JP2569739B2 - Oxygen atom generation method and apparatus - Google Patents

Oxygen atom generation method and apparatus

Info

Publication number
JP2569739B2
JP2569739B2 JP63174032A JP17403288A JP2569739B2 JP 2569739 B2 JP2569739 B2 JP 2569739B2 JP 63174032 A JP63174032 A JP 63174032A JP 17403288 A JP17403288 A JP 17403288A JP 2569739 B2 JP2569739 B2 JP 2569739B2
Authority
JP
Japan
Prior art keywords
oxygen
pressure
containing gas
gas
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63174032A
Other languages
Japanese (ja)
Other versions
JPH0226804A (en
Inventor
敬典 難波
正明 田中
重典 八木
晋一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63174032A priority Critical patent/JP2569739B2/en
Priority to DE19883844630 priority patent/DE3844630C2/de
Priority to DE19883839903 priority patent/DE3839903A1/en
Publication of JPH0226804A publication Critical patent/JPH0226804A/en
Application granted granted Critical
Publication of JP2569739B2 publication Critical patent/JP2569739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属などの酸化物の合成や有機物の完全
な分解を高速に行える酸素原子の発生装置および方法に
関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for generating oxygen atoms capable of synthesizing oxides such as metals and completely decomposing organic substances at a high speed.

〔従来の技術〕[Conventional technology]

酸素原子の発生手段として従来から紫外線照射による
酸素分子の分解や、オゾンに紫外線を照射して酸素原子
と酸素分子に解離する方法および装置があり、有機物の
完全酸化分解に用いられている。特開昭58-165149号公
報、特開昭58-250088号公報、特開昭62-2621号公報等は
この目的のためになされた発明である。
As a means for generating oxygen atoms, there is a method and apparatus for decomposing oxygen molecules by ultraviolet irradiation and dissociating oxygen atoms into oxygen atoms by irradiating ozone with ultraviolet light, and is used for complete oxidative decomposition of organic substances. JP-A-58-165149, JP-A-58-250088, JP-A-62-2621 and the like are inventions made for this purpose.

例えば、第11図の特開昭62-2621号公報に示された従
来のレジスト除去装置では、紫外光源(10)、オゾン発
生器(11)、真空チヤンバー(12)で構成され、紫外光
の光エネルギーを利用して酸素分子からオゾンを発生さ
せたり、オゾンを分解してより活性な酸素原子を生成せ
しめ、その酸化作用により有機化合物を二酸化炭素や水
などに分解する光アツシング法である。この場合、紫外
光の直接作用で化学結合が切断される機構も並行して起
こり有機化合物の分解を促進している。なお、(3)は
バルブ、(13)は真空ポンプである。
For example, a conventional resist removing apparatus disclosed in Japanese Patent Application Laid-Open No. 622-2621 in FIG. 11 is composed of an ultraviolet light source (10), an ozone generator (11), and a vacuum chamber (12). This is a photo-assisting method in which light energy is used to generate ozone from oxygen molecules, or ozone is decomposed to generate more active oxygen atoms, and organic compounds are decomposed into carbon dioxide, water, and the like by the oxidizing action. In this case, a mechanism in which a chemical bond is broken by the direct action of ultraviolet light also occurs in parallel to promote the decomposition of the organic compound. (3) is a valve, and (13) is a vacuum pump.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来の紫外光とオゾンを用いた方法で
は、生成する酸素原子の濃度が小さく紫外線による有機
化合物の直接分解の効果を合わせても、有機物の一例で
あるレジストの除去速度は2,000A/minと比較的低く目的
とする有機化合物の除去に時間がかかるという問題があ
る。
However, in the conventional method using ultraviolet light and ozone, even if the concentration of generated oxygen atoms is small and the effect of direct decomposition of the organic compound by ultraviolet rays is combined, the removal rate of the resist which is an example of the organic substance is 2,000 A / min. And it takes a long time to remove the target organic compound.

