JPS632884B2 - - Google Patents

Info

Publication number
JPS632884B2
JPS632884B2 JP55087446A JP8744680A JPS632884B2 JP S632884 B2 JPS632884 B2 JP S632884B2 JP 55087446 A JP55087446 A JP 55087446A JP 8744680 A JP8744680 A JP 8744680A JP S632884 B2 JPS632884 B2 JP S632884B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
voltage
main electrodes
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55087446A
Other languages
Japanese (ja)
Other versions
JPS5711806A (en
Inventor
Kenji Horii
Chobee Yamabe
Saburo Sato
Makoto Koguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8744680A priority Critical patent/JPS5711806A/en
Publication of JPS5711806A publication Critical patent/JPS5711806A/en
Publication of JPS632884B2 publication Critical patent/JPS632884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 本発明は、対向する金属電極間のパルス電圧印
加によつて生ずるグロー状放電によるオゾン発生
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for generating ozone using a glow discharge generated by applying a pulse voltage between opposing metal electrodes.

近時オゾンガスによる消毒、漂白および酸化な
どの処理が広く行なわれ、工業的規模のオゾン発
生装置が用いられている。
In recent years, treatments such as disinfection, bleaching, and oxidation using ozone gas have been widely carried out, and industrial-scale ozone generators are being used.

この種の工業的規模のオゾン発生装置において
は、従来より、専ら無声放電法が用いられてい
る。無声放電法とは第1図ないし第3図の原理的
構成図に示すように空隙4を介して対向する高圧
電極1と接地電極3との間に誘電体2を置き、前
記高圧電極1と接地電極3との間に電源5により
交流高電圧を印加して空隙4に無声放電を生じさ
せ、空隙4に酸素を含むガスを通流してオゾンを
生成させる方式である。
In this type of industrial-scale ozone generator, the silent discharge method has conventionally been used exclusively. In the silent discharge method, as shown in the basic configuration diagrams of FIGS. 1 to 3, a dielectric material 2 is placed between a high voltage electrode 1 and a ground electrode 3 that face each other with a gap 4 in between. In this method, a high alternating current voltage is applied between the electrode 3 and the ground electrode 3 by a power source 5 to generate a silent discharge in the gap 4, and gas containing oxygen is passed through the gap 4 to generate ozone.

第4図は、上記の交流高電圧印加の無声放電に
用いられる誘電体電極の破砕断面図である。
FIG. 4 is a fragmented cross-sectional view of a dielectric electrode used in the silent discharge with the application of an AC high voltage.

第4図においては、ガラス管等の誘電体2の内
面にカーボン塗料、アルミニウムスパツタリン
グ、金属蒸着等による薄膜の高圧電極1が付着形
成されている。第5図は、上記の誘電体電極6の
所要本数が設けられているオゾン発生装置の破砕
断面図である。第5図においては、誘電体電極6
はステンレス鋼管から成る管状の接地電極3内に
挿入され、接地電極3の両端部分が管板13を貫
通して取付けられ、接地電極3と装通筐体12と
管板13とによつて形成される空間には筐体12
の下部の冷却水入口8より冷却水が給水され、筐
体12の上部の冷却水出口9より冷却水が排水さ
れて、接地電極3が水冷される。誘電体電極6に
は、図示しない交流電源から高圧ブツシング14
を介し、給電治具7を通して交流高電圧が印加さ
れ、接地電極3との間に無声放電を生ずる。無声
放電によつて発生した熱は前記冷却水によつて除
去され、空隙4および誘電体電極6の温度上昇が
抑えられる。酸素を含むガス、例えば乾燥空気は
被処理ガス入口10より供給され、放電空隙4を
通過する間にオゾン化され、オゾンガス出口11
から取出される。
In FIG. 4, a thin film high-voltage electrode 1 is formed by adhering to the inner surface of a dielectric material 2 such as a glass tube, using carbon paint, aluminum sputtering, metal vapor deposition, or the like. FIG. 5 is a fragmentary sectional view of an ozone generator provided with the required number of dielectric electrodes 6 described above. In FIG. 5, the dielectric electrode 6
is inserted into a tubular ground electrode 3 made of a stainless steel tube, and both end portions of the ground electrode 3 are attached through the tube sheet 13, and are formed by the ground electrode 3, the housing 12, and the tube sheet 13. In the space where
Cooling water is supplied from a cooling water inlet 8 at the bottom of the housing 12, and drained from a cooling water outlet 9 at the top of the housing 12, thereby cooling the ground electrode 3 with water. The dielectric electrode 6 is connected to a high voltage bushing 14 from an AC power source (not shown).
An AC high voltage is applied through the power supply jig 7 and a silent discharge is generated between the power supply jig 7 and the ground electrode 3. The heat generated by the silent discharge is removed by the cooling water, and the temperature rise in the gap 4 and the dielectric electrode 6 is suppressed. A gas containing oxygen, for example dry air, is supplied from the gas inlet 10 to be treated, is ozonated while passing through the discharge gap 4, and is ozonated at the ozone gas outlet 11.
taken from.

