SG11201805393RA - Method and apparatus for deposition cleaning in a pumping line - Google Patents
Method and apparatus for deposition cleaning in a pumping lineInfo
- Publication number
- SG11201805393RA SG11201805393RA SG11201805393RA SG11201805393RA SG11201805393RA SG 11201805393R A SG11201805393R A SG 11201805393RA SG 11201805393R A SG11201805393R A SG 11201805393RA SG 11201805393R A SG11201805393R A SG 11201805393RA SG 11201805393R A SG11201805393R A SG 11201805393RA
- Authority
- SG
- Singapore
- Prior art keywords
- international
- iii
- pumping line
- llll
- plasma source
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4405—Cleaning of reactor or parts inside the reactor by using reactive gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/22—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/02—Check valves with guided rigid valve members
- F16K15/025—Check valves with guided rigid valve members the valve being loaded by a spring
- F16K15/026—Check valves with guided rigid valve members the valve being loaded by a spring the valve member being a movable body around which the medium flows when the valve is open
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/02—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
- F16K3/04—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
- F16K3/06—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/02—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
- F16K3/04—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
- F16K3/10—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members with special arrangements for separating the sealing faces or for pressing them together
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K41/00—Spindle sealings
- F16K41/10—Spindle sealings with diaphragm, e.g. shaped as bellows or tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K51/00—Other details not peculiar to particular types of valves or cut-off apparatus
- F16K51/02—Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32348—Dielectric barrier discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
- H01J37/32844—Treating effluent gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32853—Hygiene
- H01J37/32862—In situ cleaning of vessels and/or internal parts
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2418—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Cleaning In General (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Detergent Compositions (AREA)
- Physical Vapour Deposition (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau „ (10) International Publication Number (43) International Publication Date ^ ^ WO 2017/123704 A4 20 July 2017 (20.07.2017) WIPO I PCT (51) International Patent Classification: H01J37/32 (2006.01) (21) International Application Number: PCT/US2017/013114 (22) International Filing Date: 12 January 2017 (12.01.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 14/994,668 13 January 2016 (13.01.2016) US (71) Applicant: MKS INSTRUMENTS, INC. [US/US]; 2 Tech Drive, Suite 201, Andover, MA 01810 (US). (72) Inventors: HILL, Gordon; 175 Lowell St, Arlington, MA 02474 (US). BENEDICT, Scott; 2 Clocktower Place #312, Nashua, NH 03060 (US). WENZEL, Kevin; 11 Glenn Rd„ Belmont, MA 02478 (US). (74) Agents: RASMUSSEN, Xin, Hu et al.; Proskauer Rose LLP, One International Place, Boston, MA 02110 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available)'. AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available)'. ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, [Continued on next page] (54) Title: METHOD AND APPARATUS FOR DEPOSITION CLEANING IN A PUMPING LINE 1300 1316 1302 = Axis A o i> m CJ 1306 1314 1312 FIG. 13b (57) : A vacuum pumping line plasma source is provided. The plasma source includes a body defining a gen erally cylindrical interior volume extending along a central longitudinal axis. The body has an input port for coupling to an input pumping line, an output port for coupling to an out put pumping line, and an interior surface disposed about the generally cylindrical interior volume. The plasma source also includes a supply electrode disposed adjacent to a return electrode, and a barrier dielectric member, a least a portion of which is positioned between the supply electrode and the return electrode. The plasma source further includes a dielec tric barrier discharge structure formed from the supply elec trode, the return electrode, and the barrier dielectric member. The dielectric barrier discharge structure is adapted to gener ate a plasma in the generally cylindrical interior volume. 