これは、現状の紫外光源の発光密度が高々0.6watt/cm
2に過ぎず、供給酸素やオゾンの濃度を高めても生成す
る酸素原子の濃度が1013particle・cm-3程度に留まり、
したがつて酸素原子が有機化合物と高い反応性を持つて
いても有機化合物の除去速度は2,000A/minが限度であつ
た。
This is because the emission density of the current ultraviolet light source is at most 0.6 watt / cm
2 and the concentration of generated oxygen atoms remains at about 10 13 particlescm -3 even if the concentration of supplied oxygen or ozone is increased,
Therefore, the removal rate of organic compounds was limited to 2,000 A / min even if oxygen atoms had high reactivity with organic compounds.

この発明は、高濃度の酸素原子を効率よく発生させる
ことを目的とし、その結果従来技術にみられていた有機
物の酸素除去速度の限界を回避したり、酸素原子利用分
野を拡大したりできるような酸素原子発生方法および装
置を得ることを目的とする。
An object of the present invention is to efficiently generate high-concentration oxygen atoms. As a result, it is possible to avoid the limit of the oxygen removal rate of organic substances, which has been seen in the prior art, and to expand the field of use of oxygen atoms. It is an object of the present invention to obtain a method and apparatus for generating an oxygen atom.

〔課題を解決するための手段〕[Means for solving the problem]

この発明による酸素原子発生方法および装置は、放電
場の酸素含有気体圧力Pが0.1〜10Torrで、かつ、気体
圧力Pと放電電極間距離dの積P・dの値が1〜1000To
rr・cmの範囲で、誘電体を介して酸素含有気体を対象に
放電を行うことを特徴とし、さらに上記の条件を実現で
きる誘電体と電極を具備させることを特徴とする。
The method and apparatus for generating oxygen atoms according to the present invention are characterized in that the oxygen-containing gas pressure P in the discharge field is 0.1 to 10 Torr, and the value of the product P · d of the gas pressure P and the distance d between the discharge electrodes is 1 to 1000 Ton.
It is characterized in that an oxygen-containing gas is discharged through a dielectric within a range of rr · cm, and furthermore, a dielectric and an electrode capable of realizing the above conditions are provided.

〔作用〕[Action]

この発明における、放電場の圧力条件は、放電で生成
した酸素原子同士による再結合反応や酸素原子と酸素分
子の反応による比較的安定なオゾンの生成反応による生
成酸素原子の消失が防止され、1016particle・cm-3にも
達する高濃度の酸素原子が得られるようにする。また、
適正な放電電極間距離は、放電場の電界強度を酸素分子
の解離に十分でかつ、不必要な酸素のイオン化を防止で
き、高効率で酸素原子が得られるようにする。
In the present invention, the pressure condition of the discharge field is such that the recombination reaction between oxygen atoms generated by the discharge or the relatively stable ozone generation reaction due to the reaction between oxygen atoms and oxygen molecules prevents the disappearance of oxygen atoms generated by the reaction. A high concentration of oxygen atoms up to 16 particles · cm -3 is obtained. Also,
An appropriate distance between the discharge electrodes makes the electric field strength of the discharge field sufficient for dissociation of oxygen molecules, prevents unnecessary ionization of oxygen, and allows oxygen atoms to be obtained with high efficiency.

〔実施例〕〔Example〕

この発明の実施例を以下に述べる。 An embodiment of the present invention will be described below.

第1図は本発明の一実施例による酸素原子発生装置の
構成図である。第1図において、(1)はガラス、石
英、セラミツク等で構成された管状誘電体、(2)は誘
電体の管に密着させた金属や有機導電性材料等の誘電性
材料で構成された電極、(3)は流量もしくは圧力を調
整できるバルブ、(4)は真空ポンプ、(5)は反応チ
ヤンバー、(6)は交流電源、(7)は高電圧トラン
ス、(8)は原料気体源である。
FIG. 1 is a configuration diagram of an oxygen atom generator according to one embodiment of the present invention. In FIG. 1, (1) is a tubular dielectric made of glass, quartz, ceramic or the like, and (2) is made of a dielectric material such as a metal or an organic conductive material adhered to a dielectric tube. Electrodes, (3) a valve capable of adjusting the flow rate or pressure, (4) a vacuum pump, (5) a reaction chamber, (6) an AC power supply, (7) a high voltage transformer, and (8) a source gas source. It is.

