SE537493C2 - Method for sizing a particle filter intended for an exhaust system of an internal combustion engine - Google Patents

Method for sizing a particle filter intended for an exhaust system of an internal combustion engine Download PDF

Info

Publication number
SE537493C2
SE537493C2 SE1350008A SE1350008A SE537493C2 SE 537493 C2 SE537493 C2 SE 537493C2 SE 1350008 A SE1350008 A SE 1350008A SE 1350008 A SE1350008 A SE 1350008A SE 537493 C2 SE537493 C2 SE 537493C2
Authority
SE
Sweden
Prior art keywords
porous body
exhaust
qmax
flow
surface area
Prior art date
Application number
SE1350008A
Other languages
Swedish (sv)
Other versions
SE1350008A1 (en
Inventor
Ola Sandström
Micael Baudin
Esa Rosvall
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1350008A priority Critical patent/SE537493C2/en
Priority to PCT/SE2013/051525 priority patent/WO2014107128A1/en
Publication of SE1350008A1 publication Critical patent/SE1350008A1/en
Publication of SE537493C2 publication Critical patent/SE537493C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0226Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

SAMMAN DRAG Foreliggande uppfinning avser ett forfarande for att dimensionera ett partikelfilter avsett for ett avgassystem hos en forbranningsmotor. Partikelfiltret innefattar en por6s kropp av kiseldioxidfibrer. Forfarandet innefattar stegen av att bestamma avgassystemets maximala avgasflode och darefter valja den porosa kroppens ytarea sa att foljande villkor uppfylls: FV = Qmax/A 1 m/s; vani FV = flode per ytarea Qmax= maximalt avgasflode i avgassystemet (m3/s); och A = den por6sa kroppens ytarea (m2), genom vilken avgasflOdet passerar Forfarandet innefattar vidare steget att valja mangden kiseldioxidfibrer sa att fOrhallandet fibermassa/maximalt avgasflOde i den porOsa kroppen är: mf/Qmax 500g/1 m3/s; vani mf = fibermassa Slutligen anpassas den porosa kroppens porositet sa att den är mindre an eller lika med 99,3%. Med forfarandet enligt uppfinningen är det mojligt att dimensionera ett kiseldioxidfiberfilter sa att en filtreringsgrad pa minst 99 % erhalls. SUMMARY The present invention relates to a method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine. The particulate filter comprises a porous body of silica fibers. The method comprises the steps of determining the maximum exhaust flow of the exhaust system and then selecting the surface area of the porous body so that the following conditions are met: FV = Qmax / A 1 m / s; vani FV = flow per surface area Qmax = maximum exhaust flow in the exhaust system (m3 / s); and A = the surface area (m2) of the porous body through which the exhaust gas flow passes The process further comprises the step of selecting the amount of silica fibers so that the ratio of fiber mass / maximum exhaust gas flow in the porous body is: mf / Qmax 500g / 1 m3 / s; vani mf = fiber mass Finally, the porosity of the porous body is adjusted so that it is less than or equal to 99.3%. With the method according to the invention it is possible to dimension a silica fiber filter so that a degree of filtration of at least 99% is obtained.

Description

Forfarande for aft dimensionera eft partikelfilter avsett for eft avgassystem hos en forbranningsmotor TEKNIKENS OMRADE Foreliggande uppfinning avser ett forfarande for aft dimensionera ett 10 partikelfilter avsett for ett avgassystem hos en forbranningsmotor. Uppfinningen avser aven ett partikelfilter som har dimensionerats enligt forfarandet samt en avgasledning som innefattar partikelfiltret. FIELD OF THE INVENTION The present invention relates to a method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine. The invention also relates to a particle filter which has been dimensioned according to the method as well as an exhaust line which comprises the particle filter.

UPPFINNINGENS BAKGRUND OCH KAND TEKNIK Dieseldrivna motorer forses med avgasreningsanordningar i syfte att minska utslapp av partiklar och skadliga gaser som f6rekommer i dieselmotorns avgaser. For aft reglera emissioner fran motorer till exempel i fordon finns det olika standarder och lagkrav som reglerar nivaer for tillAtna avgasutslapp. BACKGROUND OF THE INVENTION AND KNOWLEDGE TECHNOLOGY Diesel engines are equipped with exhaust gas purification devices in order to reduce particulate emissions and harmful gases present in the exhaust gases of the diesel engine. In order to regulate emissions from engines, for example in vehicles, there are various standards and legal requirements that regulate levels for allowable exhaust emissions.

Forbranningsmotorer kan innefattas i flera olika applikationer, till exempel i tunga fordon, s6som lastbilar eller bussar. Fordonet kan alternativt vara en personbil. Aven motorbatar, fartyg, farjor eller skepp, industrimotorer och/eller motordrivna industrirobotar, kraftverk, sAsom t.ex. ett elkraftverk som innefattar en dieselgenerator, lok eller annan applikation kan inbegripa en forbranningsmotor. Internal combustion engines can be included in several different applications, for example in heavy vehicles, such as trucks or buses. The vehicle can alternatively be a car. Also motor boats, ships, ferries or ships, industrial engines and / or motor-driven industrial robots, power plants, such as e.g. an electric power plant that includes a diesel generator, locomotive or other application may include an internal combustion engine.