1308 WO 2017/123704 A4 III llll IIII III Hill III III III III fill III 111 II Hill llll mill 111 llll llll LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with amended claims and statement (Art. 19(1)) Date of publication of the amended claims and statement: 14 September 2017 — with international search report (Art. 21(3))
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/994,668 US10337105B2 (en) | 2016-01-13 | 2016-01-13 | Method and apparatus for valve deposition cleaning and prevention by plasma discharge |
PCT/US2017/013114 WO2017123704A1 (en) | 2016-01-13 | 2017-01-12 | Method and apparatus for deposition cleaning in a pumping line |
Publications (1)
Publication Number | Publication Date |
---|---|
SG11201805393RA true SG11201805393RA (en) | 2018-07-30 |
Family
ID=58018209
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG10202113148WA SG10202113148WA (en) | 2016-01-13 | 2017-01-12 | Method and apparatus for deposition cleaning in a pumping line |
SG11201805393RA SG11201805393RA (en) | 2016-01-13 | 2017-01-12 | Method and apparatus for deposition cleaning in a pumping line |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG10202113148WA SG10202113148WA (en) | 2016-01-13 | 2017-01-12 | Method and apparatus for deposition cleaning in a pumping line |
Country Status (9)
Country | Link |
---|---|
US (1) | US10337105B2 (en) |
EP (3) | EP4131331A1 (en) |
JP (3) | JP6878444B2 (en) |
KR (2) | KR102557340B1 (en) |
CN (2) | CN112509902B (en) |
IL (3) | IL284494B (en) |
SG (2) | SG10202113148WA (en) |
TW (2) | TWI710722B (en) |
WO (1) | WO2017123704A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2022003625A (en) * | 2019-09-25 | 2022-04-20 | Shibaura Machine Co Ltd | Flow adjustment valve, pump unit, and surface treatment device. |
US11745229B2 (en) | 2020-08-11 | 2023-09-05 | Mks Instruments, Inc. | Endpoint detection of deposition cleaning in a pumping line and a processing chamber |
US11664197B2 (en) | 2021-08-02 | 2023-05-30 | Mks Instruments, Inc. | Method and apparatus for plasma generation |
CN114263035A (en) * | 2021-12-06 | 2022-04-01 | 北京天恒盛通科技发展有限公司 | Water cooling tunnel type continuous plasma device |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2569739B2 (en) * | 1988-07-12 | 1997-01-08 | 三菱電機株式会社 | Oxygen atom generation method and apparatus |
US6047713A (en) | 1994-02-03 | 2000-04-11 | Applied Materials, Inc. | Method for cleaning a throttle valve |
JP3212822B2 (en) * | 1994-12-29 | 2001-09-25 | 川澄化学工業株式会社 | Perforated tubular substrate to be treated, method for treating the same, and apparatus for treating perforated tubular substrate to be treated |
US6193802B1 (en) | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6187072B1 (en) * | 1995-09-25 | 2001-02-13 | Applied Materials, Inc. | Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions |
JPH10168574A (en) | 1996-12-11 | 1998-06-23 | Canon Inc | Cleaning method for film deposition system and method for film deposition |
US5827370A (en) | 1997-01-13 | 1998-10-27 | Mks Instruments, Inc. | Method and apparatus for reducing build-up of material on inner surface of tube downstream from a reaction furnace |
DE59809089D1 (en) * | 1997-04-28 | 2003-08-28 | Inst Niedertemperatur Plasmaph | DEVICE AND METHOD FOR THE DECOMPOSITION OF POLLUTANTS IN EXHAUST GASES FROM COMBUSTION PROCESSES |
GB9904640D0 (en) * | 1999-03-02 | 1999-04-21 | Aea Technology Plc | Plasma-assisted processing of gaseous media |
US6354241B1 (en) | 1999-07-15 | 2002-03-12 | Applied Materials, Inc. | Heated electrostatic particle trap for in-situ vacuum line cleaning of a substrated processing |
US6255222B1 (en) | 1999-08-24 | 2001-07-03 | Applied Materials, Inc. | Method for removing residue from substrate processing chamber exhaust line for silicon-oxygen-carbon deposition process |
JP2001214277A (en) * | 2000-01-31 | 2001-08-07 | Canon Inc | Deposited film deposition system and deposited film deposition method |
