SE1350008A1 - Method for dimensioning a particle filter intended for an exhaust system of an internal combustion engine - Google Patents

Method for dimensioning a particle filter intended for an exhaust system of an internal combustion engine Download PDF

Info

Publication number
SE1350008A1
SE1350008A1 SE1350008A SE1350008A SE1350008A1 SE 1350008 A1 SE1350008 A1 SE 1350008A1 SE 1350008 A SE1350008 A SE 1350008A SE 1350008 A SE1350008 A SE 1350008A SE 1350008 A1 SE1350008 A1 SE 1350008A1
Authority
SE
Sweden
Prior art keywords
porous body
exhaust
qmax
surface area
exhaust system
Prior art date
Application number
SE1350008A
Other languages
Swedish (sv)
Other versions
SE537493C2 (en
Inventor
Ola Sandström
Micael Baudin
Esa Rosvall
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1350008A priority Critical patent/SE537493C2/en
Priority to PCT/SE2013/051525 priority patent/WO2014107128A1/en
Publication of SE1350008A1 publication Critical patent/SE1350008A1/en
Publication of SE537493C2 publication Critical patent/SE537493C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0226Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

SAMMAN DRAG Foreliggande uppfinning avser ett forfarande for att dimensionera ett partikelfilter avsett for ett avgassystem hos en forbranningsmotor. Partikelfiltret innefattar en poros kropp av kiseldioxidfibrer. Forfarandet innefattar stegen av att bestamma avgassystemets maximala avgasflode och darefter valja den por6sa kroppens ytarea sa att foljande villkor uppfylls: FV = Qmax/A 1 m/s; vani FV = flode per ytarea - Qmax= maximalt avgasflOde i avgassystemet (m3/s); och A = den porosa kroppens ytarea (m2), genom vilken avgasflodet passerar Forfarandet innefattar vidare steget att valja mangden kiseldioxidfibrer sá att forhallandet fibermassa/maximalt avgasflode i den porosa kroppen är: mf/Qmax 500g/1 m3/s; vani mf = fibermassa Slutligen anpassas den por6sa kroppens porositet sa att den är mindre an eller lika med 99,3%. Med forfarandet enligt uppfinningen är det mojligt att dimensionera ett kiseldioxidfiberfilter sa att en filtreringsgrad pa minst 99 (:)/0 erhalls. SUMMARY The present invention relates to a method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine. The particulate filter comprises a porous body of silica fibers. The method comprises the steps of determining the maximum exhaust flow of the exhaust system and then selecting the surface area of the porous body so that the following conditions are met: FV = Qmax / A 1 m / s; vani FV = flow per surface area - Qmax = maximum exhaust flow in the exhaust system (m3 / s); and A = the surface area (m2) of the porous body (m2) through which the exhaust stream passes. The process further comprises the step of selecting the amount of silica fibers so that the ratio fiber mass / maximum exhaust flow in the porous body is: mf / Qmax 500g / 1 m3 / s; vani mf = fiber mass Finally, the porosity of the porous body is adjusted so that it is less than or equal to 99.3%. With the method according to the invention it is possible to dimension a silica fiber filter so that a filtration degree of at least 99 (:) / 0 is obtained.

Description

Sokande: Scania CV AB Forfarande for att dimensionera ett partikelfilter avsett for ett avgassystem hos en forbranningsmotor TEKNIKENS OMRADE Foreliggande uppfinning avser ett forfarande for att dimensionera ett partikelfilter avsett for ett avgassystem hos en forbranningsmotor. Uppfinningen avser aven ett partikelfilter som har dimensionerats enligt forfarandet samt en avgasledning som innefattar partikelfiltret. Application: Scania CV AB Method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine FIELD OF THE INVENTION The present invention relates to a method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine. The invention also relates to a particle filter which has been dimensioned according to the method as well as an exhaust line which comprises the particle filter.

UPPFINNINGENS BAKGRUND OCH KAND TEKNIK Dieseldrivna motorer forses med avgasreningsanordningar i syfte att minska utslapp av partiklar och skadliga gaser som forekommer i dieselmotorns avgaser. For att reglera emissioner fran motorer till exempel i fordon finns det olika standarder och lagkrav som reglerar nivaer f6r tillatna avgasutslapp. BACKGROUND OF THE INVENTION AND KNOWLEDGE TECHNOLOGY Diesel engines are equipped with exhaust gas purification devices in order to reduce particulate emissions and harmful gases present in the exhaust gases of the diesel engine. In order to regulate emissions from engines, for example in vehicles, there are various standards and legal requirements that regulate levels for permitted exhaust emissions.

Forbranningsmotorer kan innefattas i flera olika applikationer, till exempel i tunga fordon, sasom lastbilar eller bussar. Fordonet kan alternativt vara en personbil. Aven motorbatar, fartyg, farjor eller skepp, industrimotorer och/eller motordrivna industrirobotar, kraftverk, sasom t.ex. ett elkraftverk som innefattar en dieselgenerator, lok eller annan applikation kan inbegripa en forbranningsmotor. Internal combustion engines can be included in several different applications, for example in heavy vehicles, such as trucks or buses. The vehicle can alternatively be a car. Also motor boats, ships, ferries or ships, industrial engines and / or motorized industrial robots, power plants, such as e.g. an electric power plant that includes a diesel generator, locomotive or other application may include an internal combustion engine.