Partikelemissioner fran forbranningsmotorer, speciellt i dieseldrivna tunga fordon, kan reduceras med hjalp av ett partikelfilter. Ett partikelfilter innefattar en materialkropp av ett porost material. Det porosa materialet kan t ex utgoras av ett mineralbaserat material sasom kordierit eller keramiskt eller sintrat material. Med dessa filtermaterial är det mojligt all erh61Ia en hog 1 filtreringsgrad av partiklar fran ett avgasflode, och det är vanligt all en filtreringsgrad pa aver 99 % erhalls. Keramiska filter är ocksa effektiva i all avlagsna fina partiklar som är foretradesvis kolpartiklar med en diameter pa mindre an 100 nanometer (nm). Filter av denna typ kan typiskt regenereras spontant under driften av motorn genom all ansamlade partiklar, i huvudsak sot, tillats forbrannas sá aft filtret Mlles rent och darigenom kontinuerligt kan uppfylla sin filtrerande funktion. Nackdelen med dessa mineralbaserade, keramiska eller sintrade material är dock aft de har relativt stor termisk massa. De maste ocksa rengoras fran aska med lampliga intervall far all inte tappa sin funktion, eftersom det material i partiklarna som inte gar aft branna bort pa sikt tapper till passager i materialet. Vidare ar inte dessa material formbara pa ett enkelt satt och de ar svara all anpassa till tranga utrymmen. Particulate emissions from internal combustion engines, especially in diesel-powered heavy vehicles, can be reduced with the help of a particulate filter. A particulate filter comprises a body of material of a porous material. The porous material can, for example, consist of a mineral-based material such as cordierite or ceramic or sintered material. With these filter materials it is possible to obtain a high degree of filtration of particles from an exhaust stream, and it is common to obtain a degree of filtration of up to 99%. Ceramic filters are also effective in all deposited fine particles which are preferably carbon particles with a diameter of less than 100 nanometers (nm). Filters of this type can typically be regenerated spontaneously during the operation of the engine by allowing all accumulated particles, essentially soot, to be combusted so that the filter Mlles is clean and thereby can continuously fulfill its filtering function. However, the disadvantage of these mineral-based, ceramic or sintered materials is that they have a relatively large thermal mass. They must also be cleaned of ash at suitable intervals, all of which must not lose their function, as the material in the particles that will not burn off in the long run loses to passages in the material. Furthermore, these materials are not malleable in a simple way and they are suitable for adapting to tight spaces.

Som alternativ till materialen ovan har aven fibermaterial anvants i partikelfilter. I SE 535454 C2 visas ett partikelfilter som innefattar keramiskt eller sintrat material i kombination med kiseldioxidfibrer. Vidare visar EP1624165 ett partikelfilter med kiseldioxidfibrer som är belagda med iridium i kombination med platina och/eller palladium. As an alternative to the materials above, fibrous materials have also been used in particulate filters. SE 535454 C2 discloses a particulate filter comprising ceramic or sintered material in combination with silica fibers. Furthermore, EP1624165 discloses a particulate filter with silica fibers coated with iridium in combination with platinum and / or palladium.

Fibermaterial har dock inte anvants i nagon st6rre utstrackning i partikelfilter hos en forbranningsmotor, eftersom det har varit svart all dimensionera filtret sa aft en tillracklig filtreringsgrad, till exempel 99 %, uppnas. However, fibrous material has not been used to any great extent in particulate filters of an internal combustion engine, since it has been black to dimension the filter so that a sufficient degree of filtration, for example 99%, is achieved.

SAMMANFATTNING AV UPPFINNINGEN Det finns darfor fortfarande ett behov av aft vidareutveckla partikelfilter. Speciellt finns det eft stort behov av all kunna dimensionera ett partikelfilter, som innefattar en poros kropp av ett fibermaterial, sa att en filtreringsgrad pa atminstone 99 % kan uppnas. SUMMARY OF THE INVENTION Therefore, there is still a need to further develop particulate filters. In particular, there is a great need to be able to dimension a particle filter which comprises a porous body of a fibrous material, so that a degree of filtration of at least 99% can be achieved.

Eftersom fibermaterialet är formbart är det relativt enkelt aft utforma ett filter med ett lagt mottryck och som kan anpassas till tranga utrymmen, till 2 exempel i en ljuddampare. Darfor är det onskvart att kunna anvanda fibermaterial aven i ett partikelfilter hos dieseldrivna motorfordon, men hittills har man inte kunnat sakerstalla att en tillracklig filtreringsgrad uppnas. Since the fibrous material is malleable, it is relatively easy to design a filter with a laid back pressure and which can be adapted to narrow spaces, for example in a steam steamer. Therefore, it is undesirable to be able to use fibrous material even in a particulate filter in diesel-powered motor vehicles, but so far it has not been possible to ensure that a sufficient degree of filtration is achieved.

Det finns darfor ett behov av att kunna sakerstalla att en filtreringsgrad pa atminstone 99 % kan uppnas med ett partikelfilter som innefattar en poros kropp av fibermaterial. Genom att anvanda fibermaterial kan man minska utrymmesbehovet, samtidigt som tillracklig filtreringsgrad for avgasutslapp kan uppnas. There is therefore a need to be able to ensure that a degree of filtration of at least 99% can be achieved with a particle filter which comprises a porous body of fibrous material. By using fibrous material, the need for space can be reduced, while at the same time a sufficient degree of filtration for exhaust emissions can be achieved.

Kiseldioxidfibrer har visat sig vara mycket lampliga for att anvandas som ett fibermaterial i ett partikelfilter som material for den porosa kroppen. Silica fibers have been found to be very suitable for use as a fibrous material in a particulate filter as a material for the porous body.

Syftet med foreliggande uppfinning är saledes att tillhandahalla ett forfarande for att dimensionera ett partikelfilter som innefattar en poros kropp av kiseldioxidfibrer, och som har en filtreringsgrad pa atminstone 99 %. Samtidigt är filtret och den porosa kroppen formbara och utrymmesbesparande och har en lag termisk massa. The object of the present invention is thus to provide a method for dimensioning a particle filter which comprises a porous body of silica fibers, and which has a degree of filtration of at least 99%. At the same time, the filter and the porous body are malleable and space-saving and have a low thermal mass.