上記の交流高電圧印加による無声放電を用いる
方法では装置が非常に高価となり、さらに放電の
安定化、すなわちアークの移行防止のために誘電
体を用いているので印加電圧を高くできないこと
になり、従つて電極間距離(空隙)を数ミリメー
トルの巾より広くとれば低い印加電圧では放電を
得られず、反応容積の狭小化を余儀なくされるな
ど工業的規模の装置として最適ではない。その上
放電のトリガー電子が大気中の紫外線や宇宙線に
よる電離作用によつて生ずる偶存電子なので電界
強度を大きく取る必要がある。従つて、過電圧に
より局部的に正負電荷が混在する強烈なストリー
マ放電が行なわれ、放電エネルギーの95%近くが
熱となるのでオゾンの生成に適さない状態にな
る。
In the above-mentioned method of using silent discharge by applying high AC voltage, the equipment becomes very expensive, and furthermore, since a dielectric material is used to stabilize the discharge, that is, to prevent migration of the arc, the applied voltage cannot be increased. Therefore, if the distance between the electrodes (gap) is wider than a few millimeters, discharge cannot be obtained with a low applied voltage, and the reaction volume is forced to be narrow, which is not optimal for an industrial-scale device. Furthermore, since the trigger electrons for the discharge are incidental electrons generated by the ionization effect of ultraviolet rays and cosmic rays in the atmosphere, it is necessary to increase the electric field strength. Therefore, an intense streamer discharge in which positive and negative charges are mixed locally occurs due to the overvoltage, and nearly 95% of the discharge energy becomes heat, resulting in a state unsuitable for ozone generation.

本発明は、上記の欠点を除去し、取扱いが容易
で反応容積の大きいオゾン発生方法を提供するこ
とを目的とする。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide an ozone generation method that is easy to handle and has a large reaction volume.

本発明は、オゾン発生装置の主放電電極間隙か
ら誘電体を取除き、電極間の空隙を拡大し、放電
のトリガーとなる初期電子を外部的に供給して、
電極間の全空間に一様なグロー状放電を起こさせ
ることを特徴とする。
The present invention removes the dielectric material from the gap between the main discharge electrodes of an ozone generator, expands the gap between the electrodes, and externally supplies initial electrons that trigger the discharge.
It is characterized by causing a uniform glow-like discharge in the entire space between the electrodes.

以下、本発明によるオゾン発生方法の実施例に
つき、図を参照して説明する。
Hereinafter, embodiments of the ozone generation method according to the present invention will be described with reference to the drawings.

