SE537962C2 - Ice breaking device - Google Patents
Ice breaking device Download PDFInfo
- Publication number
- SE537962C2 SE537962C2 SE1450545A SE1450545A SE537962C2 SE 537962 C2 SE537962 C2 SE 537962C2 SE 1450545 A SE1450545 A SE 1450545A SE 1450545 A SE1450545 A SE 1450545A SE 537962 C2 SE537962 C2 SE 537962C2
- Authority
- SE
- Sweden
- Prior art keywords
- ice
- propellers
- propeller
- stern
- vessel
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/08—Ice-breakers or other vessels or floating structures for operation in ice-infested waters; Ice-breakers, or other vessels or floating structures having equipment specially adapted therefor
- B63B35/083—Ice-breakers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/08—Ice-breakers or other vessels or floating structures for operation in ice-infested waters; Ice-breakers, or other vessels or floating structures having equipment specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/125—Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Screw Conveyors (AREA)
- Hydraulic Turbines (AREA)
- Pyrane Compounds (AREA)
Abstract
SAMMANDRAG Uppfinningen avser en anordning for isbrytning med isbrytande skrov pa farkost. Enligt uppfinningen nyttjas tva funktionellt sepa- rata element (I, II) med olika bredd (B; D), varav ett ovre och bredare element (I) ar belaget intill vattenlinjen (13) fOr brytning av obruten is (14), medan ett under detta belaget smalare element (II) är avsett fOr transport av den brutna isen sidlanges och under den obrutna isen (14). Det Ovre bredare elementet (I), som ãr forsett med ett i huvudsak platt underdelsparti (11) akterom en lutande framdel (10), är anordnat att med liten anfallsvinkel (a), foretradesvis mindre an 15°, bryta isen (14) nedat vid gang framat. Med en i huvudsak platt akterdel (12), som uppvisar en liten anfallsvinkel (c), foretrades- vis mindre an 20°, ar anordnad att bryta isen (14) nedat vid gang akterut. Det undre och smalare elementet (II) har i huvudsak vertikala sidopartier (7,8,9) vilka i forskeppet (7) och akter- skeppet (9) forsetts med markant kilform som sidlanges skuffar den brutna isen (15) vars transport sidlanges och akterut paskyndas av bogpropellrar (17) och sidopropellrar (18). SUMMARY The invention relates to a device for icebreaking with an icebreaking hull on a vehicle. According to the invention, two functionally separate elements (I, II) with different widths (B; D) are used, of which an upper and wider element (I) is coated next to the waterline (13) for breaking unbroken ice (14), while a below this coated narrower element (II) is intended for transporting the broken ice laterally and under the unbroken ice (14). The upper wider element (I), which is provided with a substantially flat lower part portion (11) aft of an inclined front part (10), is arranged to break the ice (14) downwards with a small angle of attack (a), preferably less than 15 ° when walking forward. With a substantially flat stern part (12), which has a small angle of attack (c), preferably less than 20 °, it is arranged to break the ice (14) downwards when walking aft. The lower and narrower element (II) has mainly vertical side portions (7,8,9) which in the foreship (7) and the stern (9) are continued with a marked wedge shape which laterally shovels the broken ice (15) whose transport is laterally and aft is accelerated by bow thrusters (17) and side propellers (18).
Description
Anordning for isbrytning Den foreliggande uppfinningen avser anordning for 5 isbrytning med isbrytande skrov pA fartyg. The present invention relates to a device for icebreaking with an icebreaking hull on ships.
Bakgrund En vetenskaplig behandling av isbrytningsmotstAnd publicerades 1888-1889 i Storbritannien av Robert Runeberg, en finsk ingenjor, i referensen [Runeberg, Robert; "On Steamers for Winter Navigation and Ice-breaking" uppsats nr. 2371 i Proceedings of the Institution of Civil Engineers 1888-1889]. I denna refe- rens beaktas enbart det motstAnd som uppstar genom brytningen av isen och en formel presenteras far berAkning av sambandet mellan motstAndskraften, R, och den vertikala kraften, V, vid brytning av ett solitt istacke av homogen tjocklek. Bland manga andra inkluderar formeln foljande ingAngsparametrar: friktionskoefficient cpvinkel mellan den genomsnittliga lutningen av akterskeppslinjerna och vattenlinjen vinkel mellan vattenlinje och genomsnittlig lut- ning av tvarsnitt tagna vinkelratt mot akterskeppslinjen I kommentar till hur dessa vinklar pAverkar isbrytningens effektivitet framlAgger Runeberg foljande overst pA sidan 293 i mamnda ref erens [Runeberg, Robert: "On Steamers for Winter Navigation and Ice-breaking" 1 Uppsats nr. 2371 i Proceedings of the Institution of Civil Engineers 1888-18891: "Med uppmarksamhet riktad mot designen av farkosten kan ur formeln for V slutsatsen dras att far att Oka isbrytningskapaciteten ska vinklarna 0 and p vara s& sma som mojligt." Med andra ord bOr lutningen hos akterskeppslinjen och spanten mot vattenlinjen vara sa liten som mojligt fOr att maximera isbrytningens effektivitet. 10 Denna vetenskapliga insikt har varit allmant anvand pa isbrytare byggda for att bryta jamn is pa inlandsfarleder. De mest extrema exemplen har en anfallsvinkel p pa 00, vilket leder till en helt platt landnings- fartygsbog, i kombination med en akterskeppsvinkel 0 pa mindre an 0. Background A scientific treatment of icebreaking resistance was published in the United Kingdom in 1888-1889 by Robert Runeberg, a Finnish engineer, in the reference [Runeberg, Robert; "On Steamers for Winter Navigation and Ice-breaking" essay no. 2371 in Proceedings of the Institution of Civil Engineers 1888-1889]. In this reference, only the resistance that arises due to the breaking of the ice is taken into account and a formula is presented for calculating the relationship between the resistance force, R, and the vertical force, V, when breaking a solid ice stack of homogeneous thickness. Among many others, the formula includes the following input parameters: coefficient of friction angle between the average slope of the stern lines and the waterline angle between the waterline and the average slope of the cross section taken perpendicular to the stern line In comments on how these angles affect the side ref erens [Runeberg, Robert: "On Steamers for Winter Navigation and Ice-breaking" 1 Essay no. 2371 in Proceedings of the Institution of Civil Engineers 1888-18891: "With attention directed towards the design of the vessel, it can be concluded from the formula for V that if the icebreaking capacity is increased, the angles 0 and p should be as small as possible." In other words, the slope of the stern line and the frame towards the waterline should be as small as possible to maximize the efficiency of icebreaking. 10 This scientific insight has been widely used on icebreakers built to break even ice on inland waterways. The most extreme examples have an angle of attack of pa 00, which leads to a completely flat landing ship book, in combination with a stern angle 0 of less than 0.
Isbrytare huvudsakligen avsedda for tjanst i Oppet hay, dar kraftiga vallar finns, har rant en annan utveckl- ingsprocess. Den forsta europeiska isbrytaren avsedd for drift i Oppet hay konstruerades och byggdes i Sverige for den finska regeringen 1890 och gays namnet Murtaja, vilket pa finska betyder brytare. Denna konstruktion av C.A. Lindvall hade en langd av 47,5 m, en bredd av 10,9 m, ett djupgaende av 6,7 m och ett deplacement av 930 t. Den hade en propeller och en effekt av 1 MW. Linjerna och spantrutan far denna farkost visas i referensen [Runeberg, Robert: "Steamers for Winter Navigation and Ice-breaking", uppsats nr. 3191 i Proceedings of the Institution of Civil Engineers 1900], och indikerar en skedformad bog med en genomsnittlig akterskeppsvinkel pa cirka 40° och en genom- snittlig anfallsvinkel pa cirka 60°. Vattenlinjen var 2 ganska trubbig med en oppningsvinkel pa cirka 48° vid foren. Icebreakers, mainly intended for service in Oppet hay, where there are strong embankments, have undergone a different development process. The first European icebreaker intended for operation in Oppet hay was designed and built in Sweden for the Finnish government in 1890 and is given the name Murtaja, which in Finnish means breaker. This construction by C.A. Lindvall had a length of 47.5 m, a width of 10.9 m, a draft of 6.7 m and a displacement of 930 t. It had a propeller and an output of 1 MW. The lines and frame frame of this vessel are shown in the reference [Runeberg, Robert: "Steamers for Winter Navigation and Ice-breaking", essay no. 3191 of the Proceedings of the Institution of Civil Engineers 1900], and indicates a spoon-shaped bow with an average stern angle of about 40 ° and an average angle of attack of about 60 °. The waterline was 2 rather blunt with an opening angle of about 48 ° at the foreland.