原料気体源(8)、調整バルブ(3)、管状誘電体
(1)、反応チヤンバー(5)および真空ポンプ(4)
は一連の流路を形成し、原料気体源(8)から供給され
た酸素含有気体は調整バルブ(3)を経て管状誘電体
(1)内部へ流入する。このとき管状誘電体(1)内部
の圧力は調整バルブ(3)によつて設定圧力範囲0.1〜1
0Torrに調整される。管状誘電体(1)の外部に密着し
た2つの電極(2)の間には高圧交流電圧が印加され、
管状誘電体(1)を介して流通気体中に放電を生ずる、
この放電により、原料気体中の酸素分子は励起され、そ
の結果酸素原子に解離する。この様にして生成した酸素
原子は反応チヤンバー(5)へ導入され有機物の酸化や
金属等無機物の酸化に供される。原料気体中の酸素原子
へ変換されなかつた酸素や原料気体中に予め混合されて
いた酸素以外の気体は、真空ポンプ(4)によつて反応
チヤンバー(5)から系外へ排出される。
Source gas source (8), regulating valve (3), tubular dielectric (1), reaction chamber (5) and vacuum pump (4)
Forms a series of flow paths, and the oxygen-containing gas supplied from the source gas source (8) flows into the inside of the tubular dielectric (1) through the regulating valve (3). At this time, the pressure inside the tubular dielectric (1) is set to a set pressure range of 0.1 to 1 by the adjusting valve (3).
Adjusted to 0 Torr. A high AC voltage is applied between the two electrodes (2) closely attached to the outside of the tubular dielectric (1),
Producing a discharge in the flowing gas through the tubular dielectric (1);
By this discharge, oxygen molecules in the source gas are excited, and as a result, dissociated into oxygen atoms. The oxygen atoms generated in this manner are introduced into the reaction chamber (5) and are used for oxidation of organic substances and oxidation of inorganic substances such as metals. Oxygen that has not been converted into oxygen atoms in the source gas and gases other than oxygen previously mixed in the source gas are discharged from the reaction chamber (5) to the outside of the system by the vacuum pump (4).

第2図は、酸素ガスを原料としたときの放電場の気体
圧力と生成酸素原子濃度の絶対値と相対値の関係を示
す。絶対濃度は設定圧力下における単位体積当りの酸素
原子数を、相対濃度は全気体数に対する酸素原子数の占
める比率を表す。第2図から明らかなように、気体圧力
の減少に伴い相対酸素原子濃度は増加し、0.1Torr以下
の圧力でほぼ平衡値を示す。一方、絶対酸素原子濃度は
気体圧力の減少に伴い増加するが3Torrの圧力を境に減
少する。真空ポンプの能力を上げずにできるだけ多量の
酸素原子を供給できる条件は、相対酸素原子濃度が高い
こと、同時に供給気体圧力が低いことが要求される。さ
らに酸素原子による酸化反応を高速に維持するために絶
対酸素原子濃度が高いことも合わせて要求される。これ
らの条件を満足するのは第2図より被放電ガスすなわち
酸素含有気体の圧力が0.1〜10Torrの範囲に限定される
ことがわかる。なお、第2図では被放電ガスが酸素ガス
である場合について示したが、酸素ガスに不純物が混つ
ている場合にも、第2図の絶対値(曲線の山の高さ)は
小さくなるが0.1〜10Torrの範囲はほとんど変わらな
い。
FIG. 2 shows the relationship between the gas pressure of the discharge field and the absolute value and relative value of the generated oxygen atom concentration when oxygen gas is used as a raw material. The absolute concentration indicates the number of oxygen atoms per unit volume under a set pressure, and the relative concentration indicates the ratio of the number of oxygen atoms to the total number of gases. As is apparent from FIG. 2, the relative oxygen atom concentration increases with a decrease in the gas pressure, and shows a substantially equilibrium value at a pressure of 0.1 Torr or less. On the other hand, the absolute oxygen atom concentration increases as the gas pressure decreases, but decreases at a pressure of 3 Torr. Conditions that can supply as much oxygen atoms as possible without increasing the capacity of the vacuum pump require that the relative oxygen atom concentration be high and that the pressure of the supplied gas be low. Further, a high absolute oxygen atom concentration is also required to maintain the oxidation reaction by oxygen atoms at high speed. It can be seen from FIG. 2 that these conditions are satisfied when the pressure of the gas to be discharged, that is, the oxygen-containing gas is limited to the range of 0.1 to 10 Torr. Although FIG. 2 shows the case where the gas to be discharged is oxygen gas, the absolute value (the height of the peak of the curve) in FIG. 2 is small even when oxygen gas contains impurities. The range from 0.1 to 10 Torr is almost unchanged.