Det är ett ytterligare syfte med uppfinningen att tillhandahalla ett partikelfilter med en poros kropp av kiseldioxidfibrer som har dimensioner for att klara av filtreringsgraden pa atminstone 99 °A). It is a further object of the invention to provide a particulate filter having a porous body of silica fibers having dimensions to withstand the degree of filtration of at least 99 ° A).

De ovan angivna syftena uppnas med det inledningsvis namnda forfarandet for att dimensionera ett partikelfilter som innefattar en poros kropp av kiseldioxidfibrer som kannetecknas av vad som anges i patentkrav 1. The above objects are achieved by the initially mentioned method for dimensioning a particle filter which comprises a porous body of silica fibers which can be characterized by what is stated in claim 1.

Forfarandet innefattar stegen: a) att bestamma avgassystemets maximala avgasflode Qmax; b) valja den porosa kroppens ytarea sa att foljande villkor uppfylls: FV = Qmax/A 1 m/s; vani 3 FV = flode per ytarea Qmax= maximalt avgasflode i avgassystemet (m3/s); och A = den porosa kroppens ytarea (m2), genom vilken avgasflodet passerar c) att valja mangden kiseldioxidfibrer sa att forhallandet fibermassa/maximalt avgasflode i den porosa kroppen är: mf/Qmax ?1500g/1 m3/s; vani mf = fibermassa d) att anpassa att den porOsa kroppens porositet är mellan 95- 99%. The method comprises the steps of: a) determining the maximum exhaust gas flow Qmax of the exhaust system; b) select the surface area of the porous body so that the following conditions are met: FV = Qmax / A 1 m / s; vani 3 FV = flow per surface area Qmax = maximum exhaust flow in the exhaust system (m3 / s); and A = the surface area (m2) of the porous body, through which the exhaust gas flow passes c) selecting the amount of silica fibers so that the ratio fiber mass / maximum exhaust flow in the porous body is: mf / Qmax? 1500g / 1 m3 / s; vani mf = fiber mass d) to adjust that the porosity of the porOsa body is between 95- 99%.

Forfarandet innefattar aven steget att valja all kiseldioxidfibrernas medeldiameter är foretradesvis mellan 5-20pm, varigenom en stor kontaktyta mellan fibrer och avgasflodets partiklar erhalles. The process also comprises the step of selecting all the average diameter of the silica fibers is preferably between 5-20 [mu] m, whereby a large contact area between the fibers and the particles of the exhaust river is obtained.

Den porosa kroppen har lampligtvis en tjocklek av minst 15 mm. Med denna tjocklek for den porosa kroppen tillsammans med ytarean och porositeten enligt kriterierna ovan sakerstalls att avgasflodet inte komprimerar den porosa kroppen vid hoga floden. The porous body suitably has a thickness of at least 15 mm. With this thickness, the porous body together with the surface area and the porosity according to the criteria above ensure that the exhaust stream does not compress the porous body at the high river.

Forfarandet innefattar dessutom foretradesvis steget att: e) valja den porosa kroppens volym sa att: SV = Qmax / V 150000; vani SV = space velocity, flode per volym Qmax= maximalt avgasflode i avgassystemet m3/s; och V = den porosa kroppens volym m3, genom vilken avgasflodet passerar. 4 Den porosa kroppens porositet anpassas all vara foretradesvis mellan 9599%. Pa detta satt optimeras filtrets dimensioner sa all den porosa kroppen inte är for hart eller last packad. The method further preferably comprises the step of: e) selecting the volume of the porous body such that: SV = Qmax / V 150000; vani SV = space velocity, flow per volume Qmax = maximum exhaust flow in the exhaust system m3 / s; and V = the volume m3 of the porous body, through which the exhaust gas flow passes. The porosity of the porous body is all adapted to be preferably between 9599%. In this way, the dimensions of the filter are optimized so that all the porous body is not too hard or load packed.

Uppfinningen avser aven ett partikelfilter som innefattar en poros kropp och den porosa kroppen är dimensionerad enligt forfarandet enligt uppfinningen. The invention also relates to a particle filter which comprises a porous body and the porous body is dimensioned according to the method according to the invention.

Uppfinningen avser aven en avgasledning for en forbranningsmotor, till exempel i ett fordon, som innefattar ett partikelfilter med en poros kropp som är dimensionerad enligt fOrfarandet enligt uppfinningen. The invention also relates to an exhaust line for an internal combustion engine, for example in a vehicle, which comprises a particle filter with a porous body which is dimensioned according to the method according to the invention.

Ytterligare egenskaper och fordelar med uppfinningen framgar av efterfoljande detaljerade beskrivning samt exempel. Additional features and advantages of the invention will become apparent from the following detailed description and examples.

DETALJERAD BESKRIVNING Definitioner Partikelfilter är en anordning som innefattar en poros kropp for ansamling av partiklar fran ett avgasflode. DETAILED DESCRIPTION Definitions Particulate filter is a device that includes a porous body for the accumulation of particles from an exhaust flood.

Fibermaterial är ett material som bestar av fibrer. Fibrerna är langsmala, bojliga materialelement med relativt sma tvardimensioner. Fiber material is a material that consists of fibers. The fibers are elongated, flexible material elements with relatively small cross-dimensions.