Partikelemissioner fran forbranningsmotorer, speciellt i dieseldrivna tunga fordon, kan reduceras med hjalp av ett partikelfilter. Ett partikelfilter innefattar en materialkropp av ett porost material. Det porosa materialet kan t ex utg6ras av ett mineralbaserat material sasom kordierit eller keramiskt eller 2 sintrat material. Med dessa filtermaterial är det mojligt att erhalla en hog filtreringsgrad av partiklar fran ett avgasflode, och det är vanligt att en filtreringsgrad pa Over 99 (:)/0 erhalls. Keramiska filter är ocksa effektiva i att avlagsna fina partiklar som är foretradesvis kolpartiklar med en diameter pa mindre an 100 nanometer (nm). Filter av denna typ kan typiskt regenereras spontant under driften av motorn genom att ansamlade partiklar, i huvudsak sot, tillats forbrannas sa att filtret halles rent och darigenom kontinuerligt kan uppfylla sin filtrerande funktion. Nackdelen med dessa mineralbaserade, keranniska eller sintrade material är dock att de har relativt stor ternnisk massa. De maste ocksa rengoras fran aska med lampliga intervall for att inte tappa sin funktion, eftersom det material i partiklarna som inte gar att branna bort pa sikt tapper till passager i materialet. Vidare är inte dessa material formbara pa ett enkelt satt och de är svara att anpassa till tranga utrymmen. Particle emissions from internal combustion engines, especially in diesel-powered heavy vehicles, can be reduced with the help of a particulate filter. A particulate filter comprises a body of material of a porous material. The porous material can, for example, consist of a mineral-based material such as cordierite or ceramic or sintered material. With these filter materials it is possible to obtain a high degree of filtration of particles from an exhaust stream, and it is common to obtain a degree of filtration of Over 99 (:) / 0. Ceramic filters are also effective in depositing fine particles which are preferably carbon particles with a diameter of less than 100 nanometers (nm). Filters of this type can typically be regenerated spontaneously during the operation of the engine by allowing accumulated particles, mainly soot, to be combusted so that the filter is kept clean and thereby can continuously fulfill its filtering function. However, the disadvantage of these mineral-based, keranic or sintered materials is that they have a relatively large tern mass. They must also be cleaned of ash at appropriate intervals so as not to lose their function, as the material in the particles that will not burn off in the long run loses to passages in the material. Furthermore, these materials are not malleable in a simple manner and they are suitable for adapting to tight spaces.

Som alternativ till materialen ovan har aven fibermaterial anvants i partikelfilter. I SE 535454 C2 visas ett partikelfilter som innefattar keramiskt eller sintrat material i kombination med kiseldioxidfibrer. Vidare visar EP1624165 ett partikelfilter med kiseldioxidfibrer som är belagda med iridium i kombination med platina och/eller palladium. As an alternative to the materials above, fibrous materials have also been used in particulate filters. SE 535454 C2 discloses a particulate filter comprising ceramic or sintered material in combination with silica fibers. Furthermore, EP1624165 discloses a particulate filter with silica fibers coated with iridium in combination with platinum and / or palladium.

Fibermaterial har dock inte anvants i flagon store utstrackning i partikelfilter hos en forbranningsmotor, eftersom det har varit svart att dimensionera filtret sa att en tillracklig filtreringsgrad, till exempel 99 (:)/0, uppnas. However, fibrous material has not been used to a large extent in the particulate filter of an internal combustion engine, since it has been black to dimension the filter so that a sufficient degree of filtration, for example 99 (:) / 0, is achieved.

SAMMANFATTNING AV UPPFINNINGEN Det finns darfor fortfarande ett behov av att vidareutveckla partikelfilter. Speciellt finns det ett stort behov av att kunna dimensionera ett partikelfilter, som innefattar en por6s kropp av ett fibermaterial, sá att en filtreringsgrad pa atminstone 99 (:)/0 kan uppnas. 3 Eftersom fibermaterialet är formbart är det relativt enkelt att utforma ett filter med ett lagt nnottryck och som kan anpassas till tranga utrynnnnen, till exennpel i en ljuddampare. Darfor är det onskvart att kunna anvanda fibermaterial aven i ett partikelfilter hos dieseldrivna motorfordon, men hittills har man inte kunnat sakerstalla att en tillracklig filtreringsgrad uppnas. SUMMARY OF THE INVENTION Therefore, there is still a need to further develop particulate filters. In particular, there is a great need to be able to dimension a particle filter which comprises a porous body of a fibrous material, so that a degree of filtration of at least 99 (:) / 0 can be achieved. Since the fibrous material is malleable, it is relatively easy to design a filter with a laid back pressure and which can be adapted to narrow outlets, for example piles in a muffler. Therefore, it is undesirable to be able to use fibrous material even in a particulate filter in diesel-powered motor vehicles, but so far it has not been possible to ensure that a sufficient degree of filtration is achieved.

Det finns darfor ett behov av att kunna sakerstalla att en filtreringsgrad pa atminstone 99 % kan uppnas med ett partikelfilter som innefattar en poros kropp av fibermaterial. Genonn att anvanda fibermaterial kan man minska utrymmesbehovet, samtidigt som tillracklig filtreringsgrad for avgasutslapp kan uppnas. There is therefore a need to be able to ensure that a degree of filtration of at least 99% can be achieved with a particle filter which comprises a porous body of fibrous material. By using fibrous materials, the need for space can be reduced, while at the same time a sufficient degree of filtration for exhaust emissions can be achieved.

Kiseldioxidfibrer har visat sig vara mycket lampliga for att anvandas som ett fibermaterial i ett partikelfilter som material fOr den porosa kroppen. Silica fibers have been found to be very suitable for use as a fibrous material in a particulate filter as a material for the porous body.

Syftet med foreliggande uppfinning är saledes att tillhandahalla ett forfarande for att dimensionera ett partikelfilter som innefattar en poros kropp av kiseldioxidfibrer, och som har en filtreringsgrad pa atminstone 99 %. Samtidigt är filtret och den porosa kroppen formbara och utrymmesbesparande och har en lag term isk massa. The object of the present invention is thus to provide a method for dimensioning a particle filter which comprises a porous body of silica fibers, and which has a degree of filtration of at least 99%. At the same time, the filter and the porous body are malleable and space-saving and have a low thermal mass.

