SE524594C2 - Intermediate material and fuel composition - Google Patents

Intermediate material and fuel composition

Info

Publication number
SE524594C2
SE524594C2 SE0002149A SE0002149A SE524594C2 SE 524594 C2 SE524594 C2 SE 524594C2 SE 0002149 A SE0002149 A SE 0002149A SE 0002149 A SE0002149 A SE 0002149A SE 524594 C2 SE524594 C2 SE 524594C2
Authority
SE
Sweden
Prior art keywords
energy
rich
plasticizer
binder
energetic
Prior art date
Application number
SE0002149A
Other languages
Swedish (sv)
Other versions
SE0002149L (en
Inventor
Douglas Clive Wagstaff
Original Assignee
Royal Ordnance Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Royal Ordnance Plc filed Critical Royal Ordnance Plc
Publication of SE0002149L publication Critical patent/SE0002149L/en
Publication of SE524594C2 publication Critical patent/SE524594C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • C06B45/22Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0008Compounding the ingredient
    • C06B21/0025Compounding the ingredient the ingredient being a polymer bonded explosive or thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • C06B45/105The resin being a polymer bearing energetic groups or containing a soluble organic explosive
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • C06B45/22Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound
    • C06B45/24Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound the compound being an organic explosive or an organic thermic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Glass Compositions (AREA)

Abstract

An energetic material comprises an energetic crystalline material substantially coated in an energetic plasticiser material. Advantageously the energetic material comprises from 90 to 99% by weight of an energetic crystalline material and from 1 to 10% by weight of an energetic plasticiser material comprising a plasticiser selected from the group comprising Butane Triol trinitrate (BTTN), Trimethylanol ethane trinitrate (TMETN), Diazidonitrazapentane (DANPE), Glycidyl Azide Polymer (Azide Derivative) (GAP Azide), Bis(2,2-dinitropropyl)acetal/bis(2,2-dinitropropyl)formal (BDNPA/F) or mixtures of two or more of these plasticisers. The inventors have found that the combination of just a small quantity of energetic plasticiser material to the energetic crystalline material prior to incorporation into the bulk plasticiser, binder and filler mixture of an explosive or propellant composition has unexpected and advantageous effects.

Description

1@;e» 10 15 20 25 30 35 524 594 2 av dessa fyllmedel, bindmedel eller mjukningsmedelsmate- rial inom rakettekniken. Medan ett energirikt material kan verka önskvärt ur prestandasynpunkt för användning som antingen bindemedel, mjukningsmedel eller fyllmedel i den förutsagda drivmedelsformuleringen, måste sålunda materialet vara säkert att införliva, bearbeta och tran- sportera. Om ett osäkert energirikt material skulle in- förlivas i ett drivmedels- eller sprângämnessystem så skulle det osäkra materialet kunna initieras under an- tingen tillverkningsförfarandet eller under transport av slutprodukten. Denna initiering kan ske genom oavsiktlig friktions- eller stötstimulering som leder till hastig förbränning eller eventuellt en hastig förbränning till detonationsövergàng i det explosiva materialet som är tillräcklig för att orsaka en oönskad förtida explosion. 1 @; e »10 15 20 25 30 35 524 594 2 of these fillers, binders or plasticizers in rocket technology. Thus, while an energy rich material may appear desirable from a performance point of view for use as either a binder, plasticizer or filler in the predicted fuel formulation, the material must be safe to incorporate, process and transport. If an unsafe energy-rich material were to be incorporated into a fuel or explosive system, the unsafe material could be initiated during either the manufacturing process or during transport of the final product. This initiation can occur by inadvertent friction or shock stimulation leading to rapid combustion or possibly a rapid combustion to detonation transition in the explosive material sufficient to cause an unwanted premature explosion.

Av detta säkerhetsskäl inbegriper de flesta kända driv- medelsmaterialen (t ex sammansatt drivmedel baserat på ammoniumperklorat/hydroxylavslutad polybutadien) jäm- förelsevis energimässigt inerta mjukningsmedels- och bindemedelskomponenter.For this safety reason, most known fuel materials (eg composite fuel based on ammonium perchlorate / hydroxy-terminated polybutadiene) include comparatively energy inert plasticizer and binder components.

I allmänhet tillverkas fasta drivmedelsmaterial, sà- som de baserade på ammoniumperklorat, hydroxylavslutad polybutadien (bindemedel) och dioktylsebacat (mjuknings- medel), genom ett torrblandningsförfarande. Detta innebär att inga ytterligare desensibiliserande lösningsmedel (t ex vatten) sätts till denna blandning annat än de som införlivas i den slutliga drivmedelsformuleringen. Denna torrblandning behandlas, när den väl framställts, för att underlätta härdning av bindemedelsmaterialet för att åstadkomma de önskade mekaniska egenskaperna hos driv- medelsmaterialet. Denna metod anses i allmänhet vara att föredraga framför ett vàtblandningsförfarande (vid vilket ytterligare lösningsmedel införlivas som transportmedium eller bearbetningshjälpmedel eller som ett desensibili- seringsmedel för att förbättra säkerheten) eftersom den åstadkommer bättre blandningshomogenitet och minimerar fördröjning vid rengöring av blandningsutrustning eller ~|.;| 10 15 20 25 30 35 524 594 3 uttorkning av den blandade slutprodukten före vidare bearbetning (t ex gjutning och härdning).In general, solid propellant materials, such as those based on ammonium perchlorate, hydroxy-terminated polybutadiene (binder) and dioctyl sebacate (plasticizer), are produced by a dry blending process. This means that no additional desensitizing solvents (eg water) are added to this mixture other than those incorporated in the final fuel formulation. This dry blend, once prepared, is treated to facilitate curing of the binder material to achieve the desired mechanical properties of the fuel material. This method is generally considered to be preferable to a wet mixing process (in which additional solvents are incorporated as a transport medium or processing aid or as a desensitizer to improve safety) as it provides better mixing homogeneity and minimizes delay in cleaning mixing equipment or ~ |; | Drying of the mixed final product before further processing (eg casting and curing).