第3図は、被放電ガス圧力Pと放電電極間距離dの積
(P・d)と、酸素分子の解離(イオン化)のエネルギ
ー効率との関係および放電維持電圧との関係の概略を示
したものある。P・dが1Torr・cm以下であると放電の
電子エネルギーが大きく、酸素分子のイオン化が生じ必
要以上に放電電力を要することになる。また、イオン化
した酸素分子は十分なエネルギーをもつため殆ど酸素原
子と同等な酸化力を示すが、電荷を持つことにより処理
対象物質に致命的なダメージを与えることが多く、その
生成は好ましくない。逆に、P・dが1000Torr・cm以上
の場合は放電の電子エネルギーが小さく十分な酸素分子
の励起が行えず酸素原子の生成は見込めず、また放電を
維持するのに必要な電圧が高く誘電体の絶縁破壊を生じ
易い。上記の結果から放電条件としてP・dが1〜1000
Torr・cmは効率よく酸素原子を発生させるためには不可
欠な条件となる。
FIG. 3 schematically shows the relationship between the product (P · d) of the pressure P of the gas to be discharged and the distance d between the discharge electrodes, the energy efficiency of dissociation (ionization) of oxygen molecules, and the relationship with the discharge sustaining voltage. There is something. When P · d is 1 Torr · cm or less, the electron energy of the discharge is large, and ionization of oxygen molecules occurs, which requires more discharge power than necessary. In addition, ionized oxygen molecules have sufficient energy and therefore exhibit almost the same oxidizing power as oxygen atoms, but they often cause fatal damage to a substance to be treated due to having an electric charge, and thus their generation is not preferable. On the other hand, when P · d is 1000 Torr · cm or more, the electron energy of the discharge is small and sufficient excitation of oxygen molecules cannot be performed, so that generation of oxygen atoms cannot be expected, and the voltage required to maintain the discharge is high and the dielectric constant is high. It is easy to cause dielectric breakdown of the body. From the above results, P · d is 1 to 1000 as the discharge condition.
Torr.cm is an essential condition for efficiently generating oxygen atoms.

