JP5208458B2 - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP5208458B2
JP5208458B2 JP2007175077A JP2007175077A JP5208458B2 JP 5208458 B2 JP5208458 B2 JP 5208458B2 JP 2007175077 A JP2007175077 A JP 2007175077A JP 2007175077 A JP2007175077 A JP 2007175077A JP 5208458 B2 JP5208458 B2 JP 5208458B2
Authority
JP
Japan
Prior art keywords
pore diameter
honeycomb structure
pressure loss
partition wall
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007175077A
Other languages
Japanese (ja)
Other versions
JP2009011909A (en
Inventor
孝治 常吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2007175077A priority Critical patent/JP5208458B2/en
Publication of JP2009011909A publication Critical patent/JP2009011909A/en
Application granted granted Critical
Publication of JP5208458B2 publication Critical patent/JP5208458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ハニカム構造体に関するものであり、特に、ディーゼルエンジンの排気から粒子状物質を除去するために適したハニカム構造体に関するものである。   The present invention relates to a honeycomb structure, and more particularly to a honeycomb structure suitable for removing particulate matter from exhaust gas from a diesel engine.

ディーゼルエンジンから排出されるガスに含まれるスス等の粒子状物質(パティキュレートマター。以下、「PM」と称する)を捕集し、除去するフィルタとして、従来より、多孔質セラミックスで構成され単一の方向に延びて列設された複数の隔壁により区画された、複数のセルを備えるハニカム構造体が用いられている。このようなハニカム構造体では一般的に、一端が封止されたセルと他端が封止されたセルとが交互に配されており、ガスは一方向に開口したセルから流入し、多孔質の隔壁を通過してから、他方向に開口したセルから流出する。そして、ガスが隔壁を通過する際に、ガス中のPMが多孔質の隔壁の表面及び気孔内に捕集され、除去される。   As a filter that collects and removes particulate matter (particulate matter, hereinafter referred to as “PM”) contained in the gas discharged from a diesel engine, it is conventionally made of porous ceramics. A honeycomb structure including a plurality of cells, which is partitioned by a plurality of partition walls extending in the direction of, is used. In such a honeycomb structure, in general, cells sealed at one end and cells sealed at the other end are alternately arranged, and gas flows in from a cell opened in one direction, and is porous. After passing through the partition wall, it flows out from the cell opened in the other direction. When the gas passes through the partition wall, PM in the gas is collected on the surface of the porous partition wall and in the pores and removed.

そのため、気孔径が大きすぎる場合は、捕集されずに隔壁を通過してしまうPMが増加し、捕集効率が低下する。一方、気孔径が小さすぎる場合は、ガスの通過に対する抵抗により圧力損失が大きくなり、エンジンへの負荷が増大する。そこで、隔壁を構成する多孔質セラミックスの気孔径及び気孔径分布を制御することにより、相反する関係にある捕集効率と圧力損失との調和を図ったフィルタが提案されている(例えば、特許文献1,特許文献2参照)。   Therefore, when the pore diameter is too large, PM that passes through the partition without being collected increases, and the collection efficiency decreases. On the other hand, if the pore diameter is too small, the pressure loss increases due to the resistance to the passage of gas, and the load on the engine increases. In view of this, a filter has been proposed in which the pore size and pore size distribution of the porous ceramics constituting the partition walls are controlled to achieve harmony between the trapping efficiency and the pressure loss, which are in a contradictory relationship (for example, Patent Documents). 1, Patent Document 2).

これらのフィルタは、隔壁の気孔径を限られた狭い範囲内となるように設定することにより、PMの捕集に適した気孔の相対数を多くすることを意図したものであり、水銀圧入法によって測定された気孔径の平均値を、前者(特許文献1)では1μm〜15μm、後者(特許文献2)では20μm〜60μmとし、気孔径を常用対数で表した場合の気孔径分布における標準偏差を、共に0.20以下としている。   These filters are intended to increase the relative number of pores suitable for PM collection by setting the pore diameter of the partition wall to be within a limited narrow range. The average value of the pore diameter measured by the above (Patent Document 1) is 1 μm to 15 μm, the latter (Patent Document 2) is 20 μm to 60 μm, and the standard deviation in the pore diameter distribution when the pore diameter is expressed in common logarithm Are both 0.20 or less.