Det är ett ytterligare syfte med uppfinningen att tillhandahalla ett partikelfilter med en poros kropp av kiseldioxidfibrer som har dimensioner fOr att klara av filtreringsgraden pa atminstone 99 %. It is a further object of the invention to provide a particulate filter having a porous body of silica fibers having dimensions to withstand the degree of filtration of at least 99%.

De ovan angivna syftena uppnas med det inledningsvis namnda forfarandet f6r att dimensionera ett partikelfilter som innefattar en poros kropp av kiseldioxidfibrer som kannetecknas av vad som anges i patentkrav 1. The above objects are achieved by the initially mentioned method for dimensioning a particle filter which comprises a porous body of silica fibers which can be characterized by what is stated in claim 1.

Forfarandet innefattar stegen: a) att bestamma avgassystemets maximala avgasflode Qmax; 4 b) valja den porosa kroppens ytarea sa att foljande villkor uppfylls: FV = Qmax/A 1 m/s; vani FV = flode per ytarea - Qm„= maximalt avgasflode i avgassystemet (m3/s); och A = den porOsa kroppens ytarea (m2), genom vilken avgasflodet passerar att valja mangden kiseldioxidfibrer sa att forhallandet fibermassa/maximalt avgasflode i den porosa kroppen är: mf/Qm„ 500g/1 m3/s; vani mf = fibermassa att anpassa att den porosa kroppens porositet är mindre an eller lika med 99,3%. The method comprises the steps of: a) determining the maximum exhaust gas flow Qmax of the exhaust system; 4 b) select the surface area of the porous body so that the following conditions are met: FV = Qmax / A 1 m / s; vani FV = flow per surface area - Qm „= maximum exhaust flow in the exhaust system (m3 / s); and A = the surface area (m2) of the porous body, through which the exhaust gas flow passes to select the amount of silica fibers so that the ratio fiber mass / maximum exhaust gas flow in the porous body is: mf / Qm „500g / 1 m3 / s; vani mf = fiber mass to adjust that the porosity of the porous body is less than or equal to 99.3%.

Forfarandet innefattar aven steget att valja att kiseldioxidfibrernas medeldiameter är foretradesvis mellan 5-20pm, varigenom en stor kontaktyta mellan fibrer och avgasflodets partiklar erhalles. The process also comprises the step of selecting that the average diameter of the silica fibers is preferably between 5-20 .mu.m, whereby a large contact area between the fibers and the particles of the exhaust river is obtained.

Den porosa kroppen har lampligtvis en tjocklek av minst 15 mm. Med denna tjocklek fOr den porOsa kroppen tillsammans med ytarean och porositeten enligt kriterierna ovan sakerstalls att avgasfloclet inte komprimerar den por6sa kroppen vid h6ga floden. The porous body suitably has a thickness of at least 15 mm. With this thickness of the porous body together with the surface area and the porosity according to the criteria above, it is ensured that the exhaust gas does not compress the porous body at the high river.

Forfarandet innefattar dessutom foretradesvis steget att: valja den porosa kroppens volym sa att: SV = Qm„/ V 150000; vani SV = space velocity, flode per volym Qm„= nnaximalt avgasflode i avgassystemet m3/s; och V = den porosa kroppens volym m3, genom vilken avgasflodet passerar. The method further preferably comprises the step of: selecting the volume of the porous body such that: SV = Qm „/ V 150000; vani SV = space velocity, flow per volume Qm „= nmaximal exhaust flow in the exhaust system m3 / s; and V = the volume m3 of the porous body, through which the exhaust gas flow passes.

Den por6sa kroppens porositet anpassas att vara foretradesvis mellan 95- 99%. Pa detta satt optinneras filtrets dimensioner sa att den porosa kroppen inte är for hart eller lost packad. The porosity of the porous body is preferably adjusted to be between 95-99%. In this way, the dimensions of the filter are optimized so that the porous body is not too hard or loosely packed.

Uppfinningen avser aven ett partikelfilter som innefattar en poros kropp och den porosa kroppen är dinnensionerad enligt forfarandet enligt uppfinningen. The invention also relates to a particle filter which comprises a porous body and the porous body is dimensioned according to the method according to the invention.

Uppfinningen avser aven en avgasledning for en forbranningsmotor, till exennpel i ett fordon, som innefattar ett partikelfilter med en poros kropp som är dimensionerad enligt forfarandet enligt uppfinningen. The invention also relates to an exhaust line for an internal combustion engine, for example in a vehicle, which comprises a particle filter with a porous body which is dimensioned according to the method according to the invention.

Ytterligare egenskaper och fordelar med uppfinningen framgar av efterfoljande detaljerade beskrivning samt exempel. Additional features and advantages of the invention will become apparent from the following detailed description and examples.

DETALJERAD BESKRIVNING Definitioner Partikelfilter är en anordning som innefattar en poros kropp for ansamling av partiklar Than ett avgasflode. DETAILED DESCRIPTION Definitions Particulate filter is a device that includes a porous body for the accumulation of particles Than an exhaust flood.

Fibermaterial är ett material som bestar av fibrer. Fibrerna är langsmala, bojliga materialelement med relativt sma tvardimensioner. Fiber material is a material that consists of fibers. The fibers are elongated, flexible material elements with relatively small cross-dimensions.

Den porOsa kroppen har en porositet, som definierar hur mycket luft eller tonnrum den porosa kroppen innefattar. Porositeten kan bestammas med hjalp av den porosa kroppens soliditet, a. Porositet = 1- a. Soliditeten är fibrernas volym/totala porosa kroppens volym. Fibrernas massa kan 6 definieras utifran densiteten for ramaterialet for fibrerna. Densiteten for kiseldioxidfibrerna kan vara t.ex. 2200 kginn3. The porous body has a porosity, which defines how much air or tonnage the porous body contains. The porosity can be determined with the aid of the solidity of the porous body, a. Porosity = 1- a. The solidity is the volume of the fibers / total porous body volume. The mass of the fibers can be defined on the basis of the density of the raw material of the fibers. The density of the silica fibers can be e.g. 2200 kginn3.