第4図は本発明の他の実施例による酸素原子発生装置
の要部を示す部分断面図である。第4図において、
(1)は管状誘電体、(2)は誘電体の管に密着もしく
は導電性接着剤で接着させられた金属等の導電性材料で
構成された電極で、電極の内部には1つ以上の貫通孔
(2A)が設けられ、この貫通孔(2A)に冷却された液体
が流通し電極および管状誘電体(1)を介して放電気体
の温度を適当な範囲に保持する。放電のために投入した
電力のうち酸素分子の解離に利用されるエネルギーは高
々数10%に過ぎず、残りは全て熱エネルギーとなり被放
電気体の加熱に用いられる。加熱された気体は接触する
管状誘電体(1)を加熱することになるが、一般に誘電
体は高温では絶縁破壊を生じ易く、これを防止するため
には冷却が不可欠である。例えば、誘電体として硼硅酸
ガラスを使用する場合は、硼硅ガラスの特性上200℃以
上で絶縁破壊電圧が低下するので少なくともこの温度以
下への冷却が不可欠である。
FIG. 4 is a partial sectional view showing a main part of an oxygen atom generator according to another embodiment of the present invention. In FIG.
(1) is a tubular dielectric, and (2) is an electrode made of a conductive material such as a metal adhered to a dielectric tube or adhered with a conductive adhesive. One or more electrodes are provided inside the electrode. A through-hole (2A) is provided, and the cooled liquid flows through the through-hole (2A) to maintain the temperature of the discharge gas in an appropriate range via the electrode and the tubular dielectric (1). The energy used for dissociation of oxygen molecules is at most only tens of percent of the power input for discharging, and the rest is converted to thermal energy and used for heating the gas to be discharged. The heated gas heats the contacting tubular dielectric (1). Generally, the dielectric tends to cause dielectric breakdown at a high temperature, and cooling is indispensable to prevent this. For example, when borosilicate glass is used as a dielectric, the dielectric breakdown voltage decreases at 200 ° C. or higher due to the characteristics of borosilicate glass, so that cooling to at least this temperature is essential.

また、電極の冷却は第4図の様な貫通孔(2A)に冷却
された液体を流通する方法でなくともフインを付加して
このフインを通じてガス冷却を行つても同じ効果が得ら
れるのはいうまでもない。
Also, the same effect can be obtained by adding a fin and performing gas cooling through this fin, even if the cooling of the electrode is not a method of flowing the cooled liquid through the through hole (2A) as shown in FIG. Needless to say.

第5図はこの発明の他の実施例による酸素原子発生装
置の要部を示す部分断面図である。図において、(9)
は誘電体の管(1)に密着もしくは良熱伝導性接着剤で
接着させられた金属等の良熱伝導性材料で構成された温
度調整ブロツクである。温度調整ブロツク(9)はその
内部に冷却された液体が流通しうる貫通孔(9A)を有す
るか、外部にフインを有する。この温度調整ブロツク
(9)の貫通孔(9A)に冷却された液体を通ずるか、外
部のフインに冷却された流体を通ずることによつて管状
誘電体(1)や被放電気体の温度を目的とする温度範囲
に調整し、管状誘電体(1)の絶縁破壊を防止する。
FIG. 5 is a partial sectional view showing a main part of an oxygen atom generating apparatus according to another embodiment of the present invention. In the figure, (9)
Is a temperature control block made of a good heat conductive material such as a metal adhered to the dielectric tube (1) or bonded with a good heat conductive adhesive. The temperature control block (9) has a through hole (9A) through which the cooled liquid can flow, or has a fin outside. By passing the cooled liquid through the through hole (9A) of the temperature control block (9) or by passing the cooled fluid through an external fin, the temperature of the tubular dielectric (1) or the gas to be discharged can be adjusted. To prevent the dielectric breakdown of the tubular dielectric (1).

ちなみに、誘電体と電極の構成は上記の示した条件を
満足しておれば良く、第6図のように複数の電極(2)
を設け、交互に高電圧を印加する構成、第7図A、Bに
部分断面図および側面図で示すように複数の管状誘電体
(1)を束ねてその外周に電極(2)を設けても、さら
には、第8図のように管状誘電体(1)を巻いて一対以
上の電極(2)を設けて管状誘電体(1)の設置長さを
短縮する構成でも、第9図A、Bに正面図および断面図
で示すように管状誘電体(1)をはさんで電極(2)を
対向させた構成でも同等の効果が期待できる。また1対
の電極(2)の双方を同時に誘電体の外部に設ける必要
はなく一方を被放電気体と接する構成であつても良い。
Incidentally, the configuration of the dielectric and the electrode only needs to satisfy the above-described conditions, and as shown in FIG.
And a structure in which a high voltage is applied alternately. A plurality of tubular dielectrics (1) are bundled as shown in partial sectional views and side views in FIGS. 7A and 7B, and an electrode (2) is provided on the outer periphery thereof. Further, as shown in FIG. 8, even in a configuration in which the tubular dielectric (1) is wound and provided with at least one pair of electrodes (2) to shorten the installation length of the tubular dielectric (1), FIG. , B, the same effect can be expected even in a configuration in which the electrode (2) is opposed to the tubular dielectric (1) as shown in the front view and the cross-sectional view. It is not necessary to provide both of the pair of electrodes (2) at the same time outside the dielectric, and one of them may be in contact with the gas to be discharged.