特許3272746号公報Japanese Patent No. 3272746 特開2002−242655号公報JP 2002-242655 A

しかしながら、ハニカム構造体でPMを捕集するためには、ガスが隔壁を通過しなくてはならないため、隔壁の厚さによっても圧力損失の大きさが左右されてしまい、上記のように気孔径や気孔径分布を制御したとしても、捕集効率が高く圧力損失の小さいハニカム構造体として不充分であるという問題があった。   However, in order to collect PM in the honeycomb structure, the gas must pass through the partition walls. Therefore, the magnitude of the pressure loss depends on the thickness of the partition walls. Even if the pore size distribution is controlled, there is a problem that the honeycomb structure has a high collection efficiency and a small pressure loss.

そこで、本発明は、上記の実情に鑑み、排気中の粒子状物質(PM)の捕集効率が高く、初期圧力損失が小さいと共に、PMの捕集に伴う圧力損失の増大が抑制されたハニカム構造体の提供を課題とするものである。   Accordingly, in view of the above circumstances, the present invention has a high efficiency of collecting particulate matter (PM) in exhaust gas, a small initial pressure loss, and a honeycomb in which an increase in pressure loss accompanying PM collection is suppressed. It is an object to provide a structure.

上記の課題を解決するため、本発明にかかるハニカム構造体は、「多孔質セラミックスで構成され単一の方向に延びて列設された複数の隔壁により区画された複数のセルを備えたハニカム構造体であって、水銀圧入法により測定された前記隔壁の気孔直径の平均値が1μm〜20μmであり、前記気孔直径を常用対数で表した場合の気孔径分布の標準偏差が0.20以下であり、前記隔壁の厚さが0.05mm〜0.7mmである」ものである。   In order to solve the above-mentioned problem, a honeycomb structure according to the present invention is a honeycomb structure including a plurality of cells defined by a plurality of partition walls made of porous ceramics and extending in a single direction. The average value of the pore diameter of the partition wall measured by mercury porosimetry is 1 μm to 20 μm, and the standard deviation of the pore diameter distribution when the pore diameter is expressed in a common logarithm is 0.20 or less. And the thickness of the partition wall is 0.05 mm to 0.7 mm ”.

「セラミックス」は特に限定されず、炭化珪素、窒化珪素、コージェライト、アルミナ、ムライト等を使用することができる。   “Ceramics” is not particularly limited, and silicon carbide, silicon nitride, cordierite, alumina, mullite, and the like can be used.

「水銀圧入法」は、圧力をかけて水銀を開気孔に浸入させ、圧力値とそのときに浸入した水銀の体積とを用いて、円柱状と仮定した気孔の径をWashburnの式から算出する方法であり、セラミックス成形体について規定されたJIS R1655を準用することができる。また、「水銀圧入法により測定された気孔直径の平均値」とは、累積気孔体積が全気孔体積の50%のときの直径(メディアン径)を指している。   In the “mercury intrusion method”, mercury is introduced into the open pores by applying pressure, and the pore diameter assumed to be cylindrical is calculated from the Washburn equation using the pressure value and the volume of mercury infiltrated at that time. This is a method, and JIS R1655 prescribed for ceramic molded bodies can be applied mutatis mutandis. The “average pore diameter measured by mercury porosimetry” refers to the diameter (median diameter) when the cumulative pore volume is 50% of the total pore volume.

気孔径及び気孔径分布を、PMの捕集に適する範囲に制御した場合、捕集開始後の初期においては、PMが捕集されつつガスの流路も確保されるが、PMの堆積が進むと、それに伴ってガスの通過に対する抵抗が増加し、圧力損失が増大する。そして、ガスの通過に対する抵抗は、隔壁が厚いほど大きなものとなる。一方、隔壁を薄いものとすれば、ガスの通過に対する抵抗は減少し、PMの堆積に伴って圧力損失が増大する程度も低減されると考えられる反面で、隔壁と隔壁との間に空隙を有するハニカム構造体の機械的強度が低下するおそれがある。仮に、ハニカム構造の機械的強度が不充分で、隔壁にクラックが生じることとなれば、クラックを介してガスが通過してしまい、PMが隔壁に捕集されないため、隔壁の気孔をPMの捕集に適するよう制御したことも無意味に帰すこととなる。   When the pore diameter and the pore size distribution are controlled within a range suitable for PM collection, in the initial stage after collection, PM is collected and a gas flow path is secured, but PM deposition proceeds. As a result, the resistance to the passage of gas increases and the pressure loss increases. And the resistance with respect to passage of gas becomes so large that a partition is thick. On the other hand, if the partition walls are made thin, the resistance to the passage of gas decreases, and the degree to which the pressure loss increases with the deposition of PM is considered to be reduced. On the other hand, there is no gap between the partition walls. There is a risk that the mechanical strength of the honeycomb structure having the lowering may decrease. If the honeycomb structure has insufficient mechanical strength and cracks are generated in the partition walls, gas passes through the cracks, and PM is not collected in the partition walls. It is meaningless to control to suit the collection.