I tung packis var Murtajas prestanda mycket otillfredsstAllande eftersom den trubbiga bogen skOt bruten is framfer sig och farkosten fastnade sa grundligt att dynamit, sAgar, yxor och isankare maste anvandas for att fa loss farkosten ur isens grepp. Denna extremt negativa erfarenhet resulterade i slutsatsen att en isbrytare avsedd for drift i Oppet hay mAste vara utstyrd med en relativt skarp kilformad bog for att undvika att skjuta is framfOr sig. 1893 byggdes en isbrytande fdrja, Saint Marie, i Detroit, Michigan med design av Frank E. Kirby. Den var utrustad med tvA propellrar, en i aktern med en effekt av 1,4 MW och en i bogen med en effekt av 1,14 MW far en total effekt av 2,54 MW. Linjerna och spantrutan for denna farkost visas i referensen [Runeberg, Robert: "Steamers for Winter Navigation and Ice-breaking", uppsats nr. 3191 i Proceedings of the Institution of Civil Engineers 1900], och utvisar ndstan identiska tAmligen skarpa kilformer i bogen och aktern, vilket Ar att forvAnta fOr att hysa propellrarna. Enligt rapporter som nAdde Finland arbetade denna fArja med stor framgAng i tung packis genom att alternativt kora bogpropellern fullt bakAt och fullt framAt under lAngsam gang. 1895 skickades en finsk ingenjar, Konstantin Jansson, fOr att dokumentera drif ten av dessa farjor och foljande Ar skickades ocksA en finsk sj6- kapten, L. MelAn, till Stora sjOarna for att tillgodogOra sig den operativa effektiviteten hos Kirbys design. Jansson och MelAn rekommenderade bAda att ndsta finska isbrytare skulle vara utrustad med tva propellrar, en vid 3 var &ride, aven am kostnaden fOr farkosten skulle Oka, referens [Ramsay, Henrik: "I kamp med ostersjOns isar" Helsingfors 1947]. In heavy pack ice, Murtaja's performance was very unsatisfactory as the blunt bow shot broken ice advanced and the craft got stuck so thoroughly that dynamite, saws, axes and ice anchors had to be used to free the craft from the grip of the ice. This extremely negative experience resulted in the conclusion that an icebreaker intended for operation in Oppet hay must be equipped with a relatively sharp wedge-shaped bow to avoid pushing ice in front of it. In 1893, an ice-breaking ferry, Saint Marie, was built in Detroit, Michigan, designed by Frank E. Kirby. It was equipped with two propellers, one in the stern with a power of 1.4 MW and one in the bow with a power of 1.14 MW for a total power of 2.54 MW. The lines and frame for this craft are shown in the reference [Runeberg, Robert: "Steamers for Winter Navigation and Ice-breaking", essay no. 3191 in Proceedings of the Institution of Civil Engineers 1900], and exhibits almost identical rather sharp wedge shapes in the bow and stern, which is to be expected to house the propellers. According to reports that reached Finland, this ferry worked with great success in heavy packing by alternatively running the bow thruster fully backwards and fully forwards during slow motion. In 1895 a Finnish engineer, Konstantin Jansson, was sent to document the operation of these ferries, and the following year a Finnish sea captain, L. MelAn, was also sent to the Great Lakes to take advantage of the operational efficiency of Kirby's design. Jansson and MelAn both recommended that the next Finnish icebreaker be equipped with two propellers, one at 3 each ride, and that the cost of the craft should increase, reference [Ramsay, Henrik: "In battle with the ice of the Baltic Sea" Helsinki 1947].
Den andra finska isbrytaren byggdes i Newcastle upon Tyne 1898 och gays namnet Sampo, med en 1,Angd ay 61,6 m, en bredd av 13,1 m, ett djupgaende av 5,56 m och ett deplacement av 2,050 t. Den utrustades med tva propellrar, en i aktern med en effekt av 1 MW och en i bogen med en effekt av 0,88 MW for en total effekt av 1,88 MW. Linjerna och spantrutan for denna farkost visas i namnda referens [Steamers for Winter Navigation and Ice-breaking", uppsats nr. 3191 i Proceedings of the Institution of Civil Engineers 19001 och ãr i hog utstrackning i enlighet med Kirbys design fOr Stora sjOarna. Uppenbarligen var operat6rerna n6jda med en kilformad skrovform fOrsedd med propellrar i bogen liksom i aktern eftersom denna design inte andrades avsevart tills 1980-talet for isbrytare avsedda for drift i norra delen av Ostersjon. The second Finnish icebreaker was built in Newcastle upon Tyne in 1898 and is given the name Sampo, with a 1, Angd ay 61.6 m, a width of 13.1 m, a draft of 5.56 m and a displacement of 2,050 t. with two propellers, one in the stern with a power of 1 MW and one in the bow with a power of 0.88 MW for a total power of 1.88 MW. The lines and frame for this craft are shown in the aforementioned reference [Steamers for Winter Navigation and Ice-breaking ", essay no. 3191 in the Proceedings of the Institution of Civil Engineers 19001 and is to a large extent in accordance with Kirby's design for the Great Lakes. The operators were satisfied with a wedge-shaped hull shape fitted with propellers in the bow as well as in the stern as this design did not change significantly until the 1980s for icebreakers intended for operation in the northern part of the Baltic Sea.
Utvecklingen av isbrytare avsedda for polaromraden har varit nagot annorlunda an for isbrytare avsedda for mer tempererade klimat. Den forsta isbrytaren som testades i Arktis var den ryska isbrytaren Ermak sponsrad av amiral Makaroff och byggd 1898 i Newcastle upon Tyne. I namnda referens ["Steamers for Winter Navigation and Ice-breaking", uppsats nr. 3191 i Proceedings of the Institution of Civil Engineers 1900] beskrivs denna salunda: "I februari 1983 fOredrog fOrfattaren en uppsats infOr den ryska kejserliga ingenjorsvetenskapsakademin med titeln 'The Possibility of Winter Navigation to St.Petersburg.'" I denna uppsats var slutsatsen att 4 vintersjofart till Sankt Petersburg inte borde vara omajlig. Det ãr amiral Makaroff vi ska tacka for att ha framfort detta forslag till en praktisk test. DA finansdepartementet lost finansieringen bestallde amiral Makaroff isbrytaren fran Firma Armstrong, Whitworth & Company, och den 16 mars 1899 anlande hon till Kronstadt, matt av en entusiastisk folkmassa pa isen. Linjerna for detta skepp liknar mycket dem hos Sampo, fastan Ermak Ar mycket starre. Ermaks langd var 97,m, bredd 21,6 m, djupgaende 8,54 m och deplacement 7,87t. Fran barjan utrustades hon med fyra propellrar, var och en pA 1,56 MW for en total effekt av 6,24 MW. En propeller var monterad i bogen medan de tre andra med ett enda midskeppsroder var belAgna i aktern. I namnda referens ["Steamers for Winter Navigation and Ice-breaking", uppsats nr. 3191 i Proceedings of the Institution of Civil Engineers 19001 beskrivs Ermaks forsta resa salunda: Den mars seglade Ermak frAn Tyne. Fast is stottes pa i Finska Viken, mellan Reval och Hogland, varvid skeppet passerade igenom denna svarighet; men dA hon mOtte svar packis fastnade hon ibland, och maste anvanda isankare for att komma loss, tjockleken av packisen uppskattades till mellan och fot. Det tog salunda farkosten nArapa tre och en halv dagar att passera frAn starten av den sammanhangande isen till Kronstadt, men under den tiden stannade baten for att tillata viss vila fOr besattningen, vilken inte var vid full styrka. FastAn slutet framgangsrikt naddes är det uppenbart att amiral Makaroff hade ratt i att insistera pa att effekten inte skulle vara under 10 000 IHP." I en not i referensen ["Steamers for Winter Navigation and Ice-breaking", uppsats nr. 3191 i Proceedings of the Institution of Civil Engineers 19001 beskrivs Ermaks initiala provningar i arktiska vatten pa foljande satt: "Sedan det tidigare skrevs har Ermak atervant frAn sin sommartur i Norra ishavet, dar hon inte helt lyckats. The development of icebreakers intended for the polar regions has been somewhat different from that of icebreakers intended for more temperate climates. The first icebreaker tested in the Arctic was the Russian icebreaker Ermak, sponsored by Admiral Makaroff and built in 1898 in Newcastle upon Tyne. In the said reference ["Steamers for Winter Navigation and Ice-breaking", essay no. 3191 of the Proceedings of the Institution of Civil Engineers 1900] describes this as follows: "In February 1983 the author presented an essay to the Russian Imperial Academy of Engineering Sciences entitled 'The Possibility of Winter Navigation to St.Petersburg.'" In this essay it was concluded that 4 Winter shipping to St. Petersburg should not be impossible. It is Admiral Makaroff that we should thank for presenting this proposal for a practical test. When the Ministry of Finance lost funding, Admiral Makaroff ordered the icebreaker from the firm Armstrong, Whitworth & Company, and on March 16, 1899, she arrived in Kronstadt, fed by an enthusiastic crowd on the ice. The lines for this ship are very similar to those at Sampo, although Ermak is much stiffer. Ermax's length was 97, m, width 21.6 m, draft 8.54 m and displacement 7.87 h. From the barge she was equipped with four propellers, each pA 1.56 MW for a total power of 6.24 MW. One propeller was mounted in the bow while the other three with a single midship rudder were mounted in the stern. In the said reference ["Steamers for Winter Navigation and Ice-breaking", essay no. 3191 In the Proceedings of the Institution of Civil Engineers 19001, Ermak's first voyage is described as follows: In March, Ermak sailed from Tyne. Solid ice was encountered in the Gulf of Finland, between Reval and Hogland, whereby the ship passed through this responsibility; but when she had to answer packis, she sometimes got stuck, and had to use ice anchors to get loose, the thickness of the packis was estimated at between and feet. It thus took the vessel nArapa three and a half days to pass from the start of the continuous ice to Kronstadt, but during that time the boat stopped to allow some rest for the crew, which was not at full strength. Although the conclusion was successfully reached, it is clear that Admiral Makaroff was right to insist that the effect should not be below 10,000 IHP. "In a note in the reference [" Steamers for Winter Navigation and Ice-breaking ", essay no. 3191 in Proceedings of the Institution of Civil Engineers 19001 describes Ermak's initial tests in Arctic waters in the following way: "Since what was previously written, Ermak has returned from her summer trip in the Arctic Ocean, where she has not been completely successful.