また、放電電極の接地は高電圧を印加する対電極の一
方を接地しても、対電極の中間に別の接地電極を設けて
も良いし、電極間に温度調整ブロツクを配する場合には
この温度調整ブロツクを接地電極と兼ねさせても良い。
Further, the grounding of the discharge electrode may be performed by grounding one of the counter electrodes to which a high voltage is applied, another ground electrode may be provided in the middle of the counter electrode, or when a temperature adjustment block is provided between the electrodes. This temperature adjustment block may also serve as a ground electrode.

さらに、原料気体として、オゾン含有酸素を用いると
オゾンが容易に分解して酸素原子を生成するので酸素を
原料とした場合より高濃度の酸素原子を得ることができ
る。第10図は原料にオゾン含有気体を用いる場合の実施
例を示す酸素原子発生装置の概略構成図である。図にお
いて、(11)はオゾン発生器である。原料気体源(8)
から供給された酸素含有気体はまずオゾン発生器(11)
に送られ、含有酸素の一部がオゾンに変換されて管状誘
電体(2)へ送入される。以降の動作は第1図の装置と
同じ酸素原子を生成する。
Furthermore, when ozone-containing oxygen is used as a source gas, ozone is easily decomposed to generate oxygen atoms, so that a higher concentration of oxygen atoms can be obtained than when oxygen is used as a raw material. FIG. 10 is a schematic configuration diagram of an oxygen atom generating apparatus showing an embodiment in which an ozone-containing gas is used as a raw material. In the figure, (11) is an ozone generator. Source gas source (8)
The oxygen-containing gas supplied from the ozone generator (11)
And a part of the contained oxygen is converted to ozone and sent to the tubular dielectric (2). Subsequent operations generate the same oxygen atoms as in the apparatus of FIG.