Den porosa kroppen har en porositet, som definierar hur mycket luft eller tomrum den porosa kroppen innefattar. Porositeten kan bestammas med hjalp av den porOsa kroppens soliditet, a. Porositet = 1- a. Soliditeten är fibrernas volym/totala porosa kroppens volym. Fibrernas massa kan definieras utifran densiteten for ramaterialet for fibrerna. Densiteten f6r kiseldioxidfibrerna kan vara t.ex. 2200 kg/m3. The porous body has a porosity, which defines how much air or void the porous body contains. The porosity can be determined with the aid of the solidity of the porous body, a. Porosity = 1- a. The solidity is the volume of the fibers / total porous body volume. The mass of the fibers can be defined on the basis of the density of the raw material of the fibers. The density of the silica fibers can be e.g. 2200 kg / m3.

Den porosa kroppen har en ytarea A, som motsvarar den projicerade ytarean och är den yta genom vilken avgasflodet strommar. The porous body has a surface area A, which corresponds to the projected surface area and is the surface through which the exhaust stream flows.

Den porosa kroppen har en fibermassa mf som motsvarar den porosa kroppens vikt. The porous body has a fiber mass etc. which corresponds to the weight of the porous body.

Filtreringsgrad, FE, är ett matt pa hur stor andel av antalet partiklar som filtreras bort med hjalp av filtret. Filtreringsgraden beraknas med hjalp av forhallandet mellan hur stort antalet partiklar i avgasflodet är efter respektive fOre filtrering enligt foljande formel: FE(%) = 100(1-PNefter/PNfore), dar PN = antalet partiklar Detaljerad beskrivning av utforingsformer Den porosa kroppen innefattar kiseldioxidfibrer (Si02) som fibermaterial och foretradesvis best& den porosa kroppen vasentligen enbart av kiseldioxidfibrer. Kiseldioxid är amorf (icke-kristallisk) och erhalls av kvarts eller tillverkas syntetiskt. Kiseldioxidfibrerna best& foretradesvis av vasentligen ren kiseldioxid. Filtration rate, FE, is a measure of the proportion of particles that are filtered out with the help of the filter. The degree of filtration is calculated using the ratio between the number of particles in the exhaust stream after each filtration according to the following formula: FE (%) = 100 (1-PNefter / PNfore), where PN = number of particles Detailed description of embodiments The porous body comprises silica fibers (SiO2) as a fibrous material and preferably the porous body consists essentially only of silica fibers. Silica is amorphous (non-crystalline) and is obtained from quartz or made synthetically. The silica fibers are preferably composed of substantially pure silica.

Kiseldioxid har en hog smaltpunkt, ca 1700 °C, och lampar sig utmarkt for anvandning i ett partikelfilter hos en forbranningsmotor, dar avgasernas temperatur kan uppga till ca 1200°C. Kiseldioxidfibrer är taliga mot hoga temperaturer, temperaturchocker och manga kemikalier, bl. a starka syror, som kan finnas i avgasflodet. Silica has a high melting point, about 1700 ° C, and is excellent for use in a particulate filter in an internal combustion engine, where the exhaust gas temperature can reach about 1200 ° C. Silica fibers are resistant to high temperatures, temperature shocks and many chemicals, among others. a strong acids, which can be found in the exhaust river.

Fibrerna har foretradesvis en medeldiameter pa 5-20 pm. Ju tunnare fibrer den porosa kroppen innefattar, desto storre formaga har den for aft mottaga partiklar fran avgasflodet. Fibermaterial av denna typ levereras till exempel av foretaget Saint Gobain Quartz, till exempel under varumarket Quartzel0 Wool. 6 Far att bilda en poros kropp kan fibrerna, som levereras till exempel i form av en fibermatta dar fibrerna ar slumpvis fordelade, packas eller komprimeras. Packningen kan utforas genom mekanisk packning, till exempel genom formpressning. Fibrerna i den bildade kroppen är slumpvis trasslade och bildar ett nat och sotpartiklar som kan ha en klibbig yta, kan darigenom bade fastna pa kiseldioxidfibrernas yta och bli fangade i det bildade fibernatet. Den porosa kroppen av kiseldioxidfibrer är formbar och kan anta nastan vilken form som heist och kan darigenom anpassas till olika applikationer. The fibers preferably have an average diameter of 5-20 μm. The thinner the fibers of the porous body, the larger the shape of the particles it receives from the exhaust gas. Fiber materials of this type are supplied, for example, by the company Saint Gobain Quartz, for example under the brand name Quartzel0 Wool. In order to form a porous body, the fibers, which are delivered, for example, in the form of a fiber mat where the fibers are randomly distributed, can be packed or compressed. The gasket can be made by mechanical gasket, for example by compression molding. The fibers in the formed body are randomly tangled and form a seam and soot particles which may have a sticky surface, can thereby both stick to the surface of the silica fibers and become trapped in the formed fiber net. The porous body of silica fibers is malleable and can assume almost any shape that is lifted and can thereby be adapted to different applications.

Kiseldioxidfibrerna kan belaggas med ett katalytiskt material, sa som platina, for att oka formagan att oxidera till exempel NO vid laga temperaturer. Med en sadan belaggning kan sot forbrannas vid en relativt lag temperatur. Fibrerna kan belaggas genom att den porosa kroppen av kiseldioxidfibrer sprayas eller impregneras med det katalytiska belaggningsmaterialet. Andra metoder kan ocksa anvandas. The silica fibers can be coated with a catalytic material, such as platinum, to increase the ability to oxidize, for example, NO at low temperatures. With such a coating, soot can be burned at a relatively low temperature. The fibers can be coated by spraying or impregnating the porous body of silica fibers with the catalytic coating material. Other methods can also be used.