実施例 1 第6図は、オゾン発生装置の原理的構成図を示
す。第6図において、金属製の負極(高圧電極)
41の放電極間に間隔をおいて溝が設けられ、こ
の溝には第7図の部分的断面図に示すワイヤ製の
第3電極42が中心部に内蔵されたガラス細管4
3が埋設され、第3電極42はコンデンサ46を
介して正極44と同電位に接続されている。負極
41から空隙45を隔てて平板の正極(接地電
極)44が設けられている。パルス発生器47よ
り負極(高圧電極)41に負極性のインパルスが
印加されると被処理ガスが通流する負極41と正
極44との間の電圧の上昇に伴つて、まず第3電
極42と負極41との間で予備放電が始まり、負
極41の近傍は電子富化の状態となり、さらに電
圧が上昇すると負極41と正極44との間で主放
電を生ずる。この主放電は前記の第3電極42に
よる予備放電のタイミングがコンデンサ46によ
りコントロールされているために、極めて一様な
グロー状の放電となる。この場合、被処理ガスは
通常の乾燥空気よりも放電集中を防ぐ効果を有す
るとされるHeとHeの働きを助長するN2、CO2
O2の混合ガスを流す方がグロー状放電からアー
クへの激しい移行を防ぐために好ましい。また、
負極41側を接地する場合は正極44が高圧とな
り、パルス発生器47より正極性のインパルスが
印加されることは勿論である。
Example 1 FIG. 6 shows a basic configuration diagram of an ozone generator. In Figure 6, a metal negative electrode (high voltage electrode)
A groove is provided at intervals between the discharge electrodes 41, and in this groove, a third electrode 42 made of wire as shown in the partial cross-sectional view of FIG.
3 is buried, and the third electrode 42 is connected to the same potential as the positive electrode 44 via a capacitor 46. A flat positive electrode (ground electrode) 44 is provided across a gap 45 from the negative electrode 41 . When a negative impulse is applied to the negative electrode (high-voltage electrode) 41 from the pulse generator 47, the voltage between the negative electrode 41 and the positive electrode 44 through which the gas to be treated flows increases, and the voltage between the third electrode 42 and the positive electrode 44 increases. A preliminary discharge begins between the negative electrode 41 and the vicinity of the negative electrode 41 becomes electron-rich, and when the voltage further increases, a main discharge occurs between the negative electrode 41 and the positive electrode 44. Since the timing of the preliminary discharge by the third electrode 42 is controlled by the capacitor 46, this main discharge becomes an extremely uniform glow-like discharge. In this case, the gas to be treated contains He, which is said to be more effective in preventing discharge concentration than normal dry air, and N 2 and CO 2 , which promote the action of He.
It is preferable to flow a mixed gas of O 2 to prevent a violent transition from glow-like discharge to arc. Also,
Of course, when the negative electrode 41 side is grounded, the positive electrode 44 becomes high voltage, and a positive impulse is applied from the pulse generator 47.

実施例 2 第8図は、上記実施例1の予備放電に代えて強
い紫外線のインパルス的な照射によるオゾン発生
装置の原理的構成図である。第8図において、紫
外線発生器69から照射される紫外線の通過を容
易にする例えば金属網で作られた負極61が設け
られて接地され、負極61に相対して空隙65を
隔てて正極64が設けられパルス発生器67に接
続されている。この装置において、負極61と正
極64との間にインパルス電圧を印加し、この電
圧の立上りに同期させて、紫外線発生器69から
空〓65に波長2000Å以下の強烈な紫外線68が
予備放電を目的としてインパルス的に照射され、
この後主電極間の電圧が充分立上り、空隙65に
一様なグロー放電を生じ、空隙65を通流する酸
素を含む被処理ガスのオゾン化が行なわれる。こ
の装置において紫外線の代りに放射線の照射によ
つて同様に被処理ガスのオゾン化が可能である。
また、紫外線発生器が金属電極の側面に設けられ
ても初期電子を供給することができる。
Embodiment 2 FIG. 8 is a diagram showing the basic configuration of an ozone generator that uses impulse irradiation with strong ultraviolet rays instead of the preliminary discharge of Embodiment 1. In FIG. 8, a negative electrode 61 made of, for example, metal mesh is provided and grounded to facilitate the passage of ultraviolet rays emitted from an ultraviolet generator 69, and a positive electrode 64 is placed opposite to the negative electrode 61 with a gap 65 in between. The pulse generator 67 is connected to the pulse generator 67 . In this device, an impulse voltage is applied between the negative electrode 61 and the positive electrode 64, and in synchronization with the rise of this voltage, an intense ultraviolet ray 68 with a wavelength of 2000 Å or less is emitted from an ultraviolet generator 69 into the sky 65 for the purpose of preliminary discharge. It is irradiated impulsively as
Thereafter, the voltage between the main electrodes rises sufficiently to generate a uniform glow discharge in the gap 65, and the gas to be treated containing oxygen flowing through the gap 65 is ozonated. In this apparatus, the gas to be treated can also be ozonated by irradiation with radiation instead of ultraviolet rays.
Further, even if the ultraviolet ray generator is provided on the side surface of the metal electrode, initial electrons can be supplied.