なお、参考として、以上では原料気体として酸素含有
気体について説明したが、原料に酸素以外の気体を用い
ることによりこの発明の装置で望みの原子状気体を得る
ことができる。例えば、窒素を原料気体とすると、窒素
原子を効率よく高濃度で得ることが可能である。
For reference, an oxygen-containing gas has been described above as a raw material gas. However, by using a gas other than oxygen as a raw material, a desired atomic gas can be obtained by the apparatus of the present invention. For example, when nitrogen is used as a source gas, nitrogen atoms can be efficiently obtained at a high concentration.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、放電場の酸素含有
気体圧力が0.1〜10Torrで、かつ、酸素含有気体圧力と
放電電極間距離との積が1〜1000Torr・cmの範囲で、誘
電体を介して酸素含有気体を対象に放電を行うので、高
濃度の酸素原子を効率良く発生させることができる効果
がある。
As described above, according to the present invention, when the oxygen-containing gas pressure of the discharge field is 0.1 to 10 Torr, and the product of the oxygen-containing gas pressure and the distance between the discharge electrodes is 1 to 1000 Torrcm, the dielectric Since the discharge is performed on the oxygen-containing gas through the target, there is an effect that high-concentration oxygen atoms can be efficiently generated.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による酸素原子発生装置を
示す構成図、第2図はこの発明の一実施例による被放電
気体の圧力と生成酸素原子の絶対濃度及び相対濃度の関
係を示す特性図、第3図は被放電気体圧力と電極間距離
の積と酸素分子解離のエネルギー効率および放電維持電
圧との関係を示す特性図、第4図から第6図はそれぞれ
この発明の他の実施例による酸素原子発生装置の要部を
示す部分断面図、第7図A、Bはこの発明の他の実施例
による酸素原子発生装置の要部を示すそれぞれ部分断面
図および側面図、第8図はこの発明の他の実施例による
酸素原子発生装置の要部を示す斜視図、第9図A、Bは
本発明の他の実施例による酸素原子発生装置の要部を示
すそれぞれ正面図および断面図、第10図はこの発明の他
の実施例による酸素原子発生装置を示す構成図、第11図
は従来の紫外線照射による酸素原子発生装置の概略構成
図である。 図において、(1)は管状誘電体、(2)電極、(2A)
は貫通孔、(3)はバルブ、(4)は真空ポンプ、
(5)は反応チヤンバー、(6)は交流電源、(7)は
高電圧トランス、(8)は原料気体源、(9)は温度調
整ブロツク、(9A)は貫通孔、(10)は紫外光源、(1
1)はオゾン発生器、(12)は真空チヤンバーである。 なお、図中同一符号は同一もしくは相当部分を示す。
FIG. 1 is a block diagram showing an oxygen atom generating apparatus according to one embodiment of the present invention, and FIG. 2 shows the relationship between the pressure of the gas to be discharged and the absolute and relative concentrations of generated oxygen atoms according to one embodiment of the present invention. FIG. 3 is a characteristic diagram showing the relationship between the product of the pressure of the gas to be discharged and the distance between the electrodes, the energy efficiency of oxygen molecule dissociation, and the discharge sustaining voltage. FIGS. 7A and 7B are a partial sectional view and a side view, respectively, showing main parts of an oxygen atom generator according to another embodiment of the present invention. FIG. 9 is a perspective view showing a main part of an oxygen atom generator according to another embodiment of the present invention. FIGS. 9A and 9B are front views showing main parts of an oxygen atom generator according to another embodiment of the present invention. FIG. 10 is a sectional view of an acid according to another embodiment of the present invention. Diagram showing an atomic generator, FIG. 11 is a schematic diagram of an oxygen atom generator according to a conventional ultraviolet irradiation. In the figure, (1) is a tubular dielectric, (2) an electrode, (2A)
Is a through hole, (3) is a valve, (4) is a vacuum pump,
(5) is a reaction chamber, (6) is an AC power supply, (7) is a high voltage transformer, (8) is a source gas source, (9) is a temperature control block, (9A) is a through hole, and (10) is ultraviolet. Light source, (1
1) is an ozone generator, and (12) is a vacuum chamber. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素含有気体を原料として誘電体を介した
放電によつて原子状酸素を生成する方法において、上記
酸素含有気体の圧力を0.1〜10Torr、この酸素含有気体
の圧力と放電電極間距離との積を1〜1000Torr・cmとす
ることを特徴とする酸素原子発生方法。
A method for producing atomic oxygen by discharging an oxygen-containing gas as a raw material through a dielectric, wherein the pressure of the oxygen-containing gas is 0.1 to 10 Torr, and the pressure of the oxygen-containing gas and the discharge electrode A method for generating oxygen atoms, wherein the product of the distance and the distance is 1 to 1000 Torr · cm.
【請求項2】対向する一対の電極、これら電極間に介在
し少なくとも一方の電極と電気的に結合される誘電体、
および上記電極間に供給される酸素含有気体の圧力を調
節する手段を備え、上記電極に交互に高電圧を印加して
上記酸素含有気体中に放電させることにより酸素を酸素
原子に解離させる酸素原子発生装置において、上記酸素
含有気体の圧力が0.1〜10Torr、この酸素含有気体の圧
力と上記電極間距離との積が1〜1000Torr・cmとなるよ
うに上記圧力調節手段および上記電極間距離を設定する
ことを特徴とする酸素原子発生装置。
A pair of electrodes facing each other, a dielectric interposed between the electrodes and electrically coupled to at least one of the electrodes;
A means for adjusting the pressure of the oxygen-containing gas supplied between the electrodes, and an oxygen atom that dissociates oxygen into oxygen atoms by alternately applying a high voltage to the electrodes and discharging the oxygen-containing gas. In the generator, the pressure adjusting means and the interelectrode distance are set so that the pressure of the oxygen-containing gas is 0.1 to 10 Torr, and the product of the pressure of the oxygen-containing gas and the interelectrode distance is 1 to 1000 Torrcm. An oxygen atom generator characterized in that:
JP63174032A 1987-11-25 1988-07-12 Oxygen atom generation method and apparatus Expired - Lifetime JP2569739B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63174032A JP2569739B2 (en) 1988-07-12 1988-07-12 Oxygen atom generation method and apparatus
DE19883844630 DE3844630C2 (en) 1987-11-25 1988-11-25
DE19883839903 DE3839903A1 (en) 1987-11-25 1988-11-25 Process and device for the vapour deposition of thin layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174032A JP2569739B2 (en) 1988-07-12 1988-07-12 Oxygen atom generation method and apparatus