Typiskt inbegriper existerande drivmedelsmaterial omkring 6 vikt% mjukningsmedel per 85 vikt% energirikt fyllmedel. Drivmedelsmaterialet inbegriper också i all- mänhet omkring 9 vikt% totalt av bindemedel och andra fyllmedelsmaterial.Typically, existing propellant materials comprise about 6% by weight of plasticizer per 85% by weight of energy-rich filler. The propellant material also generally comprises about 9% by weight in total of binders and other filler materials.

HNIW är ett mycket friktionskänsligt material, som har ett friktionsvärde (Figure of Friction; "F av F") vid rotationsfriktionsprovning av 0,7 och åstadkommer ett mycket våldsamt svar på reaktion genom friktionsstimule- ring. Det exceptionellt låga F av F hos HNIW (jämfört med andra beståndsdelar som rutinmässigt används i driv- medels-/sprängsâmnesformuleringar) utgör en avsevärd risk vid det inledande förfarandet med torrblandning av mjuk- ningsmedel, bindemedel och fyllmedel, såsom är konven- tionellt vid tillverkning av fast drivmedel. Det låga F av F-värdet utesluter användning av CL2O vid drivmedels- tillverkning i stor skala hos vissa sprängämnesföretag.HNIW is a highly friction-sensitive material, which has a friction value (Figure of Friction; "F of F") in rotational friction testing of 0.7 and provides a very violent response to reaction by friction stimulation. The exceptionally low F of F at HNIW (compared to other ingredients routinely used in propellant / explosive formulations) poses a significant risk in the initial process of dry blending of plasticizers, binders and fillers, as is conventional in manufacturing. of solid fuel. The low F of the F-value excludes the use of CL2O in large-scale fuel production at certain explosives companies.

Tillverkaren har sålunda utmaningen att åstadkomma ett säkert förfarande, genom vilket HNIW kan införlivas i sprängsämnes- och drivmedelsmaterial samtidigt som det har minimal inverkan pà slutproduktens totala presta- tionsegenskaper.The manufacturer thus has the challenge of achieving a safe process, through which HNIW can be incorporated into explosives and fuel materials while having a minimal impact on the overall performance characteristics of the final product.

Enligt den första aspekten avser uppfinningen ett energirikt material, som inbegriper ett energirikt kris- tallint material i huvudsak belagt i ett energirikt mjuk- ningsmedelsmaterial.According to the first aspect, the invention relates to an energy-rich material, which comprises an energy-rich crystalline material substantially coated in an energy-rich plasticizer material.

Företrädesvis är det energirika kristallina materia- let partikulärt, varvid det energirika mjukningsmedlet i huvudsak belägger individuella partiklar av det energi- rika kristallina materialet.Preferably, the energy-rich crystalline material is particulate, the energy-rich plasticizer mainly coating individual particles of the energy-rich crystalline material.

Det energirika materialet har företrädesvis pulver- form, varvid pulvret inbegriper partiklar av energirikt kristallint material i huvudsak belagt i ett energirikt mjukningsmedelsmaterial. «=;=u 10 15 20 25 30 35 524 594 4 Företrädesvis inbegriper det energirika materialet 90-99 vikt% av ett energirikt kristallint material och 1-10 vikt% av ett energirikt mjukningsmedelsmaterial.The energy-rich material is preferably in powder form, the powder comprising particles of energy-rich crystalline material substantially coated in an energy-rich plasticizer material. Preferably, the energy-rich material comprises 90-99% by weight of an energy-rich crystalline material and 1-10% by weight of an energy-rich plasticizer material.

Uppfinnarna har funnit att kombinationen av just en liten mängd energirikt mjukningsmedelsmaterial med det energirika kristallina materialet före införlivning i huvudblandningen av mjukningsmedel, bindemedel och fyll- medel till en sprängämnes- eller drivmedelskomposition har två oväntade och fördelaktiga effekter. För det första leder mjukningsmedelstillsättningen till en minsk- ning av friktionskänsligheten hos det energirika kristal- lina materialet så att den är lika med eller lägre än den hos många vanligen använda energirika fyllmedelsmaterial, såsom ammoniumperklorat, och för det andra resulterar mjukningsmedelstillsättningen även i minskad våldsamhet hos gensvaret på stimulering. Den erhållna nya mellanpro- dukten av det energirika kristallina materialet och mjuk- ningsmedel kan sedan användas mera säkert som ett ut- gångsmaterial för de tidigare beskrivna torrblandnings/- härdningsförfaranden som används vid tillverkning av kända drivmedels- och sprängämneskompositioner. Dessa nya intermediära, mjukningsmedelstillsatta, energirika, kristallina materialprodukter är också säkrare att han- tera och transportera än det rena energirika kristallina materialet.The inventors have found that the combination of just a small amount of energy-rich plasticizer material with the energy-rich crystalline material before incorporation into the main mixture of plasticizer, binder and filler into an explosive or propellant composition has two unexpected and beneficial effects. Firstly, the plasticizer addition leads to a reduction in the friction sensitivity of the energy-rich crystalline material so that it is equal to or lower than that of many commonly used energy-rich filler materials, such as ammonium perchlorate, and secondly, the plasticizer addition also results in reduced violence in the response to stimulation. The resulting new intermediate of the high-energy crystalline material and plasticizer can then be used more safely as a starting material for the previously described dry blending / curing processes used in the manufacture of known propellant and explosive compositions. These new intermediate, plasticizer-added, energy-rich, crystalline material products are also safer to handle and transport than the pure energy-rich crystalline material.