発明者は、検討の結果、水銀圧入法により測定された隔壁の気孔直径の平均値を1μm〜20μmとし、かつ、気孔径を常用対数で表した場合の気孔径分布の標準偏差が0.20以下としたハニカム構造体において、隔壁の厚さを0.05mm〜0.7mmとすることにより、機械的強度を維持しつつ、PMの堆積に伴う圧力損失の増大を抑制できることを見出した。隔壁の厚さが0.7mmを超えた場合は、初期圧力損失が大きくなると共に、PMの堆積に伴ってガスの通過抵抗が増大する程度が増し、圧力損失の増大が著しいものとなる。一方、隔壁の厚さが0.05mm未満である場合は、機械的強度が低下し、隔壁にクラックが発生するおそれが大きなものとなる。なお、隔壁の厚さは、0.1mm〜0.7mmであればより望ましく、0.2mm〜0.5mmであれば更に望ましい。   As a result of the study, the inventor found that the average pore diameter of the partition walls measured by the mercury intrusion method is 1 μm to 20 μm and the standard deviation of the pore diameter distribution is 0.20 when the pore diameter is expressed in common logarithm. In the honeycomb structure described below, it was found that by increasing the partition wall thickness to 0.05 mm to 0.7 mm, an increase in pressure loss due to PM deposition can be suppressed while maintaining the mechanical strength. When the thickness of the partition wall exceeds 0.7 mm, the initial pressure loss increases, the degree of increase in the gas passage resistance with PM deposition increases, and the increase in pressure loss becomes significant. On the other hand, when the partition wall thickness is less than 0.05 mm, the mechanical strength decreases, and the risk of cracks occurring in the partition wall increases. The partition wall thickness is more preferably 0.1 mm to 0.7 mm, and even more preferably 0.2 mm to 0.5 mm.

従って、上記構成の本発明によれば、隔壁の気孔径及び気孔径分布を、PMの捕集に適した範囲に制御し、かつ、機械的強度の低下を招くおそれを低減できる程度に隔壁の厚さを小さくすることにより、初期圧力損失の小ささを維持しつつ、高い捕集効率でPMを捕集することができる。   Therefore, according to the present invention having the above-described configuration, the pore diameter and the pore size distribution of the partition walls are controlled to a range suitable for PM collection, and the risk of causing a decrease in mechanical strength can be reduced. By reducing the thickness, it is possible to collect PM with high collection efficiency while maintaining a small initial pressure loss.

本発明にかかるハニカム構造体は、「前記多孔質セラミックスは、炭化珪素である」ものとすることもできる。   The honeycomb structure according to the present invention may be “the porous ceramic is silicon carbide”.

上記構成の本発明によれば、多孔質セラミックスとして、高強度で耐熱性に優れる炭化珪素を用いることにより、空隙の多い構造であり、高温の環境下で使用されるハニカム構造体として、より適したものとなる。また、優れた耐熱性を有することにより、堆積したPMを燃焼させるためにハニカム構造体を加熱する場合であっても、加熱による変形や溶損の生じ難いものとなる。   According to the present invention having the above configuration, the use of silicon carbide having high strength and excellent heat resistance as the porous ceramic makes the structure having many voids and more suitable as a honeycomb structure used in a high temperature environment. It will be. Further, by having excellent heat resistance, even when the honeycomb structure is heated in order to burn the accumulated PM, deformation or melting damage due to heating is unlikely to occur.

以上のように、本発明の効果として、排気中のPMの捕集効率が高く、初期圧力損失が小さいと共に、PMの捕集に伴う圧力損失の増大が抑制されたハニカム構造体を提供することができる。   As described above, as an effect of the present invention, there is provided a honeycomb structure having high PM collection efficiency in exhaust gas, low initial pressure loss, and suppressed increase in pressure loss due to PM collection. Can do.

以下、本発明の最良の一実施形態であるハニカム構造体について、図1乃至図4に基づいて説明する。ここで、図1は本実施形態のハニカム構造体の構成を模式的に示す(a)側断面図、及び(b)横断面図であり、図2は平均気孔直径と初期圧力損失との関係を示すグラフであり、図3は平均気孔直径と圧縮強度との関係を示すグラフであり、図4は隔壁の厚さと圧力損失との関係を示すグラフであり、図5は本実施形態のハニカム構造体についてPM堆積量の増加に伴う圧力損失の変化を比較例と対比して示すグラフである。なお、本実施形態では、本発明のハニカム構造体を、ディーゼルエンジンの排気からPMを捕集するディーゼルパティキュレートフィルタ(以下、「DPF」と称する)として適用する場合を例示する。   Hereinafter, a honeycomb structure which is the best embodiment of the present invention will be described with reference to FIGS. 1 to 4. Here, FIG. 1 is a (a) side cross-sectional view and (b) cross-sectional view schematically showing the configuration of the honeycomb structure of the present embodiment, and FIG. 2 shows the relationship between the average pore diameter and the initial pressure loss. 3 is a graph showing the relationship between average pore diameter and compressive strength, FIG. 4 is a graph showing the relationship between partition wall thickness and pressure loss, and FIG. 5 is a honeycomb according to the present embodiment. It is a graph which shows the change of the pressure loss accompanying the increase in PM deposition amount about a structure with a comparative example. In the present embodiment, a case where the honeycomb structure of the present invention is applied as a diesel particulate filter (hereinafter referred to as “DPF”) that collects PM from exhaust gas of a diesel engine is exemplified.

本実施形態のハニカム構造体10は、図1(a),(b)に示すように、多孔質セラミックスで構成され単一の方向に延びて列設された複数の隔壁2により区画された複数のセル3を備え、水銀圧入法により測定された隔壁2の気孔直径の平均値が1μm〜20μmであり、気孔直径を常用対数で表した場合の気孔径分布の標準偏差が0.20以下であり、かつ、隔壁の厚さdが0.05mm〜0.7mmとされている。なお、図1(a)はガスが流入・流出する方向に平行な側断面図であり、図1(b)はこれに直交する横断面図である。   As shown in FIGS. 1 (a) and 1 (b), the honeycomb structure 10 of the present embodiment includes a plurality of partition walls 2 that are made of porous ceramics and that are partitioned and extended in a single direction. The average value of the pore diameter of the partition wall 2 measured by the mercury intrusion method is 1 μm to 20 μm, and the standard deviation of the pore diameter distribution when the pore diameter is expressed in common logarithm is 0.20 or less. In addition, the partition wall thickness d is 0.05 mm to 0.7 mm. 1A is a side sectional view parallel to the direction in which the gas flows in and out, and FIG. 1B is a transverse sectional view orthogonal to the direction.

より詳細に説明すると、本実施形態の多孔質セラミックスは炭化珪素であり、列設された複数のセル3は、一方向に開放したセル3aと他方向に開放したセル3bとが交互となるように、それぞれのセル3の一端が封止部6によって封止されている。   More specifically, the porous ceramic of the present embodiment is silicon carbide, and in the plurality of cells 3 arranged in a row, the cells 3a opened in one direction and the cells 3b opened in the other direction are alternated. In addition, one end of each cell 3 is sealed by a sealing portion 6.

かかる構成のハニカム構造体10では、図1(a)に一点鎖線で示したように、PMを含むディーゼル排気をセル3aの開端から流入させると、ガスは多孔質の隔壁2を通過してから、他方向に開口したセル3bの開端から流出する。そして、ガスが隔壁2を通過する際に、隔壁の表面及び気孔内にPMが捕集される。   In the honeycomb structure 10 having such a configuration, as shown by a one-dot chain line in FIG. 1A, when diesel exhaust containing PM is caused to flow from the open end of the cell 3a, the gas passes through the porous partition wall 2 and then flows. Then, it flows out from the open end of the cell 3b opened in the other direction. When the gas passes through the partition wall 2, PM is collected on the surface of the partition wall and in the pores.

次に、気孔径と初期圧力損失、及び気孔径と圧縮強度との関係について検討した結果を示す。検討には、平均気孔直径以外は上記の構成であり、気孔率約57%、セル密度169セル/平方インチ(2.62セル/10−3)であるハニカム構造体について、平均気孔径(直径)の異なるものを複数作製して使用した。また、初期圧力損失は、サイズが直径約100mm,長さ約140mmの円柱状のハニカム構造体を、PMを全く捕集させていない状態でガス流路に設置し、流量5Nm/minの空気を流通させ、流入側と流出側の差圧を測定して求めた。なお、平均気孔径は、島津製作所製ポアサイザ9310を使用して水銀圧入法により測定した気孔径分布からメディアン径として求めた。また、気孔率は、アルキメデス法により求めた。 Next, the result of examining the relationship between pore diameter and initial pressure loss, and pore diameter and compressive strength is shown. For the study, a honeycomb structure having the above-described configuration except for the average pore diameter, a porosity of about 57%, and a cell density of 169 cells / square inch (2.62 cells / 10 −3 m 2 ) was used. A plurality of products having different diameters were produced and used. The initial pressure loss is such that a cylindrical honeycomb structure having a diameter of about 100 mm and a length of about 140 mm is installed in a gas flow path in a state where no PM is collected, and an air flow rate of 5 Nm 3 / min. And the pressure difference between the inflow side and the outflow side was measured. The average pore diameter was determined as the median diameter from the pore diameter distribution measured by the mercury intrusion method using a pore sizer 9310 manufactured by Shimadzu Corporation. The porosity was determined by the Archimedes method.

その結果、図2に示すように、平均気孔直径が約25μm以上の範囲では、初期圧力損失はほぼ一定で6kPa未満と小さいが、平均気孔径が十数μmより小さくなると、初期圧力損失は急激に増大した。   As a result, as shown in FIG. 2, in the range where the average pore diameter is about 25 μm or more, the initial pressure loss is almost constant and small as less than 6 kPa, but when the average pore diameter is smaller than a dozen μm, the initial pressure loss is suddenly reduced. Increased.

一方、上記の複数のハニカム構造体について、ガスを流通させる方向(A axis)及びこれに直交する方向(B axis)の圧縮強度を、自動車技術会規格JASO M505−87に基づきクロスヘッドスピード1mm/minで測定し、気孔径と圧縮強度との関係について調べた。その結果を、図3に示す。一般的に、機械的強度と気孔径とは相反する関係にあるが、図3においてもその傾向は顕著であり、20μm前後を境として、それより気孔直径が大きくなると、圧縮強度は大きく低下した。   On the other hand, the compressive strength in the gas flow direction (A axis) and the direction orthogonal to the gas flow direction (B axis) is set to 1 mm / crosshead speed based on the Japan Society of Automotive Engineers standard JASO M505-87. Measurement was performed in min, and the relationship between the pore diameter and the compressive strength was examined. The result is shown in FIG. In general, the mechanical strength and the pore diameter are in a contradictory relationship, but the tendency is also remarkable in FIG. 3, and when the pore diameter is larger than about 20 μm, the compressive strength is greatly reduced. .

以上の結果より、気孔径が大きいほど初期圧力損失を小さくすることができるが、機械的強度をある程度維持しつつ、気孔直径を大きくすることができる限度は、20μm程度であると考えられた。従って、上記のように、気孔直径の平均値が1μm〜20μmに設定された本実施形態のハニカム構造体によれば、機械的強度をある程度維持しつつ、初期圧力損失を小さく抑えることができる。   From the above results, the larger the pore diameter, the smaller the initial pressure loss, but it was considered that the limit of increasing the pore diameter while maintaining the mechanical strength to some extent was about 20 μm. Therefore, as described above, according to the honeycomb structure of the present embodiment in which the average value of the pore diameters is set to 1 μm to 20 μm, the initial pressure loss can be suppressed while maintaining the mechanical strength to some extent.

次に、隔壁の厚さと圧力損失との関係について検討した結果を示す。検討のために用いたハニカム構造体は、以下の方法により作製した。まず、平均粒径(直径)12μmのSiC粉末75重量%、平均粒径(直径)10μmのSi粉末20重量%、及び、平均粒径(直径)15μmのC粉末5重量%の混合粉末を、有機バインダー(メチルセルロース)、水、界面活性剤と混合、混練し、次いで、混練物を押出成形によりハニカム状に成形した。このとき、押出成形の金型の設定により、隔壁の厚さの異なるものを複数種類作製した。その後、それぞれの成形体を、非酸化性雰囲気下で2300℃,10分間焼成することにより、ハニカム構造体を作製した。なお、それぞれのハニカム構造体は、何れもセル密度を200セル/平方インチ(3.10セル/10−3)とし、直径約140mm,長さ約150mmの円柱状とした。 Next, the result of examining the relationship between the thickness of the partition wall and the pressure loss is shown. The honeycomb structure used for the examination was manufactured by the following method. First, 75% by weight of SiC powder having an average particle diameter (diameter) of 12 μm, 20% by weight of Si 3 N 4 powder having an average particle diameter (diameter) of 10 μm, and 5% by weight of C powder having an average particle diameter (diameter) of 15 μm The powder was mixed and kneaded with an organic binder (methylcellulose), water, and a surfactant, and then the kneaded product was formed into a honeycomb by extrusion. At this time, a plurality of types having different partition wall thicknesses were prepared depending on the extrusion mold setting. After that, each molded body was fired at 2300 ° C. for 10 minutes in a non-oxidizing atmosphere to produce a honeycomb structure. Each honeycomb structure had a cell density of 200 cells / square inch (3.10 cells / 10 −3 m 2 ), a cylindrical shape having a diameter of about 140 mm and a length of about 150 mm.

得られたハニカム構造体について、上記の装置を用いて、水銀圧入法により気孔径分布を測定し、累積気孔径分布より平均気孔直径(メディアン径)を求め、更に、水銀圧入法により測定された気孔直径を常用対数で表した場合の気孔径分布の標準偏差を求めたところ、平均気孔径は8μm、標準偏差は0.16であった。   With respect to the obtained honeycomb structure, the pore size distribution was measured by the mercury intrusion method using the above apparatus, the average pore diameter (median diameter) was obtained from the cumulative pore size distribution, and further measured by the mercury intrusion method. When the standard deviation of the pore diameter distribution when the pore diameter was expressed in the common logarithm was determined, the average pore diameter was 8 μm and the standard deviation was 0.16.

隔壁の厚さの異なる上記のハニカム構造体を、それぞれガス流路に設置し、PMを含むガスを流量5Nm/minで流通させ、PMがハニカム構造体の体積1リットル当たり2g(ハニカム構造体1m当たりPM2kg)堆積した時点で、流入側と流出側の差圧を測定した。その結果を、図4に示す。 The above honeycomb structures having different partition wall thicknesses are respectively installed in the gas flow paths, and a gas containing PM is circulated at a flow rate of 5 Nm 3 / min. PM is 2 g per liter of the honeycomb structure volume (honeycomb structure) at the time of the 1 m 3 per PM2kg) deposition was measured differential pressure of the inlet side and the outlet side. The result is shown in FIG.

図4から明らかなように、隔壁の厚さが増加するほど圧力損失は大きくなり、圧力損失が増大する程度は、隔壁の厚さが大きくなるほど著しいものであった。そして、隔壁の厚さが0.7mmを超えると、圧力損失はほぼ10kPaとなった。ここで、圧力損失が10kPaを超えると、エンジンの負荷が大きくなるため、10kPaは、通常PMを燃焼させてDPFを再生させる目安とする値である。これにより、隔壁の厚さは、0.7mm以下とすることが適切であると考えられた。   As is apparent from FIG. 4, the pressure loss increases as the partition wall thickness increases, and the degree of increase in the pressure loss increases as the partition wall thickness increases. And when the thickness of the partition exceeded 0.7 mm, the pressure loss was almost 10 kPa. Here, when the pressure loss exceeds 10 kPa, the load on the engine increases. Therefore, 10 kPa is a value that serves as a standard for regenerating DPF by burning normal PM. Thereby, it was considered that the thickness of the partition wall was appropriately 0.7 mm or less.

以下、本実施形態の具体的な実施例について、比較例と対比しつつ説明する。実施例及び比較例1,2のハニカム構造体は、隔壁の厚さを除き、上記と同様に作製した。隔壁の厚さは、表1に示すように、実施例では0.3mm、比較例1では1.2mm、比較例3では0.03mmとした。すなわち、比較例1は、隔壁の厚さが0.05mm〜0.7mmの範囲を超える例、比較例2は0.05mm〜0.7mmの範囲に満たない例である。   Hereinafter, specific examples of the present embodiment will be described in comparison with comparative examples. The honeycomb structures of Examples and Comparative Examples 1 and 2 were produced in the same manner as described above except for the thickness of the partition walls. As shown in Table 1, the partition wall thickness was 0.3 mm in the example, 1.2 mm in the comparative example 1, and 0.03 mm in the comparative example 3. That is, Comparative Example 1 is an example in which the thickness of the partition wall exceeds the range of 0.05 mm to 0.7 mm, and Comparative Example 2 is an example of less than the range of 0.05 mm to 0.7 mm.

Figure 0005208458
Figure 0005208458

次に、実施例及び比較例1,2のハニカム構造体について、圧力損失の評価を行った。評価は、ガス流路に設置したハニカム構造体に、PMを含むガスを流量5Nm/minで流通させ、PMの堆積量の増加に伴う圧力損失の変化を測定することにより行った。その結果を、図5に示す。 Next, pressure loss was evaluated for the honeycomb structures of Examples and Comparative Examples 1 and 2. The evaluation was performed by passing a gas containing PM through the honeycomb structure installed in the gas flow path at a flow rate of 5 Nm 3 / min and measuring a change in pressure loss accompanying an increase in the amount of PM deposited. The result is shown in FIG.

図5から明らかなように、実施例ではPMが堆積していない時点での初期圧力損失も非常に小さく、PMの堆積に伴い圧力損失は緩やかに増加したものの、圧力損失の小さい値が維持された。これに対し、隔壁が厚い比較例1では、初期圧力損失も実施例の4倍程度と大きく、更に、PMの堆積に伴って圧力損失は大きく上昇し、実施例の圧力損失との差もPMが堆積するほど広がった。このことから、隔壁が厚い場合には、堆積したPMがガスの通過抵抗に与える影響は、極めて大きいと考えられた。   As is apparent from FIG. 5, in the example, the initial pressure loss when PM is not deposited is very small, and the pressure loss gradually increases as PM is deposited, but the value of small pressure loss is maintained. It was. On the other hand, in Comparative Example 1 where the partition walls are thick, the initial pressure loss is as large as about four times that of the example, and further, the pressure loss greatly increases as PM is deposited. It spread so that it accumulated. From this, it was considered that when the partition walls are thick, the effect of the deposited PM on the gas passage resistance is extremely large.

比較例2では、ガスの流通により隔壁に亀裂が生じ、亀裂を介してガスが流通してしまい、PMの捕集を行うことができなかった。また、圧力損失の評価も正しく行うことができなかった。   In Comparative Example 2, cracks occurred in the partition walls due to the gas flow, and the gas circulated through the cracks, so that PM could not be collected. Moreover, the pressure loss could not be correctly evaluated.

以上のように、「水銀圧入法により測定された気孔直径の平均値が1μm〜20μm」「気孔直径を常用対数で表した場合の気孔径分布の標準偏差が0.20以下」の二要件を満たすのみでは、実用的なDPFとして使用するハニカム構造体として不充分であり、隔壁の厚さが適切に設定されることが必要であると考えられた。そして、隔壁の厚さを0.05mm〜0.7mmとすることにより、亀裂の発生などの機械的強度の低下を招くおそれを低減できる限度で隔壁を薄くすることができ、初期圧力損失を小さくできると共に、初期圧力損失の小ささを維持しつつ、高い捕集効率でPMを捕集することができると考えられた。   As described above, the two requirements of “the average value of the pore diameter measured by the mercury intrusion method is 1 μm to 20 μm” and “the standard deviation of the pore diameter distribution when the pore diameter is expressed in a common logarithm is 0.20 or less” are satisfied. It is considered that only satisfying is insufficient as a honeycomb structure used as a practical DPF, and it is necessary to appropriately set the partition wall thickness. And by setting the thickness of the partition wall to 0.05 mm to 0.7 mm, the partition wall can be thinned to the extent that the possibility of reducing the mechanical strength such as the occurrence of cracks can be reduced, and the initial pressure loss is reduced. In addition, it was considered that PM could be collected with high collection efficiency while maintaining a small initial pressure loss.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、上記の実施形態では、多孔質セラミックスとして炭化珪素を用いた場合を例示したが、これに限定されず、窒化珪素、コージェライト、アルミナ、ムライト等を使用することができる。また、熱膨張率が小さく耐熱衝撃性に優れたチタン酸アルミニウム等を使用することもできる。   For example, in the above embodiment, the case where silicon carbide is used as the porous ceramic is exemplified, but the present invention is not limited to this, and silicon nitride, cordierite, alumina, mullite, or the like can be used. In addition, aluminum titanate having a small coefficient of thermal expansion and excellent thermal shock resistance can be used.

また、本発明のハニカム構造体をDPFとして適用する場合を例示したが、これに限定されず、例えば、ガソリンエンジンやボイラー等の内燃機関から排出されるガスを浄化するフィルタとして、広く適用することができる。   In addition, the case where the honeycomb structure of the present invention is applied as a DPF has been exemplified, but the present invention is not limited to this. For example, the honeycomb structure can be widely applied as a filter for purifying gas discharged from an internal combustion engine such as a gasoline engine or a boiler. Can do.

本実施形態のハニカム構造体の構成を模式的に示す(a)側断面図、及び(b)横断面図である。FIG. 2A is a side cross-sectional view schematically showing a configuration of a honeycomb structure of the present embodiment, and FIG. 平均気孔直径と初期圧力損失との関係を示すグラフである。It is a graph which shows the relationship between an average pore diameter and an initial pressure loss. 平均気孔直径と圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between an average pore diameter and compressive strength. 隔壁の厚さと圧力損失との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a partition, and a pressure loss. 本実施形態のハニカム構造体についてPM堆積量の増加に伴う圧力損失の変化を比較例と対比して示すグラフである。It is a graph which shows the change of the pressure loss accompanying the increase in PM deposition amount about the honeycomb structure of this embodiment as contrasted with a comparative example.

符号の説明Explanation of symbols

2 隔壁
3,3a,3b セル
6 封止部
10 ハニカム構造体
2 Partition wall 3, 3a, 3b Cell 6 Sealing portion 10 Honeycomb structure

Claims (1)

多孔質セラミックスで構成され単一の方向に延びて列設された複数の隔壁により区画された複数のセル、及び、複数の前記セルが一方向に開放したセルと他方向に開放したセルとが交互となるように、それぞれの前記セルの一端を封止する封止部を備えたハニカム構造体であって、排ガスを前記一方向に開放したセルから流入させ、前記隔壁を通過させて前記他方向に開放したセルから流出させるディーゼルパティキュレートフィルタとして使用されるものであり、
前記多孔質セラミックスは、炭化珪素、窒化珪素、及びカーボンから得られた炭化珪素焼結体であり、
水銀圧入法により測定された前記隔壁の気孔直径の平均値が8μmであり、
前記気孔直径を常用対数で表した場合の気孔径分布の標準偏差が0.16であり、
パティキュレートマターを捕集するフィルタとして機能する前記隔壁の厚さが0.3mmである
ことを特徴とするハニカム構造体。
A plurality of cells made of porous ceramics and partitioned by a plurality of partition walls extending in a single direction, and a plurality of cells opened in one direction and a cell opened in the other direction A honeycomb structure provided with a sealing portion that seals one end of each of the cells so as to alternate, wherein exhaust gas is allowed to flow from the cells opened in the one direction, and is passed through the partition walls and the other It is used as a diesel particulate filter that flows out of a cell opened in the direction,
The porous ceramic is a silicon carbide sintered body obtained from silicon carbide, silicon nitride, and carbon,
The average value of the pore diameter of the partition wall measured by mercury porosimetry is 8 μm;
The standard deviation of the pore diameter distribution when the pore diameter is expressed as a common logarithm is 0.16,
A honeycomb structure, wherein the partition wall functioning as a filter for collecting particulate matter has a thickness of 0.3 mm.
JP2007175077A 2007-07-03 2007-07-03 Honeycomb structure Active JP5208458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175077A JP5208458B2 (en) 2007-07-03 2007-07-03 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175077A JP5208458B2 (en) 2007-07-03 2007-07-03 Honeycomb structure

Publications (2)

Publication Number Publication Date
JP2009011909A JP2009011909A (en) 2009-01-22
JP5208458B2 true JP5208458B2 (en) 2013-06-12

Family

ID=40353478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175077A Active JP5208458B2 (en) 2007-07-03 2007-07-03 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP5208458B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364200A1 (en) * 2008-11-26 2011-09-14 Corning Incorporated Coated particulate filter and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272746B2 (en) * 1991-07-19 2002-04-08 イビデン株式会社 Diesel particulate filter
JP4246802B2 (en) * 1995-08-22 2009-04-02 東京窯業株式会社 Honeycomb structure, manufacturing method and use thereof, and heating device
JP3756721B2 (en) * 2000-03-24 2006-03-15 日本碍子株式会社 Exhaust gas purification filter
JP2002242655A (en) * 2001-02-15 2002-08-28 Ibiden Co Ltd Filter for collecting particulate in exhaust gas
JP2004167482A (en) * 2002-11-08 2004-06-17 Ibiden Co Ltd Honeycomb filter for exhaust gas cleaning, and its production method
JP4381011B2 (en) * 2003-03-14 2009-12-09 東京窯業株式会社 Silicon carbide honeycomb structure and ceramic filter using the same

Also Published As

Publication number Publication date
JP2009011909A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
EP2835169B1 (en) Honeycomb filter
JP4969103B2 (en) Honeycomb structure
US9080484B2 (en) Wall flow type exhaust gas purification filter
US8388721B2 (en) Ceramic honeycomb filter and its production method
EP2835167B1 (en) Honeycomb filter
JP4130216B1 (en) Honeycomb structure
US9890673B2 (en) Honeycomb filter
US20070148402A1 (en) Honeycomb structured body
JP2011506093A (en) Gas filtration structure with asymmetric hexagonal channel
JP6470975B2 (en) Honeycomb structure, manufacturing method thereof, and canning structure
JP5218056B2 (en) Ceramic honeycomb filter
JP6231910B2 (en) Plugged honeycomb structure
CN110947258B (en) Honeycomb filter
JP2018167199A (en) Honeycomb filter
JP2018167200A (en) Honeycomb filter
JP4900820B2 (en) Ceramic honeycomb filter
JP5208458B2 (en) Honeycomb structure
JP4997090B2 (en) Porous fired body and method for producing the same
JP6483468B2 (en) Honeycomb structure
JP6231911B2 (en) Plugged honeycomb structure
US11590444B2 (en) Honeycomb filter
US11400441B2 (en) Honeycomb filter
JP2009011910A (en) Honeycomb structure
JP2009011911A (en) Integrated honeycomb
JP6285247B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120824

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121220

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250