SG11201403688RA - Vertical integration of cmos electronics with photonic devices - Google Patents

Vertical integration of cmos electronics with photonic devices

Info

Publication number
SG11201403688RA
SG11201403688RA SG11201403688RA SG11201403688RA SG11201403688RA SG 11201403688R A SG11201403688R A SG 11201403688RA SG 11201403688R A SG11201403688R A SG 11201403688RA SG 11201403688R A SG11201403688R A SG 11201403688RA SG 11201403688R A SG11201403688R A SG 11201403688RA
Authority
SG
Singapore
Prior art keywords
photonic devices
vertical integration
cmos electronics
cmos
electronics
Prior art date
Application number
SG11201403688RA
Other languages
English (en)
Inventor
John Dallesasse
Stephen B Krasulick
Timothy Creazzo
Elton Marchena
Original Assignee
Skorpios Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skorpios Technologies Inc filed Critical Skorpios Technologies Inc
Publication of SG11201403688RA publication Critical patent/SG11201403688RA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Thin Film Transistor (AREA)
SG11201403688RA 2012-01-18 2013-01-18 Vertical integration of cmos electronics with photonic devices SG11201403688RA (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261588080P 2012-01-18 2012-01-18
PCT/US2013/022244 WO2013109955A1 (fr) 2012-01-18 2013-01-18 Intégration verticale d'électronique cmos munie de dispositifs photoniques

Publications (1)

Publication Number Publication Date
SG11201403688RA true SG11201403688RA (en) 2014-10-30

Family

ID=48799700

Family Applications (2)

Application Number Title Priority Date Filing Date
SG10201509551PA SG10201509551PA (en) 2012-01-18 2013-01-18 Vertical integration of cmos electronics with photonic devices
SG11201403688RA SG11201403688RA (en) 2012-01-18 2013-01-18 Vertical integration of cmos electronics with photonic devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
SG10201509551PA SG10201509551PA (en) 2012-01-18 2013-01-18 Vertical integration of cmos electronics with photonic devices

Country Status (6)

Country Link
US (2) US8859394B2 (fr)
EP (1) EP2805352B1 (fr)
JP (1) JP6197183B2 (fr)
CN (2) CN105336748B (fr)
SG (2) SG10201509551PA (fr)
WO (1) WO2013109955A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183492B2 (en) 2010-12-08 2021-11-23 Skorpios Technologies, Inc. Multilevel template assisted wafer bonding