Vid en särskild metod i enlighet med föreliggande uppfinning för tillverkning av ett energirikt material innefattande en blandning av energirikt kristallint material/energirikt mjukningsmedel, blandas lämpligen det energirikta kristallina materialet och det energirika mjukningsmedelsmaterialet medelst ett våtblandningsför- farande, varvid mjukningsmedelsmaterialet sätts till exempelvis HNIW som vätts med vatten. De inneboende egen- skaperna hos våtblandning minskar den friktion som upp- står i blandningen under blandningsförfarandet och mini- merar sålunda risken för explosiv reaktion i det energi- rika kristallina materialet genom friktionsstimulering. win; 10 15 20 25 30 35 524 594 5 Efter blandning kan den med vatten vätta, mjukade energi- rika kristallina materialblandningen lämnas att torka till pulverformigt tillstànd, varvid det bildade torra pulvret är fint belagt med den energirika mjuknings- medelskomponenten. Den bildade blandningen av energirikt kristallint material/energirikt mjukningsmedel är ett relativt friktionsokänsligt, energirikt material jämfört med rent, torrt, energirikt, kristallint material.In a particular method in accordance with the present invention for manufacturing an energy-rich material comprising a mixture of energy-rich crystalline material / energy-rich plasticizer, the energy-rich crystalline material and the energy-rich plasticizer material are suitably mixed by a wet mixing process, wherein the plasticizer material is added to, for example, with water. The inherent properties of wet blend reduce the friction that arises in the blend during the blending process and thus minimize the risk of explosive reaction in the energy-rich crystalline material through frictional stimulation. win; After mixing, the water-wet, soft energy-rich crystalline material mixture can be left to dry to a powdery state, the dry powder formed being finely coated with the energy-rich plasticizer component. The formed mixture of energy-rich crystalline material / energy-rich plasticizer is a relatively friction-insensitive, energy-rich material compared to pure, dry, energy-rich, crystalline material.

Uppfinnarna har funnit att kombinationen av just en liten mängd mjukningsmedelsmaterial med ett energirikt kristallint material, såsom HNIW, vid tillverkning av en sprängämnes- eller drivmedelskomposition, har en oväntad och fördelaktig effekt genom att minska friktionskänslig- heten HNIW så att den är lika med eller mindre än den hos vanligen använda energirika fyllmedelsmaterial, såsom ammoniumperklorat eller HMX. De erhållna nya mellanpro- dukter som tillverkas medelst denna desensibiliserings- metod, kan sedan användas säkrare som utgångsmaterial för de torrblandnings/härdningsförfaranden som konventionellt används vid tillverkning av kända drivmedels- och spräng- ämneskompositioner. Dessa nya mellanprodukter är också säkrare att hantera och transportera än den rena produk- ten. En annan oväntad, men likväl fördelaktig egenskap hos dessa nya material är att när de väl initierats så uppvisar de en minskad váldsamhet i gensvar jämfört med den hos den rena produkten.The inventors have found that the combination of just a small amount of plasticizer material with an energy rich crystalline material, such as HNIW, in the manufacture of an explosive or propellant composition, has an unexpected and beneficial effect by reducing the friction sensitivity of HNIW so that it is equal to or less than that of commonly used energy-rich filler materials, such as ammonium perchlorate or HMX. The new intermediates obtained by this desensitization method can then be used more safely as a starting material for the dry blending / curing processes conventionally used in the manufacture of known propellant and explosive compositions. These new intermediate products are also safer to handle and transport than the pure product. Another unexpected, but nevertheless advantageous property of these new materials is that once initiated, they show a reduced violence in response compared to that of the pure product.