本発明において、予備放電または紫外線照射の
時点から主放電までの時間は、アークの出ないグ
ロー状放電を得るために非常に重要なパラメータ
である。安定したグロー状放電を得るには、初期
電子の供給量によつても異なるが、この時間間隔
が数マイクロ秒以下となるようにインパルス波形
を調整する必要がある。
In the present invention, the time from the preliminary discharge or ultraviolet irradiation to the main discharge is a very important parameter in order to obtain a glow-like discharge without arcing. In order to obtain a stable glow-like discharge, it is necessary to adjust the impulse waveform so that the time interval is several microseconds or less, although it depends on the initial supply amount of electrons.

本発明によれば誘電体が主電極間に介在しない
ので、高電圧の印加が可能であり、主電極間の空
隙を無声放電の場合の10倍以上、すなわち、5cm
程度とすることが可能となり、大反応容積が得ら
れる。初期電子の供給により電極間空隙の大きさ
に比して非常に低い電極間電圧、例えば空隙2cm
に対して17kVでグロー放電が得られることにな
り、従来の偶存電子に頼る場合の空隙2cmに対し
60kVを印加してアーク放電を招くような虞がな
い。しかも予備放電あるいは紫外線照射等により
初期電子を豊富に供給して装置を動かすことがで
き、かつ、安定なグロー状放電が得られる。この
ためオゾン発生装置として簡単で、大反応容積、
低電圧駆動、高効率のオゾン発生等従来の無声放
電による装置に優る性能を具備した高収率のオゾ
ン発生方法を提供することができる。なお、以上
の実施例の説明では、高電圧の印加を直流印加で
説明したが、第3電極を両電極側に設けることに
より交流印加でも実施可能であることはいうまで
もない。
According to the present invention, since a dielectric material is not interposed between the main electrodes, it is possible to apply a high voltage, and the gap between the main electrodes can be reduced to 10 times or more than in the case of silent discharge, that is, 5 cm.
This makes it possible to obtain a large reaction volume. Due to the initial supply of electrons, the interelectrode voltage is very low compared to the size of the interelectrode gap, for example, a gap of 2 cm.
Glow discharge can be obtained at 17kV for
There is no risk of arc discharge caused by applying 60kV. Furthermore, the device can be operated by abundantly supplying initial electrons through preliminary discharge or ultraviolet irradiation, and a stable glow-like discharge can be obtained. Therefore, it is easy to use as an ozone generator, has a large reaction volume, and
It is possible to provide a high-yield ozone generation method that has performance superior to conventional silent discharge devices, such as low voltage drive and highly efficient ozone generation. In the above embodiments, the application of high voltage was explained using direct current application, but it goes without saying that alternating current application is also possible by providing the third electrode on both electrode sides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、従来のオゾン発生装置
の原理的構成図、第4図は、従来のオゾン発生装
置の誘電体電極の破砕断面図、第5図は従来のオ
ゾン発生装置の破砕断面図、第6図は本発明によ
るオゾン発生装置の実施例1の原理的構成図、第
7図は、実施例1の第3電極の部分断面図、第8
図は、本発明による実施例2の原理的構成図であ
る。 41,61……負極、42……第3電極、4
4,64……正極、45,65……空隙、47,
67……パルス発生器。
Figures 1 to 3 are basic configuration diagrams of a conventional ozone generator, Figure 4 is a fractured cross-sectional view of a dielectric electrode of a conventional ozone generator, and Figure 5 is a fracture of a conventional ozone generator. A cross-sectional view, FIG. 6 is a basic configuration diagram of Example 1 of the ozone generator according to the present invention, FIG. 7 is a partial cross-sectional view of the third electrode of Example 1, and FIG.
The figure is a diagram showing the principle configuration of Example 2 according to the present invention. 41, 61... negative electrode, 42... third electrode, 4
4,64...Positive electrode, 45,65...Gap, 47,
67...Pulse generator.

Claims (1)