Face velocity, FV, som had aven kallas fist:ode per ytarea, är en parameter som anvands inom filtreringstekniken far att beskriva hastigheten hos ett avgasflode som strommar in i filtret. Face velocity bestams enligt foljande formel: FV = Qmax/A, vani Qmax = maximalt avgasflode (m3/s): A = den porosa kroppens ytarea (m2) Med ytarea menas hail den porosa kroppens projicerade ytarea. Det maximala vardet f6r FV enligt foreliggande uppfinning maste vara mindre an eller lika med 1 m/s. I det f6rsta steget av dimensioneringen av partikelfiltret, eller den porosa kroppen i filtret, maste avgassystemets maximala avgasflode Qmax bestammas. Detta avgasflode motsvarar motorns maximala 7 avgasflode och den porosa kroppen dimensioneras saledes utifran motorns maximala avgasflode. Face velocity, FV, which was also called fist: ode per surface area, is a parameter used in the filtration technique to describe the velocity of an exhaust stream flowing into the filter. Face velocity is determined according to the following formula: FV = Qmax / A, vani Qmax = maximum exhaust flow (m3 / s): A = surface area of the porous body (m2) By surface area is meant hail the projected surface area of the porous body. The maximum value for FV according to the present invention must be less than or equal to 1 m / s. In the first step of the dimensioning of the particle filter, or the porous body in the filter, the maximum exhaust flow Qmax of the exhaust system must be determined. This exhaust flow corresponds to the engine's maximum exhaust flow and the porous body is thus dimensioned based on the engine's maximum exhaust flow.

Nar avgasflodet har bestamts är det mojligt all definiera vilken ytarea den porosa kroppen minst maste ha. Den porosa kroppens maximala ytarea bestams av partikelfiltrets konstruktion. Genom all dimensionera den porosa kroppens ytarea som en funktion av det maximala avgasflodet i avgassystemet och sa all FV är mindre eller lika med 1 m/s, kan man sakerstalla aft den porosa kroppen har sa stor yta aft hastigheten hos flodet genom filtret blir tillrackligt lag for all den porOsa kroppen ska klara av all bearbeta det maximala avgasflodet. Once the exhaust flow has been determined, it is possible to define which surface area the porous body must have at least. The maximum surface area of the porous body is determined by the construction of the particle filter. By all dimensioning the surface area of the porous body as a function of the maximum exhaust flow in the exhaust system and so all FV is less than or equal to 1 m / s, one can ensure that the porous body has such a large area that the velocity of the flow through the filter is sufficiently low. for all the porOsa body must be able to handle all the maximum exhaust flow.

I ett nasta steg av dimensioneringsforfarandet valjs den porosa kroppens fibermassa. I enlighet med foreliggande uppfinning har man funnit aft med ett specifikt forhallande fibermassa till maximalt Nide i avgassystemet kan man, tillsammans med ovriga de dimensioneringsparametrarna, sakerstalla att man kan erhalla ett filter som har tillrackligt stor kapacitet aft uppna en filtreringsgrad pa atminstone 99 %. Enligt foreliggande uppfinning skall forhallandet fibermassa till maximalt Nide i avgassystemet vara minst 1,5 kg fibrer for ett avgasflode pa 3600 m3/h eller 1 m3/s. In a next step of the dimensioning process, the fibrous mass of the porous body is selected. In accordance with the present invention, it has been found that with a specific proportion of fiber mass to a maximum Nide in the exhaust system, it can be ensured, together with the other dimensioning parameters, that a filter can be obtained which has a sufficiently large capacity to achieve a filtration degree of at least 99%. According to the present invention, the ratio of fiber mass to the maximum Nide in the exhaust system must be at least 1.5 kg of fibers for an exhaust flow of 3600 m3 / h or 1 m3 / s.

Darfor kan man dimensionera fibrernas vikt i den porosa kroppen i filtret genom foljande forme!: 1500g/1 m3/s .?. Mf/Qmax, \tad rrlf = fibermassa Eftersom Qmax redan har bestamts i det forsta steget i forfarandet, kan det vidare utvecklas aft mf 1500g * Qmax / 1 m3/s 8 Baserat pa vardena for minsta ytarea A och minsta fibermassa mf erhaller man ett varde for den ytvikt g/m2 som ' Porositeten kan styras till exempel genom aft man varierar den porosa kroppens packningsgrad. Ju mer fibrerna packas, desto h6gre soliditet och darigenom lagre porositet far den porosa kroppen. Enligt foreliggande uppfinning skall porositeten vara mellan 95-99%, sá aft den porosa kroppen kan motsta trycket av avgasfloclet under drift, och pa detta satt undviks risken fOr att den porosa kroppen komprimeras av avgasflodet. Med en porositet Over 99.3%, finns risk for sadan komprimering. Fibrerna bor inte heller packas allfor hart och darfor är porositeten foretradesvis mellan cirka 95 °A. och 99 %.. Om porositeten ãr mindre an 95 % finns det risk for aft mottrycket i avgassystemet blir for Mgt och darigenom kan till exempel motorprestanda fOrsamras. Aven risken for aft fibrerna skadas akar. Therefore, the weight of the fibers in the porous body of the filter can be dimensioned by the following form: 1500g / 1 m3 / s.?. Mf / Qmax, \ tad rrlf = fiber mass Since Qmax has already been determined in the first step of the process, it can be further developed from mf 1500g * Qmax / 1 m3 / s 8 Based on the values for minimum surface area A and minimum fiber mass mf, a value for the basis weight g / m2 that the porosity can be controlled, for example, by varying the degree of packing of the porous body. The more the fibers are packed, the higher the solidity and thus lower porosity the porous body gets. According to the present invention, the porosity should be between 95-99%, so that the porous body can withstand the pressure of the exhaust gas flow during operation, and in this way the risk of the porous body being compressed by the exhaust gas flow is avoided. With a porosity above 99.3%, there is a risk of such compression. The fibers should also not be packed too hard and therefore the porosity is preferably between about 95 ° A. and 99% .. If the porosity is less than 95%, there is a risk that the back pressure in the exhaust system will be too Mgt and thereby, for example, engine performance may be impaired. Also the risk of aft fibers being damaged akar.