Det energirika mjukningsmedlet väljs företrädesvis fràn den grupp som inbegriper butantrioltrinitrat (BTTN), trimetylanoletantrinitrat (TMETN), diazidonitratzapentan (DANPE), glycidylazidpolymer (azidderivat) (GAP-azid), bis(2,2-dinitropropyl)acetal/bis(2,2-dinitropropyl)formal (BDNPA/F) eller blandningar av två eller flera av dessa mjukningsmedel. Förutom att de medför de önskade desensi- biliseringseffekten tillför dessa mjukningsmedel energi till drivmedelssystemet jämfört med användning av inerta analoger. Som en följd härav har det mellanproduktsmate- rial som framställs en högre energitäthet jämfört med ma» 10 15 20 25 30 35 524 594 6 inerta analoger. Detta är en önskvärd egenskap hos mate- rial för användning inom raketindustrin/sprängämnespro- gram eftersom alla beståndsdelar hos den därefter till- verkade sprängämnes/drivmedelsformuleringen som använder mellanprodukten bidrar energimässigt till den slutliga formuleringen. Användning av energirika kristallina material som desensibiliserats med energirika inerta mjukningsmedel skulle ha jämförelsevis mindre energi än de föreslagna, energirika mjukningsmedelsformuleringarna.The high-energy plasticizer is preferably selected from the group consisting of butanetriol trinitrate (BTTN), trimethylanolethane trinitrate (TMETN), diazidonitrate zapentane (DANPE), glycidyl azide polymer (azide derivative) (GAP-azalide) / bis (2,2) -dinitropropyl) formal (BDNPA / F) or mixtures of two or more of these plasticizers. In addition to providing the desired desensitizing effect, these plasticizers supply energy to the fuel system compared to the use of inert analogs. As a result, the intermediate material produced has a higher energy density compared to inert analogues. This is a desirable property of materials for use in the rocket industry / explosives program since all the constituents of the subsequently manufactured explosive / fuel formulation using the intermediate product contribute energetically to the final formulation. The use of energy-rich crystalline materials desensitized with energy-rich inert plasticizers would have comparatively less energy than the proposed, energy-rich plasticizer formulations.

Det energirika mjukningsmedelsmaterialet kan inbe- gripa 100% av vilken som helst av de ovan uppräknade mjukningsmedlen, blandningar av de ovan uppräknade mjuk- ningsmedlen eller eventuellt vara en blandning av energi- rikt mjukningsmedel och ett bindemedelsmaterial (t ex poly(3~nitratometyl-3-metyloxetan) (polyNIMMO), poly- glycidylnitrat (polyGLYN) eller glycidylazidpolymer (GAP)) i proportioner som omfattar fràn en minimummängd av 10 vikt% mjukningsmedel och 90% bindemedel till 100% mjukningsmedel och 0% bindemedel. Det i det följande an- vända uttrycket "energirikt mjukningsmedelsmaterial" bör tolkas i enlighet med ovanstående beskrivning.The energy-rich plasticizer material may comprise 100% of any of the plasticizers listed above, mixtures of the plasticizers listed above or optionally be a mixture of energy-rich plasticizer and a binder material (e.g. poly (3-nitratomethyl-3) -methyloxetane) (polyNIMMO), polyglycidyl nitrate (polyGLYN) or glycidylazide polymer (GAP)) in proportions ranging from a minimum of 10% by weight of plasticizer and 90% binder to 100% plasticizer and 0% binder. The term "energy-rich plasticizer material" as used hereinafter should be interpreted in accordance with the above description.

Företrädesvis innefattar det nya energirika mate- rialet mellan 1 och 5 vikt% energirikt mjukningsmedels- material och mest föredraget mellan 3 och 5 vikt% energi- rikt mjukningsmedelsmaterial.Preferably, the new energy-rich material comprises between 1 and 5% by weight of energy-rich plasticizer material and most preferably between 3 and 5% by weight of energy-rich plasticizer material.

För blandade bindemedels/mjukningsmedelssystem inne- fattar det energirika mjukningsmedelsmaterialet före- trädesvis mellan 30 och 100% energirikt mjukningsmedel och 70 till 0% bindemedel. Mest föredraget ligger mjuk- ningsmedelshalten i området 60-100%.For mixed binder / plasticizer systems, the energy-rich plasticizer material preferably comprises between 30 and 100% energy-rich plasticizer and 70 to 0% binder. Most preferably, the plasticizer content is in the range of 60-100%.

Föreliggande uppfinning åstadkommer sålunda ett sätt att framställa ett mycket energirikt mellanproduktsmate- rial baserat pá ett energirikt kristallint material som är desensibiliserat för säker införlivning i drivmedels- eller sprängämnesformuleringar.The present invention thus provides a method of producing a highly energy-rich intermediate material based on an energy-rich crystalline material which is desensitized for safe incorporation into propellant or explosive formulations.

Enligt en andra aspekt åstadkommer föreliggande upp- finning ett sätt att framställa ett drivmedelsmaterial 10 15 20 25 30 35 524 594 7 innehållande ett energirikt kristallint material, vilket sätt inbegriper: (i) att blanda 1-10 vikt% av ett energirikt mjuk- ningsmedelsmaterial med 99-90 vikt% av det energirika kristallina materialet, (ii) att blanda den erhållna produkten från steg (1) med ytterligare mängder mjukningsmedel och bindemedels- material såsom är lämpligt för drivmedelsmaterialets slutanvändning, (iii) att hårda den erhållna produkten från steg (ii).In a second aspect, the present invention provides a method of preparing a propellant material containing an energy-rich crystalline material, which method comprises: (i) mixing 1-10% by weight of an energy-rich plasticizer material with 99-90% by weight of the energy-rich crystalline material, (ii) mixing the obtained product from step (1) with additional amounts of plasticizer and binder material as suitable for the end use of the fuel material, (iii) curing the obtained product from step (ii).