Efter ett farsok vid isen nara Spetsbergen togs hon tillbaks till Newcastle for att fa fler platspant och langsgaende stringrar insatta, nagra nya plAtar utbytta och ett antal platar omnitade. Da ett blad pa den framre propellern hade gatt sander och axeln blivit ocentrerad beslats att avlagsna den framre propellern helt och hallet, och Ermak for pa sin andra fard for att betvinga Norra ishavet; denna var dock knappast mer hoppingivande och hennes sjoegenskaper visade sig vara otillfredsstallande, vilket skulle kunna ha att forutsagts givet hennes starkt lutade sidor. After a farce on the ice near Spitsbergen, she was taken back to Newcastle to get more place frames and longitudinal strings inserted, some new plates exchanged and a number of plates renamed. When a blade on the front propeller had gone sandy and the shaft had become unfocused, it was decided to remove the front propeller completely, and Ermak went on his second voyage to subdue the Arctic Ocean; however, this was hardly more hopeful and her seaworthiness proved to be unsatisfactory, which could have been predicted given her strongly inclined sides.
Man bar ha i Atanke att effekten pa den framre propellern bara a" 25 % av den totala effekten, medan enligt erfarenhet frAn USA - som med framgang anammades pa Sampo - a" det onskvart att ha effekten nastan jamt fordelad, eller sag 45 % pa den framre propellern. Den farhAllandevis stora ineffektiviteten hos Ermak kan till viss del forklaras av denna dAliga avvagning." Det bar papekas att efter avlagsnandet av bogpropellern var det mojligt att Oka angtrycket i de tre AterstAende Angmaskinerna for att Oka effekten i var och en fran 1,56 MW till 1,88 MW till totalt 5,94 MW, eller enbart 5 % reduktion av den totala effekten. Runeberg gor aven en kommentar om det valkanda faktum att den kon- ventionella kilformade isbrytarskrovformen med lutade sidor ãr mycket ineffektiv i stora vagor. 6 Runebergs kommenterar att Ermak skulle ha gynnats av mer effekt i bogen ar sakert korrekt i ostersjaisbetingelser eftersom deplacementet hos Ermak var nastan fyra ganger stOrre an. det for Sampo medan effekten i bog- propellern enbart var 77 % storre. Det beskrivs att battre gang med Sampo i ostersjaisbetingelser Astadkoms genom accelerering an genom att gA sakta och med bogpropellern vaxlande mellan fullt framAt och bakAt, sAsom fOredras pA Stora sjOarna. Om man accelererar med hag fart med nastan fyrfaldigt deplacement och mer an trefaldig effekt has Ermak kommer man att tranga mycket langre in i packisen, vilket avsevart akar sannolikheten for att bli insparrad i isen i jamforelse med Sampo. It should be borne in mind that the power on the front propeller is only 25% of the total power, while according to experience from the USA - which was successfully adopted on the Sampo - it is unfortunate to have the power almost evenly distributed, or say 45% on the front propeller. The relatively high inefficiency of Ermak can to some extent be explained by this daily balancing. "It was pointed out that after the removal of the bow thruster, it was possible to increase the pressure in the three remaining steam engines to increase the power in each from 1.56 MW to 1.88 MW to a total of 5.94 MW, or only a 5% reduction in the total power Runeberg also comments on the well-known fact that the conventional wedge-shaped icebreaker hull shape with sloping sides is very inefficient in large waves.6 Runebergs comments that Ermak would have benefited from more power in the bow is certainly correct in ostersjais conditions because the displacement at Ermak was almost four times greater than that for Sampo while the power in the bow propeller was only 77% greater. Achieved by acceleration by walking slowly and with the bow thruster alternating between full forward and rearward, as is preferred on the Great Lakes. accelerates with high speed with almost fourfold displacement and more than threefold effect has Ermak will penetrate much further into the pack ice, which significantly increases the probability of being trapped in the ice in comparison with Sampo.
Runebergs kommentar att starre effekt pA bogpropellern kan ha varit till fordel i arktiska isbetingelser visar okunnighet am styrkan i och tjockleken av gammal flerArig is som obruten kommer i kontakt med en bogpropeller monterad pA en konventionell kilformad bog dA den erforderliga accelerationen gars med ar den enda majliga metoden f6r att tvinga farkosten igenom is som inte kan genomtrangas med en kontinuerlig framfOringsfart. Efter den negativa erfarenheten med bogpropellern has Ermak har ingen polarisbrytare seriOst fOreslagits att utrustas med bogpropeller. Runeberg's comment that a stronger effect on the bow thruster may have been beneficial in Arctic ice conditions shows ignorance of the strength and thickness of old multi-year ice that uninterruptedly comes into contact with a bow thruster mounted on a conventional wedge-shaped bow when the required acceleration is given. the method of forcing the craft through ice that cannot be penetrated at a continuous rate of travel. After the negative experience with the bow thruster has Ermak, no polar switch has been seriously proposed to be equipped with bow thrusters.
Efter Ermak och Sampo genomgick designen av isbrytare avsedda for drift i 6ppet hay inte nAgra storre forandringar under nastan 70 Ar, dar den starsta farbatt- ringen var installationen av dieselelektrisk drift pA den svenska isbrytaren Ymer byggd vid Kockums i Malmo 1933. Detta var ett djarvt och framgAngsrikt experiment for att farbattra bransleeffektiviteten. Det kilformade skrovet 7 fOrblev sá gott som oforandrat med tre propellrar i aktern med ett midskeppsroder for polarisbrytare. For isbrytare avsedda for icke polar drift Okade antalet propellrar gradvis till fyra, tva i bogen och tva i aktern med ett enda midskeppsroder. Med Okande effektnivaer maste avstandet mellan de tva akterpropellrarna okas med resultatet att propellerstrommarna inte langre kunde na midskeppsrodret, vilket gjorde detta ineffektivt vid laga farter. After Ermak and Sampo, the design of icebreakers intended for operation in 6ppet hay did not undergo any major changes during almost 70 years, when the biggest improvement was the installation of diesel-electric operation on the Swedish icebreaker Ymer built at Kockums in Malmo in 1933. This was a bold and successful experiment to improve industry efficiency. The wedge-shaped hull 7 remained virtually unchanged with three propellers in the stern with a midships rudder for Polaris switches. For icebreakers intended for non-polar operation Gradually increased the number of propellers to four, two in the bow and two in the stern with a single midship rudder. With increasing power levels, the distance between the two stern propellers must be increased with the result that the propeller drums could no longer reach the midship rudder, which made this inefficient at low speeds.
Efter denna period av stagnation har flera nya koncept testats i full skala varav de viktigaste fortecknas nedan. 1969 modifierade Esso oljetankfartyget Manhattan till en isbrytningsfarkost fOr att testa genomforbarheten av oljetransport aret runt igenom Nordvastpassagen. Tankfartyget utrustades med tva propellrar och tva roder i aktern vilka efter lamplig forstarkning arbetade tillfredsstallande aven i flerarig is, ehuru farkosten var forhindrad att arbeta effektivt i aktermod eftersom angturbinmaskinerna enbart kunde leverera 35 % av den totala effekten vid backning. 1974 mottog den svenska regeringen Atle, den forsta isbrytaren utrustad med tvillingroder byggd pa Wartsilas skeppsvarv i Helsingfors, Finland. Initialt var bada styrinrattningarna forbundna med varandra via stanger. Vid gang bakat i kraftiga isvallar gay skjuvringarna som var installerade pa dessa stanger efter och ett antal timmar maste agnas At att ersatta skjuvringarna. After this period of stagnation, several new concepts have been tested in full scale, the most important of which are listed below. In 1969, Esso modified the Manhattan oil tanker into an icebreaker to test the feasibility of oil transportation throughout the Northwest Passage. The tanker was equipped with two propellers and two rudders in the stern which, after light reinforcement, worked satisfactorily even in multi-rich ice, although the vessel was prevented from operating efficiently in stern mode as the ang turbine engines could only deliver 35% of the total power when reversing. In 1974, the Swedish government received Atle, the first icebreaker equipped with twin rudders built at Wartsila's shipyard in Helsinki, Finland. Initially, both control devices were connected to each other via rods. When baked in heavy ice floes the gay shreds that were installed on these rods after and a number of hours must be chewed To replace the shear rings.