For aft ytterligare sakerstalla aft man med hjalp av den porosa kroppens dimensioner kan uppna en hog filtreringsgrad, kan aven den porosa kroppens "Space Velocity" (SV), eller flodeshastighet per volym, bestammas. Med hjalp av SV kan uppehallstiden for avgaserna i filtret styras. SV är inversen av gasens uppehallstid i filtret, och bestams enligt foljande formel: SV = QmaxN, vani Qmax = maximalt avgasflode (m3/s): V = den porosa kroppens volym (m3) 9 Det maximala vardet f6r SV enligt foreliggande uppfinning bor vara mindre eller lika med 150 000 1/s. Uppehallstiden bor darigenom lampligen vara 6,7 ps - 10 ps, och är foretradesvis cirka 7 ps. In order to further ensure that a high degree of filtration can be achieved with the aid of the dimensions of the porous body, the "Space Velocity" (SV) of the porous body, or flow rate per volume, can also be determined. With the help of SV, the residence time of the exhaust gases in the filter can be controlled. SV is the inverse of the gas residence time in the filter, and is determined according to the following formula: SV = QmaxN, vani Qmax = maximum exhaust gas flow (m3 / s): V = volume of the porous body (m3) 9 The maximum value for SV according to the present invention should be less than or equal to 150,000 1 / s. The residence time should therefore suitably be 6.7 ps - 10 ps, and is preferably about 7 ps.

Man har aven funnit att den porosa kroppen i ett partikelfilter foretradesvis bar ha en tjocklek av minst 15 mm av praktiska skal. Aven tunnare filter kan anvandas om filtret till exempel veckas. It has also been found that the porous body of a particulate filter should preferably have a thickness of at least 15 mm of practical shell. Even thinner filters can be used if the filter is folded, for example.

Dimensionerna for den porosa kroppen i ett partikelfiberfilter enligt 10 foreliggande uppfinning sakerstaller aft en filtreringsgrad av minst 99 % uppnas. The dimensions of the porous body of a particulate fiber filter according to the present invention are sufficient to achieve a degree of filtration of at least 99%.

Dimensioneringsexempel Nedan ges nagra exempel pa dimensioner for ett partikelfilter som innefattar en poros kropp enligt uppfinningen. Dimensioning examples Below are some examples of dimensions for a particle filter which comprises a porous body according to the invention.

Ett forsta exempel illustrerar en applikation dar utrymmet far den porosa kroppen i partikelfiltret är begransat och den porosa kroppen kan ha en tjocklek pa hogst 25 mm. Det maximala avgasfloclet i systemet är 3600 m3/h (=1m3/s). Man kan da rakna all arean for den porosa kroppen maste vara minst 1m2. Volymen blir cla 0,025 m3. Fibermassan maste vara minst 1,5 kg (1.5 kg * 1(m3/s)). Densiteten for kiseldioxid är 2200 kg/m3 och den pothsa kroppen är packad till volymen 0,025 m3 varvid porositeten kan raknas genom 100% -(100*1,5 kg/(2200 kg/m3* 0,025 m3)%) = 97,3%. A first example illustrates an application where the space where the porous body in the particle filter is limited and the porous body can have a thickness of at most 25 mm. The maximum exhaust gas flow in the system is 3600 m3 / h (= 1m3 / s). You can then shave all the area for the porous body must be at least 1m2. The volume will be 0.025 m3. The fiber mass must be at least 1.5 kg (1.5 kg * 1 (m3 / s)). The density of silica is 2200 kg / m3 and the pothsa body is packed to the volume 0.025 m3 whereby the porosity can be traced by 100% - (100 * 1.5 kg / (2200 kg / m3 * 0.025 m3)%) = 97.3% .

Ett andra exempel illustrerar en applikation dar utrymmet for den porosa kroppen i partikelfiltret är begransat och den pothsa kroppen kan ha en tjocklek pa hogst 25 mm. Det maximala avgasflodet är 1800m3/h. Arean maste da vara minst 0.5 m2 och volymen är 0,0125 m3. Fibermassan maste vara minst 0.75 kg fibrer (1.5 kg*0.5(m3/s)). Porositeten raknas som ovan och är 98.6%. A second example illustrates an application where the space for the porous body in the particle filter is limited and the polished body can have a thickness of at most 25 mm. The maximum exhaust flow is 1800m3 / h. The area must then be at least 0.5 m2 and the volume is 0.0125 m3. The fiber mass must be at least 0.75 kg of fiber (1.5 kg * 0.5 (m3 / s)). The porosity is shaved as above and is 98.6%.

Ett ytterligare exempel illustrerar en applikation där utrymmet f6r den por6sa kroppen i partikelfiltret är begransat och den porosa kroppen kan ha en tjocklek pa hogst 50 mm. Arean är vald till pa 1 m2 och det maximala avgasfloclet är 1800 m3/h. Detta ger en volym pa 0,050 m3, och vikten hos den porosa kroppen maste vara 0.75 kg fibrer (1.5kg*0.5(m3/s)). Porositeten kan raknas som ovan och är 98,6%. A further example illustrates an application where the space for the porous body in the particle filter is limited and the porous body can have a thickness of at most 50 mm. The area is chosen to be 1 m2 and the maximum exhaust flow is 1800 m3 / h. This gives a volume of 0.050 m3, and the weight of the porous body must be 0.75 kg of fiber (1.5 kg * 0.5 (m3 / s)). The porosity can be shaved as above and is 98.6%.