Den porosa kroppen har en ytarea A, som motsvarar den projicerade ytarean och är den yta genom vilken avgasflodet strommar. The porous body has a surface area A, which corresponds to the projected surface area and is the surface through which the exhaust stream flows.

Den porosa kroppen har en fibermassa mf sonn motsvarar den porosa kroppens vikt. The porous body has a fiber mass mf sonn corresponds to the weight of the porous body.

Filtreringsgrad, FE, är ett matt pa hur stor andel av antalet partiklar som filtreras bort med hjalp av filtret. Filtreringsgraden beraknas med hjalp av forhallandet mellan hur stort antalet partiklar i avgasflodet är efter respektive fore filtrering enligt foljande formel: FE(%) = 100(1fore,' -PNefter/PNdar PN = antalet partiklar Detaljerad beskrivning av utforingsformer Den por6sa kroppen innefattar kiseldioxidfibrer (Si02) som fibermaterial och foretradesvis bestar den por6sa kroppen vasentligen enbart av kiseldioxidfibrer. Kiseldioxid är amorf (icke-kristallisk) och erhalls av kvarts eller tillverkas syntetiskt. Kiseldioxidfibrerna bestar foretradesvis av vasentligen ren kiseldioxid. Filtration rate, FE, is a measure of the proportion of the number of particles that are filtered out with the help of the filter. The degree of filtration is calculated using the ratio between the number of particles in the exhaust gas stream after each pre-filtration according to the following formula: FE (%) = 100 (1fore, '-PNefter / PNdar PN = number of particles Detailed description of embodiments The porous body comprises silica fibers ( SiO2) as a fibrous material and preferably the porous body consists essentially only of silica fibers.Silica dioxide is amorphous (non-crystalline) and is obtained from quartz or manufactured synthetically.The silica fibers preferably consist of substantially pure silica.

Kiseldioxid har en hog smaltpunkt, ca 1700 °C, och lampar sig utmarkt f6r anvandning i ett partikelfilter hos en forbranningsmotor, dar avgasernas temperatur kan uppga till ca 1200°C. Kiseldioxidfibrer är taliga mot hoga temperaturer, temperaturchocker och manga kemikalier, bl. a starka syror, som kan finnas i avgasflodet. Silica has a high melting point, about 1700 ° C, and is excellent for use in a particulate filter in an internal combustion engine, where the exhaust gas temperature can reach about 1200 ° C. Silica fibers are resistant to high temperatures, temperature shocks and many chemicals, among others. a strong acids, which can be found in the exhaust river.

Fibrerna har foretradesvis en medeldiameter pa 5-20 pm. Ju tunnare fibrer den por6sa kroppen innefattar, desto st6rre formaga har den f6r att mottaga 7 partiklar fran avgasflodet. Fibermaterial av denna typ levereras till exempel av foretaget Saint Gobain Quartz, till exempel under varunnarket Quartzel® Wool. The fibers preferably have an average diameter of 5-20 μm. The thinner the fibers of the porous body, the larger the shape it has to receive 7 particles from the exhaust stream. Fiber materials of this type are supplied, for example, by the company Saint Gobain Quartz, for example under the product sheet Quartzel® Wool.

For att bilda en poros kropp kan fibrerna, som levereras till exempel i form av en fibermatta dar fibrerna är slumpvis fordelade, packas eller komprimeras. Packningen kan utforas genom mekanisk packning, till exempel genom formpressning. Fibrerna i den bildade kroppen är slumpvis trasslade och bildar ett nat och sotpartiklar awn kan ha en klibbig yta, kan darigenonn bade fastna pa kiseldioxidfibrernas yta och bli fangade i det bildade fibernatet. Den por6sa kroppen av kiseldioxidfibrer är formbar och kan anta nastan vilken form som heist och kan darigenom anpassas till olika applikationer. To form a porous body, the fibers supplied, for example, in the form of a fiber mat where the fibers are randomly distributed, can be packed or compressed. The gasket can be made by mechanical gasket, for example by compression molding. The fibers in the formed body are randomly tangled and form a net and soot particles may have a sticky surface, thereby both sticking to the surface of the silica fibers and becoming trapped in the formed fiber net. The porous body of silica fibers is malleable and can assume almost any shape and can thereby be adapted to different applications.

Kiseldioxidfibrerna kan belaggas med ett katalytiskt material, sa som platina, for att oka formagan att oxidera till exempel NO vid laga temperaturer. Med en sadan belaggning kan sot forbrannas vid en relativt lag temperatur. Fibrerna kan belaggas genom att den porosa kroppen av kiseldioxidfibrer sprayas eller impregneras med det katalytiska belaggningsmaterialet. Andra metoder kan ocksa anvandas. The silica fibers can be coated with a catalytic material, such as platinum, to increase the ability to oxidize, for example, NO at low temperatures. With such a coating, soot can be burned at a relatively low temperature. The fibers can be coated by spraying or impregnating the porous body of silica fibers with the catalytic coating material. Other methods can also be used.