Nar de tva styrinrattningarna separerats arbetade tvillingrodren fullt tillfredsstallande. 8 1976 levererades amerikanska kustbevakningens isbrytare Polar Star med en gasturbinmaskin och propellrar med reglerbar stigning, ett tappert men misslyckat experiment. SA snart som propellrarna drevs i tjock polaris gay stigningsAndringsmekanismen efter och farkosten var tvungen att AtergA till hamn for omfattande reparationer. 1979 mottog Dome Petroleum i Calgary, Alberta, Kanada den kombinerade isbrytaren, ankarhanteringsbogseraren och supplyfartyget Kigoriak byggd vid Saint John Shipbuilding & Dry Dock Co Ltd i New Brunswick, Kanada. Denna farkost utrustades med en trubbig skedformad bog och en enda propeller med reglerbar stigning skyddad av ett extremt starkt munstycke omkring propellern. Genom att aggressivt arbeta i tjock flerArig is under fArd igenom NordvAstpassagen pA leveransresan frAn byggarens vary till Beauforthavet demonstrerades helt och fullt det skydd som gays av munstycket. Enbart relativt smA isstycken kan nA propellerbladen inuti munstycket och sAlunda reduceras drama- tiskt belastningarna pA stigningsAndringsmekanismen. Eftersom det dessutom inte sker nAgon fastkilning av is mellan propellerbladet och fartygsskrovet Ar det enkelt att reducera stigningen nAr is trAnger in i propellern och sAlunda bibehAlla fullt varvtal, vilket behovs for att mojliggora for dieselmotorn att leverera full effekt. Kigoriak utrustades Aven med ett bogsmOrjningssystem med pumpar som lyfte stora mangder havsvatten ovanpA isen framfOr bogen for att reducera friktionen mellan isen och skrovet. Detta, tillsammans med den avsevArda effektok- ningen jamfort med den gamla Murtaja, undanrajde bendgenheten att skjuta is framfor bogen, vilket hade resulterat i att trubbiga bogar pA isbrytare fOr oppet hay overgavs 1890. Kigoriak utrustades med ett relativt lAngt paral- 9 lellt mittskrov med vertikala sidor. FOr att g6ra det m6jligt att gira farkosten i ett solitt istacke utrustades hon med upprymmare som gjorde bogpartiet 2 m bredare an midskeppspartiet och salunda skapa utrymme for aktern att forflytta sig sidlanges i den brutna rannan. 1986 testades den modifierade ryska isbrytaren Mydyug i relativt tjock is i fjordarna vid Spetsbergen, Referens [Gunter R. Varges, Thyssen Nordseewerke GMBH: "Advances in Icebraker Design - The conversion of the Soviet Polar Icebraker Mydyug into a Thyssen/Waas Ship" 6th WEMT Symposium Travemunde, 2 till 5 juni 1987]. Farkosten hade ursprungligen byggts i Finland med en kilformad bog med en genomsnittlig akterskeppsvinkel pa 24,4° och en genomsnittlig anfallsvinkel pa 49°, en vattenlinjelangd av 79 m, en vattenlinjebredd av 20 m, ett djupgaende av 6,5 m och ett deplacement av 6 211 t. Efter konverteringen, utfOrd vid det tyska skeppsbyggnadsforetaget Thyssen Nordseewerke, är den genomsnittliga akterskepps- vinkeln 12°, den genomsnittliga anfallsvinkeln är 0° - en helt platt bog - vattenlinjelangden 93,2 m, vattenlinjebredden 20 m vid mittskrovet och 22,2 m Over bogen, djupgaendet ofOrandrat vid 6,5 m och deplacementet 6kat till 7 744 t - cirka 25 % stOrre an fOre konverteringen. Fram- drivningseffekten är densamma, 7 MW, fore och efter konverteringen. Den nya bogen resulterade i en dramatisk 6kning av den istjocklek farkosten kan bryta vid en fart av 3 knop, den Okade fran cirka 0,8 m till cirka 1,5 m. Farten i Oppet vatten forblev oforandrad vid 16,1 knop aven om deplacementet hade 6kat med cirka 25 %. Farkostens rOrelser i havslage forbattrades radikalt med den nya bogen aven om slangningen Okade. 10 Andamalet HuvudandamAlet med den foreliggande uppfinningen ãr att i forsta hand losa problemet att med rimlig effekt pa isbrytaren if raga kunna bryta en sa bred ranna i isen som kravs och aven effektivt kunna fa den brutna rannan fri frail starre delen av den brutna isen. When the two steering devices were separated, the twin rudders worked fully satisfactorily. 8 In 1976, the US Coast Guard's icebreaker Polar Star was delivered with a gas turbine engine and propellers with adjustable pitch, a brave but unsuccessful experiment. SA as soon as the propellers were driven in thick polaris gay pitch change mechanism after and the craft had to take AtergA to port for extensive repairs. In 1979, Dome Petroleum in Calgary, Alberta, Canada received the combined icebreaker, anchor handling tug and supply vessel Kigoriak built at Saint John Shipbuilding & Dry Dock Co Ltd in New Brunswick, Canada. This craft was equipped with a blunt spoon-shaped bow and a single propeller with adjustable pitch protected by an extremely strong nozzle around the propeller. By working aggressively in thick multi-year ice while traveling through the Northwest Passage on the delivery journey from the builder's vary to the Beaufort Sea, the protection afforded by the nozzle was fully demonstrated. Only relatively small pieces of ice can reach the propeller blades inside the nozzle and thus the loads on the pitch change mechanism are dramatically reduced. In addition, since there is no jamming of ice between the propeller blade and the ship's hull, it is easy to reduce the pitch when ice penetrates the propeller and thus maintain full speed, which is needed to enable the diesel engine to deliver full power. Kigoriak was also equipped with a bow lubrication system with pumps that lifted large amounts of seawater above the ice in front of the bow to reduce the friction between the ice and the hull. This, together with the considerable increase in power compared to the old Murtaja, prevented the bending unit from pushing ice in front of the bow, which had resulted in blunt bows on icebreakers for the open hay being abandoned in 1890. Kigoriak was equipped with a relatively long parallel center hull with vertical sides. To make it possible to turn the craft in a solid ice stack, she was equipped with reamers that made the bow section 2 m wider than the midships section and thus create space for the stern to move sideways in the broken gutter. In 1986, the modified Russian icebreaker Mydyug was tested in relatively thick ice in the fjords near Spitsbergen, Reference [Gunter R. Varges, Thyssen Nordseewerke GMBH: "Advances in Icebraker Design - The conversion of the Soviet Polar Icebraker Mydyug into a Thyssen / Waas Ship" 6th WEMT Symposium Travemunde, 2 to 5 June 1987]. The vessel was originally built in Finland with a wedge-shaped bow with an average stern angle of 24.4 ° and an average angle of attack of 49 °, a waterline length of 79 m, a waterline width of 20 m, a draft of 6.5 m and a displacement of 6 211 h. After the conversion, carried out at the German shipbuilding company Thyssen Nordseewerke, the average stern angle is 12 °, the average angle of attack is 0 ° - a completely flat bow - the waterline length 93.2 m, the waterline width 20 m at the middle hull and 22, 2 m Above the bow, the depth unchanged at 6.5 m and the displacement increased to 7,744 t - about 25% larger than before the conversion. The propulsion power is the same, 7 MW, before and after the conversion. The new bow resulted in a dramatic increase in the ice thickness the vessel can break at a speed of 3 knots, the increased from about 0.8 m to about 1.5 m. The speed in open water remained unchanged at 16.1 knots even if the displacement had 6kat by about 25%. The vessel's movements in sea conditions were radically improved with the new book also about the hose Okade. The main object of the present invention is to solve in the first place the problem of being able to break as wide a ridge in the ice as required with a reasonable effect on the icebreaker and also to be able to effectively get the broken ridge free of the larger part of the broken ice.