Exempel pa filtreringsgradsmatningar For att mata att en filtreringsgrad pa 99 % uppnas, kan man anvanda en testcykel "World Harmonized Transient Cycle (WHTC)" (WHTC), som definieras i: "COMMISSION REGULATION (EU) No 582/2011", "Official Journal of the European Union". En WHTC testcykel är 1800 sekunder rang och innehaller transient drift for att mata emissioner fran fordon. Examples of filtration degree feeds To ensure that a filtration degree of 99% is achieved, one can use a test cycle "World Harmonized Transient Cycle (WHTC)" (WHTC), which is defined in: "COMMISSION REGULATION (EU) No 582/2011", "Official Journal of the European Union ". A WHTC test cycle is 1800 seconds rank and includes transient operation to feed emissions from vehicles.

Filtreringsgraden kan sedan definieras genom matning av antalet partiklar per volymenhet avgaser fOre och efter filtret enligt formeln: FE(%) = 10011-PNefteRNfore), dar PN = antalet partiklar Exempel 1 En WHTC testcykel ordnas for att illustrera drift av lastbilar enligt standard. The degree of filtration can then be defined by feeding the number of particles per unit volume of exhaust gases before and after the filter according to the formula: FE (%) = 10011-PNefteRNfore), where PN = number of particles Example 1 A WHTC test cycle is arranged to illustrate truck operation according to standard.

For att bestamma nivan pa partiklar bade fore och efter filtret anvander man en matutrustning, AVL Particle counter, som raknar antalet partiklar per volymenhet avgaser. Filtreringsgraden raknas sedan enligt den ovan angivna formeln. 11 I testet upprepades WHTC cyklerna tills en stabil niva i partikelantalen efter filtret uppne'ddes. Mangden partiklar efter 10 WHTC cykler anses vara pa en stabil niva. To determine the level of particles both before and after the filter, a food equipment, AVL Particle counter, is used, which calculates the number of particles per unit volume of exhaust gases. The degree of filtration is then shaved according to the above formula. In the test, the WHTC cycles were repeated until a stable level in the particle number after the filter was reached. The amount of particles after 10 WHTC cycles is considered to be at a stable level.

Tva filter tillverkades, vilka bagge bestod av en poros kropp av kiseldioxidfibrer av varumarket Quartzel® Wool. Vart och ett av filtren hade en form av ett tunt ratblock och dessa filter,anvandes i filtreringsgradsmatningarna. Filtret i Exempel la är avsett att illustrera ett jamforande exempel, och har dimensioner som är utanfor parametrarna enligt uppfinningen. Filtret i Exempel lb är ett filter som ãr dimensionerat enligt foreliggande uppfinning. Forhallandena och avgasflodena var lika far bade exemplen. Densiteten for den kiseldioxid som anvands i exempel ar 2200 kg/m3. 12 Exempel la Jamforande exempel Dimensionerna f6r filtret är: Ytarea:ca 0.9 m2 Tjocklek:25 mm Fibermassa: ca 990 g, Porositet:98 %. Two filters were made, which ram consisted of a porous body of silica fibers of the brand Quartzel® Wool. Each of the filters had the shape of a thin steering wheel block and these filters were used in the degree of filtration. The filter in Example 1a is intended to illustrate a comparative example, and has dimensions which are outside the parameters according to the invention. The filter of Example 1b is a filter sized in accordance with the present invention. The conditions and the exhaust rivers were similar for both examples. The density of the silica used in the example is 2200 kg / m3. 12 Example 1 Comparative example The dimensions for the filter are: Surface area: approx. 0.9 m2 Thickness: 25 mm Fiber mass: approx. 990 g, Porosity: 98%.

Med detta filter uppnaddes en filtreringsgrad pa 95-97%, som är lagre an den onskade filtreringsgraden (99%). 13 Exempel lb Dimensionerna far filtret är: Ytarea:ca 0.9 m2 Tjocklek:25 mm Fibermassa: ca 1500 g, Porositet:97 %. With this filter, a filtration degree of 95-97% was achieved, which is lower than the desired filtration degree (99%). 13 Example lb The dimensions of the filter are: Surface area: approx. 0.9 m2 Thickness: 25 mm Fiber mass: approx. 1500 g, Porosity: 97%.

Med detta filter uppnaddes en filtreringsgrad pa ca 99-99.5% red an efter tva WHTC-cykler, som ãr lika med eller h6gre an den onskade filtreringsgraden (>990/0). With this filter, a filtration degree of about 99-99.5% was achieved after two WHTC cycles, which is equal to or higher than the desired filtration degree (> 990/0).

Den foregaende beskrivningen av de foredragna utforingsformerna av foreliggande uppfinning har tillhandahallits i syfte att illustrera och beskriva uppfinningen. De beskrivna utforingsformerna är inte avsedda aft vara uttommande eller begransa uppfinningen. 14 The foregoing description of the preferred embodiments of the present invention has been provided for the purpose of illustrating and describing the invention. The described embodiments are not intended to be exhaustive or to limit the invention. 14

Claims (4)

