SG10201400703PA - Densely packed standard cells for integrated circuit products, and methods of making same - Google Patents

Densely packed standard cells for integrated circuit products, and methods of making same

Info

Publication number
SG10201400703PA
SG10201400703PA SG10201400703PA SG10201400703PA SG10201400703PA SG 10201400703P A SG10201400703P A SG 10201400703PA SG 10201400703P A SG10201400703P A SG 10201400703PA SG 10201400703P A SG10201400703P A SG 10201400703PA SG 10201400703P A SG10201400703P A SG 10201400703PA
Authority
SG
Singapore
Prior art keywords
source
drain
integrated circuit
methods
densely packed
Prior art date
Application number
SG10201400703PA
Inventor
Rashed Mahbub
Kim Juhan
Deng Yunfei
Venkatesan Suresh
Original Assignee
Globalfoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globalfoundries Inc filed Critical Globalfoundries Inc
Publication of SG10201400703PA publication Critical patent/SG10201400703PA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/6681Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET using dummy structures having essentially the same shape as the semiconductor body, e.g. to provide stability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Abstract

DENSELY PACKED STANDARD CELLS FOR INTEGRATED CIRCUIT PRODUCTS, AND METHODS OF MAKING OF THE DISCLOSURE 5 One method disclosed herein includes forming first and second transistor devices in and above adjacent active regions (112A, 112B ...) that are separated by an isolation region, wherein the transistors comprise a source/drain region (118) and a shared gate structure (114A), forming a continuous conductive line that spans across the isolation region and contacts the source/drain regions of the transistors and etching the continuous conductive line 10 to form separated first and second unitary conductive source/drain contact structures (120A, 120B ...) that contact the source/drain regions of the first and second transistors, respectively. A device (100) disclosed herein includes a gate structure, source/drain regions, first and second unitary conductive source/drain contact structures, each of which contacts one of the source/drain regions (118), and first and second conductive vias (V0) that contact the first 15 and second unitary conductive source/drain contact structures, respectively. Figure 3C 34
SG10201400703PA 2013-05-14 2014-03-17 Densely packed standard cells for integrated circuit products, and methods of making same SG10201400703PA (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/893,524 US8975712B2 (en) 2013-05-14 2013-05-14 Densely packed standard cells for integrated circuit products, and methods of making same

Publications (1)

Publication Number Publication Date
SG10201400703PA true SG10201400703PA (en) 2014-12-30

Family

ID=51831532

Family Applications (1)

Application Number Title Priority Date Filing Date
SG10201400703PA SG10201400703PA (en) 2013-05-14 2014-03-17 Densely packed standard cells for integrated circuit products, and methods of making same

Country Status (5)