Losningen Sagda andamal uppnas medelst en anordning enligt den fOreliggande uppfinningen, som i huvudsak kannetecknas darav, att skrovet bildas av tva funktionellt separata element med olika bredd, varav ett ovre och bredare element ar belaget intill avsedd vattenlinje for brytning av obruten is, medan ett undre smalare element ar avsett for transport av bruten is sidlanges och under den obrutna isen, att det bredare elementet ãr forsett med en i huvudsak platt lutande framdel och uppvisar liten anfallsvinkel, foretradesvis mindre an 15°, och som .ven ar anordnad for att bryta isen nedat och med en i huvudsak platt akterdel, som ãr forsedd med en liten anfallsvinkel, faretradesvis mindre an 20° och som mellan framdel och akterdel uppvisar ett i huvudsak helt platt underparti, som ar belaget nedanfor undersidan pa den tjockast jamna is som farkosten ãr avsedd att bryta med kontinuerlig fart och samtidigt belaget utanfor den bredd som det sagda nedre smalare elementet uppvisar, med framdel, underparti och akterdel belagna vid farkostens maximala bredd och att det nedre smalare elementet är forsett med i huvudsak vertikala sidopartier och i far och i akter i korriktningen uppvisar en kilform med liten Oppningsvinkel, fOretradesvis mindre an 40°, varvid vid gang framat, tack vare kilformen ar anordnad att tvinga den darvid brutna isen sidlanges samt helt eller till en del under den obrutna jamna 11 isen och vid gang akterut, tack vare kilformen tvinga den brutna isen sidlanges utmed akterdel och underparti for att minska mangden av is att komma i kontakt med farkostens huvudpropellrar. The said solution is achieved by means of a device according to the present invention, which is mainly characterized in that the hull is formed by two functionally separate elements of different widths, of which an upper and wider element is coated next to the intended waterline for breaking unbroken ice, while a lower narrower elements are intended for transporting broken ice laterally and under the unbroken ice, that the wider element is provided with a substantially flat inclined front and has a small angle of attack, preferably less than 15 °, and which is also arranged to break the ice. at the bottom and with a substantially flat stern, which is provided with a small angle of attack, preferably less than 20 ° and which between the front and stern has a substantially completely flat lower part, which is covered below the underside on the thickest smooth ice for which the vessel is intended to break at a continuous speed and at the same time coated outside the width which the said narrower narrower element has, with the front electric, lower part and stern part located at the maximum width of the vessel and that the lower narrower element is provided with mainly vertical side parts and in the far and in the stern in the correction has a wedge shape with a small opening angle, preferably less than 40 °, whether the wedge shape is arranged to force the ice to be broken laterally and completely or partially under the unbroken even 11 ice and when walking aft, thanks to the wedge shape forcing the broken ice sideways along the stern and lower part to reduce the amount of ice to come into contact with the main propellers of the craft.
Figurbeskrivning Uppfinningen beskrives i det feljande sasom ett foredraget utforingsexempel, varvid hanvisas till de bifogade ritningarna pa vilka; Figur 1 och 2 visar tva olika tredimensionella vyer av en farkost med en anordning enligt foreliggande uppf inning sedda snett underifran fran aktern och toren varvid en ovre skrovdel anger element I och en nedre skrovdel anger element II varvid ovre elementet I vid dacket visar en utsvallning avsedd att minska risken for att bruten is tranger in pa dacket, Figur 3 och 4 visar i princip samma vyer som figur 1 och 2 men endast den del av ovre elementet I som bef inner sig nedanfOr vattenlinjen, narmare bestamt den del av skrovet som kommer i kontakt med bruten och obruten is. DESCRIPTION OF THE DRAWINGS The invention is described in the following as a preferred embodiment, reference being made to the accompanying drawings in which; Figures 1 and 2 show two different three-dimensional views of a vessel with a device according to the present invention seen obliquely from below from the stern and the tower, an upper hull part indicating element I and a lower hull part indicating element II, the upper element I at the deck showing a bulge intended to reduce the risk of broken ice penetrating the roof, Figures 3 and 4 show in principle the same views as Figures 1 and 2, but only the part of the upper element I that is below the waterline, more specifically the part of the hull that comes in contact with broken and unbroken ice.
Figurerna 1-4 visar en version av fartyget dar huvudpropellrarna genom axelledningar drivs av maskinerier monterade inuti nedre elementet II samt en version dar de vertikala sidopartierna av nedre elementet II loper kontinuerligt langs hela elementet, 12 Figur 5 visar en linjeritning av farkosten sedd ovanifran, Figur 6 visar en linjeritning av farkosten sedd fran sidan dar det framgar hur de mat lutande sidopartierna midskepps och i akterskeppet loper parallellt med vattenlinjen medan de i f5rskeppet bojs uppat eftersom de foljer det platta bogpartiets lutning, Figur 7 visar en linjeritning av farkosten sedd underifran som anger en version av uppfinningen dar de vertikala sidopartierna av nedre elementet II inte loper kontinuerligt langs hela elementet utan dar de i akterskeppet avskar en skrovdel som car smalare an motsvarande skrovdel i midskeppet, Figur 8 visar en spantruta av farkostens forskepp sett framifran, Figur 9 visar en spantruta av farkostens forskepp sett akterifran, Figur 10 visar en spantruta av farkostens akter- skepp sett akterifran dar det anges hur bogens fulla bredd Astadkommer en bruten 'Anna som ar bredare an vattenlinjeportionerna i midskeppet och akterskeppet vilket i sin tur minskar friktionen mellan skrov och is samt aven bidrar till gir- ningsformagan i is genom att ge plats fOr akter- skeppet att accelerera sidlanges tills den uppatbrytande sidoportionen kommer i kontakt med den 13 obrutna isen for att genom sidlanges isbrytning astadkomma en bredare ranna for akterskeppet, Figur 11 och 12 visar linjeritningarna presenterade i figur 6 och 7 utakade med propellrar och roder, Figur 13 visar sido- eller bogpropellern sedd framifran, Figur 14 visar sido- eller bogpropellern sedd fran sidan, Figur 15 visar sido- eller bogpropellern sedd upp- ifran, och Figur 16-18 visar hur fartygets forskepp vid gang framat i obruten is transporterar den brutna isen under den obrutna isen vid sidan om fartyget. Figures 1-4 show a version of the vessel where the main propellers through axle lines are driven by machinery mounted inside the lower element II and a version where the vertical side portions of the lower element II run continuously along the entire element, Figure 5 shows a line drawing of the vessel seen from above, Figure Fig. 6 shows a line drawing of the vessel seen from the side where it is shown how the sloping side portions are amidships and in the stern run parallel to the waterline while they are bent upwards in the foreship because they follow the inclination of the flat bow section; Figure 7 shows a line drawing of the vessel a version of the invention where the vertical side portions of the lower element II do not run continuously along the entire element but where they in the stern cut off a hull part which is narrower than the corresponding hull part in the midship, Figure 8 shows a frame of the vessel foresight seen from the front, Figure 9 shows a frame window of the vessel's foresight seen from the stern, Fig out of 10 shows a frame of the vessel's stern seen from the stern where it is stated how the full width of the bow achieves a broken 'Anna which is wider than the waterline portions in the midship and stern which in turn reduces the friction between hull and ice and also contributes to the yaw shape in ice by providing space for the stern to accelerate laterally until the breaking side portion comes into contact with the 13 unbroken ice to create a wider channel for the stern through lateral icebreaking, Figures 11 and 12 show the line drawings presented in Figures 6 and 7 taken out with propellers and rudders, Figure 13 shows the side or bow propeller seen from the front, Figure 14 shows the side or bow propeller seen from the side, Figure 15 shows the side or bow propeller seen from above, and Figure 16-18 shows how the ship's foreship on the way forward in unbroken ice, the broken ice transports under the unbroken ice next to the ship.
Uppfinningen Ett nytt skrovkoncept har utvecklats som bestar av tva element 1,11 som funktionellt ãr totalt olika. I den ovre delen I ar ett parti 10 som kommer i kontakt med obruten is 14 vid rorelse fOrut i en rak linje helt platt - anfallsvinkeln ãr noll - vilket bryter isen och tvingar de brutna styckena tillrackligt langt ner sã att de kan transporteras sidlanges under det obrutna istacket pa bada sidor om isbrytaren. Det undre elementet ãr kilformat i bogen och aktern och har vertikala sidor - anfallsvinkeln ãr 90° mot horisonten - for att effektivt skjuta bruten is 14 under det solida istacket pa bada sidor och aven tillhandahalla stod for propellrar och roder. Vid rorelse akterut fungerar den nya skrovformskombinationen, som presenteras i figurerna 6,7 och 10, praktiskt taget samma &att. The invention A new hull concept has been developed which consists of two elements 1.11 which are totally different functionally. In the upper part I, a portion 10 which comes into contact with unbroken ice 14 when moving forward in a straight line is completely flat - the angle of attack is zero - which breaks the ice and forces the broken pieces far enough down so that they can be transported sideways below it. unbroken ice stack on both sides of the icebreaker. The lower element is wedge-shaped in the bow and stern and has vertical sides - the angle of attack is 90 ° to the horizon - to effectively push broken ice 14 under the solid ice stack on both sides and also provide propellers and rudders. When moving aft, the new hull-shape combination, presented in Figures 6, 7 and 10, works practically the same.
Den nya skrovformskombinationen är aven forsedd med en ny typ av upprymmare sasom kan ses i figurerna 510. Upprymmare som hittills anvants pa isbrytare eller isbrytningsfarkoster är belagna vid eller nara skarningen mellan bog och mittskrov for att tillhandahalla en bruten ranna som ar bredare an mittskrovet, vilken salunda kan gira i denna bredare ranna. Den nya typen av upprymmare som presenteras liar tacker hela avstandet fran det framsta partiet av bogen hela vagen till det bakersta partiet av aktern. For att gara det mojligt att gira i ett solitt istacke är det ovre partiet av upprymmaren lutat pa ett sadant satt att den kan bryta isen uppat nar farkosten girar, sasom visas i figur 10 och salunda skapa utrymme for sidlanges forflyttning av farkosten. For att forhindra att bruten is nar dacksniva under en girning kan en utsvallning anordnas ett gott stycke ovanfOr vattenlinjen sasom visas i figur 18. The new hull shape combination is also provided with a new type of reamer as can be seen in Figures 510. Soilers hitherto used on icebreakers or icebreaking vehicles are coated at or near the intersection of bow and center hull to provide a broken groove wider than the center hull, which salunda can gira in this wider run. The new type of reamer presented liar thanks the entire distance from the front part of the bow all the way to the rear part of the stern. To make it possible to turn in a solid ice stack, the upper part of the reamer is inclined in such a way that it can break the ice upwards when the vehicle turns, as shown in Figure 10, thus creating space for lateral movement of the vessel. In order to prevent broken ice from being frequently cut during a turn, a swell can be arranged a good distance above the waterline as shown in Figure 18.