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630326B2 (en) 2009-10-13 2014-01-14 Skorpios Technologies, Inc. Method and system of heterogeneous substrate bonding for photonic integration
US11181688B2 (en) 2009-10-13 2021-11-23 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device
US9316785B2 (en) 2013-10-09 2016-04-19 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device
US9882073B2 (en) 2013-10-09 2018-01-30 Skorpios Technologies, Inc. Structures for bonding a direct-bandgap chip to a silicon photonic device
US8222084B2 (en) * 2010-12-08 2012-07-17 Skorpios Technologies, Inc. Method and system for template assisted wafer bonding
US9091813B2 (en) 2011-06-08 2015-07-28 Skorpios Technologies, Inc. Systems and methods for photonic polarization beam splitters
US12007605B2 (en) 2011-06-08 2024-06-11 Skorpios Technologies, Inc. Monolithically-integrated, polarization-independent circulator
US9977188B2 (en) 2011-08-30 2018-05-22 Skorpios Technologies, Inc. Integrated photonics mode expander
SG10201509551PA (en) 2012-01-18 2015-12-30 Skorpios Technologies Inc Vertical integration of cmos electronics with photonic devices
US9094135B2 (en) * 2013-06-10 2015-07-28 Freescale Semiconductor, Inc. Die stack with optical TSVs
US9442254B2 (en) 2013-06-10 2016-09-13 Freescale Semiconductor, Inc. Method and apparatus for beam control with optical MEMS beam waveguide
US9435952B2 (en) 2013-06-10 2016-09-06 Freescale Semiconductor, Inc. Integration of a MEMS beam with optical waveguide and deflection in two dimensions
US9810843B2 (en) 2013-06-10 2017-11-07 Nxp Usa, Inc. Optical backplane mirror
US9766409B2 (en) 2013-06-10 2017-09-19 Nxp Usa, Inc. Optical redundancy
US10230458B2 (en) 2013-06-10 2019-03-12 Nxp Usa, Inc. Optical die test interface with separate voltages for adjacent electrodes
CN103872168B (zh) * 2014-03-06 2016-02-24 中国电子科技集团公司第三十八研究所 用于硅基光电集成电路芯片中的光电探测器及制备方法
US9664855B2 (en) 2014-03-07 2017-05-30 Skorpios Technologies, Inc. Wide shoulder, high order mode filter for thick-silicon waveguides
WO2015183992A1 (fr) 2014-05-27 2015-12-03 Skorpios Technologies, Inc. Extenseur de mode du guide d'ondes faisant appel au silicium amorphe
US9209142B1 (en) 2014-09-05 2015-12-08 Skorpios Technologies, Inc. Semiconductor bonding with compliant resin and utilizing hydrogen implantation for transfer-wafer removal
KR101665794B1 (ko) 2014-12-22 2016-10-13 현대오트론 주식회사 다이 기반의 차량 제어기 전용 반도체 설계 방법 및 이에 의해 제조되는 차량 제어기 전용 반도체
US9372307B1 (en) 2015-03-30 2016-06-21 International Business Machines Corporation Monolithically integrated III-V optoelectronics with SI CMOS
WO2016172202A1 (fr) 2015-04-20 2016-10-27 Skorpios Technologies, Inc. Coupleurs à sortie verticale pour des dispositifs photoniques
US9874693B2 (en) 2015-06-10 2018-01-23 The Research Foundation For The State University Of New York Method and structure for integrating photonics with CMOs
US9356163B1 (en) 2015-06-16 2016-05-31 International Business Machines Corporation Structure and method of integrating waveguides, photodetectors and logic devices
EP3141941B1 (fr) * 2015-09-10 2019-11-27 ams AG Dispositif semi-conducteur avec une fonctionnalité photonique et électronique et procédé de fabrication d'un dispositif semi-conducteur
WO2017049277A1 (fr) 2015-09-18 2017-03-23 Skorpios Technologies, Inc. Variation de couche semi-conductrice pour élimination du substrat après collage
WO2017052557A1 (fr) * 2015-09-24 2017-03-30 Intel Corporation Techniques de formation de dispositif soi sur un substrat virtuel, et configurations associées
US9595616B1 (en) * 2015-12-02 2017-03-14 Sandia Corporation Vertical III-nitride thin-film power diode
FR3046698B1 (fr) * 2016-01-08 2018-05-11 Thales Dispositif hybride de detection multispectrale a base d'elements monolithiques
US10234626B2 (en) * 2016-02-08 2019-03-19 Skorpios Technologies, Inc. Stepped optical bridge for connecting semiconductor waveguides
US10509163B2 (en) 2016-02-08 2019-12-17 Skorpios Technologies, Inc. High-speed optical transmitter with a silicon substrate
US10732349B2 (en) 2016-02-08 2020-08-04 Skorpios Technologies, Inc. Broadband back mirror for a III-V chip in silicon photonics
WO2018017958A2 (fr) 2016-07-22 2018-01-25 Skorpios Technologies, Inc. Circulateur indépendant de la polarisation et à intégration monolithique
US10168475B2 (en) * 2017-01-18 2019-01-01 Juniper Networks, Inc. Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
US10928588B2 (en) 2017-10-13 2021-02-23 Skorpios Technologies, Inc. Transceiver module for optical communication
US10649148B2 (en) 2017-10-25 2020-05-12 Skorpios Technologies, Inc. Multistage spot size converter in silicon photonics
US10746923B2 (en) * 2018-06-27 2020-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic semiconductor device and method
US11101617B2 (en) * 2018-07-16 2021-08-24 Ayar Labs, Inc. Wafer-level handle replacement
US11163120B2 (en) * 2018-11-16 2021-11-02 Ayar Labs, Inc. Fiber attach enabled wafer level fanout
US11360263B2 (en) 2019-01-31 2022-06-14 Skorpios Technologies. Inc. Self-aligned spot size converter
US10935722B1 (en) * 2019-09-14 2021-03-02 Dong Li CMOS compatible material platform for photonic integrated circuits
CN113686940A (zh) * 2020-03-20 2021-11-23 上海芯像生物科技有限公司 用于分子检测和感测的高通量分析系统
US11675134B1 (en) 2020-05-01 2023-06-13 Skorpios Technologies, Inc. Optical bandpass filter based on reflective devices
EP3923424B1 (fr) * 2020-06-09 2024-07-24 Imec VZW Procédé de traitement d'un dispositif laser
CN116134356A (zh) * 2020-07-20 2023-05-16 苹果公司 具有受控塌陷芯片连接的光子集成电路
WO2023283294A1 (fr) 2021-07-08 2023-01-12 Apple Inc. Modules de source de lumière pour l'atténuation de bruit
US12111207B2 (en) 2022-09-23 2024-10-08 Apple Inc. Despeckling in optical measurement systems