JP3903730B2 (en) * | 2001-04-04 | 2007-04-11 | 松下電器産業株式会社 | Etching method |
US20020185067A1 (en) * | 2001-06-07 | 2002-12-12 | International Business Machines Corporation | Apparatus and method for in-situ cleaning of a throttle valve in a CVD system |
US6685803B2 (en) | 2001-06-22 | 2004-02-03 | Applied Materials, Inc. | Plasma treatment of processing gases |
US7160521B2 (en) * | 2001-07-11 | 2007-01-09 | Applied Materials, Inc. | Treatment of effluent from a substrate processing chamber |
US6606802B2 (en) * | 2001-11-30 | 2003-08-19 | Micron Technology Inc. | Cleaning efficiency improvement in a high density plasma process chamber using thermally hot gas |
US20040250859A1 (en) * | 2003-06-12 | 2004-12-16 | Poulin James M. | Method for protecting a pneumatic control system from ingested contamination |
JP4381963B2 (en) * | 2003-11-19 | 2009-12-09 | パナソニック株式会社 | Plasma processing equipment |
US20050194099A1 (en) * | 2004-03-03 | 2005-09-08 | Jewett Russell F.Jr. | Inductively coupled plasma source using induced eddy currents |
JP2005303255A (en) * | 2004-03-17 | 2005-10-27 | Shinryo Corp | Low-reflectance processing method of silicon substrate for solar cells |
TWI387667B (en) * | 2004-12-21 | 2013-03-01 | Applied Materials Inc | An in-situ chamber clean process to remove by-product deposits from chemical vapor etch chamber |
US20070116872A1 (en) * | 2005-11-18 | 2007-05-24 | Tokyo Electron Limited | Apparatus for thermal and plasma enhanced vapor deposition and method of operating |
KR101213689B1 (en) | 2006-06-12 | 2012-12-18 | 주식회사 테라텍 | Apparatus for cleaning exhaust portion and vacuum pump of the semiconductor and LCD process reaction chamber |
KR20090018816A (en) * | 2006-06-13 | 2009-02-23 | 세미이큅, 인코포레이티드 | Magnetic analyzer apparatus and method for ion implantation |
KR100806041B1 (en) * | 2006-08-29 | 2008-02-26 | 동부일렉트로닉스 주식회사 | An apparatus for fabricating semiconductor device and a method of fabricating semiconductor device using the same |
CN102892248B (en) * | 2006-12-28 | 2016-08-10 | 荷兰应用科学研究会(Tno) | Surface dielectric barrier discharge plasma unit and the method producing surface plasma |
JP2008205209A (en) * | 2007-02-20 | 2008-09-04 | Matsushita Electric Works Ltd | Plasma processor |
US8197636B2 (en) * | 2007-07-12 | 2012-06-12 | Applied Materials, Inc. | Systems for plasma enhanced chemical vapor deposition and bevel edge etching |
JP5088375B2 (en) | 2007-11-28 | 2012-12-05 | 東芝三菱電機産業システム株式会社 | Dielectric barrier discharge device |
US8172547B2 (en) * | 2008-01-31 | 2012-05-08 | The Boeing Company | Dielectric barrier discharge pump apparatus and method |
JP5058199B2 (en) * | 2009-03-30 | 2012-10-24 | 京セラ株式会社 | Discharge device and reaction device using the discharge device |
JP4372833B1 (en) * | 2009-04-13 | 2009-11-25 | 麒麟麦酒株式会社 | Method for producing gas barrier thin film coated plastic container |
JP2010247126A (en) * | 2009-04-20 | 2010-11-04 | Sharp Corp | Method and apparatus for producing reactive species and method and apparatus for performing treatment by using reactive species |
KR101063515B1 (en) * | 2010-09-16 | 2011-09-07 | 한국기계연구원 | Plasma reactor for abatement of hazardous material |
JP5473001B2 (en) * | 2009-10-16 | 2014-04-16 | コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ | Plasma reactor for pollutant removal and driving method |
US8747762B2 (en) | 2009-12-03 | 2014-06-10 | Applied Materials, Inc. | Methods and apparatus for treating exhaust gas in a processing system |
US8642974B2 (en) * | 2009-12-30 | 2014-02-04 | Fei Company | Encapsulation of electrodes in solid media for use in conjunction with fluid high voltage isolation |
US9192040B2 (en) * | 2010-01-26 | 2015-11-17 | Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V., Inp Greifswald | Device and method for generating an electrical discharge in hollow bodies |
US20130087287A1 (en) * | 2011-10-10 | 2013-04-11 | Korea Institute Of Machinery & Materials | Plasma reactor for removal of contaminants |
JP5774960B2 (en) * | 2011-10-20 | 2015-09-09 | 京セラ株式会社 | Plasma generator and plasma generator |
US20130146225A1 (en) | 2011-12-08 | 2013-06-13 | Mks Instruments, Inc. | Gas injector apparatus for plasma applicator |
KR101352164B1 (en) | 2012-10-17 | 2014-01-27 | (주)클린팩터스 | Method and vacuum system for removing metallic by-products |
US9314824B2 (en) | 2013-11-08 | 2016-04-19 | Mks Instruments, Inc. | Powder and deposition control in throttle valves |
JP2017510453A (en) | 2014-03-06 | 2017-04-13 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Plasma foreline thermal reactor system |
CN106170845A (en) * | 2014-04-16 | 2016-11-30 | 清洁要素技术有限公司 | Process the plasma reactor of the waste gas betiding process apparatus |
TWI647004B (en) * | 2014-04-30 | 2019-01-11 | 南韓商韓國機械研究院 | Plasma reactor for abatement of hazardous material |
US10343132B2 (en) * | 2014-05-30 | 2019-07-09 | Fuji Corporation | Plasma emitting method and plasma emitting device |
US9433071B2 (en) * | 2014-06-13 | 2016-08-30 | Plasma Innovations, LLC | Dielectric barrier discharge plasma generator |
-
2016
- 2016-01-13 US US14/994,668 patent/US10337105B2/en active Active
-
2017
- 2017-01-12 WO PCT/US2017/013114 patent/WO2017123704A1/en active Application Filing
- 2017-01-12 IL IL284494A patent/IL284494B/en unknown
- 2017-01-12 CN CN202011355817.2A patent/CN112509902B/en active Active
- 2017-01-12 JP JP2018536826A patent/JP6878444B2/en active Active
- 2017-01-12 SG SG10202113148WA patent/SG10202113148WA/en unknown
- 2017-01-12 EP EP22195361.5A patent/EP4131331A1/en active Pending
- 2017-01-12 EP EP20208684.9A patent/EP3896716B1/en active Active
- 2017-01-12 SG SG11201805393RA patent/SG11201805393RA/en unknown
- 2017-01-12 TW TW106100991A patent/TWI710722B/en active
- 2017-01-12 CN CN201780006521.XA patent/CN108431923B/en active Active
- 2017-01-12 EP EP17704852.7A patent/EP3403274B1/en active Active
- 2017-01-12 KR KR1020237000252A patent/KR102557340B1/en active IP Right Grant
- 2017-01-12 TW TW109140759A patent/TWI750911B/en active
- 2017-01-12 KR KR1020187023220A patent/KR102525048B1/en active IP Right Grant
- 2017-01-12 IL IL295424A patent/IL295424B2/en unknown
-
2018
- 2018-06-27 IL IL260300A patent/IL260300B/en unknown
-
2021
- 2021-04-28 JP JP2021075584A patent/JP7239633B2/en active Active
-
2022
- 2022-12-23 JP JP2022206137A patent/JP7448625B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG11201805393RA (en) | Method and apparatus for deposition cleaning in a pumping line | |
SG11201808990QA (en) | Compositions for topical application of compounds | |
SG11201807205XA (en) | Quality of service (qos) management in wireless networks | |
SG11201909949XA (en) | Targeted immunotolerance | |
SG11201803897QA (en) | Pressure control device, dispenser comprising said pressure control device and method of manufacturing | |
SG11202000330XA (en) | Concept for generating an enhanced sound field description or a modified sound field description using a multi-point sound field description | |
SG11201910198UA (en) | Multibiotic agents and methods of using the same | |
SG11201906878SA (en) | Multiple gate-induced drain leakage current generator | |
SG11201901168UA (en) | Apparatuses and methods including ferroelectric memory and for operating ferroelectric memory | |
SG11201804098TA (en) | Purinones as ubiquitin-specific protease 1 inhibitors | |
SG11201804935TA (en) | Apparatus and method for fabricating an object | |
SG11201803920TA (en) | Compounds and compositions useful for treating disorders related to ntrk | |
SG11201900501RA (en) | Cannabis composition | |
SG11201805570WA (en) | Systems and methods for long term transdermal administration | |
SG11201809782YA (en) | A remotely piloted aircraft system | |
SG11201807421TA (en) | The use of glucocorticoid receptor modulators to potentiate checkpoint inhibitors | |
SG11201907118WA (en) | Write data path to reduce charge leakage of negative boost | |
SG11201406973PA (en) | Complement pathway modulators and uses thereof | |
SG11201908325PA (en) | Process for the preparation of glucuronide drug-linkers and intermediates thereof | |
SG11201806544XA (en) | Compounds and methods of treating rna-mediated diseases | |
SG11201907225RA (en) | Plasma confinement system and methods for use | |
SG11201806553WA (en) | Device and arrangement for controlling an electromagnetic wave, methods of forming and operating the same | |
SG11201804841VA (en) | Hardware integrity check | |
SG11201906280TA (en) | Programmable pad capacitance for supporting bidirectional signaling from unterminated endpoints | |
SG11201908053VA (en) | Rod and casing handler |