PATE NTKRAV 1. Eft forfarande far att dimensionera ett partikelfilter avsett f6r ett avgassystem hos en forbranningsmotor, vilket partikelfilter innefattar en poros kropp av kiseldioxidfibrer, varvid forfarandet innefattar stegen: 1. att bestamma avgassystemets maximala avgasflode Qmax; 2. valja den porosa kroppens ytarea sa att foljande villkor uppfylls: FV = Qmax/A 1 m/s; vaniA method according to the method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine, which particulate filter comprises a porous body of silica fibers, the method comprising the steps of: 1. determining the maximum exhaust flow Qmax of the exhaust system; 2. select the surface area of the porous body so that the following conditions are met: FV = Qmax / A 1 m / s; vani 1. FV = flode per ytarea Qmax= maximalt avgasflode i avgassystemet (m3/s); och 2. A = den por6sa kroppens ytarea (m2), genom vilken avgasfloclet passerar; c) att valja mangden kiseldioxidfibrer sa att forhallandet fibermassa/maximalt avgasflode i den porosa kroppen är: mf/Qmax ?-1500g/1 m3/s; vani mf = fibermassa; d) att anpassa den por6sa kroppens porositet s6 att den är mellan 95-99%.1. FV = flow per surface area Qmax = maximum exhaust flow in the exhaust system (m3 / s); and 2. A = the surface area (m2) of the porous body, through which the exhaust gas floc passes; c) selecting the amount of silica fibers so that the ratio of fiber mass / maximum exhaust flow in the porous body is: mf / Qmax? -1500g / 1 m3 / s; vani mf = fiber mass; d) to adjust the porosity of the porous body so that it is between 95-99%. 2. FOrfarandet enligt krav 1, varvid kiseldioxidfibremas medeldiameter valjs att vara mellan 5-20 pm.The method of claim 1, wherein the average diameter of the silica fibers is selected to be between 5-20 μm. 3. Forfarandet enligt krav 1 eller 2, varvid forfarandet dessutom innefattar steget att utforma den porosa kroppen sA den har en tjocklek av minst 15 mm.The method of claim 1 or 2, wherein the method further comprises the step of shaping the porous body so that it has a thickness of at least 15 mm. 4. Forfarande enligt nagot av krav 1, 2 eller 3, varvid forfarandet dessutom innefattar steget: e) valja den porosa kroppens volym sá att: SV = ()max/ V 5 150000; vani SV = space velocity, flode per volym Qmax= maximalt avgasflode i avgassystemet m3/s; och V = den porosa kroppens volym m3, genom vilken avgasflodet passerar.A method according to any one of claims 1, 2 or 3, wherein the method further comprises the step of: e) selecting the volume of the porous body such that: SV = () max / V 5 150000; vani SV = space velocity, flow per volume Qmax = maximum exhaust flow in the exhaust system m3 / s; and V = the volume m3 of the porous body, through which the exhaust gas flow passes.
SE1350008A 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine SE537493C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1350008A SE537493C2 (en) 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine
PCT/SE2013/051525 WO2014107128A1 (en) 2013-01-04 2013-12-17 Method for dimensioning a particle filter intended for an exhaust system for a combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350008A SE537493C2 (en) 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine

Publications (2)

Publication Number Publication Date
SE1350008A1 SE1350008A1 (en) 2014-07-05
SE537493C2 true SE537493C2 (en) 2015-05-19

Family

ID=50002821

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350008A SE537493C2 (en) 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine

Country Status (2)

Country Link
SE (1) SE537493C2 (en)
WO (1) WO2014107128A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830250A (en) * 1996-03-06 1998-11-03 Minnesota Mining And Manufacturing Company Stepped hot gas filter cartridge
DE20316275U1 (en) * 2003-10-19 2004-01-15 Trippe, Gustav, Dr.-Ing. Filter for purification of combustion engine exhaust gases, for removal of soot, comprises membrane and loose packing combination
WO2009090447A1 (en) * 2008-01-16 2009-07-23 E.T.M. International Limited Device designed to reduce atmospheric pollution from exhaust gases

Also Published As

Publication number Publication date
WO2014107128A1 (en) 2014-07-10
SE1350008A1 (en) 2014-07-05

Similar Documents

Publication Publication Date Title
EP2851114B1 (en) Honeycomb filter
CN102625727B (en) Particulate filters and methods of filtering particulate matter
KR102441764B1 (en) Ceramic Honeycomb Structure
EP2905058B1 (en) Honeycomb filter
JP2006281134A (en) Honeycomb structure
CN102575541A (en) Method for operating a particle filter
JP2010536574A (en) Wall-flow filter with thin porous ceramic wall
EP2389502B1 (en) Particulate filters
JP5611240B2 (en) Filtration structure for improving the performance of particulate filters
JP2007253151A (en) Metal fiber medium, filter for exhaust gas purifier using this metal fiber medium as filter member, and method for manufacturing this filter
WO2016013511A1 (en) Honeycomb filter
EP3458689B1 (en) Porous ceramic filters and methods for filtering
SE537493C2 (en) Method for sizing a particle filter intended for an exhaust system of an internal combustion engine
US5558760A (en) Filter/heating body produced by a method of spraying a shape
EP2554235A1 (en) Honeycomb filter
KR100985489B1 (en) Metal Fiber Filter for Purifying Diesel Engine Exhaust Gas Having Slot Type By-Passing Part and Exhaust Gas Purifying System
JP5188237B2 (en) Honeycomb structure
EP3453852B1 (en) Particulate filter for a gasoline internal combustion engine
KR100885088B1 (en) Soot collector
JP5208458B2 (en) Honeycomb structure
DE102017100241A1 (en) filter
CN113557352A (en) Exhaust gas purifying filter
Yeom et al. A CFD Analysis on DPF for the Removal of PM from the Emission of Diesel Vehicle
US20090301048A1 (en) Filter for Removing Particles from a Gas Stream and Method for its Manufacture
WO2014107127A1 (en) Arrangement for filtering soot particles from an exhaust flow of a combustion engine

Legal Events

Date Code Title Description
NUG Patent has lapsed