Det energirika mjukningsmedelsmaterialet innehåller företrädesvis ett mjukningsmedel valt bland butantriol- trinitrat (BTTN), trimetylanoletantrinitrat (TMETN), diazidonitratzapentan (DANPE), glycidylazidpolymer (azid- (GAP-azid), bis(2,2-dinitropropyl)acetal/bis- (BDNPA/F) två eller flera av dessa mjukningsmedel. derivat) (2,2-dinitropropyl)formal eller blandningar av Enligt en tredje aspekt hänför sig uppfinningen till en sprängämnes- eller drivmedelskomposition, som fram- ställts från ett energirikt material innefattande: (i) 90-99 vikt% HNIW; och (ii) 1-10 vikt% av ett energirikt mjukningsmedels- material, som inbegriper ett mjukningsmedel valt från den grupp som innefattar: butantrioltrinitrat (BTTN), tri- metylanoletantrinitrat (TMETN), diazidonitrazapentan (GAP-azid), bis(2,2-dinitropropyl)acetal/bis(2,2-dinitropropyl)formal (DANPE), glycidylazidpolymer (azidderivat) (BDNPA/F), eller blandningar av två eller flera av dessa komponenter.The high-energy plasticizer material preferably contains a plasticizer selected from butanetriol trinitrate (BTTN), trimethylanolethane trinitrate (TMETN), diazidonitrate zapentane (DANPE), glycidyl azide polymer (azide- (GAP-azidine) bis (2,2-acetyl) bis (2,2-acetyl) / F) two or more of these plasticizers, derivatives) (2,2-dinitropropyl) formal or mixtures of According to a third aspect, the invention relates to an explosive or propellant composition prepared from an energy rich material comprising: (i) 90-99% by weight HNIW; and (ii) 1-10% by weight of an energy rich plasticizer material, including a plasticizer selected from the group consisting of: butanetriol trinitrate (BTTN), trimethylanolethane trinitrate (TMETN), diazidonitrazapentane (GAP azide), bis (2, 2-dinitropropyl) acetal / bis (2,2-dinitropropyl) formal (DANPE), glycidylazide polymer (azide derivative) (BDNPA / F), or mixtures of two or more of these components.

För att mera fullständigt belysa de nya sätten, pro- dukterna och tillämpningarna av föreliggande uppfinning och deras tillhörande fördelar ges nu i form av exempel försöksdata för några specifika utföringsformer av upp- finningen. Fastän alla analyser utfördes med användning av epsilon-form av HNIW förutses det att detta sensibili- seringssätt är effektivt för andra kristallpolymorfer av lO 15 20 25 524 594 8 HNIW liksom kända energirika kristallina material, såsom cyklotrimetylentrinitramin (RDX) och cyklotetrametylen- tetranitramin (HMX). 1) Rotationsfriktionsprovning av HNIW i epsilon- kristallform genomfördes och ett friktionsvärde (FavF) = 0,7 erhölls. Provets gensvar under provning var en kraf- tig knall och blixt. 2) 0,25 g TMETN som stabiliserats med 1% 2-nitrodi- fenylamin (2NDPA) sattes till 5 g torr epsilon-form av HNIW och blandades. Det bildade materialet var ett ljus- orange pulver. Materialet bedömdes med rotationsfriktion och det uppnådda FavF var 2,2. Förutom minskningen i friktionskänslighet minskades det häftiga gensvaret från en häftig knall/blixt för det rena HNIW-materialet till en mild knall utan blixt. 3) Upprepad analys av det formuleringsexempel som anges i exempel 2 genomfördes med utbyte av TMETN mot BTTN, en blandning av BTTN och TMETN, DANPE, GAP-azid, BDNPA/F, polyNIMMO, polyGLYN och GAP. Alla materialen såg ut som vita/gula pulver. För dessa blandningar bestämdes friktionskänsligheten och anges i tabell 1.In order to more fully illustrate the new methods, products and applications of the present invention and their associated advantages, experimental data are now provided in the form of examples for some specific embodiments of the invention. Although all assays were performed using the epsilon form of HNIW, it is anticipated that this method of sensitization is effective for other crystal polymorphs of HNIW as well as known high energy crystalline materials such as cyclotrimethylenetrinitramine (RDX) and cyclotetranethramethylene (cyclotetramethramethylene). ). 1) Rotational friction testing of HNIW in epsilon crystal form was performed and a friction value (FavF) = 0.7 was obtained. The test's response during testing was a powerful bang and lightning. 2) 0.25 g of TMETN stabilized with 1% 2-nitrodiphenylamine (2NDPA) was added to 5 g of dry epsilon form of HNIW and mixed. The material formed was a light orange powder. The material was judged with rotational friction and the achieved FavF was 2.2. In addition to the reduction in friction sensitivity, the violent response was reduced from a violent bang / flash for the pure HNIW material to a mild bang without flash. 3) Repeated analysis of the formulation example given in Example 2 was performed exchanging TMETN for BTTN, a mixture of BTTN and TMETN, DANPE, GAP azide, BDNPA / F, polyNIMMO, polyGLYN and GAP. All materials looked like white / yellow powder. For these mixtures, the friction sensitivity was determined and is given in Table 1.

Iâb§ll_l Prov FavF CL20:TMETN 2,2 CL20:BTTN 2,1 CL20:BTTN/TMETN(50/50) 2,4 CL20: GAP-azid 2,1 CL20:DANPE 1,9 CL20:polyGLYN 2,2 CL20:po1yNIMMO 1,9 CL20:GAP 1,6 4) Upprepad analys av den formulering som anges i exempel 2 genomfördes, men med utbyte av TMETN mot blan- dade bindemedel:mjukningsmedelsformuleringar. Alla bland- ningar bildade vita/svagt gula pulver. För dessa bland- 524 594 9 ningar bestämdes friktionskänsligheten och anges i tabell 2.Iâb§ll_l Sample FavF CL20: TMETN 2.2 CL20: BTTN 2.1 CL20: BTTN / TMETN (50/50) 2.4 CL20: GAP azide 2.1 CL20: DANPE 1.9 CL20: polyGLYN 2.2 CL20: polyNIMMO 1,9 CL20: GAP 1,6 4) Repeated analysis of the formulation given in Example 2 was performed, but with the exchange of TMETN for mixed binders: plasticizer formulations. All mixtures formed white / pale yellow powders. For these mixtures, the friction sensitivity was determined and is given in Table 2.

Iâbfill_Z Fastämne Bindemedel Mjukningsmedel FavF CL20 polyGLYN GAP-azid 2,7 CL20 P0lyGLYN DANPE 2,5 CL20 POIYGLYN BTTN/TMETN (80:20) 2,7 CL20 POIYGLYN BDNPA/F 2,1 CL20 POIYNIMMO GAP-azid 2,9 CL20 POIYNIMMO DANPE 2,9 CL20 P0lyNIMO BTTN/TMETN (80:20) 3,1 CL20 POIYNIMMO BDNPA/F 2,4 CL20 GAP GAP-azid 2,8 CL20 GAP DANPE 2,7 CL20 GAP BTTN/TMETN (80:20) 2,8 CL20 GAP BDNPA/F 2,7 5) 40 g CL20 vättes till en fukthalt 25% med avjoni- serat vatten och blandades noga. 2 g TMETN (stabiliserat med 2% 2NDPA) tillsattes och man blandade åter noga. Den slutliga blandningen av CL20/vatten/TMETN/2NDPA placera- des på en öppen bänk för att tillåta vatten att förànga och slutligt vatten avlägsnades under vakuumlagring vid 80°C i 2 h. Friktionskänsligheten bestämdes hos det bil- dade torra pulvret och man erhöll ett FavF av 2,4.Iâb fi ll_Z Solid Binder Plasticizer FavF CL20 polyGLYN GAP azide 2.7 CL20 P0lyGLYN DANPE 2.5 CL20 POIYGLYN BTTN / TMETN (80:20) 2.7 CL20 POIYGLYN BDNPA / F 2.1 CLO POIYIM POI CL2 DANPE 2.9 CL20 P0lyNIMO BTTN / TMETN (80:20) 3.1 CL20 POIYNIMMO BDNPA / F 2.4 CL20 GAP GAP azide 2.8 CL20 GAP DANPE 2.7 CL20 GAP BTTN / TMETN (80:20) 2 .8 CL20 GAP BDNPA / F 2.7 5) 40 g of CL20 were wetted to a moisture content of 25% with deionized water and mixed thoroughly. 2 g of TMETN (stabilized with 2% 2NDPA) were added and mixed thoroughly again. The final mixture of CL20 / water / TMETN / 2NDPA was placed on an open bench to allow water to evaporate and final water was removed under vacuum storage at 80 ° C for 2 hours. The friction sensitivity was determined in the formed dry powder and obtained a FavF of 2.4.

Den intelligenta läsaren inser att de principer som är involverade i föreliggande uppfinning är lika tillämp- liga på framtida energirika material av motsvarande kemisk natur som HNIW vilka ännu återstår att framställa.The intelligent reader will recognize that the principles involved in the present invention are as applicable to future energy-rich materials of a similar chemical nature as HNIW which have yet to be produced.

Claims (10)

lO 15 20 25 30 35 524 594 10 PATENTKRAVlO 15 20 25 30 35 524 594 10 PATENT REQUIREMENTS 1. l. Intermediärt material för en drivmedelskomposi- tion, k ä n n e t e c k n a t därav, att det intermediära materialet har pulverform och inbegriper 90-99 vikt% av ett partikelformigt energirikt kristallint material och l-10 vikt% av ett energirikt mjukningsmedelsmaterial, var- vid det energirika mjukningsmedelsmaterialet i huvudsak belägger de individuella partiklarna av det energirika kristallina materialet.1. Intermediate material for a propellant composition, characterized in that the intermediate material is in powder form and comprises 90-99% by weight of a particulate energy-rich crystalline material and 1-10% by weight of an energy-rich plasticizer material, wherein the high-energy plasticizer material essentially coats the individual particles of the high-energy crystalline material. 2. , Intermediärt material enligt kravet 1, i vilket mängden energirikt mjukningsmedelsmaterial är mellan 1 och 5 vikt%.Intermediate material according to claim 1, in which the amount of energy-rich plasticizer material is between 1 and 5% by weight. 3. Intermediärt material enligt kravet 1, i vilket mängden energirikt mjukningsmedelsmaterial är mellan 3 och 5 vikt%. 'Intermediate material according to claim 1, in which the amount of energy-rich plasticizer material is between 3 and 5% by weight. ' 4. Intermediärt material enligt kravet 1, i vilket det energirika mjukningsmedelsmaterialet är valt fràn en grupp som innefattar butantrioltrinitrat (BTTN), tri- metylanoletantrinitrat (TMETN), diazidonitrazapentan (DANPE), glycidylazidpolymer (azidderivat) (GAP-azid), bis(2,2-dinitropropyl)acetal/bie(2,2~dinitropropyl)formal (BDNPA/F), eller blandningar därav.Intermediate material according to claim 1, in which the energy-rich plasticizer material is selected from a group comprising butanetriol trinitrate (BTTN), trimethylanolethane trinitrate (TMETN), diazidonitrazapentane (DANPE), glycidylazide polymer (G azide azide) , 2-dinitropropyl) acetal / bie (2,2-dinitropropyl) formal (BDNPA / F), or mixtures thereof. 5. Intermediärt material enligt kravet 1, i vilket det energirika materialet är hexanitrohexazaisowurtizan.Intermediate material according to claim 1, in which the energy-rich material is hexanitrohexazaisowurtizan. 6. Intermediärt material enligt kravet 1, vilket även inbegriper ett bindemedel.Intermediate material according to claim 1, which also comprises a binder. 7. Intermediärt material enligt kravet 6, i vilket andelen energirikt mjukningsmedelsmaterial och bindemedel är från 10% till 100% energirikt mjukningsmedel och fràn 90% till 0% bindemedel.Intermediate material according to claim 6, in which the proportion of energy-rich plasticizer material and binder is from 10% to 100% energy-rich plasticizer and from 90% to 0% binder. 8. Intermediärt material enligt kravet 6, i vilket bindemedlet är ett energirikt bindemedel.* 6 _Intermediate material according to claim 6, in which the binder is an energy-rich binder. 9. Intermediärt material enligt kravet 6, i vilket bindemedlet är valt från den grupp som består av poly(3- nitratometyl-3~metyloxetan) (PolyNIMMO), polyglycidyl~ nitrat (PolyGLYN), och glycidylazidpolymer (GAP). 524 594 llIntermediate material according to claim 6, in which the binder is selected from the group consisting of poly (3-nitratomethyl-3-methyloxetane) (PolyNIMMO), polyglycidyl nitrate (PolyGLYN), and glycidylazide polymer (GAP). 524 594 ll 10. Drivmedelskomposition framställd från det inter- mediära materialet enligt kravet 1.Fuel composition prepared from the intermediate material according to claim 1.
SE0002149A 1999-06-09 2000-06-08 Intermediate material and fuel composition SE524594C2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB9913262.3A GB9913262D0 (en) 1999-06-09 1999-06-09 Desensitation of energetic materials

Publications (2)

Publication Number Publication Date
SE0002149L SE0002149L (en) 2003-06-13
SE524594C2 true SE524594C2 (en) 2004-08-31

Family

ID=10854917

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0002149A SE524594C2 (en) 1999-06-09 2000-06-08 Intermediate material and fuel composition

Country Status (9)

Country Link
US (3) US20040221934A1 (en)
CA (1) CA2301392C (en)
DE (1) DE10027413B4 (en)
ES (1) ES2190838B2 (en)
FR (1) FR2840604B1 (en)
GB (2) GB9913262D0 (en)
IT (1) ITRM20000309A1 (en)
NL (1) NL1015399C2 (en)
SE (1) SE524594C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925488B1 (en) * 2007-12-19 2011-12-23 Snpe Materiaux Energetiques CRYSTAL COATING DENSIBILIZATION OF EXPLOSIVE ENERGY SUBSTANCES; CRYSTALS SUCH AS COATED SUBSTANCES, ENERGY MATERIALS.
CN103044173B (en) * 2012-12-06 2015-03-04 中国工程物理研究院化工材料研究所 Method for preparing ordered porous energetic crystal material
CN103396274B (en) * 2013-08-16 2015-08-05 中国工程物理研究院化工材料研究所 The preparation method of Hexanitrohexaazaisowurtzitane and m-dinitrobenzene eutectic explosive
RU2670111C1 (en) * 2018-01-25 2018-10-18 Амир Рахимович Арисметов Method of increasing temperature stability of explosive substances
RU2703204C1 (en) * 2018-06-27 2019-10-15 Акционерное общество "Взрывгеосервис" Explosive composition
CN114539012A (en) * 2020-11-25 2022-05-27 北京理工大学 Composite energetic plasticizer suitable for GAP-based casting explosive and propellant and preparation method and application thereof
CN113416308B (en) * 2021-07-08 2022-02-01 北京理工大学 Porous aromatic skeleton EPAF-2 material, CL-20@ EPAF-2 composite energetic material and preparation method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1932050A (en) * 1933-10-24 Explosive coating material
US2615800A (en) * 1948-04-27 1952-10-28 Commercial Solvents Corp Coated granular explosive composition
US3151164A (en) * 1960-01-25 1964-09-29 Phillips Petroleum Co Nitraza thia polymer compositions
US3461007A (en) * 1968-04-29 1969-08-12 Commercial Solvents Corp Reducing sensitivity of primary explosives to initiation by electrostatic discharges
US3984264A (en) * 1969-04-01 1976-10-05 The United States Of America As Represented By The Secretary Of The Army Siloxane coatings for solid propellant ingredients
US4163681A (en) * 1970-04-15 1979-08-07 The United States Of America As Represented By The Secretary Of The Navy Desensitized explosives and castable thermally stable high energy explosive compositions therefrom
FR2501194A1 (en) * 1971-08-04 1982-09-10 Aerojet General Co Solid explosive desensitised with phlegmatising agent - contg. functional gps. which are reactive to binder ingredients
US3778319A (en) * 1973-01-30 1973-12-11 Atomic Energy Commission High-energy plastic-bonded explosive
NZ187824A (en) * 1977-08-01 1980-08-26 Ici Australia Ltd Fusecord wherein outer thermoplastic sheath enclosed by flexible strands adhered to sheath by adhesive from a water-bearing adhesive composition
US4168191A (en) * 1978-06-29 1979-09-18 The United States Of America As Represented By The United States Department Of Energy Thermally stable, plastic-bonded explosives
DE3010052C2 (en) * 1980-03-15 1982-09-09 Friedrich-Ulf 8899 Rettenbach Deisenroth Process for the production of plastic-bound explosives
FR2545478B1 (en) * 1983-05-03 1985-07-05 Commissariat Energie Atomique COLD-MOLDABLE EXPLOSIVE COMPOSITION AND PROCESS FOR PREPARING THE SAME
US5049213A (en) * 1985-10-10 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy Plastic bonded explosives using fluorocarbon binders
US4842659A (en) * 1988-04-22 1989-06-27 The United States Of America As Represented By The Secretary Of The Army Insensitive high energy explosive compositions
DE3934368C1 (en) * 1989-10-14 1990-11-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5547526A (en) * 1990-03-06 1996-08-20 Daimler-Benz Aerospace Ag Pressable explosive granular product and pressed explosive charge
DE4233629C2 (en) * 1992-10-06 1994-09-15 Wasagchemie Sythen Gmbh Process for producing a powder precursor and powder precursor
US5567912A (en) * 1992-12-01 1996-10-22 The United States Of America As Represented By The Secretary Of The Army Insensitive energetic compositions, and related articles and systems and processes
US5487851A (en) * 1993-12-20 1996-01-30 Thiokol Corporation Composite gun propellant processing technique
US5587553A (en) * 1994-11-07 1996-12-24 Thiokol Corporation High performance pressable explosive compositions
US5759458A (en) * 1996-07-26 1998-06-02 Thiokol Corporation Process for the manufacture of high performance gun propellants
US5750921A (en) * 1997-07-07 1998-05-12 Chan; May L. Waste-free method of making molding powder
US6217799B1 (en) * 1997-10-07 2001-04-17 Cordant Technologies Inc. Method for making high performance explosive formulations containing CL-20
US6214137B1 (en) * 1997-10-07 2001-04-10 Cordant Technologies Inc. High performance explosive containing CL-20
DE19907809C2 (en) * 1999-02-24 2002-10-10 Nitrochemie Gmbh Process for the production of one-, two- or three-base propellant charge powders for gun ammunition