Face velocity, FV, som hari aven kallas flOde per ytarea, är en parameter som anvands inom filtreringstekniken for att beskriva hastigheten hos ett avgasflode som strommar in i filtret. Face velocity bestams enligt foljande formel: FV = Qmax/A, vani Qmax = maximalt avgasflOde (m3/s): A = den porosa kroppens ytarea (m2) Med ytarea menas hari den porosa kroppens projicerade ytarea. Det maximala vardet for FV enligt foreliggande uppfinning maste vara mindre an 8 eller lika med 1 m/s. I det forsta steget av dimensioneringen av partikelfiltret, eller den porosa kroppen i filtret, maste avgassystemets maximala avgasflode Qmax bestammas. Detta avgasflode motsvarar motorns maximala avgasflode och den porosa kroppen dinnensioneras saledes utifran motorns maximala avgasflode. Face velocity, FV, which is also called flow per surface area, is a parameter used in the filtration technique to describe the velocity of an exhaust stream flowing into the filter. Face velocity is determined according to the following formula: FV = Qmax / A, vani Qmax = maximum exhaust flow (m3 / s): A = surface area of the porous body (m2) By surface area is meant the projected surface area of the porous body. The maximum value for FV according to the present invention must be less than 8 or equal to 1 m / s. In the first step of the dimensioning of the particle filter, or the porous body in the filter, the maximum exhaust flow Qmax of the exhaust system must be determined. This exhaust flow corresponds to the engine's maximum exhaust flow and the porous body is thus defined from the engine's maximum exhaust flow.

Nar avgasflodet har bestannts är det mojligt att definiera vilken ytarea den porosa kroppen minst maste ha. Den porosa kroppens maximala ytarea bestams av partikelfiltrets konstruktion. Genonn att dinnensionera den porosa kroppens ytarea som en funktion av det maximala avgasflodet i avgassystemet och sa att FV är mindre eller lika med 1 m/s, kan man sakerstalla att den porosa kroppen har sa stor yta att hastigheten hos flodet genom filtret blir tillrackligt lag for att den porosa kroppen ska klara av att bearbeta det maximala avgasflOdet. Once the exhaust flow has been observed, it is possible to define which surface area the porous body must have at least. The maximum surface area of the porous body is determined by the construction of the particle filter. By dimensioning the surface area of the porous body as a function of the maximum exhaust flow in the exhaust system and saying that the FV is less than or equal to 1 m / s, it can be ensured that the porous body has such a large surface area that the velocity of the flow through the filter is sufficiently low. for the porous body to be able to process the maximum exhaust flow.

I ett nasta steg av dimensioneringsforfarandet valjs den porosa kroppens fibermassa. I enlighet med foreliggande uppfinning har man funnit att med ett specifikt forhallande fibermassa till maximalt flode i avgassystemet kan man, tillsammans med ovriga de dinnensioneringsparametrarna, sakerstalla att man kan erhalla ett filter som har tillrackligt stor kapacitet att uppna en filtreringsgrad pa atminstone 99 %. Enligt fOreliggande uppfinning skall forhallandet fibermassa till maximalt flode i avgassystemet vara minst 1,5 kg fibrer for ett avgasflode pa 3600 m3/h eller 1 m3/s. In a next step of the dimensioning process, the fibrous mass of the porous body is selected. In accordance with the present invention, it has been found that with a specific proportion of fiber mass to maximum flow in the exhaust system, it can be ensured, together with the other dimensioning parameters, that a filter having a sufficiently large capacity to achieve a filtration degree of at least 99% can be obtained. According to the present invention, the ratio of fiber mass to maximum flow in the exhaust system must be at least 1.5 kg of fibers for an exhaust flow of 3600 m3 / h or 1 m3 / s.

Darfor kan man dimensionera fibrernas vikt i den porosa kroppen i filtret genom foljande formel: 1500g/1 m3/s mf/Qmax, vani rnf = fibermassa Eftersom Qmax redan har bestamts i det forsta steget i forfarandet, kan det vidare utvecklas att rinf500g * Qmax / 1 rin3/s Baserat pa vardena for minsta ytarea A och minsta fibermassa mf erhaller man ett varde for den ytvikt g/m2 som kravs for att den porosa kroppen ska uppfylla villkoren i dimensioneringsforfarandet. Therefore, the weight of the fibers in the porous body of the filter can be dimensioned by the following formula: 1500g / 1 m3 / s mf / Qmax, vani rnf = fiber mass Since Qmax has already been determined in the first step of the process, it can be further developed that rinf500g * Qmax / 1 rin3 / s Based on the values for minimum surface area A and minimum fiber mass, etc., a value is obtained for the basis weight g / m2 required for the porous body to meet the conditions in the dimensioning process.

I ett nasta steg av dimensioneringsforfarandet anpassas den porosa kroppens porositet. In a next step of the dimensioning process, the porosity of the porous body is adjusted.

Porositeten kan styras till exempel genom att man varierar den porosa kroppens packningsgrad. Ju mer fibrerna packas, desto hogre soliditet och darigenom lagre porositet far den porosa kroppen. Enligt foreliggande uppfinning skall porositeten vara mindre an eller lika med 99,3%, sa att den porosa kroppen kan motsta trycket av avgasflodet under drift, och pa detta satt undviks risken fOr att den porOsa kroppen komprimeras av avgasflOdet. Med en porositet Over 99.3%, finns risk for sadan komprimering. Fibrerna bor inte heller packas allfor hart och darfor är porositeten foretradesvis mellan cirka 9(:)/0 och 99 %. Om porositeten är mindre an 95 (:)/0 finns det risk for att mottrycket i avgassystemet blir for hogt och darigenom kan till exempel motorprestanda fOrsamras. Aven risken fOr att fibrerna skadas Okar. The porosity can be controlled, for example, by varying the degree of packing of the porous body. The more the fibers are packed, the higher the solidity and thus the lower porosity the porous body gets. According to the present invention, the porosity should be less than or equal to 99.3%, so that the porous body can withstand the pressure of the exhaust gas flow during operation, and in this way the risk of the porous body being compressed by the exhaust gas flow is avoided. With a porosity above 99.3%, there is a risk of such compression. The fibers should also not be packed too hard and therefore the porosity is preferably between about 9 (:) / 0 and 99%. If the porosity is less than 95 (:) / 0, there is a risk that the back pressure in the exhaust system will be too high and thereby, for example, engine performance may be impaired. Also the risk of the fibers being damaged increases.

F6r att ytterligare sakerstalla att man med hjalp av den porOsa kroppens dimensioner kan uppna en hog filtreringsgrad, kan aven den porosa kroppens "Space Velocity" (SV), eller flodeshastighet per volym, bestammas. In order to further ensure that a high degree of filtration can be achieved with the aid of the dimensions of the porous body, the "Space Velocity" (SV) of the porous body, or flow rate per volume, can also be determined.

Med hjalp av SV kan uppehallstiden for avgaserna i filtret styras. SV är inversen av gasens uppehallstid i filtret, och bestams enligt foljande formel: SV = QmaxN, vani Qmax = maximalt avgasflode (m3/s): V = den porosa kroppens volym (m3) 9 Det maximala vardet for SV enligt foreliggande uppfinning bor vara nnindre eller lika med 150 000 1/s. Uppehallstiden bor darigenom lampligen vara 6,7 ps - 10 ps, och är foretradesvis cirka 7 ps. With the help of SV, the residence time of the exhaust gases in the filter can be controlled. SV is the inverse of the gas residence time in the filter, and is determined according to the following formula: SV = QmaxN, vani Qmax = maximum exhaust gas flow (m3 / s): V = volume of the porous body (m3) 9 The maximum value of SV according to the present invention should be less than or equal to 150,000 1 / s. The residence time should therefore suitably be 6.7 ps - 10 ps, and is preferably about 7 ps.

Man har aven funnit att den porosa kroppen i ett partikelfilter b6r fOretradesvis ha en tjocklek av minst 15 mm av praktiska skal. Aven tunnare filter kan anvandas om filtret till exempel veckas. It has also been found that the porous body of a particulate filter should preferably have a thickness of at least 15 mm of practical shells. Even thinner filters can be used if the filter is folded, for example.

Dimensionerna for den porosa kroppen i ett partikelfiberfilter enligt foreliggande uppfinning sakerstaller att en filtreringsgrad av minst 99 % uppnas. The dimensions of the porous body of a particulate fiber filter according to the present invention ensure that a degree of filtration of at least 99% is achieved.

Dimensioneringsexempel Nedan ges nagra exempel pa dimensioner f6r ett partikelfilter som innefattar en pots kropp enligt uppfinningen. Dimensioning examples Below are some examples of dimensions for a particle filter which comprises a body of a pot according to the invention.

Ett forsta exempel illustrerar en applikation dar utrymmet for den porosa kroppen i partikelfiltret är begransat och den porosa kroppen kan ha en tjocklek pa hOgst 25 mm. Det maximala avgasflOdet i systemet är 3600 m3/h (=1m3/s). Man kan da rakna att arean for den porosa kroppen maste vara minst 1m2. Volymen blir da 0,025 m3. Fibermassan maste vara minst 1,5 kg (1.5 kg * 1(m3/s)). Densiteten for kiseldioxid är 2200 kg/m3 och den porosa kroppen är packad till volymen 0,025 m3 varvid porositeten kan raknas genom 100% -(100*1,5 kg/(2200 kg/m3* 0,025 m3)%) = 97,3%. A first example illustrates an application where the space for the porous body in the particle filter is limited and the porous body can have a thickness of at most 25 mm. The maximum exhaust flow in the system is 3600 m3 / h (= 1m3 / s). It can then be deduced that the area for the porous body must be at least 1m2. The volume will then be 0.025 m3. The fiber mass must be at least 1.5 kg (1.5 kg * 1 (m3 / s)). The density of silica is 2200 kg / m3 and the porous body is packed to the volume 0.025 m3 whereby the porosity can be traced by 100% - (100 * 1.5 kg / (2200 kg / m3 * 0.025 m3)%) = 97.3% .

Ett andra exempel illustrerar en applikation dar utrymmet fOr den porosa kroppen i partikelfiltret är begransat och den porosa kroppen kan ha en tjocklek pa hogst 25 mm. Det maximala avgasflodet är 1800m3/h. Arean maste da vara minst 0.5 m2 och volymen är 0,0125 m3. Fibermassan maste 11 vara minst 0.75 kg fibrer (1.5 kg*0.5(m3/s)). Porositeten raknas som ovan och är 98.6%. A second example illustrates an application where the space for the porous body in the particle filter is limited and the porous body can have a thickness of at most 25 mm. The maximum exhaust flow is 1800m3 / h. The area must then be at least 0.5 m2 and the volume is 0.0125 m3. The fiber mass must be at least 0.75 kg of fiber (1.5 kg * 0.5 (m3 / s)). The porosity is shaved as above and is 98.6%.

Ett ytterligare exempel illustrerar en applikation dar utrymmet for den porosa kroppen i partikelfiltret är begransat och den porosa kroppen kan ha en tjocklek pa hogst 50 mm. Arean är vald till pa 1 m2 och det maximala avgasflodet är 1800 m3/h. Detta ger en volym pa 0,050 m3, och vikten hos den porosa kroppen maste vara 0.75 kg fibrer (1.5kg*0.5(m3/s)). Porositeten kan raknas som ovan och är 98,6%. A further example illustrates an application where the space for the porous body in the particle filter is limited and the porous body can have a thickness of at most 50 mm. The area is chosen to be 1 m2 and the maximum exhaust flow is 1800 m3 / h. This gives a volume of 0.050 m3, and the weight of the porous body must be 0.75 kg of fiber (1.5 kg * 0.5 (m3 / s)). The porosity can be shaved as above and is 98.6%.

Exempel pa filtreringsgradsmatningar For att mata att en filtreringsgrad pa 99 % uppnas, kan man anvanda en testcykel "World Harmonized Transient Cycle (WHTC)" (WHTC), som definieras i: "COMMISSION REGULATION (EU) No 582/2011", "Official Journal of the European Union". En WHTC testcykel är 1800 sekunder lang och innehaller transient drift for att mata emissioner fran fordon. Examples of filtration degree feeds To ensure that a filtration degree of 99% is achieved, one can use a test cycle "World Harmonized Transient Cycle (WHTC)" (WHTC), which is defined in: "COMMISSION REGULATION (EU) No 582/2011", "Official Journal of the European Union ". A WHTC test cycle is 1800 seconds long and includes transient operation to feed emissions from vehicles.

Filtreringsgraden kan sedan definieras genom matning av antalet partiklar per volymenhet avgaser fore och efter filtret enligt formeln: FE(%) = 100*(1fore,, -PNefter/PNdar PN = antalet partiklar Exempel 1 En WHTC testcykel ordnas for att illustrera drift av lastbilar enligt standard. For att bestamma nivan pa partiklar bade fore och efter filtret anvander man en matutrustning, AVL Particle counter, som raknar antalet partiklar per volynnenhet avgaser. Filtreringsgraden raknas sedan enligt den ovan angivna formeln. 12 I testet upprepades WHTC cyklerna tills en stabil niva i partikelantalen efter filtret uppnaddes. Mangden partiklar efter 10 WHTC cykler anses vara pa en stabil niva. The degree of filtration can then be defined by feeding the number of particles per unit volume of exhaust gases before and after the filter according to the formula: FE (%) = 100 * (1fore ,, -PNafter / PNdar PN = number of particles Example 1 A WHTC test cycle is arranged to illustrate truck operation To determine the level of particles both before and after the filter, use a food equipment, AVL Particle counter, which calculates the number of particles per unit volume of exhaust gases.The filtration rate is then calculated according to the above formula.12 In the test, the WHTC cycles were repeated until a stable level in the number of particles after the filter was reached.The amount of particles after 10 WHTC cycles is considered to be at a stable level.

Tva filter tillverkades, vilka bagge bestod av en poros kropp av kiseldioxidfibrer av varumarket Quartzel® Wool. Vart och ett av filtren hade en form av ett tunt ratblock och dessa filter,anvandes i filtreringsgradsmatningarna. Filtret i Exempel la är avsett att illustrera ett jannforande exempel, och har dinnensioner sonn är utanfor parannetrarna enligt uppfinningen. Filtret i Exempel lb är ett filter som är dimensionerat enligt foreliggande uppfinning. Forhallandena och avgasflodena var lika for !Dada exemplen. Densiteten for den kiseldioxid som anvands i exempel är 2200 kg/m3. 13 Exempel la Jamforande exempel Dimensionerna f6r filtret är: Ytarea:ca 0.9 m2 Tjocklek:25 mm Fibermassa: ca 990 g, Porositet:98 %. Two filters were made, which ram consisted of a porous body of silica fibers of the brand Quartzel® Wool. Each of the filters had the shape of a thin steering wheel block and these filters were used in the degree of filtration. The filter in Example 1a is intended to illustrate a similar example, and has dimensions outside the paranneters of the invention. The filter of Example 1b is a filter sized according to the present invention. The conditions and the exhaust rivers were similar for the Dada examples. The density of the silica used in the example is 2200 kg / m3. 13 Example 1 Comparative example The dimensions for the filter are: Surface area: approx. 0.9 m2 Thickness: 25 mm Fiber mass: approx. 990 g, Porosity: 98%.

Med detta filter uppnaddes en filtreringsgrad pa 95-97%, som är lagre an den onskade filtreringsgraden (99`)/0). 14 Exempel lb Dimensionerna f6r filtret är: Ytarea:ca 0.9 m2 Tjocklek:25 mm Fibermassa: ca 1500 g, Porositet:97 %. With this filter a filtration degree of 95-97% was achieved, which is lower than the desired filtration degree (99`) / 0). 14 Example lb The dimensions for the filter are: Surface area: approx. 0.9 m2 Thickness: 25 mm Fiber mass: approx. 1500 g, Porosity: 97%.

Med detta filter uppnaddes en filtreringsgrad pa ca 99-99.5% redan efter tva WHTC-cykler, som är lika nned eller h6gre an den 6nskade filtreringsgraden (99%). With this filter, a degree of filtration of about 99-99.5% was achieved already after two WHTC cycles, which is equal to or higher than the desired degree of filtration (99%).

Den foregaende beskrivningen av de foredragna utforingsformerna av foreliggande uppfinning har tillhandahallits i syfte att illustrera och beskriva uppfinningen. De beskrivna utforingsformema är inte avsedda att vara utt6mmande eller begransa uppfinningen. The foregoing description of the preferred embodiments of the present invention has been provided for the purpose of illustrating and describing the invention. The described embodiments are not intended to be exhaustive or to limit the invention.

Claims (7)

PATENTKRAV 1. Ett forfarande for att dimensionera ett partikelfilter avsett for ett avgassystem hos en forbranningsmotor, vilket partikelfilter innefattar en poros kropp av kiseldioxidfibrer, varvid forfarandet innefattar stegen: 1. att bestamma avgassystemets maximala avgasflode Qmax; 2. valja den porosa kroppens ytarea sa att foljande villkor uppfylls: FV = Qmax/A 1 m/s; vani FV = flode per ytareaA method for dimensioning a particulate filter intended for an exhaust system of an internal combustion engine, which particulate filter comprises a porous body of silica fibers, the method comprising the steps of: 1. determining the maximum exhaust flow Qmax of the exhaust system; 2. select the surface area of the porous body so that the following conditions are met: FV = Qmax / A 1 m / s; vani FV = flood per surface area 1. Qmax= maximalt avgasflode i avgassystemet (m3/s); och 2. A = den porOsa kroppens ytarea (m2), genom vilken avgasfloclet passerar; c) att valja mangden kiseldioxidfibrer sa att forhallandet fibermassa/maximalt avgasflode i den porosa kroppen är: mf/Qmax 500g/1 m3/s; vani mf = fibermassa; d) att anpassa den por6sa kroppens porositet sa att den är mindre an eller lika med 99,3%.1. Qmax = maximum exhaust flow in the exhaust system (m3 / s); and 2. A = the surface area (m2) of the porOsa body through which the exhaust gas floc passes; c) selecting the amount of silica fibers so that the ratio of fiber mass / maximum exhaust flow in the porous body is: mf / Qmax 500g / 1 m3 / s; vani mf = fiber mass; d) adjusting the porosity of the porous body so that it is less than or equal to 99.3%. 2. Forfarandet enligt krav 1, varvid kiseldioxidfibrernas medeldiameter valjs att vara mellan 5-20 pm.The method of claim 1, wherein the average diameter of the silica fibers is selected to be between 5-20 μm. 3. Forfarandet enligt krav 1 eller 2, varvid forfarandet dessutom innefattar steget att utforma den por6sa kroppen sa den har en tjocklek av minst 15 mm.The method of claim 1 or 2, wherein the method further comprises the step of shaping the porous body so as to have a thickness of at least 15 mm. 4. Forfarande enligt nagot av krav 1, 2 eller 3, varvid fOrfarandet dessutom innefattar steget: e) valja den por6sa kroppens volynn sa att: 16 SV = Qm„ I V 150000; vani SV = space velocity, flode per volym Qm„= maximalt avgasflode i avgassystemet m3/s; och V = den por6sa kroppens volym m3, genom vilken avgasflodet passerar.A method according to any one of claims 1, 2 or 3, wherein the method further comprises the step of: e) selecting the volume of the porous body so that: 16 SV = Qm „I V 150000; vani SV = space velocity, flow per volume Qm „= maximum exhaust flow in the exhaust system m3 / s; and V = the volume m3 of the porous body through which the exhaust gas flow passes. 5. Forfarande enligt nagot av foregaende krav, varvid den porosa kroppens porositet anpassas till mellan 95-99%.A method according to any one of the preceding claims, wherein the porosity of the porous body is adjusted to between 95-99%. 6. Partikelfilter som innefattar en poros kropp, kannetecknat av att den por6sa kroppen är dimensionerad enligt f6rfarandet enligt nagot av krav 1-5.Particle filter comprising a porous body, characterized in that the porous body is dimensioned according to the method according to any one of claims 1-5. 7. Avgasledning for en forbranningsmotor kannetecknad av aft den innefattar ett partikelfilter enligt krav 6.Exhaust line for an internal combustion engine, characterized in that it comprises a particulate filter according to claim 6.
SE1350008A 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine SE537493C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1350008A SE537493C2 (en) 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine
PCT/SE2013/051525 WO2014107128A1 (en) 2013-01-04 2013-12-17 Method for dimensioning a particle filter intended for an exhaust system for a combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350008A SE537493C2 (en) 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine

Publications (2)

Publication Number Publication Date
SE1350008A1 true SE1350008A1 (en) 2014-07-05
SE537493C2 SE537493C2 (en) 2015-05-19

Family

ID=50002821

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350008A SE537493C2 (en) 2013-01-04 2013-01-04 Method for sizing a particle filter intended for an exhaust system of an internal combustion engine

Country Status (2)

Country Link
SE (1) SE537493C2 (en)
WO (1) WO2014107128A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830250A (en) * 1996-03-06 1998-11-03 Minnesota Mining And Manufacturing Company Stepped hot gas filter cartridge
DE20316275U1 (en) * 2003-10-19 2004-01-15 Trippe, Gustav, Dr.-Ing. Filter for purification of combustion engine exhaust gases, for removal of soot, comprises membrane and loose packing combination
WO2009090447A1 (en) * 2008-01-16 2009-07-23 E.T.M. International Limited Device designed to reduce atmospheric pollution from exhaust gases

Also Published As

Publication number Publication date
WO2014107128A1 (en) 2014-07-10
SE537493C2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
EP2851114B1 (en) Honeycomb filter
CN102625727B (en) Particulate filters and methods of filtering particulate matter
CN102575541A (en) Method for operating a particle filter
JP4569783B2 (en) Metal fiber media, filter for exhaust gas purification apparatus using the same as filter member, and method for manufacturing the filter
CN102325970B (en) Particulate filters
JP5611240B2 (en) Filtration structure for improving the performance of particulate filters
WO2016013516A1 (en) Honeycomb filter
WO2016013511A1 (en) Honeycomb filter
EP3458689B1 (en) Porous ceramic filters and methods for filtering
SE1350008A1 (en) Method for dimensioning a particle filter intended for an exhaust system of an internal combustion engine
Nakamura et al. Performance improvement of diesel particulate filter by layer coating
KR100985489B1 (en) Metal Fiber Filter for Purifying Diesel Engine Exhaust Gas Having Slot Type By-Passing Part and Exhaust Gas Purifying System
KR100810748B1 (en) Filter having a low density parts for an apparatus for purifying exhaust gas
KR100705707B1 (en) Metal fiber media, filter for an apparatus for purifying exhaust gas and method for preparing the filter
EP3453852B1 (en) Particulate filter for a gasoline internal combustion engine
Yeom et al. A CFD Analysis on DPF for the Removal of PM from the Emission of Diesel Vehicle
CN113557352A (en) Exhaust gas purifying filter
US20090301048A1 (en) Filter for Removing Particles from a Gas Stream and Method for its Manufacture
Vasanthan Copper Oxide Coated Diesel Particulate Filters
WO2014107127A1 (en) Arrangement for filtering soot particles from an exhaust flow of a combustion engine
JPWO2013145316A1 (en) Honeycomb filter and method for manufacturing honeycomb filter

Legal Events

Date Code Title Description
NUG Patent has lapsed