En framdrivningskonfiguration som forstarker funktionerna hos skrovkombinationen som presenteras ovan visas i figurerna 11-18. Den radikalaste nyheten är att anordna bogpropellrar pa isbrytare avsedda f6r drift i flerarig is och att aterinfora dem pa isbrytare avsedda far drift i ettarig is. De foreslagna bogpropellrarna är dock mycket annorlunda an bogpropellrar som anvants tidi- gare. PA de fern isbrytarna av typen At/e som levererades pa 1970-talet, de senaste isbrytarna fOrsedda med propellrar fram, a" bogpropellrarna monterade pa axlar som car direkt forbundna med de elektriska propellermotorerna och salunda kommer propellerstrammen att traffa sidan av den kilformade bogen innan den vrids till en riktning som foljer farkostens vattenlinjer. Detta reducerar i hog grad nettodragkraften has propellern och begrAnsar betankligt majligheten att transportera bruten is inom isvallar mot aktern av farkosten nAr det tjockaste partiet av isvallen ãr belaget vid eller nAra den bredaste delen av farkosten. Vid rammning in i kraftiga vallar kommer bada bogpropellrarna pa en isbrytare av At/e-typ att fastna nar isen pressas ihop omkring bogen, vilket mycket effektivt kommer att stoppa farkosten. DArefter kommer det att ta tid att fa propellrarna att rotera igen och sedan ytterligare tid att fa loss farkosten ur isens grepp. A propulsion configuration that enhances the functions of the hull combination presented above is shown in Figures 11-18. The most radical news is to arrange bow thrusters on icebreakers intended for operation in multi-year ice and to reintroduce them on icebreakers intended for operation in annual ice. However, the proposed bow thrusters are very different from bow thrusters previously used. On the four At / e icebreakers delivered in the 1970s, the latest icebreakers fitted with propellers at the front, the bow thrusters mounted on axles that are directly connected to the electric propeller motors and thus the propeller frame will hit the side of the wedge-shaped bow before it is turned in a direction that follows the water lines of the vessel, which greatly reduces the net traction of the propeller and significantly limits the possibility of transporting broken ice within ice embankments towards the stern of the vessel when the thickest part of the ice embankment is located at or near the widest part of the vessel. Ramming into heavy embankments will cause the bow thrusters on an At / e-type icebreaker to get stuck when the ice is compressed around the bow, which will very effectively stop the craft.Then it will take time to get the propellers to rotate again and then further time to free the craft from the grip of the ice.
Bogpropellrarna i denna uppf inning arbetar mycket annorlunda eftersom propellerstrOmmen riktas utmed kilen och bort fran midskeppspartiet av det undre skrovet sasom visas i figurerna 11 och 12. Propellerstrommen riktas ¥ uppat for att mota batten av det ovre skrovet i en vinkel och salunda tvinga den brutna isen under det solida istacket vid arbete i jamn is. Vid isbetingelser dAr det finns mer is omkring farkosten kommer propellerstrommen att tvingas mot aktern dAr det finns utrymme for den brutna isen. Transporten av is mot aktern kommer att forstArkas av propellerstrommarna fran ett eller flera par sidopropellrar, sasom ocksA visas i figurerna 11 och 12. Propellerstrommen som Astadkommes av huvudpropellrarna belAgna i den aktre Anden av det undre skrovet kommer att skapa utrymme for den brutna isen akterom farkosten. Utan istransporten som Astadkommes av bog- och sidopropellrarna kommer tjockisen i vallar att stanna kvar ddr den har brutits av isbrytaren och kommer salunda att stanna kvar sasom ett start hinder for farkoster som foljer efter 16 isbrytaren. Bog- och sidopropellrarna som visas har kommer att fordela isvallen over ett mycket storre avstand och gor det salunda lattare far de assisterade farkosterna att folja efter i den ranna som oppnats av isbrytaren. The bow thrusters in this invention operate very differently because the propeller stream is directed along the wedge and away from the midships portion of the lower hull as shown in Figures 11 and 12. The propeller drum is directed upwards to receive the batter of the upper hull at an angle and thus force the broken ice. under the solid ice stack when working in even ice. In ice conditions where there is more ice around the vessel, the propeller drum will be forced towards the stern where there is room for the broken ice. The transport of ice towards the stern will be enhanced by the propeller drums from one or more pairs of side propellers, as also shown in Figures 11 and 12. The propeller drum provided by the main propellers located in the stern of the lower hull will create space for the broken ice aft of the vessel. . Without the ice transport provided by the bow and side propellers, the thick ice in embankments will remain where it has been broken by the icebreaker and will thus remain as a starting obstacle for vessels following the 16 icebreaker. The bow and side propellers shown have will distribute the ice wall over a much larger distance and make it much easier for the assisted vessels to follow in the gutter obtained by the icebreaker.
Konfiguration av bog- och sidopropellrarna visas i figurerna 13-15. For att uppna den nadvandiga styrkan fOr att klara kollisioner med stora och tjocka flerariga isstycken är propellern installd i en fix vinkel mot botten av det ovre skrovet som propellern spolar nar farkosten är verksam i riktning framat. Munstycket är fast vid en rang ansats utrustad med ett vingliknande parti vid dess framre kant for att rotera stora isstycken bort fran framsidan av munstycket. Skyddad av munstycket finns en propeller med reglerbar stigning som kan justera propellerstigningen pa ett sadant satt att ett konstant propellervarvtal liksom den lampliga effektnivan uppratthalls aven nar isstycken tvingas igenom propellerskivan. Genom att halla propellervarvtalet h6gt ar det enkelt far pro- pellerbladen att effektivt skara isen till stycken som är tillrackligt sma for att passera mellan bladen for att forena sig med propellerstrommen akterom propellern. Configuration of the bow and side propellers is shown in Figures 13-15. To achieve the requisite strength to withstand collisions with large and thick polygonal pieces of ice, the propeller is installed at a fixed angle to the bottom of the upper hull which the propeller flushes when the vehicle is operating in the forward direction. The nozzle is fixed to a rank shoulder equipped with a wing-like portion at its leading edge to rotate large ice cubes away from the front of the nozzle. Protected by the nozzle, there is a propeller with adjustable pitch that can adjust the propeller pitch in such a way that a constant propeller speed as well as the suitable power level is maintained even when ice pieces are forced through the propeller disc. By keeping the propeller speed high, it is easy for the propeller blades to effectively cut the ice into pieces that are small enough to pass between the blades to join the propeller drum behind the propeller.
En spantruta av bogen i riktning mot aktern visas i figur 8. En spantruta av bogen i riktning mot den framre delen visas i figur 9 och en spantruta av aktern i riktning mot den framre delen visas i figur 10. Bredden pa det ovre skrovet maste alltid vara tillracklig for att tillhandahalla skydd far bog- och sidopropellrarna. Skrovform- kombinationen som presenteras i figurerna 6-10 visar ett Ovre skrov som ar cirka tva ganger bredare an det undre skrovet men det ovre skrovet kan vara avsevart bredare an detta for att effektivt assistera stora farkoster. Det bor. 17 papekas att den maximala bredden for existerande isbrytare ar cirka 30 m, vilket ãr avsevart mindre an bredden pa stora lastfartyg som behover isbrytarassistans. Anledningen till detta är att en konventionell kilformad isbry- tare med 60 m bredd och 12 m djupgaende kommer att skjuta det mesta av den brutna isen under botten av farkosten och in i drivanlaggningen. Formkombinationen som presenteras ha" uppvisar inte detta problem och salunda kan den maximala bredden valjas for att passa de farkoster som assisteras. A frame window of the bow towards the stern is shown in Figure 8. A frame window of the bow towards the front part is shown in Figure 9 and a frame window of the stern towards the front part is shown in Figure 10. The width of the upper hull must always be be sufficient to provide protection to the bow and side propellers. The hull shape combination presented in Figures 6-10 shows an upper hull that is about twice as wide as the lower hull, but the upper hull can be considerably wider than this to effectively assist large vessels. It lives. 17 it is pointed out that the maximum width for existing icebreakers is approximately 30 m, which is considerably less than the width of large cargo vessels that need icebreaker assistance. The reason for this is that a conventional wedge-shaped icebreaker with a width of 60 m and a depth of 12 m will push most of the broken ice under the bottom of the vessel and into the propulsion system. The shape combination presented does not present this problem and thus the maximum width can be selected to suit the vessels being assisted.