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759746B1 (en) 2000-03-17 2004-07-06 Robert Bruce Davies Die attachment and method
US6667237B1 (en) 2000-10-12 2003-12-23 Vram Technologies, Llc Method and apparatus for patterning fine dimensions
JP2004063730A (ja) * 2002-07-29 2004-02-26 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法
JP4509488B2 (ja) * 2003-04-02 2010-07-21 株式会社Sumco 貼り合わせ基板の製造方法
US7812340B2 (en) 2003-06-13 2010-10-12 International Business Machines Corporation Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same
JP4298559B2 (ja) 2004-03-29 2009-07-22 新光電気工業株式会社 電子部品実装構造及びその製造方法
CN104716170B (zh) 2004-06-04 2019-07-26 伊利诺伊大学评议会 用于制造并组装可印刷半导体元件的方法和设备
DE102004030612B3 (de) 2004-06-24 2006-04-20 Siltronic Ag Halbleitersubstrat und Verfahren zu dessen Herstellung
JP2006173568A (ja) * 2004-12-14 2006-06-29 Korea Electronics Telecommun Soi基板の製造方法
US7639912B2 (en) * 2007-01-31 2009-12-29 Hewlett-Packard Development Company, L.P. Apparatus and method for subterranean distribution of optical signals
US20090278233A1 (en) * 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
JP5101343B2 (ja) * 2008-03-03 2012-12-19 株式会社ダイセル 微細構造物の製造方法
US8049292B2 (en) 2008-03-27 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US7897428B2 (en) * 2008-06-03 2011-03-01 International Business Machines Corporation Three-dimensional integrated circuits and techniques for fabrication thereof
US8877616B2 (en) * 2008-09-08 2014-11-04 Luxtera, Inc. Method and system for monolithic integration of photonics and electronics in CMOS processes
CN101349786B (zh) * 2008-09-10 2010-09-29 中南大学 一种集成光子芯片与阵列光纤自动对准的机械装置
US7842595B2 (en) 2009-03-04 2010-11-30 Alcatel-Lucent Usa Inc. Fabricating electronic-photonic devices having an active layer with spherical quantum dots
US8605766B2 (en) 2009-10-13 2013-12-10 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser and a mach zehnder modulator
US8630326B2 (en) * 2009-10-13 2014-01-14 Skorpios Technologies, Inc. Method and system of heterogeneous substrate bonding for photonic integration
US8611388B2 (en) 2009-10-13 2013-12-17 Skorpios Technologies, Inc. Method and system for heterogeneous substrate bonding of waveguide receivers
US8559470B2 (en) 2009-10-13 2013-10-15 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser and a phase modulator
US8867578B2 (en) 2009-10-13 2014-10-21 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser for a cable TV transmitter
US8615025B2 (en) 2009-10-13 2013-12-24 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser
WO2011046898A1 (fr) * 2009-10-13 2011-04-21 Skorpios Technologies, Inc. Procédé et système pour intégration hybride d'un laser accordable
US8368995B2 (en) 2009-10-13 2013-02-05 Skorpios Technologies, Inc. Method and system for hybrid integration of an opto-electronic integrated circuit
US8084282B2 (en) * 2010-04-02 2011-12-27 Intel Corporation Wafer-level In-P Si bonding for silicon photonic apparatus
DE102010042567B3 (de) 2010-10-18 2012-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Chip-Package und Chip-Package
US8735191B2 (en) 2012-01-04 2014-05-27 Skorpios Technologies, Inc. Method and system for template assisted wafer bonding using pedestals
US8222084B2 (en) * 2010-12-08 2012-07-17 Skorpios Technologies, Inc. Method and system for template assisted wafer bonding
SG10201509551PA (en) 2012-01-18 2015-12-30 Skorpios Technologies Inc Vertical integration of cmos electronics with photonic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183492B2 (en) 2010-12-08 2021-11-23 Skorpios Technologies, Inc. Multilevel template assisted wafer bonding

Also Published As

Publication number Publication date
CN104137262B (zh) 2015-11-25
CN104137262A (zh) 2014-11-05
SG10201509551PA (en) 2015-12-30
EP2805352A1 (fr) 2014-11-26
WO2013109955A1 (fr) 2013-07-25
US20130210214A1 (en) 2013-08-15
US8859394B2 (en) 2014-10-14
US20150123157A1 (en) 2015-05-07
JP6197183B2 (ja) 2017-09-20
US9659993B2 (en) 2017-05-23
CN105336748A (zh) 2016-02-17
JP2015506590A (ja) 2015-03-02
EP2805352A4 (fr) 2015-09-09
CN105336748B (zh) 2019-05-03
EP2805352B1 (fr) 2021-08-11

Similar Documents

Publication Publication Date Title
SG10201509551PA (en) Vertical integration of cmos electronics with photonic devices
ZA201604518B (en) Optoelectronic device
GB2500255B (en) Optical sensor
PT3336866T (pt) Dispositivo optoeletrónico
PL3466282T3 (pl) Urządzenia generujące aerozol
EP2837171A4 (fr) Appareil photo
EP2845220A4 (fr) Techniques permettant de former des dispositifs opto-électroniques
GB2544923B (en) Optical sensor
EP2845733A4 (fr) Dispositif de formation d'image
GB201205755D0 (en) Transformable cable volume structure
EP2940973A4 (fr) Dispositif électronique capable de communiquer avec un autre dispositif
GB2505902B (en) Optical transmitter
EP2829951A4 (fr) Capteur optique
IL235723A0 (en) A simplified device using innovative semiconductor pn structures
EP2813806A4 (fr) Capteur optique
EP2916362A4 (fr) Photodiode
EP2833184A4 (fr) Jumelles
EP2892529A4 (fr) Utilisations de (-)-perhexiline
GB2499115B (en) Camera
GB201216605D0 (en) Optoelectronic device
EP2829958A4 (fr) Capteur optique
GB2505212A8 (en) Novelty backpack
TWM476276U (en) Lens structure
GB201207445D0 (en) Infrared devices
GB201318962D0 (en) Optical Imaging Devices