Publications (2)

Publication Number Publication Date
JPH0226804A JPH0226804A (en) 1990-01-29
JP2569739B2 true JP2569739B2 (en) 1997-01-08

Family

ID=15971439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174032A Expired - Lifetime JP2569739B2 (en) 1987-11-25 1988-07-12 Oxygen atom generation method and apparatus

Country Status (1)

Country Link
JP (1) JP2569739B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017803A1 (en) * 1994-12-09 1996-06-13 Kao Corporation Method of evolving negatively charged oxygen atoms and equipment therefor
JP2010052980A (en) * 2008-08-28 2010-03-11 Tokyo Institute Of Technology Oxygen atom generating apparatus
EP2312612B1 (en) 2009-10-16 2017-03-08 Korea Institute Of Machinery & Materials Plasma reactor for abating hazardous materials and driving method thereof
KR101230513B1 (en) * 2010-12-27 2013-02-06 (주)엘오티베큠 Treatment apparatus for discharging fluid
US10535506B2 (en) 2016-01-13 2020-01-14 Mks Instruments, Inc. Method and apparatus for deposition cleaning in a pumping line
US10337105B2 (en) * 2016-01-13 2019-07-02 Mks Instruments, Inc. Method and apparatus for valve deposition cleaning and prevention by plasma discharge
US11745229B2 (en) 2020-08-11 2023-09-05 Mks Instruments, Inc. Endpoint detection of deposition cleaning in a pumping line and a processing chamber
US11664197B2 (en) 2021-08-02 2023-05-30 Mks Instruments, Inc. Method and apparatus for plasma generation

Also Published As

Publication number Publication date
JPH0226804A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
JP4953814B2 (en) Ozone generator and ozone generation method
Eliasson et al. Ozone generation with narrow–band UV radiation
US6633109B2 (en) Dielectric barrier discharge-driven (V)UV light source for fluid treatment
Kogelschatz Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation
US4877588A (en) Method and apparatus for generating ozone by corona discharge
GB2087700A (en) Apparatus for producing ozone
JP2001507274A (en) Method and apparatus for treating aqueous solution
WO2015037565A1 (en) Method for synthesizing organic matter and submerged plasma device
JP2569739B2 (en) Oxygen atom generation method and apparatus
JPS6340705A (en) Method and device for producing ozone by photocatalyst
KR20180055816A (en) Multi-Oxygen Generator
US5318684A (en) Systems for the decomposition of water
JPH06100301A (en) Ozonizer
JP2002273156A (en) Method and apparatus for treating gas
JP3950856B2 (en) Catalytic electrode type ozone generation method and generator
JPS6154722B2 (en)
JPS632884B2 (en)
JPH10324504A (en) Silent-discharge ozonizing method and device therewith
JPH11209105A (en) Ozonizer
JPH01153502A (en) Ozonizer
JPH01103903A (en) Ozonizer
US3186930A (en) Method for the production of ozone
JP2003089507A (en) Apparatus for generating ozone
JP2016056167A (en) Organic matter synthesis process
Valdosta A HISTORY OF PATENTED METHODS OF OZONE PRODUCTION FROM 1897 TO 1997