Framdrivningsarrangemanget som visas i figurerna 11 och 12 inkluderar tva huvudpropellrar i aktern tillsammans med tva stora roder, tva sidopropellrar och tva bog- propellrar. Normalt skulle effekten has huvudpropellern valjas att vara ungefar lika med den kombinerade effekten has bog- och sidopropellrarna pa en sida av farkosten for att underlatta sidlanges forflyttning av farkosten vid lag hastighet pa samma satt som anvands pa konventionella isbrytare med fyra propellrar. Propellrar med reglerbar stigning har nackdelen att am stigningen reverseras utan att aven reversera rotationsriktningen sá kommer den reverserade dragkraften att bli lidande eftersom ett parti av bladen kommer att arbeta i tel riktning vid full rever- serad effekt. Men nar propellrarna drivs av en elektrisk motor sa kan rotationsriktningen enkelt reverseras vilket gar att propellern med reglerbar stigning ar lika effektiv som en propeller med fix stigning i den reverserade riktningen. The propulsion arrangement shown in Figures 11 and 12 includes two main propellers in the stern together with two large rudders, two side propellers and two bow propellers. Normally, the power of the main propeller would be chosen to be approximately equal to the combined power of the bow and side propellers on one side of the craft to facilitate lateral movement of the craft at low speed in the same manner as used on conventional four propeller icebreakers. Propellers with adjustable pitch have the disadvantage that if the pitch is reversed without also reversing the direction of rotation, the reversed traction force will suffer as a portion of the blades will work in the tel direction at full reversed power. But when the propellers are driven by an electric motor, the direction of rotation can be easily reversed, which means that the propeller with adjustable pitch is as efficient as a propeller with a fixed pitch in the reversed direction.
UPPFINNINGEN DETALJERAD Enligt uppfinningen bildas en anordning som ar anordnad fOr isbrytning med ett isbrytande skrov 2 pa ett fartyg 3 med speciell utformning av skrovet 2. Nar- 18 mare bestAmt bildas ett skrov 2 av tvA funktionellt separata element I, II, vilka uppvisar olika bredd. Ett Ovre och bredare element I Ar belAget intill vattenlinjen 13 och är anordnat for brytning av obruten is 14. Ett under detta element I belAget smalare element II Ar anordnat for transport av den brutna isen 15 sidlAnges och under den obrutna isen 14. Det byre bredare elementet I Ar forsett med ett i huvudsak platt underdelsparti av en lutande framdel 10 och uppvisar liten anfallsvinkel a, foretrAdes- vis mindre an 15°, och som är anordnad for att bryta isen 14 nedAt vid gang framAt 9. Vidare Ar elementet I forsett med en i huvudsak platt akterdel 12, som Ar fOrsedd med en liten anfallsvinkel C, fbretradesvis mindre an 20° och som är anordnad att bryta isen 14 nedAt vid gang akterut, Vidare är anordnat ett mellan framdel 10 och akterdel 12 beldget helt platt underparti 11, som är belAget nedanfor undersidan pA den tjockast jAmna is som fartyget 3 Ar avsett att bryta med kontinuerlig fart, och samtidigt ben-get utanfor den bredd D som det nedre smalare elementet II uppvisar. Utanfor den bredd D som det sagda nedre smalare elementet II uppvisar, med framdel 10 underparti 11 och akterdel 12 är vid farkostens maximala bredd B anordnade inAt lutande sidopartier 4, 5 med en relativt star anfallsvinkel e, foretradesvis mellan 45 och 60° som vid girning ãr anordnade att bryta isen uppAt vid gang i obruten is 14. Det nedre smalare elementet II ãr forsett med i huvudsak vertikala sidopartier 7, 8, 9 och som i for 10 och i akter 12 i korriktningen uppvisar en kilform med liten Oppningsvinkel n,r foretradesvis mindre an 40°, var- vid vid gang framAt 7 tack vare kilformen Ar anordnad att tvinga den dArvid brutna isen sidlAnges samt helt eller till en del under den obrutna jAmna isen 14 och vid Ong akterut 9, tack vare kilformen tvinga den brutna isen sid- 19 langes utmed akterdel 12 och underparti 11 fOr att minska mdngden av is att komma i kontakt med farkostens huvudpropellrar och roder 19, 20. THE INVENTION DETAILED According to the invention, a device is formed which is arranged for icebreaking with an icebreaking hull 2 on a ship 3 with a special design of the hull 2. More specifically, a hull 2 is formed of two functionally separate elements I, II, which have different widths . An upper and wider element I is located next to the waterline 13 and is arranged for breaking unbroken ice 14. A narrower element II is located below this element I is arranged for transporting the broken ice 15 laterally and below the unbroken ice 14. The byre wider the element I Ar is provided with a substantially flat lower part portion of an inclined front part 10 and has a small angle of attack α, preferably less than 15 °, and which is arranged to break the ice 14 down at a passage forward 9. Furthermore, the element I is provided with a substantially flat aft part 12, which is provided with a small angle of attack C, preferably less than 20 ° and which is arranged to break the ice 14 down when walking aft. Furthermore, a completely flat lower part 11 is arranged between front part 10 and aft part 12, which is located below the underside on the thickest even ice which the vessel 3 is intended to break at a continuous speed, and at the same time the leg outside the width D which the lower narrower element II has. Outside the width D which the said narrower narrow element II has, with front part 10 lower portion 11 and stern part 12, at the maximum width B of the vessel are arranged inclined side portions 4, 5 with a relatively rigid angle of attack e, preferably between 45 and 60 ° as when turning is arranged to break the ice upAt when walking in unbroken ice 14. The lower narrower element II is provided with substantially vertical side portions 7, 8, 9 and which in front 10 and in stern 12 in the correction has a wedge shape with a small opening angle n, r preferably less than 40 °, whereby when moving forward 7 due to the wedge shape Ar is arranged to force the thereby broken ice sideways and completely or partially under the unbroken smooth ice 14 and at Ong aft 9, thanks to the wedge shape forcing the broken ice side 19 along the stern part 12 and lower part 11 to reduce the amount of ice to come into contact with the vessel's main propellers and rudders 19, 20.
F6r manovrering i is ãr framdel, under- parti och akterdel vid skrovets maximala bredd saledes forsedda med mat lutande sidopartier med en relativt stor anfallsvinkel mot vattenlinjen, foretradesvis mellan 45 och 60°, anordnat att bryta isen sidlanges och uppat vid girning i obruten is. For maneuvering in ice, the front, lower part and stern at the maximum width of the hull are thus provided with food sloping side portions with a relatively large angle of attack towards the waterline, preferably between 45 and 60 °, arranged to break the ice sideways and upwards when turning in unbroken ice.
Farkosten är forsedd med Atminstone tva sidopropellrar 18 som är monterade nertill pa sidopartierna 8 av skrovets smalare element II, och som ãr riktade sá att propellerstrommen uppAt med liten vinkel u, foretradesvis mindre an 10°, traffar underpartier 11 av det Ovre elementet I for att darvid vid gang framAt accelerera den brutna isen akterOver och fOrhindra att denna is kommer i kontakt med fartygets huvudpropellrar 19. The vessel is provided with At least two side propellers 18 which are mounted at the bottom of the side portions 8 of the narrower element II of the hull, and which are directed so that the propeller drum up at a small angle u, preferably less than 10 °, hits lower portions 11 of the Upper element I to thereby accelerating the broken ice aft and preventing this ice from coming into contact with the ship's main propellers 19.
Forkosten är fOrsedd med Atminstone tva bogpropellrar 17, vilka dr monterade nertill pa de forliga sidopartierna 7 av det nedre smalare elementet II sA riktade att propellerstrommen uppAt med liten vinkel s, fOretradesvis mindre an °, och sidlanges med liten vinkel x, fOretr&desvis halften av oppningsvinkeln n, traffar underpartiet 11 av sagda bredare element I, fOr att vid gang framAt i jamn is accelerera den darvid brutna isen sidlanges under obruten is 14 och ddrigenom vasentligen eller helt gora den brutna rannan bakom fartyget isfri vid gang i jamn is och med kontinuerlig hastighet. Vid gang till exempel i isvallar vars undre del stracker sig under den platta delen 11 av Ovre elementet I riktas propellerstrOmmen skapad av bogpropellrarna 17 akterut, varvid denna tillsammans med den akterut riktade propellerstrOmmen skapad av sidopropellrarna 18 flyttar mestadelen av isvallen till omradet akterom farkosten och som salunda sprids over ett storre omrade och minskar ismotstandet for efterfoljande farkost. Sido- och bogpropellrarna 17, 18 är monterade pa en ansats 21 for att minska propellerstrom- mens kontakt med de vertikala sidopartierna 7, 8 och ett vingliknande utskjutande element 22, fOretradesvis med sidolangd som Atminstone stracker sig till propellerns center, är anordnat framfor sido- och bogpropellrarna 17, 18, for att tillsammans med ansatsen 21 astadkomma rota- tion av brutna isflak samt forhindra dessa att blockera propellrarna 17, 18. The front fork is provided with at least two bow thrusters 17, which are mounted at the bottom of the front side portions 7 of the lower narrower element II so that the propeller drum is raised up by a small angle s, preferably less than °, and laterally with a small angle x, the right angle of n, strikes the lower part 11 of said wider element I, in order to accelerate the thereby broken ice laterally under unbroken ice 14 when walking forward in smooth ice and thereby substantially or completely make the broken channel behind the vessel ice-free when walking in smooth ice and at continuous speed. . When walking, for example, in ice banks whose lower part extends below the flat part 11 of the upper element I, the propeller stream created by the bow propellers 17 is directed aft, this together with the aft propeller stream created by the side propellers 18 moving most of the ice bank to the area aft of the vessel and salunda spreads over a larger area and reduces ice resistance for subsequent craft. The side and bow propellers 17, 18 are mounted on a shoulder 21 to reduce the contact of the propeller drum with the vertical side portions 7, 8 and a wing-like projecting element 22, preferably with side length which at least extends to the center of the propeller, is arranged in front of the side. and the bow propellers 17, 18, to together with the shoulder 21 cause rotation of broken ice floes and prevent them from blocking the propellers 17, 18.
Propellrar 17, 18 är anordnade att rotera kring en stOdjepunkt vid sidorna av farkosten pa satt som mojliggor riktning av propellerstrommen framat eller 15 akteraver, uppat eller nedat. Propellers 17, 18 are arranged to rotate about a fulcrum at the sides of the craft in such a way as to allow the direction of the propeller drum forward or aft, up or down.
Farkostens huvudpropellrar 19 ar anordnade att roteras kring stadjepunkter under aktern av farkosten pa satt som mojliggar riktning av propellerstrommen framat eller akteraver, samt godtyckligt at bagge sidor vilket gor att rodren 20 kan elimineras. Farkostens drivpropellrar 23, 24 ar anordnade att drivas medelst axel flan en drivanlaggning som ãr belagen framfor sagda propellrar i sagda nedre smalare element II. The vehicle's main propellers 19 are arranged to be rotated about staging points below the stern of the vehicle in a manner that allows the direction of the propeller drum forwards or aft, and arbitrarily to bend sides which allows the rudder 20 to be eliminated. The propeller propellers 23, 24 of the vehicle are arranged to be driven by means of a shaft flange a propulsion system which is coated in front of said propellers in said lower narrower element II.
PA dacksnivan är skapad en utsvallning 23 25 som minskar risken for att bruten is hamnar pa fartygets clack 14. At the dike level, a swell 23 is created which reduces the risk of broken ice ending up on the ship's clack 14.
Funktion och beskaffenhet av uppfinningen torde ha forstatts klart av det ovan angivna och med kannedom aven am det pa ritningarna visade men uppfin30 ningen ãr naturligtvis inte begransad till de ovan beskrivna och pa de bifogade ritningarna visade utforandena. Modifieringar ar mojliga, sarskilt nar det galler de olika delarnas beskaffenhet, eller genom anvandande av 21 likv&rdig teknik, utan att man frAngar skyddsomrAdet far uppfinningen, s&som den definieras i patentkraven. 22 The function and nature of the invention should have been clearly understood from the above and with knowledge also from what is shown in the drawings, but the invention is of course not limited to the embodiments described above and shown in the accompanying drawings. Modifications are possible, especially when it comes to the nature of the various parts, or by using 21 equivalent techniques, without departing from the scope of the invention, as defined in the claims. 22
Claims (10)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450545A SE537962C2 (en) | 2014-05-08 | 2014-05-08 | Ice breaking device |
CA2947691A CA2947691A1 (en) | 2014-05-08 | 2015-04-16 | Arrangement for ice-breaking |
US15/309,442 US20170174295A1 (en) | 2014-05-08 | 2015-04-16 | Arrangement for Ice-Breaking |
PCT/SE2015/050442 WO2015171042A1 (en) | 2014-05-08 | 2015-04-16 | Arrangement for ice-breaking |
RU2016141593A RU2016141593A (en) | 2014-05-08 | 2015-04-16 | Icebreaking device |
NO20161594A NO20161594A1 (en) | 2014-05-08 | 2016-10-05 | Ice-breaking event |
FI20165752A FI20165752L (en) | 2014-05-08 | 2016-10-06 | An arrangement to break the ice |
DKPA201670822A DK201670822A1 (en) | 2014-05-08 | 2016-10-18 | Arrangement for ice-breaking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450545A SE537962C2 (en) | 2014-05-08 | 2014-05-08 | Ice breaking device |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1450545A1 SE1450545A1 (en) | 2015-11-09 |
SE537962C2 true SE537962C2 (en) | 2015-12-15 |
Family
ID=54392755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1450545A SE537962C2 (en) | 2014-05-08 | 2014-05-08 | Ice breaking device |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170174295A1 (en) |
CA (1) | CA2947691A1 (en) |
DK (1) | DK201670822A1 (en) |
FI (1) | FI20165752L (en) |
NO (1) | NO20161594A1 (en) |
RU (1) | RU2016141593A (en) |
SE (1) | SE537962C2 (en) |
WO (1) | WO2015171042A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6653724B2 (en) * | 2018-03-29 | 2020-02-26 | ジャパンマリンユナイテッド株式会社 | Ship |
CN108528646A (en) * | 2018-04-20 | 2018-09-14 | 广州海荣实业有限公司 | A kind of shield pick ice working ship |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA948932A (en) * | 1970-06-16 | 1974-06-11 | Esso Research And Engineering Company | Icebreaker hull construction |
FI750479A (en) * | 1974-07-02 | 1976-01-03 | Heinrich Waas | |
AR229710A1 (en) * | 1981-11-05 | 1983-10-31 | Thyssen Nordseewerke Gmbh | BOAT WITH THE PONTON SHAPED BOW |
SE462480B (en) * | 1987-02-23 | 1990-07-02 | Goetaverken Arendal Ab | CREATIVE SHIPS |
US5325803A (en) * | 1991-01-16 | 1994-07-05 | Thyssen Nordseewerke Gmbh | Icebreaking ship |
FI94508C (en) * | 1991-03-18 | 1995-09-25 | Masa Yards Oy | Icebreaking vessels |
FI109783B (en) * | 1997-02-27 | 2002-10-15 | Kvaerner Masa Yards Oy | A method of opening a passage through an ice field and an icebreaker |
FI20070241L (en) * | 2007-03-23 | 2008-09-24 | Statoil Asa | Multipurpose icebreaker |
FI122504B (en) * | 2010-12-30 | 2012-02-29 | Aker Arctic Technology Oy | Sea vessels with improved ice properties |
-
2014
- 2014-05-08 SE SE1450545A patent/SE537962C2/en not_active IP Right Cessation
-
2015
- 2015-04-16 US US15/309,442 patent/US20170174295A1/en not_active Abandoned
- 2015-04-16 RU RU2016141593A patent/RU2016141593A/en not_active Application Discontinuation
- 2015-04-16 CA CA2947691A patent/CA2947691A1/en not_active Abandoned
- 2015-04-16 WO PCT/SE2015/050442 patent/WO2015171042A1/en active Application Filing
-
2016
- 2016-10-05 NO NO20161594A patent/NO20161594A1/en not_active Application Discontinuation
- 2016-10-06 FI FI20165752A patent/FI20165752L/en not_active IP Right Cessation
- 2016-10-18 DK DKPA201670822A patent/DK201670822A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
SE1450545A1 (en) | 2015-11-09 |
CA2947691A1 (en) | 2015-11-12 |
RU2016141593A (en) | 2018-06-08 |
NO20161594A1 (en) | 2016-10-05 |
US20170174295A1 (en) | 2017-06-22 |
FI20165752L (en) | 2016-10-06 |
DK201670822A1 (en) | 2016-10-31 |
WO2015171042A1 (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101704043B1 (en) | Method for improving the ice-breaking properties of a water craft and a water craft constructed according to the method | |
FI94508C (en) | Icebreaking vessels | |
EP3523194B1 (en) | Tugboat having azimuthal propelling units | |
RU2622168C2 (en) | Propulsion system for sea craft and sea craft, containing propulsion system of this type | |
RU2584038C2 (en) | Sea vessel to operate in ice conditions | |
SE536925C2 (en) | Boat with thrusters for ice removal | |
SE537962C2 (en) | Ice breaking device | |
US9056658B2 (en) | Icebreaking vessel | |
US5660131A (en) | Icebreaker attachment | |
US3521591A (en) | Nautical ice-breaking structures | |
CN106628027A (en) | Green energy-saving tail icebreaking type three-purpose tugboat | |
EP3368405B1 (en) | Ice breaking vessel | |
US3768427A (en) | Icebreaker oil tankers | |
RU68460U1 (en) | FERRY ALL-YEAR ROAD | |
Wilkman et al. | Development of icebreaking ships | |
WO2018051711A1 (en) | Hull shape and propulsion device | |
RU2820671C1 (en) | Ice breaker tanker aft end | |
RU2488512C1 (en) | Modular integral barge towing train | |
RU2492098C2 (en) | Surface ship propulsion complex | |
RU2417920C2 (en) | Method of ship navigation in ice conditions and ice breaker to this end | |
Eronen | Removable icebreaker bow with propulsion | |
FI12096U1 (en) | Icebreaking vessel | |
WO2020035112A1 (en) | Method for propelling and controlling a ship and a ship therefor | |
Schwarz | Some latest developments in icebreaker technology | |
JPS6088693A (en) | Ice breaker for ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |