SE537390C2 - Combustion engine diagnosis - Google Patents

Combustion engine diagnosis Download PDF

Info

Publication number
SE537390C2
SE537390C2 SE1251202A SE1251202A SE537390C2 SE 537390 C2 SE537390 C2 SE 537390C2 SE 1251202 A SE1251202 A SE 1251202A SE 1251202 A SE1251202 A SE 1251202A SE 537390 C2 SE537390 C2 SE 537390C2
Authority
SE
Sweden
Prior art keywords
torque contribution
cylinders
test
test variable
variable
Prior art date
Application number
SE1251202A
Other languages
Swedish (sv)
Other versions
SE1251202A1 (en
Inventor
Björn Johansson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1251202A priority Critical patent/SE537390C2/en
Priority to PCT/SE2013/051221 priority patent/WO2014065743A1/en
Priority to DE112013004818.3T priority patent/DE112013004818T5/en
Publication of SE1251202A1 publication Critical patent/SE1251202A1/en
Publication of SE537390C2 publication Critical patent/SE537390C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/046Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

Sammandraq En forbranningsmotor (100) inkluderar atminstone tre cyfindrar (Cl, C2, C3, C4, C5, C6). Ett diagnossystem fOr motorn (100) innefattar atminstone en sensor (s7) konfigurerad att registrera en matsignal (rpm) representerande ett respektive momentbidrag fran vardera av cylindrarna; och en bearbetningsenhet (110) konfigurerad att pa basis av matsignalen (rpm) undersoka huruvida eller inte motorn (100) fungerar nojaktigt. Bearbetningsenheten (110) bildar en forsta testvariabel (a) pa basis av ett fors- ta par av matvarden representerande ett respektive momentbidrag fran tva av cylindrarna under en matperiod. Bearbetningsenheten (110) bildar aven en andra testvariabel (b) pa basis av ett andra par av matvarden representerande ett respektive momentbidrag fran tva av cylindrarna under matperioden, dar namnda forsta och andra par av matvarden harror fran atminstone tre olika cylindrar i motorn (100). Den forsta och andra testvariabeln (a; b) testas mot ett larmkriterium, och om larmkriteriet uppfylls alstrar bearbetningsenheten (110) en larmkod (A) indikerande fel i atminstone en av cylindrarna. A combustion engine (100) includes at least three cylinders (C1, C2, C3, C4, C5, C6). A diagnostic system for the engine (100) comprises at least one sensor (s7) configured to register a feed signal (rpm) representing a respective torque contribution from each of the cylinders; and a processing unit (110) configured to check on the basis of the feed signal (rpm) whether or not the motor (100) is operating accurately. The processing unit (110) forms a first test variable (a) on the basis of a first pair of food values representing a respective torque contribution from two of the cylinders during a food period. The processing unit (110) also forms a second test variable (b) on the basis of a second pair of food values representing a respective torque contribution from two of the cylinders during the food period, wherein said first and second pairs of food values are from at least three different cylinders in the engine (100). . The first and second test variables (a; b) are tested against an alarm criterion, and if the alarm criterion is met, the processing unit (110) generates an alarm code (A) indicating an error in at least one of the cylinders.

Description

Diagnos av forbranningsmotor BAKGRUND TILL UPPFINNINGEN OCH TIDIGARE KAND TEKNIK Foreliggande uppfinning hanfor sig allmant till testning av forbranningsmotorer. SpecieIlt avser uppfinningen ett diagnossys- tern enligt ingressen till patentkrav 1 och en metod enligt ingres- sen till patentkrav 8. Uppfinningen avser ocksa ett datorprogram enligt patentkrav 13 och ett datorlasbart medium enligt patentkrav 14. BACKGROUND OF THE INVENTION AND PRIOR ART The present invention relates generally to the testing of internal combustion engines. In particular, the invention relates to a diagnostic system according to the preamble of claim 1 and a method according to the preamble of claim 8. The invention also relates to a computer program according to claim 13 and a computer-readable medium according to claim 14.

Moderna forbranningsmotorer har avancerade bransleinsprut- ningssystem i syfte att optimera bransleutnyttjandegraden och darigenom hushalla med energi och mildra motorns miljopaverkan. Om emellertid fel uppstar i bransleinsprutningssystemet kan detta fa starkt oonskade konsekvenser. Exempelvis kan det bli stopp i en bransleinsprutare till en viss cylinder, vilket leder till att denna cylinder inte tar emot nagot bransle. Detta resulte- rar i att motorn ger ett ojamnt moment, vilket i sin tur fororsakar ett okat slitage pa motorn och en tillhorande drivlina. Om problemet inte atgardas kan det pa sikt leda till motorhaveri. I alla handelser ger motorns ojamna gang upphov till vibrationer, vilka, om motorn ingar i ett fordon, ger en forsamrad komfort for fordo- nets forare. Modern internal combustion engines have advanced fuel injection systems in order to optimize the fuel utilization rate and thereby save energy and mitigate the engine's environmental impact. However, if errors occur in the fuel injection system, this can have highly undesirable consequences. For example, there may be a blockage in a fuel injector to a certain cylinder, which leads to this cylinder not receiving any fuel. This results in the engine producing an uneven torque, which in turn causes increased wear on the engine and an associated driveline. If the problem is not remedied, it can eventually lead to engine failure. In all transactions, the uneven running of the engine gives rise to vibrations, which, if the engine is engaged in a vehicle, provide a reduced comfort for the driver of the vehicle.

US 2012/0299051 beskriver en feldetekteringsmetod, varvid s.k. cylindereffektdensitetsvarden bestams under drift av en forbranningsmotor. Genom jamforelse av cylindereffektdensitetsvarde- na med ett troskelvarde avgar man om det foreligger en obalans i motorn, vilken kan tyda pa fel i nagon av dess cylindrar. US 2012/0299051 describes a fault detection method, wherein so-called the cylinder power density value is determined during operation of an internal combustion engine. By comparing the cylinder power density values with a threshold value, one checks whether there is an imbalance in the engine, which may indicate a fault in one of its cylinders.

JP 7103047 visar en diagnostiseringsmetod, dar ett onormalt motortillstand upptacks vilket beror pa att en cylinder i motorn inte forbrukar nagot bransle. En signal som representerar vev- axelhastigheten registreras for att uppmata ett tidsintervall mot- svarande vane cylinders forbranningscykel. En eventuell avvi- 1 kelse mellan dessa tidsintervall och ett referensvarde anses indikera pa en anomali i en cylinder US 2002/0148441 redogor for en losning vid vilken hastighetsfluktuationer i en motors varvtal studeras i syfte att upptacka eventuella fel i dess bransleinsprutningssystem. SpecieIlt an- vands bandpassfilter for att analysera amplitudvariationer vid vissa frekvenser, vilka har befunnits vara sarskilt karakteristiska for att pavisa fel i bransleinsprutningsfunktionen. JP 7103047 shows a diagnostic method where an abnormal engine condition is detected which is due to a cylinder in the engine not consuming any fuel. A signal representing the crankshaft speed is recorded to transmit a time interval corresponding to the combustion cycle of the vane cylinder. A possible deviation between these time intervals and a reference value is considered to indicate an anomaly in a cylinder US 2002/0148441 reports a solution in which speed fluctuations in an engine speed are studied in order to detect any faults in its fuel injection system. Specifically, bandpass filters were used to analyze amplitude variations at certain frequencies, which have been found to be particularly characteristic for detecting faults in the fuel injection function.

US 2008/0228341 beskriver en metod for bestamning av ett fel- tillstand i en forbranningsmotors branslesystem. En eller flera sensorer tillhandahaller har en signal representerande forbranningshandelser i cylindrarna. Denna signal integreras, varvid en forsta respektive andra gradient for varje cylinder tas fram. Genom jamforelse av gradienterna for samma cylinder drar man slutsatser om huruvida eller inte en viss cylinder fungerar nor- malt. US 2008/0228341 describes a method for determining a fault condition in the fuel system of an internal combustion engine. One or more sensors provide have a signal representing combustion operations in the cylinders. This signal is integrated, producing a first and a second gradient for each cylinder, respectively. By comparing the gradients for the same cylinder, conclusions are drawn as to whether or not a particular cylinder works normally.

PROBLEM FORKNIPPADE MED TIDIGARE KAND TEKNIK Gemensamt for ovannamnda losningar är att man pa ett eller annat satt analyserar en forbranningsmotors varvtalssignal i syf- te att bestamma vilket momentbidrag respektive cylinder i mo- torn ger. Om cylindrarnas momentbidrag varierar oacceptabelt mycket i forhallande till varandra tolkas detta som ett feltillstand. De kanda losningarna for denna typ av analys har emellertid svarigheter med att dra korrekta slutsatser da motorn utsatts for exempelvis transienta forlopp. I dessa fall kan namligen cylind- rarnas momentbidrag forefalla att variera relativt mycket sinsemellan aven om motorn och dess insprutningssystem fungerar perfekt. En larmsignal och/eller felkod kan darfor komma att alstras i onodan, vilket leder till obefogade driftstopp. PROBLEMS RELATED TO PRIOR ART Common to the above-mentioned solutions is that in one way or another the speed signal of an internal combustion engine is analyzed in order to determine which torque contribution each cylinder in the engine gives. If the torque contribution of the cylinders varies unacceptably much in relation to each other, this is interpreted as a fault condition. However, the known solutions for this type of analysis have similarities in drawing correct conclusions when the engine has been exposed to, for example, transient processes. Namely, in these cases, the torque contribution of the cylinders may appear to vary relatively much with each other even if the engine and its injection system work perfectly. An alarm signal and / or error code may therefore be generated in the onodan, which leads to unjustified downtime.

SAM MANFATTNING AV UPPFINNINGEN Syftet med foreliggande uppfinning är darfor att tillhandahalla en losning, vilken mildrar ovannamnda problem och astadkommer 2 en tillforlitligare upptackt av felaktiga cylindrar i en forbranningsmotor. SUMMARY OF THE INVENTION The object of the present invention is therefore to provide a solution which alleviates the above-mentioned problems and provides a more reliable detection of faulty cylinders in an internal combustion engine.

Enligt en aspekt av uppfinningen uppnas syftet genom det inledningsvis beskrivna diagnossystemet, varvid bearbetningsenhe- ten är konfigurerad att bilda en forsta testvariabel pa basis av ett forsta par av matvarden representerande ett respektive momentbidrag fran tva av namnda atminstone tre cylindrar under en matperiod. Bearbetningsenheten är vidare konfigurerad att bilda en andra testvariabel pa basis av ett andra par av matvar- den representerande ett respektive momentbidrag fran tva av namnda atminstone tre cylindrar under matperioden. Det forutsatts har att det forsta och andra paret av matvarden harror fran atminstone tre olika cylindrar i motorn. Bearbetningsenheten är sedan konfigurerad att testa den forsta och den andra testvaria- beln mot ett larmkriterium, och givet att larmkriteriet uppfylls är bearbetningsenheten konfigurerad att alstra en larmkod indikerande tel i atminstone en av namnda motorns cylindrar. According to one aspect of the invention, the object is achieved by the initially described diagnostic system, wherein the processing unit is configured to form a first test variable based on a first pair of food values representing a respective torque contribution from two of said at least three cylinders during a food period. The processing unit is further configured to form a second test variable on the basis of a second pair of food values representing a respective torque contribution from two of said at least three cylinders during the food period. It has been assumed that the first and second pairs of food racks graze from at least three different cylinders in the engine. The processing unit is then configured to test the first and second test variables against an alarm criterion, and given that the alarm criterion is met, the processing unit is configured to generate an alarm code indicating tel in at least one of said engine cylinders.

Detta system är onskvart eftersom det kan precisera huruvida ett identifierat fel innebar ett for hogt eller ett for lagt momentbi- drag fran en viss cylinder. Dessutom kan systemet hantera last- och varvtalsfall dar manga av de tidigare kanda losningarna indikerar tel trots att det inte fOreligger nagot tel. This system is inconvenient because it can specify whether an identified fault meant too high or too high a torque contribution from a certain cylinder. In addition, the system can handle load and speed drops where many of the previous known solutions indicate tel, even though there is no tel.

Enligt en utforingsform av den har aspekten av uppfinningen representerar den forsta testvariabeln en skillnad mellan det storsta momentbidraget och det nast storsta momentbidraget. Vidare representerar den andra testvariabeln med fordel en skillnad mellan det nast storsta momentbidraget och det lagsta momentbidraget. Darigenom erhalls namligen stabila detekteringskriterier for upptackt av cylindrar vilka ger ett for hogt mo- mentbidrag. According to an embodiment thereof, the aspect of the invention has the first test variable representing a difference between the largest torque contribution and the second largest torque contribution. Furthermore, the second test variable advantageously represents a difference between the second largest torque contribution and the lowest torque contribution. In this way, stable detection criteria are obtained for detecting cylinders which give a too high torque contribution.

Enligt en annan utforingsform av den har aspekten av uppfinningen är bearbetningsenheten konfigurerad att testa den forsta och andra testvariabeln mot larmkriteriet genom att bilda en 3 forsta teststorhet representerande en kvot mellan den forsta testvariabeln och summan av den forsta testvariabeln och den andra testvariabeln; och bilda en andra teststorhet representerande summan av den forsta testvariabeln och den andra testva- riabeln. Bearbetningsenheten är vidare konfigurerad att under- soka om den forsta teststorheten overstiger ett forsta troskelvarde, och undersoka om den andra teststorheten overstiger ett andra troskelvarde. Larmkriteriet anses har vara uppfyllt om den forsta teststorheten overstiger det forsta troskelvardet och sam- tidigt den andra teststorheten overstiger det andra troskelvardet. According to another embodiment of the same aspect of the invention, the processing unit is configured to test the first and second test variables against the alarm criterion by forming a first test variable representing a ratio between the first test variable and the sum of the first test variable and the second test variable; and forming a second test variable representing the sum of the first test variable and the second test variable. The processing unit is further configured to examine whether the first test quantity exceeds a first threshold value, and to examine whether the second test quantity exceeds a second threshold value. The alarm criterion is considered to have been met if the first test quantity exceeds the first threshold value and at the same time the second test quantity exceeds the second threshold value.

Denna testmetod har visat sig vara fordelaktig da motorn utsatts for transient drift. I dessa fall tenderar cylindrarnas momentbidrag att fluktuera avsevart (i synnerhet om momentbidragen inte är specifikt uppmatta, utan endast är estimerade). Typiskt sett representerar dock saval det storsta som det nast st6rsta mo- mentbidraget stora varden, varfor risken for falsklarm likval blir relativt liten. This test method has proven to be advantageous when the engine is subjected to transient operation. In these cases, the torque contributions of the cylinders tend to fluctuate considerably (especially if the torque contributions are not specifically measured, but are only estimated). Typically, however, both the largest and the second largest moment contribution represent the largest value, which is why the risk of false alarms is relatively small.

Enligt ytterligare en utforingsform av den har aspekten av uppfinningen indikerar larmkoden fel i den av motorns cylindrar vii- ken ger det storsta momentbidraget da larmkriteriet är uppfyllt. According to a further embodiment of it, the aspect of the invention indicates the alarm code error in that of the engine cylinders which gives the largest torque contribution when the alarm criterion is met.

Denna typ av avvikelse kan namligen vara forknippad med att for mycket bransle matas in i cylindern, exempelvis pa grund av fel i ett bransleinsprutningsorgan. This type of deviation can in fact be associated with too much fuel being fed into the cylinder, for example due to a fault in a fuel injection means.

Enligt andra utforingsformer av den har aspekten av uppfinnin- gen bildas den forsta testvariabeln pa basis av ett lagsta mo- mentbidrag fran den cylinder av namnda atminstone tre cylindrar vilken under en matperiod ger ett lagsta momentbidrag och ett nast lagsta momentbidrag fran den cylinder av namnda atminstone tre cylindrar vilken under matperioden ger ett nast lagsta momentbidrag. Den andra testvariabeln bildas har pa basis av det nast lagsta momentbidraget och ett hogsta momentbidrag fran den cylinder av namnda atminstone tre cylindrar vilken under matperioden ger ett hogsta momentbidrag. I detta fall representerar den forsta testvariabeln med fordel en skillnad mellan det nast lagsta momentbidraget och det lagsta momentbidraget, 4 medan den andra testvariabeln representerar en skillnad mellan det hogsta storsta momentbidraget och det nast lagsta momentbidraget. According to other embodiments thereof, the aspect of the invention is the first test variable formed on the basis of a minimum torque contribution from the cylinder of said at least three cylinders which during a feeding period gives a lowest torque contribution and a second lowest torque contribution from the cylinder of said at least three cylinders which during the feeding period gives a second lowest torque contribution. The second test variable is formed on the basis of the next lowest torque contribution and a maximum torque contribution from the cylinder of said at least three cylinders which during the feeding period gives a highest torque contribution. In this case, the first test variable advantageously represents a difference between the second lowest torque contribution and the lowest torque contribution, 4 while the second test variable represents a difference between the highest maximum torque contribution and the second lowest torque contribution.

Vidare är bearbetningsenheten lampligen konfigurerad att testa den fOrsta och andra testvariabeln mot larmkriteriet genom att: bilda en forsta teststorhet representerande en kvot mellan den forsta testvariabeln och summan av den forsta testvariabeln och den andra testvariabeln; bilda en andra teststorhet representerande summan av den forsta testvariabeln och den andra testvariabeln; undersoka om den forsta teststorheten overstiger ett tredje troskelvarde, samt undersoka den andra teststorheten overstiger ett fjarde troskelvarde. Larmkriteriet anses har vara uppfyllt om den forsta teststorheten overstiger det tredje troskelvardet, och den andra teststorheten overstiger det fjarde tros- kelvardet. Larmkoden indikerar i detta fall fel i den av motorns cylindrar, vilken ger det lagsta momentbidraget da larmkriteriet är uppfyllt. Darmed kan exempelvis ett defekt bransleinsprutningsorgan identifieras pa ett effektivt satt. Furthermore, the processing unit is suitably configured to test the first and second test variables against the alarm criterion by: forming a first test variable representing a ratio between the first test variable and the sum of the first test variable and the second test variable; forming a second test variable representing the sum of the first test variable and the second test variable; examine whether the first test quantity exceeds a third threshold value, and examine whether the second test quantity exceeds a fourth threshold value. The alarm criterion is considered to have been met if the first test quantity exceeds the third threshold value, and the second test quantity exceeds the fourth threshold value. The alarm code in this case indicates a fault in that of the engine cylinders, which gives the lowest torque contribution when the alarm criterion is met. Thus, for example, a defective fuel injection means can be identified in an efficient manner.

Enligt annu en annan utforingsform av den har aspekten av upp- finningen innefattar namnda sensor for registrering av matsigna- len atminstone en accelerometer och/eller atminstone en cylindertryckgivare. Darigenom kan adekvata data registreras vilka aterspeglar respektive cylinders momentbidrag. According to yet another embodiment of it, the aspect of the invention comprises said sensor for detecting the food signal at least one accelerometer and / or at least one cylinder pressure sensor. Thereby, adequate data can be registered which reflects the torque contribution of each cylinder.

Enligt en vidare utforingsform av den har aspekten av uppfinnin- gen inkluderar sensorn en varvtalsgivare, vilken är konfigurerad att alstra en varvtalssignal representerande forbranningsmotorns varvtal. Bearbetningsenheten är har konfigurerad att harleda ett respektive momentbidrag frail var och en av motorns cylindrar ur varvtalssignalen. En fordel med denna konstruktion är att en och samma givare kan anvandas for att uppmata signaler fran tva eller flera cylindrar. According to a further embodiment thereof, the aspect of the invention includes a speed sensor, which is configured to generate a speed signal representing the speed of the internal combustion engine. The processing unit is configured to derive a respective torque contribution from each of the engine cylinders from the speed signal. An advantage of this construction is that one and the same sensor can be used to transmit signals from two or more cylinders.

Enligt en annan utforingsform av den har aspekten av uppfinningen innefattar diagnossystemet atminstone en filtreringsenhet konfigurerad att motta och linjarfiltrera (exempelvis lagpasseller bandpassfiltrera) atminstone en ursprunglig matsignal fran forbranningsmotorn. Filtreringsenheten är konfigurerad att som svar till den mottagna signalen alstra atminstone en resulteran- de signal representerande en filtrerad version av matsignalen, dar exempelvis extrema signalvarden under matperioden har avlagsnats. Detta reducerar risken for falsklarm ytterligare. According to another embodiment thereof, the aspect of the invention comprises the diagnostic system comprising at least one filtering unit configured to receive and line filter (for example layer pass or bandpass filter) at least one original feed signal from the internal combustion engine. The filtering unit is configured to, in response to the received signal, generate at least one resulting signal representing a filtered version of the food signal, where, for example, extreme signal values during the food period have been deposited. This further reduces the risk of false alarms.

Enligt en annan aspekt av uppfinningen uppnas syftet genom den inledningsvis beskrivna metoden, varvid en forsta testvaria- bel bildas pa basis av ett forsta par av matvarden represente- rande ett respektive momentbidrag fran tva av namnda atminstone tre cylindrar under en matperiod; och en andra testvariabel bildas pa basis av ett andra par av matvarden representerande ett respektive momentbidrag fran tva av namnda atminstone tre cylindrar under matperioden, dar det forsta och andra paret av matvarden harror fran atminstone tre olika cylindrar i motorn. Den forsta och den andra testvariabeln testas mot ett larmkriterium, och givet att larmkriteriet uppfylls alstras en larmkod indikerande fel i atminstone en av motorns cylindrar. Fordelarna med denna metod, sa val som med de foredragna utforingsformerna darav, framgar av diskussionen har ovan med hanvisning till det foreslagna diagnossystemet. According to another aspect of the invention, the object is achieved by the method initially described, wherein a first test variable is formed on the basis of a first pair of food values representing a respective torque contribution from two of said at least three cylinders during a food period; and a second test variable is formed on the basis of a second pair of the food values representing a respective torque contribution from two of the at least three cylinders during the food period, the first and second pairs of the food values harrowing from at least three different cylinders in the engine. The first and second test variables are tested against an alarm criterion, and given that the alarm criterion is met, an alarm code indicating an error is generated in at least one of the engine cylinders. The advantages of this method, said choice as with the preferred embodiments thereof, appear from the discussion above with reference to the proposed diagnostic system.

Enligt ytterligare en aspekt av uppfinningen uppnas syftet genom ett datorprogram nedladdningsbart till internminnet hos en dator, innefattande programvara for att styra stegen enligt den ovan foreslagna metoden nar namnda program !cars pa en dator. According to a further aspect of the invention, the object is achieved by a computer program downloadable to the internal memory of a computer, comprising software for controlling the steps according to the method proposed above when said software cars on a computer.

Enligt annu en aspekt av uppfinningen uppnas syftet genom ett datorlasbart medium med ett darpa lagrat program, dar program-met är anpassat att forma en dator att styra stegen enligt den 30 ovan foreslagna metoden. According to another aspect of the invention, the object is achieved by a computer-readable medium having a darpa stored program, the program being adapted to form a computer to control the steps according to the method proposed above.

KORT BESKRIVNING AV RITNINGARNA Foreliggande uppfinning kommer nu att forklaras narmare medelst utforingsformer, vilka beskrivs som exempel, och med han- 6 visning till de bifogade ritningarna. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will now be explained in more detail by means of embodiments, which are described by way of example, and with reference to the accompanying drawings.

Figur 1visar en schematisk bild av en motor och ett diag- nossystem enligt en forsta utforingsform av uppfinningen; Figur 2visar en schematisk bild av en motor och ett diag- nossystem enligt en andra utforingsform av uppfinningen; Figur 3innehaller ett diagram illustrerande ett forsta exempel pa olika cylindrars momentbidrag som en funktion av tiden; Figur 4innehaller ett diagram illustrerande ett andra exempel pa olika cylindrars momentbidrag som en funktion av tiden; och Figur visar ett flodesschema vilket illustrerar en foredra- gen utforingsform av den allmanna metoden enligt uppfinningen. Figure 1 shows a schematic view of an engine and a diagnostic system according to a first embodiment of the invention; Figure 2 shows a schematic view of an engine and a diagnostic system according to a second embodiment of the invention; Figure 3 contains a diagram illustrating a first example of the torque contribution of different cylinders as a function of time; Figure 4 contains a diagram illustrating a second example of the torque contribution of different cylinders as a function of time; and Figure shows a flow chart illustrating a preferred embodiment of the general method of the invention.

BESKRIVNING AV UTFORINGSFORMER AV UPPFINNINGEN Vi hanvisar inledningsvis till Figur 1, som visar en schematisk bild av en forbranningsmotor 100 och ett diagnossystem enligt en forsta utforingsform av uppfinningen. Forbranningsmotorn 100 forutsatts inkludera atminstone tre cylindrar. Den i Figur 1 illustrerade motorn 100 är bestyckad med sex cylindrar Cl, 02, 03, 04, 05 och 06 i en rak konfiguration. Uppfinningen är emel- lertid aven tillamplig pa andra cylinderantal3 och typer av cylinderkonfigurationer, sasom V-, W-, boxer- och Wankelmoto- rer. DESCRIPTION OF EMBODIMENTS OF THE INVENTION We first refer to Figure 1, which shows a schematic view of an internal combustion engine 100 and a diagnostic system according to a first embodiment of the invention. The internal combustion engine 100 is assumed to include at least three cylinders. The engine 100 illustrated in Figure 1 is equipped with six cylinders C1, 02, 03, 04, 05 and 06 in a straight configuration. However, the invention is also applicable to other cylinder numbers3 and types of cylinder configurations, such as V, W, boxer and Wankel engines.

Det foreslagna diagnossystemet innefattar atminstone en sensor s1, s2, s3, s4, s5 respektive s6 och en bearbetningsenhet 110. Enligt utforingsformen i Figur 1 är en sensor s1, s2, s3, s4, s och s6 konfigurerad att registrera en respektive matsignal T1, T2, T3, T4, T5 och T6, vilken representerar ett respektive momentbidrag fran vane cylinder C1, 02, 03, C4, 05 och 06. Varje 7 sensor s1, s2, s3, s4, s5 och s6 kan darmed inkludera en accelerometer och/eller en cylindertryckgivare. The proposed diagnostic system comprises at least one sensor s1, s2, s3, s4, s5 and s6, respectively, and a processing unit 110. According to the embodiment of Figure 1, a sensor s1, s2, s3, s4, s and s6 are configured to register a respective feed signal T1, T2, T3, T4, T5 and T6, which represent a respective torque contribution from the usual cylinders C1, 02, 03, C4, 05 and 06. Each sensor s1, s2, s3, s4, s5 and s6 can thus include an accelerometer and / or a cylinder pressure sensor.

Bearbetningsenheten 110 är konfigurerad att pa basis av matsignalerna Ti, T2, T3, T4, T5 och T6 undersoka huruvida eller inte forbranningsmotorn 100 fungerar nojaktigt. Generellt sett är bearbetningsenheten 110 konfigurerad att bilda en forsta testvariabel a pa basis av ett forsta par av matvarden representerande ett respektive fran tva av cylindrarna C1, 02, C3, C4, 05 och 06 under en matperiod. Bearbetningsenheten 110 är aven konfigurerad att bilda en andra testvariabel b pa basis av ett andra par av matvarden representerande ett respektive momentbidrag fran tva av cylindrarna C1, 02, C3, C4, 05 och 06 under matperioden. Enligt uppfinningen kan matvardena delvis overlappa, men det forsta och andra paret av matvarden maste har- rora fran atminstone tre olika cylindrar av motorns 100 cylindrar Cl, 02, 03, 04, 05 respektive 06. Vidare är bearbetningsenheten 110 konfigurerad att testa den forsta och andra testvariabeln mot ett larmkriterium. Om larmkriteriet uppfylls, är bearbetningsenheten 110 konfigurerad att alstra en larmkod A indikerande fel i atminstone en av cylindrarna C1, 02, 03, C4, C5 eller C6. The processing unit 110 is configured to examine, on the basis of the feed signals T1, T2, T3, T4, T5 and T6, whether or not the internal combustion engine 100 is operating accurately. Generally, the processing unit 110 is configured to form a first test variable a on the basis of a first pair of food values representing a respective one of two of the cylinders C1, 02, C3, C4, 05 and 06 during a food period. The processing unit 110 is also configured to form a second test variable b on the basis of a second pair of the food values representing a respective torque contribution from two of the cylinders C1, 02, C3, C4, 05 and 06 during the feeding period. According to the invention, the food values may partially overlap, but the first and second pairs of food values must be from at least three different cylinders of the engine 100 cylinders C1, 02, 03, 04, 05 and 06, respectively. Furthermore, the processing unit 110 is configured to test the first and the second test variable against an alarm criterion. If the alarm criterion is met, the processing unit 110 is configured to generate an alarm code A indicating error in at least one of the cylinders C1, 02, 03, C4, C5 or C6.

Vi hanvisar nu till Figur 3, som visar ett diagram illustrerande ett forsta exempel pa de olika cylindrarnas Cl, C2, C3, 04, 05 och C6 momentbidrag T som en respektive funktion Ti, T2, T3, T4, T5 och T6 av tiden t. Med momentbidraget T avses har antingen är det maximala moment som en cylinder alstrar under en forbranningscykel (det vill saga tva vevaxelvarv pa en fyrtaktsmotor), eller ett medelmoment som en cylinder alstrar under en farbranni ngscykel . We now refer to Figure 3, which shows a diagram illustrating a first example of the torque contributions T of the various cylinders C1, C2, C3, 04, 05 and C6 as a respective function T1, T2, T3, T4, T5 and T6 of the time t By the torque contribution T is meant either the maximum torque that a cylinder generates during a combustion cycle (that is, two crankshaft revolutions on a four-stroke engine), or an average torque that a cylinder generates during a combustion cycle.

Enligt en utforingsform av uppfinningen ar bearbetningsenheten 110 specifikt konfigurerad att bilda den forsta testvariabeln a pa basis av (i) ett storsta momentbidrag x fran den cylinder, vilken under en matperiod (exempelvis motsvarande ett visst antal samplingsintervall for en respektive digital givare i sensorerna s1, s2, s3, s4, s5 och s6) ger ett storsta momentbidrag och (ii) 8 ett nast storsta momentbidrag y fran den cylinder, vilken under matperioden ger ett nast storsta momentbidrag. Bearbetningsenheten 110 är aven konfigurerad att bilda den andra testvariabeln b pa basis av (i) det nast storsta momentbidraget y och (ii) ett lagsta momentbidrag z fran den cylinder, vilken under matperio- den ger ett lagsta momentbidrag. According to one embodiment of the invention, the processing unit 110 is specifically configured to form the first test variable a on the basis of (i) a maximum torque contribution x from the cylinder which during a feeding period (e.g. corresponding to a certain number of sampling intervals for a respective digital sensor in the sensors s1). s2, s3, s4, s5 and s6) give a maximum torque contribution and (ii) 8 a second largest torque contribution y from the cylinder, which during the feeding period gives a second largest torque contribution. The processing unit 110 is also configured to form the second test variable b on the basis of (i) the second largest torque contribution y and (ii) a minimum torque contribution z from the cylinder, which during the feeding period gives a lowest torque contribution.

I Figur 3 visas hur tilldelningen av variablerna x, y och z varierar over tiden t. Har representerar en matsignal T6 variabeln x fram till en forsta tidpunkt ti. Fram till en andra tidpunkt t2 represen- terar en matsignal Ti variabeln z. MeIlan den forsta tidpunkten ti och en tredje tidpunkt t3 representerar en matsignal T5 variabeln x. MeIlan den andra tidpunkten t2 och en fjarde tidpunkt t4 representerar matsignalen T6 variabeln z, varefter matsignalen Ti anyo representerar variabeln z. MeIlan den tredje tidpunkten t3 och en femte tidpunkt t5 representerar en matsignal T3 varia- beln x, och mellan den femte tidpunkten t5 och en sjatte tidpunkt t6 representerar matsignalen 16 variabeln x. Fran och med den sjatte tidpunkten t6 representerar sedan matsignalen T3 variabeln x. Figure 3 shows how the assignment of the variables x, y and z varies over time t. Has a feed signal T6 represents the variable x up to a first time t1. Until a second time t2, a food signal Ti represents the variable z. Between the first time t1 and a third time t3, a food signal T5 represents the variable x. Between the second time t2 and a fourth time t4, the food signal T6 represents the variable z, after which the food signal Ti anyo the variable z represents. Between the third time t3 and a fifth time t5 a food signal T3 represents the variable x, and between the fifth time t5 and a sixth time t6 the food signal 16 represents the variable x. From and including the sixth time t6 then the food signal T3 variable x.

Tilldelningen av variabeln y varierar ocksa over tiden t. Exem- pelvis representerar matsignalen T3 variabeln y mellan den fernte tidpunkten t5 och den sjatte tidpunkten t6, medan matsignalen T6 representerar variabeln y mellan och den sjatte tidpunkten t6 och en attonde tidpunkt t8. Under hela forloppet testar bearbet- ningsenheten 110 den forsta och andra testvariabeln a respek- tive b mot ett larmkriterium; och om larmkriteriet uppfylls, sa alstrar bearbetningsenheten 110 en larmkod A. I det exempel som visas i Figur 3 uppfylls larmkriteriet vid en sjunde tidpunkt mellan den sjatte tidpunkten t6 och den attonde tidpunkten ts. The assignment of the variable y also varies over the time t. For example, the food signal T3 represents the variable y between the fourth time t5 and the sixth time t6, while the food signal T6 represents the variable y between and the sixth time t6 and an eighth time t8. Throughout the process, the processing unit 110 tests the first and second test variables a and b, respectively, against an alarm criterion; and if the alarm criterion is met, then the processing unit 110 generates an alarm code A. In the example shown in Figure 3, the alarm criterion is fulfilled at a seventh time between the sixth time t6 and the eighth time ts.

Vid den sjunde tidpunkten t7 uppfyller namligen ett forhallande mellan den forsta testvariabeln a och den andra testvariabel b larmkriteriet. Namely, at the seventh time t7, a ratio between the first test variable a and the second test variable b meets the alarm criterion.

Enligt utforingsformer av uppfinningen representerar den forsta testvariabeln a en skillnad mellan det storsta momentbidraget x 9 och det nast storsta momentbidraget y; och den andra testvariabeln b representerar en skillnad mellan det nast storsta momentbidraget y och det lagsta momentbidraget z. According to embodiments of the invention, the first test variable a represents a difference between the largest torque contribution x 9 and the second largest torque contribution y; and the second test variable b represents a difference between the second largest torque contribution y and the lowest torque contribution z.

Bearbetningsenheten 110 ar med fordel konfigurerad att testa den fOrsta och andra testvariabeln a respektive b mot larmkri- teriet genom att: bilda en forsta teststorhet representerande en kvot mellan den forsta testvariabeln a och summan av den forsta testvariabeln a och den andra testvariabeln b, det viii saga a. a+ b och bilda en andra teststorhet representerande summan av den forsta testvariabeln a och den andra testvariabeln b, det viii saga a+b. The processing unit 110 is advantageously configured to test the first and second test variables a and b, respectively, against the alarm criterion by: forming a first test quantity representing a ratio between the first test variable a and the sum of the first test variable a and the second test variable b, the viii saga a. a + b and form a second test variable representing the sum of the first test variable a and the second test variable b, the viii saga a + b.

Bearbetningsenheten 110 undersoker sedan am den forsta test- storheten al(a+b) overstiger ett forsta troskelvarde, och am samtidigt den andra teststorheten a+b overstiger ett andra troskelvarde. Givet att sa an fallet, alstrar bearbetningsenheten 110 en larmkod A, vilken indikerar fel i atminstone en av cylindrarna Cl, C2, C3, C4, 05 och C6. Vid den sjunde tidpunkten t7 antas alltsa de aktuella villkoren vara uppfyllda. The processing unit 110 then examines if the first test quantity a1 (a + b) exceeds a first threshold value, and at the same time the second test quantity a + b exceeds a second threshold value. Given that case, the processing unit 110 generates an alarm code A, which indicates a fault in at least one of the cylinders C1, C2, C3, C4, 05 and C6. At the seventh time t7, therefore, the current conditions are assumed to be met.

Vid detta tillfalle t7 representerar matsignalen 13 fran en tredje cylinder 03 i forbranningsmotorn 100 det storsta momentbidraget x. Enligt en foredragen utforingsform av uppfinningen indikerar darmed larmkoden A ett fel i den tredje cylindern 03. Fare- tradesvis anger larmkoden A dessutom att den tredje cylindern C3 mottar for mycket bransle, eftersom dess momentbidrag 13 an for hogt. In this case t7, the feed signal 13 from a third cylinder 03 in the internal combustion engine 100 represents the largest torque contribution x. According to a preferred embodiment of the invention, the alarm code A thus indicates an error in the third cylinder 03. In addition, the alarm code A further indicates that the third cylinder C3 receives too much fuel, because its torque contribution 13 is too high.

Figur 4 visar ett diagram, vilket illustrerar ett andra exempel pa hur de olika cylindrarnas Cl, C2, 03, 04, 05 och C6 momentbi- drag Ti, T2, T3, 14, T5 respektive T6 varierar Over tiden t. Figure 4 shows a diagram, which illustrates a second example of how the torque contributions Ti, T2, T3, 14, T5 and T6 of the different cylinders C1, C2, 03, 04, 05 and C6 vary over time t.

Enligt den har utforingsformen av uppfinningen an bearbetnings- enheten 110 konfigurerad att bilda en forsta testvariabel a pa basis av (i) ett lagsta momentbidrag z fran den cylinder, vilken under en matperiod (exempelvis motsvarande ett visst antal samplingsintervall for en respektive digital givare i sensorerna s1, s2, s3, s4, s5 och s6) ger ett lagsta momentbidrag och (ii) ett nast lagsta momentbidrag w fran den cylinder, vilken under matperioden ger ett nast lagsta momentbidrag. Bearbetningsenheten 110 är aven konfigurerad att bilda en andra testvariabel b pa basis av (i) det nast lagsta momentbidraget w och (ii) ett hogsta momentbidrag x fran den cylinder, vilken under matperio- den ger ett lagsta momentbidrag. According to it, the embodiment of the invention has the processing unit 110 configured to form a first test variable a on the basis of (i) a minimum torque contribution z from the cylinder, which during a feeding period (e.g. corresponding to a certain number of sampling intervals for a respective digital sensor in the sensors s1, s2, s3, s4, s5 and s6) gives a minimum torque contribution and (ii) a second lowest torque contribution w from the cylinder, which during the feeding period gives a second lowest torque contribution. The processing unit 110 is also configured to form a second test variable b on the basis of (i) the next lowest torque contribution w and (ii) a maximum torque contribution x from the cylinder which during the feeding period gives a lowest torque contribution.

I Figur 4 visas hur tilldelningen av variablerna x, w och z varierar over tiden t. Exempelvis representerar den forsta cylinderns Cl momentbidrag T1 variabeln z inledningsvis medan den fjarde cylinderns C4 momentbidrag 14 representerar variabeln w. Vid en tidpunkt t9 representerar emellertid den tredje cylinderns C3 momentbidrag 13 variabeln z, och vid en efterfoljande tidpunkt tic) uppfylls larmkriteriet. Figure 4 shows how the assignment of the variables x, w and z varies over time t. For example, the torque contribution T1 of the first cylinder C1 represents the variable z initially while the torque contribution 14 of the fourth cylinder C4 represents the variable w. At a time t9, however, the third cylinder C3 represents torque contribution 13 variable z, and at a subsequent time tic) the alarm criterion is met.

Enligt denna utforingsform av uppfinningen representerar namli- gen den forsta testvariabeln a en skillnad mellan det nast lagsta momentbidraget z och det lagsta momentbidraget w; och den andra testvariabeln b representerar en skillnad mellan det hogsta momentbidraget x och det nast lagsta momentbidraget w. According to this embodiment of the invention, the first test variable a represents a difference between the second lowest torque contribution z and the lowest torque contribution w; and the second test variable b represents a difference between the highest torque contribution x and the second lowest torque contribution w.

Aven har är bearbetningsenheten 110 med fordel konfigurerad att testa den forsta och andra testvariabeln a respektive b mot larmkriteriet genom att: bilda en forsta teststorhet representerande en kvot mellan den forsta testvariabeln a och summan av den forsta testvariabeln a och den andra testvariabeln b, det vill saga a a + b. och bilda en andra teststorhet representerande summan av den forsta testvariabeln a och den andra testvariabeln b, det vill 11 saga a+b. Also, the processing unit 110 is advantageously configured to test the first and second test variables a and b, respectively, against the alarm criterion by: forming a first test quantity representing a ratio between the first test variable a and the sum of the first test variable a and the second test variable b, i.e. saga aa + b. and form a second test variable representing the sum of the first test variable a and the second test variable b, i.e. 11 saga a + b.

Bearbetningsenheten 110 undersoker sedan am den forsta teststorheten al(a+b) overstiger ett tredje troskelvarde, och am samtidigt den and ía teststorheten a+b overstiger ett fjarde tros- kelvarde. Givet att sa ar fallet, alstrar bearbetningsenheten 1 en larmkod A, vilken indikerar fel i atminstone en av cylindrarna Cl, C2, 03, 04, C5 och 06. Vid tidpunkten tio antas alltsa dessa villkor vara uppfyllda. The processing unit 110 then examines if the first test variable a1 (a + b) exceeds a third threshold value, and at the same time the second test variable a + b exceeds a fourth threshold value. Given that this is the case, the processing unit 1 generates an alarm code A, which indicates an error in at least one of the cylinders C1, C2, 03, 04, C5 and 06. At time ten, all these conditions are assumed to be fulfilled.

Vid tidpunkten tic) representerar matsignalen 13 fran den tredje cylindern 03 i forbranningsmotorn 100 det lagsta momentbidra- get z. Enligt en foredragen utforingsform av uppfinningen indikerar darmed larmkoden A ett fel i den tredje cylindern 03. Foretradesvis anger larmkoden A aven att den tredje cylindern 03 mottar for lite bransle, eftersom dess momentbidrag T3 är for lagt. At time tic) the feed signal 13 from the third cylinder 03 in the internal combustion engine 100 represents the lowest torque contribution z. According to a preferred embodiment of the invention, the alarm code A thus indicates an error in the third cylinder 03. Preferably, the alarm code A also indicates that the third cylinder 03 receives too little fuel, because its torque contribution T3 is too low.

Enligt en utforingsform av uppfinningen inkluderar diagnossystemet atminstone en filtreringsenhet 120, vilken är konfigurerad att motta och linjarfiltrera de ursprungliga matsignalerna fran forbranningsmotorn 100, och som svar dartill alstra resulterande signaler, vilka representerar matsignalerna Ti, 12, 13, 14, och T6. Filtreringsenheten 120 är inrattad att avlagsna extrema matvarden, det viii saga varden vilka avviker starkt fran ovriga matvarden under matperioden (s.k. outliers), exempelvis genom lagpass- eller bandpassfiltrering av de inkommande signalerna. According to one embodiment of the invention, the diagnostic system includes at least one filtering unit 120, which is configured to receive and line filter the original feed signals from the internal combustion engine 100, and in response, generate resulting signals representing the feed signals T1, 12, 13, 14, and T6. The filtering unit 120 is arranged to deposit extreme food values, the viii fair values which deviate strongly from other food values during the food period (so-called outliers), for example by team-pass or band-pass filtering of the incoming signals.

Darmed kan bearbetningsenhetens 110 analys baseras pa data med hogre tillforlitlighet och relevans. Thus, the analysis of the processing unit 110 can be based on data with higher reliability and relevance.

Det är fordelaktigt am bearbetningsenheten 110 inkluderar, eller är kommunikativt ansluten till, en minnesenhet M, vilken inkluderar ett datorprogram innefattande programvara for att styra bear- betningsenheten 110 att arbeta enligt vad som beskrivits ovan. It is advantageous if the processing unit 110 includes, or is communicatively connected to, a memory unit M, which includes a computer program including software for controlling the processing unit 110 to operate as described above.

Figur 2 visar en schematisk bild av en forbranningsmotor 100 och ett diagnossystem enligt en andra utforingsform av uppfinningen. Alla hanvisningsbeteckningar i Figur 2 vilka overens- 1 2 stammer med hanvisningsbeteckningar i Figur 1 anger samma enheter, variabler och signaler som de vilka har beskrivits ovan med hanvisning till Figur 1. Figure 2 shows a schematic view of an internal combustion engine 100 and a diagnostic system according to a second embodiment of the invention. All male reference numerals in Figure 2 which correspond to male reference numerals in Figure 1 indicate the same units, variables and signals as those which have been described above with male reference to Figure 1.

Utforingsformen i Figur 2 skiljer sig primart fran den i Figur 1 genom att det i Figur 2 illustrerade diagnossystemet inkluderar en varvtalsgivare s7 konfigurerad att alstra en varvtalssignal rpm representerande forbranningsmotorns 100 varvtal. Bearbetningsenheten 110 är saledes konfigurerad att harleda ett respektive momentbidrag T1, T2, T3, T4, T5 och T6 fran cylind- rarna Cl, C2, C3, C4, C5 och C6 ur varvtalssignalen rpm. Ex- empel pa hur detta kan effektueras finns beskrivna i ovannamnda patentskrifter. The embodiment of Figure 2 differs primarily from that of Figure 1 in that the diagnostic system illustrated in Figure 2 includes a speed sensor s7 configured to generate a speed signal rpm representing the speed of the internal combustion engine 100. The processing unit 110 is thus configured to derive a respective torque contribution T1, T2, T3, T4, T5 and T6 from the cylinders C1, C2, C3, C4, C5 and C6 from the speed signal rpm. Examples of how this can be effected are described in the above-mentioned patents.

Som ett alternativ till varvtalsgivaren s7 kan en momentgivare arrangeras pa motorns 100 vevaxel mellan cylindrarna och svanghjulet, vilken momentgivare är konfigurerad att upprnata de olika cylindrarnas Cl, C2, 03, 04, 05 respektive 06 momentbidrag. As an alternative to the speed sensor s7, a torque sensor can be arranged on the crankshaft of the engine 100 between the cylinders and the flywheel, which torque sensor is configured to receive the torque contribution of the various cylinders C1, C2, 03, 04, 05 and 06, respectively.

Med fordel inkluderar diagnossystemet aven en filtreringsenhet 220, vilken är konfigurerad att motta och linjarfiltrera den ur- sprungliga matsignalen fran varvtalsgivaren, och som svar dartill alstra resulterande signaler, vilka representerar matsignalerna rpm. Filtreringsenheten 220 är ocksa har inrattad att avlagsna extrema matvarden, det vill saga varden vilka avviker starkt fran ovriga matvarden under matperioden (s.k. outliers), exempelvis genom lagpass- eller bandpassfiltrering av de inkommande sig- nalerna. Advantageously, the diagnostic system also includes a filtering unit 220, which is configured to receive and line filter the original feed signal from the speed sensor, and in response, generate resultant signals representing the feed signals rpm. The filtering unit 220 is also designed to remove extreme food values, i.e. the values which deviate strongly from other food values during the food period (so-called outliers), for example by team-pass or band-pass filtering of the incoming signals.

I syfte att summera kommer nu den allmanna metoden enligt uppfinningen att beskrivas med hanvisning till flodesschemat i Figur 5. For the purpose of summarizing, the general method according to the invention will now be described with reference to the flow chart in Figure 5.

I ett forsta steg 510 registreras atminstone en matsignal T1, T2, T3, T4, T5 och T6 eller rpm, vilken representerar ett respektive momentbidrag fran vane cylinder Cl, 02, 03, 04, 05 respektive 06 i en forbranningsmotor. Motorn forutsatts har vara bestyckad 13 med atminstone tre cylindrar. In a first step 510, at least one feed signal T1, T2, T3, T4, T5 and T6 or rpm is registered, which represents a respective torque contribution from the usual cylinder C1, 02, 03, 04, 05 and 06, respectively, in an internal combustion engine. The engine is assumed to be equipped 13 with at least three cylinders.

Darefter bildas i ett steg 520 en forsta testvariabel a pa basis av ett forsta par av matvarden representerande ett respektive momentbidrag fran tva av namnda cylindrar under en matperiod. Then, in a step 520, a first test variable a is formed on the basis of a first pair of the food values representing a respective torque contribution from two of said cylinders during a food period.

Exempelvis kan det forsta paret av matvarden representera ett storsta momentbidrag x fran den cylinder, vilken under en matperiod ger ett storsta momentbidrag och ett nast storsta momentbidrag y frail den cylinder, vilken under matperioden ger ett nast storsta momentbidrag. Alternativt kan det forsta paret av matvarden representera ett lagsta momentbidrag z fran den cylinder, vilken under en matperiod ger ett lagsta momentbidrag och ett nast lagsta momentbidrag w fran den cylinder, vilken under matperioden ger ett nast lagsta momentbidrag. For example, the first pair of feed values may represent a maximum torque contribution x from the cylinder which during a feeding period gives a largest torque contribution and a second largest torque contribution y from the cylinder which during the feeding period gives a second largest torque contribution. Alternatively, the first pair of feed values may represent a minimum torque contribution z from the cylinder which during a feeding period gives a lowest torque contribution and a second lowest torque contribution w from the cylinder which during the feeding period gives a second lowest torque contribution.

I ett steg 530, vilket foretradesvis exekveras parallellt med steg 520, bildas en andra testvariabel b pa basis av ett andra par av matvarden representerande ett respektive momentbidrag fran tva av namnda cylindrar under matperioden. Det forsta och andra paret av matvarden forutsatts harrora fran atminstone tre olika cylindrar av namnda cylindrar. Exempelvis kan det andra paret av matvarden representera det nast storsta momentbidraget y och ett lagsta momentbidrag z fran den cylinder, vilken under matperioden ger ett lagsta momentbidrag. Alternativt kan det andra paret av matvarden representera det storsta momentbidraget x och det nast lagsta momentbidraget w under mat- perioden. In a step 530, which is preferably executed in parallel with step 520, a second test variable b is formed on the basis of a second pair of the food values representing a respective torque contribution from two of said cylinders during the food period. The first and second pairs of food utensils are provided with harrows from at least three different cylinders of said cylinders. For example, the second pair of feed values may represent the second largest torque contribution y and a lowest torque contribution z from the cylinder, which during the feeding period gives a lowest torque contribution. Alternatively, the second pair of food values may represent the largest moment contribution x and the second lowest moment contribution w during the meal period.

Ett efterfoljande steg 540 undersoker huruvida eller inte forbranningsmotorn anses fungera nojaktigt. Specifikt testas i steg 540 den forsta och andra testvariabeln a respektive b mot ett larmkriterium. Om larmkriteriet är uppfyllt foljer ett steg 550, och i annat fall loopar proceduren tillbaka till steg 510. A subsequent step 540 examines whether or not the internal combustion engine is considered to function accurately. Specifically, in step 540, the first and second test variables a and b, respectively, are tested against an alarm criterion. If the alarm criterion is met, a step 550 follows, and otherwise the procedure loops back to step 510.

I steg 550 alstras en larmkod indikerande fel i atminstone en av motorns cylindrar Cl, C2, C3, C4, 05 eller C6, foretradesvis den eller de av motorns cylindrar vilken/vilka är forknippade med det/de 14 mest avvikande momentbidrage/t/n da larmkriteriet är uppfyllt. Sedan slutar proceduren. Alternativt kan man tanka sig att pro- ceduren efter steg 550 atergar till steg 510 for fortsatt testning. In step 550, an alarm code indicating an error is generated in at least one of the engine cylinders C1, C2, C3, C4, 05 or C6, preferably the engine (s) of the engine which are associated with the 14 most deviating torque contribution (s). when the alarm criterion is met. Then the procedure ends. Alternatively, it is conceivable that the procedure after step 550 returns to step 510 for further testing.

De med hanvisning till Figur 5 beskrivna metodstegen kan styras med hjalp av en programmerad datorapparat. Dessutom, aven om de ovan med hanvisning till figurerna beskrivna utforingsformerna av uppfinningen innefattar en dator och processer utforda i en dator, utstracker sig uppfinningen till datorprogram, speciellt datorprogram pa eller i en barare anpassad att praktiskt imple- mentera uppfinningen. Programmet kan vara i form av kallkod, objektkod, en kod som utgor ett mellanting mellan kall- och objektkod, sasom i delvis kompilerad form, eller i vilken annan form som heist lamplig att anvanda vid implementering av processen enligt uppfinningen. Bararen kan vara godtycklig entitet eller anordning vilken är kapabel att bara programmet. Exempel- vis kan bararen innefatta ett lagringsmedium sasom ett flashminne, ett ROM (Read Only Memory), exempelvis en CD (Compact Disc) eller ett halvledar-ROM, EPROM (Electrically Programmable ROM), EEPROM (Erasable EPROM), eller ett mag- netiskt inspelningsmedium, exempelvis en floppydisk eller hard- disk. Dessutom kan bararen vara en overforande barare sasom en elektrisk eller optisk signal, vilken kan ledas genom en elektrisk eller optisk kabel eller via radio eller pa annat satt. Da programmet gestaltas av en signal som kan ledas direkt av en kabel eller annan anordning eller organ kan bararen utgoras av en sadan kabel, anordning eller organ. Alternativt kan bararen vara en integrerad krets i vilken programmet är inbaddat, dar den integrerade kretsen är anpassad att utfora, eller for att anvandas vid utforande av, de aktuella processerna. The method steps described with reference to Figure 5 can be controlled with the aid of a programmed computer apparatus. In addition, although the embodiments of the invention described above with reference to the figures include a computer and processes challenging in a computer, the invention extends to computer programs, especially computer programs on or in a bar adapted to practically implement the invention. The program may be in the form of cold code, object code, a code which constitutes an intermediate between cold and object code, as in partially compiled form, or in any other form which is convenient to use in implementing the process according to the invention. The bar can be any entity or device which is capable of just the program. For example, the bar may comprise a storage medium such as a flash memory, a Read (Only Memory) ROM, for example a CD (Compact Disc) or a semiconductor ROM, EPROM (Electrically Programmable ROM), EEPROM (Erasable EPROM), or a storage memory. netic recording medium, such as a floppy disk or hard disk. In addition, the carrier may be a transmitting carrier such as an electrical or optical signal, which may be conducted by an electrical or optical cable or by radio or otherwise. Since the program is formed by a signal which can be conducted directly by a cable or other device or means, the bar can be constituted by such a cable, device or means. Alternatively, the bar can be an integrated circuit in which the program is embedded, where the integrated circuit is adapted to perform, or to be used in performing, the current processes.

Uppfinningen är inte begransad till de utforingsformer, som be- skrivits med hanvisning till figurerna utan kan varieras fritt inom omfanget hos de pafoljande patentkraven. The invention is not limited to the embodiments described with reference to the figures but can be varied freely within the scope of the following claims.

Claims (14)

PatentkravPatent claims 1. Ett diagnossystem far en forbranningsmotor (100) inklude- rande atminstone tre cylindrar (Cl, C2, C3, C4, C5, C6), systemet innefattande: atminstone en sensor (s1, s2, s3, s4, s5, s6; s7) konfigure- rad att registrera atminstone en matsignal (Ti, 12, T3, T4, T5, T6; rpm) representerande ett respektive momentbidrag fran varje cylinder av namnda atminstone tre cylindrar, och en bearbetningsenhet (110) konfigurerad att pa basis av namnda atminstone en matsignal undersoka huruvida eller inte forbranningsmotorn (100) fungerar n6jaktigt, kannetecknat av att bearbetningsenheten (110) är konfigurerad att: bilda en forsta testvariabel (a) pa basis av ett forsta par av matvarden representerande ett respektive momentbidrag (x, y; 15 w, z) fran tva av namnda atminstone tre cylindrar under en mat-period; bilda en andra testvariabel (b) pa basis av ett andra par av matvarden representerande ett respektive momentbidrag (y, z; x, w) fran tva av namnda atminstone tre cylindrar under matpe- rioden, dar namnda f6rsta och andra par av matvarden harror fran atminstone tre olika cylindrar av namnda atminstone tre cylindrar; testa den f6rsta testvariabeln (a) och den andra testvariabeln (b) mot ett larmkriterium, och givet att larmkriteriet uppfylls alstra en larmkod (A) indikerande fel i atminstone en av namnda atminstone tre cylindrar, varvid: den f6rsta testvariabeln (a) bildas pa basis av ett st6rsta momentbidrag (x) fran den cylinder (C3) av namnda atminstone tre cylindrar vilken under en matperiod ger ett storsta moment- bidrag och ett nast st6rsta momentbidrag (y) fran den cylinder av namnda atminstone tre cylindrar vilken under matperioden ger ett nast storsta momentbidrag, och den andra testvariabeln (b) bildas pa basis av det nast st6rsta momentbidraget (y) och ett lagsta momentbidrag (z) fran den cy- linder av namnda atminstone tre cylindrar vilken under matperio- den ger ett lagsta momentbidrag. 16A diagnostic system comprises an internal combustion engine (100) including at least three cylinders (C1, C2, C3, C4, C5, C6), the system comprising: at least one sensor (s1, s2, s3, s4, s5, s6; s7 ) configured to record at least one feed signal (Ti, 12, T3, T4, T5, T6; rpm) representing a respective torque contribution from each cylinder of said at least three cylinders, and a processing unit (110) configured to on the basis of said at least a food signal examines whether or not the internal combustion engine (100) is operating accurately, characterized in that the processing unit (110) is configured to: form a first test variable (a) based on a first pair of food values representing a respective torque contribution (x, y; 15 w , z) from two of said at least three cylinders during a food period; form a second test variable (b) on the basis of a second pair of food values representing a respective torque contribution (y, z; x, w) from two of said at least three cylinders during the food period, where said first and second pairs of food grains from at least three different cylinders of said at least three cylinders; test the first test variable (a) and the second test variable (b) against an alarm criterion, and provided that the alarm criterion is met, generate an alarm code (A) indicating an error in at least one of said at least three cylinders, wherein: the first test variable (a) is formed on basis of a maximum torque contribution (x) from the cylinder (C3) of said at least three cylinders which during a feeding period gives a largest torque contribution and a second largest torque contribution (y) from the cylinder of said at least three cylinders which during the feeding period gives a second largest torque contribution, and the second test variable (b) is formed on the basis of the next largest torque contribution (y) and a minimum torque contribution (z) from the cylinder of said at least three cylinders which during the feeding period gives a minimum torque contribution. 16 2. Diagnossystemet enligt krav 1, varvid: den forsta testvariabeln (a) representerar en skillnad mellan det storsta momentbidraget (x) och det nast storsta momentbidraget (y), och den andra testvariabeln (b) representerar en skillnad mel- lan det nast storsta momentbidraget (y) och det lagsta momentbidraget (z).The diagnostic system of claim 1, wherein: the first test variable (a) represents a difference between the largest torque contribution (x) and the second largest torque contribution (y), and the second test variable (b) represents a difference between the second largest the torque contribution (y) and the lowest torque contribution (z). 3. Diagnossystemet enligt krav 2, varvid bearbetningsenheten (110) är konfigurerad att testa den forsta och andra testvaria- beln (a; b) mot larmkriteriet genom att: bilda en f6rsta teststorhet representerande en kvot mellan den forsta testvariabeln (a) och summan av den forsta testvariabeln (a) och den andra testvariabeln (b), bilda en andra teststorhet representerande summan av den forsta testvariabeln (a) och den andra testvariabeln (b), undersoka om den forsta teststorheten overstiger ett forsta troskelvarde, och undersoka om den andra teststorheten overstiger ett andra troskelvarde, varvid larmkriteriet är uppfyllt om den forsta teststorheten over- stiger det forsta troskelvardet, och den andra teststorheten Overstiger det andra troskelvardet.The diagnostic system of claim 2, wherein the processing unit (110) is configured to test the first and second test variables (a; b) against the alarm criterion by: forming a first test quantity representing a ratio between the first test variable (a) and the sum of the first test variable (a) and the second test variable (b), form a second test variable representing the sum of the first test variable (a) and the second test variable (b), examine whether the first test quantity exceeds a first threshold value, and examine whether the second the test quantity exceeds a second threshold value, the alarm criterion being met if the first test quantity exceeds the first threshold value, and the second test quantity exceeds the second threshold value. 4. Diagnossystemet enligt nagot av foregaende krav, varvid larmkoden (A) indikerar fel i den av namnda atminstone tre cy- lindrar (03) vilken ger det storsta momentbidraget (x) da larm- kriteriet är uppfyllt.The diagnostic system according to any one of the preceding claims, wherein the alarm code (A) indicates a fault in that of said at least three cylinders (03) which gives the largest torque contribution (x) when the alarm criterion is met. 5. Diagnossystemet enligt nagot av foregaende krav, varvid namnda atminstone en sensor (s1, s2, s3, s4, s5, s6) inkluderar atminstone endera av en accelerometer och en cylindertryckgi30 vare.The diagnostic system of any preceding claim, wherein said at least one sensor (s1, s2, s3, s4, s5, s6) includes at least one of an accelerometer and a cylinder pressure sensor. 6. Diagnossystemet enligt nagot av kraven 1 till 5, varvid: namnda atminstone en sensor inkluderar en varvtalsgivare 17 (s7) konfigurerad att alstra en varvtalssignal (rpm) representerande forbranningsmotorns (100) varvtal, och bearbetningsenheten (110) är konfigurerad att harleda ett respektive momentbidrag (Ti, 12, T3, T4, T5, T6) fran var och en av namnda atminstone tre cylindrar ur varvtalssignalen (rpm).The diagnostic system according to any one of claims 1 to 5, wherein: said at least one sensor includes a speed sensor 17 (s7) configured to generate a speed signal (rpm) representing the speed of the internal combustion engine (100), and the processing unit (110) is configured to derive a respective torque contribution (Ti, 12, T3, T4, T5, T6) from each of said at least three cylinders from the speed signal (rpm). 7. Diagnossystemet enligt nagot av foregaende krav, innefat- tande atminstone en filtreringsenhet (120; 220) konfigurerad att motta och linjarfiltrera atminstone en ursprunglig matsignal fran forbranningsmotorn (100) och som svar alstra atminstone en re- sulterande signal representerande namnda atminstone en mat- signal (T1, T2, 13, T4, T5, 16; rpm).The diagnostic system of any preceding claim, comprising at least one filtering unit (120; 220) configured to receive and line filter at least one original feed signal from the internal combustion engine (100) and in response generate at least one resultant signal representing said at least one feedstock. signal (T1, T2, 13, T4, T5, 16; rpm). 8. En metod for att diagnostisera en forbranningsmotor (100) inkluderande atminstone tre antal cylindrar (C1, 02, 03, 04, 05, 06), metoden innefattande: registrering av atminstone en matsignal (Ti, T2, T3, T4, T5, T6; rpm) representerande ett respektive momentbidrag fran vane cylinder av namnda atminstone tre cylindrar, och undersokning, pa basis av namnda atminstone en matsignal (11, 12, T3, T4, T5, T6; rpm), huruvida eller inte forbran- ningsmotorn fungerar nojaktigt, kannetecknad av bildande av en forsta testvariabel (a) pa basis av ett forsta par av matvarden representerande ett respektive momentbidrag 24. y; w, z) fran tva av namnda atminstone tre cylindrar under en matperiod; bildande av en andra testvariabel (b) pa basis av ett andra par av matvarden representerande ett respektive momentbidrag 25. z; x, w) fran tva av namnda atminstone tre cylindrar under matperioden, dar namnda forsta och andra par av matvarden harror fran atminstone tre olika cylindrar av namnda atminstone tre cylindrar; testning av den forsta testvariabeln (a) och den andra testvariabeln (b) mot ett larmkriterium, och givet att larmkriteriet uppfylls alstring av en larmkod (A) indikerande fel i atminstone en 18 av namnda atminstone tie cylindrar, varvid: den forsta testvariabeln (a) bildas pa basis av ett storsta momentbidrag (x) fran den cylinder (C3) av namnda atminstone tie cylindrar vilken under en matperiod ger ett storsta moment- bidrag och ett nast storsta momentbidrag (y) fran den cylinder av namnda atminstone tie cylindrar vilken under matperioden ger ett nast storsta momentbidrag, och den andra testvariabeln (b) bildas pa basis av det nast storsta momentbidraget (y) och ett lagsta momentbidrag (z) fran den cy- linder av namnda atminstone tie cylindrar vilken under matperio- den ger ett lagsta momentbidrag.A method of diagnosing an internal combustion engine (100) including at least three cylinders (C1, 02, 03, 04, 05, 06), the method comprising: recording at least one feed signal (T1, T2, T3, T4, T5, T6; rpm) representing a respective torque contribution from a conventional cylinder of said at least three cylinders, and examining, on the basis of said at least one feed signal (11, 12, T3, T4, T5, T6; rpm), whether or not the internal combustion engine is operating accurately, can be characterized by the formation of a first test variable (a) on the basis of a first pair of food values representing a respective torque contribution 24. y; w, z) from two of said at least three cylinders during a feeding period; forming a second test variable (b) based on a second pair of the food values representing a respective torque contribution 25. z; x, w) from two of said at least three cylinders during the food period, wherein said first and second pairs of food hosts are from at least three different cylinders of said at least three cylinders; testing the first test variable (a) and the second test variable (b) against an alarm criterion, and provided that the alarm criterion is met generating an alarm code (A) indicating error in at least 18 of said at least ten cylinders, wherein: the first test variable (a ) is formed on the basis of a largest torque contribution (x) from the cylinder (C3) of said at least ten cylinders which during a feeding period gives a largest torque contribution and a second largest torque contribution (y) from the cylinder of said at least ten cylinders which during the feed period gives a second largest torque contribution, and the second test variable (b) is formed on the basis of the second largest torque contribution (y) and a minimum torque contribution (z) from the cylinder of said at least ten cylinders which during the feeding period gives a minimum moment contribution. 9. Metoden enligt krav 8, varvid: den forsta testvariabeln (a) representerar en skillnad mellan det storsta momentbidraget (x) och det nast storsta moment- bidraget (y), och den andra testvariabeln (b) representerar en skillnad mellan det nast storsta momentbidraget (y) och det lagsta momentbidraget (z).The method of claim 8, wherein: the first test variable (a) represents a difference between the largest torque contribution (x) and the second largest torque contribution (y), and the second test variable (b) represents a difference between the second largest the torque contribution (y) and the lowest torque contribution (z). 10. Metoden enligt krav 9, varvid den forsta och andra testva- riabeln (a; b) testas mot larmkriteriet genom: bildande av en forsta teststorhet representerande en kvot mellan den forsta testvariabeln (a) och summan av den forsta testvariabeln (a) och den andra testvariabeln (b), bildande av en andra teststorhet representerande summan av den forsta testvariabeln (a) och den andra testvariabeln (b), undersokning om den forsta teststorheten overstiger ett forsta troskelvarde, och undersokning om den andra teststorheten overstiger ett andra troskelvarde, varvid larmkriteriet ar uppfyllt om den forsta teststorheten over- stiger det forsta troskelvardet, och den andra teststorheten Overstiger det andra troskelvardet.The method of claim 9, wherein the first and second test variables (a; b) are tested against the alarm criterion by: forming a first test variable representing a ratio between the first test variable (a) and the sum of the first test variable (a) and the second test variable (b), forming a second test quantity representing the sum of the first test variable (a) and the second test variable (b), examining whether the first test quantity exceeds a first threshold value, and examining whether the second test quantity exceeds a second threshold value, whereby the alarm criterion is met if the first test quantity exceeds the first threshold value, and the second test quantity exceeds the second threshold value. 11. Metoden enligt nagot av kraven 8 till 10, varvid larmkoden 19 (A) indikerar fel i den av namnda atminstone tre cylindrar (03) vilken ger det storsta momentbidraget (x) cla larmkriteriet är uppfyllt.The method according to any one of claims 8 to 10, wherein the alarm code 19 (A) indicates a fault in that of said at least three cylinders (03) which gives the largest torque contribution (x) cla the alarm criterion is met. 12. Metoden enligt nagot av kraven 8 till 11, innefattande lin- jarfiltrering av atminstone en ursprunglig matsignal fran forbran- ningsmotorn (100) varvid atminstone en resulterande signal alstras vilken representerar namnda atminstone en matsignal (Ti, T2, T3, 14, T5, T6; rpm).The method of any of claims 8 to 11, comprising linear filtering at least one initial feed signal from the internal combustion engine (100), wherein at least one resulting signal is generated which represents said at least one feed signal (T 1, T 2, T 3, 14, T 5, T6; rpm). 13. Ett datorprogram nedladdningsbart till internminnet (M) hos en dator, innefattande programvara far att utfora stegen enligt nagot av kraven 8 till 12 nar namnda program [(ors pa datorn.A computer program downloadable to the internal memory (M) of a computer, comprising software capable of performing the steps according to any one of claims 8 to 12 when said program [is run on the computer. 14. Ett datorlasbart medium (M) med ett darpa lagrat program, dar programmet är anpassat att forma en dator att utfora stegen enligt nagot av kraven 8 till 12.A computer readable medium (M) having a darpa stored program, wherein the program is adapted to shape a computer to perform the steps of any of claims 8 to 12.
SE1251202A 2012-10-24 2012-10-24 Combustion engine diagnosis SE537390C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1251202A SE537390C2 (en) 2012-10-24 2012-10-24 Combustion engine diagnosis
PCT/SE2013/051221 WO2014065743A1 (en) 2012-10-24 2013-10-18 Cylinder diagnosis
DE112013004818.3T DE112013004818T5 (en) 2012-10-24 2013-10-18 cylinder diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1251202A SE537390C2 (en) 2012-10-24 2012-10-24 Combustion engine diagnosis

Publications (2)

Publication Number Publication Date
SE1251202A1 SE1251202A1 (en) 2014-04-25
SE537390C2 true SE537390C2 (en) 2015-04-21

Family

ID=50544981

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1251202A SE537390C2 (en) 2012-10-24 2012-10-24 Combustion engine diagnosis

Country Status (3)

Country Link
DE (1) DE112013004818T5 (en)
SE (1) SE537390C2 (en)
WO (1) WO2014065743A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219577B4 (en) 2016-10-10 2018-09-27 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102016219575B3 (en) * 2016-10-10 2017-11-30 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102016219571B3 (en) * 2016-10-10 2017-07-27 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102016219572B3 (en) * 2016-10-10 2017-11-30 Continental Automotive Gmbh Method and device for operating an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728941A (en) * 1995-10-09 1998-03-17 Denso Corporation Misfire detecting apparatus using difference in engine rotation speed variance
US5720260A (en) * 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
US7225801B2 (en) * 2005-09-02 2007-06-05 Ford Global Technologies, Llc Default mode for lean burn engine
DE602007009930D1 (en) * 2007-04-17 2010-12-02 Scania Cv Abp Method for detecting a defective cylinder in a multi-cylinder internal combustion engine
JP2010144533A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Rough idle detecting device of internal combustion engine
US8229655B2 (en) * 2009-05-19 2012-07-24 GM Global Technology Operations LLC Fuel injection and combustion fault diagnostics using cylinder pressure sensor
US8091410B2 (en) * 2009-09-29 2012-01-10 Delphi Technologies, Inc. Phase-based misfire detection in engine rotation frequency domain
GB2478720B (en) * 2010-03-15 2017-05-03 Gm Global Tech Operations Llc Method to diagnose a fault in a fuel injection system of an internal combustion engine

Also Published As

Publication number Publication date
WO2014065743A1 (en) 2014-05-01
DE112013004818T5 (en) 2015-08-13
SE1251202A1 (en) 2014-04-25

Similar Documents

Publication Publication Date Title
US9032788B2 (en) Common rail system fault diagnostic using digital resonating filter
US8527137B2 (en) Vehicle behavior data recording control system and recording apparatus
JP6250063B2 (en) Diagnosis of particle filter condition
DE102012209555B4 (en) CYLINDER PRESSURE SENSOR KNOCK DETECTION SYSTEM
US9014918B2 (en) Health monitoring systems and techniques for vehicle systems
US8327696B2 (en) Monitoring of a particle limit value in the exhaust gas of an internal combustion engine
DE102012206001B4 (en) A method for diagnosing a fault condition of a sticking area of a nitrogen oxide sensor in a vehicle as well as a vehicle using this method
CN111120059A (en) Method and control device for monitoring the function of a particle filter
US8459005B2 (en) Method and device for diagnosing a particle filter
JP2009191778A (en) Control and diagnosis device of high-pressure fuel system
US7637140B2 (en) Method and device for detecting an incorrectly connected differential pressure sensor
JP2016156357A (en) Abnormality determination system for exhaust device
JP6322281B2 (en) Method and sensor system for monitoring the operation of a sensor
EP3379218B1 (en) Method for providing a diagnostic on a combined humidity and temperature sensor
CN105089758A (en) Method and diagnostic unit for diagnosing differential pressure sensor
SE537390C2 (en) Combustion engine diagnosis
CN105089759A (en) Method and apparatus for diagnosis of detachment of assembly of exhaust cleaning component
DE19958384A1 (en) Process for detecting a faulty sensor
US8874309B2 (en) Method for acquiring information
US9145815B2 (en) System and method for sensing particulate matter
CN111868356B (en) Method for checking variable valve lift control of an internal combustion engine
CN102162392A (en) Method and device for diagnosing a fan
US8739616B2 (en) Method for diagnosing a sensor unit of an internal combustion engine
US7162916B2 (en) Method and system for determining engine cylinder power level deviation from normal
KR101795376B1 (en) Method and system for performing selective engine parameter analysis

Legal Events

Date Code Title Description
NUG Patent has lapsed