Also Published As

Publication number Publication date
US20140261928A1 (en) 2014-09-18
GB2374867B (en) 2003-12-10
DE10027413A1 (en) 2003-08-07
ES2190838B2 (en) 2005-06-16
GB9913262D0 (en) 2002-08-21
US20110108171A1 (en) 2011-05-12
FR2840604A1 (en) 2003-12-12
CA2301392A1 (en) 2004-01-28
CA2301392C (en) 2010-10-12
NL1015399A1 (en) 2003-03-13
FR2840604B1 (en) 2006-03-17
NL1015399C2 (en) 2003-08-19
GB0011861D0 (en) 2002-08-21
ES2190838A1 (en) 2003-08-16
DE10027413B4 (en) 2014-11-06
GB2374867A (en) 2002-10-30
SE0002149L (en) 2003-06-13
US20040221934A1 (en) 2004-11-11
ITRM20000309A1 (en) 2001-12-06

Similar Documents

Publication Publication Date Title
US5468313A (en) Plastisol explosive
US7842144B1 (en) Methods of making double base casting powder
US6652682B1 (en) Propellant composition comprising nano-sized boron particles
US20140261928A1 (en) Desensitisation of energetic materials
US6206988B1 (en) Hexanitrohexaazaisowurtzitane compositions and explosive compositions containing the same
US4000025A (en) Incorporating ballistic modifiers in slurry cast double base containing compositions
US3732131A (en) Gun propellant containing nitroplasticized nitrocellulose and triaminoguanidine nitrate
US5507893A (en) Stabilized munitions containing a NENA compound
US4154633A (en) Method for making solid propellant compositions having a soluble oxidizer
US3954531A (en) Composite double base propellant composition containing ferric fluoride
AU2017420106B2 (en) Composition for single-base propelling powder for ammunition and ammunition provided with such composition
Chan et al. ADN propellant technology
EP0334999B1 (en) Eutectic composition of two nitrazapentane derivatives
CN116082103B (en) TKX-50-based high-energy composite explosive and preparation method thereof
IL160122A (en) High performance plastic bonded explosive and method for its preparation
US8864923B1 (en) Ballistic modifier formulation for double base propellant
US4128583A (en) Difluoramino compounds
Masoodi Preparation of NEPE polymeric missiles propellants and effect of particle size in mechanical properties
RU2229464C1 (en) Stabilizing agent of chemical resistance of nitrocellulose blasting powders and solid rocket propellants and a method of their treatment
CZ35772U1 (en) Heterogeneous cast propellant for rescue systems
Wallace Plastisol explosive
RU2229467C1 (en) Stabilizer of chemical resistance of nitrocellulose blasting powders and solid rocket propellants and a method of their treatment
Masoodi et al. A New Generation of Composite Solid Propellants
Hydrocarbon B&OT. Solids
JPH07232988A (en) Explosive composition

Legal Events

Date Code Title Description
NUG Patent has lapsed