【特許請求の範囲】 1 対向して配置された主電極間にパルス状電圧
を印加してグロー状放電を生ぜしめ、該電極間隔
に酸素を含むガスを通流してオゾンを発生させる
方法において、前記対向して配置された主電極間
の電圧立上りに同期させて、第三電極より初期電
子を供給して予備放電を行わせるようにしたこと
を特徴とするオゾン発生方法。 2 特許請求の範囲第1項記載の方法において、
初期電子の供給は、一方の主電極表面近傍に設け
られた複数個の溝に埋設された電気絶縁性管状第
三電極に、結合コンデンサを介して主電極間電圧
を分圧供給するようにしたことを特徴とするオゾ
ン発生方法。 3 特許請求の範囲第1項記載の方法において、
第三電極をメツシユ状電極とし、該第三電極の背
後に設けた紫外線発生器により、主電極間電圧立
上りに同期させて紫外線をパルス的に照射して予
備放電を行わせるようにしたことを特徴とするオ
ゾン発生方法。
[Claims] 1. A method for generating ozone by applying a pulsed voltage between main electrodes disposed opposite each other to generate a glow discharge, and passing a gas containing oxygen between the electrodes, A method for generating ozone, characterized in that initial electrons are supplied from a third electrode in synchronization with a voltage rise between the main electrodes arranged to face each other to cause a preliminary discharge. 2. In the method described in claim 1,
Initial electron supply was achieved by supplying a divided voltage between the main electrodes via a coupling capacitor to an electrically insulating tubular third electrode buried in multiple grooves provided near the surface of one of the main electrodes. An ozone generation method characterized by: 3. In the method described in claim 1,
The third electrode is a mesh-shaped electrode, and an ultraviolet ray generator installed behind the third electrode irradiates ultraviolet rays in pulses in synchronization with the rise of the voltage between the main electrodes to cause a preliminary discharge. Characteristic ozone generation method.
JP8744680A 1980-06-27 1980-06-27 Ozonizer Granted JPS5711806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8744680A JPS5711806A (en) 1980-06-27 1980-06-27 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8744680A JPS5711806A (en) 1980-06-27 1980-06-27 Ozonizer

Publications (2)

Publication Number Publication Date
JPS5711806A JPS5711806A (en) 1982-01-21
JPS632884B2 true JPS632884B2 (en) 1988-01-21

Family

ID=13915078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8744680A Granted JPS5711806A (en) 1980-06-27 1980-06-27 Ozonizer

Country Status (1)

Country Link
JP (1) JPS5711806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547543B2 (en) * 1986-05-31 1996-10-23 株式会社 高槻電機製作所 Air pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103795A3 (en) * 1982-09-16 1985-05-08 Togo Japan Inc. Track-traveling four-wheel vehicle
TW467770B (en) * 2000-10-24 2001-12-11 Huei-Tang Liou Gold plating method for quartz or high alumina tube of high heat resistance and high voltage resistance, and gold-plated quartz and high alumina tube for the application of ozone generator
JP4841177B2 (en) * 2005-06-13 2011-12-21 ヤマト科学株式会社 Plasma cleaning equipment
EP2145701A1 (en) * 2008-07-16 2010-01-20 AGC Flat Glass Europe SA Method and installation for surface preparation by dielectric barrier discharge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS456105Y1 (en) * 1966-02-01 1970-03-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS456105Y1 (en) * 1966-02-01 1970-03-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547543B2 (en) * 1986-05-31 1996-10-23 株式会社 高槻電機製作所 Air pump

Also Published As

Publication number Publication date
JPS5711806A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
JP2562542B2 (en) Irradiation device
JP2001507274A (en) Method and apparatus for treating aqueous solution
US5223105A (en) Ozone generator
US20160331437A1 (en) Plasma device
CN101534869A (en) Diffusive plasma treatment and material procession
KR100407447B1 (en) Apparatus for generating ozone in high concentration
Samaranayake et al. Pulsed power production of ozone using nonthermal gas discharges
US4748635A (en) Apparatus and method for uniform ionization of high pressure gaseous media
JPS632884B2 (en)
JP2569739B2 (en) Oxygen atom generation method and apparatus
JP3991252B2 (en) Equipment for decomposing organic substances in exhaust gas by pulse corona discharge
US2271792A (en) Means for treating air
EP0482021B1 (en) Ozone generator
JPH11209105A (en) Ozonizer
JPH0648707A (en) Ozone-generating device
JP7328500B2 (en) Atmospheric plasma processing equipment
RU2211800C2 (en) Ozone generation process and apparatus
JP2002274814A (en) Ozone-generating device
JP4841177B2 (en) Plasma cleaning equipment
RU2219136C2 (en) Method and device for purification of liquid and gaseous mediums
JPH0831547A (en) Ozonizer
JP2001009013A (en) Ozone generation method and ozone sterilization device
JPH0789702A (en) Ozonizer
JPH08104502A (en) Ozone forming device
JPS62138309A (en) Ozonizer