Country Link
US (2) US8975712B2 (en)
CN (1) CN104157604B (en)
DE (1) DE102014207415B4 (en)
SG (1) SG10201400703PA (en)
TW (2) TWI523200B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9460259B2 (en) 2014-08-22 2016-10-04 Samsung Electronics Co., Ltd. Methods of generating integrated circuit layout using standard cell library
JP6373686B2 (en) * 2014-08-22 2018-08-15 ルネサスエレクトロニクス株式会社 Semiconductor device
US9842182B2 (en) * 2014-10-01 2017-12-12 Samsung Electronics Co., Ltd. Method and system for designing semiconductor device
KR102245136B1 (en) * 2015-02-24 2021-04-28 삼성전자 주식회사 Methods of Fabricating Semiconductor Devices
US9537007B2 (en) * 2015-04-07 2017-01-03 Qualcomm Incorporated FinFET with cut gate stressor
US9583493B2 (en) * 2015-04-08 2017-02-28 Samsung Electronics Co., Ltd. Integrated circuit and semiconductor device
US9673145B2 (en) 2015-05-07 2017-06-06 United Microelectronics Corp. Semiconductor integrated circuit layout structure
US9653346B2 (en) * 2015-05-07 2017-05-16 United Microelectronics Corp. Integrated FinFET structure having a contact plug pitch larger than fin and first metal pitch
US9710589B2 (en) * 2015-06-24 2017-07-18 Advanced Micro Devices, Inc. Using a cut mask to form spaces representing spacing violations in a semiconductor structure
US9704760B2 (en) * 2015-06-24 2017-07-11 International Business Machines Corporation Integrated circuit (IC) with offset gate sidewall contacts and method of manufacture
US9484264B1 (en) 2015-07-29 2016-11-01 International Business Machines Corporation Field effect transistor contacts
US9564358B1 (en) 2015-09-09 2017-02-07 International Business Machines Corporation Forming reliable contacts on tight semiconductor pitch
KR102323943B1 (en) 2015-10-21 2021-11-08 삼성전자주식회사 Method of manufacturing semiconductor device
US10340348B2 (en) 2015-11-30 2019-07-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing finFETs with self-align contacts
JP2017123353A (en) * 2016-01-04 2017-07-13 株式会社ソシオネクスト Semiconductor device
US9818651B2 (en) * 2016-03-11 2017-11-14 Globalfoundries Inc. Methods, apparatus and system for a passthrough-based architecture
US9793160B1 (en) 2016-07-03 2017-10-17 International Business Machines Coporation Aggressive tip-to-tip scaling using subtractive integraton
KR102631912B1 (en) 2016-12-15 2024-01-31 삼성전자주식회사 Methods of designing a layout of a semiconductor device, and semiconductor devices
US10186599B1 (en) 2017-07-20 2019-01-22 International Business Machines Corporation Forming self-aligned contact with spacer first
US10256158B1 (en) * 2017-11-22 2019-04-09 Globalfoundries Inc. Insulated epitaxial structures in nanosheet complementary field effect transistors
FR3079664B1 (en) * 2018-03-30 2020-04-24 Institut Vedecom MODULAR POWER SWITCHING ELEMENT AND DEMOUNTABLE ASSEMBLY OF SEVERAL MODULAR ELEMENTS
KR102495913B1 (en) 2018-08-10 2023-02-03 삼성전자 주식회사 Integrated circuit including multiple height cell and method for manufacturing the same
US11188703B2 (en) * 2018-09-28 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit, system, and method of forming the same
CN111916443A (en) * 2020-08-10 2020-11-10 泉芯集成电路制造(济南)有限公司 Fin type field effect transistor and layout structure thereof
CN113035864B (en) * 2021-03-05 2023-01-24 泉芯集成电路制造(济南)有限公司 Power supply arrangement structure, integrated circuit device, and electronic apparatus
CN115566015A (en) * 2021-08-20 2023-01-03 台湾积体电路制造股份有限公司 Semiconductor device and method for manufacturing the same
CN116776790B (en) * 2023-08-17 2023-12-08 华芯巨数(杭州)微电子有限公司 Quick calculation method and device for time sequence analysis and computer equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479355B2 (en) * 2001-02-13 2002-11-12 United Microelectronics Corp. Method for forming landing pad
US7456471B2 (en) * 2006-09-15 2008-11-25 International Business Machines Corporation Field effect transistor with raised source/drain fin straps
US8003466B2 (en) * 2008-04-08 2011-08-23 Advanced Micro Devices, Inc. Method of forming multiple fins for a semiconductor device
US8592918B2 (en) * 2009-10-28 2013-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Forming inter-device STI regions and intra-device STI regions using different dielectric materials
CN102332431B (en) * 2010-07-13 2016-02-03 中国科学院微电子研究所 Semiconductor device structure and manufacture method thereof
CN102881634B (en) * 2011-07-15 2014-10-29 中国科学院微电子研究所 Semiconductor device structure and fabrication method thereof
US9293377B2 (en) * 2011-07-15 2016-03-22 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor device structure and method for manufacturing the same
US9105744B2 (en) * 2012-03-01 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices having inactive fin field effect transistor (FinFET) structures and manufacturing and design methods thereof

Also Published As

Publication number Publication date
DE102014207415A1 (en) 2014-11-20
US8975712B2 (en) 2015-03-10
TWI594399B (en) 2017-08-01
TW201503324A (en) 2015-01-16
CN104157604A (en) 2014-11-19
CN104157604B (en) 2018-03-20
TW201614805A (en) 2016-04-16
TWI523200B (en) 2016-02-21
DE102014207415B4 (en) 2020-12-24
US20150108583A1 (en) 2015-04-23
US20140339647A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
SG10201400703PA (en) Densely packed standard cells for integrated circuit products, and methods of making same
EP3514836A3 (en) Gate contact structure over active gate and method to fabricate same
SG10201803428WA (en) Integrated circuit device and method of manufacturing the same
WO2018056694A3 (en) Logic semiconductor device
WO2013028685A3 (en) Semiconductor device structures including vertical transistor devices, arrays of vertical transistor devices, and methods of fabrication
GB2571652A (en) Vertical transistors with merged active area regions
WO2020055642A3 (en) Power distribution network for 3d logic and memory
TW201613097A (en) Semiconductor device and method of fabricating non-planar circuit device
GB201301434D0 (en) Replacement-gate finfet structure and process
TW201712807A (en) Vertical integration scheme and circuit elements architecture for area scaling of semiconductor devices
TW200711054A (en) A method of manufacturing a transistor and a method of forming a memory device
EP3540782A3 (en) Semiconductor devices having a recessed electrode structure
SG166074A1 (en) Semiconductor device
WO2012166483A3 (en) Apparatuses including stair-step structures and methods of forming the same
TW201614840A (en) Semiconductor device and method for fabricating the same
TW201614803A (en) Device having multiple transistors and method for fabricating the same
JP2013016785A5 (en)
TW200746425A (en) Semiconductor transistors with expanded top portions of gates
MY186080A (en) Non-planar i/o and logic semiconductor devices having different workfunction on common substrate
WO2012047342A3 (en) Methods of forming semiconductor contacts and related semiconductor devices
EP4075491A3 (en) Power rail inbound middle of line (mol) routing
TW200943436A (en) Method for fabricating semiconductor device
SG10201805399SA (en) Semiconductor device
GB201202436D0 (en) Early entry
SG10201803879XA (en) Integrated circuit devices