation of electrical power
WO2014131377A1 (en) * 2013-03-01 2014-09-04 Petr Hruby Liquid buoyancy engine
WO2015067287A1 (en) * 2013-11-10 2015-05-14 Abdo Taher Mohamed Fathy Tower-floats power generator
WO2016130101A1 (en) * 2015-02-10 2016-08-18 Acar Mehmet Hydroelectric power plant producing energy using standing water in a loop
WO2017173695A1 (en) * 2016-04-06 2017-10-12 李达才 Buoyancy power generation device
WO2019245480A2 (en) * 2017-10-16 2019-12-26 Karaburun Orhan Electricity energy producing system via buoyancy of liquids

Similar Documents

Publication Publication Date Title
ES2660554T3 (en) Hydraulic power accumulator
WO2007009192A1 (en) Power generation system
WO2023115186A1 (en) Submerged system for producing thrust for energy generation
BR102021026012A2 (en) SUBMERGED THRUST STRENGTH PRODUCTION SYSTEM FOR ENERGY GENERATION
CN105134474B (en) A kind of hydroenergy storage station
CN102454533A (en) Device for generating power by using water surface surging
WO2022257275A1 (en) Method and apparatus for outputting energy by means of working of gravitational force and centrifugal force
ES2421154B1 (en) Cubic electric power generation system
RU2732359C1 (en) Tidal hpp
WO2020224682A1 (en) System for generating power from the movement of sea waves
KR20130026797A (en) Hydro power generator system using water wheel and buoyancy
WO2010119283A2 (en) Water-powered generating vessel
WO2023242625A1 (en) Stationary device for generating energy by means of a hydraulic and pneumatic circuit
US20240271592A1 (en) Hermetic cap tidal pulse responder
US11028821B2 (en) Tidal power generator
WO2023131824A1 (en) System for generating electricity and hydrogen
US20080203733A1 (en) Tidal Generator
KR20070072286A (en) How to use alternative energy using existing water and buoyancy
KR20110108633A (en) Aerial wind power generating apparatus
KR20090009351A (en) Electricity generating apparatus using buoancy
SI24404A (en) Multi-stage hydrualic power plant with compressor
WO2022129660A1 (en) Drive system by means of pressurisation for the propulsion of vehicles and the generation of electrical power
ES2334089A1 (en) Mareomotriz system of energy generation through potential difference (Machine-translation by Google Translate, not legally binding)
KR20080101415A (en) How to use alternative energy using knitting
KR20240052352A (en) Pressure pump type power generation system using cylinder and piston

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE